
A MARSHALL CAVENDISW 31 COMPUTER (OURS IN EEKL

IA , lirow'rimermiwu
w

Vol. 3 	 No 31

BASIC PROGRAMMING 64

EXPLORING THE ACORN'S PAINTBOX 953

Learn about colour filling and mixing using the
sophisticated commands of BBC BASIC

BASIC PROGRAMMING 65

Use your computer to conceal information in a
variety of codes and ciphers

MACHINE CODE 32

Continue the development of INPUT's own arcade game
by adding in the signature tune

BASIC PROGRAMMING 66

MULTI-KEY CONTROL 	 974

Find out how to control several operations at once—
and try a simple games application

GAMES PROGRAMMING 31

CONTROLLING THE BOARD 	 9801
A computer version of a board game that's a lot more
demanding to play than it first appears ...

INDEX
The last part of INPUT, Part 52, will contain a complete, cross-referenced index.
For easy access to your growing collection, a cumulative index to the contents
of each issue is contained on the inside back cover.

PICTURE CREDITS
Front cover, Ian Stephen. Page 953, Malcolm Harrison. Page 954, Graeme
Harris/Chris Lyon. Pages 956, 957, 961, 962, 965, Peter Reilly. Pages 960, 963,
964, Pat Wheelon. Pages 966, 967, 968, 973, Mickey Finn. Pages 974, 979, Ian
Stephen. Pages 980, 981, 983, 984, Ellis Nadler.

© Marshall Cavendish Limited 1984/5/6
All worldwide rights reserved.

The contents of this publication including software, codes, listings,
graphics, illustrations and text are the exclusive property and copyright of
Marshall Cavendish Limited and may not be copied, reproduced,
transmitted, hired, lent, distributed, stored or modified in any form
whatsoever without the prior approval of the Copyright holder.

Published by Marshall Cavendish Partworks Ltd, 58 Old Compton Street, London W1V SPA,
England. Printed by Artisan Presss, Leicester and Howard Hunt Litho, London.

HOW TO ORDER
YOUR BINDERS
UK and Republic of Ireland:
Send £4.95 (inc p & p) (IR£5.95) for
each binder to the address below:

Marshall Cavendish Services Ltd,
Department 980, Newtown Road,
Hove, Sussex BN3 7DN

Australia: See inserts for details, or
write to INPUT, Times Consultants,
PO Box 213, Alexandria, NSW 2015

New Zealand: See inserts for details, or
write to INPUT, Gordon and Gotch
(NZ) Ltd, PO Box 1595, Wellington
Malta: Binders are available from local
newsagents.

There are four binders each holding 13 issues.

BACK NUMBERS
Back numbers are supplied at the regular cover price (subject to availability).

UK and Republic of Ireland:
INPUT, Dept AN, Marshall Cavendish Services,
Newtown Road, Hove BN3 7DN

Australia, New Zealand and Malta:
Back numbers are available through your local newsagent.

COPIES BY POST
Our Subscription Department can supply copies to any UK address regularly at £1.00 each.
For example the cost of 26 issues is £26.00; for any other quantity simply multiply the number
of issues required by £1.00. Send your order, with payment to:

Subscription Department, Marshall Cavendish Services Ltd,
Newtown Road, Hove, Sussex BN3 7DN

Please state the title of the publication and the part from which you wish to start.

HOW TO PAY: Readers in UK and Republic of Ireland: All cheques or postal orders
for binders, back numbers and copies by post should be made payable to:

Marshall Cavendish Partworks Ltd.

QUERIES: When writing in, please give the make and model of your computer,as
well as the Part No., page and line where the program is rejected or where it does
not work. We can only answer specific queries — and please do not telephone. Send
your queries to INPUT Queries, Marshall Cavendish Partworks Ltd, 58 Old
Compton Street, London W1V 5PA.

INPUT IS SPECIALLY DESIGNED FOR:
The SINCLAIR ZX SPECTRUM (16K, 48K,128 and +),
COMMODORE 64 and 128, ACORN ELECTRON, BBC B
and B+, and the DRAGON 32 and 64.

In addition, many of the programs and explanations are also
suitable for the SINCLAIR ZX81, COMMODORE VIC 20, and
TANDY COLOUR COMPUTER in 32K with extended BASIC.
Programs and text which are specifically for particular machines
are indicated by the following symbols:

HI
a

SPECTRUM 16K,
481028, and + 	COMMODORE 64 and 128

ACORN ELECTRON,
BBC B and 8+ '1= DRAGON 32 and 64

a TANDY TRS80
1"" VIC 20 wir COLOUR COMPUTER

THE NEW PLOT COMMANDS
FILLING THE SIMPLE SHAPES

FINDING THE ENDS OF THE LINE
FILLING COMPLEX SHAPES

AN ALL-PURPOSE FILL ROUTINE

Colour graphics commands on the
Acorns take a little time to master.
However, their sophisticated BASIC
does mean that you can easily
achieve spectacular results

Filling in areas of colour on the Acorns may
not be as easy as on some other computers that
have a simple PAINT command. But the Acorn
commands are a lot more versatile and once
you know how to use them, they can be used
to colour in any shape you can draw, no
matter how complicated.

Early versions of the BBC, with operating
system 0.1, can only fill in triangular shapes
using the commands PLOT 80 to PLOT 87.
This means that any shape has to be broken

down into a series of triangles which are filled
in one at a time. The triangle-fill commands
are quick acting but they are obviously
limited to fairly simple shapes. The Electron,
and later versions of the BBC, however, have
two extra sets of PLOT commands and this
article shows how to use these and how
versatile they are.

THE NEW PLOT COMMANDS
The Acorns actually have 64 different PLOT
commands. These are divided into eight
blocks of eight, with each block doing some-
thing different such as drawing a line, draw-
ing a dotted line, plotting a dot, filling a
triangle, and now the two new sets which fill
in a line. Also, each command within the
block produces a variation on the main effect.

These variations are the same within each
block and they are listed in the table overleaf
for the series PLOT 0,x,y to PLOT 7,x,y,. The K
stands for the first number after PLOT. You
can probably see that the block of eight can be
broken down again into two halves. The first
four commands treat x and y as relative
coordinates measured from the last point
visited, while the last four treat x and y as
absolute screen coordinates. These distinc-
tions are the same for every block of com-
mands including the two new sets so these are
shown in the table as well.

In practice, very few of these variations are
used. The sixth is the most common—PLOT 5
in the first series and PLOT 77 and PLOT 93 in
the new series. These draw to absolute coordi-
nates in the graphics foreground colour. In

K 	 x, y 	 line

0 72 88 	move relative 	 don't draw line
1 73 89 	move relative 	 foreground colour
2 74 90 	move relative 	 logical inverse colour
3 75 91 	move relative 	 background colour
4 76 92 	move absolute 	 don't draw line
5 77 93 	move absolute 	 foreground colour
6 78 94 	move absolute 	 logical inverse colour
7 79 95 	move absolute 	 background colour

fact PLOT 5 is so useful it has another name—
DRAW. Here is how the new commands work.

FILLING A LINE
First consider the PLOT 72 series. The result
of the statement PLOT 77,x,y for instance, is as
follows. First, the graphics cursor moves to
the point x,y on the screen. Next, it moves
horizontally to the left until it finds a point
not in the current background colour—
usually the outline of the shape you're filling
in. Finally, the cursor moves horizontally to
the right, drawing a line in the current
graphics foreground colour until it again
finds a point not in the background colour.
The colour of the line is affected by any GCOL
statement that may have been used earlier.
For example, GCOL 2,1 sets the current
foreground colour to number 1 and the
current foreground action to AND. This
means that every time a point is filled in with
the foreground colour, that colour is ANDed
with the colour already there (see pages 371 to
373).

If you check back at the table to see how the
other PLOT series work, then you will see that
the remaining PLOT statements in the series
work in a similar way. PLOTs between 72 and
75 use x and y as relative coordinates; PLOTs 72
and 76 don't draw a line, but just move the
cursor; PLOTs 74 and 78 invert the colour at
each point they draw a line through; and
PLOTs 75 and 79 draw the line in the current
background colour.

The PLOT 88 to 95 series of statements are
similar (if rather less useful) except that they
only search horizontally. to the right and stop
when a point in the background colour is
found. There are the usual options for ab-
solute or relative motion and line colour, and
these are all given in the table.

FILLING SIMPLE SHAPES
This short program shows how the PLOT 77
command works in practice:

10 MODE1
20 VDU29,640;512;
30 PROCTEST
100 END
110 DEFPROCTEST
120 MOVE —400, — 400: D RAW —400,400
130 MOVE400, — 400: D RAW400,400
140 PLOT77,0,0
150 ENDPROC

Try RUNing the program, and you can see that
the effect is to produce a horizontal line across
the screen between the two vertical ones. Line
10 selects MODE1, Line 20 uses VDU29 to put
the origin of the graphics coordinates at the
centre of the screen. Line 30 calls PROCTEST
which runs from Lines 110 to 140. As you can
see, Lines 120 and 130 simply draw two
vertical lines. The interesting part is Line
140, this does a PLOT 77 at the centre of the
screen.

If you understand why this
PROCCIRCLE(0,0,R%,0,2*PI understand how to use most
of the PLOT fill statements. Try to follow what
is happening in terms of the description given
earlier.

These R%*S1NOLnts can now be used to do
something useful.RR%*COSO,YC%nesR%*SIN 80 of
the program in your computer to theR%*SINow0Lng, aENDPR0C

Lines 190 to 250:

30 R% = 400
40 GCOL0,1
50 PROCCIRCLE(0,0,R%,0,213 1)
60 FOR YP% = — R% TO R% STEP4
70 PLOT77,0,YP%
80 NEXT
190 DEFPROCCIRCLE(XC%,YC%,

R%,OL,OH)
200 DS = P1/16
210 MOVEXC% + R%*COSOL,YC% +

RWS1NOL
220 FOR 0 = OL TO OH STEP DS
230 DRAWXC% + RWCOSO,YC% +

R%*S1N 0: N EXT
240 D RAWXC% + PA* COSO L,YC% +

RVSIN —OL
250 ENDPROC

Guess what this program does and then RUN
it. Clearly, the combination of the PLOT 77
command drawing horizontal lines and the
FOR ... NEXT loop moving the PLOT point
vertically fills in the circle.

Lines 190 to 250 are a procedure
PROCCIRCLE, which draws an arc of a circle
with centre XC%, YC% and radius R%; the
starting angle of the arc is OL to the horizontal
and the finishing angle is OH. Lines 30 and 40
select a radius of 400 and set the foreground
colour to 1 (red in MODE 1). Line 50 uses
PROCCIRCLE to draw a circle in the middle of
the screen. The actual filling is done by the
FOR ... NEXT loop in Lines 60 to 80. Inside
this loop, a PLOT 77 statement is done for
every point with an x coordinate of zero and a
y coordinate between the very bottom of the
circle and the top.

This is a general technique for filling
simple shapes. Just use a PLOT fill along a
vertical line from the highest to the lowest
point of the shape you want to fill. In the
program a STEP of 4 is used in the FOR ...
NEXT loop this is because there are 4 vertical
graphics units for every point on the screen.
By using a STEP of 4, no points are missed,
and the program runs faster.

Next change Lines 30 to 90 of the program
to the following:

30 FORI% = 1T08
40 GCOL0,I%:GCOL0,128 + I%-1
50 R% = 500 — I%*60
60 P R OC CI RC LE (0,0,R%,0,2* PI)
70 FOR YP% = — R% TO R% STEP 4
80 PLOT77,0,YP%
90 N EXT:NEXT

This program draws a series of filled con-
centric circles; try RUNning it. Lines 30 to 90
are a FOR ... NEXT loop which steps I% from 1
to 8. Line 40 sets the foreground colour to 1%

and the background colour to 1% - 1. Note
that background colours have 128 added to
them; this is how the computer knows that
they are background colours. Line 50 selects a
radius which gets smaller as I% increases.
Lastly, Lines 60 to 90 are the same as the
previous example for filling in a circle. The
program works by drawing a filled circle in
the foreground colour. It then changes the
background colour to the foreground colour
and changes the foreground colour to the next
one. This shows that you can use the usual
technique for filling circles even on a coloured
background. Now change Line 200 to
DS = PI/2 and RUN the program. Try other
values for the number in this line; 2, 4, 6, 8
and so on.

ANIMATION
These simple filling techniques can be used to
produce animation. DELETE lines 40 to 90 and
add Line 30 and DEFPROCEGG (Lines 290 to
530):

30 PR0CEGG
290 DEFPROCEGG
300 VDU19,3,2,0,0,0,19,1,4,0,0,0
310 MOVE —180, — 320:MOVE180, — 320
320 PLOT85,180,320:MOVE —180,320
330 PLOT85, —180, — 320
340 G CO L0,131:G CO L0,2
350 PROCCI R C LE (0,150,150,0,2* PI)
360 FORYP% = 0T0296:PLOT77,0,

YP%: N EXT
370 GCOL0,1
380 PROCCIRCLE(0, —150,150,0,2*P1)
390 FORYP%= — 296T00:PLOT77,0,

YP%: NEXT
400 FORYP%= —300T00
410 GCOL0,130:GCOL0,1:PLOT77,0,— YP%
420 GCOL0,129:GCOL0,2:PLOT77,0,

YP%: N EXT
430 IFINKEY(100) =9 ENDPROC
440 VD U19,1,3,0,0,0,19,2,4,0,0,0
450 IF INKEY(100) = 9 ENDPROC
460 FORYP%= —300T00
470 G CO L0,130:GCO L0,1: PLOT77,0,

YP%
480 G CO L0,129:G CO L0,2: PLOT77,0,

— YP%
490 NEXT
500 IFINKEY(100) =9 ENDPROC
510 VDU19,2,3,0,0,0,19,1,4,0,0,0
520 IFINKEY(100) =9 ENDPROC ELSE 400
530 ENDPROC

This program is a great breakthrough for
micro-computing—the high speed egg timer!
RUN the program. Actually using it to boil an
egg is, however, not recommended. When
you tire of the program press the TAB key and
it will stop. All the works of this program are
contained in PROCEGG. Line 300 uses VDU19
to set colour 3 to green and colour 1 to blue,
colour 2 stays as yellow. Lines 310 to 330
draw the green square. They do this using the
PLOT 85 triangle fill statement, by drawing the
square as two triangles. Notice how much
faster this fill works than the PLOT 77 com-
mand. Whenever possible, it is probably best
to break up an area to be filled into triangles
and use this technique. It is only when filling
complex shapes that this is not feasible.

In Line 340 the background colour is
changed to number 3 (green) and the usual
circle fill technique draws a yellow circle
(Lines 340 to 360) and a blue circle (Lines
370 to 390). The clever part of the program is
Lines 400 to 420. These are a FOR ... NEXT
loop which sweeps YP% from — 300 to 0 (the
y coordinates of the circles run from — 300 to
0 and 0 to 300). In Line 420 the background
colour is set to 2, yellow, and the foreground
colour to 1, blue. PLOT 77 is then used at
0, — YP% to produce the blue lines at the top

of the timer. Similarly, Line 410 produces
the yellow ones at the bottom. Line 450 uses
the INKEY function to provide a time delay
and if the TAB key (number 9) has been
pressed it ends the program (Lines 500 and
520 do the same). The real point here is to get
a time delay when the egg timer starts and
finishes. Line 440 swops the actual colours
corresponding to the colour numbers 1 and 2
(so blue goes to yellow and yellow goes to
blue). This is how the timer appears to invert.
Lines 460 to 490 again fill up the inverted
timer. At last, Line 510 does another colour
swop and if TAB has not been pressed, the
program loops back to Line 400.

KEEPING TRACK
To progress beyond these simple techniques,
it is necessary to introduce another feature.
This allows you to find the coordinates of the
ends of the lines drawn by the PLOT fill
statements and so fill more complicated
shapes. Enter the following new Lines 30 to
90 and the two procedures PR0CSETUP and
PROCENDS at Lines 550 to 750:

30 PROCSETUP
40 PROCTEST
50 PROCENDS
60 PRINTTAB(10,10)"XL% = ";XL%
70 PRINTTAB(22,10)"YL% = ";YL%
80 PRINTTAB(10,12)"XR% = ";XR%
90 PRINTTAB(22,12)"YR% = ";550YR%

DEFPROCSETUP
560 OSWORD = &FFF1
570 DIM P% 8
580 X%= P% MO D256
590 Y%= P% DIV 256
600 A%= &D
610 ENDPROC
650 DEFPROCENDS
660 CALL OSWORD
670 XL% = P%?0 + 256•P%?1
680 I FXL% > =&8000 XL% = XL% — &10000
690 YL% = P%?2 + 256*P%?3
700 IFYL% > = &8000 YL%=YL%—

&10000
710 XR%= P%?4+256*P%?5
720 IFXR%> =&8000 XR%=XR%—

&10000
730 YR% = P%?6 + 256*P%?7
740 I FYR% > =&8000 YR% = YR% —

&10000
750 ENDPROC

In this program, the procedure PR0CTEST
introduced at the beginning is used again.
First though, PROCSETUP is called. This sets
things up so that PROCENDS works. You just
use PROCSETUP once at the start of every
program with PROCENDS in it. When
PROCENDS is called, it returns in the variables

Filling shapes a line at a time...

XL%, YL% and XR%, YR%, the coordinates of
the last two points visited by the graphics
cursor. After a PLOT 77 statement, these are
the coordinates of the ends of the line drawn.
Incidentally, this technique is general and
will return the points that any DRAW and
MOVE statements go to. In the program, the
ends of the PLOT 77 line are PRINTed out
(Lines 60 to 90). RUN the program and
convince yourself that the values printed are
correct.

