
A MARSHALL CAVENDISH '16 COMPUTER COURSE IN WEEKLY PARTS

LEARN PROGRAMMING - FOR FUN AND THE FUTURE

Vol. 2 	 No 16
MACHINE CODE 17

SPECTRUM TRACE PROGRAM 	 477

Bothered by bugs? Run this trace through your programs
to track down those elusive errors

BASIC PROGRAMMING 37

PICTURES FROM UDGS 	 484

Use multiple UDGs to assemble a complete screen
image with plenty of detail

GAMES PROGRAMMING 16

A DUCK SHOOTING GAME 	 492

With your joystick routine complete, here's a chance
to put it to use as part of this complete game .

APPLICATIONS 9

EXTEND YOUR TYPING 	 498

If you have already mastered the typing tutor, now's
your chance to practise on some extended text

PERIPHERALS

:CHOOSING STORAGE METHOD 	504]

Explore the relative merits of tape and disk systems
for permanent storage

INDEX
The last part of INPUT, Part 52, will contain a complete, cross-referenced index.
For easy access to your growing collection, a cumulative index to the contents
of each issue is contained on the inside back cover.

PICTURE CREDITS
Front cover, Dave King. Pages 477, 479, 480, 482, Barry Thorpe. Pages 484,
485, Jeremy Gower. Page 486, Kuo Kang Chen. Pages 485, 487, 488, Ray Duns.
Page 490, Chris Lyon. Pages 492, 494, 496, Andrew MacConville. Pages 498,
500, 502, Dave King. Pages 504, 506, Lionel Jeans.

© Marshall Cavendish Limited 1984/5/6
All worldwide rights reserved.

The contents of this publication including software, codes, listings,
graphics, illustrations and text are the exclusive property and copyright of
Marshall Cavendish Limited and may not be copied, reproduced,
transmitted, hired, lent, distributed, stored or modified in any form
whatsoever without the prior approval of the Copyright holder.

Published by Marshall Cavendish Partworks Ltd, 58 Old Compton Street, London W1V 5PA,
England. Printed by Artisan Presss, Leicester and Howard Hunt Litho, London.

HOW TO ORDER
YOUR BINDERS
UK and Republic of Ireland:
Send £4.95 (inc p & p) (1R£5.95) for
each binder to the address below:

Marshall Cavendish Services Ltd,
Department 980, Newtown Road,
Hove, Sussex BN3 7DN

Australia: See inserts for details, or
write to INPUT, Times Consultants,
PO Box 213, Alexandria, NSW 2015

New Zealand: See inserts for details, or
write to INPUT, Gordon and Gotch
(NZ) Ltd, PO Box 1595, Wellington
Malta: Binders are available from local
newsagents.

There are four binders each holding 13 issues.

BACK NUMBERS
Back numbers are supplied at the regular cover price (subject to availability).

UK and Republic of Ireland:
INPUT, Dept AN, Marshall Cavendish Services,
Newtown Road, Hove BN3 7DN

Australia, New Zealand and Malta:
Back numbers are available through your local newsagent.

COPIES BY POST
Our Subscription Department can supply copies to any UK address regularly at £1.00 each.
For example the cost of 26 issues is £26.00; for any other quantity simply multiply the number
of issues required by £1.00. Send your order, with payment to:

Subscription Department, Marshall Cavendish Services Ltd,
Newtown Road, Hove, Sussex BN3 7DN

Please state the title of the publication and the part from which you wish to start.

HOW TO PAY: Readers in UK and Republic of Ireland: All cheques orpostal orders
for binders, back numbers and copies by post should be made payable to:

Marshall Cavendish Partworks Ltd.

QUERIES: When writing in,please give the make and model of your computer, as
well as the Part No., page and line where the program is rejected or where it does
not work. We can only answer specific queries— and please do not telephone. Send
your queries to INPUT Queries, Marshall Cavendish Partworks Ltd, 58 Old
Compton Street, London W1V 5PA.

INPUT IS SPECIALLY DESIGNED FOR:
The SINCLAIR ZX SPECTRUM (16K, 48K,128 and +),
COMMODORE 64 and 128, ACORN ELECTRON, BBC B
and B+,and the DRAGON 32 and 64.

In addition, many of the programs and explanations are also
suitable forthe SINCLAIR ZX81, COMMODORE VIC 20, and
TANDY COLOUR COMPUTER in 32K with extended BASIC.
Programs and text which are specifically for particular machines
are indicated by the following symbols:

SPECTRUM 16K, Fr; 1
1.1.111111dfL 	48K,128, and + Lml,-1COMMODORE 64 and 128

la ACORN ELECTRON, 4L/I.
BBC B and B+ 	̀1 DRAGON 32 and 64

TANDY TRS80 a um INK VIC 20 	COLOUR COMPUTER

■ WHAT THE TRACE CAN DO
■ FINDING THE ERRORS
■ ENTERING THE PROGRAM
■ HOW IT WORKS
■ HOW TO USE IT

Track down those elusive bugs and
evasive errors in your programs,
and investigate what's going wrong
with this powerful Spectrum trace
program for 48K machines

It is almost impossible to key in a long
program—like your assembler—without in-
troducing some errors. No matter how much
it is checked, there are some bugs that defy
even the deftest programmer, without the
aid of some powerful diagnostic tool.

Having a properly working assembler is
essential. Many of the following chapters
depend on it and it is vital that you locate all of
the bugs in it now. So INPUT is providing
Spectrum owners with a trace program to
help them check their assemblers out. The
Dragon and Tandy have trace programs built
in. So do the BBC and Electron. A trace
for the Commodore will be given next time.

The trace programs listed below are given
in assembly language as well as machine code.
If your assembler is not working you can feed
in the trace program machine code using the

machine code monitor given on pages 280 and
281. If your assembler is working, you can
assemble the trace and SAVE it so that you can
use it to diagnose problems in other BASIC
programs that you have written. And if you
are not sure whether your assembler is work-
ing or not, you can test it by trying to
assemble the trace program.

HOW TO USE IT
When a BASIC program will not RUN, your
computer will often give you an error message
which tells you which line it cannot execute.

This may be all you need to know to debug a
short, simple program. But when your
programs get longer and more complicated,
such a message may still leave you in the dark.
A particular line may be executed a number of
times while the program is being RUN. And
other lines that have been executed before it
may set the variables to values that cause
problems in the line which your computer
eventually falters on.

This trace program simply PRINT out on
the screen the number of each line—and, on
the Spectrum, the number of the statement in
that line—as it is executed. To make full use
of the trace you should have a copy of the
program handy—either your own printout or
the version published in INPUT. Then fol-
low the program through to the point where it
stops, using the trace. This way you will be
able to see clearly the structure of the
program. You'll be able to spot whether the
computer is RETURNing from subroutines
properly. You'll also be able to work out the
value of the variables as you go and check that
conditional IF ... THEN statements are being
fulfilled and that GOTOs go to the right line.

HOW IT WORKS
A trace program is rather special. It runs
while another program—the BASIC program
that you are checking out—is RUNning.
Normally it is not possible to run two
programs in your computer at the same time.
In this case though, the two programs—
although they seem to be running
simultaneously—are not. The trace uses what
are called interrupt driven routines.

These interrupt the main program every
50th of a second on the Spectrum. While the
main program is halted for a fraction of the
second, the interrupt driven routine is perfor-
med. And when it is finished, the main
program RUNs again until the next interrupt.

BASIC programs are always interrupted
when they are RUN. The computer breaks off
every 50th of a second to scan the keyboard
and to check to see if a key has been pressed.
Interrupt driven routines are simply tacked
onto this keyboard scan routine. Note that
this will not work properly with an Interface 1
connected.

A long line of BASIC may be interrupted
several times during its execution. So the
trace may give you a line number repeated
several times. Conversely, if a line is very
short—say a single PRINT or a RETURN from a
subroutine which takes less than a 50th of a
second—there is a slight chance that the trace
will miss it. If the trace does not list the
number of a short line, try adding a delay—a
FOR ... NEXT loop or a REM statement—to it.

The Spectrum has special problems when it
comes to PRINTing on the screen during an
interrupt routine. It has discrete output chan-
nels for PRINTing on the bottom of the screen
and the top. And changing channel while a
program is RUNning can lead to problems.

The way round this is to POKE the line
number directly onto the screen. As it takes
eight bytes to PRINT just one character, to
simplify the PRINT procedure the line num-
bers are all PRINTed in the same place, out of
the area BASIC wants to use. Alongside it is
PRINTed the number of the statement within
the line that the program is executing.

The trace routine is not called from BASIC.
It is called from another machine code routine,
which itself is called from BASIC. And it is this
call routine which redirects the interrupts to
the start address of the trace program itself.

Don't forget to CLEAR down to at least
65109 before you enter the following
program. If you can enter this program using
your assembler the origins are listed here.
And even if it does not assemble properly you
can check the translation of each instruction
and identify bugs that way. If your assembler
will not work at all, use your machine code
monitor to input the program. The start
address is 65110.

org 65110
Id a,9 	 3E 09
Id i,a 	 ED 47
im 2 	 ED 5E
ret 	 C9
org 65120 	 00 00 00
Id a,62 	 3E 3E
Id i,a 	 ED 47
h 1 	 ED 56
ret 	 C9
org 65129 	 00 00
rst 56 	 FF
push of 	 F5
Id a,(23622) 	 3A 46 5C
bit 7,a 	 CB 7F
jr z,go 	 28 02
pop of 	 Fl
ret 	 C9
go di 	 F3
push be 	 C5
push de 	 D5
push hl 	 E5
push ix 	 DD E5
Id de,20726 	 11 F6 50
Id (posn),de 	 ED 53 FE FE
Id hl,(23621) 	 2A 45 5C
call lineno 	 CD B5 FE
Id de,20731 	 11 FB 50
Id (posn),de 	 ED 53 FE FE

Id h1,(23623) 	 2A 47 5C
Id h,0 	 26 00
call statno 	 CD BB FE
Id h1,23286 	 21 F6 5A
Id (h1),71 	 36 47
Id de,23287 	 11 F7 5A
Id bc,9 	 01 09 00
Idir 	 ED B0
keylp Id a,127 	 3E 7F
in a,254 	 DB FE
or 224 	 F6 E0
cp 252 	 FE FC
jr z,keylp 	 28 F6
pop ix 	 DD El
pop hl 	 El
pop de 	 D1
pop be 	 Cl
pop of 	 Fl
ei 	 FB
ret 	 C9
lineno Id bc, —1000 	 01 18 FC
call prt 	 CD CE FE
statno Id bc, —100 	 01 9C FF
call prt 	 CD CE FE
Id bc, —10 	 01 F6 FF
call prt 	 CD CE FE
Id bc, — 1 	 01 FF FF
call prt 	 CD CE FE
ret 	 C9
prt xor a 	 AF
prtlp add hl,bc 	 09
inc a 	 3C
jr c,prtlp 	 38 FC
sbc hl,bc 	 ED 42
dec a 	 3D
add a,48 	 C6 30
push hl 	 E5
call print 	 CD E8 FE
Id hl,posn 	 21 FE FE
inc (hi) 	 34
Id hl,(posn) 	 2A FE FE
call prtout 	 CD F5 FE
pop hl 	 El
ret 	 C9
print Id bc,(23606) 	 ED 4B 36 5C
Id h,0 	 26 00
Id I,a 	 6F
add hl,hl 	 29
add hl,hl 	 29
add hl,hl 	 29
add hl,bc 	 09
ex de,hl 	 EB
ret 	 C9
prtout Id b,8 	 06 08
loop Id a,(de) 	 1A
Id (h1),a 	 77
inc h 	 24
inc de 	 13
djnz loop 	 10 FA
ret 	 C9
posn defw 0 	 00 00

Note that there are three programs here, not
just one. Each one has its own separate origin.
The first program, which starts at 65,110,
turns the main program on. The second,
which starts at 65,120, turns the main
program off. And the third, which starts at
65,129, does the actual trace.

The instructions Id a,9 and Id i,a load the I
register with 9. There is no instruction to load
the I register directly with a number. The 9 is
taken as the high byte of the two-byte inter-
rupt vector, while the low byte is supplied by

the Spectrum itself and is normally 255. So
the interrupt vector points to 9'256 + 255,
which equals 2,559. The pointer contained in
2,559 and 2,560 redirects it to 65,129, which is
the start of the main program.

This may seem rather round about, but
interrupt routines must be addressed indirect-
ly. And if you tried to load the I register with a
number greater than 64, to direct it into RAM
where you could POKE in your own pointer, the
screen characters start breaking up.

The im 2 then changes the interrupt mode
so that you can interfere with it.

The routine that turns the main
program off loads thy I register

 62 to return it to what it

was before the vector was altered. And the im
1 returns the interrupt mode to normal.

The main program starts with the instruc-
tion rst 56. This makes the microprocessor
perform its normal interrupt routine—scan
the keyboard and update the system variable
clock. If you don't ensure that the keyboard is
scanned, it is disabled and you can't edit
BASIC program lines.

Whenever you do an interrupt routine it is
essential that the contents of all the registers
are exactly the same after you have finished
the routine as when you started it. The only
way to ensure this is to push the contents of all
the registers onto the stack at the beginning of
the program, and pop them all off again at the

end. The contents of BC, DE, HL and IX are all
pushed onto the stack. But the contents of AF
are pushed on first because the accumulator
and the flag register are used to test whether a
program is being RUN. If no BASIC program
is being RUN there is no point in doing a trace.

The test is executed by loading the ac-
cumulator with the contents of memory loc-
ation 23,622. Locations 23,621 and 23,622
contain the number of the current line of
BASIC being executed. Although BASIC line
numbers are stored in the high-
low format in the BASIC
program area, here they are
stored low-high, as usual.

If no program is RUNning,
though, these two locations fill
up with a number far too high for
a line number-9,999 is the highest number
the Spectrum will take. So the contents of the
high byte, in 23,622, are loaded into the
accumulator and the instruction bit 7,a looks
at the most significant bit. If this is 1, no
BASIC program is RUNning. The bit instruc-
tion looks at the bits of a particular memory
location or register. For example bit 4,a tests
the fourth bit of the A register.

If the most significant bit of the most
significant bytes of the current BASIC line
number system variable is 0, the zero flag is set
and jr z,go jumps to the next occurrence of the
label go, which is at the start of the main
program itself. And if bit 7 of the accumulator
is 1, the zero flag is not set, the jump does not
occur and the program moves on to the next
instruction. This pops the contents of the stack
back, restoring the AF registers to their former
values and returns to the BASIC interpreter.

Once it has been given the go-ahead, the
program disables the interrupt with the
di command—you don't want your
interrupt routine being interrupted.
Then the contents of all the other
registers are pushed onto the stack.

The instruction Id de,20726 puts
the address of the screen position
immediately before the first one you
are going to POKE a digit into,
into the DE register. As the
program has to refer back to this
later, it is stored in the variable
posn with Id (posn),de. There is
no instruction to load a variable or
a memory location with a number
directly as you would need to give two
pieces of data with the instruction.
Loading memory locations with numbers
must be done via a register.

