
•
A MARSHALIKAVENDISH 29 COMPUTER COURSE IN WEEKLY PARTS

LEARN PROGRAMMING FOR FUN AND THE FUTURE

Vol. 3 	 No 29

BASIC PROGRAMMING 61

LOOKING INTO CURVES 	 889

Build on last week's programming and equations as
we give practical demonstrations of cone-cut curves

MACHINE CODE 29

WATCHING THE INTERRUPTS -.......IMIMM...171189

Able to run simultaneously with a BASIC program, this

machine code timer allows accurate clockwatching on your Micro

GAMES PROGRAMMING 29

MARK MY WORDS 	 899

Some hints and tips on playing strategy accompany
this, the first part of a teasing word game

MACHINE CODE 30

CLIFFHANGER: A COMPLETE GAME 901

The first installment of a multi-part game that gives
arcade-style fun while providing useful, adaptable routines

APPLICATIONS 17

GETTING INTO PRINT

Searching, sorting, formatting and printing are

all possible with the last part of the handy text editor

INDEX
The last part of INPUT, Part 52, will contain a complete, cross-referenced index.
For easy access to your growing collection, a cumulative index to the contents
of each issue is contained on the inside back cover.

IMPORTANT NOTICE
The Cliffhanger listings published in this and subsequent issues of INPUT bear
no resemblance to and are in no way associated with the computer game called
Cliff Hanger owned by New Generation Software Ltd

PICTURE CREDITS
Front cover, Dave King. Pages 889, 890, 895, Kate Charlesworth. Pages 889,
891, 893, 895, Peter Reilly. Page 896, Phil Dobson. Pages 889, 900, 901, 903,
Dave King. Pages 904, 907, 909, 910, 912, 913, Paul Davies. Pages 914, 916,
918, Dave King.

© Marshall Cavendish Limited 1984/5/6
All worldwide rights reserved.

The contents of this publication including software, codes, listings,
graphics, illustrations and text are the exclusive property and copyright of
Marshall Cavendish Limited and may not be copied, reproduced,
transmitted, hired, lent, distributed, stored or modified in any form
whatsoever without the prior approval of the Copyright holder.

Published by Marshall Cavendish Partworks Ltd, 58 Old Compton Street, London WI V SPA,
England. Printed by Artisan Presss, Leicester and Howard Hunt Litho, London.

HOW TO ORDER
YOUR BINDERS
UK and Republic of Ireland:
Send £4.95 (inc p & p) (1R£5.95) for
each binder to the address below:

Marshall Cavendish Services Ltd,
Department 980, Newtown Road,
Hove, Sussex BN3 7DN

Australia: See inserts for details, or
write to INPUT, Times Consultants,
PO Box 213, Alexandria, NSW 2015

New Zealand: See inserts for details, or
write to INPUT, Gordon and Gotch
(NZ) Ltd, PO Box 1595, Wellington
Malta: Binders are available from local
newsagents.

There are four binders each holding 13 issues.

BACK NUMBERS
Back numbers are supplied at the regular cover price (subject to availability).

UK and Republic of Ireland:
INPUT, Dept AN, Marshall Cavendish Services,
Newtown Road, Hove BN3 7DN

Australia, New Zealand and Malta:
Back numbers are available through your local newsagent.

COPIES BY POST
Our Subscription Department can supply copies to any UK address regularly at £1.00 each.
For example the cost of 26 issues is £26.00; for any other quantity simply multiply the number
of issues required by £1.00. Send your order, with payment to:

Subscription Department, Marshall Cavendish Services Ltd,
Newtown Road, Hove, Sussex BN3 7DN

Please state the title of the publication and the part from which you wish to start.

HOW TO PAY: Readers in UK and Republic of Ireland: All cheques or postal orders
for binders, back numbers and copies by post should be made payable to:

Marshall Cavendish Partworks Ltd.

QUERIES: When writing in, please give the make and model of your computer, as
well as the Part No., page and line where the program is rejected or where it does
not work. We can only answer specific queries—and please do not telephone. Send
your queries to INPUT Queries, Marshall Cavendish Partworks Ltd, 58 Old
Compton Street, London WIV SPA.

INPUT IS SPECIALLY DESIGNED FOR:
The SINCLAIR ZX SPECTRUM (16K, 48K,128 and +),
COMMODORE 64 and 1 28, ACORN ELECTRON, BBC B
and B+,and the DRAGON 32 and 64.

In addition, many of the programs and explanations are also
suitable for the SINCLAIR ZX81, COMMODORE VIC 20, and
TANDY COLOUR COMPUTER in 32K with extended BASIC.
Programs and text which are specifically for particular machines
are indicated by the following symbols:

El
M

SPECTRUM 16K,
48K,128, and and + 	COMMODORE 64 and 128

ACORN ELECTRON,
BBC B and B+ U: DRAGON 32 and 64

TANDY TRS80 a ZX81 [•3 VIC 20 IT COLOUR COMPUTER

RECOGNIZING THE CURVES
FALLING DOWN AN ELLIPSE

A PARABOLIC SWIM
CIRCLES AND POLYGONS

GRAPHICS FROM CURVES

The first article on conic sections
showed how to draw a circle,
ellipse, parabola and hyperbola. This
time you'll see how to incorporate
them into your own programs
All these conic curves crop up in everyday
life, often in unexpected ways, and a few
examples were given last time.

The trick, really, is in recognizing when
the equations for one of the curves apply.
Sometimes it is easy. If you work out the
position of a moving object, or a point on a
line and you find that its X coordinate is given
by A*COS T and its Y coordinate is given by
A*SIN T (where A is a fixed distance and
angle T varies) then it is fairly easy to spot the
equation for a circle. Look back at the last
article if you're unsure of the equations for the
curves—they crop up so often that it's as well
to memorize them.

On the other hand, it may be easier to
recognize the way in which something moves
rather than work out its equations. If you find
that an object is always a fixed distance from
another point, then again, you know it must
trace out a circle and you don't need to work
out any equations to check this. There are
simple ways to describe the other curves too.

NON-MATHEMATICAL CURVES
It is easy to recognize a circle, and again, an
ellipse is quite similar. An ellipse is drawn out
if a point moves so that the distance to one
focus plus the distance to the other focus is a
constant.

As the ladder slips down the wall the
bucket traces out part of an ellipse

220 RETURN
230 DRAW 2,1023,0 TO 1023,800
310 FOR Z=1 TO 240 STEP 10: DRAW

3,0,775+Z TO 1023,775 + Z:NEXT Z
320 RETURN

10 MODE 1
20 PROCWaII
30 PROCLadder
40 END
50 DEF PROCLadder
60 FOR angle = 80 TO 0 STEP —10
70 GCOL0,3
80 MOVE —800*COS(RAD(angle)),0
90 DRAW 0,800'SIN(RAD(angle))
100 VDU19,2,2;0;:GCOL0,2
110 x= —300'COS(RAD(angle))
120 y=500'SIN(RAD(angle))
130 PROCBucket(x,y)
140 FOR T=0 TO 1000:NEXT, ;

A parabola is traced out if a point moves so
that the distance to a fixed point is the same as
the perpendicular distance to a fixed line. The
fixed point becomes the focus of the parabola
and the line becomes the directrix which is a
line at right angles to the axis, outside the
parabola, and the same distance from the
curve as the focus.

The hyperbola is simpler to describe, and
is drawn when a point moves so the distance
to one fixed point minus the distance to
another fixed point is a constant. The fixed
points become the foci of the hyperbola. Both
foci are needed to create the hyperbola, one in
each half of the curve, which is why it is not
strictly accurate to call just one half of the
curve an hyperbola.

The programs below demonstrate both
methods of recognizing the curves, either by
spotting the equations or by noticing the way
a point or object moves. Once you've spotted
one of the curves in your own programs you'll
be able to deal with them much more easily.

SLIPPING LADDER
The first program shows how an ellipse is
connected with such ordinary events as a
ladder slipping down a wall. You'll find that a
bucket attached to the ladder traces out part of
an ellipse as the ladder slips down. As an
example, if the ladder is 800 units long with
the bucket hung on a rung 500 units from
the bottom. The position of the bucket is
X= — 300* CO S (angle) and Y = SOWS IN
(angle) which you should recognize by now as
the equation of an ellipse.

10 LET wall = 240: LET ladder = 60: LET
bucket =190

20 GOSUB wall
30 GOSUB ladder
35 FLASH 0
40 GOTO 40
60 FOR a=80 T00 STEP —10
70 PAUSE 25: LET r-=a/(180/PI)
80 PLOT ox-150*COS (r),oy
90 DRAW ox— (ox-150*COS (r)),

oy+150'SIN (r)
110 LET x= —60'COS (r)
120 LET y=90'SIN (r)
130 GOSUB bucket
140 BEEP .1,a/2-15
150 NEXT a
160 FLASH 1: PRINT AT 10,5;"SPLASH"
170 RETURN
190 PLOT ox + x,oy + y +5:DRAW 0,-2
200 FOR n=oy+ y TO oy + y +2: PLOT

ox + x —2,n: DRAW 4,0
210 NEXT n
220 RETURN

240 BORDER 0: INK 7: PAPER 0: CLS
250 LET ox =232: LET oy = 8
260 FOR y=1 TO 20: PRINT PAPER 2;AT

y,29;"111 	"
270 NEXT y
280 FOR y = oy —1 TO 165 STEP 16:

PLOT;ox,y
290 DRAW 16,0: PLOT ox,y +8: DRAW 16,0:

PLOT ox +8,y +8: DRAW 0,8
300 NEXT y
310 PLOT INK 4;ox + 8,oy —1: DRAW INK

4; —232,0
320 RETURN

10 HIRES 1,6:MULTI 2,6,5:
COLOUR 1,3:C = ATN(1)/45

20 GOSUB 230
30 GOSUB 50
40 GOTO 40
50 FOR AN =80 TO 0 STEP —10
90 LINE 115 —75*COS(C .AN),155,114,

150— 150*SIN(C*AN),1
110 X= —28*COS(C*AN)
120 Y=90'SIN(C'AN)
130 GOSUB 200
140 FOR T=0 TO 200:NEXT T
150 NEXT AN
160 RETURN
200 IF Y=0 THEN Y =4:TEXT 0,160,

"SPLASH",0,5,30
210 TEXT 114 + X,154— Y,"11€ ",2,1,8
220 RETURN
230 BLOCK 115,0,127,150,1
250 FOR Y=0 TO 140 STEP 10
260 LINE 115,Y,127,Y,0
270 NEXT Y
280 FOR Y=0 TO 150 STEP 20
290 LINE 121,Y,121,Y +10,0
300 NEXT Y
310 BLOCK 0,151,160,199,3
320 RETURN

10 GRAPHIC 1: COLOR 1,6,2,5:
C=ATN(1)/45

20 GOSUB 230
30 GOSUB 50
40 GOTO 40
50 FOR AN =80 TO 0 STEP —10
90 DRAW 1,1023 —450*COS(C*AN),775 TO

1023,750 —750*SIN(C*AN)
110 X= —112*COS(C*AN)
120 Y=450*SIN(C*AN)
130 GOSUB 200
140 FOR T=0 TO 200:NEXT T
150 NEXT AN
160 RETURN
200 IF Y=0 THEN Y = 4:CHAR 7,7,

"SPLASH"
210 CIRCLE 3,1023 + X,770 — Y,10,10

150 NEXT angle
160 MOVE-1010,-210
170 ENDPROC
180 DEF PROCBucket(x,y)
190 VDU23,240,8,8,8,255,255,255,255,255
200 IF y=0 THEN y=30:MOVE -300, -50:

GCOL0,3:PRINT"SPLASH":GCOL0,2
210 VDU5:MOVE x-10,y:VDU 240
220 ENDPROC
230 DEF PROCWaII
240 VDU29,1000;200;
250 GCOL0,1:MOVE 0,0:MOVE 100,0
260 PLOT85,100,800:MOVE 0,800
270 PLOT85,0,0
280 GCOL0,3
290 FOR Y= 0 TO 700 STEP 100
300 MOVE 0,Y:DRAW 100,Y
310 MOVE 0,Y+ 50:DRAW 100,Y + 50
320 MOVE 50,Y + 50:DRAW 50,Y + 100

330 NEXT Y
340 GCOL0,2:MOVE 100,-4:DRAW

-1000, - 4
350 ENDPROC

MU!
10 PMODE3,1:PCLS:SCREEN1,0:

C=ATN(1)/45
20 GOSU B230
30 GOSUB50
40 GOT040
50 FORAN =80 TO 0 STEP -10
70 COLOR4,2
90 LINE(230-150•COS(C*AN),150) -

(228,150 -150*SIN(C'AN)),PRESET
110 X= -56*COS(C'AN)
120 Y=90*SIN(C*AN)
130 GOSUB200
140 FORT = OT0500:NEXT
150 NEXT
160 RETURN
200 IF Y=0 THENY=4:DRAW"BM160,

156C2S16LDRDLBR2U2RDLBEBRD2RB
RU2RDNLDBRRULURBRD
2BRUNLUC4"

210 LINE(228+ X,154-Y) - (232+X,
150 -Y),PSET,BF

220 RETURN
230 LINE(230,0)- (255,150),PSET,BF
240 COLOR2
250 FORY = 0T0150 STEP10
260 LINE(230,Y) - (255,Y),PSET
270 NEXT
280 FORY = 0T0150 STEP20
290 LINE(243,Y) - (243,Y +10),PSET
300 NEXT
310 COLOR3:LINE(0,151)- (255,191),

PSET,BF
320 RETURN

The program consists of three main
routines-to draw the wall, the ladder and the
bucket. The wall is drawn first by Lines 230
to 350, then the routine at Lines 50 to 170
draws the ladder in nine different positions at
intervals of 10° as it slips down the wall. This
routine also calls the bucket drawing routine
at Lines 180 to 220 to draw in the bucket for
each position of the ladder. The coordinates
of the bucket are worked out at Lines 110 and
120, and as you've seen, these are the equ-
ations for an ellipse. The old positions of the
bucket and ladder are not erased, so'it is easy
to see that the buckets do follow an ellipse.

The way the bucket and ladder are plotted
by the computer explains the 'trammel'
method of drawing an ellipse where a rod,
with a pin in each end, moves with the pins in
grooves set at right angles, and a pen attached
at a point on the rod. If you think of the walls
and floor as the grooves, and the bucket as the
pen, then you can easily see how the pen
draws an ellipse.

A PARABOLIC SWIM
Imagine what happens when a swimmer tries
to cross a fast-flowing river. Even though the
swimmer always aims at a point on the

A swimmer moving at the same speed as
the river follows a parabolic path

opposite bank the current actually carries him
downstream a certain distance. If the river
flows at the same speed as the swimmer then
the distance downstream equals half the
width of the river, and the combined effect of
the current and the swimmer's own speed
carries him on a parabolic path.

To understand why this happens you have
to think in terms of velocities. The swimmer
always aims at the point on the bank with
velocity V and the river flows parallel to the
bank with the same velocity V. You can
combine these two velocities to give the
swimmers actual velocity relative to the bank.

This uses the parallelogram of forces
which, if you've forgotten about or don't
know about, you'll have to take on trust. But
exactly the same diagram is used to construct
a parabola where the distance the swimmer
moves to the focus (in this case the point on
the bank) equals the distance to the directrix
(which is the distance the river flows in the
same time).

10 BORDER 0: PAPER 0: INK 7: CLS
50 REM DRAW RIVER
60 LET parabola =190: LET swimmer = 300:

LET rotate = 430
70 LET a$=" ❑❑❑❑❑❑❑❑❑❑❑

❑❑❑❑❑❑❑❑❑❑❑❑❑❑❑
❑❑ 111000"

80 FOR n=0 TO 3
90 PRINT PAPER 4;a$: NEXT n
100 FOR n=4 TO 18
110 PRINT PAPER 1;a$: NEXT n
120 FOR n=19 T021
130 PRINT PAPER 4;a$: NEXT n
140 PRINT PAPER 2; INK 6;AT 3,15;"F";AT

19,15;"A";AT 3,22;"0"
150 GOSUB parabola
160 STOP
190 LET ox =187: LET oy =150
200 FOR t= —1 TO —0.05 STEP 0.1
210 LET x= — 60*(t1): LET y = 120*t
220 LET a =ATN ((x +60)/ — y)
230 PLOT ox —60 + y,oy — 60: DRAW INK

7;10,0: DRAW INK 7; —5, —5: DRAW INK
7;0,10: DRAW INK 7;5,-5

240 GOSUB swimmer
250 NEXT t
260 RETURN
300 LET ox=ox+x: LET oy= oy + y
310 LET x=0: LET y=6
320 GOSUB rotate
330 PLOT ox+xt,oy+yt
340 RESTORE 410
350 FOR n=1 TO 17
360 READ x,y
370 GOSUB rotate
380 DRAW xt,yt

390 NEXT n
400 LET ox =188: LET oy =150: RETURN
410 DATA —3,0,0,3,3,0,0,-3, —2,0,0, —3,

—4,0,0,4,0,-4,8,0,0,4,0, —4,
—4,0,0, —4,-4,-4,4,4,4, —4

430 LET xt= x"COS (a) —y . SIN (a)
440 LET yt=x'SIN (a) +y•COS (a)
450 RETURN

10 HIRES 1,6:COLOUR 6,1
20 GOSUB 50
30 GOSUB 200
40 GOTO 40
50 BLOCK 0,38,319,153,1
60 TEXT 123,158,"A",1,1,8
70 TEXT 123,25,"F",1,1,8
80 TEXT 180,25,"0",1,1,8
90 RETURN
200 FOR T= —1 TO —.05 STEP .1
210 X= —60 .T•T:Y =120'T
220 AN =ATN((X +60)/ —Y)
230 GOSUB 300
240 TEXT 130+Y,95,">",0,1,8
250 NEXT T
260 RETURN
300 XC =187 + X:YC = 33 — Y
310 XX=0:YY=6:GOSUB 430
320 X1 = XC + XT:Y1 =YC—YT
330 RESTORE
340 FOR N =1 TO 16
350 READ XX,YY
360 GOSUB 430
370 LINE X1,Y1,XC + XT + .5,

YC — YT + .5,0
375 X1 = XC + XT + .5:Y1 = YC— YT+ .5
380 NEXT N
390 RETURN
410 DATA 0,6,-6,0,0,6,6,0,0,6,0,14,6,12,

0,14,-6,12,0,14,0,18,2,18
415 DATA 2,22,-2,22,-2,18,0,18
430 XT=XX*COS(AN)—YrSIN(AN)
440 YT=XX.SIN(AN)+YY*COS(AN)
450 RETURN

10 GRAPHIC 2:COLOR 6,2,5,5
20 GOSUB 50
30 GOSUB 200
40 GOTO 40
50 DRAW 1,0,120 TO 1023,110:

PAINT 1,0,0
55 DRAW 1,0,808 TO 1023,800:

PAINT 1,0,1023
60 CHAR 0,14,"A"
70 CHAR 0,8,"F"
80 CHAR 17,8,"0"
90 RETURN
200 FOR T= —1 TO —.05 STEP .1
210 X= —340TT:Y = 600*T
220 AN = ATN((X + 60)/ —Y)

230 GOSUB 300
240 S = S +1:CHAR 8,S,"W"
250 NEXT T
260 RETURN
300 XC = 748 + X:YC = 165 — Y
310 XX=0:YY=6:GOSUB 430
320 POINT 0,XC +XT,YC —YT
330 RESTORE
340 FOR N=1 TO 16
350 READ XX,YY:XX= XX'4:YY =YY .4
360 GOSUB 430
370 DRAW 1 TO XC + XT + .5,YC—YT+ .5
380 NEXT N
390 RETURN
410 DATA 0,6,-6,0,0,6,6,0,0,6,0,14,6,12,

0,14,-6,12,0,14,0,18,2,18
415 DATA 2,22,-2,22, —2,18,0,18
430 XT=XX.COS(AN)—YrSIN(AN)
440 YT=XX.SIN(AN)+YY*COS(AN)
450 RETURN

10 MODE 1
20 PROCRiver
30 PROCParabola
40 END
50 DEF PROCRiver
60 VDU19,0,4;0;
70 VDU19,2,2;0;:GCOL0,2
80 MOVE 0,812:MOVE 1279,812
90 PLOT 85,1279,1023:MOVE 0,1023
100 PLOT 85,0,812:MOVE 0,0
110 MOVE 1279,0:PLOT85,1279,212
120 MOVE 0,212:PLOT85,0,0
130 GCOL0,1:VDU5:MOVE 630,180
140 PRINT"A":MOVE 630,850:PRINT"F"
150 MOVE 930,850:PRINT"0"
160 ENDPROC
170 DEF PROCParabola
180 VDU29,940;812;:GCOL0,3
190 MOVE —300,-600
200 FOR t= —1 TO —0.05 STEP 0.1
210 x= —300. (t A 2):y = 6001
220 angle = ATN((x +300)/ —y)
230 PROCSwimmer(x,y,angle)
240 MOVE —280 +y,— 300:DR AW