In MODE 1 there are 4 horizontal graphics
units for each screen point so the program
gives the x coordinates of the ends of the
horizontal line as + 396 and — 396. Also note
that the y coordinates are redundant in this
application since they will always be the same
as the values used in the PLOT 77 which you
had to set up yourself in the first place.

In order actually to find the ends of the
lines, it is necessary to use one of the standard
subroutines in the operating system; this is
the OSWORD routine which will be used to
pass back the coordinates. PROCSETUP ar-
ranges things for this routine to be called.
First the address of OSWORD is put into the
variable OSWORD and then a block of memory
8 bytes long at the address P% is reserved
using DIM. This will be used by OSWORD to
pass back the coordinates using two bytes for
each number. In Line 570, the address P% is
put into X% and Y%. Finally, A% is set equal to
&D, 13 in decimal, the code that tells the
routine to return the last two positions of the
graphics cursor.

PROCENDS starts by CALLing OSWORD; the
rest of the procedure then converts the data
which OSWORD has put into the block of
memory at P% into coordinates. For instance,
Line 670 changes two bytes into a two byte
number and Line 680 turns this from two's
complement form into a normal signed
BASIC variable.

These last two procedures are best consi-
dered as a 'black box'; if you don't understand
how they work, don't worry, just make sure
that you understand what they do.

FILLING COMPLICATED SHAPES
Once you know how to find the ends of the
lines drawn by PLOT 77 you can construct a
general purpose fill routine. The idea is that
an area is defined by drawing a curve around
it. The fill procedure is then called at a single
point inside the curve and fills it. Ideally, this
should work no matter how complicated the
shape. A first attempt at this is given below.
As usual modify Lines 40 to 60, delete Lines
70 to 90 and type in the procedure
PROCSFILL:

may sometimes cause problems...
40 PROCC IRCLE(0,0,400,0,2* P I)
50 G CO L0,2
60 PROCSFILL(0,0)
790 DEFPROCSFILL(XP%,YP%)
800 XF%= XP%:YF%= YP%
810 REPEAT
820 PLOT77,XF%,YF%:PROCENDS
830 XF%= (XL% + XR%)/2:YF%= YF% + 4
840 UNTIL XL%=XR%
850 XF% = XP%:YF% = YP%— 4
860 REPEAT
870 PLOT77,XF%,YF%:PROCENDS
880 XF% = (XL% + XR%)/2:YF%= YF%— 4
890 UNTIL XL%=XR%
900 ENDPROC

This program draws a circle and then calls
PROCSFILL at the centre of it. As you will see if
you RUN it, this fills the circle quite neatly.
How PROCSFILL works is easy to see. It starts
by setting XF% and YF% to the coordinates of
the point at which it was called (XP%, YP%).
There is then a REPEAT loop which does a
PLOT 77 at XF%, YF% and finds the ends of the
line drawn. A new value of XF% is found by
averaging the ends of this last line. In addition
YF% is incremented by 4 so that the next line
drawn will be one line of points further up the
screen. This process is repeated until the left
and right hand ends of the line coincide.
There is then another REPEAT loop which
does the same but going down the screen
(Lines 860 to 890).

You may think that this program is all that
is needed to fill any shape. This is not correct.

Type in the following line and RUN the
program again.

45 MOVE —300, —300:DRAW50, —50:
D RAW300, — 300

This new line draws a V shape in the circle
drawn by the original program, and tries to
fill the resulting area using PROCSFILL. Un-
fortunately, it fails. The reason why is that
PROCSFILL cannot detect the fact that the area
it is filling splits into two and that it should fill
both parts.

Despite these limitations, it is possible to
produce some good results with PROCSFILL.
Delete Line 60 and Line 45 then type in the
following lines and RUN the program:

10 MODE2
40 PROCBALL
50 PROCBALLFILL
940 DEFPROCBALL
950 GCOL0,7
960 R%= 490
970 PROCCIRCLE(0,0,R%,0,2*PI)

but can cope with several colours.

980 FORDR%= 80 TO 420 STEP80
990 RX%= (DR% . DR%+

R%'R%)/2/DR%
1000 0 L = ASN(R%/RX%)
1010 PROCCIRCLE(DR%— RX%,0,RX%,

— OL,OL)
1020 PROCCIRCLE(RX%— DR%,0,RX%,

PI — OL,PI+ OL)
1030 NEXT
1040 ENDPROC
1080 DEFPROCBALLFILL
1090 FOR I%= —5 TO 5
1100 GCOL0, (5+ I%)MOD6 + 1
1110 PROCSFILL(I%*80 +

SGNI%"40,0)
1120 NEXT
1130 ENDPROC

The additions to the program are two new
procedures. The first, PROCBALL, (Lines 940
to 1040) draws a ball on the screen. It does
this by calling PROCCIRCLE with the appro-
priate centres, radii and arc lengths. The ball
is filled in by the second new procedure
PROCBALLFILL (Lines 1080 to 1130). This

calls PROCSFILL at a point in each segment of
the ball (Line 1110) and also selects a differ-
ent colour for each segment at Line 1100.

Now add the following line:
60 PROCROTATE
and the new PROCedure PROCROTATE:

1170 DEFPROCROTATE
1180 K%= 0:R EPEAT
1190 FORI%=1T06
1200 VDU19,I%,(I%+ K%)MOD6 +1,

0,0,0:N EXT
1210 K%= K%+ 1
1220 UNTIL INKEY(25) =9
1230 ENDPROC
RUN the new program. If it is correct, the ball
should appear to rotate. Pressing the
TABS key will again end the program. The
idea of PROCROTATE is to change all of the
red sectors of the ball to green, the green to
yellow and so on, and to keep repeating the
process, thus producing an apparent rotation.
PROCROTATE does the colour-switching using
VDU19. It has two loops, a FOR ... NEXT loop
(Lines 1190 to 1200) which switches all the
colours in the ball, and a REPEAT loop which
keeps doing the switching. Again, INKEY is
used both to slow down the loop and to detect
when the ITABI key is pressed. The vari-
able K% in the REPEAT loop is used to keep
track of the offset of the physical colour
numbers from their actual numbers. The
MOD operator in Line 1200 ensures that
physical colours in the range 1 to 6 are used
(red to cyan).

Complex shapes...

ALL-PURPOSE FILL
Now a procedure which will fill in any shape
must be developed. SAVE the program in your
computer. Type NEW followed by RETURN

 and enter the next program:

10 MODE2
20 VDU23;8202;0;0;0;0;
30 PROCSETUP
40 MOVE100,100
50 FORI%=1T06:DRAWRND(1280),

RND(1024)

60 NEXT:DRAW100,100
70 PROCFILL(400,400,RND(5),0)
80 IFINKEY(100) < >9:CLS:GCOL0,7:

GOT040
90 END
100 DEFPROCSETUP
110 DIM L%(100),R%(100),Y%(100),S%(100)
120 OSWORD = &FFF1
130 DIM P% 8
140 X%= P% M0D256
150 Y%= P% DIV256
160 A%= &D
170 ENDPR0C
200 DEFPROCENDS
210 CALLOSWORD
220 L%= P%?0 +256 * P%?1
230 IFL% > = &8000 L%= L%— &10000
240 R%= P%?4+256 * P%?5
250 IFR% > = &8000 R%= R%— &10000
260 ENDPROC
290 DEFPROCFILL(XF%,YF%,C%,B%)
300 GCOL0,C%:GCOL0,128+ B%
310 N%= —1
320 IFPOINT(XF%,YF%) < > B%ENDPROC
330 PLOT77,XF%,YF%:PROCENDS
340 IFL%= R% PL0T69,XF%,YF%
350 PROCE(L%,R%,YF% — 4, — 4)
360 PROCE(L%,R%,YF%+ 4, + 4)
370 REPEAT
380 PROCF(L%(N%),R%(N%),Y%(N%),

S%(N%))
390 UNTIL N%<0
400 ENDPROC
420 DEFPROCF(XL%,XR%,YP%,S%)
430 N%= N% —1
440 IFPOINT(XL%,YP%) < > B%THEN520
450 PLOT77,XL%,YP%
460 PROCENDS
470 IFL%= R% PLOT69,L%,YP%
480 PROCE(L%,R%,YP%+ S%,S%)
490 IFL% < XL% PROCE(L%,XL%-8,

YP%—S%, —S%)
500 IFXR% < R% PROCE(XR% + 8,R%,

YP%—S%, —S%)
510 XL%= R%:IFXL%> =XR% ENDPROC
520 PLOT92,XL%,YP%
530 PROCENDS
540 XL% = R%+8:IFXL%> XR% ENDPROC

need the all-purpose fill routine

550 IFPOINT(XL%,YP%) < >0 ENDPROC
560 GOTO 450
590 DEFPROCE(LP%,RP%,YP%,SP%)
600 N% = N% + 1
610 L%(N%) = LP%: R%(N%) = R P%
620 Y%(N%) = YP%:S%(N%) = SP%
630 ENDPROC

To show the impressive results that PROCFILL
can produce, there is a simple demonstration
program in Lines 10 to 90 of this program.
Line 20 gets rid of the flashing text cursor.
Lines 40 to 60 draw a random shape, and then
Line 70 calls PROCFILL at a point on the
screen and with a random foreground colour.
If this point is inside the shape, then the
inside will fill, otherwise the outside is filled.
Line 80 stops the program if TAB is pressed,
otherwise it clears the screen and loops back
to Line 40.

Note that in Lines 490, 500 and 540, the
number 8 appears. This is the number of
horizontal graphics units for each point in
MODE 2. If you use the program in other
MODEs, you must change this number. For
MODEs 2 and 5 use 8; for MODEs 1 and 4 use 4
and for MODE 0 use 2.

This is a complicated program. It is,
however, split into a number of PROCedures.
The way to understand the whole program is
to understand what each PROCedure does on
its own. PROCSETUP (Lines 100 to 170) is just
the usual way of setting up the OSWORD call.
But this time Line 110 has been added which
DI Mensions four arrays L%(), R%(), Y%() and
S%() with 101 elements each. These arrays
form a stack or list, in which horizontal lines
are stored. L%() and R%() hold the x coordi-
nates of the left and right hand ends of the
line, Y%() holds its y coordinate and S%()
contains the number of graphics units the line
is above or below the previous one drawn.
The more complicated the shape to be filled,
the more elements should be reserved for
these arrays. Over a hundred will be enough
for all but the most complicated shapes.
However, if you are short of memory, you can
reduce this number. If enough elements have
not been reserved the program will end with
the error message 'Subscript at line 610'.

The PROCedure PROCENDS (Lines 200 to
260) is a simplified version of the PROCedure
of the same name used earlier. Only the x
coordinates of the line are calculated, and this
time they are put into the variables L% and
R%.

The next PROCedure to understand is
PROCE (Lines 590 to 630). The purpose of
this is to add a new line to the list of lines kept
in the arrays. It is called with values for the
parameters LP%, RP%. YP% and SP%. The

first thing it does is to increment the variable
N% by one. This variable is used to point to
the top elements in the list of lines. Next LP%,
R P%, YP% and SP% are put into the array
elements L%(N%), R%(N%), Y%(N%) and
S%(N%). In this way, a new line is added to
the list.

The PROCedure that is actually called to fill
an area is PROCFILL (Lines 290 to 400). Its
parameters are XF% and YF%, the coordinates
of the point at which filling is to commence,
and C% and B%, the foreground and back-
ground colours. In Line 300, these colours
are actually set up with G COL (note that 128 is
added to B% only at this point, don't call the
PROCedure with 128 already added to B%).
Lines 310 to 360 are concerned with setting
things up so that the filling process can start.
Line 310 sets the pointer N% to —1. Line 320
uses the POINT function to check if the point
at which the fill procedure has been called is
actually in the background colour. If this is
not the case then the PROCedure ends.

Line 330 does a PLOT 77 at XF%, YF% and
finds the ends of the line drawn. If both ends
coincide then a point must be filled in using
the ordinary PLOT 69 statement (Line 340).
Now, in Lines 350 and 360, two lines parallel
to that drawn are entered into the line list
using PROCE. Notice that one is below the line
drawn and one above, and that the SP%
argument of PROCE is set to minus or plus 4
respectively. The filling now starts properly.
Lines 370 and 380 are a REPEAT loop which
keeps calling PROCedure PROCF on the top
element of the line list UNTIL there are no
more elements left in it (which occurs when
the entire area is filled).

EXPLAINING PROCF
All that is left to be explained is PROCF (Lines
420 to 560). The arguments of this are XL%,
XR%, YP% and S%. This procedure is always
called with these parameters set to the top
elements of the line list arrays L%(), R%(),
Y%() and S%(). These define a line parallel to
one that has been filled in. This line on which
PROCF is called is conveniently referred to as
the 'original line'. The first thing the
PROCedure does is to decrement N% thus
dropping the top element of the line list. At
Line 440, control can branch two ways. If the
colour at the left-hand end of the original line
(XL%, YP%) is not background, then it must go
to Line 520, otherwise it continues at Line
450. First consider the case when the left-
hand end of the original line is in the
background colour. In this situation, Lines
450 and 460 do a PLOT 77 at this point and
find the ends of any line drawn. Line 470
again corrects for any zero length lines by

plotting a single point with PLOT 69, and Line
480 puts a line into the line list parallel to the
one drawn. This line is given the same
direction (up or down the screen) as the
original line by using S% as the last argument
of PROCE. However, if the line drawn is
longer than the original line then extra lines
with length equal to the difference of the two
are put into the list with the opposite direc-
tion to the original (Lines 490 and 500). Line
510 sets XL% to R% (so the right-hand end of
the drawn line becomes the left-hand end of
the original). If XL% is now greater than or
equal to XR%, the procedure ends, otherwise
it continues at Line 520. This is the line to
which control passes at the start of the
procedure if the point at the left-hand end of
the original line is not in the background
colour. Lines 520 and 530 use a PLOT 92 fill
statement to search to the right for a point in
the background colour. If one is found with
an x coordinate within the original line, then
the program sets XL% to the x coordinate of
the point. Before Line 560 loops back to Line
450, a check is made using the POINT function
to see if the colour at this point is greater than

zero. This is because points off the screen
have colour —1. By doing this check, filling
stops at the edges of the screen.

Consider again what PROCF does. It is
given a line to fill (the original line), it does
this and produces a parallel line for the line
list with the same direction as the original
line. If the line it draws is longer than the
original, then lines are added to the list
parallel to the differences, and going in the
opposite direction to the original. Last, if any
parts of the original line are not in the
background colour, they must be missed out,
and a search done for any lines inside the
original which are in the background cover.
These are treated in the same way as the
original.

This, then, is a complete general purpose
utility for filling in shapes; you can use it in
your own programs. Another demonstration
of its abilities is given below. Delete Lines 60
to 80 of the last program and add:

30 VDU29,640;512;
40 PROCSETUP
50 PROCSPIRALS

90 END
660 DEFPROCSPIRALS
670 DS= PI/16: RC% = 60:D = PI/3
680 MOVERC%,0
690 FORI% = 0T05:GCOL0,I% +1
700 DO = I%*D
710 PROCSPIRAL(DO)
720 MOVERC%*COSDO,RC%*SINDO
730 DRAWRC%*COS(DO + D),RC%*SIN

(DO+ D)
740 NEXT
750 FORI% = 2T08
760 0 = 1%*D — D/2
770 XS% = 90*COSO:YS%= 90*SINO
780 PROCFILL(XS%,YS%,I% — 1,0)
790 NEXT
800 ENDPROC
830 DEFPROCSPIRAL(DO)
840 0 =0:REPEAT
850 R%= RC%*EXP(. 4*0)
860 XS% = R%*COS(0 + D0):YS% ---

R%*SIN(0 + DO)
870 DRAW XS%,YS%
880 0=O+DS
890 UNTIL POINT(XS%,YS%) = —1
900 ENDPROC

RUN the program. You should see a very
pretty pattern. Lines 830 to 900 are a
PROCedure PROCSPIRAL, which not surpris-
ingly draws a spiral. Line 660 is the start of
another procedure, PROCSPIRALS. This
draws a number of spirals on the screen using
PROCSPIRAL, and then uses the PROCedure
PROCFILL to fill in each piece of the resulting
pattern (Lines 750 to 790).

Finally, insert the following lines:

60 PROCROTATE
930 DEFPROCROTATE
940 K%=0:REPEAT
950 FOR I%=1T06
960 VDU19,I%,(I%+ K%)MOD6 +1,

0,0,0:NEXT
970 K%= K%+1
980 UNTIL INKEY(25) =9
990 ENDPROC

These add the PROCedure DEFPROC
ROTATE which was defined in Lines 1170 to
1230 of the rotating ball program, and use it
to make the spiral appear to spin. If this
spinning effect hypnotises you then try learn-
ing all the PLOT numbers!

Linking the world of the ancient
Greeks with the world of micro
electronics and beyond, codes and
ciphers can be handled expertly by
computer programs

Most people use codes in their everyday life.
Anyone asking for a number 8 screw or a size
5 football is employing a code. Similarly, a
nuclear scientist's seemingly incomprehe-
nsible equations are only using a shorthand
code to represent complex relationships. This
could be done equally well in plain words but
it would often take a good deal longer.

In all the above examples, the emphasis is
on the improvement of data communication
rather than the concealment of information,
and another related use of codes is to save
money or storage space. For example, a
company may issue contracts which use stan-
dard clauses or phrases. If details of these
agreements are to be stored on tape or disk, a
lot of valuable space can be saved by number
coding the most often repeated sections. This
has become known as data compression.