The HL registers are then loaded with the
contents of memory locations 23,621 and
23,622. These hold the number of the line of

BASIC currectly being executed, remember.
Everything is now set to call the first machine
code subroutine labelled lineno.

The BASIC line number now in the HL
registers is in hex, so it has to be converted
into decimal before it is printed on the screen.
To do this it starts by working out the fourth
digit, in other words the thousands. And to do
that you subtract 1,000 from the number
until it won't go any more and count the
number of times you do it.

So first of all you load the BC registers with
—1000 and call another subroutine, prt, to
do the repeated subtraction. In prt, the first
thing the microprocessor does is xor a—that is
exclusive or (see page 287). In machine code
an xor always works on the A register, so
xor a exclusively ors the contents of the A
register with itself, so the result must be 0.
This is simply a quick way to put 0 in the A
register—Id a,0 takes one byte more.

The add hl,bc subtracts 1,000
from the current line number which
is in HL. To add — 1,000 is quicker

and easier than subtracting 1,000 as you
don't have to bother about checking the carry
flag. The A register is then incremented and
acts as a counter. Then jr c,prtlp checks the
carry flag and makes a relative jump if it is set.

If you consider what the BC registers
actually contain you will understand how this
works. As you have seen on page 180, negative
numbers are represented in computers as very
large positive numbers of restricted length.
The BC register pair holds 16 binary ones,
minus 1,000 in decimal. So when you add any
number greater than 1,000 to it, the register
pair overflows and sets the carry flag.

When the carry flag is set, the jump is made,
another 1,000 is subtracted, the counter is
incremented and the whole process repeats
until the contents of the HL are less than 1,000
and the addition does not set the carry flag.

The problem is that when the micropro-
cessor comes out of the loop, the subtraction

has been made and the incrementation has
been performed one too many times. So the
first thing that has to be done is to add 1,000
to (or subtract — 1,000 from) the HL register
and decrement the A register.

The A register now contains the value of
the thousands digit. By adding 48, you get the
ASCII code of the character. The contents of
the HL are what is left over, and they are saved
by pushing them onto the stack—so they can
be recalled when you want to work out the
hundreds, the tens and the ones. Then yet
another subroutine, print, is called.

Print's first instruction, Id bc, (23606) loads
the BC registers with the contents of memory
locations 23,606 and 23,607 which is system
variable pointing to the character set. The H
register is then set to nought and the L register
is loaded with the contents of A, the ASCII
code of the character you want to print. The HL
register is then used as a 16-bit accumulator.

To print out a character on the screen you
first have to locate it in the character set. And as
each character is made up of eight bytes, you
have to count the ASCII value times eight
along from the beginning to find the character
you want.

ADD DON'T MULTIPLY
But multiplication is a tortuous business in
machine code. There is no instruction to do it
and it must be performed by shifting the binary
digits about. Addition is easier, so to multiply
the ASCII value by eight, you simply double
it—by adding it to itself—three times. Note
that this isn't done in the A register because it is
bound to overflow an eight-bit register-
48 x 8 = 384, the start of the character 0, is
greater than 255, the maximum capacity of an
eight-bit register—but it won't overflow a 16-
bit register.

The result is then added to the contents of
the BC register to give the location of the first
byte of the character required. The contents
of the HL and DE registers are then exchanged
so that the HL register can be used again.

The ret returns the microprocessor from
the subroutine and Id hl,posn loads the screen
position stored in posn into the HL register.
Then the contents of posn are incremented by
the indirect instruction inc (h1). Be careful
when using this instruction. It only incre-
ments the low byte. If it overflows, the carry
flag will be set, but the high byte will not be
incremented automatically. In this case there
is no danger though. The low-byte of a screen
location only reaches 255 at the end of a line.
The inc (h1) instruction is very useful because
it is the only command that increments the
contents of a memory location. The others
only increment the contents of registers.

The contents of posn—the screen location
for the first digit—themselves are then loaded
into HL. And the actual print routine, called
prtout, is called.

The first instruction in the printout sub-
routine is Id b,8, which loads the B register with
eight. This is going to be used as a counter
while the eight bytes that make up the digit are
POKEd onto the screen. The accumulator is
then loaded with the contents of the memory
location whose address is in DE—in other
words, with the first byte of the appropriate
digit. And the contents of the accumulator is
then loaded into the memory location whose
address is given by the contents

of HL—in other words, the appropri-
ate screen location. You cannot load
the contents of one memory location
directly into another without putting
them into a register on the way,

except with a block load command

that takes several bytes to set up. There is no
Id (hl),(de) instruction for example. It takes
two instructions to perform this switch which
actually prints the top line of the pixels of the
digit on the screen.

The contents of the H register are then
incremented. As H contains the high byte of
the HL register pair, this effectively increases
the contents of HL by 256, so that it contains
the address of the next pixel line of the digit.

Incrementing the DE registers moves this
pointer along to the next byte of the digit in
the character set and djnz loop sends the
microprocessor back round the printout rout-
ine to fill in the next line of pixels. This loop is
executed eight times, each time incrementing
H—to move down the pixel lines on the
screen—and DE—to move it along to the next
byte of the digit in the character set. At the
same time, the djnz instruction—decrement
and jump if not zero—decrements the cont-
ents of the B register. So when the loop has
been performed eight times—and the eight
bytes comprising the digit are printed one
below the next on the screen—the entire
character has been printed, the B register
contains 0, the non-zero condition of the djnz
is not fulfilled and the microprocessor moves
onto the next instruction. And the ret returns
it to where the subroutine was called.

The pop hi pulls the contents of the top two
memory locations off the stack and puts them
into the HL registers. Looking back, you will
see that the last thing pushed onto the stack
were the contents of the HL register when it
contained the remainder after the thousands
digit was worked out. The ret then sends the
processor back to the line that reads statno Id
bc, —100 and the process is repeated to work
out the hundreds digit. When that has been
printed on the screen next to the thousands,
the tens—and then the ones—are worked out
in the same way and printed next to them.

That done, the processor returns to where
the linen subroutine was called. The variable
porn is then loaded with 20,731—the address
of the screen location character spaces to the
right of where the line number printing routine
started. This leaves room for four digits
containing the line number and one space.

The HL register is then loaded with the
contents of 23,623 and 23,624, which is the
system variable that contains the number of
the statement in a line of BASIC that is
currently being executed. But the maximum
number of statements that can be included in
a line is 128 on the Spectrum. So the high
byte—which is in fact the value of another
system variable—must be set to nought with
the instruction Id h,0. The routine that works
out the decimal characters and pokes them on

the screen is then executed again. But this
time it is called at the label statno as only
three digits are needed.

When the statement number has been poked
onto the screen the processor returns to the
main program again to execute a small routine
which makes the digits appear white on a small
black panel. It does not matter that this is done
after the numbers themselves have been
printed. The attributes file—which contains
the colour information—and the display file—
which specifies the contents of the character
spaces—are completely independent and are
only superimposed on each other by the TV
screen. Besides, the whole routine takes less
than a 50th of a second—the rate at which the
TV screen is scanned—so there is no chance of
you seeing a digit printed black out
of white then suddenly reverse to
white out of black.

The Id h1,23286 is the address
in the attributes file of the character
square before the first digit. This
is to give the numbers a border.
The number 71—which produces
black paper and bright white ink
—is loaded into that location. DE
is then loaded with the address of
the next location and the BC register is loaded
with 9. The BC register is going to be used as a
counter.

The block load instruction Idir loads the
contents of the location pointed to by H L into
the location pointed to by DE, increments HL
and DE, decrements B and checks that it does
not, now, contain 0. If not, it repeats. In other
words, it copies the black paper, bright white
ink attribute from the first character square
along the next nine.

THE PAUSE FACILITY
The next five instructions give you a pause
facility so that you can halt the trace—and the
program—at any point. The in instruction
looks at the various input ports. The particular
port you want to look at is the keyboard port
which is number 254. And the part of it you
want to examine is the right-hand end of the
bottom row of keys—from B to I BREAK/SPACE I.
So Id a,127 loads the accumulator with 127.
This is then used as a parameter by the in
instruction. The 254 is data that is actually
written into the program. Altogether Id a,127
and in a,(254) loads the value of the right-
hand end of the bottom keyboard line into the
accumulator. (Most commercial assemblers
require brackets round the port number, the
INPUT assembler does not.)

From B to I BREAK/SPACE I there are only five
keys, and whether they are pressed is specified
by one bit each. That leaves three spare bits.

ORing the accumulator with 224 makes the
three most significant bits—which are the
spare ones-1 and leaves the rest alone. 224 is
11100000 in binary. See pages 286 and 287
for more information on using OR with binary.

When a key is not being pressed, the value
it gives is 1. When it is being pressed, its value
changes to 0. To stop the trace, two keys have
to be pressed simultaneously, the
(SYMBOL SHIFT' and the IBREAK/SPACEI. This
has been done so that the keyboard can be
used normally to edit the program while the
trace is on.

It's a fail-safe device really, because when a
BASIC program has finished RUNning the
number of the last line executed is left in the
system variable until another direct command
is entered. So this way the trace is not turned
off immediately—and if a single key press was
used to make it pause, confusion could arise.

Pressing BREAK/SPACE changes the zero bit
from 1 to 0 and (SYMBOL SHIFTS does the same
to bit one. If none of the keys are pressed and
the three spare bits are masked to Is, the
output of this part of the keyboard will be
255 or 11111111, that is, the byte will be full
of is. But if IBREAK/SPACE I and 'SYMBOL SHIFT'
are pressed the output will be 252—that's
11111100.

So when the input from port 254 is loaded
into the accumulator, it is compared with 252
by cp 252. If the accumulator does contain
252, the zero flag is set. And jr z—jump
relative if zero—loops the processor back
round the routine. So, if the BREAK/SPACEI
and the SYMBOL SHIFT' keys continue to be
pressed it will go round and round. And as
this is an interrupt routine, the main program
will be halted too.

When no keys are pressed, the processor
will move straight on to pop ix, pop hi, pop de,
pop be and pop of which restore the registers
to their values at the beginning of the inter-

rupt by pulling the stored values one after the
other back off the stack.

The ei instruction enables the interrupts
again and ret returns the program to BASIC.
The BASIC program will then RUN until the
next interrupt.

The only thing in the assembly language
listing that has not been mentioned is the last
instruction: posn defw 0. This is not part of
the program and when it is translated into
machine code it gives 0000—in other words,
nothing at all.

This last instruction is an assembler direc-
tive. And what it does is to assign two bytes to
hold data. The data held in there, naturally, is
the current value of posn.

The instruction defw means define word
and sets aside two bytes for data. (A similar
instruction—defb or define byte—sets aside
one byte.) Here, the 0 fills the two bytes with
O. A 1 would put 01 in the low byte and 00 in
the high byte. You can define a word or a byte
with any value you like in it, provided that

value will fit into the two bytes or the one byte
respectively.

Be very careful when using def instruc-
tions. They must not be put in any position
where they might be executed by the pro-
cessor. Otherwise they will corrupt your
program. Here, this defw is safe because it is
after a ret at the end of the program.

TRACKING DOWN ERRORS
To use your trace, first enter the BASIC
program to be checked. Then CLEAR down to
65,109 and enter the trace.

Before you run the trace, make sure that
you have SAVEd it on tape. If your assembler
is working, you can use the normal save
command. This will save the source code—
that is, the assembly language—along with
assembler itself. When you have got the trace
working it is best to save the machine code
itself, so you don't have to re-assemble it each
time you want to use the trace. Do this by
using the instruction:

SAVE "TRACE" CODE 65110,176

To LOAD it back into the machine first CLEAR
to 65109 then key in:

LOAD "" CODE

If your assembler is not working, use the
save option on your machine code monitor.

Once the trace is back in position in your
Spectrum, call it with:

RANDOMIZE USR 65110

Nothing will happen until you RUN your
BASIC program. Then the line number and
statement number of the part of the program
being executed will appear.

One of the easiest bugs to spot with a trace
is an infinite loop. If you see the trace going
over and over the same numbers you will
know that you have got something wrong in a
GOTO statement. Other things to watch for are
sudden jumps to another part of the program,
conditional IF . THENs set to the wrong
condition and lines not being executed at all.

When you run the trace, keep a copy of the
BASIC program you are checking near at
hand. You will want to check off each line as it
is executed to see how the program is struc-
tured. At points where it runs into difficulty,
step through the program slowly statement by
statement, pausing between each by pressing
the BREAK/SPACEI and 'SYMBOL SHIFT key
together.

When you have finished tracing the
program, switch the trace off by calling the
`off' routine with:

RANDOMIZE USR 65120

Once you've defined a set of
characters it's an easy matter to
create a whole variety of pictures
simply by rearranging the UDGs and
changing the background

The last article in this series showed you how
you can get around any limits your computer
may have over the number of UDGs you can
create—and how you can redefine the charac-
ter set. This article is the first of two which
show how you can save yourself a great deal of
time and effort by using UDGs to form a
screen picture.

WHY USE UDGs?
Suppose that you want to create a jungle
picture—perhaps a title page for an exciting
new game. There are basically two ways to do
this. You could DRAW each part of the picture
and colour it as required. But suppose you
wanted a forest as part of your background.
You would need to draw a trunk and tree-top
for every tree that you have in your picture—a
tedious business. And, of course, each of these
trunks and tree-tops would be almost the
same. If you could design a UDG, or several
UDGs, which combine to form a tree, you
could just PRINT the newly created characters
wherever you want a tree (or, of course, PUT
them if you have a Dragon or Tandy
computer).

This has the obvious advantage that it saves
you having to specify all the detail every time
that you want to have a tree on the screen. It
also has a number of other additional benefits.

One of these is that it saves time. Computers
PRINT characters much faster than they DRAW
high resolution lines (this is true even if the
characters are user defined and very com-
plicated). So, if you store your picture in
UDGs, when the computer comes to the bit of
your program which displays the picture, you
don't have to wait around for a long time while
the computer painstakingly brings your design
to the screen: it appears almost instantly.

FREEDOM OF CHOICE
Another advantage is that you can often vary
the size of the object very easily. With the
example above; you could change the height
of the tree simply by adding or subtracting
one or more of the 'trunk' UDGs, or alter its
foliage by using a different combination of
`leaf UDGs. Of course, you could also do this
with your computer's high resolution
graphics commands, but UDGs are much

more convenient. For a start, you are dealing
in much more manageable numbers on the
low resolution screen.

Once you have defined the UDGs for your
picture, they remain in memory (unless you
change them) although they are not necessari-
ly permanently accessible for the keyboard: if
you have several banks, or sets, of user
defined characters in memory at once, then
you have to 'switch in' the bank that is
accessible from the keyboard. But this is
simply a matter of altering the UDG pointer
(the character set pointer on the Commodore
64 and Vic 20) when you want to 'switch in'
the next bank of UDGs. (This is not applic-
able on the Acorn, where you use VDU
commands to access all of the UDGs.)

This means that you can use the characters
that you have designed as many times as you
like within your programs: the only limit is
the computer's memory. So it is as easy to
have a forest in your program's picture, as it is
to have just one tree.