—240 +y, —300
250 DRAW —260 +y,-280:MOVE

—240 +y, —300
260 DRAW —260 + y, —320
270 NEXT t
280 MOVE —950,-822
290 ENDPROC
300 DEF PROCSwimmer(x,y,angle)
310 VDU29,940+x;812+y;
320 PROCRotate(0,30,angle)
330 MOVE xt,yt
340 RESTORE 410
350 FOR n=1 TO 16
360 READ a,b
370 PROCRotate(a,b,angle)

380 DRAW xt,yt: NEXT n
390 VDU29,940;812;:ENDPROC
410 DATA 0,30, — 30,0,0,30,30,0,0,30,0,

70,30,60,0,70, —30,60,0,70,0,90,10,
90,10,110, —10,110,-10,90,0,90

420 DEF PROCRotate(x,y,angle)
430 xt = x'COS(angle) —y*SIN (angle)
440 yt = x"SIN (angle) + y*COS(angle)
450 ENDPROC

10 PMODE3,1:PCLS:SCREEN1,0
20 GOSUB50
30 GOSUB200
40 GOT040
50 COLOR3,2:LINE(0,38) — (255,153),

PSET,BF
60 DRAW"BM123,158C4S16ND2RDNLD"
70 DRAW"BM123,25NRDNRD"
80 DRAW"BM180,25RD2LU2"
90 RETURN
200 FORT= —1TO — .05 STEP .1
210 X = — 60*T'T:Y =120'T
220 AN =ATN((X +60)/ —Y)
230 GOSUB300
240 DRAW"BM" +STR$(1NT(130 + Y)) +

",95" +"C2R2NGH"
250 NEXT
260 RETURN
300 XC = 187 + X:YC = 33 — Y
310 XX= 0:YY=6:GOSUB420
320 DRAW"BM" +STR$(1NT(XC+ XT)) +

"," +STR$(1NT(YC—YT))
330 RESTORE
340 FORN=1T016
350 READ XX,YY
360 GOSUB420
370 LINE— (XC+ XT + .5,YC —YT + .5),

PRESET
380 NEXT
390 RETURN
410 DATA 0,6,-6,0,0,6,6,0,0,6,0,14,6,12,

0,14, —6,12,0,14,0,18,2,18,2,22,
—2,22, —2,18,0,18

420 XT=XX*COS(AN) — YY'SIN(AN)
430 YT= XX*SIN (AN) +YrCOS(AN)
440 RETURN

The first section of the program from Lines
50 to 160 draws the river and the banks. The
next section from Lines 170 to 290 uses the
equation of a parabola (Line 210) to calculate
the position of the swimmer. The swimmer
routine at Lines 300 to 400 is then called, and
this uses the rotate routine at Lines 420 to 450
to make sure the swimmer is drawn at the
correct angle, so he is always aiming at the
same spot on the bank (which in this case is
the focus of the parabola). The actual shape of
the swimmer is drawn from the DATA state-
ments at Line 410 to 415.

CIRCLES AND POLYGONS
As far as the computer is concerned, a circle is
just a many-sided polygon. The more sides
the circle has, the smoother it looks. This fact
is made use of in the next program which uses
the equation of a circle to construct all sorts of
different polygons:

10 LET ox =100: LET oy = 90
20 LET polygon = 260
30 PAPER 0: INK 6
40 BORDER 0
50 CLS
80 PRINT INK 7;AT 0,22;"Radius orTAB

22;"Circle is'"TAB 22;"82 units."
90 PRINT INK 4;AT 21,0;"Enter angle";
95 CIRCLE 100,90,82
100 INPUT a
105 PRINT AT 21,0;" ❑❑❑❑❑❑❑❑

El El LI"
110 GOSUB polygon
120 PRINT AT 21,6;"Again (Y/N) ?"
130 LET a$=1NKEY$: IF a$="y" THEN

GOTO 20
140 IF a$= "n" THEN STOP
150 GOTO 130
260 LET a =a/(180/P1)
270 LET at= 0
280 LET t= 2'a
290 PLOT ox+82,oy
300 FOR n = 0 TO 15
310 LET b=82'COS (t)+ox: LET c =82'SIN

(t) + oy
320 LET b= (b— (PEEK 23677)): LET

c= (c — (PEEK 23678)): DRAW b,c
330 BEEP 0.01,(n*5) —20
340 LET t=t +2*a
350 NEXT n
360 RETURN

10 HIRES 1,6
50 POKE 54296,15:POKE 54278,253
60 COLOUR 6,1
70 CIRCLE 160,100,70,70,1:

CIRCLE 160,100,60,60,1
75 TEXT 10,180,"RADIUS OF CIRCLE =400

UNITS",1,3,11
80 FOR G=1 TO 2000:NEXTG:CSET(0)
90 INPUT "QGIVE ANGLE";A
100 A = A'ATN (1)/45
110 CSET(2):GOSUB 260
130 TEXT 40,0,"AGAIN (Y/N)?",1,2,20
140 GET A$:V A$="Y" THEN RUN
150 IF A$< >"N" THEN 140
160 PRINT "Q":END
260 TH =2"A
270 N = 0
280 XX = 218:YY =100

Superimpose the conic curves for some
interesting graphics

300 LINE XX,YY,160 +58"COS(TH),
100 —58*SIN(TH),1

305 XX =160 +58*COS(TH):
YY =100 —58*SIN(TH)

310 TH=TH+2'A
320 POKE 54276,33:POKE 54273,100 — N*2
330 N = N +1:FOR D=1 TO 100:NEXT D
340 IF N<15 THEN 300
350 POKE 54273,0:POKE 54276,0:RETURN

10 GRAPHIC 2:SCNCLR
50 POKE 36878,15
60 COLOR 1,6,0,0:GOSUB 70:GOTO 80
70 CIRCLE 1,512,512,290,290:

CIRCLE 1,512,512,250,250
75 CHAR 17,0,"RADIUS OF CIRCLE

❑ fl] ❑ ❑ =400 UNITS":RETURN
80 FOR G =1 TO 2000:NEXTG:GRAPHIC 0
90 PRINT "EIGIVE ANGLE":INPUT A
100 A=A'ATN(1)/45
110 GRAPHIC 2:GOSUB 70:GOSUB 260
130 CHAR 0,0,"AGAIN (Y/N)?"
140 GET A$:IF A$="Y" THEN RUN
150 IF A$< >"N" THEN 140
160 GRAPHIC 0:END
260 TH =2*A
270 N = 0
280 POINT 0,760,512
300 DRAW 1 TO 512 + 250'COS(TH),

512 —250*SIN(TH)
310 TH=TH+2•A
320 POKE 36876,250 — N .2
330 N = N +1:FOR D=1 TO 100:NEXT D
340 IF N <15 THEN 300
350 POKE 36876,0:RETURN

10 MODE 1
20 VDU19,0,4;0;
30 VDU24,0;35;1279;1023;
40 VDU28,0,31,39,30
50 VDU29,640;562;
60 REPEAT
70 PROCCircle
80 PRINT"Radius of circle = 400 units"

90 INPUT"PLEASE give angle ❑ "A
100 angle= RAD(A)
110 PROCPolygon(angle)
120 1NPUT"Again(Y/N)?"Ans$
130 IF Ans$ ="Y" THEN CLG ELSE END
140 UNTIL FALSE
150 END
160 DEF PROCCircle
170 MOVE 400,0
180 FOR a=0 TO 6.3 STEP 0.1
190 DRAW 400*COS(a),400*SIN(a)
200 NEXT a
240 ENDPROC
250 DEF PROCPolygon(angle)
260 theta = Tangle
270 n=0
280 GCOL0,2: MOVE 400,0
290 REPEAT
300 DRAW 400*COS(theta),400*SIN(theta)
310 theta = theta + Tangle
320 SOUND 0, —15+ n,92,1
330 n=n+1
340 UNTIL n=15
350 GCOL0,3
360 ENDPROC

tgin
10 PMODE3,1
60 PCLS:SCREEN1,0
70 CI RCLE(127,95),70,4:CIRCLE(127,95),

60,4:PAINT(127,30),4
80 FORG =1T03000:NEXT:COLOR2
90 CLS:PRINT:INPUT"GIVE ANGLE ❑ ";A
100 A = A*ATN(1)/45
110 SCREEN1,0:GOSUB260
120 IF 1NKEY$ ="" THEN120
130 PRINT:PRINT:INPUT"AGAIN

(Y/N) ❑ ";AN$
140 IF AN$="Y" THEN 60
150 IF AN$< >"N" THEN130 ELSECLS:END
260 TH = 2'A
270 N=0
280 DRAW"BM185,95"
300 LINE— (127+ 58*COS(TH),95 — 58*

SIN(TH)),PSET
310 TH=TH+2*A
320 PLAY"T2OV"+STR$(31— N*2) +"C"
330 N=N+1
340 IF N <15 THEN300 ELSERETURN

The program draws a circle then asks you to
INPUT the angle the first line makes to the side
of the circle. This is A or a in the program, and
is converted to theta or t or TH in the polygon
drawing routine at Line 260. The number of
sides is restricted to 15 in Line 340 so as not to
confuse the diagram with too many lines, and
the sound is also based on this maximum.

If you INPUT a small angle, the polygon will
be very close to a circle. With larger angles the
lines trace out a star-shaped pattern.

COMPUTER ART
The next program starts off by drawing a
family of hyperbolae with different eccentric-
ities and then draws a family of ellipses on
top. You could combine any of the conic
curves to produce quite complex patterns.

a
10 BORDER 0: PAPER 0: INK 7: CLS
20 LET hyperbolae = 80
30 LET ellipses= 270
40 GOSUB hyperbolae
50 GOSUB ellipses
60 GOTO 60
80 LET ox =128: LET oy = 87
90 FOR e =1 TO 2 STEP 0.05
100 LET a = 22: LET b=a*(SQR (e n 2 — 1))
102 LET h=1
104 LET f =ox+ (a/COS (—1.396))
106 LET g=oy+ (b*TAN (-1.396))
108 IF g<0 THEN LET h=0
110 PLOT INVERSE 1; OVER 1;f,h
120 IF g>0 THEN PLOT INK 6;f,g
130 FOR t= —80 TO 80 STEP 20
135 LET r=t/(180/PI)
140 LET x= a/COS (r): LET y= b*TAN
142 LET c=oy+y: LET d=ox+x
150 IF h=0 THEN LET d=f+g*

(f — d)/(c — g): PLOT d,h: LET c=0
160 IF c>175 THEN LET d=d —

((d — PEEK23677)*(c —175)/
(c — PEEK 23678)): LET c =175

170 DRAW INK 6;d — PEEK 23677,c —
PEEK 23678: NEXT t

172 LET f =ox+ (a/COS (1.75))
174 LET g =oy+ b*TAN (1.75)
176 PLOT INVERSE 1; OVER 1;f,h
178 IF g<0 THEN LET h=0
180 IF g > 0 THEN PLOT INK 6;f,g
190 FOR t =100 TO 260 STEP 20
195 LET r=t/(180/P1)
200 LET x=a/(COS (r)): LET y=b*TAN (r)
202 LET c=oy+y: LET d = ox + x
204 IF h=0 THEN LET d=f+g*

(f — d)/(c — g): PLOT d,h: LET c = 0
206 LET h =1
210 IF c>175 THEN LET d=0 —

((d — PEEK 23677)'(c-175)/
(c— PEEK 23678)): LET c =175

220 DRAW INK 6;d — PEEK 23677,
c— PEEK 23678

230 NEXT t: NEXT e
250 RETURN
270 FOR e=0.5 TO 0.98 STEP 0.04
280 LET a=100: LET b = a*

(SQR (1 —e n 2))
290 PLOT ox + a,oy
300 FOR t=0 TO 360 STEP 10
305 LET r=t/(180/PI)
310 LET x=a'COS (r)

320 LET y = b*SIN (r)
330 DRAW x— (PEEK 23677) + ox,

y — (PEEK 23678) + oy
340 NEXT t: NEXT e
360 RETURN

13:K
10 HIRES 1,6:MULTI 3,5,6:

COLOUR 0,0
20 C=ATN(1)/45
30 GOSUB 70
40 GOSUB 260
50 GOTO 50
70 FOR E=1 TO 1.50 STEP .04
100 A=13:B=A*SQR(E*E-1)
110 XX = 80 + INT(A/COS(-80*C)):

YY =100— INT(B*TAN(—80*C))
130 FOR TH = —80 TO 80 STEP 20
140 X = A/COS(TH*C)
150 Y=B*TAN(TH*C)
160 LINE XX,YY,80+X,100—Y,.8+E
165 XX= 80 + X:YY =100 — Y
170 NEXT TH
180 XX = 80 + INT(A/COS(100*C)):

YY =100— INT(B`TAN(100*C))
190 FOR TH =100 TO 260 STEP 20
200 X = A/COS(TH*C)
210 Y=B*TAN(TH*C)
220 LINE XX,YY,80+X,100—Y,.8+E
225 XX = 80 + X:YY =100 — Y
230 NEXT TH,E
250 RETURN
260 FOR E=45 TO 0 STEP —5
270 CIRCLE 80,100,35,E,3
280 NEXT E
290 RETURN

10 GRAPHIC 1:COLOR 0,3,5,6
20 C=ATN(1)/45
30 GOSUB 70
40 GOSUB 260
50 GOTO 50
70 FOR E =1 TO 1.43 STEP .04
100 A= 88:B = A*SQR(FE — 1)
110 POINT 0,512+ INT(A/COS(—80*C)),

512— INT(B*TAN(—80*C))
130 FOR TH = —80 TO 80 STEP 20
140 X= A/COS(TH*C)
150 Y=B*TAN(TH*C)
160 DRAW .8+ E TO 512+X,512—Y
170 NEXT TH
180 POINT 0,512 + INT(A/COS(100*C)),

512— INT(B*TAN(100"C))
190 FOR TH =100 TO 260 STEP 20
200 X= A/COS(TWC)
210 Y= B*TAN(TH*C)
220 DRAW .8+E TO 512 + X,512 —Y
230 NEXT TH,E
250 RETURN
260 FOR E = 300 TO 0 STEP —40

270 CIRCLE 3,512,512,200,E
280 NEXT E: RETURN

10 MODE 1
20 VDU19,3,10;0;
30 PROCHyperbolae
40 PROCEllipses
50 VDU5:MOVE — 650, — 522
60 END
70 DEF PROCHyperbolae
80 VDU29,640;512;
90 FOR e=1 TO 2 STEP 0.05
100 a =100:b = a*(SQR(e n 2 —1))
110 MOVE a/COS(RAD(-80)),b'TAN

(RAD(—80))
120 GCOL0,2
130 FOR theta= —80 TO 80 STEP 20
140 x=a/COS(RAD(theta))
150 y= VTAN(RAD(theta))
160 DRAW x,y
170 NEXT theta
180 MOVE a/COS(RAD(100)),b*TAN

(RAD(100))
190 FOR theta =100 TO 260 STEP 20
200 x=a/COS(RAD(theta))

210 y = b*TAN(RAD(theta))
220 DRAW x,y: NEXT theta: NEXT e
250 ENDPROC
260 DEF PROCEllipses
270 FOR e=0.5 TO 0.98 STEP 0.02
280 a =500:b=a*(SQR(1 —e n 2))
290 MOVE a,0:GCOL1,1
300 FOR theta = 0 TO 360 STEP 10
310 x=a*COS(RAD(theta))
320 y=b"SIN(RAD(theta))
330 DRAW x,y: NEXT theta: NEXT e
360 ENDPROC

10 PMODE3,1:PCLS2:SCREEN1,0
20 C=ATN(1)/45
30 GOSUB70
40 GOSUB260
50 GOT050
70 FORE =1T01.25 STEP.02
100 A=22:B=A*SQR(E"E-1)
110 DRAW "BM" +STR$(128+1NT(A/COS

(—80*C))) + "," + STR$(95— INT
(PTAN(-80'C)))

130 FORTH = —801080 STEP20
140 X = A/COS(TH*C)

The equation for a circle can be used for
polygons as well

150 Y = B*TAN(TH*C)
160 LINE— (128 + X,95 — Y),PSET
170 NEXT
180 DRAW"BM" + STR$(127 + INT(A/COS

(100'C))) + "," + STR$(95 — INT
(B*TAN(100*C)))

190 FORTH =100T0260 STEP20
200 X = A/COS(TH*C)
210 Y = B*TAN(TH*C)
220 LIN E — (127 + X,95 — Y),PSET
230 N EXTTH, E
250 RETURN
260 FOR E =1T0.1 STEP —.03
270 CIRCLE(127,95),95,3,E
280 NEXT: RETURN

Both the ellipse and the hyperbola can be
drawn with different eccentricities—this is
the E or e in the programs. E can vary from 0
to 1 for an ellipse making the ellipse go from a
circle to a straight line. The programs actually
use E from .5 to .98 so the ellipses are all fairly
open. For an hyperbola, E can vary from 1 to
infinity but again, the programs restrict this
range and only use E from 1 to 2. The greater E
gets, the nearer the hyperbola gets to a
straight line.

You can work out the eccentricity of an
ellipse or hyperbola very easily. For an ellipse
with equations X = A*COS T and
Y = B*SIN T, then E2 = B2/A2 — 1, and you
can see this equation in an equivalent form in
Line 280. (The Commodores, Dragon and
Tandy use the CIRCLE command to draw the
ellipses, so E can be entered directly into the
command and doesn't need to be worked out
first—see Line 270.)

The hyperbola is similar. The equations
are X = A/COS T and Y = B .TAN T, and in
this case E 2 = 1 — B 2/A2 . Again, a rearranged
version of this is used in Line 100.

In a whispering gallery, sound from one
focus is concentrated at another focus on
the opposite side. The shape of the dome
could be elliptical, parabolic or a com-
bination of the two

If you've a few minutes on your
hands, try this simple machine code
routine which displays the
computer's own internal 'clock' as a
constantly updated digital timer

Your computer has an internal timer that runs
at a constant speed, which it uses to regulate
its operations. And you can use the timer, too,
with a variety of BASIC instructions—such
as PAUSE (on the Spectrum, or Commodore
with Simons' BASIC), TIME (on the Acorns)
and TIM ER (on the Dragon and Tandy).

These BASIC instructions set the com-
puter to count to a specified number in either
100ths or 50ths of a second, depending upon
the speed of the machine's 'clock'. Many
other operations also use the timer in a similar
way—for example, if you program the com-
puter to play music, you specify the duration
of each note.

KEEPING TIME
In fact, regardless of whether or not your
program specifies the length of the operations
in such an obvious way, your computer is a
constant clock watcher and always runs every
program by the timer.

You can get the computer to keep time for
you quite easily. All you need to do is to write

a simple BASIC program loop which PR INTs
up the time, pauses for one second, adds one
second, then rePR INTs it. If you try this, you
will discover that the pause needed is actually
fractionally less than one second, because of
the time the computer needs to perform the
addition and the PR INTing operations.

Such a clock has two big disadvantages.
The first is that it only keeps time while the
computer is switched on. This may not be a
severe problem; if you only want to know how
long you have been working on something, it
may actually be an advantage. But the second
drawback is far more significant, and this is
that as soon as you want to use the computer
for something else, you will stop your clock.
The reason, of course, is that you cannot run
two BASIC programs at once. The answer is
to use a machine code routine.

AN INTERRUPT CLOCK
Like other machine code programs which
need to run even when a BASIC program is in
operation, the machine code clock which

follows makes use of an interrupt-driven
routine.

Spectrum and Commodore users have al-
ready seen an example of interrupts being
harnessed to operate a trace program. In fact,
the method for doing this is similar on all the
computers.

All the time that the machine is in oper-
ation, it is constantly interrupted for a tiny
fraction of a second at regular intervals. This
happens even when a BASIC program is
running, as the computer needs to check
whether a key has been pressed. So the
BASIC program is halted while the computer
scans the keyboard, and then runs again until
the next interrupt.

You can tack a machine code routine onto
this keyboard scan in such a way that it runs in
the imperceptible gaps in the BASIC
program. The result is two programs which
appear to run simultaneously.