Similarly, the standard responses used in
such adventure games as The Hobbit or
Valhalla are usually coded in order to
economize on storage. INPUT's own text
compressor (pages 628 to 636 and following
articles) is an example of just such a coding
system.

The Greeks invented the science of send-
ing secret messages, so it is not surprising that
the formal name for coding—cryptography-
should come from two Greek words: kryptos
(secret) and graphos (writing). The terms code
and cipher actually have slightly different
meanings related to the two ways in which
messages may be sent. When information is
translated letter by letter, this is called en-
ciphering. On the other hand, if whole words
or groups of words are transformed into other
words or numbers by referring to a special
dictionary, this is called coding. In practice,
the term code is used generally to refer to both
codes and ciphers.

SECRET CODES
The coding and decoding of secret messages
was once an area confined mainly to the
military, or at least the Intelligence Services.
Today, however, the extended use of the
public telephone lines and satellite channels
for the transmission of commercially sensitive
data has increased the need for encoding.

At the dawn of the computer revolution,

IBM comptometers were used to break Sec-
ond World War codes. Since then, each
advance in computer technology has been
eagerly monitored by spymasters and code
breakers. Today, with good programming
and the right cipher, a home micro can match
any conventional cryptography machine.
This is the first of two articles which show
how to use your computer to produce secret
coded messages, using several different
methods which, like spying itself, are of
different levels of sophistication.

Even if you are not an international agent,
the methods used are interesting in them-
selves, and you can always use them to send
coded messages to other friends with
computers. In fact, there is a message hidden
somewhere in this article.

DISTANCE CODES
The seemingly haphazard pattern of symbols
shown right is, in fact, an example of the
distance code. As its name suggests, this is a
code which is based on the distance of a
particular symbol from a given point.

This type of code was used more than
2,000 years ago by the Greek General Ly-
sander. The distances of the notches from the
belt buckle of one of the slaves spelled out a
secret message which helped the General to
defeat the Persian Empire.

You can use a form of distance code simply
by ranging the letters of the alphabet across
the top line of a lined pad and making out the
message as shown in Figures 1 and 2. While
you can see the letter key on the top line, the
message is easy to understand. Once this is
removed, however, decoding the information
is not so easy.

To make deciphering even more tricky,
rotate the letter key at the top of the page (see
Figure 3). You can, for instance, start with N
and when you reach Z simply begin once
more with A. This is called cyclic rotation.

The first program uses this method to
produce a coded version of your plain text,
providing you don't leave spaces between the
words. If you wish actually to send the
message you'll need access to a printer, and
to make sure that the recipient of the text
knows which order to use when decoding.

a
20 BORDER 0: PAPER 0: INK 7: CLS
30 PRINT TAB 8; "El Distance code ❑ ":

PRINT
40 PRINT INK 2; PAPER 7; FLASH 1;AT 6, 10;

"I=IDWARNINGOO": PRINT
50 PRINT "Don't leave spaces between words"
60 PRINT : PRINT
70 INPUT "What is your message ?'"a$
80 FOR i =1 TO 400: NEXT i: CLS
90 FOR i =1 TO LEN (a$)
100 LET b$=a$(i)
110 LET v = CODE (b$) —96
120 IF v< =32 THEN PRINT TAB v; INK

6;"*": GOTO 150

CODES AND CIPHERS
CRYTOGRAPHY AND THE

ANCIENT GREEKS
SECRET CODES AND THEIR

APPLICATIONS

PRODUCING YOUR OWN
SECRET CODES

DISTANCE CODES
THE ST. CYR CIPHER

MORSE CODE

130 LET v =v-26
140 PRINT TAB (v); INK 6;"* -

 150 NEXT i

30 PRINT "0 gg > E DISTANCE C0DE"
50 PRINT " gg gg D0N'T LEAVE

SPACES":
PRINT "BETWEEN W0RDS !"

70 PRINT "ggWHAT IS Y0UR
MESSAGE":INPUT A$

80 PRINT "D"
90 F0RI =1 T0 LEN(A$)
100 B$=MID$(A$,1,1)
110 V = ASC(B$) —45
120 IF V< =32 THEN PRINT

TAB(V);"•":G0T0 150
130 V=V-26
140 PRINT TAB(V);"'"
150 NEXT I

1E1
20 M0DEl:VDU 19,0,3,0,0,0,19,7,

4,0,0,0
30 PRINTTAB(13);

"II- DISTANCE C0DE"
40 PRINTTAB(17);

"WARNING": PRINT"
50 PRINTTAB(2);

"D0 N0TE LEAVE SPACES
BETWEEN W0RDS"

60 PRINT"

Horizontal distance code

Vertical distance code

70 INPUT"WHAT IS Y0UR
MESSAGE",A$

80 TIME= 0:REPEAT UNTIL TIME
>300: CLS

90 F0R 1=1 TO LEN(A$)
100 B$=MID$(A$,I,1)
110 V =ASC(B$) —45
120 IF V< =32 THEN PRINT TAB(V);

"*":G0T0 150
130 V=V-26
140 PRINTTAB(V)"*"
150 NEXT I

1M IA
20 CLS
30 PRINT©9,"DISTANCE C0DE"
40 PRINT@140,"WARNING":PRINT
50 PRINT "D0N'T LEAVE SPACES BETWEEN

W0RDS"
60 PRINT:PRINT
70 PRINT"WHAT IS YOUR MESSAGE":

INPUTA$
80 F0R 1=1 T0 600:NEXT:CLS

90 FOR 1=1 TO LEN(A$)
100 B$=MID$(A$,I,1)
110 V = ASC(B$) —45
120 IF V< =32 THEN PRINTTAB(V)

"*":GOT0150
130 V=V-26
140 PRINTTAB(V)" * "
150 NEXT

The program works by setting up a loop and
using the MID$ facility to evaluate the ASCII
values of each letter of plain text (Lines 90,
140). A previous article (page 420) showed
how the ASCII function allows letters to be
represented by numbers. For most home
computers, except the ZX81, the letters take
similar values. The use of string functions like
MID$ has also been discussed in a previous
article (pages 202-207).

Once the message has been converted into a
series of numbers, it is easy to encode by using
a straightforward linear transformation. In
the case of the Commodore 64, for example,
the plain text letter V is translated to the
ASCII equivalent of V, less 26 (Line 130).

It only remains to use the TAB function to
print out the asterisk at the required distance
from the right-hand side of the screen (Line
120) and the process of coding is complete.

USING THE CODE
Although the distance code may seem a little
too simple to be effective, it does have a
number of factors in its favour. In the first
place, before you can successfully decipher a
code, you must first recognize that the code
actually exists. And because it is so easy to
disguise a pattern of apparently random dots
(or asterisks) in an otherwise harmless sketch
there's a good chance that a coded message of
this type will pass unnoticed.

During the last war, enemy agents used
this trick. On closer inspection an innocent
looking picture of a garden revealed that pegs
on a clothes line spelled out a secret message.

One way to make the distance code more
difficult to crack is to restructure the program
so that the letter key is truly randomized. As it
stands, an expert who realises that he is
dealing with a distance cipher needs to try, at
most, 26 combinations before solving the
problem. If the order of letters in the key is
random, however, the number of possible
combinations increases enormously.

THE ST. CYR CIPHER
It was the Romans who took over from the
Greeks as master cryptographers. Julius
Caesar invented a straightforward substi-
tution cipher in which each letter was re-
placed by the letter three places forward in the

Julius Caesar's special code

alphabet. Here A becomes D, B becomes E
etc. At the end of the alphabet X becomes A,
Y becomes B and Z takes the character C.
Using this method, the message THE
RUSSIANS ARE COMING enciphers to:

WKH UXVVLDQV DUH FRPLQJ

As you will see later, Caesar's code is a special
case of something called the St. Cyr Cipher,
and you can easily check this result by
running the next program and using 3333333
as the number key.

With the demise of the Roman Empire,
developments in cryptography ceased, and
despite the increased use of codes in the
sixteenth and seventeenth centuries, it was
not until the nineteenth century that the
French military academy at St. Cyr produced
a significant improvement to Caesar's code.
The St. Cyr cipher is brilliantly simple. It is
made up of three alphabets on a sliding scale.
The bottom alphabet is plain text and the
cipher equivalents are taken from the top line.
From the starting point shown in the dia-
gram, INPUT would be encrypted as
AFHML. One of the advantages of the St.
Cyr cipher is that a different alphabet equiva-
lent can be used to code each letter. This can
make code cracking very difficult.

In the St. Cyr cipher program, this facility
has been incorporated into a number key in
order to provide extra security. Anyone with
access to a program listing will still not be able
to solve the code, unless, of course, they also
know the seven-figure secret numbers.

20 BORDER 0: PAPER 0: INK 7: CLS
25 POKE 23658,8
30 PRINT TAB 10;"ST—CYR CIPHER": PRINT
40 PRINT INK 2; PAPER 7; FLASH 1;AT 6,10;

"El IIIWARNINGIII ID"
50 PRINT "Don't leave spaces between words"
60 PRINT : PRINT
70 PRINT "ENTER 1 if you wish to encode"
80 PRINT "ENTER —1 if you wish to decode"
90 INPUT s

100 INPUT "enter your
message"'a$

110 PAUSE 50: CLS
120 INPUT "enter seven figure

number key"'n$
130 PAUSE 50: CLS
140 FOR k =1 TO LEN a$
150 LET 1= k — INT (k/7)*7 + 1
160 LET t= C0DE (a$(k)) +

(s*VAL (n$(1)))
170 IF t>90 OR t<65 THEN LET

t=t—(s*26)
180 PRINT CHR$ (t);
190 NEXT k

[•3
30 PRINT "pm > ❑ aST—CYR CIPHER"
70 PRINT "gigg(+ 1) ENC0DE

MESSAGE"
80 PRINT "(—1) DECODE MESSAGE"
90 INPUT "giggENTER 1

OR —111";S
100 PRINT "OTYPE IN Y0UR

MESSAGE":INPUT A$
120 PRINT "ggENTER SEVEN

FIGURE":INPUT "NUMBER KEYPJ";N$
130 PRINT "0"
140 F0R K=1 T0 LEN(A$)
145 M$= MID$(A$,K,1):IF M$<"A" 0R

M$ >"Z" THEN PRINT M$;:
G0TO 190

150 L= K —INT(K/7)*7+ 1
160 T= ASC(MID$(A$,K,1)) + (S * VAL

(MID$(N$,L,1)))
170 IF T<65 OR T> 90 THEN

T=T— (S * 26)
180 PRINT CHR$(T);
190 NEXT K:PRINT

11
20 M0DE1:VDU 19,0,3,0,0,0,19,7,

4,0,0,0
30 PRINTTAB(13)"ST—CYR CIPHER":

PRINT
40 PRINT'TAB(16);"WARNING"
50 PRINTTAB(2);"DO N0T LEAVE SPACES

BETWEEN WORDS"
60 PRINT"
70 PRINT"ENTER 1 IF Y0U WISH T0 ENC0DE

MESSAGE"
80 PRINT"ENTER —1 IF Y0U WISH TO

DEC0DE MESSAGE"
90 INPUTS:PRINT
100 INPUT"TYPE IN Y0UR MESSAGE",A$
110 TIME= 0:REPEAT UNTIL TIME>150:

CLS
120 INPUT"ENTER SEVEN FIGURE NUMBER

KEY",N$
130 FOR K=1 T0 LEN(A$)
140 LET L= K— INT(K/7) * 7 + 1
150 T=ASC(MID$(A$,K,1)) + (S*VAL

(MID$(N$,L,1)))
160 IF T>90 OR T<65 THEN T=T—(S*26)
170 VDU T;
180 NEXT

M !HI
20 CLS
30 PRINT@9,"ST—CYR CIPHER":PRINT
40 PRINT@140,"WARNING":PRINT
50 PRINT"DON'T LEAVE SPACES BETWEEN

WORDS"
60 PRINT:PRINT
70 PRINT"ENTER 001 IF YOU WISH TO

ENCODE"
80 PRINT"ENTER —1 IF YOU WISH TO

DECODE"
90 INPUT S
100 INPUT"ENTER YOUR MESSAGE";A$
110 FORK = 1T01500:NEXT:CLS
120 INPUT"ENTER SEVEN FIGURE NUMBER

KEY ❑ ❑ ❑ ";N$
130 FORK=1T01500:NEXT:CLS
140 FOR K=1 TO LEN(A$)
150 L= K—INT(K/7)*7 +1
160 T = ASC(M I D$(A$,K,1)) + (S*VAL

(MID$(N$,L,1)))
170 IF T>90 OR T<65 THEN T=T—(S*26)
180 PRINTCHR$(T);
190 NEXT

The operation of this program is very similar
to the distance code program. As each letter of
plain text is read, it is first converted into its
ASCII code numbers equivalent. The VAL
function is then employed to increment this
figure by an amount dictated by the relevant
digit in your number key (Line 160). After a
check to ensure that the result lies in an
acceptable range (Line 170), the CHR$ facility
is used to output the coded message.

During the early days of June 1944,
the following message might have needed
coding: TROOP SCAPTUREPEGA SU S
BRIDGE. Using the program with a number
key 3821105, the encoded text becomes:
BTPPPXFIRUVRJ SMIBTUXEZKEHE.
By using an indicator variable S which can
take values + 1 or — 1, it is possible to use the
same program for decoding.

The seven-figure number key is a matter of
personal choice. However, as these figures
often have to be committed to memory, it's a
good idea to use something familiar, such as a
telephone number. As there are ten million
possible different values for the number key,
the St. Cyr cipher is already hard to decode.
However, extra difficulty can be introduced
by coding twice—putting the already coded
message through the program for a second
time.

Consider the message TOM IS A SPY.

Using number keys 3821105 and 2568723 the
enciphering/deciphering sequence becomes:

Text 	Number Key

TOMISASPY
3821105 0

BQNJSFVXA 	 ca.
CD

2568723
GWVQIXCG

2568723 Y BQNSFVXA
3821105 ca.

TOMISASPY

MORSE CODE
Even the most secure code is of little use if it
cannot be transmitted quickly. Napoleon
made some attempts to overcome the problem
of speed by building signal towers throughout
France. A primitive version of semaphore was
used to pass messages from tower to tower.

However, it was the invention of the
electromagnetic telegraph and accompanying
substitution cipher known as Morse Code in
the 1830's that really speeded up the sending

of secret messages. The American inventor
Morse devised a code in which dots and
dashes replace letters, as shown in the table:

The Morse Code program will either en-
cipher plain text, or decode a series of dots
and dashes into the appropriate letters* As an
example, the well-known distress signal SOS
becomes /• • • /- - - /• • • / and the slightly more
elaborate text ESCAPE AT MIDNIGHT is:
I . /•--• I . /• I -I-- I - I -. /..
/--. /—

Try the two passages of text in the next
program* Working in the reverse direction, if
you run the program and enter -- 0- -0-- -
000--0--***** the word MAYDAY will
appear on the TV screen. Asterisks are used to
tell the computer that the message is complete
except for the Acorn and Dragon.

a
1 0 BORDER 0: PAPER 0: INK 7: CLS : DIM

a$(26,4): LET S$="": LET
f$=" ❑❑❑❑❑ "

15 POKE 23658,8
20 FOR x=1 TO 26: READ a$(x): NEXT x
30 INPUT "Encode (1) OR Decode (2) ";r

40 IF r=2 THEN G0T0 140
60 INPUT "MESSAGE TO BE ENCODED"'m$
70 FOR x=1 TO LEN m$
80 IF m$(x)="0" THEN PRINT

"E 	0";: GOTO 110
90 LET p$=m$(x)
100 PRINT "0 0 0 E";a$((C0DE

p$) —64);
110 NEXT x
120 PRINT '"'TAB 10;"ANY KEY T0 RUN";:

PAUSE 9999
130 RUN
140 INPUT "MESSAGE T0 BE DEC0DED";m$:

LET m$ = m$ + "0"
160 FOR x=1 TO LEN m$
170 LET k$ = m$(x)
180 IF k$ = "El" THEN GOTO 220
190 LET s$=s$+k$
200 NEXT x: GOTO 120
210 IF LEN s$>5 OR LEN s$ <1 THEN

PRINT "ERROR": GOTO 120
220 IF LEN s$< >5 THEN LET s$=s$+f$

(TO 5—LEN s$)
225 FOR h=1 TO 26: IF a$(h)=s$ THEN

PRINT CHR$ (h +64);
230 NEXT h
240 LET s$="": GOTO 200
250 DATA "0 — "," — 000"," — 0 — 0",

"— 0070700-07— —0",
"000070070— — — — 0 —",
"0 — 00"," — — "," — 0"," — — —",
"0— — 0"," — — —","0 — 07000",
" —","00 —7000 —","0 — —",
"-00 —","-0 — —","— —00"

10 P$="0-000 —0000 —0-0
❑ —000000E ❑ 000 —0D — —0
0E00000 00017 CI"

20 P$= P$+"0— — —0-0-0E10
—000— —0E10-0000— — —
0 00 — —00— —0-00-0
0 ❑ 000 ❑ El"

30 P$="— ❑ 0 E 000— 0 0000
—D0— —00-00—E-0— —0
——000"

100 PRINT "0 gg > ❑ aMORSE CODE"
120 PRINT "a aENTER 1 TO ENCODE OR 2

TO DECODE":INPUT N
130 PRINT "CENTER YOUR

MESSAGE":INPUT B$:PRINT
gi";B$;"PJ= Xg"

140 IF N=2 THEN 190
150 FORI =1 TO LEN(B$)
155 M$=MID$(B$,1,1):IF M$<"A" 0R

M$>"Z" THEN
PRINT"/ 00 OE ";:GOTO 185

160 K = ASC(MID$(B$,I,1)) —64
170 T=1 +(K-1)*5
180 PRINT "I" MID$(P$,T,5);
185 NEXT I:GOTO 280

What are the practical uses of
codes?
Aside from the traditional uses
of codes in the shady world of
subterfuge, codes are finding their way
increasingly into our daily lives.