Using UDGs does have slight drawbacks,
though. To start with, you have to define all
the characters, and type the DATA into your
computer—although this is usually no worse
than high resolution graphics. But you also
have to use part of your computer's limited
memory to store the UDGs as well, and unless
you are careful you end up storing them twice.
The next article in this series will show you
how to avoid this repetition of memory.

WHICH PICTURES USE UDGs?
For this reason, there are some types of
picture which you can draw much more
efficiently with UDGs than others.

As a general rule of thumb, if your picture
has a fairly small number of solid objects in
sections that occur in a similar form several
times, or if you wish to use an image a number
of times during the program, then you can
save yourself time and effort by using UDGs.

If, on the other hand, you want to have a
highly detailed outline picture which you want
to use just once, in the program, you would
probably be better off using your computer's
high resolution graphics commands.

For example, your picture might feature a
brick wall. You could construct it quite

■ HOW TO DECIDE WHEN TO
USE UDGS

■ BUILDING UP A PICTURE FROM
SEVERAL CHARACTERS

■ MAKING A JUNGLE PICTURE

■ CREATING A CROCODILE,
ELEPHANT AND TREES

■ DRAWING THE BACKGROUND
■ 	MIXING HIGH AND LOW

RESOLUTION GRAPHICS

simply using one or two UDGs which you
PRINT or PUT repeatedly over the area of the
screen where you want to display the wall.
The alternative would be for you to draw a
series of lines across a coloured area to
simulate the joins between each brick.

Another example would be the jungle scene
mentioned above. You have already seen that
you can save time by defining UDGs for the
trees that any jungle scene must contain. The
animals and so on which would accompany the
trees are also very well suited to being defined
as UDGs: you might want to use them
elsewhere in the program, or to animate them,
or to have large numbers of them.

A JUNGLE PICTURE
Here are some programs which define typical
characters you would be likely to include in
the jungle scene mentioned above.

The DATA for the programs for the Spec-
trum, Commodore and Acorn computers is
the same. It is listed from Line 1300 onwards,
and these lines are printed immediately after
the Acorn program.

On the Acorns, enter this command fol-
lowed by NEW before you type in the program:

PAGE= PAG E + & 600

This changes the start address of BASIC to
protect the UDGs (see the last article).

10 CLEAR 63500
100 REM poke crocodile data
110 POKE 23676,255
120 FOR n USR "a" TO USR "r" + 7: READ

a: POKE n,a: NEXT n

250 REM poke elephant data
260 POKE 23676,249
270 FOR n=USR "a" TO USR "m" +7:

READ a: POKE n,a: NEXT n
280 REM poke tree data
290 POKE 23676,248
300 FOR n = USR "a" TO USR "o" + 7:

READ a: POKE n,a: NEXT n
400 REM background
410 BORDER 1: PAPER 8: CLS
420 FOR n=1 TO 8: PRINT PAPER 5;" ❑ ";

TAB 31;" ❑ ": NEXT n
430 FOR n=1 TO 14: PRINT PAPER

4;" ❑ ";TAB 31;" 11] ": NEXT n
440 PLOT 0,110: DRAW 14Z, -100, - PI/3:

PLOT 160,110: DRAW -60,-42,P1/3
450 REM print crocodile
460 POKE 23676,255: INK 2
470 PRINT AT 19,20;: FOR n=144 TO 155:

PRINT CHR$ n;: NEXT n
480 PRINT AT 20,20;CHR$ 156;CHR$

157;CHR$ 158;CHR$ 159;CHR$ 159;CHR$
159;CHR$ 159;CHR$ 159;CHR$ 160;CHR$
159;CHR$ 159;CHR$ 159

490 FOR n=0 TO 31: PRINT INK 1; PAPER
4;CHR$ 161;: NEXT n

750 REM print elephant
760 INK 7
770 POKE 23676,249
780 PRINT AT 8,9;CHR$ 144;CHR$ 145;CHR$

146;CHR$ 147;AT 9,9;CHR$ 148;CHR$
149;CHR$ 150;CHR$ 151;CHR$ 152;AT
10,10;CHR$ 153;CHR$ 154;CHR$
155;CHR$ 156

790 REM print trees
800 POKE 23676,248
810 LET x=6: LET y=14: GOSUB 840: LET

x=5: LET y=18: GOSUB 840
820 LET x=4: LET y= 0: GOSUB 845: LET

x=4: LET y=3: GOSUB 845
830 GOTO 850
840 PRINT INK 4;AT x,y;CHR$ 151;CHR$

152;CHR$ 153;CHR$ 154; INK 2;AT
x+ 1,y+ 1;CHR$ 155;CHR$ 156;AT
x+2,y+1;CHR$ 157;AT x+3,y+1;CHR$
157;AT x + 4,y +1;CHR$ 157;AT
x+ 5,y+ 1;CHR$ 158: RETURN

845 PRINT INK 4;AT x,y;CHR$ 144;CHR$

145;AT x+1,y;CHR$ 146;CHR$ 147;AT
x+2,y:CHR$ 148;CHR$ 149; INK 2;AT
x + 3,y + 1;CHR$ 150;AT x + 4,y + 1;CHR$
150;AT x + 5,y +1;CHR$ 150: RETURN

970 INK 0

10 POKE 52,48:POKE 56,48:CLR
20 POKE 56334,0:POKE 1,35
30 FOR Z=0 TO 1024:POKE 12288+Z,

PEEK(53248 +Z):NEXT Z
40 POKE 1,39:POKE 56334,1
50 FOR Z=0 TO 143:READ X:

POKE 13312+Z,X:NEXT Z
52 FOR Z=760 TO 983: READ X:

POKE 13312 +Z,X:NEXT Z
55 C$=CHR$(13):POKE 53272,28:

POKE 53281,0:POKE 53280,6
60 PRINT "0":FOR Z=1 TO 30:

X= INT(RND(1)*320)
70 POKE 1024 + X,46:POKE 55296+X,

RND(1)*6 + 2:NEXT Z
80 T$="aillGillig1111E1LAg

1111112ElgglICIEI":
C(0) =3

85 TTS="16JZIEOE1111111g111111
111r9g111111AIIIJ":
C(1)=6

87 PRINT"igigigggiggigggiv:
FORZ = 1T0280:PRINT`71";:
NEXT

90 PRINT"Elg 	gggg AFTAB
(13)TT$"= OMNI"

❑ "TTT
95 PRINT"Eigigg gg"TAB(30)

T$" ❑ 01-$" ❑ ❑ "TTT
96 PRINTiggigggAggigggggig

I"SPC(30)"a "CHR$(160)
"1_16g0111111111.27LEMLE1

- VErEr' g11111111111.2k16
150 FORZ= OT0159:POKE1864 +Z,102:

POKE56136+Z,C(RND(1)*2):
NEXTZ

160 PRINT"gmggigggggggiggg
gigfigggigggAgggAggggg"
TAB(28);

162 IF RND(1)> .50 THEN PRINT
"alial©ABCDEFGHIJK" ; SPC(28) ;

LMN00000P000•";:
GOT0170

164 PRINT"13 ❑❑❑❑❑❑❑❑❑❑
H H";SPC(28);"al@ABCDEFGHIJK1•1";

170 FOR D=1 TO 200:NEXT D
190 GOTO 160

1E1
10 MODE 1
20 VDU 23;8202;0;0;0;
30 VDU 19,0,4,0,0,0,19,2,2,0,0,0,19,

3,3,0,0,0
40 *FX20,6
50 FOR T=128 TO 173
70 VDU 23,T
80 FOR P=1 TO 8

r90 READ A
100 VDU A
110 NEXT
120 NEXT
160 PROCLAND
170 PROCALI (896,96,128)
200 PROCELE(800,460,146)
260 VDU 30
270 GOTO 270
280 REM
290 DEF PROCALI(X,Y,Z)
300 VDU 5
310 GCOL0,1
320 MOVE X,Y
330 FOR T=Z TO Z+14
340 VDU T
350 IF T= Z + 11 THEN MOVE X,Y— 32
360 NEXT
370 FOR T=1 TO 5:VDU Z+15:

. NEXT
/ 80 VDU Z+ 16:VDU Z+15,Z+15,

, 	Z+15
390 VDU 4
400 ENDPROC
640 DEF PROCELE(X,Y,Z)
650 VDU 5
660 GCOL0,3
670 MOVE X,Y:VDU Z,Z+ 1,Z + 2,

Z + 3
680 MOVE X,Y-32:VDU Z+ 4,Z+ 5,

Z+6,Z+7,Z+8
90 MOVE X + 32,Y —64:VDU Z+ 9,

Z+10,Z+11,Z+12
700 VDU 4
710 ENDPROC
7249eDEF PROCTREE1(X,Y,Z)

730 VDU 5
740 GCOL0,2
750 MOVE X,Y:VDU Z,Z + 1
760 MOVE X,Y-32:VDU Z +2,Z+ 3
770 MOVE X,Y — 64:VDU Z + 4,Z + 5
780 GCOL0,1
790 MOVE X + 32,Y— 96:VDU Z+6
800 VDU 10,8,Z+ 6,10,8,Z+ 6
810 VDU 4
820 ENDPROC
830 DEF PROCTREE2(X,Y,Z)
840 VDU 5
850 GCOL0,2
860 MOVE X,Y:VDU Z,Z + 1,Z + 2, Z + 3
870 GCOL0,1
880 MOVE X + 32,Y —32:VDU Z + 4,

Z + 5
890 VDU 10,8,8,Z+ 6,10,8,Z+ 6,

10,8,Z+ 7
900 VDU 4
910 ENDPROC
920 DEF PROCARC(X1,Y1,X2,Y2,A,B)
930 LOCAL C,D
940 R =SQR((X1 — A)12 + (Y1 — 8)12):

R2 = SQR((X2 — A)12 + (Y2 — B) r2)
950 C=ASN((X1 —A)/R):

D = ASN((X2 — A)/R2)
960 MOVE A+ FrSIN(C),B + R2*COS(C)
970 FOR T=C TO D STEP .05
980 DRAW A+ R . SIN(T),B+R2 . COS(T)
990 NEXT
1000 ENDPROC
1010 DEF PROCLAND
1020 Z=145:VDU31,27,31:COLOURO:

COLOUR131:FOR T=1 TO 12:VDU Z:NEXT
1030 PROCARC(0,800,400,0,0, — 200)

1040 PROCARC(600,240,1300,500,
1280,0)

1050 GCOL0,2:FOR T=0 TO 246:
PLOT77,0,T:NEXT

1060 FOR T=32 TO 500:PLOT77,1276,T:
NEXT

1070 P=630
1080 FOR T=1 TO 8
1090 PROCTREE2(850 + RND(300),

P+ RND(20) -40,166)
1100 PROCTREE1(900 + RND(250),

P+ RND(20),159)
1110 P= P-10
1120 NEXT
1130 FOR T=1 TO 20
1140 PROCTREE2(RND(500),

300 + RND(50),166)
1150 NEXT
1210 ENDPROC

El
1300 REM CROCODILE
1310 DATA 0,0,1,7,15,15,9,5,0,0,128,192,

248,255,127,95,1,3,6,12
1320 DATA 62,255,255,255,192,224,176,159,

191,255,255,255
1330 DATA 0,0,0,0,0,248,252,255,0,0,0,0,

0,0,1,207,0,0,0,1,15,127,255,255
1340 DATA 0,3,63,255,255,255,255,255,127,

255,255,255,255,254,249,247,248
1350 DATA 255,255,255,255,15,255,255
1360 DATA 0,224,254,255,255,255,255,255,

0,0,0,192,248,255,255,255,0,2,4,7,7
1370 DATA 3,0,0,21,1,164,73,255,255,0,0
1380 DATA 255,127,63,63,255,255,127,31,

255,255,255,255,255,255,255,255
1390 DATA 239,239,239,239,239,247,247,

247,60,255,255,255,255,255,255,255
1780 REM ELEPHANT
1790 DATA 0,0,0,8,28,25,51,51,0,0,0,126,

255,193,253,253,0,0,0,0,0,255,255
1800 DATA 255,0,0,0,0,0,248,252,254
1810 DATA 102,111,111,111,125,57,26,0,

253,251,251,251,231,31,15,15,255,255
1820 DATA 255,255,255,255,255,255,254,

255,255,255,255,255,255,255
1830 DATA 0,0,128,64,32,16,12,0,15,15,

15,14,14,14,14,31,255,240,224,224
1840 DATA 224,224,224,224,255,63,59,59,

57,57,121,248
1850 DATA 0,0,128,192,224,224,128,0
1860 REM TREE 1
1870 DATA 0,0,0,0,1,1,3,7,0,0,0,0,224,

240,248,248,15,63,63,63,31,15,3,3
1880 DATA 252,254,254,254,254,254,252,252

1890 DATA 3,3,3,3,3,1,0,0,248,248,248,
248,248,248,240,96,96,96,96,96,96,96

1900 DATA 96,96
1910 REM TREE 2
1920 DATA 0,3,15,31,127,127,63,1,7,15,

255,255,255,255,255,255,15,63,255,255
1930 DATA 255,255,255,255,0,128,248,248,

248,248,240,224
1940 DATA 255,227,96,48,24,25,13,15,252,

240,96,96,192,192,128,128,7,7,7,7,7
1950 DATA 7,7,7,7,7,7,15,15,15,31,63

MIA
10 CLEAR1000:CLS
20 DIMC(59),E(17),T1(1),T2(7),

F1 (7),F2(7)
30 PMODE3,1:PCLS
40 W$ = "L6UL6D":W$ = W$ + W$ +

W$ + W$
50 DRAW"BM1,4C4RUR2UR2DR2DR4DR8UR

4UR2UR2UR2UR4DR2DR2DR4D2R6DR2DR
4DR4UR4UR4UR4UR4UR4UR4UR4UR
10DR6DR4DR2DR2DR2D15" + W$ +
W$ + "L6UL6DL4BU14DR11FRFR7FR
3FR9FGL7GL21HL2D3FR21FR3F"

60 PAINT(50,10),4

70 DRAW"BM98,5C1 L8GLGLGD5BFD2RFR
3FBM32,2GFREHLBM1,8C2FRERFBR
4UBM + 4,2;RBR3RBM + 3,1;
RBM + 3,1;RBR3RBL8BDLBL5NEBL
6N EBL4EBL5E"

80 GET(0,0) - (112,20),C,G
230 PCLS
240 DRAW"BM4,0C2DG2DG2D3R2DE2UE

2UE4R3FRFR11F3RFRFR3DBL8NU3D
4F2DGH2UHL3D5LURU3HL6D5L2BU
6L3D6NL2U6LH2LNG UH L2"

250 PAINT(20,7),2
260 DRAW"BM12,3C3R2D4G2BM8,4R"
270 GET(0,0) - (37,17),E,G
280 PCLS4
290 DRAW"BM7,19C1H3U5H5UE6R2F3DF

2D2G3D3G2D2":PAINT(7,7),1
300 DRAW"BM20,5E2R2E2RFR4E2F2R2E

2R5FRFDG3LGLGLGL5HL5H2L4":
PAINT(34,5),1

310 GET(0,0) - (13,19),F1,G:
GET(20,0) - (49,9),F2,G

320 PCLS:DRAW"BM0,0C4D2OBE2OF
3DFD15G2NL2R8HL4EU13E4U2"

330 GET(0,0) - (1,20),T1,G:GET
(20,0) - (31,22),T2,G

340 PCLS3:SCREEN1,0
350 CIRCLE(255,191),1 60,1,.6:

PAINT(230,180),1

360 CIRCLE(0,191),1 40,2,.35,.75,1:
PAINT(10,180),1 ,2

380 PUT(206,100) - (243,117), E, PSET
390 FOR K =1T010: R EADX,Y: PUT(X,Y)

- (X+ 13,Y+ 19),F1,AND:PUT(X + 6,
Y + 20) - (X+ 7,Y + 40),T1,0R:
N EXT

400 FORK= 1T010:READX,Y: PUT(X,Y)
- (X + 29,Y + 9),F2,AND:PUT(X + 8,
Y + 9) - (X + 19,Y + 31),T2,0R:
NEXT

410 COLOR2:LINE(138,187) - (255,
187),PSET:PAINT(255,191),2:
PAINT(255,191),3,1

420 PUT(143,166) - (255,186),C, PSET
450 DATA 16,110,24,113,34,108,48,110,

56,108,190,80,198,82,212,84,210,
79,240,70

460 DATA 2,120,18,122,28,116,46,118,
60,124,160,90,174,95,190,90,214,
86,226,90

470 GOT0470

If you type in and RUN the program above for
your computer, you can see the kind of
picture that you can produce with UDGs.
Don't worry if the top half of the screen looks
a bit empty at the moment, as the next article
in this series will finish off the picture.