Since the interrupt is itself controlled by
the computer's timer, it is ideal for our
purposes, as the clock can be set merely by

THE COMPUTER
AS CLOCK WATCHER

HARNESSING THE
INTERRUPTS

THE CLOCK DISPLAY

A SIMPLE MACHINE CODE
ROUTINE

STARTING THE CLOCK
RESETTING THE HOURS,

MINUTES AND SECONDS

counting the number of interrupts. The
frequency of the interruption varies from
computer to computer—the Spectrum's is
every 50th of a second, while the BBC's is
every 100th, for example—but the principle
is the same in each case.

The programs which follow set up a simple
digital clock which counts hours, minutes and
seconds from the moment the clock is LOADed
and turned on. You can reset the reading so
that the display may be used either as a real-
time clock or to count up to a set time period.

There are a few differences between the
ways in which the different clocks operate.
The Spectrum, Dragon and Tandy display
the read-out constantly on the screen. The
Electron cannot do this at all and the BBC
cannot do this except in MODE 7, since the
ROM routine which PRINTs up a number
momentarily disables the interrupts. Since
the program is written to work in any MODE,
the BBC and Electron's clock can be viewed
only when called up by a keypress—doing this
also clears the screen.

The clocks do not keep absolutely perfect
time. The routine which resets the clock on
each loop does take an appreciable instant, but
this is in the order of millionths of a second.
So any inaccuracy is more a factor of the
accuracy of your computer's timer. Even so,
the clocks will keep time to within seconds per
day. However, on the Spectrum, Commo-
dores, Dragon and Tandy, SAVEing and
LOADing or using BEEP, SOUND and PLAY will
stop the clock for as long as the operation
takes. The digital readout is constantly dis-
played in the top right-hand corner of the
screen (except for the Acorn version) and will
overwrite anything else printed there. If this
is a problem, you can reorganize your screen
display to miss the top line.

The following routine is suitable for either
16K or 48K machines. However, it cannot be
used with Interface 1 connected, since this
changes the interrupt vectors.

10 CLEAR 32319: LET total = 0
20 FOR n=32320 TO 32554: READ a:

POKE n,a: LET total = total + a: NEXT n

30 IF total < > 24216 THEN PRINT "Error in
data": STOP

40 RANDOMIZE USR 32320
50 DATA 33,0,0,34,120,92,34,121,92,

62,40,237,71,237,94,201,0,64,0,0
60 DATA 62,62,237,71,237,86,201,0,

229,213,197,245,58,91,126,60,50,91,
126,254

70 DATA 50,32,50,175,50,91,126,58,120,
92,60,50,120,92,254,60,32,35,175,50

80 DATA 120,92,58,121,92,60,50,121,92,
254,60,32,20,175,50,121,92,58,122,92

90 DATA 60,50,122,92,254,13,32,5,62,1,
50,122,92,58,122,92,38,0,111,17

100 DATA 23,64,205,234,126,58,121,92,
38,0,111,17,26,64,205,234,126,58,120,
92

110 DATA 38,0,111,17,29,64,205,234,
126,17,208,61,33,29,64,205,34,127,17,
208

120 DATA 61,33,26,64,205,34,127,62,
120,33,24,88,119,17,25,88,1,7,0,237

130 DATA 176,205,191,2,241,193,209,
225,251,201,237,83,80,126,1,246,255,
205,251,126

140 DATA 1,255,255,205,251,126,201,
175,9,60,56,252,237,66,61,198,48,229,
205,21

150 DATA 127,33,80,126,52,42,80,126,
205,34,127,225,201,237,75,54,92,38,0,
111

160 DATA 41,41,41,9,235,201,6,8,26,
119,36,19,16,250,201

The machine code consists of a series of DATA
statements which are POKEd into memory by
Line 20. As there is a large amount of DATA
and it is easy to make a mistake in copying out
so many numbers, Line 20 also sets up a
check total—if this does not add up correctly,
Line 30 stops the program with an error
report, prompting you to recheck your DATA.

Line 10 moves down the start of BASIC to
protect the machine code, which is called up
automatically by Line 40 when you RUN this
BASIC program. The clock starts at
00:00:00, but you can reset it with the
following POKEs:

POKE 23672, (seconds)
POKE 23673, (minutes)
POKE 23674, (hours)

The number following the POKEs must be
within the allowed range-0 to 60 for seconds
and minutes, 1 to 12 for the hours. If you just
want to zero the clock again, it is quicker to
use:

RANDOMIZE USR 32320

which calls the machine code routine again
from the start. You will also need this if you
have performed a NEW, which will reset the
interrupts.

10 S = 0:FOR Z = 49152 TO 49267:
READ X:S = S + X:POKE Z,X:NEXT Z

20 IF S< > 12556 THEN PRINT "ERROR IN
DATA!": EN D

30 T$ = "000000":FOR Z = 0 TO 5:
POKE 837 — Z,VAL(M1D$(T$,Z + 1,
1)): N EXT Z

40 SYS 49152: PRINT"DOK."
100 DATA 120,169,17,141,20,3,169,

192,141,21,3,88,169,0,133,251,96
110 DATA 230,251,165,251,201,60,

208,45,169,0,133,251,24,162,0
120 DATA 189,64,3,105,1,157,64,3,

201,10,208,26,169,0,157,64,3
130 DATA 254,65,3,189,65,3,201,6,

208,11,169,0,157,65,3,232,232
140 DATA 224,6,208,218,173,69,3,

201,1,208,15,173,68,3,201,3
150 DATA 208,8,169,0,141,68,3,141,

69,3,160,6,162,0,185,63,3,105,176
160 DATA 157,32,4,169,1,157,32,216,

232,136,208,239,76,49,234

The machine code consists of a series of DATA
statements which are POKEd into memory by
Line 10. As there is a large amount of DATA
and it is easy to make a copying error, Line 10
sets up a check total. If this does not add up
correctly, Line 20 responds with an error
report, prompting you to check your DATA.

The machine code is called automatically
by Line 40 when you RUN this BASIC
program. The clock starts at 00:00:00, but
you can reset it by changing the value of T$
(set to 000000 by Line 30). The clock will be
stopped if you press RUN/STOP! and I RESTORE .
To restart it, just type:

SYS 49152

The Vic 20 program is similar to that for the
Commodore 64. These are the different lines:

5 POKE 51,255:POKE 52,27:POKE 55,
255:POKE 56,27:CLR

10 S = 0:FOR Z=7168 TO 7283:READ
X:S = S + X:POKE Z,X:NEXT Z

20 IF S< >12457 THEN PRINT "ERROR IN
DATA!":END

40 SYS 7168:PRINT"CIOK."
100 DATA 120,169,17,141,20,3,169,

28,141,21,3,88,169,0,133,251,96
160 DATA 157,14,30,169,0,157,14,

150,232,136,208,239,76,191,234

You will also need to copy the Commodore
64's listing for Line 30 and the DATA state-
ments from Line 110 to Line 150, as these are
identical for both computers.

When you need to restart the Vic clock,
use:

SYS 7168

10 MC = &900
20 FOR T= 0 TO 3 STEP 3

30 P%= MC
40 [OPT T
50 .TME BRK:BRK:BRK
60 .CLCK
70 JSR RESET
80 LDX #
90 INC TME
100 LDA TME
110 CMP #60
120 BNE OUT
130 STX TME
140 INC TME+1
150 LDA TME+1
160 CMP #60
170 BNE OUT
180 STX TME+1
190 INC TME+2
200 LDA TME + 2
210 CMP #24
220 BNE OUT
230 STX TME+2
240 OUT
250 LDX # &FE
260 LDY # 255
270 LDA # &81
280 JSR &FFF4
290 CPY # 255
300 BNE 01
310 LDX # &A6
320 JSR &FFF4
330 CPY # 255
340 BEQ SHOW
350 .01

360 RTS
370 .SHOW
380 LDA #12
390 JSR &FFEE
400 LDA # 31
410 JSR &FFEE
420 LDA # 30
430 JSR &FFEE
440 LDA #1
450 JSR &FFEE
460 LDY # 3
470 .02
480 LDA TME-1,Y
490 JSR NUMBER
500 DEY
510 BEQ 03
520 LDA # 58
530 JSR &FFEE
540 JMP 02
550 .03
560 LDA #13
570 JMP &FFE3
580 .NUMBER
590 LDX # 255
600 .N2
610 INX
620 SEC
630 SBC #10
640 BCS N2
650 ADC # 58
660 PHA
670 TXA
680 ADC # 47
690 CMP #48
700 BNE N3
710 LDA # 32
720 .N3
730 JSR &FFEE
740 PLA
750 JMP &FFEE
760 .RESETNOS
770]:!P%= &FFFFFF9C:P%?4

&FF:P%= P%+ 5:[OPT T
780 .RESET
790 LDX # RESETNOS MOD 256
800 LDY # RESETNOS DIV 256
810 LDA #4
820 JMP &FFF1
830 .SETUP
840 LDA # CLCK MOD 256
850 STA &220
860 LDA #CLCK DIV 256
870 STA &221
880 LDA #14
890 LDX # 5
900 JSR &FFF4
910 JMP RESET
920]
930 NEXT

When you run the above assembly language

program, it will automatically be assembled
by the BBC or Electron's operating system.
But remember to SAVE the program before
RUNning it in case of errors.

To start the clock type:

CALL SETUP

When you first assemble the program, the
clock is set to 00:00:00. You can reset the
time by entering:

TME?2= followed by the hours (up to 24, as
this is a 24 hour clock).
TME?1 = followed by the minutes.
?TME= followed by the seconds. You will
have to hit 'RETURN I at just the right moment
to set this figure accurately.

To display the time, press 'CTRL' and DEL
 simultaneously.

NC !HI
Tandy users should adapt the following
program by altering the two numbers printed
in bold in Line 140. Change 157 to 137, and
change 61 to 76.

This routine is not suitable for use when a
disk drive is connected.

10 CLEAR 200,32599
20 FOR J = 32600 TO 32679
30 READ N
40 POKE J,N
50 NEXT
100 DATA 204,0,0,253,127,252,253,127,

254,48,140,4,191,1,13,57
110 DATA 206,127,164,142,128,0,166,

130,76,161,192,38,9,111,132
120 DATA 140,127,252,38,242,134,1,

167,132,206,4,32,142,127,255
130 DATA 79,230,130,192,10,45,3,76,

32,249,195,47,58,237,195,17
140 DATA 131,4,25,47,6,134,58,167,

194,32,229,126,157,61,50,60,60,13

The machine code consists of a series of DATA
statements which are POKEd into memory by
Line 40. Any errors in your DATA will
probably cause the machine to crash, so SAVE
the routine before RUNning it and check all
the numbers very carefully.

RUN the program to enter the machine
code. To start the clock, type:

EXEC32600

This sets the clock to 00:00:00. You can reset
it with the following POKES:

POKE 32764, (hours)
POKE 32765, (minutes)
POKE 32766, (seconds)

Remember to keep each of these values within
the permitted range.

A GAME FOR TWO PLAYERS
SETTING UP THE SCREEN

THE RULES OF THE GAME
LETTER VALUES

STRATEGY

Put in a good word for educational
computer games. INPUT's word
game is suitable for all ages, can be
made as hard, or as easy as you
wish, and is incredibly addictive

Computer games do not have to be purely
recreational like arcade games, or some of the
simulations available at home, they can be
educational, too.

`Hangman' is one well known game which
can be converted to run on a computer. The
game can help people with spelling, general
knowledge, general grasp of English and so
on. Choose a subject like Chemical Engineer-
ing, and you'll soon pick up some of the
buzzwords.

INPUT's word game comes from the same
stable, being a game for two players, involv-
ing guessing words or phrases. The game is
more interesting, and more fun to play than
Hangman, and is just as educational. You can
play it somewhat like Hangman, with a stated

subject area, or you can
have words with a
stated number of
letters, you could
have quotes from

Shakespeare,
or whatever

takes your
fancy.

THE GAME
First enter the names of the two players. You
then have the option of choosing the number
of words in the phrases that each person
enters. One interesting facet of the game is
that the longer phrases are sometimes the
easiest of all to guess because there are more
clues—try it and see.

Once you have picked the number of
words, you have to choose the number of
turns that will constitute the game.

Now the first player has to dream up a
phrase and enter it. The opponent doesn't
have to be locked screaming in the nearest
large cupboard while it's being entered,
because the letters will not appear as they are
typed in. But if you have a cooperative
opponent, you can take the option for the
letters to appear on screen as they are typed.
Having the letters on screen alleviates the
problem of mistyping the phrase, and the
ensuing arguments when it appears.

There should only be a single space be-
tween each word in the phrase. The max-
imum length for any phrase is 64 characters
on the Spectrum, Dragon and Tandy, 77 on
the Commodore 64 and 80 on the Acorns.

Once the phrase is complete, the enter key
is pressed and the main screen appears. At the
top are the scores for both players. At the
beginning of the game each player has 200
points, and the total may go up or down as
play progresses.

Under the scores is a table of letter values,
more common letters having high values, and
less common letters having lower values. The
mystery phrase is shown as a row of asterisks,
with, in the case of the Acorn machines, a
flashing underline cursor.

At the bottom of the screen display are a set
of instructions, and space for entering your

commands and guesses.

STRATEGY
There are three options given to the guesser:
buying letters, guessing a letter at a specific
position, or guessing the w hole phrase.

In the earliest stages of guessing, a good
choice is to buy a space—make sure that the
phrase contains more than one word, though!
How to proceed now is up to you. Vowels are
expensive, but have a very high probability of
occurrence; the cheaper letters are risky
because of their rarity. The words are easier to
guess once you've found some consonants—a
liberal splattering of vowels is not always too
helpful.

As the phrase takes shape, you will prob-
ably find that you are able to guess a letter at a
specific position. For example, you may have
a word that looks like this: T*E. A central H is
a fairly safe guess. It's now that you can score
points. A correctly chosen letter will add its
value to your score, while if you guess
wrongly, the loss is only half the letter's value.
Press XX to select the guess option, and insert
your guess by using a cursor as prompted.

With several letters in place, you may get a
flash of inspiration and want to guess at the
whole phrase. To do this, type ZZ, and you
can enter the whole phrase. If it's correct, the
score for the whole phrase—the remaining
letters only, of course—is worked out and
added to the player's score. If the guess is
wrong, then 50 points are subtracted instead.
Too many wild guesses will soon erode your
score.

Now type in the first section of Wordgame.
The lines set up the screen ready for play to
commence. If you RUN the program, you will
see this working but you won't get too far
with the game because the remainder of the
program (which covers the various choices) is
covered in the next part.

Don't forget to SAVE the program.

1111.111111111111M1=1
10 LET r$="WORD": LET w=14: LET d=0:

LET f =1: LET g$=`"': LET g = 0: LET
k= 0: LET q$="": LET ta =200: LET
tb= 200: LET tc= 0: LET b=0: POKE
23609,50: POKE 23658,8: LET i$="": LET
j$="": LET z$="": LET c$=""

20 FOR n=0 TO 7: READ y: POKE USR
"a" + n,y: NEXT n

30 DATA 255,129,129,129,129,129,
129,255

40 INPUT "ENTER NAME OF FIRST
PLAYERO ❑ 0 0111111(UP TO 7
LETTERS)", LINE a$

50 INPUT "ENTER NAME OF SECOND
PLAYERD ❑ ❑ ❑ 111(UP TO 7 LETTERS)",
LINE b$

60 IF LEN a$ > 7 OR LEN b$ >7 THEN GOTO
40

70 CLS : INPUT "ENTER NUMBER OF WORDS
IN PHRASE (1 TO 9)", LINE c$

80 IF LEN c$< >1 THEN GOTO 70
90 IF CODE c$<49 OR CODE c$>57 THEN

GOTO 70
100 LET c= VAL c$
110 INPUT "ENTER NUMBER OF TURNS (1

TO 9)", LINE t$
120 IF LEN t$< >1 THEN GOTO 110
130 IF CODE t$<49 OR CODE t$>57 THEN

GOTO 110

140 LET t =VAL t$
150 IF c > 1 THEN LET j$ ="S": LET

i$ = "WITH A SINGLE
SPACED ODD ❑ BETWEEN EACH": LET

="PHRASE"
160 PRINT a$;", IT IS YOUR

TURN.'""PLEASE ENTER YOUR PHRASE
OFD 0 0 0111";c;"CIWORD";
j$;". ❑ THE LETTERS YOU ENTER'""WILL
NORMALLY BE INVISIBLE, BUT IF YOU
WISH TO SEE THEM PRESS 0.OTHERWISE,
PRESS 1 TO CONTINUE."

170 LET k$=1NKEY$: IF k$="" THEN GOTO
170

190 IF k$ = "0" THEN POKE 23624,56:INPUT
LINE s$: CLS : GOTO 220

200 IF k$ = "1" THEN POKE 23624,63: INPUT
LINE s$: CLS : POKE 23624,56: GOTO 220

210 GOTO 170
220 LET I= LEN s$
230 IF 1=0 THEN PRINT "ILLEGAL ENTRY.

PLEASE CHECK AND RE-ENTER": PAUSE
100: CLS : GOTO 160

240 IF I > 64 THEN PRINT "ENTRY TOO
LONG. PLEASE CHECK AND RE-ENTER":
PAUSE 100: CLS : GOTO 160

250 FOR n=1 TO I: IF s$(n)= CHR$ 32
THEN LET d = d + 1: GOTO 270

260 IF CODE s$(n) <65 OR CODE s$(n) >90
THEN PRINT "YOU HAVE ENTERED AN
ILLEGAL ❑ ❑ ❑ ❑ ❑ LETTER. CHECK
AND RE-ENTER": PAUSE 100: CLS : LET
d= 0: GOTO 160
IF c=1 AND d=1 THEN PRINT "YOU

CANNOT HAVE SPACES IN
Al=10 ❑ ❑ ❑ SINGLE WORD. CHECK
AND RE-ENTER": PAUSE 100: CLS : LET
d = 0: GOTO 160

280 NEXT n
290 IF d < > c —1 THEN PRINT "YOU ARE

SUPPOSED TO BE ENTERING ❑ ";c;" ❑
WORDS ❑ "4;". CHECK AND RE-ENTER":
PAUSE 100: CLS : LET d= 0: GOTO 160

300 LET z$=`"'
310 FOR n=1 TO I: LET z$=z$+"*":

NEXT n
320 PRINT INK 1; AT 0,0;a$;"'S SCORE ":

PRINT INK 1;AT 0,16;b$;"'S SCORE ❑
PRINT PAPER 2, INK 6;AT 1,6;ta;TAB
22;tb;TAB 31;" ❑ "

330 PRINT AT 3,7;"CHARACTER VALUES"
340 FOR n=0 TO 26: READ g$: LET

q$=q$+g$: NEXT n: PRINT q$:
RESTORE 900

350 PRINT INK 1;AT 12,0;"THE ❑ "4;
"1=1";b$;"1=1 HAS TO
GUESS'CONTAINS0"0"DCHARACTER
S": PRINT PAPER 2; INK 6;z$

360 INPUT "DO YOU WANT TO BUY A
CHARACTER AT ❑ LITHE POINTS PRICE
SHOWN? ENTER 0 ❑ ❑ YOUR
CHARACTER CHOICE. OTHERWISE ENTER
XX TO GUESS A CHARACTER OR ZZ TO
GUESS THE WHOLE PHRASE.", LINE d$

1000 DATA "A-200 ❑ ❑ 0",
"B-1000 111171","C-100 ❑ 0D",
"D-12111000","E-200000",
"F— 0801110 0","G-120 ❑ 00",
"H-080000"

1010 DATA "I-200 0 0 0",
"J — 040 ❑ ❑ 111","K— 060 ❑ ❑ ❑ ",
"L-10001=10","M-100000",
"N-10000070 —200000",
"P-10000070-02000E",
"R-120:]01=1","S-12DO00"

1020 DATA "T-120 0 0 0",
"U —20 0 C1111111","V— 080 0 0 0",
"W-0800 ❑ E","X-040 000",
"Y— 0800 0 0","Z— 02000 0",
" < graphics a> —200 ❑ ❑ ❑ "