Nearly everyone who has a bank
account now has a card which enables
money to be withdrawn from an
automatic till. The card has its own
code. Likewise, each cheque has codes
written along its bottom edge, related to
the branch, account and cheque number.

For many years stock control has beer
made easier by using computers, with
each item being assigned a code number
With the introduction of bar codes—the
black and white stripes found on
shopping items—prices can be
automatically read, and the bill compiled
at the same time as the stock totals are
adjusted.

This is moving towards the 'cashless
society' where money is moved around
without being touched. This increasing
computer control may have its
advantages—certainly in terms of
avoidance of theft and fraud.
Eventually, it may be that every
shop has access to your
credit rating.

190 FOR 1=1 TO LEN(B$)
200 IF MID$(B$,I,1)< >"/" THEN NEXT I
210 D$ = LEFT$(B$,I— 1) -F"DEED

":8$ = MID$(B$,I+ 1)
220 IF D$="*" THEN 280
230 FOR V=1 TO 26:W=1 + (V —1)*5
240 IF LEFT$(D$,5) < > MID$(P$,W,5)

THEN 260
250 PRINT CHR$ (64+ INT(W/5)+1);:GOTO

270
260 NEXT V:PRINT "0";
270 IF B$< >"" THEN 190
280 PRINT

10 MODE6:DIM A$(26)
20 FOR X=1 TO 26:READ A$(X):NEXT X
30 INPUT'"" ❑ ❑ ❑ 1=1 1:1 ❑ ENCODE OR

DECODE(1 /2)",R
40 IF R=2 THEN GOTO 140
50 PRINTTAB(7);"MESSAGE TO BE

ENCODED";SPC(14);
60 INPUT M$
70 FOR X=1 TO LEN(M$)
80 IF MID$(M$,X,1)=" ❑ " THEN PRINT

"LI 	0";:GOTO 110
90 P$=MID$(M$,X,1)
100 PRINT "0";A$(ASC(P$) — 64);
110 NEXT
120 PRINT""'TAB(13);"ANY KEY TO

RUN";:A$=GET$
130 RUN
140 PRINTTAB(7);"MESSAGE TO BE

DECODED";SPC(14);
150 INPUT M$:M$=M$+" ❑ "
160 FOR X=1 TO LEN(M$)
170 K$= MID$(M$,X,1)

180 IF K$ =" 0" THEN 220
190 S$ =S$ + K$
200 NEXT:GOTO 120
210 IF LEN(S$) >4 OR LEN(S$) <1 THEN

PRINT TAB(18);"ERROR":GOTO 120
220 FOR H=1 TO 26:IF A$(H) =S$ THEN

VDU H+64
230 NEXT H
240 S$ = ":GOTO 200
250 DATA 0 — 000, — 0 — 0,— 00,0,

00 — 0, — — 0,0000,00,0 — — — 0 —,
0 — 00, — —0, — — —,0— —0,
— — 0 —,0 — 0,000, — ,00 — ,000 —,
0— —,-00—,-0— —,— —00

ttral
10 CLS:DIMA$(26)
20 FOR X=1 TO 26:READ A$(X):NEXT X
30 PRINT@100,;:INPUT"ENCODE OR

DECODE(1,2) ";R
40 IF R=2 THEN 140
50 PRINT"0 ❑ ❑ MESSAGE T0 BE

ENCODED"
60 INPUT M$
70 FOR X=1 TO LEN(M$)
80 IF MID$(M$,X,1)=" ❑ " THEN PRINT

"El ❑ ED ❑ ";:GOT0110
90 P$ = MID$(M$,X,1)
100 PRINT"0";A$(ASC(P$) —64);
110 NEXT
120 PRINT:PRINT:PRINTTAB(7);"ANY KEY TO

RUN"
130 IF INKEY$="" THEN 130 ELSE RUN
140 PRINT"0 ❑ ❑ MESSAGE TO BE

DECODED"
150 INPUT M$:M$= M$+"0":PRINT:

PRINT

Morse Code on screen

160 FOR X=1 T0 LEN(M$)
170 K$=MID$(M$,X,1)
180 IF K$= 	THEN 210
190 S$ = S$ + K$
200 NEXT:PRINT:GOTO 120
210 IF LEN(S$) >4 OR LEN(S$) <1 THEN

PRINT" ❑ ";:GOT0200
220 FOR H=1 TO 26:IF A$(H) = S$ THEN

PR 1 NTCH R$(H + 64);
230 NEXT
240 S$ ="":GOT0200
250 DATA 0 — , — 000, — 0 — 0, — 00,0,

00 — 0, — — 0,0000,00,0 — — —,-0—,
0 — 00, — —,-0,— — —,0— — 0,
— —0—,0-0,000,—,00—,000—,
0— —,-00—,-0— —,— —00

In the first part of this program a 130
character string of dots and dashes is set up to
represent the morse equivalent of the al-
phabet in sequential order (Lines 10-30 on
the Commodore and 250 on Acorn, Dragon

and Spectrum). While the minus sign pro-
vides a good symbol for a dash, it is best if an
asterisk (zero in the Acorn and Commodore)
or graphics symbol is used for the dots instead
of the full stop.

A field of five characters has been allowed
for each letter, whereas four would really be
adequate for the full alphabet. This is to give
anyone wishing to extend the program the
opportunity of introducing numbers—which
have longer codes.

The coding section is very similar to the
first two programs. Each letter of plain text is
read in turn and converted to a number
between 1 and 26.

The number equivalent is then scaled by
five and the appropriate sub-string of dots
and dashes is printed (Line 180 on the
Commodores and Line 100 on Spectrum,
Dragon and Acorn).

For the deciphering routine which makes
up the final part of the program, a search
technique is used (Lines 230-250 on the
Commodores. Line 220 on Acorn and
Dragon. Line 225 on the Spectrum).

After reading the Morse signals, the com-
puter will search the string until it finds an
identical sub-string. Once this is achieved, it
is a straightforward matter to transform the
string location into the corresponding ASCII
code number. The CH R$ facility is again used
to output the required result.

In the second part of this article about
codes, you'll see how to decode the simpler
transpositions and ciphers and learn about
multiplication codes, and codes that are used
commercially.

It's time to turn on and tune in
before Willie drops out. Yes, INPUT
has gone back to the 60s—the
1560s—for a tune that will strike a
chord with Cliffhanger

No game would be complete without an
amusing little tune and Cliffhanger plays
Greensleeves at appropriate intervals. Now
you may think that Greensleeves is not an
entirely suitable choice for a game about hill
climbing. But according to fable Greensleeves
was written by Henry VIII for his wife Anne
Boleyn* She later came to a sticky end as will
Willie if he makes a slip. Also it is out of
copyright. This is important. You wouldn't
want to have to pay a royalty every time you
played the game*

The following machine code routine uses the
Spectrum's BEEPER routine in ROM:

org 60000
Id ix,57359

msk Id b,19
tune push bc

Id d,(ix +1)
Id e,(ix + 0)
Id h,(ix +3)
Id I,(ix + 2)
push ix
call 949
pop ix
Id de,4
add ix,de
pop bc
djnz tune
ret

This routine will play a tune, any tune* But it
does need some data to tell the routine what to
play. The following BASIC program carries
the data necessary to play Greensleeves,
which is POK Ed into a data table as before:

5 CLEAR 57358
10 FOR n=57359 TO 57434 STEP 2: READ

a:POKE n +1,INT (a/256): POKE
n,a—(256*INT (a/256)): NEXT n

20 DATA 98,1460,233,1223,131,1086,220,
964,78,908,147,964,261,1086,110,1297,
131,1642,49,1460,110,1297,233,1223,98,
1460,147,1460,44,1642,98,1460,220,1297,
92,1548,220,1959

PLAYING OUR TUNE
The tune routine starts by loading IX with
57359. The IX register pair is going to be

used as a pointer and it is set to the beginning
of the tune data table.

Then B is loaded with 19* The B register is
used as another pointer and 19 is the number
of notes in the tune to be played—there are 19
notes in the phrase of Greensleeves. The
value of this counter is stored by PUSHing it
onto the stack by PUSH BC* C has to be
PUSHed along with B as there are no instruc-
tions that put the value of single registers onto
the stack. It is a fact that a PUSH always works
on register pairs*

But what, you may say, is the point in
PUSHing this counter onto the stack when
neither the B or the C register is used in the
routine before the value is POPped back off
the stack again? A good question, but there is
a ROM CALL in this routine and it might want
to use the B register. And though ROM
routines might alter the values in any parti-
cular register they always leave the stack in
the same condition they found it. So the rule
is: if in doubt, PUSH it.

DE is then loaded with the first number
from the data table and HL with the second*
If you look at the BASIC program you will

see that each number occupies two bytes in
the table, though some are less than 255*

The numbers are in pairs* The first num-
ber of each pair specifies the duration of the
note. In fact, it specifies the number of cycles
generated by BEEP. So the number put in
here is the frequency multiplied by the length
of time, in seconds, you want the note to last*

The second number controls the pitch*
And you work out what it should be by the
following formula: 437,500/f — 30*125 where
f is the frequency.

The registers have to be loaded one at a
time because with indexed addressing there is
no instruction which loads the register pairs.

The IX register pair are then PUSHed to
preserve the pointer while the ROM routine
is CALLed. The CALL 949 is the instruction
that calls the BEEPER routine* This uses the
parameters in HL and DE and makes the
appropriate sound accordingly.

The point is then POPped back off the stack
into the IX register and it is advanced to the
start of the next note by loading 4 into DE and
adding. This has to be done with an ADD
IX,DE as there is no instruction which adds a
number directly to the IX register* You could
use four INC IX instructions, but that would
take considerably longer*

The BC value is then POPped back off the
stack and restored to the register* The DJNZ
instruction then decrements the B counter
and, if it hasn't reached zero yet, it jumps back
to output the next note.

To test your routine, use RANDOMIZE
USR 58277.

TUNING UP
It is unlikely that Henry VIII wrote Green-
sleeves in the form given here* Some of his
appetites were pretty basic, but it is unlikely
that he had much of an appetite for BASIC*

Still any tune can be translated into suit-
able parameters to be output to the BEEPER
routine using the machine code routine here.
But, remember, if you are using a different
tune you have to change the counter in B.

RIF
The routine that plays the tune is set aside
from the main routine because it is going to be

The 'CLIFFHANGER' listings published in this
magazine and subsequent parts bear absolutely no
resemblance to, and are in no way associated with,
the computer game called 'CLIFF HANGER' re-
leased for the Commodore 64 and published by
New Generation Software Limited.

PICKING A TUNE
COUNTING THE NOTES

WORKING OUT THE PITCH
CHANGING YOUR TUNE
CLOCKING THE OUTPUT

called several times from several different
parts of the program. But as you wait after
the title page has been displayed, the follow-
ing wedge is insert there:

0RG 16473
LDA # $13
JSR $4096
RTS

This loads the accumulator with 13 hex, 19
decimal—there are 19 notes in the initial
phrase of Greensleeves* Then it jumps to the
tune playing subroutine at 16,534.

ORG 16534
CMP #$13
BCC $409D
LDA # $13
NOP
NOP
NOP
NOP
STA $FB
LDY # $18
LDA #$00
STA $D400,Y
DEY
BNE $40A6
NOP
LDA #$0F
STA $D418
NOP
LDA #$00
STA $D405
LDA #$F0
STA $D406
LDY #$00

BNE $40E8
NOP
LDY $FC
LDA # $00
STA $D404

FAIL SAFE
The first little module in this program is a
fail-safe device. When this routine is called
from some other part of this main program
you may forget to load the accumulator
appropriately. As there are only enough data
to play 19 notes, there is a check to make sure
that the routine is not being called on to play
any more.

So the contents of the accumulator are
compared with 19. The Branch on Carry Clear
branches over the next instruction if the carry
flag is not set—that is, the contents of the
accumulator are less than or equal to 19.

But if the contents of the accumulator are
more than 19, the branch does not occur and
the accumulator is loaded with 19. This
means that the routine can be called on to play
less than 19 notes, but not more.

The number of notes to be played is then
stored in FB so that the accumulator can be
used to initialize the SID chip.

THE SID CHIP
The Commodore's 6581 SID chip controls
the synthesis of sound and music. Locations
54,272 to 54,296 are in the SID chip
and when you are going to use it, the
first thing that has to be done is to clear
it out by putting zeros into its 24 locations.

So 24—or 18 hex—is loaded into the Y

index register and 0 is loaded into the ac-
cumulator. Then zero is stored in 54,272-
D400 in hex—offset by the contents of Y,
which gives 54,296. Y is then decremented
and the processor branches back.

The last SID location-54,296 or D418—
controls the overall volume of the sound
output. Maximum volume is given by storing
15 in this location.

THE ENVELOPE
The way the volume of a sound varies
throughout its duration is described as its
envelope. How you shape the envelope of a
sound will be covered in more detail later in
the BASIC programming strand. But for now
all you need to know is that there are four
parameters—attack, decay, sustain, release.

The attack of a note describes the rate at
which it climbs to its peak volume. And the
decay describes how fast its volume falls after
the peak volume. The mid-range volume is
known as the sustain. And the rate at which
the volume falls from the mid-range volume is
known as the release.

These terms can easily be understood if
you think about how a note is played on a
piano. The attack is controlled by how you hit
the key. If you hit it hard, quickly, the attack
is very sharp. But if the key is stroked the
attack is shallower.

After the initial strike of the hammer
against the string, the volume

decays quite

LDA $4360,Y
STA $D401
INY
LDA $4360,Y
STA $0400
INY
STY $FC
LDA #$00
TAX
TAY
JSR $FFDB
LDY $FC
NOP
LDA $4360,Y
INY
STY $FC
STA $FD NOP

LDA # $11
STA $0404
NOP
JSR $FFDE
CMP $FD

N0P
DEC $FB
BNE $40BF
STA $D418
RTS

quickly. But as long that the key is held
down—and the peddles are not depressed—
the damper will be held back from the string
and the note will sustain. It dies away com-
pletely when the damper rests back on the
string when the key is released.

Attack, decay, sustain and release all have
values between 0 and 15* The attack value is
stored in the high nybble of memory location
D405 with the decay value is in the low
nybble. And the values for sustain and release
are in the high and low nybbles, respectively,
of memory location D406.

Attack, decay and release are all set to zero,
while sustain is set to 15.

SETTING THE PITCH
The pitch is controlled by memory locations
D400 and D401. And the details of the pitch
off each note in the opening phrase of Green-
sleeves is supplied in a data table at 4360 hex.

The index register Y is loaded with zero
and the first byte of the data table is loaded
into the high-byte of the pitch control loc-
ation. Y is incremented and the next data byte
is loaded into the low byte of the pitch control
location and Y is incremented again. The
index is then saved in FC.

TIMING THE NOTE
The length of the note also has to be specified.
But there is no location in the SID chip which
controls it. You have to time it and switch the
note off when it sounds long enough,
yourself. .40

So first of all you have to reset the real time
clock. This is controlled by the SETTIM
routine in the Kernal ROM. Zero is loaded
into the accumulator and transferred into X
and Y. All three of these registers have to be
zero to reset the clock. The processor then
jumps to SETTIM which begins at FFDB.

How long the note should be held for is
kept in the third item in the data table. So the
index is restored from FC. Then the next data
byte is loaded into the accumulator. Then the
Y index is incremented and saved back in FC
and the length of the note is stored in FD.

Memory location D404 is the SID chip's
control register and each bit of it controls a
function. Here 17 (11 hex) is loaded into it-
17 is 00010001 in binary so bit zero and bit
four are set*

Bit zero is the gate—setting it turns the
sound on. And bit four gives a sound with a
triangular waveform which has a mellow,
flute-like quality. What the other bits do will
be explained in a later article on music and
sound effects.

Once the sound has been set off the
processor jumps to the RDTIM subroutine in
the Kernal ROM which reads the real time
clock. The clock counts in 1/60ths of a second
and stores the time in three bytes. Despite
what the Programmer's Reference Guide
says, when you read the time the least signifi-
cant is returned in the accumulator, the next
most in the X register and most significant in
Y.

Musical notes only last for a very short
time so it is the byte in the accumulator that is
compared to the duration parameter in FD. If

it is not equal—in other words the clock has
not reached the value of the parameter set
yet—the BNE instruction branches back to the
JSR instruction which goes off and reads the
time again. But when the time is up the BNE
condition is not fulfilled and the processor
moves on.

The Y index is restored from FC again.
Zero is loaded into the accumulator and
stored in D404, the SID control register.
This switches the sound off again.

The note counter in FB is then decremen-
ted, and if it has not counted down to zero the
BNE instruction loops back to deal with the
next note. Wit has counted down to zero, the
contents of the accumulator—which are still
zero—are stored in D418 which switches the
volume off. Then the processor returns to
BASIC because this is the end of part three of
Cliffhanger.

THE DATA
The assembly language routine above can be
used to play any tune, providing you change
the value of the note counter stored in FB.
The shape of the envelope and the type of
sound produced can be changed by making
suitable adjustments to the values put into
D404, D405 and D406.

But it won't play anything at all unless you
give it some data. Again there is no point in
doing this in machine code and the following
BASIC program POKEs the data for Green-
sleeves into a table which the machine code
program can then access.