You can see how versatile UDGs can be by
looking at the water underneath the crocodile.
This is actually just one UDG which is
repeated for the length of the stretch of water.
(The Dragon and Tandy program is slightly
different here, in that the array in which the
crocodile is stored includes this water: the
water is not a separate UDG, as it is in the
other programs.)

You will have noticed that the picture does
not consist solely of UDGs: it also has some
high resolution lines in it, which give the
impression that there are hills in the picture.

While UDGs can have many advantages
over high resolution graphics commands, you
can often obtain very good results by using
both in the same picture, as with this example.

The next article in this series will add more
to this picture, so SAVE it on tape to avoid
having to type it in again later.

HOW THE PROGRAM WORKS
If you don't understand how the programs
produce the extra user defined graphics char-
acters, you should look at the article on pages
450 to 457, which explains this.

The programs can all be split into two
parts: the first half, which defines all the
characters, and the second part which PRINTS
(or, if you have a Dragon or a Tandy, PUTS)
the UDGs in their correct positions.

The Spectrum program POKES in the DATA

in sections, for each animal and the trees, as
do the Commodore and Acorn. The Dragon
and Tandy do not use DATA to store the
information but DRAW the various images one
by one, and then GET them into UDGs.

Once the UDGs have been defined, the
programs go on to display the picture on the
screen.

a
The Spectrum uses a series of PRINT ATs for
this, PRINTing each animal and the trees one at
a time. It also uses local colour commands to
produce the colour picture that you see when
you RUN the program.

A local colour command is one which only
applies to the statement in which it is found in
a program Line. The general PAPER colour is
set to 8, which is transparent. This leaves the
PAPER the same as it already is, to ensure that
the background is not harmed by the UDGs
which are PRINTed.

MULTICOLOURED BACKGROUND
The background is set up by Lines 410 to
440. Of these, the first sets the colour, and the
next two produce the cyan sky and the green
ground. The different colours of PAPER are
achieved by PRINTing spaces in the relevant
PAPER colour, using two FOR ... NEXT loops.

The trees are PRINTed with subroutines
(Lines 810 and 820), as there are several of
each type of tree in the picture. The variables
x and y in these lines refer to the PRINT AT
coordinates of the trees. You can easily add
more trees to the picture, if you want to, by
working out some more coordinates (the
article on pages 433 to 439 explains how you

can work out these coordinates) and adding
some more `GOSU B. . .'s to these two lines.

The Commodore program begins with
several POKEs to read the ROM character set
into a protected area of RAM (the article on
pages 450 to 457 explains exactly what each
POKE does).

It then continues in the same way as the
other programs—by POKEing the DATA for
each of the user defined characters into RAM,
so that you can use the characters. This
finishes at Line 52.

Line 55 sets up a variable—C$—to be
equal to CHR$ (13) which is RETURN. This is
used to move the PRINT position onto the next
line on the screen during the actual printing of
the picture. The Line also sets the mode, the
background, and the border colours, with
three POKEs.

The screen is cleared in Line 60, and the
computer continues by actually starting on
the picture. First, it prints stars in random
positions (unlike the other computers' pic-
tures, the Commodore picture is 'jungle by
night'). The stars are simply dots, printed in a
randomly chosen colour, by the FOR ... NEXT
loop in Lines 60 and 70.

Next, the program actually PRINTs the
UDGs in the positions determined by the
cursor-positioning characters you can see
inside each PRINT statement.

The trees are the first UDGs to be
PRINTed, and, to make it easier, the characters
which make them up are put into two string
variables—t$ and tt$. Lines 90 and 95 then
PRINT the two strings.

You should be very careful when typing in
the DATA, as there is inevitably a lot of it.
• If your computer stops while it is
RUNning the program with an OUT OF DATA
error message it means that there is not
enough DATA in your program.
• If you have told your computer to READ
the correct amount of DATA, then there are
two possible reasons for this: you might
have missed one or more numbers altog-
ether, or you might have typed full stops
instead of commas. A full stop instead of a
comma would change two numbers into
one, as the full stop is taken to be a decimal
point.
• The only solution to these two problems
is to check, and recheck, your DATA until
you find the message. It is helpful to add a
PRINT command to the loop which PO KEs in
the DATA so that the computer PRINTS up
each number as it POKES it in. That way, you
could check each number off from the
screen as it is POKEd in.
• If you have typed in too much DATA, or
the right amount but wrong numbers, the
program should RUN without any pro-
blems, but you will see a rather strange set
of pictures: the crocodile might have a
trunk, for example, or the elephant's
head might look surprisingly like a tree-
top. As before, the only solution is to
check all the DATA entries.

The Line in between these, Line 87, adds
some more background: the horizontal lines
that you can see when you RUN the program.
The other static creature, the elephant, is
printed by Line 96.

The crocodile is printed with a slightly
more complex routine so that it moves up and
down in the water. This routine takes up lines
160 to 190, and simply prints a line of spaces
over the lower half of the crocodile if the
number which is chosen randomly by Line
162 is greater than 0.5.

If you do not like the moving crocodile,
you can easily make him remain still by
changing Line 190 to:

190 GOTO 190

LI
EXPLODING THE MEMORY
The Acorn program starts off by setting the
MODE—(MODE 1)—setting the colours, and
turning the cursor off. It then explodes the
character set using the "FX 20, 6 command
(this command was explained in the article on
pages 450 to 457) so that you can define more
than the usual limit of 32 UDGs.

After this, Lines 50 to 120 actually define
the graphics characters, using the DATA at the
end of the program, as normal with the VDU
23, (character number followed by DATA),
command.

Lines 160, 170, and 200 call the
PROCedures which put the UDGs onto the
screen: PROCLAND is for the background and
the trees, PROCALI is for the crocodile, and
PROCELE for the elephant.

PRINTING THE UDGs
The PROCedures themselves use VDU com-
mands to print the characters on the screen;
where appropriate, this is within a FOR .
NEXT loop. PROCLAND does not just call the
two tree routines, but also calls the
PROCedure PROCARC, which draws the two
arcs which form the hills of the background.
Lines 1050 and 1060 fill in the two hills. The
water on which the crocodile is
resting swimming is put in by Line 1020, also
in PROCLAND.

The trees are placed randomly within
certain limits, by the two PROCedures,
PROCTREE1 and 2.

Once the computer has PRINTed all of this
up on the screen, it sends the cursor to the top
left hand corner of the screen, and enters a
continuous loop to leave the picture intact
(Line 270). You can stop the program by
pressing the I ESCAPE I key.

The Dragon and Tandy program begins by
CLEARing some memory for the strings that it
uses, and then DIMensions the arrays which
store the UDGs. Except for the trees, there is
only one UDG (and so array) for each
character, as the arrays can be any size. The
trees use two each, because half of each tree is
red, while the other half is green.

DRAWING ANIMALS
The program continues by drawing each of
the characters in turn (how this is done is
explained on pages 191 and 192) and GETting
them into the appropriate arrays. Line 80

GETs the crocodile, Line 270 GETs the eleph-
ant, the tree-tops are in Line 310, and the
tree-trunks are in Line 330.

The next half of the program deals with
actually combining all of the UDGs on the
screen to form the picture. The first few
Lines, starting with Line 340, clear and set
the correct screen, and put in the two hills
which make up the background. The hills are
coloured in using the PAINT command.

The two groups of trees, one on either hill,
are PUT there by the FOR . . . NEXT loops in
Lines 390 and 400, using the DATA in Lines
450 and 460 to determine the position.

The elephant and crocodile are PUT onto
the screen by Lines 380 and 420, respectively.
Line 470 is the last active Line of the program
(if you ignore the two lines of DATA) and
sends the computer into a continuous loop so
that the picture remains intact on your screen
until you press the I BREAK I key.

I N GENERAL
Now that you have these UDGs in mei/A-ITN',
you can use them wherever you want to in your
programs, and you can change the picture until
it looks exactly how you think it ought to.

A HERD OF ELEPHANTS!
You might like to try replacing the single
elephant that is there at the moment with a
whole herd of them! You could do this in a
similar way to the method used to display
several trees on the screen: either with a
FOR...NEXT loop, or with several GOSUBs.

In the next part of this feature you will see
how to get some more characters into your
scene—and how you can add some animation.

For those of you who can't wait
until 1st September, or don't like
shivering in cold fields, here's
a duck shooting game for use s

 with your joystick routine

If you have followed through the first part of
this article, you should have a program stored
on tape which will allow you to move a
gunsight around the screen. But although it's
quite satisfying to see this kind of program
written in BASIC, it hasn't got a lot of point
as it stands.

The next step, then, is to use the new
routine in a games program. Adding the
program lines designed for your machine will
give you a duck shooting game, although you
could design your own graphic and shoot
aircraft, water buffaloes, hot air balloons, or
whatever takes your fancy.

The object of the game is to shoot ten
ducks that appear for a short time at random
positions on the screen. There's a score based
on your accuracy. You get points for a hit—
the quicker you are, the more points you get.
And points are deducted for every miss.

LOAD the program back into the computer
before you type in the additional lines.

Add the remaining lines to the joystick
program to create the shooting and scoring
facility:

120 LET hs = 0
125 PRINT PAPER 2; INK 7; "DSCORE";TAB

14;"HISCORE";TAB 31;" ❑ "
135 PRINT PAPER 3; OVER 0;AT 0,23;hs
145 LET s =0
150 FOR n=1 TO 10
160 LET dx= INT (RND*31)
170 LET dy= INT (RND*20) +1
180 PRINT INK 6;AT dy,dx;CHR$ 144;CHR$

145;AT dy+1,dx;CHR$ 146;CHR$ 147 	 .41

190 POKE 23672,0: POKE 23673,0
205 PRINT OVER 0; PAPER 3;AT 0,8;s;" ❑ "
210 IF IN 31< >16 THEN GOTO 400
220 IF ATTR (y,x) = 14 AND ATTR

(y+1,x+1)=14 THEN LET
s= s + 250 — (PEEK 23672+ 256*PEEK
23673): BEEP .02,30: GOTO 410

230 LET s= s —10
400 IF PEEK 23672+ 256*PEEK 23673<200

THEN GOTO 200
410 PRINT INK 7;AT dy,dx;CHR$ 144;CHR$

145;AT dy+1,dx;CHR$ 146;CHR$ 147
420 NEXT n
430 IF s> hs THEN LET hs = s

440 PRINT OVER 0; PAPER 3;AT 0,8;s;AT
0,23;hs

450 PRINT OVER 0; PAPER 3; FLASH 1;AT
10,2;"PRESS ANY KEY TO PLAY AGAIN"

460 FOR n=1 TO 100: NEXT n
470 IF 1NKEY$= "" THEN GOTO 470
480 CLS : GOTO 125

Lines 120, 125 and 135 look after the scoring
additions. The high score is set to zero and the
displays for the score and high score are set
up.

The FOR ... NEXT loop bounded by Lines
150 and 420 displays a series of ten ducks that
the player attempts to shoot. Each time
through the loop, Lines 160 and 170 pick a
new position for the duck at random and Line
180 PRINTS the four UDGs which make up
the graphic at that position.

The timer is initialized by Line
190, and will be used to provide a
time limit within which the duck has
to be shot.

■ USING THE JOYSTICK ROUTINE
WITHIN A GAME

■ DUCK GRAPHICS
■ DISPLAYING THE DUCKS ON

THE SCREEN

■ A TIMING ROUTINE
■ DETECTING THE FIRE BUTTON
■ CHECKING FOR A HIT
■ ADDING UP THE SCORE
■ A HIGH SCORE ROUTINE

Once the time limit has been exceeded the
program will print it somewhere else.

After RETURNing from the joystick sub-
routine, Line 205 blots out the first character
in the score display—this is a precaution so
that if the score goes down, none of the
previous score will still appear on the screen.

The joystick is equipped with a fire button,
and IN 31 has to be checked to detect presses. A
value of 16 means that the fire button is being
depressed. Line 210 detects firing, but only
when the gunsight has stopped. It is possible

to check if the player is firing
when the gunsight is moving, but

it would need eight more checks—one
for each joystick direction. This isn't really
feasible in BASIC because all these checks

would slow the program down by a huge
amount.

If the fire key has been pressed, the
program then carries on to check if the duck

If the fire key has been pressed, the program
then carries on to check if the duck has been hit
by using ATTR in Line 220. ATTR will be
explained properly later, but broadly, it looks
at the colour of a particular part of the screen.
If the colour corresponds to that of the duck
the program counts it as a hit and the score is
calculated from the amount of time taken to
shoot it. There's a BEEP to signal success, too.

Should ATTR not return the duck's colour,
the program continues to Line 230, where a
penalty of ten points is subtracted from the
running points total. Next, Line 400 checks if
the time limit has elapsed, and jumps to Line
200 if it hasn't. If more than four seconds
have elapsed Line 410 blots out the duck.

After ten ducks have been shown on the
screen, the program reaches Line 430 which
compares the player's score with the high
score. The high score is changed if the player's
score is higher than the existing record.

The high score and the current
score are then displayed by

Line 440.
The program is completed

by a very standard 'Do
you want another

go?' routine.