5 POKE 53280,1:POKE 53281,1:PRINT
"0 ";CHR$(8)

6 SP$= "Pr:FOR Z=1 TO 39:SP$=
"D"+SP$:NEXT Z

10 R$ = "WORD":W = 14:F =1:TA = 200:
TB = 200

16 QD$="1§1":FOR Z=1 TO 23:

QD$ = QD$ + "gr:NEXT Z
40 A$="JACK":PRINT "DENIER NAME OF

PLAYER 1":INPUT A$:A$=LEFT$(A$,11)
50 B$="JILL":PRINT "DENTER NAME OF

PLAYER 2":INPUT B$:B$=LEFT$(B$,11)
70 PRINT "RENTER DIFFICULTY LEVEL

(NUMBER OF WORDS IN PHRASE 1-9)"
90 GET C$:C=VAL(C$):IF C<1 OR C>9

THEN 90
110 PRINT "DENTER NUMBER OF TURNS

(1-9)"
130 GET T$:T=VAL(T$):1F T<1 OR T>9

THEN 130
150 IF C>1 THEN J$="S":I$=

"WITH A SINGLE SPACE BETWEEN
EACH":R$ = "PHRASE"

155 PRINT "D"
160 PRINT A$;", IT IS YOUR

TURN":PRINT"MPLEASE ENTER YOUR
PHRASE OF";C;

162 PRINT "WORD";J$:PRINT "IF YOU WISH
TO SEE THE LETTERS YOU"

165 PRINT "ENTER THEN PRESS '0', ELSE
PRESS '1' TO CONTINUE ... gg "

170 GET K$:IF K$="" THEN 170
190 IF K$="1" THEN PRINT "?M": INPUT

S$:PRINT "M":GOTO 220
200 IF K$ = "0" THEN INPUT S$:GOTO 220
210 GOTO 170
220 L=LEN(S$):PRINT
230 IF L=0 THEN PRINT "ILLEGAL ENTRY-

REDO":GOSUB 950:GOTO 155
240 IF L > 64 THEN PRINT "ENTRY TOO

LONG-REDO":GOSUB 950:GOTO 155
250 FOR N=1 TO L:IF MID$(S$,N,1)

=CHR$(32) THEN D=D+1:GOTO 270
260 IF MID$(S$,N,1)<"A" OR

MID$(S$,N,1)>"Z" THEN 265
263 GOTO 270
265 PRINT "ILLEGAL CHARACTER-

REDO":GOSUB 950:D =0:GOTO 155
270 IF C=1 AND D=1 THEN 275
273 GOTO 280
275 PRINT"SPACES ARE NOT ALLOWED

IN A SINGLE WORD!-REDO":
GOSUB950:D = 0:GOT0155

280 NEXT N
290 IF D< >C-1 THEN 295
293 GOTO 300
295 PRINT"YOU ARE MEANT TO ENTER

❑ ";C;" ❑ WORDS ❑ ";1$;" -REDO":
GOSUB950:D=0:GOT0155

300 Z$=""
310 FOR N=1 TO L:Z$=Z$+"*":

NEXT N
320 PRINT "0 grA$;"'S SCORE";

TAB(20);BV"S SCORE":PRINTSP$;
"0"TA;TAB(20);TB

330PRINT"..2000DEED
DODD ❑ CHARACTER VALUES
❑❑❑❑❑❑❑❑❑❑❑❑

340 FOR N=0 TO 26:READ G$:Q$=
Q$+ G$ +"0:1":NEXT N:PRINT
Q$:RESTORE:GOSUB 2000

350 PRINT LEFT$(QD$,10)"
THE ❑ ";Rr ❑ CONTAINS";L;
"LETTERSC":PRINTZ$

360 PRINT LEFT$(03, 17)"1.111Hilli
X X = GUESS LETTER 0,11IZZ= GUESS
PHRASE"

370 PRINTTAB(6)"A-SPACE = BUY
THAT CHARACTERM":D$="":
PRINT"• "SPVII E
INPUT D$

900 DATA A -20,B -10,C -10,D -12,
E - 20,F -08,G -12,H -08

910 DATA I -20,J -04,K - 06,L -10,
M -10,N -10,0-20,P-10,Q-02,
R -12,S -12

920 DATA T -12,U -20,V- 08,
W - 08,X - 04,Y - 08,Z -02,
"E -20"

0
5 CLEAR 1000
10 R$ = "WORD":W =14:F =1:

TA= 200:TB =200
15 P1 = PEEK(359):P2 = PEEK(360):

P3 = PEEK(361)
40 CLS:LINE INPUT "ENTER NAME OF FIRST

PLAYER 111 111 ❑ u(MAX 7 LETTERS)?
";A$

50 PRINT:LINE INPUT "ENTER NAME OF
SECOND PLAYERELE ❑ ❑

(MAX 7 LETTERS)? ";B$
60 IF LEN(A$) >7 OR LEN(B$) > 7 THEN 40
70 CLS:LINE INPUT "ENTER DIFFICULTY

LEVEL (NUMBER ❑ ❑ OF WORDS IN
PHRASE 1-9)? ❑ ";C$

80 IF LEN(C$) < >1 THEN 70
90 IF C$<"1" OR C$>"9" THEN 70
100 C=VAL(C$)
110 PRINT:LINE INPUT "ENTER NUMBER OF

TURNS (1-9)? ❑ ";T$
120 IF LEN(T$) < >1 THEN 110
130 IF T$<"1" OR T$>"9" THEN 110
140 T=VAL(T$)
150 IF C>1 THEN J$="S":I$="WITH A

SINGLE SPACE BETWEEN EACH":
R$= "PHRASE"

155 CLS
160 PRINT A$;",1111T IS YOUR

TURN":PRINT:PRINT"PLEASE ENTER
YOUR PHRASE OF ❑ ";C," ❑ WORD";J$

165 PRINT:PRINT"IF YOU WISH TO SEE THE
LETTERS ❑ ❑ YOU ENTER THEN PRESS
`0', ELSE PRESS '1' TO CONTINUE
...":PRINT

170 K$=INKEY$:IF K$="" THEN 170
190 IF K$="1" THEN PRINT"? ❑ ";:

POKE 359,&H86:POKE 360,32:POKE
361,57:LINE INPUT S$:POKE 359,
P1:POKE 360,P2:POKE 361,P3:GOTO 220

200 IF K$="0" THEN LINE INPUT
"? ❑ ";SS:GOTO 220

210 GOTO 170
220 L= LEN(S$):PR1NT
230 IF L = 0 THEN PRINT"ILLEGAL ENTRY-

REDO":GOSUB 950:CLS:GOT0160
240 IF L > 64 THEN PRINT"ENTRY TOO

LONG—REDO":GOSUB 950:CLS:GOTO
160

250 FOR N=1 TO L:IF MID$(S$,N,1)
= CHR$(32) THEN D = D +1:GOTO 270

260 IF MID$(S$,N,1)<"A" OR
M1D$(S$,N,1)>"Z" THEN PRINT
"ILLEGAL CHARACTER—REDO":GOSUB
950:CLS:D = 0:GOTO 160

270 IF C=1 AND D=1 THEN PRINT
"SPACES ARE NOT ALLOWED IN
AD 	❑ SINGLE WORD!—REDO":
GOSUB 950:CLS:D = 0:GOT0160

280 NEXT N
290 IF D < > C —1 THEN PRINT"YOU

ARE MEANT TO ENTER";C;
"WORDS ❑ ❑ ";1$;"—REDO":
GOSUB950:CLS:D = 0:GOT0160

300 Z$ =""
310 FOR N=1 TO L:Z$ =Z$ + "*":NEXT N
320 CLS:PRINT A$;"'S SCORE",

B$;"'S SCORE":PRINT@38,TA;
TAB(22);TB;" D ❑ "

330 PRINT@70,"character values"
340 FOR N=0 TO 26:READ G$:Q$=

0$ + G$:NEXTN:PR1NTQ$:RESTORE
350 PRINT@320,"THE 0"; R$;

"D CONTAINS";L;"LETTERS":
PR1NTZ$

360 PRINT@416,"";:LINE INPUT
"XX = GUESS LETTER ZZ = GUESS
PHRASE A — Z = BUY THAT CHARACTER ?
";D$

900 DATA "A —20 DODD ",
"B-1000 DO","C-1000DD",
"D-120E007E-20E000",
"F-08DOOD","G-12D000",
"H-100000"

910 DATA "I —200 El 0",
"J— 040 DO D","K— 060 DE ❑ ",
"L-1000 El 0","M-100 OD 0",
"N-10000070-200 ODD",
"P-100D00","Q-020000",
"R-120 ❑ ❑ ❑ ","S-12 ❑ ❑ ❑ ❑ "

920 DATA "T-120 El ❑ D",
"U-200 D ❑ D","V— 080 DO D",
"W— 08D ❑ ❑ ❑ ","X-04 ❑ DE ❑ ",
"Y— 080 0 D 0","Z— 020 D",
"s-200 0"

The programs for each of the machines are
very broadly similar, as there are no graphics
which require the use of the machines' special
facilities to display them.

Initializing the programs is a little different

in some cases. In the Commodore program,
Line 5 sets up the screen colours, whilst in the
case of the Dragon Line 5 CLEARs sufficient
string space for the game.

Line 10 initializes all the strings and
variables needed in the game. The line in the
Dragon and the Commodore program is
noticeably shorter than in the other programs
because there's no need to initialize variables
to zero, or to initialize null strings. The PEEKS
in Line 15 of the Dragon program are used
later in the program to stop PRINTed material
appearing on the screen, and they work by
intercepting the machine's PRINT routine.
Lines 20 and 30 in the Spectrum program set
up the space UDG used in the letter table.

Lines 40 to 70 are the prompts right at the
start of the game. Lines 40 and 50 are the
names of the first and second players, and
Line 60 checks that they are not too long for
the screen space allotted. The number of
words in the phrase are input in Line 70.

The following routine, from Lines 80 to
100 is a series of validity checks, making sure
that the number of words in the phrase is
within the limits of the program.

The number of words in the phrase is
called C$ (or c$), and Line 80 checks that the
input is only one character long. Line 90
checks that the input is between 1 and 9—
between them the two lines check that the
input is between 1 and 9 and is a whole
number. Line 100 converts the string into a
numeric variable.

Lines 110 to 140 are related to the number
of turns chosen. Line 110 is the prompt and
calls the number of turns, T$ or t$. Lines 120
and 130 are similar validity checks to before,
whilst Line 140 converts the string to a
numeric variable.

Line 150 checks that the number of words
in the phrase is greater than one, and tells the
players that there needs to be a single space
between each word. R$ or r$ is set to equal
"PHRASE"—used later on in the prompts.

The program now enters the input routine.
This extends from Line 160 to 220, and gives
instructions to the player whose turn it is to
type in the mystery phrase. Selecting 0 will
make the phrase appear on screen as it is typed
in—otherwise it is invisible. The phrase is
called S$ or s$.

Lines 230 to 290 are validity checks. If the
length of the phrase is less than one
character—if the player has just pressed
RETURN or 'ENTER I—Line 230 announces that
it is an illegal entry. Line 240 checks if the
entry is the right length, and Line 250 checks
for the number of spaces (which must be one
less than the number of words given by C or
c). Lines 260 and 270 checks for illegal entries

along with Line 290.
Lines 300 and 310 set up Z$ or z$—a

dummy string consisting of asterisks but
equal in length to S$ or s$.

The final routine, from Lines 320 to 360
sets up the remainder of the main screen,
READing a table of letter values from the DATA
at the end of the program, PRINTing up the
two players scores and displaying the dummy
string containing the asterisks. Line 360 is a
prompt to the guesser.

IEI
10 .FX4,1
20 ON ERROR GOTO 900
30 MODE6:DIMA$(2),S(2),V(27)
40 PROCSETUP
50 PROCWORD
60 FOR TQ =1 TO NG
70 FOR TP =1 TO 2
80 PROCSCREEN
160 DEF PROCSCREEN
170 CLS:RESTORE
180 PRINT:PRINTA$(1);`"S SCORE"

TAB(20)A$(2);"'S SCORE"
190 PRINT:PRINT:FOR T=1 TO 27:READ

A$:V(T) = EVAL(M1D$(A$,3 — (T =27)
*2,2)):PR1NTA$SPC6;:NEXT:
PRINT:PRINT

200 PRINT"THE WORD D ";A$(3 — P);
"D HAS TO GUESS"'"CONTA1NS ❑ ";
L;" ❑ CHARACTERS"

210 PRINTTAB(0,16)Z$
220 PRINTTAB(0,22)"ENTER A LETTER,

MOVE THE CURSOR, PRESS D ❑

'CTRL B' TO BUY OR 'CTRL G' TO GUESS
THE COMPLETE PHRASE";

230 ENDPROC
470 DEF PROCSETUP
480 INPUT"ENTER 1ST PLAYERS NAME",

A$(1):A$(1) = LEFT$(A$(1),10)
490 PRINT:INPUT"ENTER 2ND PLAYERS

NAME",A$(2):A$(2) = LEFT$
(A$(2),10)

500 PRINT
510 INPUT"HOW MANY WORDS IN EACH

PHRASE (1 TO 9)",NW
520 NW=INT(NW):IF NW<1 OR NW>9

THEN 510
530 INPUT"HOW MANY TURNS (1 TO 9)",NG
540 NG= INT(NG):1F NG <1 OR NG > 9

THEN 530
550 S(1) =200:S(2) =200:P=1
560 ENDPROC
570 DEF PROCWORD
580 X =1:G =
590 CLS:PRINTTAB(0,2)"0.K. ❑ ";AS(P):

PRINT"ENTER YOUR ❑ ";NW;
"DWORD PHRASE"

600 PRINT:PRINT"IF YOU WISH TO SEE THE
LETTERS PRESS '0'ELSE PRESS ANY KEY

AND CONTINUE TO TYPE"
610 K = GET-48
620 IF K< >0 THEN COLOURO
630 1NPUT""Y$:Z$=STRING$(LEN(Y$),

"'):L = LENY$:B$ =""
640 COLOUR3
650 IF L=0 OR L>80 THEN PRINT

"RE-ENTER THE PHRASE IT IS NOT
THE CORRECT LENGTH":
GOTO 620

660 TK= 0:FOR T=1 TO L:TK=TK —
(M1D$(Y$,T,1) ="0"):IF MID$
(Y$,T,1)< > "D" AND (M1D$
(Y$,T,1)<"A" OR MID$(Y$,T,1)
>"Z") THEN TK= —1:T= L

670 NEXT
680 IF TK= —1 THEN PRINT"YOU HAVE

ENTERED AN ILLEGAL LETTER
ED El 111 ❑ EIRETYPE IT":
GOTO 620

690 IF TK< > NW-1 THEN PRINT"YOU
HAVE TO ENTER 0";NW;"DWORDS WITH

SINGLED ❑ ❑ SPACES SEPARATING
THEM":GOTO 620

700 ENDPROC
900 *FX4,0
910 PRINT:REPORT:PRINT" ❑ AT LINE ❑ ";

ERL:END
970 DATA A— 20, B — 10,C— 10,D— 12,

E — 20,F — 08,G —12,H-08
980 DATA I— 20,J— 04,K— 06, L — 10,

M —10,N —10,0-20,P-10,Q-02,
R —12,S —12

990 DATA T —12,U —20,V— 08,W— 08,
X — 04,Y— 08,Z— 02,[0] —20

In the Acorn program, Line 10 makes the
cursor keys generate ASCII codes. Line 20
prints out any error messages by jumping to
Lines 900 and 910. Line 30 sets MODE 6 and
DI Mensions three arrays.

PROCSETUP can be found starting at Line
470. It allows the two players' names to be

entered, along with the number of words that
will be found in each phrase, and the number
of turns.

Next, PROCWORD is called. PROCWORD
starts at Line 570, and allows the first player
to enter the phrase that the second player has
to guess. The phrase is checked for correct
length, having allowable letters, and single
spaces.

Lines 60 and 70 are the start of FOR ...
NEXT loops for the number of goes, and the
number of players, and will get their NEXTs
next time.

Finally, PROCSCREEN looks after the
screen display. Starting at Line 160, the
players' names and scores are displayed, along
with the letter values assigned and some
instructions.

Can you learn assembly language
before the goats eat Willie's picnic?
Start to program a fully playable
arcade-style machine code game—
part two follows next issue

There are many serious business applications
of machine code programming. But all of the
important principles can be outlined in games
programming—and learning how to program
in dry machine code is much more fun when
you apply it to writing games.

So INPUT is giving you a complete
machine-code game, specially constructed to
cover the main programming faculties on the
48K Spectrum, Commodore 64, BBCB and
Dragon. This will show you how a typical
game is constructed and how the various
programming elements are combined to pro-
duce interesting graphics, smooth action and
exciting effects.

THE GAME
INPUTS game is called Cliffhanger. It is a
running and jumping game of the Donkey
Kong/Hunchback variety and has four
screens which get progressively more dif-
ficult. The main character is Willie, who has
been out having a picnic on the cliffs at the
seaside. He has taken a short walk to build up
his appetite. But when he returns he finds that

some goats have spread his picnic
all over a rocky embankment.

llie has to climb to the top
of tk„cliff to reclaim his lost

possessions. This is made all the more ur-
gent by the fact that the tide is rising and
Willie is in danger of being drowned if he
does not get to the top of the cliff in time.

In the first screen he is hampered by falling
rocks. These come rolling down the slope and
he has to jump over them. One slip could
mean sudden death. You control his running
and jumping with the N and M keys. If he's
hit by a boulder, Willie is buried immediately.
Luckily he has five lives.

When he makes it to the top of the slope
and reclaims the first item of his missing
picnic he is returned to the bottom of the
slope again and moves onto the second screen.
This time when he tries to scale the cliff, he
has to jump over pot holes. If he falls down
one he gets buried again.

When Willie has reached the top on the
second screen, he moves onto the third. Again
he has to scale the slope, avoiding pot-
holes. But this time they are inhabited
by vicious snakes which try and bite him as
he leaps over the hole. And on the fourth
screen, Willie has to contend with snakes,
potholes and boulders.

On each screen Willie must keep ahead of
the rising tide. He gets points for climbing the
slope and a bonus for collecting four of his
picnic items without losing a life.

As well as being an education in
program

writing, Cliffhanger is fun to play. It will be
published as a serial in consecutive parts in
INPUT. How each part works and how it fits
into the overall structure of the game will be
fully explained. Examples of
how certain 	

r

routines can
 in different

• ee\N

OUTPUTTING TO
THE SCREEN

ROM PAINT ROUTINE •
a • • 	-PAUSING •

DEBUGGING LO

HOW THE GAME IS
STRUCTURED

BASIC POKER PROGRAMS
CONSTRUCTING ASCII

DATA TABLES

applications will also be given.
And at the end of all that

you will have a game that is
as good as many available
commercially.

THE GAME'S STRUCTURE
The background and the moving characters
are all made using UDGs, except on the
Commodore 64 which uses sprites. The gen-
eral background is generated using loops to
PRINT them on the screen.

The potholes and snakes are superimposed
on the first screen. That way, most of the
background does not have to be redefined to
make the second and third screens.

The main part of the program comprises an
executive routine which controls the timing
and priority of events. The events themselves
are added as subroutines. The executive is
driven by interrupts (see page 478).

Except on the Commodore 64, where
sprites are used, the movement of the boul-
ders and the man are made in half character
jumps. This is accomplished using two sets of
characters and gives acceptably smooth action
without making the program too complex and
slowing it down. In any game of this sort,
speed is important.

The first thing that has to be done in any
game is to print the title page on the screen.
Although the print routine is in machine
code, there is little point in supplying the
words to be printed in machine code. Instead
the words you want printed on the screen are
typed in as part of the following BASIC
program, which then POKEs them into the
protected part of memory. You must of course
key in CLEAR 57434 first.

10 LET X = 57435
20 READ A$
30 FOR N =1 TO 45
40 POKE X,CODE A$(N)
50 LET X=X+1
60 NEXT N
70 DATA"CL1FFHANG ERCREATED BY

A.DOEWRITTEN BY P.CLARK"

This program POKES the title-page data into a
data table. The resulting portion of memory
should then be SAVEd to tape. Then LOAD
your assembler and key in the main machine
code routine which follows:

org 58035
ti 	call cl

Id a,2
out (254),a
Id a,16
Id (23624),a
Id ix,57435
Id b,5
Id a,70

Id b,18
Id Id h1,674
call me
Id b,2

Idp 	Id h1,65000
Id de,0

Idq dec hl
push hl
sbc hl,de

Now key in the following service routines and
assemble in the same way.

SAVE the source code using the SAVE option
on the assembler. Then assemble the code,
NEW and LOAD your machine code monitor.
Then you should SAVE the object code onto
tape as well.

org 58146
ktt 	Id a,253

in a,254
bit 1,a
jr nz,ktt
ret

me 	push bc
push af
Id a,(ix + 0)
call asc
pop af
call print
inc hl
inc ix
pop bc
djnz me
ret

asc 	push hl
Id h1,15608
Id de,8
Id b,31
sub b

ash 	add hl,de
dec a
jr nz,ash
push hl
pop bc
pop hl
ret

cl 	Id ix,16384
Id h1,6912
Id a,0

clp 	Id (ix +0),a
inc ix
dec hl
push hl
Id de,0
sbc hl,de
pop hl
jr nz,clp
ret

print push af
push hl

SAVE these two machine code routines
independently. The program runs when you
use the usual RAND USR 58035 call. But
remember the data-which starts at 57435-
must be in memory at the same time.