10 ADD =17248: FOR I = 0T032000

20 READ A%:POKE ADD + I,A%
30 IF A% = 0 GOTO 50
40 NEXT
50 END
100 DATA 28,126,16,45,198,32
200 DATA 51,97,16,57,172,64
300 DATA 61,126,16,57,172,32
400 DATA 51,97,32,43,52,16
500 DATA 34,75,64,38,126,16
600 DATA 43,52,32
700 DATA 45,198,32,38,126,16
800 DATA 38,126,64,34,75,16
900 DATA 38,126,32
1000 DATA 43,52,32,36,85,16
1100 DATA 28,214,32,0

Although the tune is played by a machine
code routine, it needs data for the tune. Again
there is no point in entering the data as
machine code. So there is a BASIC program
that POKEs the data into a data table in the
protected part of memory where the assembly
language program which follows can access it.

Note that this program uses two voices, so
it will not work on the Electron. The
Electron's Cliffhanger will have to remain,
sadly, silent though the rest of the game will
work.

Don't forget to press BREAK and type
PAGE = &3000 and NEW again before you key
in the program.

30 REM //////////////////////
40 REM / Data for voice two /
50 REM //////////////////////
60 DATA137,10
70 DATA149,148
80 DATA157,10
90 DATA165,15
100 DATA169,5
110 DATA165,10
120 DATA157,148
130 DATA145,10
140 DATA129,15
150 DATA137,5,1886
160 DATA145,10
170 DATA149,148
180 DATA137,10
190 DATA137,15
200 DATA133,5
210 DATA137,10
220 DATA145,148
230 DATA133,10
240 DATA117,20
250 DATA137,10,1756
260 DATA149,148
270 DATA157,10
280 DATA165,15
290 DATA169,5
300 DATA165,10

310 DATA157,148
320 DATA145,10
330 DATA129,15
340 DATA137,5
350 DATA145,10,1894
360 DATA149,143
370 DATA145,5
380 DATA137,10
390 DATA133,15
400 DATA125,5
410 DATA133,10
420 DATA137,158
430 DATA137,20
440 DATA177,158
450 DATA177,15,1989
460 DATA169,5
470 DATA165,10
480 DATA157,148
490 DATA145,10
500 DATA129,15
510 DATA137,5
520 DATA145,10
530 DATA149,148
540 DATA137,10
550 DATA137,15,1846
560 DATA133,5
570 DATA137,10
580 DATA145,148
590 DATA133,10
600 DATA117,30
610 DATA177,158
620 DATA177,15
630 DATA169,5
640 DATA165,10
650 DATA157,148,2049
660 DATA145,10
670 DATA129,15
680 DATA137,5
690 DATA145,10
700 DATA149,143
710 DATA145,5
720 DATA137,10
730 DATA133,15
740 DATA125,5
750 DATA133,10,1606
760 DATA137,158
770 DATA137,30
773 REM //////////////////////
775 REM / Data for voice three /
778 REM //////////////////////
780 DATA137,158
790 DATA149,30
800 DATA129,158
810 DATA145,30
820 DATA137,158
830 DATA121,30
840 DATA117,138
850 DATA165,10,2274
860 DATA145,10
870 DATA117,30
880 DATA137,158

890 DATA149,30
900 DATA129,158
910 DATA145,30
920 DATA137,143
930 DATA145,5
940 DATA149,5
950 DATA157,5,1984
960 DATA165,20
970 DATA117,10
980 DATA137,138
990 DATA185,10
1000 DATA165,10
1010 DATA137,20
1020 DATA149,143
1030 DATA157,5
1040 DATA165,10
1050 DATA165,15,1923
1060 DATA157,5
1070 DATA149,10
1080 DATA129,143
1090 DATA137,5
1100 DATA145,10
1110 DATA145,15
1120 DATA137,5
1130 DATA129,10
1140 DATA137,143
1150 DATA145,5,1761
1160 DATA149,10
1170 DATA149,15
1180 DATA145,5
1190 DATA137,10
1200 DATA117,138
1210 DATA165,10
1220 DATA145,10
1230 DATA117,20
1240 DATA109,10
1250 DATA101,143,1705
1260 DATA109,5
1270 DATA117,10
1280 DATA117,15
1290 DATA109,5
1300 DATA101,10
1310 DATA129,143
1320 DATA137,5
1330 DATA145,10
1340 DATA145,15
1350 DATA137,5,1469
1360 DATA129,10
1370 DATA137,143
1380 DATA145,5
1390 DATA149,5
1400 DATA157,5
1410 DATA165,20
1420 DATA117,10
1430 DATA137,138
1440 DATA185,10
1450 DATA165,10,1842
1460 DATA137,30
1470 DATA26151
1480 REM ////////////////
1490 REM / Read in data /

1500 REM ////////////////
1510 S%=0
1520 FORA%= 0T013
1530 T%=0
1540 FORB%= 0TO9
1550 READ C%,D%
1560 ?(&FD7+A%*20+ B% * 2)=C%
1570 ?(&FD8+A%*20+ B%*2) = D%
1580 T%=T%+C%+ D%
1590 NEXT
1600 READC%
1610 IFC%< >T% PRINT"Error in

lines ❑ ";A%*100 + 60;" —";A%
*100+150:END

1620 S%=S%+ T%
1630 NEXT
1640 READC%,D%
1650 ?&10EF =
1660 ?&10F0= D%
1670 S%=S%+ C%+ D%
1680 READ C%
1690 IFC%< >S% PRINT"Error in data":END
1700 Space = &10F1
1710 REM /////////////////////////
1720 REM / Assemble machine code /
1730 REM /////////////////////////
1740 FORPASS=0TO3STEP3
1750 P%= &1100
1760 [OPTPASS
1770 .Music
1780 LDA&80
1790 AND # &80
1800 BEQLb1
1810 RTS
1820 .Lb1
1830 LDA&80
1840 AND#&4
1850 BEQLb2
1860 LDA&80
1870 AND # &FB
1880 ORA#3
1890 STA&80
1900 LDA # 0
1910 STA&81
1920 STA&82
1930 .Lb2
1940 LDA&80
1950 AND#&1
1960 BEQLb3
1970 LDA# &80
1980 LDX# &F9
1990 LDY#&FF
2000 JSR&FFF4
2010 TXA
2020 BEQLb3
2030 LDA# 2
2040 STASpace
2050 STASpace + 2
2060 LDA# 0
2070 STASpace +1
2080 STASpace + 3

2090 STASpace +5
2100 STASpace + 7
2110 LDX&81
2120 LDA&FD7,X
2130 STASpace + 4
2140 LDA&FD8,X
2150 AND
2160 BEQLb4
2170 LDA #1
2180 STASpace +1
2190 .Lb4
2200 LDA&FD8,X
2210 AND#127
2220 STASpace + 6
2230 LDA # 7
2240 LDX # Space MOD256
2250 LDY # Space DIV256
2260 JSR&FFF1
2270 LDX&81
2280 INX
2290 INX
2300 STX&81
2310 CPX # 144
2320 BNELb3
2330 LDA&80
2340 AND # &FE
2350 STA&80
2360 .Lb3
2370 LDA&80
2380 AND # &2
2390 BEQLb5
2400 LDA# &80
2410 LDX# &F8
2420 LDY#&FF
2430 JSR&FFF4
2440 TXA
2450 BEQLb5
2460 LDA # 3
2470 STASpace
2480 STASpace +2
2490 LDA #0
2500 STASpace +1
2510 STASpace +3
2520 STASpace + 5
2530 STASpace + 7
2540 LDX&82
2550 LDA&1067,X
2560 STASpace + 4
2570 LDA&1068,X
2580 AND
2590 BEQLb6
2600 LDA #1
2610 STASpace + 1
2620 .Lb6
2630 LDA&1068,X
2640 AND # 127
2650 STASpace +6
2660 LDA # 7
2670 LDX# Space MOD256
2680 LDY # Space DIV256
2690 JSR&FFF1

2700 LDX&82
2710 INX
2720 INX
2730 STX&82
2740 CPX # 138
2750 BNELb5
2760 LDA&80
2770 AND # &FD
2780 STA&80
2790 .Lb5
2800 RTS
2810]NEXT

To execute this program to test it type RUN
then key in:

ENVELOPE 2, 1, 0, 0, 0, 0, 0, 0, 126, —1, —1,
—1,126,126
ENVELOPE 3, 1, 0, 0, 0, 0, 0, 0,126, —1, —1,
—1,126,126
?&80 = 4:REPEAT:CALL &1100:UNTIL?&80 = 0

When Cliffhanger is complete these com-
mands will be given in a bootstrap routine
which sets the rest of it running. For now,
though, you have to do it by hand.

The ENVELOPE commands above shape the
sounds given by channels two and three. As
they remain constant throughout the program
there is no point in setting them in machine
code. Their parameters are simply put into a
table where they are referred to when re-
quired and that might as well be done in
BASIC.

The music is going to play while the rest of
the program is running, so it interrupts the
main program and executes a little bit. So
when you test it you have to CALL it
R EP EATedly. &80 is the byte which controls
the tune. When bit 2 is set—by PO KEing 4 into
it—the tune plays. When the machine code
routine puts 0 in this location, the tune stops.

THE DATA
The data for each note is on a separate line.
The first figure specifies the pitch of the note,
the second the length it is played for. And the
third figure, if there is one, is a checksum.

There is a further checksum total at the end
of the program. The BASIC program that
checks the totals, R EADs the and POKES it into
the data table works in exactly the same way at
the POKEr program in part one of Cliffhanger.

TUNING UP
The memory locations from 10F1 to 10F8 are
used to store the parameters that control the
sound output. These are the same as the
parameters used in the BASIC SOUND and
ENVELOPE commands. So the base address of
the table is given a label, Space, so that they
can be referred to easily in the program.

Memory location &81 is the data table
pointer for voice two and &82 performs the
same function for voice three. &80 is the
control byte switching the tune on and off.

In Line 1780 the contents of the control
byte are loaded into the accumulator. These
are then AN Ded with 80 hex-10000000
binary—to check whether bit seven is set. If it
is set, the AN Ding gives the result 1, so the
zero flag is not set and the condition of the
BEQ on Line 1800 is not fulfilled. The branch
is not made and the processor hits the RTS and
returns. Setting bit seven of &80 is used to
switch the tune off—a facility to switch the
tune off while you're playing the game will be
given later in the program. It does it, of
course, by setting bit seven.

If bit seven isn't set the AN Ding will give a
zero result. So the zero flag will be set and the
BEQ will skip the RTS and go straight to the
label .Lb1 in Line 1820.

The instruction in Line 1840 checks
whether bit two of &80 is set. This is the bit
that is set to start playing the tune.

If it is set the contents of &80 are AN Ded
with &FB and ORed with &3. This clears bit
two and sets bits one and zero. Then zero is
stored in &81 and &82, to move them to the
beginning of the data table. This sets the
routine up ready to play the tune.

If bit two is not set the tune is already
playing, so it need not be initialized and the
instruction in Line 1850 jumps over this
section. Bits one and bit zero set indicate that
voice two and three are on.

THE VOICES
Lines 1930 to 2350 are almost an exact repeat
of Lines 2360 to 2780* The second block
deals with channel three while the first deals
with channel two. But they both work in
exactly the same way.

The first thing that happens in these
routines is that the processor checks whether
that voice is still playing. As the channels are
independent, one can be playing while the
other is not. So the instructions in Lines 1950
and 2380 check whether bit zero and bit one,
respectively, are set.

The next thing to do is to check if there is
space in the sound channel buffer. This is
done by making an OSBYTE call. The OSBYTE
vector is in &FFF4, so the appropriate para-
meters are loaded into A, X and Y—exactly as
you do in BASIC. (OSBYTE, OSWORD and
other operation system calls will be explained
fully in a forthcoming article.)

SOUNDING OUT
As voice two is going to be used the number 2
is stored in Space. And as envelope two is

going to be used as well, 2 is stored in
Space + 2.

Then 0 is stored in Space + 1, Space + 3,
Space + 5 and Space + 7. These are the high
bytes of the channel, amplitude, pitch and
duration parameters.

X is then loaded with the data pointer and
the accumulator is loaded with the contents of
&FD7 offset by the contents of X. So a byte of
the data table is loaded up and stored in
Space + 4. This is the low byte of the pitch
parameter.

Then the next byte of the data table is
loaded up. This is AN Ded with 128 to check
whether the high bit is set. Setting the high
bit of the second of each pair of bytes in the
data table indicates that you've reached the
beginning of a bar. If it is set, Space + 1 is then
set to 1, this synchronizes the two channels on
the sound chip.

Whether the tune is at the beginning of a
bar or not the next byte is loaded up again and
AN Ded with 127. This clears the high byte—
resets to 0 whether it was set or not—and
leaves the rest of the bits alone. The result is
stored in Space + 6 which is the low byte of
the duration parameter.

The OSWORD routine whose vector is at
&FFF1 is called. But beforehand the ac-
cumulator is set to seven—which turns the
OSWORD routine into the equivalent of the
BASIC SOUND command* X and Y are
loaded with the low and high bytes of the
pointer respectively. And it is the JSR&FFF1
that actually makes the sound.

THE NEXT NOTE
X is loaded with the contents of &81, in-
cremented twice and stored back in &81. This
moves the data pointer onto the beginning of
the next pair.

Then X is compared with 144. There are
144 bytes in the data table for channel two, so
when X have rached 144 the last note has been
played and the tune is over.

The contents of &80 are then loaded up
and AN Ded with &FE. This clears bit zero to
zero, telling the routine that the tune is over as
far as voice two is concerned.

Then the same steps are gone through all
over again for channel three. And when it has
played its note. The processor returns to
BASIC, ready to be called again.

The Dragon plays Greensleeves if you
execute the following program:

0 RG 	30000
LDX 	# MUSIC
STX 	MUP0INT

LDA 	# 19
PSHS 	A
LDA 	$FF01
ANDA 	#247
STA 	$FF01
LDA 	$FF03
ANDA 	#247
STA 	$FF03
LDA 	$ FF23
0RA 	#8
STA 	$FF23

MAIN 	LDU 	MUPOINT
0RCC 	#$50
PULU 	A,X
CMPU 	# MUSIC + 57
BL0 	MONE
LDU 	# MUSIC

MONE 	STU 	MUPOINT
PSHS 	X
LDB 	# 252

MTWO 	STB 	$FF20
MTHR 	LEAX

BNE 	MTHR
LDX 	,S
CLR 	$FF20

MF0U 	LEAX 	—1,X
BNE 	MF0U
LDX 	•S
DECA
BNE 	MTW0
LEAS 	2,S
DEC 	,S
BNE 	MAIN
ANDCC 	# $AF
PULS 	A,PC

MUP0INT FDB 	$ 758A
MUSIC 	FCB 	98,0,189,233,0,158,

131,0,141,220,0,125,
78,0,118,147,0,125,
255,0,141,110,0,168,
131,0,212,49

FCB 	0,189,110,0,168,233,
0,158,98,0,189,147,0,
189,44,0,212,98,0,
189,220,0,168,92,0,
200,220,0,252

This program has two entry points. One is at
30000—if you call it there, the whole tune is
played. The other is at 30008 which plays a
single note. This is used when you want to
play the tune when something else is happen-
ing. It means that you don't have to stop the
action while the whole tune plays. You can
play one note, do something else on the
screen, say, then play another. This preserves
the illusion of smooth action.

SETTING UP THE WHOLE TUNE
The value of the label MUSIC is loaded into
the data byte labelled by MUP0INT. Although

when the program is listed here, and when
you assemble it, it already has the value of
MUSIC in that byte, MUPOINT is actually used
to store the position of the last note played. So
if you are playing the routine a note at a time
there is a record of the last note played.

A is then loaded with 19—which is the
number of notes in the first phrase of Green-
sleeves. Now the whole tune is ready to play.

TAKING NOTES
If you don't want to play the whole tune you
load the accumulator with the number of
notes you want to play. So if you want to play
the tune a note at a time you simply load A
with 1.

The first thing that part of the program
does is push the value of A onto the hardware
stack. This is temporary storage. The
program will have to refer to the number of
notes it has to play later.

The following nine instructions are a
sound enable routine which sets the
input/output chip for outputting noise.

THE MAIN ROUTINE
M UPOINT points to the next note to be played,
so LDU MUPOINT loads the user stack pointer
with the pointer to the next byte of music
data. This effectively turns the music data
given at the end of the routine into the user
stack.

ORCC # $50 disables the interrupts by
masking the condition code register. What-
ever the value of bits four and six of the
condition code register, ORing it with 50
hex-80 decimal—sets them to 1.

As U is pointing to the music data
for the next note, PULU A,X pulls
the next byte of the music data
into A, the next two bytes into

X and increments U by three, moving the
pointer onto the data for the next note.

The data for the 19 notes comes in threes.
The first byte is the number of cycles you
want the note to play for. And the next two
bytes carry the delay time, which is a measure
of the wavelength of the note to be played.

U is then compared to # MUSIC + 57,
which is the address of the end of the music
data. BLO:1 branches if lower, so if the end of
the music data has not been reached the next
instruction is skipped. This sets the data
pointer back to the beginning of the data again
so the music will play over again next time.

In either case the value of the pointer,
which is in U, is stored back in MUPOINT so
that the processor will know which note its on
next time. The delay in X is pushed onto the
hardware stack for temporary storage.

LDB #252 and STB $FF20 calls the
digital/analog converter and sets it up for
outputting to the TV speaker. LEAX — 1,X
decrements X and BNE loops back until X is
counted down to zero.

X is then reloaded with the value on the
stack with the LDX ,S. This acts like a PULS X
only it does not increment the stack pointer.
CLR $FF20 turns the TV speaker off and the

same countdown routine is gone through.
Xis reloaded again and the number of cycle

the sound has to play for—which is in A—is
decremented. BNE then loops back and plays
the next cycle of the note until A has counted
down to zero.