The Commodore 64 game is completed by
adding these program lines:

10 GOSUB 330
50 D= (1064+ INT(RND(1)*37) +1)

+ (INT(RND(1)*20)+1)*40:
T1$ = "000000"

60 TU=TU+1: IF TU >10 THEN 260
70 PRINT 12161";SPC(30);

"DUCK:";TU
80 POKE D,128:POKE D+1,129:

POKE D+40,130:POKE D+41,131
90 PRINT "Iglar;TAB(11);

"TM: ❑ ";T1$
100 PRINT "I§MSC:111111111111

n 00 E111111111111

190 IF ((JANDI6)= 0) = —1 THEN 240

200 IF T1$ <"000006" THEN 80
210 S =10:ED =500:GOSUB 400
220 SC=SC-10
230 POKE D,32:POKE D+1,32:

POKE D+40,32:POKE D + 41,32:
GOTO 50

240 IF Y< > D THEN SC=SC-10:
S= 30:ED =150:GOSUB 400:
GOTO 80

250 SC= SC + (10— VAL(T1$))*5:
FOR S=10 TO 30:ED = 30:
GOSUB 400:NEXT S:GOTO 50

260 IF SC> HS THEN HS = SC
270 PRINT "0 MYOUR SCORE:";

SC:PRINT"A HIGH SCORE:";HS
280 PRINT TAB(15);"gg gg LEND OF

GAME"
290 PRINT TAB(12);"ANOTHER GO? (Y/N)"
300 GET A$:IF A$="Y" THEN 20
310 IF A$ < >"N" THEN 300
320 PRINT "0 ❑ ":POKE 53280,14:

POKE 53281,6:POKE 53272,21:
END

330 POKE 52,48:POKE 56,48
340 POKE 56334,0: POKE 1,35
350 FOR Z=0 TO 1023:POKE

12288 + Z,PEEK(53248 + Z): NEXT Z
360 POKE 1,39:POKE 56334,1
370 FOR Z=0 TO 31:READ X:POKE

13312 +Z,X:NEXT Z:POKE
53272,28: RETURN

380 DATA 14,27,63,31,15,7,15,31,0,0,
0,0,0,192,112,188

390 DATA 31,29,30,15,3,1,1,3,206,30,
124,248,224,64,64,224

400 V= 54272:POKE V+24,15:
POKE V+ 5,15:POKE V+6,248

410 POKE V+ 1,S:POKE V+4,17:
FOR DE=1 TO ED:NEXT DE

420 POKE V+ 4,0:POKE V+5,0:
POKE V + 6,0:RETURN

Line 10 calls a subroutine located between
Lines 330 and 370 which sets up the extra
graphics needed for the game.

Line 330 clear some memory space for the
graphics. Next the character ROM is copied
into RAM, but first the interrupts must be
switched off to allow you to do this without
corruption (interrupts are explained in detail
in a later article). Line 340 turns the inter-
rupts off and switches in the character ROM
ready for it to be copied in Line 350. The
character ROM is switched out, and the
interrupts are switched on again by Line 360.

The duck graphic is POKEd on to the screen
by Line 370 from the DATA in Lines 380 and
390. The subroutine then ends.

The program RETURNs to Line 50 which
chooses at position for the duck at random.
The timer is also set to zero. Next, the
number of ducks, TU, is incremented, and is
checked to make sure that no more than ten
have been displayed. The number of ducks is
displayed by Line 70, and the duck graphic is
POKEd on screen by Line 80. The time and
score are displayed by Lines 90 and 100.

Line 190 checks if the fire button has been
pressed, and jumps to Line 240 if it has. The
next check looks at the timer. If the time
elapsed is less than six seconds, the program
jumps back to Line 80.

Line 210 sets up the variables for the sound
effect subroutine at Lines 400 to 420. S and
ED allow the same basic subroutine to be used
to generate a number of different sounds.

The score and high score are displayed by
Line 270 after the score has been calculated
by Line 250—the exact value of the score
depends on how long the player takes to shoot
the duck—and the high score is altered by
Line 260.

The section of program from Line 290 to
Line 310 is a standard 'Another go?' routine
of the type used in several previous games. If
the player doesn't want another go, the screen
colour, border colour and graphics mode are
reset and the program ends at Line 320.

13X.
The game is completed by adding these lines
to your existing joystick routine:

10 DATA 14,27,63,31,15,7,15,31,0,0,0,
0,0,192,112,188

20 DATA 31,29,30,15,3,1,1,3,206,30,

124,248,224,64,64,224
30 FOR Z = 0 TO 31:READ X:POKE 7168

+ Z,X:NEXT Z
80 D = (7702 + INT(RND(1)•19) + 1)

+ (INT(RND(1)*20) +1)*22:
T1$ = "000000"

90 TU=TU+1:IF TU>10 THEN 360
100 PRINT."I§ Ag gig a"TAB(7)

"DUCK:"TU:FOR Z=1 TO 999:NEXT Z
110 PRINT "1§1 gg 	al"TAB(7)

"0000000111"
120 POKE D,O:POKE D+1,1:POKE D+ 22,2:

POKE D+23,3
130 PRINT "®© "TAB(1 1)"TM: ❑ "

T1$
140 PRINT "IglaISC:1=10

DEEDiiiiiiiiiiii
IIII"SC

250 IF F= -1 THEN POKE 36877,130:
GOTO 300

260 IF T1$ < "000005" THEN 120
270 FOR Z=200 TO 127 STEP-1:

POKE 36875,Z:NEXT Z
280 Sc = SC -10
290 POKE D,32:POKE D+1,32:POKE

D+22,32:POKE D+23,32:GOTO 80
300 IF Y< > D THEN SC= SC-10:GOT0

330
310 SC= SC+ (6 - VAL(T1$))*10:FOR

S=200 TO 127 STEP -1
320 POKE 36865,36+ RND(1)*6: POKE

36876,S:POKE 36865,38:NEXT S
330 POKE 36877,0
340 IF Y= D THEN 80
350 GOTO 120
360 IF SC> HS THEN HS = SC
370 PRINT "EipaYOUR SCORE:"SC:

PRINT "g a HIGH SCORE:"HS
380 PRINT "g g pi pi pni pni

END OF GAME"
390 PRINT " pi pi PI 21ANOTHER GO?

(Y/N)"
400 GET A$:IF A$ ="Y" THEN 50
410 IF A$ < >"N" THEN 400
420 PRINT "0 M":POKE 36879,27:

POKE 36869,240

The Vic 20 program is very similar to the one
written for the Commodore 64.

Lines 10 to 30 define the duck and display
it on screen. Lines 80 to 140 are exactly the
same as Lines 50 to 100 in the 64 program,
displaying the duck and the scores.

Line 250 makes a sound if the fire button is
pressed and then jumps to Line 300. As the
Vic 20 has a smaller screen grid than the 64, a
shorter time limit of five seconds is set by
Line 260. Line 270 makes an 'out of time'
sound if you're too slow before Line 280
subtracts ten from the score as a penalty for
running out of time.

Line 290 rubs out the duck, and Line 300
subtracts ten from the score if the player has
missed. If the player has been successful Line
310 calculates the score—the additional
points depend on how quickly the player has
managed to pepper the duck full of holes. A
`successful kill' sound is made by the FOR ...
NEXT loop in Lines 310 to 320. Line 330
switches the sound off—the line also switches
off the 'miss' sound. If there has been a hit,
then Line 340 jumps back to Line 80 which
replots the duck. If you missed, Line 350
sends the program back to line 120 instead
which displays the next duck.

The score and high score are displayed by
Line 310 after Line 360 has adjusted the high
score if necessary. The remainder of the
program is a standard 'Another go?' routine,
followed by Line 420 resetting the screen
colour and mode.

The following section of program completes
the game of duckshoot for the BBC computer.
Electron owners should use the next program
instead. On both computers, delete the tem-
porary Line 115.

10 HISC= 0
40 F= 0:SC= 0:TI = 0
50 X2 = RND(1000) + 140:Y2 = RND

(800) + 100
80 PRINT"SCORE ❑ ❑ ❑ 111 DO"
90 VD U23,224,112,224,63,126,124,

56,16,48
150 IF F=0 THEN 170
180 VDU4:PRINTTAB(10,0);SC

"CIE ❑ ":VDU5
190 PROCDUCK
200 GCOL3,3
210 IF F> 10 THEN 420
270 DEF PROCDUCK
280 GCOL3,2
290 IF F= 0 THEN 360
300 IF TIME > T1 THEN 350

310 IF V(1)>X-32 AND V(1) <X+32 AND
V(2) >Y —32 AND V(2) < Y + 32 AND
(ADVAL(0) AND 1) THEN 340

320 IF (ADVAL(0) AND 1) AND TIME> 20
THEN SC= SC — 20:SOUN D1, — 15,10,1

330 ENDPROC
340 SC= SC + 300 —TIME:

SOUND1, —15,200,1
350 MOVEX,Y:VDU224
360 F = F + 1
370 X= RND(1000) + 100:Y = RND

(800) + 100
380 MOVEX,Y:VDU224
390 TIME= 0
400 TI = RND(2)*100 + 100
410 ENDPROC
420 MODE1
430 IF SC > HISC THEN HISC = SC
440 PRINTTAB(10,10)"HIGH SCORE ";

RISC
450 PRI NTTAB (10,13)"SCOR E

❑❑❑❑❑❑ ";SC
460 INPUT'PRESS RETURN"A
470 GOTO 30

Lines 10 and 40 initialize variables for the
high score, number of ducks that have been
displayed, score and time elapsed.

A random screen position for the duck is
chosen by Line 50. The starting score is
displayed by Line 80, and the VDU in Line 90
sets up the duck graphic.

Line 150 is quite important because it
prevents the program reaching Lines 160 and
170 and causing a nonsensical MOVE to be
calculated—V and V2 both contain zeros at
this stage. Once F has increased to one or
more, V and V2 will contain suitable values, so
the screen position in Lines 160 and 170 will
now correspond to the joystick position.

Line 180 uses VDU4 to go back to the text
cursor, to display the score. Finally, the VDU5
switches back to the graphics cursor ready for
Line 190 to call PROCDUCK.

PROCDUCK is a large section of program
stretching from Lines 270 to 410 dealing with
printing and shooting the duck. First of all,
Line 280 specifies yellow instead of white so
that you will have some nice yellow ducks to
shoot at. If this is the first duck, Line 290
makes the program jump to Line 360.

The program continues to Line 300 which
checks if the time limit has expired. If the

time limit hasn't expired, then Line 310
checks if the gunsight is pointing at the duck
and the fire button on the joystick is being
pressed. If you have written a program which
uses both joysticks, you should AND
ADVAL(0) with 2 instead of 1. Just in case the
player presses the fire button at the moment
the duck disappears Line 320 imposes a
penalty of only 20 points for a miss if the shot
is made more than 0.4 of a second late. If the
player does miss, a 'missing sound' is made.
The PROCedure ends at Line 330.

If the duck was hit, Line 340 calculates the
score according to the amount of time the
duck has been on screen and a different sound
is made.

The duck total is increased by 1 by Line
360, and the duck's new position is chosen by
Line 370. The duck is put at its new position
by Line 380, and the timer is reset immedi-
ately afterwards by Line 390. The duck may
appear for either one or two seconds—chosen
by Line 400—before the PROCedure ends at
Line 410.

The final section of program—Lines 420
to 470—deals with the end of the game. After
ten ducks have been displayed, Line 420
clears the screen and resets the colours. The
score and high score are compared in Line
440 before Lines 450 and 460 display the
high score and score that that game. Pressing
'RETURN' will restart the program.

Users of the Electron will have to make
these additions to the original joystick
program:

10 HISC = 0
40 F= 0:SC = 0:TI= 0
50 X2= RND(1000) +140:Y2 = RND

(800) + 100
80 PRINT"SCORE ❑ ❑ ❑ ❑ ❑ 0"
90 VD U23,224,112,224,63,126,124,

56,16,48
150 IF F=0 THEN 170
180 VDU4: PRI NTTAB(10,0);SC

"0 ❑ ❑ ":VDU5
190 PROCDUCK
200 GCOL3,3
210 IF F> 10 THEN 420
270 DEF PROCDUCK
280 GCOL3,2
290 IF F=0 THEN 360
300 IF TIME> TI THEN 350

310 IF V(1)>X-32 AND V(1) <X+32 AND
V(2) >Y— 32 AND V(2) <Y+32 AND
(?&FCCO AND 16) = 0 THEN 340

320 IF (?&FCCO AND 16) = 0 AND TIME> 20
THEN SC = SC — 20: SOUND1,
—15,10,1

330 ENDPROC
340 SC= SC + 700 —TIME:SOUND1,

—15,200,1
350 MOVEX,Y:VDU224
360 F = F +1
370 X= RND(1000) + 100:Y= RND

(800) + 100
380 MOVEX,Y:VDU224
390 TIME= 0
400 TI = RND(3)"100 + 400
410 ENDPROC
420 MODE1
430 IF SC > HISC THEN HISC = SC
440 PRINTTAB(10,10)"HIGH

SCORED ";HISC
450 PRINTTAB(10,13)"SCORE

111 El 	111111";SC
460 INPUT""`PRESS RETURN"A
470 GOT030

The program is extremely similar to the one
designed to work with the BBC.

The differences lie in Lines 310 and 320,
which check for presses on the fire button in a
different way, and Lines 330 and 340, which
make allowances for the slower processing
speed of the Electron.

Adding the remainder of the program will
give you the complete Duckshoot game:

80 FORK =1536T02272 STEP32
90 READA,B:POKEK,A:POKEK + 1,B
100 NEXT
110 GET(0,0) — (13,11),D,G
120 GET (0,12) — (13,23),H,G
150 DX= RND(239) +1:DY= RND(178) + 1
180 D = 10:SC = 0
190 TIMER = 0
210 PUT(DX,DY) — (DX + 13,DY + 11),

D,OR
220 IF(PEEK(65280)AND1) = 0

GOSUB2000:IFD <1 THEN 250
230 IF TIMER <200 THEN 200
240 D = D 	D > 0 GOSUB3000:

GOT0190
250 CLS:PRINT©140,"SCORE = ";SC

260 IF SC> HI THEN HI =SC
270 PRI NT@233," H I — SCORE = "; H I
280 PRINT@389,"ANOTHER GO ?(Y/N)"
290 A$ = INKEY$:IF A$ < > "Y" AND

A$ < > "N" THEN 290
300 IF A$ = "Y" THEN 130
310 END
2000 IFPPOINT(X,Y) =1 THEN 2070
2010 PUT(X — 6,Y — 5) — (X + 7,Y + 5),

H, PSET
2020 PLAY"T5004CEEEG"
2030 GOSUB3000
2040 SC= SC + 250— TIMER
2050 D = D —1:TIMER = 0
2060 RETURN
2070 PLAY"T25001 DDE"
2080 SC = SC —10
2090 RETURN
3000 PUT(DX, DY) — (DX + 13, DY + 11),

B, PS ET
3010 PUT(X — 8,Y — 5) — (X + 9,Y + 5),

S, PS ET
3020 DX= RND(239)+1:DY= RND

(178) + 1: RETURN
4020 DATA 4,0,25,0,149,0,21,0,5,0,5,64,5,

80,21,148,22,148,22,84,21,84,5,80
4030 DATA 48,48,0,0,195,12,51,48,15,192,

51,48,204,204,15,192,51,48,192,
12,0,0,51,48

Two shapes are contained in DATA in Lines
4020 and 4030—a duck, and a red splatter
which will be used after the duck has been
successfully disposed of. The DATA is READ
and POKEd onscreen by Lines 80 to 100. Two
more GETS are needed—in Line 110 the duck
is stored in array D, and in Line 120 the
splatter is stored in array H.