THE BASIC
The BASIC program is a simple FOR ... NEXT
loop which POKEs the title page words and the
instructions into an ASCII table above
RAMTOP-set by CLEAR.

THE MACHINE CODE
This program is constructed with one main
routine calling a succession of subroutines.
That way you can work on each module
independently and it is easier to track bugs.

The first instruction call cl calls the routine
that clears the screen. The Id a,2 and out 254,a
sets the border colour in the same way as on
pages 728 to 732. But outing a colour to the
border only changes its colour temporarily.
To make the change permanent, you have to
change the BORDER system variable in mem-
ory location 23624 as well.

The border colour specified in the out is 2,
or red. But to give red, 16-that is binary 2
shifted three places to the left-must be
stored in BORDCR.

PRINTING THE TITLE
The routine me controls the printing of
characters on the screen. Feed parameters
into it so that it knows what to print, where.

The Id ix,57435 loads the IX register with
the address of the first byte of the ASCII
table, so the print routines will know where to
find their data.

The accumulator carries the attribute of
the character square to be printed. These
work in exactly the same way in machine code
as they do in BASIC (see page 69). Setting bit
7 gives a flash. Bit 6 gives bright colours. The
next three bits control the paper colour. The
three least significant bits set ink colour.

So here, when A is loaded with 70-
01000110 in binary-bit 6 is set to one, the
bits that control the paper are 0 and bits that
control the ink are set to the value 6. This
gives non-flashing (0), bright (1), black paper
(000) with yellow ink (110).

B is the character counter. The value
loaded into B is length of the string that is
going to be printed on a line. The first time
me is called, B is loaded with five.

HL carries the print position. This is
counted in character squares from the top
lefthand corner of the screen. So when HL is
loaded with 134, the first character of the first
string-in other words the C of CLIFF-is
printed on the fifth line down the screen, six

Id h1,134
call me
Id b,6
Id h1,204
call me
Id b,16
Id a,7
Id h1,610
call me

pop hl
jr nz,Idq
djnz Idp
ret
org 58192

cl 	•
org 58155

me

push bc
push hl
pop de
Id a,d
cp 1
jr c,next
push de
Id de,1792
add hl,de
pop de
Id a,d
cp 1
jr z,next
push de
Id de,1792
add hl,de
pop de

next push de
Id de,16384
add hl,de
pop de
Id a,8
pop bc
push af

rept 	Id a, (bc)
Id (h1),a
inc h
inc bc
pop af
dec a
jr z,exit
push af
jr rept

exit pop hl
pop af
push de
Id de,22528
add hl,de
pop de
Id (h1),a
push de
pop hl
ret

character squares in from the lefthand side.
The me routine is called four times to print

the four title lines on the screen.

PAUSING
To give you enough time to read the title, a
pause routine has to be built into the program
at this point. B is loaded with 2 so that the
loop closed by the djnz is executed twice.

HL is loaded with 65,000, which is de-
cremented each time the inner loop is perfor-
med. HL is pushed on and popped off the
stack while the subtraction is being done to
give it something to do.

It may seem a bit odd to subtract 0—the
contents of DE—from HL each time round
the loop. But that is a way of affecting the zero
flag—it does not react to a pop. The jr nz
instruction works on the zero flag. This has to
be set so that the processor knows when to
drop out of the loop. When HL counts down
to zero and sub hl,de takes zero away from it,
the result will be zero, the zero flag will be set
and processor will drop out of the loop.

Normally it would then precede to the
instruction page. But for now it hits ret and
returns to BASIC as this is the end of part one
of Cliffhanger.

The first thing that has to be done in any
game is to print the title on the screen.
Although the print routine is in machine
code, there is little point in supplying the
words to be printed in machine code. Instead
the words you want printed on the screen are
typed in as ASCII codes as part of the
following BASIC program which then POKES
them into memory.

There are several different ways in which
this can be done. Two ways are covered here,
so the printing of the title page is divided into
two sections, each of which can be run and
tested on their own.

Before entering any of the programming
you must move RAMTOP down to create a
protected area above it by POKEing 51 with
255, 52 with 63, 55 with 255 and 56 with 63.
Then you must enter the BASIC program
and RUN it. This constructs a data table in the
protected area of memory. Then you NEW to
get rid of the BASIC POKEr program, LOAD
your machine code monitor and use it to SAVE
the table to tape.

NEW to get rid of the machine code moni-
tor, then LOAD your assembler. Key in the
assembly language routine and use the
assembler's SAVE option to SAVE the source
code to tape. Then assemble the routine, NEW
to get rid of the assembler and LOAD up
the machine code monitor again. SAVE the

machine code monitor to tape.
You run the machine code routines using

the SYS 16384 call. But you must have the
data table in memory at the same time.

The following BASIC program carries all
the title page data, excluding the word
`CLIFF'. This is added later using a different
method of data inputs.

5 POKE 53281,1
10 ADD =16640:FOR I =0T032000
20 READ A%: POKE ADD +1,A%
25 PRINT CHR$ (A%);
30 IF A%=0 GOTO 50
40 NEXT
50 GOTO 50
100 DATA 147,149,142
150 DATA 169,169,169,169,169,169,

169,169,169,169
160 DATA 169,169,169,169,169,169,

169,169,169,169
165 DATA 142,13,149
170 DATA 169,169,169,169,169,169,

169,169,169,169
180 DATA 169,169,169,169,169,169,

169,169,169
190 DATA 142,144,125
200 DATA 32,32,32,32,32
205 DATA 87,82,73,84,84,69,78,32,66,

89,13,149
220 DATA 169,169,169,169,169,169,

169,169,169,169
230 DATA 169,169,169,169,169,169,

169,169
240 DATA 144,32,125
242 DATA 32,32,32,32,32,32,32
245 DATA 65,78,71,85,83,32,65,71,69,

82,149,13
250 DATA 149,169,169,169,169,169,

169,169,169,169,169
260 DATA 169,169,169,169,169,169,169
270 DATA 142,144,32,32,125,32,32,32,

32,32,32,32,75,69,78,32,84,73,78
275 DATA 68,69,76,76,13,149
280 DATA 169,169,169,169,169,169,

169,169,169,169
290 DATA 169,169,169,169,169,169
300 DATA 144,32,32,32,125,32,32,32,

32,32,68,69,83,73,71,78,69,68
310 DATA 32,66,89,13,149
320 DATA 169,169,169,169,169,169,

169,169,169,169
330 DATA 169,169,169,169,169
340 DATA 142,144,32,32,32,32,125,32,

32,32,32,32,32,32,65,76,65,83,84,65
350 DATA 73,82,32,68,79,69,13,149
360 DATA 169,169,169,169,169,169,

169,169,169,169
370 DATA 169,169,169,169,144,32,32,

32,32,32,125,149,13
390 DATA 169,169,169,169,169,169,

169,169,169

400 DATA 169,169,169,169,13
420 DATA 169,169,169,169,169,169,

169,169,169,169
430 DATA 169,169,13
450 DATA 169,169,169,169,169,169,

169,169,169,169
460 DATA 169,13
490 DATA 169,169,169,169,169,169,

169,169,169,169,13
500 DATA 169,169,169,169,169,169,

169,169,169,13
510 DATA 169,169,169,169,169,169,

169,169,13
520 DATA 169,169,169,169,169,169,

169,13
530 DATA 169,169,169,169,169,169,13
540 DATA 169,169,169,169,169,13
550 DATA 169,169,169,169,13
560 DATA 169,169,169,13
570 DATA 169,169,13
580 DATA 169,13
600 DATA 32,32,32,32,32,32,32,32,142,

31,178,32,178,32,117,99,105,32,117,105
620 DATA 178,32,117,99,105,32,117,

99,105,32,176,99,105,13
630 DATA 32,32,32,32,32,32,32,32,125,

32,125,32,125,32,125,32,125,125,125
640 DATA 32,125,32,125,32,125,32,32,

32,125,32,125,13
650 DATA 32,32,32,32,32,32,32,32,171,

99,179,32,171,99,179,32
660 DATA 125,125,125,32,125,32,32,32,

171,179,32,32,171,178,107,13
670 DATA 32,32,32,32,32,32,32,32,125,

32,125,32,125,32,125,32,125,125,125
680 DATA 32,125,32,178,32,125,32,32,

32,125,125,13
690 DATA 32,32,32,32,32,32,32,32,177,

32,177,32,177,32,177,32,177,106,107
700 DATA 32,106,99,107,32,106,99,

107,32,177,202,203,0

The data table created by RUNning this
program is read by the following machine
code which controls printing on the screen:

0 RG 16384
NOP
NOP
NOP
LDA # $09
STA $D020
LDA # $03
STA $D021
LDA # $00
STA $FB
LDA # $41
STA $FC
LDY # $00
NOP
LDA ($FB),Y

NOP
JSR $FFE4
BEQ $4035
RTS

THE BASIC
The BASIC program uses a simple FOR ...
NEXT loop to READ the DATA supplied and
POKE it into a table in memory where the
machine code program can access it.

The data table starts at 16,640, but obvi-
ously it does not contain 32,000 items—the I
value which controls the FOR ... NEXT loop.
Line 30 stops the program when it hits a zero
in the data. Obviously, this is the last item of
data. The rest of the data is ASCII codes for
characters, Commodore graphics symbols
and control codes. These can be found in
Appendix F of the Commodore 64 User's
Guide or Appendix C of the Programmer's
Reference Guide.

PRINTING ON THE SCREEN
NOP means No OPeration, and this instruction
does exactly nothing. But that does not mean
that it is not useful. It is sometimes used to
slow the microprocessor down. Then it is put
in a loop so that it does nothing over and over
again. But here it is used as a programming
tool.

NOPs are used to break up the programm-
ing so that you can see clearly what is going
on. It also allows the programmer to add an
extra instruction, should one be needed, and
it leaves spare bytes for temporary storage if
required.

The first active operation loads nine into
the accumulator and stores it in memory
location D020. This is in the I/O area and
controls the border colour. It responds to the
same number colours that are used in BASIC.
Nine gives a brown border. Three is then
stored in D021 which sets the screen colour to
cyan.

The start address of the data table 16,640 is
then stored in the zero page addresses FB and
FC-4100 hex is 16,640 decimal. The Y
register is then set to zero.

The LDA ($FB),Y loads the first byte of the
data table into the accumulator. Note that the
offset Y remains zero throughout the print
routine while the data table pointer in FB and
FC is updated. But indirect addressing is
needed here and—on the 6520—only the
indexed form is available.

BEQ $402A drops the microprocessor out
of the routine when the zero at the end of the
table is reached. And the JSR $FFD2 jumps to
the subroutine in the Kernal ROM which
prints a character out on the screen. Note that
it does not have to be told where to print it.

With the method used here, the cursor is
moved to the right print position by the
control codes in the data.

INC $FB increments the low byte of the
pointer. If the result is not zero, the BNE
instruction branches over the next instruction
which increments the high byte when the end
of a page is reached.

CLC and BCC $4018 closes the loop. After a
CLC the carry will always be clear, so the BCC
condition will always be fulfilled and it
branches back to the LDA ($FB),Y which loads
up the next byte of the data table.

THE DEBUG LOOP
As soon as the last character in the data table
has been printed on the screen and the zero
delimiter has been loaded up, the micropro-
cessor jumps out of the routine. But you don't
want to return directly to BASIC, otherwise it
won't stay on the screen long enough for you
to check that the program is working pro-
perly. Consequently a debug loop has been
added.

JSR $FFE4 jumps to the subroutine in the
Kernal ROM which watches for a key being
pressed. If one has, it returns with the value of
that key in the accumulator. And when it puts
it in the accumulator it sets the flags.

If no key has been pressed, the value 0 is
returned and BEQ $4035 branches back to JSR
$FFE4. But if a key has been pressed, the
accumulator will carry a value other than 0
and the zero flag will not be set. So the BEQ
instruction does not branch and the micro-
processor breaks out of the routine.

In other words, the microprocessor goes
round and round this loop holding the title
display on the screen until a key has been
pressed.

This debug loop will be overwritten by the
next routine but use it to check out what you
have keyed in so far.

SCREENING THE CLIFF
The following BASIC POKEr program must
be keyed in, RUN, and then the data table it
constructs must be SAVEd to tape as was done
before:

10 ADD = 17184:FOR I = OT032000
20 READ A%:POKE ADD + I,A%
30 IF A% = 255 GOTO 50
40 NEXT
50 END
100 DATA 8,21,31,117,105,0,9,21,98,0

10,21,106,107,178,0,11,23,98,0
200 DATA 12,23,173,189,178,0,13,25,98,

0,14,25,177,176,174,0
300 DATA 15,26,171,0,16,26,177,176,

174,0,17,27,171,0,18,27,177,0,0,0,255

BEQ $402A
JSR $FFD2
NOP
INC $FB
BNE $4026
INC $FC
CLC
BCC $4018
NOP
NOP
NOP
NOP
NOP
NOP
NOP

NOP
NOP
NOP
NOP

Then the machine code routine can be keyed
in, assembled, SAVEd and called, again by the
method outlined above:

ORG 16437
LDY #$FF
INY
LDX $4320,Y
INY
LDA $4320,Y
BEQ $4059
INY
STY $FB
TAY
JSR $FFF0
LDY SFB

HOW IT WORKS
This part of the program uses the Commo-
dore graphics symbols to make up enlarged
letters. These are printed directly onto the
screen using the PLOT routine in the Kernal
ROM. This routine positions the cursor at a
position specified on the screen, then prints
the character at that point.

In the BASIC program each section of
DATA is delimited by a 0. The first two items
of each section specify the Y and X coordi-
nates of the beginning of a line of characters.
And the table itself ends with three zeros.

The 255 which follows simply tells the
POKEr program when to stop. The POKEr
program itself starts constructing its data
table from 17,184 after the data for the rest of
the title page. But it is not 32,000 items long,
as the limits of the I value in the FOR ... NEXT
loop would imply. Line 30 looks for that
terminating 255 and ENDS the program.

THE MACHINE CODE
The machine code routine begins by initializ-
ing an index in the Y register. It is set to FF
because Y is incremented at the beginning of
the loop. So, as the processor goes into the
print routine for the first time Y is zero. An
index is used this time—rather than a two-
byte pointer with a zero index as in the first
part of Commodore's title-page print
routine—because the data is not going to
exceed 255 bytes.

LDX $4320,Y loads the first byte of the data
table—that is, the Y coordinate of the beginn-
ing of the first line of characters—into the Y
register. Y is incremented and the second byte
of the table—the X coordinate—is loaded into
the accumulator. 4320 hex is 17,184
decimal—the start address of the beginning of
the data table—in hex.

If this second cpordinate is zero, the BEQ
$4059 branches out of the routine. This is
why three zeros are used to mark the end of

the data. The first is located later on and tells
the processor to go back and load up new
coordinates for the beginning of the next line.
Then the Y index counts along two more
items of the table until a byte is tested.

The Y index is incremented, then stored in
FB on the zero page because the Y index is
going to be needed. TAY transfers the coordi-
nate in the accumulator into Y. And now the
coordinates are in the registers where they are
required by the PLOT routine.

JSR $FFF0 jumps to the ROM routine
which moves the cursor to the position speci-
fied in by the X and Y registers.

When the cursor is positioned and the
processor returns to this routine, the Y
register is restored by loading it from FB.

LDA $4320,Y loads the next byte of the data
table into the accumulator—Y had already
been incremented before it was stored. If the
byte loaded was zero, BEQ $4037 loops back
to the first INY instruction, ready to load up
with the start coordinates of the next line, or
exit the routine.

If the byte is not a zero, the Y index is
incremented again and the processor jumps to
the subroutine in ROM which outputs the
character to screen. CLC and BCC $404A sends
the processor back to load up and print the
next byte of the data table.

Reading along the DATA line, you'll see that
8 and 21 are the Y and X coordinates of the
first print position. 31 makes the characters
that follow blue. 117 and 105 are two arcs that
together make up the top curl of the letter C.

The next line starts at 9 and 21, which is
one character square below the beginning of
the line before. 98 gives a vertical line which
forms the back of the C, and so on.
The characters to be printed 	44014,
can be worked out from

the tables in Appendix F of the Commodore
64 User's Guide or Appendix C of the Pro-
grammer's Guide.

And you will see from the coordinates that
the letters are printed down the screen, with
each moved one character square to the right.
So the word CLIFF slopes down the screen.

DE - BUGGING
Again, the processor would normally move
onto the rest of the program, but this is the
end of the first part of Cliffhanger. So for now
you need another debugging loop that holds
the display on the screen to see that the
program is working properly.

The first thing that has to be done in any
game is to print the title page on the screen.
Although the print routine is in machine
code, there is little point in supplying the data
for the graphics in machine code. Instead it is
supplied in BASIC and the BASIC program
pokes it into a data table in the protected part
of memory. The assembly language program
then takes this data, byte by byte, and prints it
on the screen. Press 'BREAK I and type
PAGE = &3000 and NEW, and *TAPE if you
have a DFS, then key in the following
program:

80 DATA 22,2,23,0,10,32,0,0,0,0,0,0
90 FOR A% = &DOOTO&DOB:READ?A%: NEXT
140 DATA 0,0,5
150 DATA 4,30,227:R EM C
160 DATA 5,16,255
170 DATA 5,2,227
180 DATA 5,2,151

190 DATA 5,16,123
200 DATA 5,30,151

WO DATA 4,32,255:R EM 1

LDA $4320,Y
BEQ $4037
INY
JSR $FFD2
CLC
BCC $404A
NOP
NOP
NOP
JSR $FFE4
BEQ $4059

220 DATA 5,32,175
230 DATA 5,36,167,1975
240 DATA 5,40,175
250 DATA 4,40,211:REM i
260 DATA 5,40,167
270 DATA 5,60,233:REM f
280 DATA 5,60,245
290 DATA 5,55,255
300 DATA 5,50,245
310 DATA 5,50,133
320 DATA 5,45,123
330 DATA 5,40,133,2449
340 DATA 5,40,145
350 DATA 5,74,233:REM f
360 DATA 5,74,245
370 DATA 5,69,255
380 DATA 5,64,245
390 DATA 5,64,133
400 DATA 5,59,123
410 DATA 5,54,133
420 DATA 5,54,145
430 DATA 5,86,235,2580:REM h
440 DATA 5,86,247
450 DATA 5,82,255
460 DATA 5,78,247
470 DATA 5,78,167
480 DATA 4,78,199
490 DATA 5,84,211
500 DATA 5,90,199
510 DATA 5,90,167
520 DATA 4,104,199
530 DATA 5,98,211,3018
540 DATA 5,92,199
550 DATA 5,92,179
560 DATA 5,98,167
570 DATA 5,104,179

580 DATA 4,104,211
590 DATA 5,104,179
600 DATA 5,106,167
610 DATA 5,106,211:REM n
620 DATA 4,106,199
630 DATA 5,112,211,2974
640 DATA 5,118,199
650 DATA 5,118,167
660 DATA 4,132,199:REM g
670 DATA 5,126,211
680 DATA 5,120,199
690 DATA 5,120,179
700 DATA 5,126,167
710 DATA 5,132,179
720 DATA 4,132,211
730 DATA 5,132,133,3148
740 DATA 5,127,123
750 DATA 5,122,133
760 DATA 5,122,151
770 DATA 5,146,199:REM e
780 DATA 5,140,211
790 DATA 5,134,199
800 DATA 5,134,179
810 DATA 5,140,167
820 DATA 5,148,183
830 DATA 4,148,211,3166:REM r
840 DATA 5,148,167
850 DATA 4,148,199
860 DATA 5,154,211
870 DATA 5,160,199
880 DATA 69,40,215:REM Dot i
890 DATA 0,0,7
900 DATA 4,160,8:REM Cliff
910 DATA 4,160,111
920 DATA 120,8
930 DATA 5,120,111,2712
940 DATA 4,107,109
950 DATA 85,120,86
960 DATA 0,0,2
970 DATA 4,160,119
980 DATA 4,160,111
990 DATA 85,120,119
1000 DATA 85,120,111
1010 DATA 85,102,115
1020 DATA 85,103,107
1030 DATA 0,0,6,2314
1040 DATA 4,0,0:REM Sea
1050 DATA 4,0,7
1060 DATA 85,160,0
1070 DATA 85,160,7
1080 DATA 0,0,3
1090 DATA 4,92,111:REM Man Head
1100 DATA 4,84,111
1110 DATA 85,98,123
1120 DATA 85,78,123
1130 DATA 85,98,139,1835
1140 DATA 85,78,139
1150 DATA 85,92,151
1160 DATA 85,84,151
1170 DATA 4,98,127
1180 DATA 4,98,135