Then LEAS 2,S clears the stack, and DEC ,S
decrements the contents of the next byte up
the hardware stack, which was the number of
notes. This, you remember, was pushed onto
the hardware stack to start with. BNE MAIN
loops back again to play the next note, if
another is required.

ANDCC # $AF re-enables the interrupts by
unmasking the condition code register. And
PULS A,PC pulls the note value—now zero—
off the hardware stack for housekeeping pur-
poses and the next two bytes. These are the
return address of the subroutine, stored there
when the music routine was called. This acts
exactly the same as an RTS.

If you want to have maximum
control when game playing, instead
of using a joystick, program your
keyboard to detect more than one
keypress

One of the most important features of any
game is the quality of the interaction between
the user and the computer. For most pur-
poses, a joystick offers more sophisticated
control, but the keyboard is probably more
versatile. To test which key is being pressed,
the keywords INKEY$ or GET$ are normally
used.

INKEY$ and GET$ can detect most charac-
ters, but their major disadvantage is that they
can detect two simultaneous keypresses only
if one key is 'SHIFT Hor a similar control key
such as ICTRLI on the Acorns and Commo-
dores, 'SYMBOL SHIFT' on the Spectrum.

Detecting such combinations is adequate
for most purposes, but a problem arises when,
for example, you wish to control the vertical
and horizontal movement, fire the laser and
drop the smart bombs of a craft* Altogether,
such actions require a total of four simulta-
neous keypresses. The best way to solve the
problem—although in fact it may not always
be possible to solve it—depends on the make
of computer.

THE EFFECT OF PRESSING KEYS
To understand how to detect more than one
keypress, it is important to know how the
computer works out which key has been
pressed. Two methods are in popular use on
home micros. In the first, the computer polls
the keyboard—it scans the keys at regular
intervals to see if one has been pressed* The
Dragon, for example, carries out a polling
every hundredth of a second, and the Com-
modores also work on this principle*

In the second method, the depression of a
key causes a message—called an interrupt—to
be sent to the processor. This action causes
the computer to stop what it is doing briefly to
tend to the keyboard. The task then is to find
out which key has been pressed* This method
is much more efficient and versatile than
polling, because if the keys are idle, there is no
need to tend them, but if a key is being held
down, you want the strongest signals from it
to register*

Whatever method of detecting keypresses
is used, the computer must be able to identify
any key easily and quickly* Most keyboards
use a system called matrix generation, by

which each key generates a number according
to its position in a matrix* What happens
when this number is generated depends on
how the computer was designed*

The Spectrum keyboard is arranged as four
rows of ten keys* But for the computer's
purposes, imagine each row is halved, so there
are eight groups of five keys. Each group
communicates with an input/output line or
I/O port* The Spectrum keyboard is parti-
cularly suited to multiple key detection,
because there are 65536 of these ports, each
identified by an address between 0 and 65535*
The table below gives the port address for
each of the eight groups*
KEY GROUP 	 n PORT

CAPS/SHIFT ZXCV 	0 65276
ASDFG 	 1 65022
QWERT 	 2 64510
1 2 3 4 5 	 3 63486
6 7 8 9 0 	 4 61438
YUI0P 	 5 57342
H J K L ENTER 	 6 49150
B N M SYM/SHIFT SPACE 	7 32766

To work out the address of each group, use
the formula: 254 + 256*(255 — r) where n is
the key group listed in the table. Alterna-
tively, enter and RUN this short program to
calculate the addresses:

10 INPUT "ENTER KEY GROUP NUMBER
: ❑ ";n

20 PRINT "'KEY GROUP NUMBER ❑ ";n
30 PRINT "PORT ADDRESS ❑ ";

254 + 256* (255 — 21* n)
40 GOTO 10

Each of the port addresses in the table
includes a number that depends on the key
being pressed* If you have a printer, or any
sort of interface connected, you should re-
move this or you may get spurious results.
Replace the first program with these two
lines, then RUN them and play about with
keys 1 to 5:

10 PRINT AT 0,0;IN 63486
20 G0T0 10

Notice how the numbers on the screen
change when different combinations of keys
are pressed*

The value in the port address is held in one
byte, of which the eighth and sixth bits are
always 1. Usually, the seventh bit is 0, but it
changes to 1 when there is a signal at the EAR
socket and when the computer becomes
warm. Bits 1 to 5 represent the keys in each
group. Normally, they are 1, but when a key is
pressed, the bit corresponding to the key
changes to 0* The fifth bit corresponds to the
key nearest the middle of the row, and the first
bit for the key at the edge of the row*

THE EFFECT OF PRESSING KEYS
UNDERSTANDING HOW YOUR

KEYBOARD WORKS
THE DIFFERENCE IN METHODS

IMPLEMENTING GAME CONTROLS

MATRIX GENERATION
MULTIPLE KEY DETECTION

DETECTING SIMULTANEOUS
KEYPRESSES

AUTO-REPEAT FACILITY

When each of the eight bits is 1, it
contributes to the value in the port, but
contributes nothing when it is 0* The value
contributed by each bit is as follows:

Bit 	 8 7 6 5 4 3 2 1

Amount contributed 128 64 32 16 8 4 2 1

So if the seventh bit is 0 and 5 is
pressed, the bit pattern in port 63486
is 10101111, and the value in this port
will be 128+0+32+0+ 8 +4+2+1

= 175. In this manner, you can detect simul-
taneous keypresses of the five keys in the
group.

This applies to each of the other groups of
keys as well and you can add lines to the
program above to experiment with printing
the values in their port addresses*

To see the matrix numbers generated by
keypresses on these machines, enter the fol-
lowing program:

20 PRINT "DMATRIX NUMBER

";PEEK (197)
30 GOTO 20

RUN the program and notice that each key you
press generates a different number. These
numbers are not changed, however, even if
you press a key simultaneously with ISHIFTI or
KE

The number of the key is stored at location
197 (as shown at Line 20), but it is then
translated, using a table in memory, into its
ASCII code* This code is placed in the
keyboard buffer, to be acted on by the
processor.

Normal keys can have different meanings if
they are pressed at the same time as the
control keys, such as ISH I FTJ * So other transla-
tion tables are needed to decode such double
presses*

Pressing ISHIFTI, ICTRL I or [CE causes
a flag to be set, so the correct table can
be accessed. There is, however, no conver-
sion table to decode the number in location
197 when normal keys are pressed simul-
taneously.

Add the next line to the program above to
see the status of the ISHIFTI flag, which is
stored at location 653:

25 PRINT "SHIFT FLAG VALUE ";
PEEK(653)

To overcome the limitation of being able to
detect only certain simultaneous keypresses,
you can restrict the number of key codes that
can be stored in the keyboard buffer* Norm-
ally, up to ten characters can be stored, but
there are instances when fewer keys in the
buffer would allow the Operating System to
ignore some keypresses and detect only the
most recent ones.

You can reduce the capacity of the buffer
by POKEing location 649 (which normally has
a value of 10) with a smaller number. Beware,
however, of replacing the 10 with larger
numbers, because you might disrupt the
keyboard and screen handling routines near
this address.

It can also be an advantage not to merely
reduce the capacity of the buffer, but to empty
it before detecting a key* You can achieve this
by modifying the loop to read or get a

character from the keyboard:

10 GET A$:IF A$ = "THEN 10

It is useful to include such a line in a program
that relies on accurate input from the user.

As well as being able to empty the buffer,
you will find it useful to let the keys auto-
repeat. Enter POKE 650,128 as a direct com-
mand, then hold down any of the normal
keys. You should see the character printed
repeatedly on the screen. Imagine this charac-
ter is detected and so causes a burst from a
laser cannon, for example. The auto-repeat
facility will give not just a burst, but a barrage
of laser fire, making an exciting attack—albeit
with one keypress. To switch off the repeat
function, enter POKE650,0.

Acorn computers convert the matrix numbers
of different keys into ASCII codes, then place
these in a 32-character buffer. As with the
other micros, they let you detect a single
keypress, or those with 'SHIFT, by using the
BASIC keyword INKEY or INKEY$. As with
the Commodores, there is no simple means of
detecting when two normal keys are pressed
simultaneously, but you can simulate this
condition closely by using IN KEY followed by
a negative number in brackets. The negative
number for each key is different from the
ASCII code, and there is a table in the User
Guide listing the numbers.

At the instant the command is executed,
the Operating System causes the keyboard to
be scanned and can identify a keypress,
irrespective of whether there are other charac-
ters in the buffer waiting to be acted on. The
essential point about this facility is that it is
instant, so it is an immediate method of
branching a program.

14—W
The keys on the Dragon keyboard are arran-
ged in a matrix of seven rows by eight
columns. Nine bytes of memory are used to
store the state of a row (the first byte) and of
the eight columns (the remaining eight bytes).
The arrangement of the matrix and the
method of decoding the state of each row
make it impossible normally to detect more
than single keypress at any given moment.

You can, however, fool the keyboard scan-
ner into accepting that all the keys in a row are
released, when its next scan will record any
key being pressed as a new occurrence. This
involves poking the value &-FF at the first
byte. This action has the effect of recording
the state of the rows.

This method is not really satisfactory,
because it requires such changes to be made

frequently in the program. A better method is
to call a machine code routine that forces a
complete keyboard scan when required. This
is the method used in the programs at the end
of this article.

[43
On all the computers except the Commo-
dores, detecting, say, six keypresses at once is
not much harder than detecting two.
Although the Spectrum is the only machine
which genuinely reads all the keys at once,
you can usually simulate simultaneous detec-
tion satisfactorily on the others. On the
Commodores, the only way in which you can
do this, however, is if you are prepared to use
the 'SHIFT , and 'CTRL keys, together with
one normal key—giving you a maximum of
four keys that can be detected at the same
time. Enter the next program to see the degree
of success that can be achieved:

a
10 BORDER 0:PAPER 0:INK 7
20 CLS
30 LET y=11:LET x=15
40 LET p =63486
50 GOSUB 220
60 IF i=175 THEN GOSUB 290
70 LET p = 61438
80 GOSUB 220
90 IF i=187 THEN GOSUB 380
100 IF 1=175 THEN GOSUB 320
110 IF i=183 THEN GOSUB 350
120 IF i=189 THEN GOSUB 410
130 IF i=185 THEN GOSUB 380:

GOSUB 410
140 IF i=173 THEN GOSUB 320:

GOSUB 410
150 IF i = 181 THEN GOSUB 350:

GOSUB 410
160 IF i=171 THEN GOSUB 380:

GOSUB 320
170 IF i=179 THEN GOSUB 380:

GOSUB 350
180 IF i=169 THEN GOSUB 380:

GOSUB 320: GOSUB 410
190 IF i=177 THEN GOSUB 380:

GOSUB 350: GOSUB 410
200 GOSUB 250
210 GOTO 40
220 LET i =IN p
230 IF i>191 THEN LET i=i —64
240 RETURN
250 PRINT AT y,x;" E + ❑ "
260 PRINT AT y +1,x;"0 DE"
270 PRINT AT y-1,x;" ❑ DO"
280 RETURN
290 IF x<1 THEN RETURN
300 LET x = x —1
310 RETURN

320 IF y> 19 THEN RETURN
330 LET y = y +1
340 RETURN
350 IF y<2 THEN RETURN
360 LET y =y-1
370 RETURN
380 IF x>28 THEN RETURN
390 LET x = x +1
400 RETURN
410 BEEP .004,20
420 BEEP .004,10
430 PRINT AT y,x;"El El El"
440 RETURN

10 POKE 650,128:PRINT "a";
CHR$(8)

100 P =1024:C = 55296:SP = 40:K1 =
37:K2 = 36:AX = 40:AY = 25:Y = 12:
X = 20:POKE 53281,0

110 XX = 0:YY = 0:A= PEEK(197):IF A= K1
THEN YY= —1

1201F A= K2 THEN YY=1
130 IF PEEK(653) =2 THEN XX= —1
140 IF PEEK(653) =1 THEN XX = 1
150 IF PEEK(653) >3 THEN GOSUB 300
160 POKE P+ (Y*SP)+X,46:POKE

C + (Y*SP) + X,RND(1) * 6 +1
200 IF X+XX> —1 AND X+XX<AX THEN

X = X + XX
210 IF Y+YY> —1 AND Y+YY<AY THEN

Y=Y +YY
220 POKE P+ (Y*SP)+X,87:GOTO 110
300 VV=54296:WW = VV —20:

AA = WW + 1: HH = WW— 3
310 POKE VV,15:POKE WW,33:POKE AA,180
320 FOR Z=1 TO 15 STEP.3:POKE

53280,Z:POKE HH,34+Z:NEXT Z
330 POKE HH 2 0:POKE WW,0:RETURN

Delete Lines 320 and 330 of the Commodore
64 program, then replace Lines 100, 300 and
310 with the following:

100 P =7680:C = 38400:SP = 22:K1 =
44:K2 = 36:AX = 22:AY = 23:Y = 10:
X = 11:POKE 36879,14

300 POKE 36878,15
310 FOR Z=8 TO 15 STEP.1:POKE

36879,Z: POKE 36877,200 —
(Z*5):NEXT Z:RETURN

10 MODE1:COLOUR 3:COLOUR 129
20 CLS:VDU 23;8202;0;0;0;
30 X=19:Y=16
40 REPEAT
50 IF INKEY(—58) THEN PR0Cup
60 IF INKEY(—42) THEN PR0Cdown
70 IF INKEY(—26) THEN PR0CIeft

80 IF INKEY(—122) THEN PROCright
90 IF INKEY(—99) THEN PROCfire
100 PROCprint
110 UNTIL FALSE
120 DEFPROCup
130 IF Y<1 THEN ENDPROC
140 Y = Y-1
150 ENDPROC
160 DEFPROCdown
170 IF Y>28 THEN ENDPROC
180 Y=Y+1
190 ENDPROC
200 DEFPROCIeft
210 IF X<1 THEN ENDPROC
220 X = X —1
230 ENDPROC
240 DEFPROCright
250 IF X > 36 THEN ENDPROC
260 X=X+1
270 ENDPROC
280 DEFPROCfire
290 SOUND &10,-10,6,1
300 PRINT TAB(X,Y);"17111111";
310 ENDPROC
320 DEFPROCprint
330 PRINT TAB(X,Y);" ❑ +111";
340 PRINT TAB(X,Y +1);" DLO";
350 PRINT TAB(X,Y-1);"0 ❑ 111";
360 ENDPROC

114
10 CLEAR200,32746
20 FORK =32747T032767:READA:

POKEK,A:NEXT
30 DATA 48,140,9,191,1,155,134,126,

183,1,154,57,52,3,134,127,183,1,81,
53,131

40 V= 223:P =1300:L =1300:CLS3
50 IF PEEK(341) = V AND P>1055 THEN

P = P-32
60 IF PEEK(342) = V AND P<1504 THEN

P=P+32
70 IF PEEK(343) = V AND P>1024 THEN

P= P —1
80 IF PEEK(344) = V AND P<1535 THEN

P=P+1
90 IF PEEK(345)=V THEN SOUND200,1
100 POKE L,175:POKE P,43:L=P:

GOT050

The Dragon program uses a short machine
code routine, so Dragon users should key the
listing above and RUN it. Once you are sure
there are no errors, enter the next line, then
the program will be complete:

35 EXEC32747

RUN the program to see a target printed at the
centre of the screen. You can use the arrow
keys to move the target in any direction about
the screen, and press 9, (CAPS SHIFTI on the

Acorns, or the space bar on the Dragon to fire.
The Commodore keys are chosen carefully,
because normal keys cannot be detected when
they are pressed together. Since you never
need to move up and down at the same time,
K and M are used for these actions. KC and
SHIFTI are used for left and right movement,
and ICTRLI for fire.

The structure of the programs is different
in most cases, but they use the methods
described above to detect five keys—not all
simultaneously in the case of the Commo-
dores, but sufficiently close to give a fair
simulation. Press the keys to move the target
up and left, for example, and it will move
diagonally—and you can fire while doing so.

The principle is taken a step further in the
next program, which detects six keys to make
possible a game for two players. There is no
listing for the Commodores, because you
cannot detect six keys simultaneously on
those micros, so the game would not be fair to
both players.

a
10 BORDER 0:PAPER 0:INK 7
20 BRIGHT 0:OVER 0:CLS
30 PRINT AT 1,7;INK 6;FLASH 1;

"EIGOU ❑ N ❑ FDIDGOH ❑ T! D "
40 PRINT:PRINT
50 PRINT INK 5;" ❑❑ WIN POINTS BY

SHOOTING YOUR111111111OPPONENT.
EACH PLAYER HAS SIX ❑ 1717 BULLETS."