A random screen position for the duck is
selected by Line 150. The values of DX and DY
are used by Line 210 to PUT the duck on the
screen.

Line 180 sets the initial number of ducks to
ten, and the score to zero. The timer is set to
zero by Line 190.

Presses on the fire button are detected by
Line 220. If you press the button on the right
hand joystick, bit zero in memory location
65280 will be changed from 1 to 0, whilst if
you press the fire button on the left hand
joystick bit one will be changed from 1 to 0.
Line 220 shows how you detect the changes in
65280. PEEKing 65280 and ANDing—see page

288—the contents with 1 will give zero if the
right hand fire button is depressed, whilst
ANDing the contents with 2 will give zero if the
left hand fire button is being pressed. Line 220
in its present form, then, checks for presses on
the right hand fire button. If a press is
detected, it jumps to the subroutine beginning
at Line 2000 which deals with hits and misses.

The final part of Line 220 checks if all ten
ducks have been displayed and jumps to Line
250 if they have.

Once the fire button has been pressed, Line
2000 looks at the colour of the pixel at the
centre of the gunsight at that moment. If
PPOI NT—to be described later—finds that the
colour is green, then the shot must have
missed, and the program jumps to Line 2070
which makes a miss sound. The penalty for
missing is to lose ten points—they are sub-
tracted by Line 2080. The subroutine ends at
Line 2090.

If the colour at the centre of the gunsight
isn't green, then the shot must have been on
target. The program carries on to Line 2010
which PUTs the splatter on the screen. To add
to the effect, a sound is PLAYed by Line 2020.
Next, the subroutine at Line 3000 is called.
Its function is to blank out the splatter and
replace it with the gunsight ready for the
game to continue. Line 3020 picks a new
random position for the duck.

Line 2040 calculates the score. The ad-
ditional score depends on how quickly the
player has succeeded in shooting the bird, so
values between 50 and 250 may be added—
the game stops when the TIMER value exceeds
200. Having calculated the score, the number
of ducks is decremented, and the timer is reset
to zero. The subroutine ends at Line 2060
this time.

After completing the subroutine, the
program RETURNs to Line 230, where the
time elapsed is checked. If the TIMER reading
is below 200 the program jumps back to Line
200. If the time limit has elapsed, on the other
hand, Line 240 decrements the number of
ducks, and checks if any remain. If they do,
the duck is blanked out by the subroutine
starting at Line 3000. Line 3020 selects the
position of the next duck.

If all the ducks have been used up the
scores and high scores are shown. Line 250
automatically switches back to the text screen

What do I have to do to change
the duck graphic into a
different target?
The answer depends on which machine
you have. Basically, it is a matter of
altering the DATA, and changing the lines
that PRINT the UDG on the screen.

The Spectrum program uses a block
of four UDGs defined in Lines 1000 to
1030. If you use a larger UDG, Line
180, which PR INTs them on the screen,
will also need changing.

Commodore users will have to change
the DATA. If your new UDG calls for
more DATA, the FORs in Line 370
(for the 64), and Line 30 (for the Vic),
will have to be changed too.

The duck graphic in the Acorn
programs occupies an eight by eight
pixel grid, and you may well find that a
graphic of this size is too small. If you
need a larger character, look at pages 42
to 43 where you will find instructions on
how to define and display larger UDGs.
If you want to use a 16 x 16 pixel grid,
for example, you would set
UDG$ = CHR$224+ CH R$225 +
CH R$10 + CH R$8 + CH R$8 +
CH R$226 + CH R$227, having defined
CHR$224 to 227 using VDU23. You
should then substitute PRINT UDG$ for
VDU224 in Lines 350 and 370. The hit
check in Line 310 will also have to be
changed, change the number 32 to 64.

If you have a Dragon or Tandy it's
quite simple to create any size of UDG
you wish. Change the DATA and the
FOR ... NEXT loop which .READs it,
and the coordinates of the GETS
and PUTs in the program.

and displays the player's score. The score is
checked against the high score, and altered if
necessary by Line 260, before Line 270
displays the high score.

Finally, Lines 280 to 310 are a familiar
`Another go?' routine.

Move on from learning the keyboard
and put your typing skills to a real
test by copying longer phrases
generated on the screen by the
computer

If you practised the earlier stages of the typing
course, you should by now be familiar with all
the keyboard characters, and be able to type
words and figures accurately and at a steady
pace. Up to this point, the course is equally
beneficial to those who wish to key in
programs, as well as those who are more
interested in writing letters or in word
processing.

But now you have the opportunity to
practise your skills on an extended piece of
text. You will still gain in fluency on the
keyboard, but you will also get more exper-
ience at using the computer as a writing tool.

It's very important at this stage that you
maintain the same touch typing technique
that you have practised throughout the earlier
parts of the course. Try to type by feel alone,
without looking at the keyboard—using the
home keys to give you a reference point all the
time. And try to maintain a steady rhythm,
rather than a high speed that is erratic. The
golden rule is to start off at a speed which you
can manage at a steady pace, then build this
up gradually.

HOW TO USE THE PROGRAM
When you RUN the program a menu appears
on the screen giving you the option of two
tests. The first test displays sentences, ran-
domly generated from DATA statements in the
program. The second test requires rather
more work from you. It allows you to practise
on longer passages but you have to enter the
passage first. Once entered, the computer
displays it on the screen as before. In both
tests you have to type the sentence or passage
as it appears on the screen, and afterwards the
program displays your typing speed in words
per minute and tells you the number of errors
you made.

The program also allows you to choose
what happens when you make an error—that
is, whether you want to be able to use the
'BACKSPACE' or 'DELETE' key to correct your
work or not.

If you choose to use the 'BACKSPACE' or
'DELETE' option, then, except on the Acorns,
any errors have to be corrected as soon as they
are made.

If you choose not to use the !BACKSPACE' or

'DELETE! then, on all but the Acorns, the
computer waits for you to enter the correct
character before you can continue.

The Acorn program works slightly differ-
ently. In the first option you do not have to
delete errors, so if you are concentrating on
improving speed and typing rhythm they can
be left as they are. In the second option the
cursor continues to move on, so there's no
way of correcting the errors. This is more
useful if you want to concentrate on improv-
ing your accuracy.

Then, again on the Acorns, when your
sentence is printed out at the end, the errors
are highlighted in a different colour so you
can see which keys you need more pract ice on.

After an hour or so at the keyboard, you
will find that the sentences have become
monotonous—there are only a few variations.
If you like you can change the phrases in the
program for others of your own. To do this,
break into the program and LIST the section
containing the DATA statements. These are in
Lines 1500 onwards on the Spectrum,
Dragon and Tandy, Lines 1000 onwards for
the Commodores and Lines 770 onwards for
the Acorns.

Overwrite the phrases with your own, but
remember to start and end phrases containing
commas with double quotes("). If you do not,
the computer will divide the phrase at the
comma and treat each part as a separate
phrase. You should also keep the same num-
ber of phrases in each section. If you do not
feel sufficiently confident to make up your
own phrases so that when combined they
make some kind of sense, then you can vary
the exercise by opting to key in whole pas-
sages of text.

A passage can be up to 255 characters long
on the Spectrum, Dragon and Tandy, about
245 on the Acorns, 80 characters on the Vic
20 and 40 on the Commodore 64. You can
enter three passages, except on the Acorn
micros, where you can enter about 85. To
enter the passages (except on the Acorn),
select option 2 and respond to the prompts on
the screen. Passages with commas or colons (:)
should start and end with double quotes (").
Once you have entered three passages into the
DATA statements, you can select any one to

■ LEARNING TO TYPE REAL
SENTENCES

■ HOW THE PROGRAM WORKS
■ USING THE DELETE OR BACK-

SPACE KEY TO CORRECT ERRORS

■ USING THE PROGRAM TO
PRACTISE LONGER PIECES

OF TEXT
■ RULES FOR CORRECT

PRESENTATION

practise on by choosing option 2.
To enter passages on Acorn micros, ESCAPE

from the program and LIST. Then enter each
passage as a DATA statement, starting at Line
840. You could enter five or even ten passages
to begin with, so that when you RUN the
program and select option 2, one of these will
be selected at random for you to type.

The only other option is whether or not to
have sound, which is available in all except the
Spectrum programs. Acorn users can choose
to turn off the sound when they RUN the
program, but others can merely turn down
the volume control on the TV set.

Should I follow any rules when I
make up new data statements
for the program, or will any
sentences do?
This depends on how well you can type
at present. Provided you have worked
through each stage of the typing course
you should be able to type equally well
with all your fingers—including the little
ones. However, the little fingers do tend
to need more practice than the others so
it's as well to make sure that the words
in the DATA statements include plenty of
Qs, As, Zs, Ps and Ls. By making up
different sets of words you can give extra
practice to any of your fingers.

You should mix in these words and
phrases with others that cover the whole
of the keyboard. The old favourite 'A
quick brown fox jumps over the lazy
dog' is always useful, so is 'Pack my box
with five dozen liquor jugs'. You'll no
doubt be able to invent similar sentences
of your own.

At present, the program combines
three phrases to form a more or less
meaningful sentence. If you find this too
difficult you could enter short sentences
so the program combines them
into paragraphs.

10 POKE 23561,0
20 CLS
25 DIM t$(3,255): DIM t(3): LET df = 0
30 PRINT AT 7,7;"WHICH TEST (1 OR 2)?"
40 PRINT AT 10,9;"TYPE '0' TO QUIT"
50 LET a$=1NKEY$: IF a$ < "0" OR

a$> "2" THEN GOTO 50
60 IF a$ = "0" THEN STOP
70 GOSUB VAL ar1000
80 CLS : PRINT AT 15,4;"Words per

minute= ❑ ";LEN cr (INT ((500/(PEEK
23672 + 256* PEEK 23673))*100)/100)

90 PRINT AT 17,6;"Number of errors= ❑ ";e
100 GOTO 30
1000 CLS : PRINT "0 Do you want to be able

to use ❑ ❑ ❑ the DELETE key (y/n)? ”

1010 LET a$=1NKEY$: IF a$ < >"n" AND
a$ < >"y" THEN GOTO 1010

1020 LET e= 0: LET d= 0: IF a$="y" THEN
LET d =1

1030 CLS
1040 LET c$="": RESTORE : FOR k=1 TO

4: LET r= INT (RND*3) +1: FOR j = 1 T0 3
1050 READ b$: IF j= r THEN LET

c$=c$+ b$

1060 NEXT j: NEXT k
1070 PRINT c$: PRINT : PRINT
1080 LET pp= 0
1090 LET a$ = 1NKEY$: IF a$="" THEN

GOTO 1090
1100 POKE 23672,0: POKE 23673,0: PAUSE

0: GOTO 1120
1110 PAUSE 0
1115 LET a$=1NKEY$: IF a$="" THEN

GOTO 1110
1120 IF a$< >c$(pp+1) AND d=0 THEN

GOTO 1170
1130 PRINT a$;CHR$ 95;CHR$ 8;: LET

pp= pp + 1
1140 IF a$ < > c$(pp) THEN GOTO 1170
1150 BEEP .01,30: IF pp= LEN c$ THEN

RETURN
1160 GOTO 1110
1170 BEEP .05,-10: LET e=e+1
1180 IF d=0 THEN GOTO 1110
1190 PAUSE 0: LET a$=1NKEY$: IF

a$< > CHR$ 12 THEN GOTO 1190
1200 LET pp= pp-1: PRINT CHR$ 8;CHR$

95;" ❑ ";CHR$ 8;CHR$ 8;: GOTO 1110
1210 GOTO 1130
1500 DATA "The mangy dog that walks on three

legs0","It is a fact that anyone ❑ ","When
the time is right, the elephant 0"

1510 DATA "might browse under ❑ ","will be
able to sit on ❑ ","can jump upon0"

1520 DATA "the wobbly box with a hole on
top0","the leaning tower of Pisa0","any
one of the farm buildings ❑ "

1530 DATA "and bring it crashing to the
floor.","without fear of a big surprise.","until
closing time at the zoo."

2000 CLS : IF df =1 THEN GOTO 2015
2005 LET df =1
2010 FOR n=1 TO 3: INPUT "Input passage

number0";(n)' LINE r$: LET t(n) = LEN r$:
LET t$(n) = a: NEXT n

2015 INPUT "Which passage would you like to
type in (1 to 3)?E"'p

2017 IF p>3 OR p<1 THEN GOTO 2015
2018 LET c$=t$(p, TO t(p))
2020 CLS : PRINT "Do you wish to be able to

use ❑ ❑ ❑Lithe DELETE key (y/n)? ”

2030 LET a$ = INKEY$: IF a$ < >"y" AND
a$ < >"n" THEN GOTO 2030

2040 LET d = 0: LET e=0: IF a$="y" THEN
LET d =1

2050 CLS : GOSUB 1070: RETURN

When you key this program, be careful not to
confuse some of the symbols at the start of
some of the PRINT statements and DATA
statements. For example, at Line 10, the large
`o' before 'HICH TEST' is obtained by pressing
ISHIFT1 and 'W'—not letter '0'; similarly, the
symbol in Line 20 is a SHIFT ed T:

5 PRINT "0"CHR$(14)CHR$(8)
10 PRINT "g] 	HICH TEST (1 or 2)?"
20 PRINT "[DYPE '0' TO QUIT"
30 GET A$:IF A$ <"0" OR A$> "2" THEN

30
40 IF A$="0" THEN PRINT

"0"CHR$(142)CHR$(9):END
50 ON VAL(A$) GOSUB 100,2000
60 PRINT "0"
70 PRINT "NE ORDS PER MINUTE":

PRINT "=";1NT((LEN(C$)/6)/
T11000)

80 PRINT "gg DUMBER OF ERRORS":
PRINT "=";E

90 GOTO 10
100 PRINT "0 80 YOU WANT TO BE ABLE

TO USE THE DELETE KEY (YIN)?"