1190 DATA 85,101,127
1200 DATA 4,86,110
1210 DATA 4,86,106
1220 DATA 85,90,110
1230 DATA 85,90,106,2691
1240 DATA 0,0,0
1250 DATA 4,98,123
1260 DATA 5,90,123
1270 DATA 0,0,1
1280 DATA 69,94,138
1290 DATA 0,0,4
1300 DATA 4,77,110
1310 DATA 4,84,110
1320 DATA 85,78,139
1330 DATA 85,86,139,1750
1340 DATA 85,80,143
1350 DATA 85,92,143
1360 DATA 0,0,1
1370 DATA 4,84,155
1380 DATA 4,78,144
1390 DATA 85,92,155
1400 DATA 85,98,144
1410 DATA 5,101,144
1420 DATA 0,0,1
1430 DATA 4,90,44,2146:REM First leg
1440 DATA 4,95,44
1450 DATA 85,90,28
1460 DATA 85,95,28
1470 DATA 0,0,2
1480 DATA 4,84,107:REM Body
1490 DATA 4,92,107
1500 DATA 85,76,91
1510 DATA 85,100,91
1520 DATA 85,76,56
1530 DATA 85,100,56,1940
1540 DATA 85,84,40
1550 DATA 85,92,40
1560 DATA 0,0,1
1570 DATA 4,86,94:REM Arm
1580 DATA 4,89,88
1590 DATA 85,89,100
1600 DATA 85,99,88
1610 DATA 85,96,100
1620 DATA 85,106,104
1630 DATA 85,101,112,2212
1640 DATA 0,0,3
1650 DATA 4,104,109:REM Hand
1660 DATA 4,108,109
1670 DATA 85,105,116:REM Second leg
1680 DATA 0,0,1
1690 DATA 4,86,62
1700 DATA 4,86,52
1710 DATA 85,91,62
1720 DATA 85,96,44
1730 DATA 85,102,52,1744
1740 DATA 85,97,28
1750 DATA 85,104,28
1760 DATA 0,0,4
1770 DATA 4,98,27:REM Feet
1780 DATA 4,98,20
1790 DATA 85,102,27

1800 DATA 85,107,20
1810 DATA 4,91,27
1820 DATA 4,91,20
1830 DATA 85,94,27,1551
1840 DATA 85,99,20
1850 DATA 0,0,4
1860 DATA 4,6,36:REM Big fish
1870 DATA 4,6,44
1880 DATA 85,14,8
1890 DATA 85,23,20
1900 DATA 85,66,8
1910 DATA 85,28,20
1920 DATA 4,66,8
1930 DATA 85,52,40,1090
1940 DATA 85,64,32
1950 DATA 85,56,40
1960 DATA 0,0,0
1970 DATA 4,66,16
1980 DATA 4,66,30
1990 DATA 85,54,20
2000 DATA 4,49,31
2010 DATA 4,49,24
2020 DATA 85,52,31
2030 DATA 85,52,24,1197
2040 DATA 0,0,7
2050 DATA 4,49,31
2060 DATA 5,49,24
2070 DATA 5,52,24
2080 DATA 4,66,17
2090 DATA 29,55,20
2100 DATA 29,64,28,562
2110 DATA 43054
2160 S%=0
2170 FORA% = 0T019
2180 T%=0
2190 FOR B% = OTO9
2200 READC%,D%,E%
2210 ?(&DOC + AW30 + BV3) = C%
2220 ?(&DOD + A%*30 + 8%1) = D%
2230 ?(&DOE + A%*30 + B%*3) = E%
2240 T%= T%+ C%+ D% + E%
2250 I FA% = 19AN D B% = 6 B% = 9
2260 NEXT
2270 READC%
2280 IFC%< >T% PRINT"Error in lines";A%*

100 + 140;" — ";AW100 + 230:END
2290 S%= S%+ T%
2300 NEXT
2310 READC%
2320 IFC%< > S% PRINT"Error in data":END
2370 FOR PASS = 0TO3STEP3
2380 P%= &F5B
2390 [OPTPASS
2400 .Display
2410 LDY # 0
2420 .Lb1
2430 LDA&D00,Y
2440 JSR&FFEE
2450 INY
2460 CPY # &C
2470 BNELb1

2480 LDX # 0
2490 STX&70
2500 LDX # &D
2510 STX&71
2520 .Lb2
2530 LDA(&70),Y
2540 BEQLb3
2550 TAX
2560 LDA # 25
2570 JSR&FFEE
2580 TXA
2590 JSR&FFEE
2600 JSRLb6
2610 LDA(&70),Y
2620 ASLA:ASLA:ASLA
2630 JSR&FFEE
2640 LDA(&70),Y
2650 LSRA:LSRA:LSRA:LSRA:LSRA
2660 JSR&FFEE
2670 JSRLb6
2680 LDA(&70),Y
2690 ASLA:ASLA
2700 JSR&FFEE
2710 LDA(&70),Y
2720 LSRA:LSRA:LSRA:LSRA:LSRA:LSRA
2730 JSR&FFEE
2740 .Lb5
2750 JSRLb6
2760 CPY # &513
2770 BNELb4
2780 LDA&71
2790 CMP# &F
2800 BNELb4
2810 RTS
2820 .Lb4
2830 JMPLb2
2840 .Lb3
2850 LDA # 18
2860 JSR&FFEE
2870 JSRLb6
2880 LDA(&70),Y
2890 JSR&FFEE
2900 JSRLb6
2910 LDA(&70),Y
2920 JSR&FFEE
2930 JMPLb5
2940 .Lb6
2950 INY
2960 BNELb7
2970 IN C&71
2980 .Lb7
2990 RTS
3000]NEXT

SAVE this and RUN it. Then CALL Display to
execute the machine code program. If it
works properly *SAVE the machine code with
the instruction *SAVE "MCLIFF" D00111 FD7.
It can then be *LOADed back in again when
required and CALLed with the instruction
CALL &F5B.

If the machine code program does not work
and you need to re-assemble it, LOAD the
BASIC program and assembly language back
off tape—but don't forget to type in
PAGE = &3000 and NEW and *TAPE if you
have a DFS first.

THE DATA
The BASIC program constructs a table of
data which the machine code program can
access. The data table starts at DOO. Line 90
READS in the DATA from Line 80 into memory
locations D00 to DOB. The first two items of
DATA in Line 80, 22 and 2, act as a MODE t-
or VDU 22,2— command. Similarly, the rest of
the DATA in Line 80 acts as a VDU 23
command which switches the cursor off.

The rest of the DATA, which specifies what
is shown on the screen is contained in Lines
140 to 2100. This is READ into the data table
by Lines 2170 to 2230. If the first item of a
line of DATA is a zero, it acts as a GCOL
statement and the DATA in the two bytes
following it specify the colour to be used and
how it is to be plotted.

If the first item is not zero, the line of DATA
is used as a PLOT command. A leading 4 acts as
a MOVE command, a 5 is a DRAW, an 85 fills in
a triangle with colour and a 29 draws a dotted
line. The solid blocks of colour on the screen
are made up of triangles and the dotted lines
are the fish's teeth.

You'll notice that every ten lines there is an
extra item in the DATA line. This is a check
sum. The preceding DATA is added up and the
total is compared with the check sum by Line
2280. If they don't match, it kicks up an error
message.

And there is a final check sum in Line 2110
which Line 2320 uses to double-check the
data. REM statements tell you which piece of
DATA does what, but you need not bother to
key these in, of course.

THE ASSEMBLY LANGUAGE
Lines 2370 to 2390 set up the assembler—the
origin for the machine code is &F5B which is
the execution address. But when the BASIC
program is still in memory it is possible to
CALL the label Display directly to execute the
routine.

Y is set to zero and LDA&D00,Y loads up
the first byte of the data table. The micropro-
cessor then jumps to the subroutine at &FFEE
in the operating system. This is the OSWRCH
routine which writes the character in the
accumulator to the screen through a selected
output stream. Calling this routine in ma-
chine code is the equivalent of using a VDU
command in BASIC.

Y is then incremented and compared to 12,

after which the processor jumps back to the
beginning again to output the next byte if the
Y register hasn't counted along to, and out-
put, the 12th byte of the table yet. The first 12
bytes put the screen display into MODE 2 and
switch off the cursor—you don't want the
cursor flashing in the middle of your title
page.

The instructions on Lines 2480 and 2510
use the X register to store the low and high
bytes of the address of the start of the display
memory in zero-page memory locations 70
and 71.

LDA(&70),Y uses indirect addressing to
load up the next byte of the data table. BEQ
checks to see if this is equal to zero. If it is, the
processor is sent off to the colour-change
routine which begins on Line 2840.

If not, the data byte in A is transferred into
X with the TAX command, to preserve it.
Then A is loaded with 25 and the output
subroutine at FFEE is called. This switches
on the machine code equivalent of the PLOT
command.

The data byte is then transferred back into
the A register with the TXA instruction, and it
is output to the FFEE instruction. This tells
the machine code PLOT routine what type of a
PLOT is required—a MOVE, DRAW, colour fill
or dotted line. The subroutine that begins on
Line 2940 is then called.

THE INCREMENT ROUTINE
If you look down at the routine at Line 2940
you will see that it increments the Y register.
If the result of the increment is not zero, the
BNE instruction following branches onto the
label . Lb7 and the RTS returns the processor to
the instruction after the subroutine was called.

But if Y is incremented to zero—in other
words, the end of a page has been reached—
the branch is not made and the high byte of
the zero-page pointer is incremented before
the processor returns.

THE COORDINATES
The graphics screen is 1,280 by 1,024 so the
coordinates have to be two bytes long. There
are two coordinates, so you need four bytes of
data in all. But the data given here is only two
bytes long!

There are ways of encoding the two byte
coordinates required into one byte. The X
coordinate, for example, must be between 0
and 4FF. So the high byte must be in the
range 0-4 and only takes up three bits. So if
you put the high byte of the coordinate into
the three most significant bits of a memory
location, you have another five bits into which
you can put the low byte.

The only problem with this is that you
can't adjust your PLOT positions very finely—
you can only MOVE or DRAW to every eighth
screen position. But that doesn't matter as the
routine at FFEE will DRAW or fill every pixel
between and the only effect will be to make
the graphics a little more crude.

In the program, though, the coordinates
have to be separated out again. So when the
data byte in question is loaded up by the
instruction in Line 2610, it is then shifted to
the left by three AS LA—Arithmetic Shift Left
on A—instructions. This shifts the three most
significant bits—which contain the high byte
of the X coordinate—out of the register. It
also effectively multiplies the contents of the
least significant five bits by eight. (Don't
worry though, the programmer divided the
low byte of the X coordinate by eight before
encoding them.)

And to get the high byte of the X coordi-
nate out of the three most significant bits,
Line 2720 makes five Logical Shifts Right on
A. You don't need to concern yourself with
the difference between a logical and arithme-
tic shifts. Shifts to the left are always arithme-
tic and shifts to the right are always logical.
The 6502 only gives you those two options.

The high- and low-byte breakdown is even
more uneven in the Y coordinate data byte.
The high byte can only be beaten between 0
and 3, so only two bytes are required. And six
bytes are left for the low byte. So only two
shifts left and six shifts right are required to
obtain the high and low bytes of the
coordinates.

After each of these coordinate bytes are
obtained they are output to the FFEE routine
which executes the appropriate instruction on
the screen.

LEAVING THE ROUTINE
The data table finishes at F5C, one memory
location before the beginning of the program.
So after the data byte pointer has been

incremented by calling the increment routine
in Line 2870, the low byte in Y is compared
with 5B and the high byte in memory location
71 is compared with F.

If both match, the processor gets to the RTS
and returns to BASIC. But if either of them
doesn't match, the BNE instructions take it
back to the beginning of the program again to
pick up the next data byte.

THE COLOUR ROUTINE
The BASIC G COL instruction is equivalent to
a VDU 18. So in machine code 18 is loaded into
A and the routine at FFEE is called. Then the
next two bytes containing the parameters are
loaded into A and output through FFEE.

1U: 'HI
The first thing that has to be done in any
game is to print the title on the screen.
Although the print routine is in machine
code, there is little point in supplying the
words to be printed in machine code. Instead
the words you want printed on the screen are
typed in as part of the following BASIC
program which then POKES them into
memory:

1 CLEAR200,16999
10 AD =17000
30 READ A$
40 FORA =1 TO LEN(A$):B =ASC

(MID$(A$,A,1))
50 IFB < &H61 THEN POKEAD,B ELSE POKE

AD,B —96
60 AD=AD+1
70 NEXT A
80 DATA"cliffhangercreated by a.doewritten by

s.kellawayand g.hedley"

When this is RUN it constructs a data table in a
protected part of memory. To SAVE this data
to tape type CSAVEM "DATA", 17000,
17059, 19000.

If you are using the assembler given in
INPUT you have to type CLEAR 200, 18999
to protect the machine code. Then key in the
following assembly language:

ORG 19000
START JSR CLS

LDX #1057
LDY #17000
LDB #5
JSR LPRINT
LDX #1127
LDB #6
JSR LPRINT
LDX #1377
LDB #16
JSR LPRINT

LDX #1440
LDB #21
JSR LPRINT
LDX # 1479
LDB #12
JSR LPRINT
LDA # 5

PAUSE LDX # 65535
PAUSEI LEAX — 1,X

BNE PAUSEI
DECA
BNE PAUSE
JSR CLS
RTS

LPRINT EQU 19174
CLS 	EQU 19148

SAVE the source code to tape using the SAVE
option on the assembler. Assemble it, then
type NEW to get rid of the assembler. LOAD
your machine code monitor and use it to SAVE
the object code.

You must have both this machine code
program, the following two machine code
routines and the data table in memory before
you execute it using the EXEC 19000.

THE BASIC
The BASIC assembler clears all but one
graphics screen with PCLEAR1, and this move
makes more memory available to the machine
code.

Then the three blocks of string data—
that is, the title and instruction words—are
POKEd into a data table which starts at
17,000. Most of the ASCII codes need 96
taken away from them to give the screen code
for reversed out letters. Others—those less
than 61 hex—can be POKEd in as they are and
will still give reversed out characters.

CLEARING THE SCREEN
The machine code starts at 19,000, after the
data table. The first thing the machine code
program does is jump to the CLS subroutine.
This starts at 19148. In this first control
routine the label is defined by an EQUate. This
gives the start address of the following
routine:

ORG 19148
CLS 	LDX #1024

LDA # 128
CLSI 	STA ,X+

CMPX # 1536
BLO CLSI
RTS

The X register is loaded with 1024, the
address of the start of the screen. A is loaded
with 128, the ASCII of a blank character. STA

,X + then stores it in the screen position
pointed to by X and X is incremented. The
routine is performed over and over again until
X is incremented past 1536, which is the
address of the end of the screen.

As the incrementation is done after the
blank is stored on the screen, a BLO—Branch if
LOwer—is used to break out of the CLSI loop.
SAVE this routine separately.

PRINTING A STRING
When the microprocessor returns from the
CLS subroutine, the control routine prepares
the registers for printing the words on the
screen.

The X register holds the position you want
the first letter of the string to be printed on
the screen. The C of Cliffhanger is to be
printed at 1057.

Y carries the memory location of the first
letter to be printed in the data table. As C is
the first letter of the data table, Y is loaded
with 17000 to start with. And B contains
the number of characters to be printed on the
screen in that string. To start with you are
only going to print the word 'CLIFF', so B is
loaded with 5. Then the jump to the LPRINT
subroutine is made. Again, its start address,
19174, is defined by an equate at the end of
the main routine.

THE LPRINT ROUTINE
The LPRINT routine starts at 19174 and
actually takes the data from the data table and
displays it on the screen one character at a
time.

ORG 19174
LPRINT LDA ,Y +

STA ,X +
DECB
BNE LPRINT
RTS

The screen codes from the data table pointed
to by Y are loaded into A and the pointer is
incremented. STA ,X + then stores them in the
screen position pointed to by X and incre-
ments X to move onto the next screen
position, ready to pick up the next character
to output.

DECB then clocks back the B register and
the routine is repeated with the next character
until B is counted down to zero. Then the
microprocessor returns to the control routine.
SAVE this routine separately.

PRINTING THE TITLE PAGE
The routine then goes on to print the rest of
the title page, a line at a time.

To deal each line of text the X register is

loaded with a new print position for the
beginning of the text. And the length of each
line is loaded into B.

A new value does not have to be loaded into
Y each time, as the Y pointer is simply
incremented along the data table B characters
at a time.

THE PAUSE ROUTINE
When the last line of the title page has been
printed up, the microprocessor has to be
made to pause so that you can read what it
says. Machine code is so fast that the program
would whip on into the instruction page
which comes next before you had a chance to
blink an eye.

The accumulator is loaded with 5 and the
two-byte X register is filled by loading it with
65535. LEAX —1,X decrements it and BNE
PAUSEI loops back so that the X register is
decremented again and again until it is 0.
Then A is decremented and the micropro-
cessor is sent back to do it all again until A is
decremented to zero and BNE drops out of the
loop.

So the outer PAUSE loop in the A register is
executed five times and the inner PAUSEI
routine is executed 65,535 times each time the
microprocessor goes round the outer loop.
The advantage of using a two-loop pause like
this is that you can fix the length of pause
accurately by setting it roughly with the value
of the outer loop and fine-tuning it with the
value used in the inner loop until you get it
exactly right.

Then the CLS subroutine is used to clear
the screen again. And the processor proceeds
to print up the instruction page—except that
this case it hits an RTS which returns it to
BASIC as this is the end of the first part of
Cliffhanger, the INPUT game.

Sorting lists into alphabetical order,
searching for a specific string or
organizing form letters, you can do
all of these, plus print out your text

In the first two parts of the text editor listing,
you entered the basic screen editor features
which allow you to create text files or data
files. This third, and final, part provides the
SORT, SEARCH, PRINTER and FORM
LETTER routines.

SORTING
The SORT feature employs a delayed re-
placement sort routine (see page 708) and is
used to sort screen lines into alphabetical
order. It is, therefore, very useful for sorting
lists such as indexes or records.

SEARCHING
The SEARCH feature will check your text for
a specified string and can be called up during
editor mode. The search starts at the point
where the > marker is placed so make sure it
is at the start of the copy to ensure everything
in memory is searched.

If a search fails—typically because the
search string has been miskeyed—the marker
settles at the bottom of the text. On the
Dragon and Tandy, text is stored in the form
of individual screen lines and a search will fail
if the string you are looking for embraces two
or more lines. If you are certain that a
specified string does exist, try shortening it.

When a search is completed, the program
remains in editor mode, and you can easily
copy the search string text to the work area:

PRINTOUT
The PRINTER routine enables you to pro-
duce hardcopy output of your text files. It has
some special features including a set-up rout-
ine to control printer formatting and a routine
for form letters. If a non-standard printer
combination is fitted, interface 'driver' soft-
ware must, of course, be loaded and activated
before using the text editor's printout facility.

FORMATTING
It is little use being able to enter and edit your
text if you cannot print it out in the form you
want. For example, you may need to print out
the heading for a document in the centre of a
line with a line space underneath. Using the
formatting commands this is easy. Another
very common example is in letter writing

where the sender's address is arranged neatly
at the right-hand side, and the address you are
sending it to arranged on the left.

The symbols used are similar to those in
the letter writing program on page 124, and
they are used in the same way. Remember that
they always have to be placed at the beginning
of the line they act on.

The hash mark, # , positions the line of
text on the right-hand side of the page. If
there is just one line then it will be positioned
so its end is as far right as it will go. If there
are several lines together, each with a hash,
such as you might have for an address, then
the program measures the length of the
longest line and ranges all the others to match.

The ampersand, &, makes the following
text start on a new line at the left of the page.
This symbol would be used at the start of each
line of the address you want lined up. The
dollar sign, $, does the same thing but leaves a
line space above the line.

The asterisk, *, positions the text in the
centre of the line. When using this you have to
be careful that the text is not too long—it has
to be shorter than a normal line of text.