60 PRINT:PRINT
70 PRINTTAB 7; INVERSE 1;

"C 000 NOTOR 0 0 0 L DS: 0"
80 PRINT:PRINT "0 PLAYER 1

❑❑❑❑❑❑❑❑❑❑❑❑
111111PLAYER 2 ❑ "

90 PRINT:PRINT "000010E000
— — — UP — — —171717000E1E1
DE"

100 PRINT:PRINT " ❑ 111 111 ❑ Q ❑ 111 111
111111— — DOWN — —E111111E1111P
111 111 111 "

110 PRINT:PRINT "111111 ❑ DADE ❑
DO— —FIRE--E1111111110
ENTER"

120 PRINT:PRINT:PRINT TAB 6;"MAY THE
BEST MAN WIN"

130 FOR n=USR "a" TO USR "i"+ 7
140 READ d
150 POKE n,d
160 NEXT n
170 DATA 1,3,6,15,31,63,15,15
180 DATA 192,192,0,192,192,192,0,135
190 DATA 15,15,15,15,15,12,12,14
200 DATA 248,248,128,128,128,192,192,224
210 DATA 0,0,0,0,0,0,126,0
220 DATA 3,3,0,3,3,3,0,113
230 DATA 128,192,96,240,248,252,240,240

240 DATA 15,15,1,1,1,3,3,7
250 DATA 240,240,240,240,240,48,48,112
260 LET yl =10: LET y2=10
270 LET bl =6: LET b2 = 6
280 LET s1 = 0: LET s2 = 0
290 RESTORE 330: FOR n=1 TO 8
300 READ d,p
310 BEEP d,p
320 NEXT n
330 DATA .1,7,.09,12,.1,7,.09,12,.6,

7,.45,2,.45,6,.5,0
340 PRINT # 1;AT 0,0; FLASH 1;

"0 ❑ ❑ PRESS ANY KEY TO PLAY
GAMED 0 0"

350 LET p=254: GOSUB 570
360 IF i=191 THEN GOTO 350
370 INK 4: BRIGHT 1: CLS
380 PRINT INVERSE 1;"PLAYER 1 ❑ 0 ❑ ❑ ❑

D000000000PLAYER 2"
390 PRINT "BULLETS:06D ❑ ❑ ❑ ❑

0 0 ❑ 0 0 0 060:BULLETS"
400 PRINT # 1;AT 0,0; INVERSE 1;
410 GOSUB 600
420 LET p = 63486: GOSUB 570
430 IF i=190 THEN GOSUB 810
440 LET p = 61438: GOSUB 570
450 IF i=190 THEN GOSUB 840
460 LET p=64510: GOSUB 570
470 IF i=190 THEN GOSUB 870
480 LET p= 57342: GOSUB 570
490 IF i=190 THEN GOSUB 900
500 LET p = 49150: GOSUB 570
510 IF 1=190 THEN GOSUB 1020
520 LET p=65022: GOSUB 570
530 IF i=190 THEN GOSUB 930
540 GOSUB 600
550 IF b1 =0 AND b2 = 0 THEN GOTO 1110
560 GOTO 420
570 LET i=IN p
580 IF i>191 THEN LET i = i —64
590 RETURN
600 PRINT AT y1,1;CHR$144;CHR$145
610 PRINT AT yl +1,1;CHR$146;CHR$147
620 PRINT AT y2,29;CHR$149;CHR$150
630 PRINT AT y2 +1,29;CHR$151;CHR$152
640 PRINT AT yl —1,1;" ❑ ❑ "
650 PRINT AT yl +2,1;" ❑ D"
660 PRINT AT y2 —1,29;"01=1"
670 PRINT AT y2 + 2,29;"0 ❑ "
680 PRINT AT 0,9; PAPER 4; INK 9;s1
690 PRINT AT 0,2'2; PAPER 4; INK 9;s2
700 PRINT AT 1,9;b1
710 PRINT AT 1,22;b2
720 RETURN
730 PRINT AT 10,10;"AAGH! GOT ME!"
740 RESTORE 780: FOR n=1 TO 11
750 READ d,p
760 BEEP d,p
770 NEXT n
780 DATA .5,2,.4,2,.2,2,.5,2,.3,5,.2,

4,.4,4,.2,2,.4,2,.2,1,.5,2

790 PRINT AT 10,10;" ❑❑❑❑❑❑
❑❑❑❑❑❑❑ "

800 RETURN
810 IF y1 <4 THEN RETURN
820 LET y1 = y1 -1
830 RETURN
840 IF y2<4 THEN RETURN
850 LET y2= y2-1
860 RETURN
870 IF y1 >18 THEN RETURN
880 LET y1 = y1 +1
890 RETURN
900 IF y2>18 THEN RETURN
910 LET y2= y2+1
920 RETURN
930 IF b1 = 0 THEN RETURN
940 BEEP .01,4: BEEP .01,0
950 FOR n=3 TO 27
960 PRINT AT y1,n;"0";CHR$148
970 NEXT n
980 PRINT AT y1,27;" ❑ El"
990 IF y1 =y2 OR y1 = y2 +1 THEN LET

s1 =s1 +1: GOSUB 730
1000 LET b1 = b1 -1
1010 RETURN
1020 IF b2=0 THEN RETURN
1030 BEEP .01,0: BEEP .01, -10
1040 FOR n=27 TO 3 STEP -1
1050 PRINT AT y2,n;CHR$148;" ❑ "
1060 NEXT n
1070 PRINT AT y2,3;" ❑ "
1080 IF y2= y1 OR y2= y1 +1 THEN LET

s2=s2 +1: GOSUB 730
1090 LET b2= b2 -1
1100 RETURN
1110 IF s1 >s2 THEN PRINT AT 10,8; FLASH

1;" D PLAYER 1 WINS!❑"
1120 IF s2>s1 THEN PRINT AT 10,8; FLASH

1;"0 PLAYER 2 WINS! El "
1130 IF s1 =s2 THEN PRINT AT 10,8; FLASH

1;" ❑ GAME IS DRAWN! ❑ "
1140 GOTO 260

Ell
10 MODE1
20 VDU 23;8202;0;0;0;
30 COLOUR 129:PRINT TAB(15,1);

"0 Gunfight! 0"
40 COLOUR 128:PRINT TAB(2,4);"Win points

by shooting your opponent."
50 PRINTTAB(6,6);"Each player has six

bullets."
60 COLOUR 2:PRINT TAB(3,8);"Controls:"
70 COLOUR 1:PRINT TAB(5,10);

"Player010000000
00000E1 Player0 2"

80 PRINT TAB(8,12);"Q111E1 00
00-- -UP---000
❑❑❑ @"

90 PRINT TAB(8,13);" A ❑❑❑❑❑❑
- - DOWN - -0001111i1D;"

100 PRINT TAB(8,14);" Z ❑ ❑ ❑ ❑
❑❑ --FIRE-- ❑❑❑❑❑❑ ."

110 COLOUR 130:PRINT TAB(8,16);
" May the best man win! El"

120 VDU 23,240,1,3,6,15,31,63,15,15
130 VDU 23,241,192,192,0,192,192,192,

0,135
140 VDU 23,242,15,15,15,15,15,12,12,14
150 VDU 23,243,248,248,128,128,128,192,

192,224
160 VDU 23,244,0,0,0,0,0,0,126,0
180 VDU 23,245,3,3,0,3,3,3,0,113
190 VDU 23,246,128,192,96,240,248,252,

240,240
200 VDU 23,247,15,15,1,1,1,3,3,7
210 VDU 23,248,240,240,240,240,240,

48,48,112
220 REPEAT
230 y1% = 10: y2% = 10
240 b1%=6: b2%=6
250 s1%=0: s2%=0
260 RESTORE 300:FOR n%= 1 TO 8
270 READ d%,p%
280 SOUND 1, -15,p%,d%
290 NEXT n%
300 DATA 2,81,1,101,2,81,1,101,12,81,

9,65,9,73,10,53
310 COLOUR 3:COL0UR 128:PRINTTAB

(6,20);"Press any key to play game";
320 * FX15,1
330 REPEAT UNTIL GET< >0
340 CLS
350 COLOUR 2:PRINT "Player 1: ❑ 0

❑❑❑❑❑❑❑❑❑❑❑❑

0000 Player 2:00"
360 PRINT "Bullets0:060 ❑ ❑ ❑ El ❑

❑ El EIDE 1=1 El 1=1 D ❑ Bullets
❑ : 06"

370 PROCprint_men
380 REPEAT
390 IF INKEY(-17) THEN PROCIeft_up
400 IF INKEY(-72) THEN PROCright_up
410 IF INKEY(-66) THEN PROCIeft_down
420 IF INKEY(-88) THEN PROCright_down
430 IF INKEY(-98) THEN PROCIeft_fire
440 IF INKEY(-104) THEN PROCright_fire
450 PROCprint_men
460 UNTIL (b1%=0 AND b2%=0)
470 PROCgame_over
480 UNTIL FALSE
490 DEFPROCprint_men
500 COLOUR 3:PRINT TAB(1,y1%);

CHR$(240);CHR$(241)
510 PRINT TAB(1,y1%+1);CHR$(242);

CHR$(243)
520 PRINT TAB(37,y2%);CHR$(245);

CHR$(246)
530 PRINT TAB(37,y2%+1);CHR$

(247);CHR$(248)
540 PRINT TAB(1,y1%-1);"1110"
550 PRINT TAB(1,y1%+ 2);"111 El"

560 PRINT TAB(37,y2%-1);" ❑ El"
570 PRINT TAB(37,y2%+2);"1110"
580 COLOUR 1:PRINT TAB(10,0);s1%
590 PRINT TAB(37,0);s2%
600 PRINT TAB(10,1);b1%
610 PRINT TAB(37,1);b2%
620 ENDPROC
630 DEFPROCplayer_shot
640 PRINT TAB(13,10);"Aaagh! Got me!"
650 RESTORE 700:FOR n%=1 TO 11
660 READ d%,p%
670 SOUND 1, -15,p%,d%
680 TIME= 0:REPEAT UNTIL TIME>

(d%*5) +6
690 NEXT n%
700 DATA 10,61,8,61,4,61,10,61,6,73,

4,69,8,69,4,61,8,61,4,57,10,61
710 PRINT TAB(13,10);SPC(15)
720 ENDPROC
730 DEFPROCIeft_up
740 IF y1%<4 THEN ENDPROC
750 y1%= y1%- 1
760 ENDPROC
770 DEFPROCright_up
780 IF y2%<4 THEN ENDPROC
790 y2%=y2%-1
800 ENDPROC
810 DEFPROCIeft_down
820 IF y1%> 27 THEN ENDPROC
830 y1%=y1%+1
840 ENDPROC
850 DEFPROCright__down
860 IF y2%>27 THEN ENDPROC
870 y2%=y2%+1
880 ENDPROC
890 DEFPROCIeft_fire
900 IF b1%=0 THEN ENDPROC
910 SOUND 0,-15,4,1
920 FOR n%=3 TO 35
930 COLOUR 1:PRINT TAB(n%,y1%);

"0";CHR$(244)
940 NEXT n%
950 PRINT TAB(36,y1%);" 0"
960 IF y1%= y2% OR y1%= y2%+ 1

THEN s1%=s1%+1:
PROCplayer_shot

970 b1%= b1%-1
980 ENDPROC
990 DEFPROCright_fire
1000 IF b2%=0 THEN ENDPROC
1010 SOUND 0,-15,4,1
1020 FOR n%= 35 TO 3 STEP -1
1030 COLOUR 1:PRINT TAB(n%,y2%);

CHR$(244);"171"
1040 NEXT n%
1050 PRINT TAB(3,y2%);" ❑ "
1060 IF y2%= y1% OR y2%=y1%+1

THEN s2%=s2%+ 1:
PROCplayer 	shot

1070 b2%=b2%-1
1080 ENDPROC

1090 DEFPROCgame 	over
1100 COLOUR 0:COLOUR 2
1110 IF s1%>s2% THEN PRINT TAB

(14,8);"Player 1 wins!"
1120 IF s2%>s1% THEN PRINT TAB

(14,8);"Player 2 wins!"
1130 IF s2%=s1% THEN PRINT TAB

(14,8);"Game is drawn!"
1140 *FX15,1

10 CLS:PMODE4,1:SS= PEEK(186)*256
+ PEEK(187)

20 FORK = SS TO SS + 480 STEP 32
30 FORJ = K TO K+3:READA:POKE J,A:

NEXTJ,K
40 DATA 1,192,3,128,3,192,3,192,6,0,0,

96,15,192,3,240
50 DATA 31,192,3,248,63,192,3,252,15,

0,0,240,15,135,113,240
60 DATA 15,248,15,240,15,248,15,240,

15,128,1,240,15,128,1,240
70 DATA 15,128,1,240,12,192,3,48,12,

192,3,48,14,224,7,112
80 DIM L(6),R(6),B(6)
90 GET(0,0) - (15,15),L:GET(16,0)

- (31,15),R,G
100 PCLS:PRINT@8,"G ❑ U ❑ N ❑

F ❑ I ❑ G ❑ H ❑ T!"
110 PRINT@97,"WIN POINTS BY SHOOTING

YOUR 0 ❑ ❑ ❑ 0 OPPONENT. EACH
PLAYER HAS SIX ❑ ❑ ❑ BULLETS."

120 PRINT:PRINTTAB(8);
"COODNOTORDOOLDS"

130 PRINT:PRINT" D PLAYER 1";TAB
(22);"PLAYER 2"

140 PRINT:PRINT" ❑ ❑ ❑ UP ❑ ❑ ❑
❑❑ ---UP--- ❑❑❑❑❑ -"

150 PRINT"0 EIDOWND D ❑ E - -
DOWN- -DODED@"

160 PRINT"ED ❑ DZED000 - -
FIRE- - 	1=1 ❑ El"

170 PRINT@481,"any key to start";
180 IF INKEY$="" THEN 180
190 X1 =16:X2= 232:Y1 =88:Y2=88:

B1 = 6:B2=6:S1 = 0:S2= 0:PCLS
200 PUT(X1,Y1) - (X1 +15,Y1 + 15),L,PSET:

PUT(X2,Y2) - (X2 +15,Y2 +15),R,PSET
210 FORK =1T06:CIRCLE(10 * K,2),1,5:

CIRCLE(255-10 * K,2),1,5:NEXT
220 SCREEN1,1:A$=INKEY$
230 L1 = Y1:L2 = Y2
240 IF PEEK(341) = 223 AND Y1 >16 THEN

Y1 =Y1 -8
250 IF PEEK(342) =223 AND Y1 <176 THEN

Y1 =Y1+8
260 IF PEEK(343) =253 AND Y2> 16 THEN

Y2= Y2-8
270 IF PEEK(338) =251 AND Y2<176 THEN

Y2=Y2+8
280 IF B1 =0 AND B2=0 THEN 360

290 IF L1 =Y1 THEN 310
300 PUT(X1,L1) -(X1 +15,L1 +15),B:

PUT(X1,Y1)- (X1 +15,Y1 +15),L
310 IF L2 = Y2 THEN 330
320 PUT(X2,L2)- (X2 +15,L2 +15),B:

PUT(X2,Y2) - (X2 +15,Y2 +15),R
330 IF PEEK(340) =223 GOSUB 1000
340 IF PEEK(345) =253 GOSUB 1500
350 GOTO 230
360 CLS:IF S1 > S2 THEN PRINT@96,

"PLAYER 1 WON BY";S1;"POINTS
TO";S2:GOT0390

370 IF S2 >S1 THEN PRINT@96,
"PLAYER 2 WON BY";S2;"POINTS
TO";S1:GOT0390

380 PRINT@96,"THE GAME WAS
DRAWN";$1;"POINTS EACH"

390 A$ = INKEY$:GOT0180
1000 IF B1 =0 THEN RETURN
1010 PLAY"T12005AGFEDC"
1020 FOR N =32 TO 232 STEP 16
1030 LINEN + 1,Y1 +7) - (N +6,Y1 +7),

PSET
1040 LINE(N+1,Y1 +7) -(N +6,Y1 +7),

PRESET
1050 NEXT
1060 IF Y1 =Y2 OR Y1 + 8 =Y2 THEN

S1 =S1 +1:CIRCLE(10*S1,8),2,5:
PLAY"T801GDBC"

1070 CIRCLE(10131,2),1,0:81 = B1-1
1080 RETURN
1500 IF B2=0 THEN RETURN
1510 PLAY"T12005BAGFEDC"
1520 FOR N =216 TO 32 STEP -16

1530 LINE(N + 1,Y2 +7) - (N + 6,Y2 + 7), PSET
1540 LINE(N + 1,Y2 + 7) - (N + 6,Y2 + 7),

PRESET
1550 NEXT
1560 IF Y2 =Y1 OR Y2 +8 = Y1 THEN

S2 = S2 + 1:CIRCLE(255 -10*52,8),
2,5:PLAY"T801GDBC"

1570 CIRCLE(255-10*B2,2),1,0:
B2= B2-1

1580 RETURN

RUN the program and see a title page, fol-
lowed by a scene set for a duel between two
space-suited beings. Two people can play this
game. The keys to control the beings are as
follows. For the Spectrum, 1 moves the
left being up, Q down and A fires the laser; 0,
P and E do the same to the right being. For
the Acorns, the left player uses Q, A and Z;
the right player uses ©, semicolon Wand full
stop (.). For the Dragon, the left player uses
the up and down arrow keys and Z; the right
player uses minus (-), © and I.

The title page and battle scene are set up
between Lines 10 and 400 (10 and 370 on the
Acorns and 10 and 210 on the Dragon). Next
comes the main loop, which detects the
keypresses and branches the program to
routines that move the figures and fire lasers.
The loop is the section of the code between
Lines 420 and 560 (380 and 480 on the
Acorns and 230 and 350 on the Dragon). The
rest of the program comprises routines for
moving, firing and printing messages.

The curtain rises on INPUT's Othello
game. Program this deceptively
simple game of strategy and take on
your computer. But beware, it's no
pushover

Othello is a strategy game played on an eight
by eight square grid—a chess or draughts
board can be used. The rules are very simple,
and the game deceptively so.

The object is to capture as many of your
opponent's pieces as possible* Play simply
consists of each player in turn adding a
piece to the board, until the board is full. Each
player starts with two pieces and tries to
capture those belonging to the other by
`surrounding' them* This is done by placing
an extra piece at the end of a row so that the
opponent is flanked by your pieces. All the
opposing pieces between your pieces are then
replaced by yours*

The score is simply the number of pieces
that belong to each player that are on the
board at any one time* The winner is the
player who has the greatest number of pieces
when the board becomes full.