110 GET AS:IF A$ < >"Y" AND A$< >"N"
THEN 110

120 E= 0:D=0:1F A$="Y" THEN D=1
130 PRINT "0"
140 C$="":RESTORE:FOR K=1 TO

4:R = INT(RND(1)*3) +1:FOR J=1 TO 3
150 READ B$:1F J=R THEN C$=C$+ B$
160 NEXT J,K
170 PRINT C$;"glgg gg"
180 PP= 0:PRINT"a";
190 GOSUB 310
200 T1$ = "000000":GOTO 220
210 GOSUB 310
220 IF A$< >M1D$(C$,PP+1,1) AND D=0

THEN 270
230 PRINT A$;:PP= PP +1
240 IF A$ < > MID$(C$,PP,1) THEN 270
250 SS =250:GOSUB 3000:IF PP= LEN(C$)

THEN RETURN
260 GOTO 210
270 SS =130:GOSUB 3000:E= E+ 1
280 IF D=0 THEN 210
290 GET A$:IF A$ < > CHR$(20) THEN 290
300 PP= PP —1:PRINT A$;:GOTO 210
310 POKE 198,0
320 GET A$:IF A$="" THEN 320
330 IF A$ < CHR$(32) OR (A$>CHR$(127)

AND A$ < CHR$(161)) THEN 320
340 RETURN
1000 DATA "I:0HE MANGY DOG THAT

WALKS ON THREE LEGS ❑ "
1010 DATA "9T IS A FACT THAT

ANYONE ❑ ","RE HEN THE TIME IS RIGHT,
THE ELEPHANT ❑ "

1020 DATA "MIGHT BROWSE UNDER ❑ ",
"WILL BE ABLE TO SIT OND","CAN
JUMP UPON El"

1030 DATA "THE WOBBLY BOX WITH A
HOLE ON TOPE ","THE LEANING TOWER
OF PISA ❑ "

1040 DATA "ANY ONE OF THE FARM
BUILDINGS ❑ "

1050 DATA "AND BRING IT CRASHING TO
THE FLOOR."

1060 DATA "WITHOUT FEAR OF A BIG
SURPRISE.","UNTIL CLOSING TIME AT
THE ZOO."

2000 IF C$(1)< >"" OR C$(2) < >"" OR
C$(3) < >"" THEN 2015

2005 PRINT "D ❑ NPUT THE PASSAGES
YOU WISH TO TYPE.":
FOR Z=1 TO 3:PRINT
"gg JASSAGE:" ; Z

2010 INPUT C$(Z):NEXT Z
2015 PRINT "0 El 0 YOU WISH TO BE ABLE

TO USE THE DELETE KEY (Y/N)?",

2020 GET A$:IF A$ < >"Y" AND
A$ < >"N" THEN 2020

2025 D = 0:E= 0:IF A$="Y" THEN D=1
2030 PRINT "Ej NTER PASSAGE.

(1 — 3)?"

2040 GET A$:C$=C$(VAL(A$)):
IF A$ <"1" OR A$ > "3" THEN 2030

2050 PRINT "0":GOSUB 170:
RETURN

3000 POKE 54296,15:POKE 54277,9:
POKE 54273,SS

3010 POKE 54276,33:FOR DD=1 TO 40:NEXT
DD:POKE 54276,0:POKE 54277,0:RETURN

The program is the same as for the Commo-
dore 64, except that the last two lines should
be as follows:

3000 POKE 36878,15: POKE 36876,SS:FOR
DD=1 TO 10:NEXT DD

3010 POKE 36876,0:RETURN

10 SUB=3
20 NUM = SUB*4
30 ON ERROR GOTO 740
40 MODE 1
50 VDU 23,224,255,255,255,255,

255,255,255,0
60 GCOL3,3
70 DIM A$(100):FOR T=1 TO 100:

READ A$(T):NEXT
80 N=T—NUM-1:D=1:S= —15
90 CLS:PRINTTAB(10,9)"MAIN MENU"
100 PRINTTAB(10,12)"1) SENTENCES"
110 PRINTTAB(10,14)"2) PASSAGE"
120 PRINTTAB(10,16)"3) SOUND + DELETE

OPTIONS"
130 G =GET-48:IF G<1 OR G>3 THEN

130
140 IF G=1 THEN PROCSELECT:

PROCINPUT1:PROCDISPERR:GOTO 90
150 IF G=2 AND N > 0 THEN PROCPASS:

PROCINPUT1:PROCDISPERR:GOTO 90
160 IF G=3 THEN PROCERRHANDLE
170 GOTO 90
180 DEF PROCINPUT1
190 CE= 0:B2$ = ""
200 CLS:COLOUR2:PR1NT"'A$TAB

(0,12):COLOUR3
210 VDU5: MOVE POS*32,1023— (VPOS-

10)12:VDU224,4
220 TIME= 0
230 *FX15,1
240 FOR T=1 TO LEN(A$)
250 B$ =GETS
260 IF NOT(D =1 AND B$=CHR$(127))

THEN 290
270 IF T> 1 THEN VDU5:MOVE POS*32,

1023— (VPOS — 10)12:VDU224,4:
VDU ASC(B$):VDU5:MOVE POS*32,
1023— (VPOS — 10)12:VDU224,4:
CE= CE + 1:T= T-1:B2$ =LEFT$
(B2$,T-1)

280 GOTO 250

290 IF ASC(B$) <32 OR ASC(B$)>126
THEN 250 ELSE VDU5:MOVE
POS*32,1023 — (VPOS —10)'32:
VDU224,4:PR1NTB$;:VDU5:
MOVE POS*32,1023— (VPOS —10)
*32:VDU224,4

300 B2$= B2$+ B$
310 IF B$= M1D$(A$,T,1) THEN 330
320 SOUND1,S,20,1
330 NEXT
340 Fl NTI ME = INT(TI ME/100)
350 ENDPROC
360 DEF PROCDISPERR
370 VDU 14
380 CLS:E= 0:PRINT"
390 FOR T=1 TO LEN(A$)
400 D$ = MID$(B2$,T,1)
405 COLOUR3
410 IF MID$(A$,T,1) < > D$ THEN

COLOUR1:E=E+1:1F D$=" ❑ " THEN
D$ = CHR$(224)

420 PRINTD$;
430 NEXT
440 COLOUR3
450 PRINT"""ACCURACY :'"'TAB(10)

"YOU LEFT0";E;" ❑ ERROR(S)"
460 IF D=1 THEN PRINTTAB(10)

"AND YOU CORRECTED ❑ ";CE;
" ❑ ERROR(S)"

470 PRINT'SPEED :""TAB(10);
LEN(A$);" El LETTERS INC] ";
FINTIME;" ❑ SECONDS"

480 PRINT'"THAT'S ❑ ";1NT(LEN(A$)/
6/FINTIME•60);"111WORDS
PER MINUTE"

490 VDU 15
500 *FX15,1
510 INPUT""PRESS RETURN FOR MENU",A$
520 ENDPROC
530 DEF PROCERRHANDLE
540 CLS
550 PRINT"""DO YOU WANT SOUND (Y/N)"
560 G=GET AND &5F:IF G=89 THEN

S= —15:GOTO 590
570 IF G< >78 THEN 560
580 S=0
590 PRINT""DO YOU WANT TO USE DELETE

KEY (Y/N)"
600 G=GET AND &5F:IF G=89 THEN

D=1:GOTO 630
610 IF G < >78 THEN 600
620 D=0
630 ENDPROC
640 DEF PROCSELECT
650 A$ =A$(RND(SUB))
660 FOR T=2 TO 4
670 A$ =A$ + "El" +4(RND(SUB)+

(T-1)*SUB)
680 NEXT
690 ENDPROC
700 DEF PROCPASS

710 IF N=1 THEN A$= A$(NUM +1):
ENDPROC

720 A$=A$(RND(N)+ NUM +1)
730 ENDPROC
740 IF ERR < >42 THEN REPORT:

PRINT" ❑ AT LINE ❑ ";ERL
742 *FX202,32,0
745 IF ERR < >42 THEN END
750 GOTO 80
770 DATA The mangy dog that walks on three

legs,lt is a fact that anyone,"When the time is
right, the elephant"

790 DATA might browse under,will be able to sit
on,can jump upon

810 DATA the wobbly box with the hole on the
top,the leaning tower of Pisa,any one of the
farm buildings

830 DATA and bring it crashing to the
floor.,without fear of a big surprise.,until
closing time at the zoo.

1U: 'HI
10 CLEAR2000
20 CLS:DIMA$(2)
30 PRINT@101,"WHICH TEST

(1 OR 2) ? "

40 PRINT@168,"TYPE (0) TO QUIT"
50 A$=INKEY$:1F A$ <"0"ORA$ > "2"

THEN50
60 IFA$ ="0"THENCLS:END
70 ON VAL(A$) GOSUB1000,2000

80 CLS:PRINT@448,USING"WORDS PER
MINUTE= ###.##";
LEN(C$)•500/TIMER

90 PRINT@480,"NUMBER OF ERRORS
= ";E;

100 POKE329,255:GOTO 30
1000 CLS:PRINT"0 DO YOU WISH TO BE

ABLE TO USED ❑ ❑ LITHE BACKSPACE KEY
(Y/N) ?',

1010 A$=INKEY$:1F A$< >"N"
ANDA$ < >"Y" THEN1010

1020 E = 0:D = 0:IF A$="Y" THEN D=1
1030 CLS:POKE329,0
1040 C$="":RESTORE:FORK=1 TO

4:R = RND(3):FORJ=1T03
1050 READB$:1F J= R THEN C$=C$+ B$
1060 NEXTJ,K
1070 PRINTC$
1080 PP = 0
1090 A$=INKEY$:1F A$="" THEN1090
1100 TIMER= 0:GOTO 1130
1110 A$=INKEY$:1F A$="" THEN 1110
1120 IF A$< >M1D$(C$,PP+1,1)

ANDD= 0 THEN 1170
1130 PRINT@PP+256,A$:PP= PP + 1
1140 IF A$< > MID$(C$,PP,1) THEN 1170
1150 SOUND200,1:IF PP= LEN(C$) THEN

RETURN
1160 GOTO 1110
1170 SCREEN0,1:SOUND10,1:E= E +1
1180 IF D=0 THEN 1110
1190 A$=INKEY$:1F A$< >CHR$(8)

THEN 1190
1200 PP= PP —1:PRINT@256,M1D$

(C$,1,PP):GOT01110
1210 GOTO 1130
1500 DATA The mangy dog that walks on three

legs ❑ ,1t is a fact that anyone ❑ ,"When the
time is right, the elephant ❑ "

1510 DATAmight browse under ❑ ,will be able to
sit on ❑ ,can jump upon ❑

1520 DATAthe wobbly box with the hole on
top ❑ ,the leaning tower of Pisa ❑ ,any one of
the farm buildings ❑

1530 DATAand bring it crashing to the
floor.,without fear of a big surprise.,until
closing time at the zoo.

2000 CLS:P= 0:1F A$(0) = `"'ANDA$
(1)=""ANDA$(2)=`"' THEN 2090

2010 PRINT" ❑ DO YOU WISH TO USE A
PREVIOUSLY ENTERED PASSAGE (Y/N) ?',

2020 A$=INKEY$:1F A$ < >"Y" AND
A$ < >"N" THEN 2020

2030 IF A$="Y" THEN 2120
2040 1FA$(P)=`"' THEN 2090
2050 P= P + 1:IFP <3 THEN 2040
2060 PRINT" DALL THREE PASSAGES KEYED.

WHICH LI ❑ DONE DO YOU WISH TO
OVERWRITE ❑ ❑ ❑ ❑ (1 —3) ? ❑ ";

2070 A$=INKEY$:1F A$ < "1"
ORA$ > "3" THEN2070

2080 P=VAL(A$)-1:PRINTA$:PR1NT
2090 POKE329,0: PRINT" ❑ INPUT THE

PASSAGE YOU WISH TO ❑ ❑ ❑ TYPE —"
2100 LINEINPUT A$(P)
2110 GOTO 2150
2120 CLS:PRINT" WHICH PASSAGE DO YOU

WISH TODED DUSEDD
(1 —3) ?

2130 A$ =1NKEY$:IFA$ < "1"
ORA$ > "3" THEN 2130

2140 P=VAL(A$)-1:1FAS(P)=""

THEN2120
2150 CLS
2160 POKE329,255:CLS:PRINT" ❑ DO YOU

WISH TO BE ABLE TO USED ❑ LITHE
BACKSPACE KEY (Y/N) ?',

2170 A$=1NKEY$:IFA$< > "Y"AND
A$ < >"N" THEN 2170

2180 D = 0:E= 0:1F A$="Y" THEN D=1
2190 CLS:POKE329,0:C$ = A$(P):

GOSUB1070:RETURN

El
The program is the same as for the Dragon,
except that the first number of the POKES at
Lines 100, 1030, 2090, 2160 and 2190
should be 282, instead of 329.

Presentation
Given the ease with which you can correct
errors on a computer keyboard, you
should be able to print clean copies,
without smudges from correcting fluid or
feint characters caused by erasing errors
with correcting paper. The final ap-
pearance of your typing, however, de-
pends on the care you take in laying it out
on the paper.

A well laid out document has margins of
at least 3 cm on both sides of the paper,
and the body of type should lie centrally
from top to bottom. If you use a word
processing program, this will have provi-
sion to set the margins and number of lines
per page, but on your own programs, and
the one listed here, you can set these limits
by PRINT TAB or PRINT AT statements.

Just as important as margins is the use
of line spaces to break up the block of type
into paragraphs. This helps to make the
text easy to read and understand. Para-
graphs can be indented—with the first
letter of the first line starting about two
spaces from the margin—but modern
practice is to type in block. In both
methods, the paragraphs are separated by
at least one line space (a blank line) but
block paragraphs are not indented. If you
have only a short passage or letter to type,
start well down the page, have single
spaces between each line and, say, treble
line spacing between paragraphs. After a
little practice, you should be able to judge
where to start so that the passage or letter
is centred on the page.

Data storage for home computers
usually means a choice between
cheap but well supported tape
systems and expensive but powerful
disk systems. Each has its advantages

All home computers use specific areas of what
is called random access memory to store
program information that's either keyed in or
loaded from a data storage device of one kind
or another. Storage devices are necessary
because usable areas of memory are
`volatile'—information here simply disap-
pears when the computer is switched off.

Several types of tape and disk storage
device are available for use with home com-
puters. The more expensive of these are
usually both versatile and powerful enough to
provide computing facilities which really do
give home computers impressive
capabilities—making them very much more
suitable for educational and business uses.

These systems are all capable of providing
the essential permanent storage without which
computers couldn't function in the way we
now accept as normal.

TAPE STORAGE
The favourite method of program storage for
home computers is the use of ordinary tape
cassette recorders as this represents a
workable compromise between operational
convenience and low cost. And, as far as the

average user is concerned, this is all
that really matters.

Low cost audio cassette

	

i 	recorders are often quite
adequate for the job

and there is a virtually limitless selection of
software available in cassette form, even if the
choice is weighted—quite significantly—
towards the games end of the market.

Low cost cassette recorders are, if only by
implication, simple affairs. This is usually
fine for a computer, which requires only a
simple sound signal. So once you've managed
to set up or match a recorder to the computer
(by setting correct tone and volume levels),
you're away, and need only occasional main-
tenance to keep things running sweetly.

Well that's the theory anyway. In practice,
everyone has no end of trouble getting the
cassette recorder and computer combination
right and keeping it that way. (See also pages
22 to 25.)

RECORDING QUALITY
One solution is to buy a proper data
cassette recorder. These differ from ordinary
audio cassette recorders in that electronics are
used to clean up the signal transmission so the
off and on pulses are much clearer.

Dedicated recorders, used for instance by
the Commodore computers, do just this and
offer the added advantage that a single, simple
connection is all that need be made. But even
dedicated recorders are not entirely fault-free,
suffering as they do from the sort of problems
which plague all tape users.