FORM LETTER WRITING
As well as the usual formatting commands,
there is another very useful facility (except on
the Spectrum which cannot support it) which
allows you to create a form letter. This uses an
embedded command, a pair of back-to-back
brackets,][, which can be placed almost
anywhere in the text. The symbols are used in
place of words or blocks of text that may vary
from letter to letter. So you might start a letter
with Dear][, for example, and then enter a
new person's name for each letter.

The symbols can be placed anywhere
except after a # symbol. This is because the
program needs to measure the length of the
line to position it correctly on the right, and
since it positions the text before you fill in the
block, you're likely to run into trouble.

The text to replace the symbols can be
entered directly from the keyboard as each
symbol is encountered, or read from a file.

The maximum characters per insertion is
40 on the Acorn, 32 on the Dragon and 40 on
the Commodore 64. This means that running

SORTING
SEARCHING

PRINTOUT
FORM LETTER

WRITING

FORMATTING
CENTRING TEXT
RANGING LEFT

RANGING RIGHT
SPACING TEXT

text has to be broken down into units of 40/32
characters depending on the machine and a
set of][has to be entered for each unit at the
beginning of the block of text. No block of
text can be greater than 250 characters.

If the variable information is being entered
from file, the computer will search for the 11
and enter the information at the appropriate
places.

a
4000 REM print out
4010 LET tt= (pl —11)/2
4020 LET d = 0
4025 FOR n = t +3 TO b-3
4030 LET a$=t$(n)
4032 IF LEN a$=0 THEN NEXT n: RETURN
4034 IF a$(LEN a$-1) < > CHR$ 32 THEN

GOTO 4037
4035 IF a$(LEN a$) = CHR$ 32 THEN LET

a$=a$ (TO LEN a$ —1): GOTO 4032
4037 LET 1= LEN a$
4040 LET c = 0
4050 IF c = I THEN NEXT n: LPRINT CHR$ 13:

RETURN
4060LETc=c+1:LETd=d+1:1Fc>1

THEN GOTO 4100
4070 IF a$(c)="#" THEN GOTO 4500
4080 IF a$(c)="*" THEN GOT04700
4085 IF a$(c) ="&" THEN GOTO 4850
4090 IF a$(c) _"$" THEN LPRINT CHR$

13;CHR$ 13;: LET d = 0: GOTO 4900
4100 LET n= n +1: IF n> = b —1 THEN LET

1= LEN a$: GOTO 4111
4105 IF t$(n,1)="$" OR t$(n,1)="#" OR

t$(n,1)="*" OR t$(n,1)="&" THEN
GOTO 4110

4106 LET a$ a$ +t$(n)
4107 IF a$(LEN a$-1)< > CHR$ 32 THEN

GOTO 4100
4108 IF a$(LEN a$)=CHR$ 32 THEN LET

a$=a$(TO LEN a$-1) GOTO 4107
4109 GOTO 4100
4110 LET n = n-1: LET I= LEN a$
4111 IF a$(c) = CHR$ 32 THEN GOTO 4800
4112 LPRINT a$(c);
4115 IF d>11 THEN LET d=0
4120 GOTO 4050
4500 LET n1=0: LET ta =II: LET be= 0
4510 LET le= LEN a$-1: IF le> II THEN

PRINT FLASH 1;"FORMAT ERROR —

ADDRESS TOO LONG": BEEP 2,10:
RETURN

4520 IF le> be THEN LET be= le
4530 LET nl= n1+1: LET n =n +1: LET

a$=t$(n)
4532 IF LEN a$=0 THEN NEXT n: RETURN
4535 IF a$(LEN a$) = CHR$ 32 THEN LET

a$=a$(TO LEN a$-1): GOTO 4532
4538 IF a$(1)="#" THEN GOTO 4510
4540 LET n=3
4550 LET tr=tt +11— be: FOR g=1 TO nl:

FOR h=1 TO tr: LPRINT CHR$ 32;: NEXT
h: LET n = n +1: LET a$=t$(n)

4552 IF LEN a$=0 THEN NEXT n: RETURN
4555 IF a$(LEN a$)=CHR$ 32 THEN LET

a$=a$(TO LEN a$-1): GOTO 4552
4558 LPRINT a$(2 TO): NEXT g
4560 NEXT n: RETURN
4700 LET ta = (II — I)/ 2 + tt: IF ta <tt THEN

LPRINT CHR$ 13: PRINT FLASH
1;"FORMAT ERROR — CANNOT
CENTRE": BEEP 2,10: RETURN

4710 LPRINT CHR$ 13;: FOR m=1 TO ta:
LPRINT CHR$ 32;: NEXT m: LPRINT a$(2
TO);: LET d=0: NEXT n: RETURN

4800 LET sl =II —d —1: LET cc = c +1: LET
x=1

4810 IF cc> =1 THEN GOTO 4825
4820 IF a$(cc) < > CHR$ 32 THEN LET

cc =cc +1: LET x =x +1: GOTO 4810
4825 IF x> =11 THEN LPRINT CHR$ 13:

PRINT FLASH 1;"FORMAT ERROR —
WORD TOO LONG": BEEP 2,10: RETURN

4830 IF sl> =x THEN GOTO 4112
4850 LPRINT CHR$ 13;: LET d=0
4900 FOR m=1 TO tt: LPRINT CHR$ 32;:

NEXT m: GOTO 4050
8000 REM search
8002 IF z$="" THEN PRINT # 1;AT 0,0;

BRIGHT 1;"No target string defined":
PAUSE 100: PRINT # 1;AT 0,0;s$;s$:
RETURN

8005 PRINT #1;AT 0,0;s$;s$: IF p= b— 2
THEN LET p = 4

8010 FOR n =1 TO 33—LEN z$
8020 IF t$(p,n TO n + LEN z$ —1) = z$ THEN

LET n =33— LEN z$: NEXT n: GOTO 8050
8030 NEXT n
8040 LET p=p+1: IF p=b-2 THEN LET

p= p —1: GOTO 8050
8045 GOTO 8010

8050 LET p = p +1: GOSUB 1000: RETURN
8500 REM sort
8505 PRINT # 1;AT 0,0;sts$
8510 LET ss = 4
8520 IF t$(ss,1) =" A " THEN GOTO 8550
8530 LET ss= ss +1: IF ss = b THEN PRINT

1;AT 0,0; BRIGHT 1;"No limits defined":
PAUSE 100: PRINT # 1;AT 0,0;sts$:
RETURN

8540 GOTO 8520
8550 LET se = ss + 1
8560 IF 1(se,1) " A " THEN GOTO 8600
8570 LET se = se +1: IF se= b THEN PRINT

1;AT 0,0; BRIGHT 1;"Only one limit
defined": PAUSE 100: PRINT # 1;AT
0,0;s$;s$: RETURN

8580 GOTO 8560
8600 IF ss = se —1 OR ss = se — 2 THEN

GOTO 8900
8610 PRINT # 1;AT 0,0; BRIGHT

1;"SORTING"
8620 FOR i = ss +1 TO se-1
8630 LET k= i
8640 FOR j= i +1 TO se-1

8650 IF t$(j) < t$(k) THEN LET k=j
8660 NEXT j: IF i < > k THEN LET w$=t$(k):

LET t$(k) =t$(i): LET t$(i) =w$
8670 NEXT i
8900 FOR n =ss TO b: LET t$(n) = t$(n +1):

NEXT n
8910 FOR n = se —1 TO b: LET

t$(n) = t$(n +1): NEXT n: LET b= b —2:
IF p>b-2 THEN LET p=p-2

8915 PRINT # 1;AT 0,0;sts$
8930 GOSUB 1000
8940 RETURN

To use the SORT routine, first define the
starting and finishing points of the block of
text to be sorted. To do this enter an T above
the first line and below the last line. To start
the sort press 'CAPS SHIFTI and 4. The two Is
are removed from the text file during sorting.

To operate the SEARCH feature, press
CAPS SHIFT and 2 and you will be asked to
enter the search string. Once you have entered
your chosen string, a search will automatically
begin. As soon as the computer finds a match,

the cursor will appear below its first occur-
rence. If you wish to find further occurrences
of the string press 'CAPS SHIFTI and 3. If at any
time you wish to redefine the target string,
press 'CAPS SHIFT and 2.

Press 6 to send the program to the printout
routine at Line 4000. This will print out the
text to the printer settings entered in Line
100, that is, 32 characters per line and 32 lines
per page. If you wish to print at a different
printer setting, press 7 instead of 6.

When formatting, you need to prefix any
line you want printed out in a particular way,
using a special symbol. The hash mark, #,
prefixes all lines which you want positioned to
the right-hand side of the printout.

The ampersand, &, forces a line feed and
starts a new line on the left-hand side of the
paper. The dollar sign, $, does the same thing
except it forces a double line feed. Use the * to
centre text.

4000 PRINT" gg a"TAB(15)
"p SAVE FILED"

4005 I FTL = 1TH EN PR INTTAB (12)
"ggggggNOTHING TO SAVE":FORZ =1
T01500:N EXT:RETURN

4010 INpurigggggggggFILE
NAM E"; F$: F$ = LEFT$(F$,16)

4020 I FLEFT$(F$,1) < "A"ORLEFT$
(F$,1)>"Z"THEN4010

4030 I FTS = 1TH EN4110
4040 PRINT"ID gg pi PLACE TAPE IN

POSITION THEN PRESS
THEM] PJ RETURN KEY.gjgg"

4050 GETA$:1FA$< > CHR$(13)THEN
4050

4070 OPEN1,1,1,F$
4080 PRINT # 1,CP:PRINT # 1,TL
4090 FORK = OTOTL: PR I NT # 1,CH R$

(34) +TX$(K) + CHR$(34): NEXT
4100 CLOSE1:RETURN
4110 PRINT"O PJENSURE DRIVE IS ON

AND A DISK IS INEDIMPADJI
PLACE.THEN HIT < RETURN > "

4120 GETA$:1FA$ < > CHR$(13)
TH EN4120

4130 OPEN1,8,15,"S0:" + F$:CLOSE1:
OPEN2,8,2,F$ + ",S,W"

4140 PRINT # 2,CP:PRINT # 2,TL
4150 FORK = OTOTL:PRINT # 2, CHR$(34)

+ TX$(K) + CHR$ (34)
4160 NEXT:CLOSE2:RETURN
4500 PRINT"0 II"TAB(14)

"p LOAD A FILED"
4505 I FTL = 1TH EN4540
4510 POKE198,0:PRINTTAB(10)

"ggARE YOU SURE (Y/N)?",

4520 GETRUFR$< >"Y" ANDR$< >
"N"TH EN4520

4530 1FR$ = "N"THENRETURN
4535 TL=1:GOTO 4500
4540 INPUT"1121MgMAMINPUT

FILENAME";F$:F$ = LEFT$(F$,16)
4550 1FLEFT$(F$,1) <"A"ORLEFT$

(F$,1)>"Z"THEN4540
4560 IFDL=1THEN4650
4570 pRINT"aligannipm
EJPJp POSITION TAPE THEN PRESS

RETURN Eg "
4580 GETR$:1FR$ < > CHR$(13)

THEN4580
4590 OPEN1,1,0,F$
4600 INPUT # 1,CP,TL
4610 FORK =OTOTL:1NPUT#1,TX$

(K):NEXT
4620 CLOSE1:RETURN
4650 OPEN2,8,2,F$+",S,R":

INPUT # 2,CP,TL
4660 FORK = OTOTL:INPUT # 2,TX$(K)
4670 NEXT:CLOSE2:RETURN
5000 PRINT"0gifi - CHR$(142);

TAB(15);"k1/0 SETUPEI"
5005 PRINT"gigg pJLOAD FROM .

TUAPE OR a DMISK ?Pr;
5010 GETB$:1FB$< > "T"AND

B$ < >"D"THEN5010
5020 PR1NTB$:DL =0:1FB$="D"
THENDL =1

5030 PRINT:PRINT" pi WAVE TO
aT•APE OR a DIIIISK ?H";

5040 GETB$:1FB$ < > "T"AND
B$ < >"D"THEN5040

5050 PRINTB$:TS=0:IFB$="D"
THENTS =1

5060 RETURN
5070 CF = 0:L= PM:PRINT LEFT$

(GC$,23)"INPUT TARGET STRING."
5080 INPUT TG$:1FTG$=""THEN5070
5090 PRINTGC$;SPC(25

)"appiEARCHING"
5100 IFL=TLTHENCP=TL:PM = CP:

PRINT"0":GOSUB2090:RETURN
5110 1FTX$(L)=""THENL= L+1:

GOT05100
5111 FORF=1TOLEN(TX$(L)):CF$=

MI D$(TX$(L),F,LEN(TG$))
5112 1FCF$=TG$THENCF= F
5118 NEXTF
5119 IFCF=OTHENL=L+1:GOTO

5100
5120 CP= L+ 1:PM =CP:PRINT

"0":GOSUB2090:RETURN
5130 IFSS>SETHENTT= SS:SS= SE:

SE = 1T
5140 SE = SE —1
5150 PRINTGC$;SPC(25)

"a Egm ORTINGO"
5160 FORI = SSTOSE —1
5170 K =I
5180 FORJ =I +1TOSE

5190 IFTX$(J) <TX$(K)THENK=J
5200 N EXT: I Fl < > KTHENTT$ = TX$

(K):TX$(K) =TX$(I):TX$(I) =TT$
5210 NEXT:PRINT"0":GOSUB2090:

RETURN
5500 PRINTID gg a";TAB(13);

"PRINTER SETUP13"
5510 PRINT"Mgg Mgr:INPUT

"pj MAX LINE WIDTH Pj1";MW:MW =
INT(MW):I FMW < 1TH EN5510

5520 INPUT" gg gg LINE WIDTH
REQUIREDPJ";TW:TW= INT(TW):
1 FTW < 10 RTW > MVVTHEN5520

5530 INPUT"gg PJPAGE LENGTHPJ";PL:PL
= INT(PL):IFPL <1THEN5530

5540 INPUT"gg PJTEXT LENGTH PJ";TH:TH
= I NT(TH):I FTH > PLTHEN5530

5550 GP =INT((MW — TW)/2):LF$ =
"":FORF=1TOINT((PL—TH)/2):
LF$= LF$+ CHR$(13):NEXT

5560 PRINT"gg WHICH PRINTER
DEVICE NO.":PRINT"PJ
5,6111 (6= PLOTTER ONLY) ?";

5565 GET Z$:DN =VAL(Z$)
5570 IFDN <40RDN >6THEN5565
5580 PRINT DN:PR1NT"g MIS THIS OK

(YIN)?"

5590 GET G$:IF G$ < >"Y" AND
G$ < >"N" THEN 5590

5600 IF G$= "N" THEN
5500

5610 RETURN

To use the SORT routine, enter edit and then
editor mode (see previous article). Locate the
marker • at the top or bottom extreme of the
range of lines you wish to sort, then press @.
Move the marker to the other extreme and
press @ again. This defines the screen line
sort range and automatically starts the sort.

The search feature can be called up during
edit mode by pressing S. The work area
displays a prompt asking you to enter the
search string. Enter this and press RETURN Ito
commence the search.

If, and when, the specified string is dis-
covered, the relevant area of text is displayed
with the marker immediately below the line
containing the string you're after.

Select P from the main menu any time you
want to produce hard copy. You are first
prompted for a choice of printout from
(M)EMORY or from a (F)ILE. You are then
asked whether you wish to fill variable blocks
of text—this instruction applies if you have
set up a form letter—and then whether from
keyboard or file. These two instructions relate
to form letters only (see below). You are then
asked if you want a sample output. If you then
press Y, you proceed to the printer set-up
routine.

This asks you in turn, to enter the max-
imum line column width (usually 80 charac-
ters), the line width required (60 leaves
margins of 10 characters), the full page line
length (typically 40), and finally the line
length required. You are then asked the
printer device number. Enter 4, 5 or 6,
depending on the printer. You get another
chance to correct errors for there's a closing
"IS THIS OKAY?" prompt. Answer N, and
you've back to the start of this input routine.

You are again asked if you want a sample
printout. Answer Y and a simulated printout
appears on the screen. When formatting the
text, this allows you to check any errors and
correct them.

After the sample output, you are returned
again to the same prompt. Press N to com-
mence a printout. Make sure the printer is
switched on and the paper is in place.

If, earlier on, you selected F for a file
printout, you are immediately transferred to
the normal LOAD routine so that the appropri-
ate text can be called in.

When formatting, the hash mark, #,
ranges copy to the specified right hand mar-
gin. The dollar sign, $, forces a line feed and
indents the line which follows, provided that
the preceding line finished at the right hand
margin. The ampersand, &, forces a line feed,
and stops the printer outputting a line on the
same printed line as the previous line of text
even if there is sufficient character space.
Finally, the asterisk, *, centres the line of text
which it precedes.

For a form letter, insert back-to-back
square brackets][at the points in the letter
where you wish the variable text to go.

1E1
1200 L=CP:CLS:PRINTTAB(15,2)RV$

"SEARCH"NM$
1210 INPUTLINE"INPUT TARGET STRING ",

TG$:IF TG$="" THEN RETURN
1220 PRINT'SEARCHING . . .";
1230 IF L=TL THEN CP = TL:CLS:

GOSUB 600:RETURN
1240 IF 1NSTR(TX$(L),TG$) =0 THEN

L= L+1:GOTO 1230
1250 CP= L+1:GOTO 1350
1260 IF SS >SE THEN SS =SS +SE:

SE= SS — SE:SS = SS — SE
1270 SE=-SE-1
1280 PRINTTAB(13,18)RV$"SORTING ..."

NM$;
1290 FOR I =SS TO SE-1
1300 K =I
1310 FOR J=I+1 TO SE
1320 IF TX$(J) < TX$(K) THEN K =J
1330 NEXT:IF 1< > K THEN TT$=TX$(K):

TX$(K) =TX$(I):TX$(I) =TT$

1340 NEXT
1350 CLS:GOSUB 600:RETURN
1390 CLS:PRINTTAB(12,2)RV$

"PRINTER SETUP"NM$
1400 1NPUT""MAX LINE WIDTH",MW:

MW=INT(MW):IF MW <1 THEN 1400
1410 INPUT"`REQUIRED LINE WIDTH",

TW:TW=INT(TW):IF TW<1 THEN 1410
1420 INPUT"`PAPER PAGE LENGTH",PL:

PL=INT(PL):IF PL <1 THEN 1420
1430 INPUT"`TEXT PAGE LENGTH",TH:

TH=INT(TH):IF TH <1 OR TH>PL THEN
1430

1440 PL2 = INT((PL -TH)/2) + 1:PL3 =
PL2 + TH -1

1450 LF$=STR1NG$(PL-TH,CHR$(10))
1460 TB$=STRING$((MW-TW)/2," ")
1470 RETURN
1480 CLS:PRINTTAB(12,3)RVVPRINTER

ROUTINE"NM$
1490 PRINT"`ON THE PRINTER (YIN)?"
1500 R$=GET$:IF R$< >"Y" AND

R$ < >"N" THEN 1500
1510 IF R$="Y" THEN PF=1 ELSE PF= 0
1520 PRINT'"FROM(M)EMORY OR FROM A

(F)ILE"
1530 R$=GET$:IF R$ < >"F" AND

R$ < >"M" THEN 1530
1540 IF TL =1 AND R$="M" THEN

SOUND1,

-15,100,10:FOR T=1 TO 3000:
NEXT:RETURN

1550 IF R$="F" THEN GOSUB 920
1560 H = 0:KB= 0:PRINT"`FILL VARIABLE

BLOCKS (Y/N) ?',
1570 R$=GET$:IF R$ < >"Y" AND

R$ < >"N" THEN 1570
1580 IF R$="N" THEN 1690
1590 PRINT1K)EYBOARD OR (F)ILE ?"
1600 R$=GET$:IF R$< >"K" AND

R$ < >"F" THEN 1600
1610 KB = 2:IF R$="K" THEN KB =1:

GOT01690
1620 PRINT:1NPUT"FILENAME",F$
1630 IF LENF$ > 8 THEN PRINT"NAME TOO

LONG":GOTO 1620
1640 *TAPE
1650 'OPT2,1
1660 *OPT1,1
1670 IF LF= 0 THEN *DISK
1680 H=OPEN1N(F$):INPUT # H,K,K
1690 CLS:PRINT"WANT TO CHANGE THE

PRINTER SETTINGS ?"
1700 R$=GET$:IF R$< >"Y" AND

R$ < >"N" THEN 1700
1710 IF R$="Y" THEN GOSUB 1390
1720 CLS
1730 PROCPRINT
1740 VDU10,13,3:IF 1-1 THEN CLOSE# H
1750 RETURN