The one thing that is important when using

tape is to maximize recording quality, as this
is the one area where you can actually exercise
some control. Even from a good recording, a
signal will deteriorate as it passes through a
poor quality cassette recorder. The same is
true transferring data from memory to tape: a
poor recorder can hardly be expected to make
a good recording on tape.

Another important consideration is tape
quality. Basically, you should avoid the
temptation of using any old tape—especially
previously used or lengthy audio cassettes.

There's some conflict here: because of the
way data is stored on tape (see below) tape
systems have fairly limited capacity.
Although it is possible to use lengthy audio
cassettes the reliability of these is extremely
suspect. C90 and C120 tapes are much thin-
ner than the 'safe' C30 and are consequently
prone to severe stretching if subjected to
frequent use—or continual to-ing and fro-ing
under the comparatively 'vicious' fast
forward/rewind mechanisms of cheap cassette
recorders.

This • stretching causes 'drop outs' and
wavering signals, either of which spells the
end as far as the demanding requirements of a
computer are concerned. At best this can
result in difficult, temperamental loading, at
worst the loss of data if SAVEing is being
attempted.

The practical upper limit is a C30 cassette.

■ CONVENIENCE AND LOW COST
OF TAPE SYSTEMS

■ IMPORTANCE OF RELIABILITY
■ DATA TRANSMISSION RATES
■ TAPE LOOP DEVICES

■ SLOWNESS OF SERIAL ACCESS
■ HOW DISK DRIVES WORK
■ THE DISK OPERATING SYSTEM
■ INTERFACING
■ SOFTWARE CHOICE

Each side can hold fifteen minutes of program
transmission time. This is close to the mem-
ory limit of the slow loading Commodore
machines and enough for several programs at
the faster transmission rates possible on other
home computers. If used with great care, C60
tapes can also prove suitable.

The longest tape required for a single
program would be about of 20 minute's
running time for the Commodores. All the
other machines can get away with using C15
tape: only 7 minutes is required on the BBC, 6
minutes for the Spectrum, and as little as 3
minutes for the 32K Dragon.

It makes a lot of sense, however, to keep to
the shortest possible tapes so that each cass-
ette can be set aside for a single program on
each side—which, for security, may even be a
duplicate. That way there's really no problem
finding the start of either!

Data quality cassettes made specially for
computer use are usually available in these
short lengths—typically up to C15. Many so-
called data tapes, if cheap, could be anything
but. These really should be tested thorough-
ly. If you can find a good brand, stick with it!

TRANSMISSION RATE
Any tape-based problems become increas-
ingly severe the greater the data transmission
speed used by a computer. Transmission
speed—how quickly information passes from

computer to storage or vice versa—is usually
referred to by a baud rating. A baud loosely
equates to the number of bits transferred per
second but the figure is actually based on a
much more complicated assessment.

The higher the baud rate used for program
transmission, the better the equipment and
recording medium have to be. A tape which
may prove suitable for the snail-pace Com-
modores may not work on any of the other
machines. Fast LOAD routines, written into
lengthy games may also pose problems.

TAPE LOOPS
To get round some of the problems associated
with conventional tape cassettes, several types
of tape loop system are now available. Notable
amongst these is the Microdrive for the
Spectrum—but endless tape cartridge units
can be used on most other machines if the
necessary connections can be made.

These devices are essentially tape recorders
except that an endless loop of tape passes the
read write head. The tape travels only in one
direction, but very, very quickly so that the
start point of a particular program can be
reached quickly and without actually
having to rewind tape. This gives a
considerable time saving and the
single direction of move-
ment means much

less wear and tear on the tape itself.
With faster access times and storage capac-

ities of around 100K, tape loop systems seem
capable of countering many of the shortfalls
of standard cassette systems.

But the software available in this form is, to
say the least, restricted. And in no way do the
data capacity or access speeds match the
necessary requirements of serious educational
or business applications.

SERIAL ACCESS
In any tape system, the initial transfer of data
from the computer to the storage device is
literally a continuous dump from memory.
Information is SAVEd (and later LOADed back)
sequentially—in other words, in start to finish
order. To get the program back into memory,
you have to find the starting point and
reload from there. This is called
serial access.

For games programs
this is not much
of a handicap

—you simply rewind to the start each time
and off you go. But this approach is next to
useless when the computer has to access and
manipulate very large amounts of data quick-
ly. And that's just the sort of thing it needs
to do in any 'serious' business application.

In cases like this there's only one solution:
a disk drive.

But loop devices do at least divide the
length of tape into 'blocks' which have
markers. And because much greater rotating
speeds are used, it is possible for the computer
to locate these markers very quickly, thus
simulating the random access files which give
disk drives such power.

DISK DRIVES
Disk drives are among the fastest devices for
both recording and accessing data. In the
latter respect, times can often be measured in
thousandths of a second. Program or data
SAVEs and LOADs are also very quick and this
is a very endearing quality to those who hate
the tedium of tape SAVEs and LOADs.

Disks are also much more reliable than
tapes providing elementary precautions are
taken. And this is important if you're talking
about huge amounts of data being manipu-

What advantages are there in
using program cartridges rather
than disk or tape based
programs—and can I save my
own programs on these?
The major benefit of using cartridge-
based software is virtually instantaneous
program loading. Cartridges are ROM
(read only memory) devices which
cannot be altered in any way—they are,
in other words, a permanent means of
program storage. You cannot record
your own programs on these. Programs
are called up under software control
using a command which specifies the
particular chip that is used.

On the BBC models, program-chips'
of this type may be inserted within the
machine itself ready for use at any time.

Erasable programmable read-only
memory, thankfully abbreviated to
EPROM, can be used to create your own
(semi) permanent chip storage devices.
But setting up for this is expensive.
Programs have to be 'burned' in
electrically and erased with
ultraviolet light.

lated. But disk drive use imposes a whole new
set of 'housekeeping' procedures which de-
mands a level of meticulousness that is simply
not required for tape systems.

Abuse these procedures, and the conse-
quences can be rather more severe than
anything that could happen to data stored on
tape.

This is because disks are capable of storing
phenomenal amounts of data: up to ten
megabytes in some cases—that's ten mil-
lion bytes! Usually, though, for home com-
puters the figure is somewhat less: maybe
only 150K or 170K in some cases. But that's
still a lot of valuable data!

Disks are also extremely vulnerable to
things like physical abuse (bending, scratch-
ing, dirt, etc) and humidity, as well as
magnetic fields of strengths easily generated
by a loudspeaker magnet or TV tube.

Tape is a much better proposition for long-
term storage. In fact, most big businesses
would keep their master files on tape rather
than on disk, but use the latter in day to day
work for speed.

Regular backing up or copying of datafiles
and work files is therefore essential, the
frequency of this operation depending very
much on what you're prepared to re-do if
something dreadful actually does happen!

HOW DISK DRIVES WORK
The working of a disk drive unit is not unlike
a tape recorder. Instead of tape there is a
circular piece of plastic, coated in much the
same way but to very much higher standards.
As in a tape recorder, this recording medium
presses against a read/write head. But the
difference here is that the head too is capable
of movement, enabling it to track across and
record on much of the surface of the disk as
the latter rotates.

The surface of a disk is actually mapped
out or formatted prior to use. Its area can be
considered to consist of concentric rings or

tracks, each of which is divided into a number
of sectors. These sectors are in turn divided
into blocks capable of holding up to 256 bytes
of data each. These can be likened to the
`pigeon holes' of an array.

Information can be recorded sequentially,
or at random, or in a pattern within these
storage areas. Quite how it does this is
controlled with a program via what is called a
disk operating system, which is an essential
part of the disk drive (see below).

The read/write head can be directed by the
operating system to any sector on the disk
surface, so offering filing capabilities quite
unmatched by any tape system. It's rather like

A disk is formatted into track and
sector 'blocks' prior to use. Each holds
up to 256 bytes of information

comparing the storage efficiency and capa-
bility of a single card folder with that of ten
four-drawer office filing cabinets, with each
drawer having its own indexed A–Z file—
really!

DISK TYPES
The disk itself, on flexible plastic—hence the
description 'floppy disk'—is so vulnerable
that it has to be protected by a self-lubricating
semi-rigid envelope. The traditional size of
disks for home computer use is 5.25 inches in
diameter, compared to 8 inches for large-
capacity business machines. However, newer
drive units using 3 inch or 31 inch disks are
becoming increasingly popular. These disks
are encased in rigid plastic shields so they
offer distinct handling advantages. And, with
improvements in disk coating and recording
technology, their capacity often far exceeds
that of the traditional floppy.

The speed at which a disk rotates, its size,
the type of disk coating, and the presence or
not of another head on the reverse side of the
disk all influence the rate and density of
information storage. All therefore play an
important part in the process of selecting a
disk unit which is suitable for your computing
needs.

Disks (and thus their drive units) fall into
two basic categories: those designed to be read
on a single side are, not surprisingly, called
single-sided. Those which are read on both
sides are referred to as double-sided.

Then there are three 'quality standards' to
consider. Systems which can (or need) only
read/write information slowly usually make

use of what are called single density disks.
These typically have a fairly restricted storage
capacity. The next grade up is double density,
which permits more tightly packed inform-
ation or information to be read and written
more quickly. Then there's quad density,
which allows the greatest rate and density of
data storage—double the number of tracks are
used, for instance. The actual method of
recording pulses also differs on these.

Single density disks are usually batch-
failed double density disks but you should
never risk using these where double density is
stipulated. For greater reliability, double-
density disks may be used where only single-
density are required.

Although, in a similar vein it is possible to
use double-sided disks where single-sided
ones are all that's required (though this is
wasteful), you certainly can't work the other
way round. And under no circumstances may
a disk be flipped over in a single-sided disk
unit so that use may be made of the reverse.

OPERATING SYSTEM
Most disk drives need special software to
control them and, really, it is this part of a
disk unit's make-up that decides how power-
ful and useful the system is. This software is
essentially an operating system which man-
ages all the necessary to-ing and fro-ing
between computer memory and disk, which

in most cases is described as 'dumb' in that it
cannot act on its own. This type of operating
system has to take residence somewhere—and
that usually means losing precious RAM in
the computer.

The dedicated disk unit for the Commo-
dore 64 (and Vic) is slightly different in that it
contains its own microprocessor, RAM and
control circuits and is very much an 'intelli-
gent' device which draws nothing more than
information from the host computer.

You have to be careful with the other
machines to use tried and tested disk operat-
ing systems and here the advice of a friendly
but knowledgeable dealer—or fellow com-
puter enthusiast—can be invaluable. But
sometimes there simply isn't a choice to worry
about!

INTERFACES AND CONNECTIONS
If you're thinking about upgrading to a disk
unit, consider carefully whether or not the
unit you choose offers full computability with
your machine. As well as a suitable disk
operating system, you might find you need
some method of interfacing the unit so it will
work with your computer. This you'll have to
check out carefully with your supplier. Again,
knowledgeable advice is invaluable here, so
see what fellow enthusiasts have done to get
round any problems they've had in this
respect.

The Microdrive cassette, although
small, holds about 100K of data in an
endless tape loop

DISK SOFTWARE
As far as disk-based software is concerned,
only the Commodore 64 offers a really good
choice of material. The disk drive really is
slow by contemporary standards but is sig-
nificantly faster than the ponderous tape unit
that otherwise has to be used. The selection of
disk-based games, educational and-
particularly—business software really does
transform the machine in a way tape-based
software cannot match.

Quite a good selection of disk software is
available for the BBC, though this is weighted
towards educational and professional
material.

Precious little is available for the Dragon
and none for the Spectrum (this is under-
standable as its practical limits are neatly
serviced by the Microdrive).

MAKING A CHOICE
Cost is obviously a significant factor when it
comes to deciding between tape and disk
systems. Much of the appeal of disk systems is
lost on home users whose interest lies mainly
in games software. Compared to cassette-
based software, there's not much of choice of
games or even general recreational software.
What is available costs more than comparable
cassette-based software. But there's every
chance that the disk version is more so-
phisticated. Disk units are much more ex-
pensive than tape systems to buy—and typi-
cally costing as much as and often more than
the computer itself. And then to this must be
added, in most instances, a suitable disk
operating system, interface, and leads.

Then there's the cost of the medium. Disks
at the very least cost several times the price of
the very best audio cassettes, four or five
times the price of short-length 'data' tapes
and about the same price as Microdrive
cartridges. And the best quality 'lifetime
guarantee' quad disks can cost four or five
times the price of a single density one. But
the point to note is that all of a disk's
capacity can be used ... and it is as quick to
access the first program as it is the last.

Beyond disk and tape units, it is feasible for
home computers to access hard disks and to
make use of EPROM devices (see Q&A box).
Neither provides the flexibility of tape or disk
but both have truly significant advantages.
Hard disks, sometimes called Winchesters,
offer incredible storage potential-20 mega-
bytes is not uncommon—but they are very
costly and quite unsuited to home uses.

ii-NIEN-t11 the dramas and tensions, rumours and half truths — in war and peace.

what it means to have to fight, the price of keeping the peace.
alto_ 	what faces British Military Forces in '86, and the future.

A fascinating and revealing
insight into the who, what
and why driving British
Military Forces into 1986,
and beyond.

Looks at Britain's military
scene as a whole. Personal
accounts of marine training,
combat flying and the submarine
service compliment articles on
war in space, a major European
exercise and a historic and unique
Regiment to present a stimulating
and informative view of British
armed forces today.

Is an important and engrossing book
that is not available in any book shop.

From the publishers of THE FALKLANDS WAR
©Marshall Cavendish Ltd, Lambourn Woodlands, Newbury, Berkshire RG 16 7BR

SPECIAL OFFER ORDER FORM
Simply fill in your name and address, cut out the coupon,
put it in an envelope and post today.
No stamp is needed.

Address your envelope to:

Marshall Cavendish,
FREEPOST,
Lambourn Woodlands,
Hungerford, Berks. RG16 7BR

Please send me Forces '86, on approval,
with an invoice for £7.95 (plus 95p
postage and packing).

Name 	

Address 	

YES!

GUARANTEE
• Marshall Cavendish
guarantees that if you are
not entirely satisfied with
your book and return it
within 14 days, you will owe
nothing.

• As a subscriber to Forces
'86 you will be advised of,
and entitled to receive on
approval, any further
annual publications.

Tel. No. 	 F86/I P

Signature 	 (I am over 18) 	Registered London 385817 BF12

_JGet started on computer card games.
The first of three articles on setting up a
complete game of PONTOON shows how
to MAKE THE PACK AND SHUFFLE.

Say 'computer graphics', and most
people think of WIREFRAME
DRAWINGS. Learn how you can generate
them with BASIC drawing commands.

JComplete your UDG picture by adding
NEW CHARACTERS. You'll also
discover how to save the image to
memory, and how to animate the picture.

1 If you or someone you know is
bemused by IMPERIAL/METRIC
CONVERSIONS, there's a handy
program that does them automatically.

For COMMODORE users, there is also
a complete MACHINE CODE TRACE
PROGRAM that you can use to check for
bugs in other running programs.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36