1760 DEF PROCPRINT
1770 PL= PL2:PRINTSTRING$(PL2,

CHR$(10)):PR1NTTB$;
1780 W$="":SL=-- TW
1790 FOR Q=1 TO TL-1
1800 E= 0
1810 TX$=TX$(Q)
1820 IF LEFT$(TX$,1)="#" THEN 1840
1830 IF TX$="" THEN TX$ ="$"
1840 IF PF=1 THEN VDU 2
1850 B$ = LEFT$(TX$,1)
1860 IF NOT(B$="#" OR B$="$" OR

B$="*" OR B$="&") THEN 1990
1870 E= 2
1880 IF W$< >"" THEN PROCWORD:W$=

STRINGS(SL," ❑ "):GOTO 1880
1890 TX$=M1D$(TX$,2)
1900 IF B$="#" THEN PROCADDR:

GOTO 1970
1910 IF B$="`" THEN PROCCENT:

GOTO 1970
1920 IF B$< >"&" AND B$< >"$" THEN

1970
1930 IF B$="$" THEN T=TW
1940 IF B$="&" THEN T=SL
1950 E= 0:W$ = STRING$(T,"111"):

PROCWORD
1960 GOTO 1990
1970 IF E=1 THEN G =GET:ENDPROC
1980 IF E= 2 THEN 2070

1990 K = 1:REPEAT
2000 IF M1D$(TX$,K,2)< >"][" THEN 2050
2010 IF KB= 0 THEN A$="":GOTO 2040
2020 IF KB =1 THEN VDU3:INPUT

LINEA$:GOTO 2040
2030 IF EOF # H THEN CLOSE# H:PRINT:

PRINT"NO MORE FILE INFO":G =GET:
ENDPROC ELSE 1NPUT# H,A$

2040 TX$ = LEFT$(TX$,1NSTR(TX$,"][")
—1) + A$ + M1D$(TX$,INSTR(TX$,
"if") + 2)

2050 W$=W$+M1D$(TX$,K,1):IF MID$
(TX$,K,1) =" " THEN PROCWORD

2060 K= K +1:UNTIL K> LEN TX$
2070 NEXT
2080 PROCWORD
2090 G =GET
2100 ENDPROC
2110 DEF PROCWORD
2120 IF PF =1 THEN VDU2
2130 IF LENW$ < =SL THEN 2190
2140 IF LENW$=SL +1 AND RIGHT$

(W$,1)=" " THEN W$=LEFT$(W$,
LEN(W$)-1):GOTO 2190

2150 IF PL=PL3 THEN PR1NTLF$:PL =
PL2 —1:GOTO 2170

2160 PRINT
2170 PL=PL+ 1:SL= TW:PR1NTTB$
2180 IF LENW$ >SL THEN PRINT"WORD

TOO LONG":E=1:ENDPROC

2190 PRINTWt:SL=SL—LENWS:W$=""
2200 ENDPROC
2210 DEF PROCCENT
2220 IF TW<LENTX$THEN PRINT"CAN'T

CENTRE":E=1:ENDPROC
2230 W$=STR1NG$((TW—LENTX$)/2,

" ")+TX$:W$=W$+STR1NG$
(TW—LENW$," ")

2240 PROCWORD:ENDPROC
2250 DEF PROCADDR
2260 T=Q:LOCAL P:P=LEN(TX$)
2270 REPEAT
2280 T = T + 1
2290 IF 1NSTR(TX$(T),"][") THEN

E =1:PRINT"ILLEGAL][":ENDPROC
2300 IF LEN(TX$(T)) —1 > P THEN

P= LEN(TX$(T)) —1
2310 UNTIL LEFT$(TX$(T+1),1)< >" #"

OR T=TL
2320 IF TW<P THEN PRINT"ADDRESS TOO

LONG":E=1:ENDPROC
2330 FOR K=Q TO T
2340 W$=STR1NG$(TW— P-1," ")+M1D$

(TX$(K),2):W$ = W$ + STRING$
(TW—LENW$," ")

2350 PROCWORD
2360 NEXT:Q= K-1:ENDPROC

To use the program with a disk drive, change
Line 60 to N%=190. To use the SORT
routine, enter edit mode (see previous article).
Locate the > marker at the top or bottom
extreme of the range of lines you want to sort,
then press CTRL and @. Move the marker to
the other extreme and press ICTR L and @
again to start the sort.

The SEARCH feature can be called up
during edit mode by pressing ICTRLI and S.
The work area displays a prompt asking you
to enter the search string. Enter this and press
RETURN to commence the search.

If, and when, the specified string is dis-
covered, the relevant area of text is displayed
with the marker immediately below the line
containing the string you're after. You can't
search for a string across two lines.

Select P from the main menu at any time
you want to see the formatting. You are first
asked if you want the output on the printer
(Y/N), and then asked if the printout is from
(M)EMORY or from a (F)ILE. If you press F
a file is loaded into memory. If there is
nothing in memory there is a warning buzz
and you go back to the main menu. You are
then asked if variable blank spots have to be
filled—this is relevant only if you are doing a
form letter (see below). Finally you are asked
if you wish to change the printer setting or
not. Press Y for the set-up routine.

This asks you, in turn, to enter the max-
imum line column width (usually 80 charac-

ters), the line width required (60 leaves
margins of 10 characters), the full page depth
(typically 66 lines), and finally the line length
required (60 leaves vertical spaces of 3 line
top and bottom).

The default values are indicated in the
samples above—the system is set to these as
soon as the program is RUN and these will be
assumed if you respond N to the printer set-
up prompt. Any new values remain active
until they are changed.

When formatting, the hash mark, #,
arranges copy to the specified right hand
printer margin.

The dollar sign, $, forces a line feed and
leaves a line of spaces above it.

The ampersand, &, forces a line feed. This
stops the printer outputting a line on the same
printed line as the previous line of text even if
there is sufficient character space.

The asterisk, *, centres the line of text
which it precedes.

When keying in a form letter, square
backed brackets][need to be inserted at the
points where variable pieces of information
are going to be inserted.

3000 CLS:PRINT@7,BL$;"printer";BL$;
"routine";BL$

3010 IF TL< 2 THEN 3050
3020 PRINT" FROM (M)EMORY OR FROM

(F)ILE ?"
3030 R$=INKEY$:IF R$ < >"M" AND

R$ < >"F" THEN 3030
3040 IF R$="M" THEN 3060
3050 GOSUB4500
3060 IF TL =1 THEN PRINT"no file in

memory":PY$="T2003EDCA":
GOT03570

3070 KF= 0:PRINT" FILL VARIABLE BLOCKS
(Y/N) ?',

3080 R$=INKEY$:IF R$< >"Y" AND
R$ < >"N" THEN 3080

3090 IF R$="N" THEN 3150
3100 PRINT:PRINT" (K)EYBOARD OR (F)ILE

3110 R$=INKEY$:IF R$< >"K" AND
R$< >"F" THEN 3110

3120 KF =2:IF R$="K" THEN KF =1:
G0103150

3130 PRINT:LINEINPUT" INPUT FILENAME
?";VB$

3140 IF LEFT$(VB$,1)<"A" OR LEFT$
(VB$,1)>"Z" THEN 3130

3150 CLS:PRINT" DO YOU WISH TO CHANGE
THEI11111111111111111111PRINTER SETTINGS
(Y/N) ?',

3160 R$=INKEY$:IF R$< >"Y" AND
R$ < >"N" THEN 3160

3170 IF R$ ="Y" GOSUB5500

3180 CLS
3190 VB = 0:PP =0:AS =0:LC =1:PRINT

" DO YOU WISH FOR A SAMPLE OUTPUT
TO THE SCREEN (Y/N) ?":PRINT" enter
RETURN TO MAIN MENU"

3200 R$=INKEY$:IF R$ < >"Y" AND
R$< >"N" AND R$< >CHR$(13)
THEN 3200

3210 IF R$=CHR$(13) THEN RETURN
3220 IF KF = 0 THEN 3240
3230 IF DL =1 AND KF=2 THEN FREAD

VB$,FROMO;DV:FREAD VB$;DV ELSE IF
KF = 2 THENOPEN "I",# —1,VB$:
INPUT# —1,DV,DV

3240 P=0:GP$="":1F R$="N" THEN
P= —2:GP$=STRING$(GP,32)

3250 FORK =1TOTL-1:1F LEFT$(TX$
(K),1)="#" AND LEN(TX$(K)) —1>AS
THEN AS= LEN(TX$(K))

3260 NEXT:IF AS > TW THEN PRINT
"error address too long":PY$="T402AB":
GOT03570

3270 K = 1:PRINT # P,LF$;GP$;:A$ =
"":1F AS >0 THEN AS$=STRING$
(GP +TW—AS,32)

3280 7$ = TXS(K)
3290 IF TT$="" THEN PRINT# P,CHR$

(13);GPS;:PP =0:LC = LC +1:
GOSU B3590:GOT03520

3300 BP = INSTR(TTS,"]["):IF BP= 0 OR
KF=0 THEN 3390

3310 IF KF=1 THEN 3370
3320 IF DL =1 THEN 3360
3330 IF EOF(—1) THEN 3350
3340 INPUT # —1,RP$:GOT03380
3350 PRINT"error not enough data in file

":PY$="L2005DL402D":
GOT03570

3360 IF EOF(VB$) THEN 3350 ELSE FLREAD
VB$;RP$:GOT03380

3370 BL=BL +1:PRINT:PRINT" INPUT
VARIABLE BLOCK";BL;"?";:
LINEINPUT RP$

3380 TT$= LEFTS(TTS,BP —1) + RP$+
MID$(TT$,BP + 2):GOT03300

3390 ON INSTR("84*#",LEFTCTTS,1))
GOTO 3460,3470,3490,3510

3400 IF PP + LEN(TT$)< =TW THEN
PRINT# P,TT$;:PP = PP +
LEN(TT$):GOT03520

3410 TA$ = LEFT$(TT$,TW — PP)
3420 IF 1NSTR(TT$," ❑ ")>TW THEN,

PRINT"error word too long in ",TT$:
PY$ = "T1002CB":GOT03570

3430 IF RIGHTS(TAS,1) = "ID" THEN 3450
3440 IF LEN(TA$) >0 THEN TA$=

LEFT$(TA$,LEN(TA$) —1):
GOT03430

3450 PRINT # P,TAtCHR$(13);GP$;:
PP = 0:LC = LC + 1:GOSUB3590:TTS =
MIDCTT$,LEN(TAS)+1):IF TT$ < >`'

THEN BP =1:GOTO 3400 ELSE 3520
3460 PRINT # P,CHR$(13);GP$;:

PP= 0:LC = LC +1:GOSUB3590:
TT$=MID$(TT$,2):GOT03300

3470 TT$= M1D$(TT$,2):PRINT# P,
CHR$(13);GP$;:IF PP= TW THEN
PRINT # P,STRING$(INT
(TX/2),32);: RR = INT(TX/2) ELSE PP= 0

3480 LC= LC + 1:GOSUB3590:GOT03300
3490 TT$= MIDCTT$,2):IF LEN(TT$)>

TW THEN PRINT"error cannot
centre";TT$: PY$ = "T103C":
GOT03520

3500 PRINT # P,CHR$(13);GP$;STRING$
(INT((TW— LEN(TT$))/2),32);TT$;CHR$
(13);GP$;:PP = 0:LC = LC + 1:GOSUB
3590:GOT03520

3510 PRINT # P,CHR$(13);AS$;MID$
(TTS,2);:PP= 0:LC = LC +1:GOSUB3590

3520 K=K+1:IF P=0 THEN FORZ=1
TO500:NEXT

3530 IF K<TL THEN 3280
3540 IF P= —2 THENPRINT # P,LF$;LF$

ELSE PRINT:PRINT
3550 IF KF=1 THEN CLOSE # —1 ELSE IF

KF = 2 THEN CLOSE
3560 IF P=0 THEN3190 ELSE RETURN
3570 FORZ=1T010:PLAYPYS:NEXT:IF KF=1

THEN CLOSE# —1 ELSE IF KF=2 THEN
CLOSE

3580 RETURN
3590 IF LC > TH THEN PRINT # P,LF$;

LF$;GP$;:LC =1
3600 RETURN
5070 L=CP:PRINT@384, "INPUT TARGET

STRING?"
5080 LINEINPUT TG$:IF TG$="" THEN

5070
5090 PRINT@500,"searching";BLS;
5100 IF L=TL THEN CP = TL:CLS:

GOSUB2090:RETURN
5110 IF 1NSTR(TX$(L),TG$) =0 THEN

L = L + 1:GOT05100
5120 CP= L +1:CLS:GOSUB2090:RETURN
5130 IF SS > SE THEN TT = SS:SS = SE:

SE =7
5140 SE =SE —1
5150 PRINT@500,"sorting";B14;

BL$;BL$;
5160 FORI =SS TO SE-1
5170 K=1
5180 FORJ =1+1 TO SE
5190 IF TX$(J)<TX$(K) THEN K=J
5200 NEXT:IF l< >K THEN TT$=

TX$(K):TX$(K)=TX$(1):TX$(1)=TT$
5210 NEXT:CLS:GOSUB2090:RETURN

To use the SORT routine, enter edit and then
editor mode (see previous article). Locate the
flashing > at the top or bottom extreme of
the range of lines you wish to have sorted,

then press @. Move the marker to the other
extreme and press @ again. This automati-
cally starts the sort.

The SEARCH feature can be called up
during editor mode by pressing S. The work
area displays a prompt asking you to enter the
search string. Enter this and press 'RETURN to
commence the search.

If, and when, the specified string is dis-
covered, the relevant area of text is displayed
with the marker immediately below the line
containing the string you're after.

Select P from the main menu any time you
want to produce hard copy. You are first
prompted for a choice of printout from
(M)EMORY or from a (F)ILE.

If you select M and there's nothing in
memory, a warning buzz is sounded, a mes-
sage is displayed and the program returns to
the main menu.

If there's something in memory, you are
then asked whether you wish to change the
printer setting or not. Press Y and you
proceed to the printer set-up routine.

This asks you, in turn, to enter the max-
imum line column width (usually 80 charac-
ters), the line width required (60 leaves
margins of 10 characters), the full page line
length (typically 66), and finally the line
length required (60 leaves vertical spaces of 3
lines top and bottom). You get another chance
to correct errors for there's a closing "IS
THIS OKAY" prompt. Answer N and you're
back to the start of this input routine.

The default values are indicated in the
samples above—the system is set to these as
soon as the program is RUN and these will be
assumed if your response to the printer set-up
prompt is N.

You are then asked if you want a sample
output. Answer Y and a simulated printout
appears on the screen. After the sample
output, you are returned again to the same
prompt. Press N to commence printout.

If, earlier on, you selected F for a file
printout, you are immediately transferred to
the normal LOAD routine.

When formatting, the hash mark, #,
ranges copy to the specified right-hand prin-
ter margin—this is set at 60 until adjusted in
the printer set-up routine.

The dollar sign, $, forces a line feed and
indents the line which follows provided that
the preceding line is to full length.

The ampersand, &, forces a line feed even if
the line is not to full length.

The asterisk, 	centres the line of text
which it precedes.

For a form letter, insert back-to-back
square brackets][in the relevant place in the
text you wish the variable blocks of text to go.

CUMULATIVE INDEX

An interim index will be published each week. There will be a complete index in the last issue of INPUT.

A
Applications

text-editor program
852-856,878-883,914-920

ATTR
Spectrum 	 844-847

B
BASIC

adding instructions to
Acorn, Dragon, Spectrum

844-851
Basic programming

designing a new typeface
838-843

drawing conic sections
857-863,889-895

programming function keys
825-829

Beasty
connecting and controlling

887-888
@BLOCK Commodore 64 	877
BYE Acorn 	 847-849

C
Circles

drawing 	 858
in polygon program 	893-894
uses of 	 863

Cliffhanger game
Acorn, Commodore 64,

Dragon, Spectrum
part 1—title page 	904-913

Colour
routines for changing

Commodore 64 	872-877
Conic sections

program to draw 	857-863
using in programs 	889-895

@CSET Commodore 64 	872
Curves

program to draw 	857-863
using in programs 	889-895

D
Data Direction Register

(DDR)
Debug loop

in machine code game
Commodore 64

Digital clock routine 	896-898
Drawing a new typeface

E
Eccentricity, of ellipses

and hyperbolas 	 895
Editing

using a keys
Acorn 	 829

using text-editor program
852-856,878-883,914-920

Ellipses
drawing
	

858-859
in pattern program
	

894-895
in slipping ladder program 890-891
uses of
	

863

F
Focus, of curves 	889-895
Form letters routine

in text-editor program 	914-920
Formatting

with text -editor program 914-920
Function keys, programming

Acorn, Commodore 64,
Vic 20 	 826-829

G
Games

cliffhanger
	

904-913
goldmine
	

830-837,864-871
wordgame
	

899-903
Goldmine game

part 1—basic routines
	

830-837
part 2—option subroutines

864-871
Graphics

effects using curves
857-863,889-895

hi-res
for custom typeface

838-843
setting up new commands

Commodore 64 	872-877
in goldmine game

832-837,870-871

H
@HICOL Commodore 64
	

874
Hyperbolas

drawing
	

860-861
in pattern program
	

894-895
uses of
	

863

844-851

896-897
847-849
844-847
849-851

L
Letter-generator program

Acorn, Commodore 64, Dragon,
Spectrum, Tandy 	838-843

@LINE Commodore 64 	876
LOGO language 	 888
@LOWCOL Commodore 64 	874

M
Machine code

games programming 	904-913
routine for hi-res graphics

Commodore 64 	872-877
routine to alter BASIC

844-849
timer routine 896-898

Mathematical functions
to draw curves

857-863,889-895
Memory

storing new keystrokes in
Acorn, Commodore 64 	827-829

storing new typeface in
Acorn, Commodore 64,

Dragon, Spectrum,
Tandy 	 842

@MULTI Commodore 64 	872-874

N
NOP, machine code instruction

use of
	

908
@NRM Commodore 64
	

872

O
OLD, Dragon 	 849-851
Operating system software

Acorn, Commodore 64 	826-828

P
Parabolas

drawing 	 859-860
in swimmer program 	891-893
uses of 	 863

Patterns
program for, using curves 894-895

PAUSE Commodore 64, Spectrum 896
Pause loop

in machine code game
Dragon 	 912-913
Spectrum 	 906-907

Peripherals
robotics 	 884488

@PLOT Commodore 64 	874-876
Polygons

program to draw 	893-894
Ports, input/output 	 884
Printer routine

in text-editor program 	914-920

R
@REC Commodore 64
	

876-877
ROBOL language 	 887
Robotics 	 884-888
Rotating conic sections 	861-863

S
Scaling

a custom typeface 	841-843
parabolas and hyperbolas

859-861,863

Search routine
in text -editor program
	

914-920
Servos

use of on Beasty
	

887-888
Slipping ladder program

890-891
Sort routine

in text -editor program 	914-920
Stubs Dragon 	 849-850
Swimmer in river program

891-893

T
Text-editor program

Acorn, Commodore 64,
Dragon, Spectrum

part 1—basic routines
852-856

part 2—editing facilities
878-883

part 3—sorting, searching,
formatting and printout

914-920
TIME, Acorn 	 896
TIMER, Dragon, Tandy 	896
Timer routine 	896-898
Turtle 	 885-887,888
Typeface. setting up new

Acorn, Commodore 64,
Dragon, Spectrum,
Tandy 	 838-843

Wordgame
part 1—basic routines 	899-903

Instructions, adding to
884 	BASIC

Acorn, Dragon, Spectrum

	

908 	Interrupts
use of in clock routine

INV Acorn

	

838-843 	INVERSE Spectrum
INVERT Dragon

The publishers accept no responsibility for unsolicited material sent for publication it, INPUT. All tapes and
written material should be accompanied by a stamped, self-addressed envelope.

—/ Computer simulation of real-life
situations is a common feature in current
engineering design. Find out how you can
use your computer to model some simple
ENGINEERING SIMULATIONS

_ I Fed up with programs that move at a
slow crawl? If multiple IF THENs and
FOR ... NEXTs make your aliens attack
like intergalactic snails, then fasten your
seat belt and brace yourself to find out
how to SPEED UP YOUR BASIC

Continue the development of
CLIFFHANGER, your complete
MACHINE CODE ARCADE GAME. In
this, the second stage, you'll see how to
ADD THE PLAYING INSTRUCTIONS

Update your DATAFILE, with new
routines that let you tailor it to suit all
kinds of special purposes, like more
sophisticated sorting

4—I Complete your WORDGAME program,
by ad-fing the routines that let you buy a
letter, guess a character or put in the
whole word, as well as keeping track of
your scores

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36