On this computer verision, you play
against the machine, which also displays the
board and keeps track of the score.

HINTS AND TIPS
Like any other strategy game, there are
various tricks you can use to help you along.
If you have never played Othello before you
may find the following hints useful.

The corner pieces are extremely valuable as
they cannot be retaken once they are
captured—the reason for this is that they
cannot be surrounded like any other positions
on the board* As a result, they can prove vital
to success, and it is well worth capturing the
corners even if an alternative move may yield
a greater score* Any edge pieces which are
touching the corner pieces are also
untakeable*

Since a piece can link with more than one
line—up and down and diagonally—the most
obvious move may not be the best, as in the
later stages of the game you can often link two
or three lines by adding just one piece*

Think ahead* It may be possible to
manoeuvre your opponent into creating
opportunities for you to capture vital po-
sitions by making a seemingly bad move*

THE PROGRAM
The program takes on the role of your
opponent, playing the 'black' pieces, and
you'll see that a comparatively simple
program can play a quite challenging game of
Othello*

One great advantage that a computer
program of Othello has over a board game
version is that all the hard work is taken away.
The computer saves you having to turn pieces
over or replace them with ones of a different
colour. You are left to concentrate on the
game*

Because it considers all the possibilities,
the computer takes quite a while to come up
with its move, although it speeds up as the
game progresses when there are less blank
spaces remaining.

PLAYING THE GAME
When you RUN the program you will be asked
if you want to go first* When you move you
will have to input two coordinates. These
make up your position and are in the range
one to eight—the row and column numbers
are displayed along the top and down one side
of the board. The coordinates are entered
with the row position first, followed by the
column*

The program doesn't recognize
a stalemate, nor will it be able
to judge if you are bored, so
entering 0 as a coordinate
will end the game.

PROLOGUE
Now type in the first section of
INPUT's Othello Game* If you RUN
the game at this stage you will see
the first screen and the graphics for
the game, but you won't be able to play
the game yet. Don't forget to SAVE the
program so that you can add the
second section later*
The program for the
Acorn computers is
rather different from
that for the other
machines and so follows them, with a
separate explanation*

a
10 BORDER 0: PAPER 7:

INK 1: CLS
15 PRINT AT 1,11; INVERSE 1;

"OTHELLO"
20 PRINT AT 10,0;"DO YOU WANT TO GO

FIRST(`Y' OR 'N')?": INPUT X$: IF X$=""
THEN GOTO 20

30 LET X$=X$(1): IF X$< >"Y" AND
X$< >"N" AND X$< >"y" AND
X$ < >"n" THEN GOTO 20

40 LET CP=1: IF X$="N" OR X$="n"
THEN LET CP=2

100 DIM B(8,8): DIM C(8): DIM D(8,2): DIM
X(60): DIM Y(60): DIM N(60)

110 LET B(4,4)=1: LET B(4,5) = 2: LET
B(5,4) = 2: LET B(5,5)=1

120 FOR F=1 TO 8: READ A:
LET D(F,1) =A: READ A:
LET D(F,2) = A: NEXT F

130 DATA —1,-1,0,-1,1,-1,-1,
0,1,0,-1,1,0,1,1,1

140 FOR F=0 TO 7: READ A,B,C:
POKE USR "A" + F,A:
POKE USR "B"+ F,B: POKE USR
"C"+F,C: NEXT F

150 DATA 204,0,0,51,60,60,204,126,
66,51,126,66,204,126,66,51,126,66,
204,60,60,51,0,0

THE GAME OF OTHELLO
HINTS AND TIPS

THE PROGRAM'S ROLE
PLAYING THE GAME
THE FIRST SCREEN

SETTING UP THE GRAPHICS
FOR THE BOARD AND PIECES

INITIALIZING THE GAME
ENTERING THE MAIN LOOP

THE PLAYER'S MOVE

10 POKE53280,0:POKE53281,0:
PRINT"011"

'15 PRINT"0";TAB(16);
"CILLELLL":
PRINTTAB(16);"a OTHELLO"

20 INPUT"gggigggigggggigggg
DO YOU WANT TO GO FIRST (Y OR
N)";X$

30 X$ = LEFT$(X$,1):CP =1:IFX$ =
"N"THENCP =2

40 IFX$ < > "Y"ANDX$ < >"N"THEN
PRINT"l§gg g";:GOT020

100 DIMB(8,8),C(8),
D(8,2),X(60),

Y(60),N (60)
110 B(4,4) =1:B(4,5)

= 2:B(5,4) = 2:
B(5,5) =1

120 FORF =1T08:READA:D(F,1) = A:
READA:D(F,2) =A:NEXT

130 DATA — 1, —1,0, —1,1, —1, —1,
0,1,0,-1,1,0,1,1,1

10 PMODE1,1:COLOR4,1:PCLS:SCREEN
1,0:FOR X=1 TO 16: READ A:
NEXTX:GOSUB 9200:RESTORE

15 DRAW "BM60,40;S16":A$ =
"OTHELLO":GOSUB 9300

20 DRAW "BM26,120;S8;C2":A$ =
"DO YOU WANT TO GO FIRST ":GOSUB
9300:DRAW "BM100,140":A$ ="Y OR
N":GOSUB 9300

21 X$ =1NKEY$:IF X$ ="" THEN 21
30 IF X$ < >"Y" AND X$

< >"N" THEN 21
40 CP = 1:IF X$="N" THEN CP=2
100 DIM B(8,8),C(8),D(8,2),

X(60),Y(60),N(60)
110 B(4,4) =1:B(4,5) =2: B(5,4) =2:

B(5,5) =1
120 FOR F=1 TO 8:READ A:D(F,1)

= A:READ A:D(F,2) =A:NEXT F
130 DATA —1,-1,0,-1,1,-1,-1,

0,1,0, —1,1,0,1,1,1
150 GOSUB 1100

Lines 10 to 40 look after the first screen the
player sees. Line 10 sets the display colours

and clears the screen. The game title is
displayed by Line 15. In the Dragon/Tandy
programs, the high resolution screen has been
used, so there's the letter drawing subroutine
you have used before at the end of the
program. Line 20 PRINTs a prompt and asks
you if you want to go first. The reply is held in
X$. Subsequently, in Line 30, X$ is reduced
to its first letter. CP is the current player, and
takes the value one for the human and two for
the computer. Line 40 checks for Y or N.

Lines 100 to 130 initialize the variables
and arrays needed in the game. Line 100
looks after the arrays. B(x,y) represents the
board, and the values stored in each element
represent the status of the corresponding
square on the board—if an element is zero, the
square is empty; if it is one, a piece belonging

to the player occupies it; and if the value is
two, the square is occupied by the computer's
piece. C(x) is used in checking the player's
move, D(x,y) contains X and Y displacements
for the eight possible directions of movement.
X(x), Y(x) and N(x) are all used in calculating
the computer's move.

Line 110 sets the initial positions on the
board. Each player has two pieces positioned
at the centre of the board. The possible
directions from this position are READ from
the DATA in Line 130. Each number repres-
ents an X or Y displacement, with the
negative numbers being to the left or top of
the board.

In the Spectrum version only, Lines 140
and 150 set up the UDGs for the blank
squares, and the two different pieces. Line

140 READS the DATA from Line 150 and sets
up UDGs A, B and C.

ACT 1: THE MAIN LOOP

500 GOSUB 1000
505 IF CS+PS=64 THEN GOTO 4000
510 LET EG=0: IF CP=1 THEN GOSUB

2000: GOSUB 1000: IF EG =1 THEN
GOTO 4000

515 IF CS+PS=64 THEN GOTO 4000
520 IF CP=2 THEN GOSUB 3000
530 GOTO 500

500 GOSUB1000
505 IFCS+ PS = 64THEN4000
510 EG =0:IFCP=1THENGOSUB2000:

GOSUB1000:IFEG =1THEN4000
515 IFCS+ PS =64THEN4000
520 IFCP=2THENGOSUB3000
530 GOT0500

tgl !HI
500 GOSUB 1000
505 IF CS+PS=64 THEN 4000
510 EG =0: IF CP=1 THEN GOSUB

2000:GOSUB 1000:COLOR1:LINE
(118,150) —(150,180),PSET,BF:
IF EG =1 THEN 4000

515 IF CS+PS=64 THEN 4000
520 IF CP=2 THEN GOSUB 3000
530 GOTO 500

The main program loop runs from Line 500
to Line 530. Line 500 calls the subroutine
which draws the board. Lines 505 and 515
check to see if the board is full. It does this by
checking if CS (the computer score) and PS
(the human's score) add up to 64.

Line 510 sets the endgame flag (EG) to
zero. The middle section of the line calls the
player's turn subroutine, followed by the
board display subroutine. If, after these sub-
routines have been executed, EG is set, the
program jumps to the endgame routine, start-
ing at Line 4000. The computer's move is
dealt with by Line 520, if CP is 2.

ACT 2: DRAWING THE BOARD

a
1000 CLS : PRINT TAB 11;"12345678": LET

PS=0: LET CS = 0
1010 FOR F=1 TO 8: PRINT TAB 9;F;" ❑ ";:

FOR G=1 TO 8
1020 IF B(F,G) =0 THEN PRINT

CHR$ 144;
1030 IF B(F,G) =1 THEN PRINT INK 2;

CHR$ 145;: LET PS = PS +1

1040 IF B(F,G) =2 THEN PRINT INK 2;
CHR$146;: LET CS= CS +1

1050 NEXT G: PRINT : NEXT F
1052 LET P$ = "POINTS": IF PS=1 THEN

LET P$ = "POINT"
1054 LET Q$ = "POINTS": IF CS =1 THEN

LET Q$ = "POINT"
1060 PRINT" INK 2;"PLAYER=";

TAB 22;"COMPUTER=": PRINT PS;
" ❑ ";P$;TAB 22;CS;" ❑ ";Q$

1070 RETURN

1000 PRINT"1:41"TAB(15)"12345
678gr:PS= 0:CS= 0

1010 FORF=1T08:PRINTTAB(12);F;:
FORG =1T08

1020 IFB(F,G)=0THENPRINT"la ❑ p";
1030 IFB(F,G)=1THENPRINT"i 0";:

PS = PS + 1
1040 IFB(F,G)=2THENPRINT"li

CS = CS + 1
1050 NEXTG:PRINT"M":NEXTF
1052 P1$="POINTS":IFPS=1THEN

P1$ = "POINT"
1054 P2$="POINTS":IFCS=1THEN

P2$ = "POINT"
1060 PRINT"gg gg PLAYER = r. ; M"TAB

(30)"COMPUTER = ;It M":PRINTPS;
P1$;TAB(30)CS;P2$

1070 RETURN

Mi
1000 PS =- 0:CS = 0
1010 FOR F=1 TO 8:FOR G=1 TO 8
1030 IF B(F,G) =1 THEN PAINT

(G*16 + 54,F*16),1,3:PS = PS +1
1040 IF B(F,G) = 2 THEN PAINT

(G * 16 + 54,F*16),4,3:CS = CS + 1
1050 NEXT G,F
1060 DRAW "BM0,150;C2":A$ =

"PLAYER":GOSUB 9300:DRAW
"BM186,150":A$ = "COMPUT":
GOSUB 9300

1063 LINE (62,150) — (70,158),PSET,
B:LINE (246,150)—(256,158),
PSET,B

1064 PAINT(248,152),4,2
1065 COLOR1:LINE (0,60) —(32,80),

PSET,BF:LINE (216,60)— (248,80),
PSET,BF

1066 DRAW "BM0,60;S16;C4":A$= MID$
(STR$(PS),2):GOSUB 9300:DRAW
"BM216,60":A$ = MID$(STR$(CS),
2):GOSUB 9300:DRAW "S8"

1070 RETURN
1100 PCLS1:COLOR2:FOR X=0 TO 7:

DRAW "BM" + STR$(X16 +70) + ",
0;S8" + NU$(X +1):NEXTX

1110 LINE(64,12)— (192,140),PSET,
BF:COLOR 3

1120 FOR X=0 TO 8:LINE (X*16+64,
12)— (X*16 +64,140),PSET:NEXT

1130 FOR Y=0 TO 8:LINE (64,Y*16+
12)— (192,Y*16+12),PSET:NEXT

1140 FOR Y=0 TO 7:DRAW "C2S8
BM54," + STR$(Y16 +14) + NU$
(Y+1):NEXT

1150 RETURN

The board is drawn by the routine which
starts at Line 1000. The screen is cleared, the
column numbers are printed, and the two
scores set to zero.

The FOR ... NEXT loop between Lines
1010 and 1050 PRINTS the board on screen,
row by row. As the pieces are displayed, the
scores are incremented. Lines 1052 and 1054
tidy up the points display, PRINTed in Line
1060.

Lines 1100 to 1150 in the Dragon/Tandy
are extra high resolution graphics commands
to draw the board.

ACT 3: THE PLAYER'S MOVE

2000 PRINT AT 14,0;"WHAT IS YOUR MOVE
(ROW,COL)?": INPUT X,Y

2005 IF X =0THEN LET EG =1: RETURN
2006 IFX =9 THEN LET CP=2: RETURN
2010 IF X<1 OR X>8 OR Y<1 OR Y>8

THEN GOTO 2000
2020 IF B(X,Y) =0 THEN GOTO 2070
2040 PRINT AT 17,0;"YOU CANNOT MOVE

ONTO AN OCCUPIEDSQUARE": FOR F=1
TO 500: NEXT F

2050 PRINT AT 17,0;" ❑ ❑ ❑ ❑
❑❑❑❑❑❑❑❑❑❑❑❑
❑❑❑❑❑❑❑❑❑❑❑❑

0000000000":GOTO 2000
2070 LET NF = 0: FOR F=1 TO 8: LET

CF=0: IF X+ D(F,1)=0 OR
X+ D(F,1) = 9 THEN GOTO 2075

2071 IF Y+D(F,2)= 0 OR Y+D(F,2)=9
THEN GOTO 2075

2072 IF B(X+ D(F,1),Y+ D(F,2)) = 2 THEN
LET CF =1: LET NF =1

2075 LET C(F) = 0: IF CF =1 THEN LET
C(F)=F

2080 NEXT F
2090 STOP

2000 INPUT"ggWHAT IS YOUR MOVE
(ROW,COL)' ;X,Y

2005 IFX=0THENEG =1:RETURN
2006 IF X=9 THEN CP=2: RETURN
2010 IF (X<10RX>8)0R(Y<10RY>8)

THEN PRINT" ❑ ❑ ❑ ":GOT02000
2020 IFB(X,Y)=0THEN2070
2040 PRINT"NYOU CANNOT MOVE

ONTO AN OCCUPIED SQUARE":
FOR F = 0T01500:NEXT

2050 PRINT" ❑❑❑❑❑❑❑❑❑
❑❑❑❑❑❑❑❑❑❑❑❑
❑❑❑❑❑❑❑❑❑❑❑❑
❑❑❑❑❑❑❑ "

2060 PRINT"0 00 0":GOT02000
2070 NF= 0:FORF=1T08:CF= 0:IFX+ D

(F,1) = 90RX + D(F,1) = 0THEN2075
2071 IFY+D(F,2)=9ORY+ D(F,2)= 0

THEN2075
2072 IFB(X+D(F,1),Y+ D(F,2))=2

THENCF=1:NF =1
2075 C(F)=0:IFCF=1THENC(F)=F
2080 NEXTF
2090 STOP

341 ii
2000 COLOR1:LINE (0,182) — (255,191),

PSET,BF:LINE (118,150)—(150,180),
PSET,BF:DRAW"C3;BM0,182":A$=
"ENTER YOUR MOVE ROW AND COL":
GOSUB 9300:SOUND 100,1

2001 1$=INKEY$:IF 1$<"0" OR 1$ >"9"
THEN 2001

2002 X=VAL(I$):DRAW "BM118,150;
S16;C4" + NU$(X)

2003 I$=INKEY$:IF I$<"0" OR I$>"9"
THEN 2003

2004 Y=VAL(I$):DRAW NU$(Y) + "S8"
2005 IF X=0 THEN EG =1:RETURN
2006 IF X=9 THEN CP = 2:RETURN
2010 IF X<1 OR X>8 OR Y<1 0R Y>8

THEN 2000
2020 IF B(X,Y) = 0 THEN 2070
2040 COLOR1:LINE (0,182)—(255,191),

PSET,BF:DRAW "S8C4BM0,182":A$=
"YOU CANNOT GO TO THAT SQUARE":
GOSUB 9300:FOR F=1 TO 900:NEXTF

2050 GOTO 2000
2070 NF= 0:FOR F=1 TO 8:CF= 0:IF

X+ D(F,1)=0 OR X+ D(F,1)=9 THEN
2075

2071 IF Y + D(F,2) =0 OR Y + D(F,2) =9
THEN 2075

2072 IF B(X+ D(F,1),Y+ D(F,2)) =2 THEN
CF=1:NF=1

2075 C(F)= 0:IF CF =1 THEN C(F)=F
2080 NEXTF

The player's move is input in Lines 2000 to
2270, but this time, the program reaches only
Line 2090.

After a prompt, the coordinates (X and Y)
are input in Line 2000. Line 2005 checks to
see if X is equal to zero, and sets the EG flag.

The player's input is error-checked in Line
2010 and jumps back to Line 2000 if nece-
ssary. The chosen square is checked to ensure
it is empty, and if it is, the program jumps to
Line 2070. If the square is already occupied,

Line 2040 PRINTS an error message.
The final pair of lines—Lines 2060 and

2070—in this part of the program check if the
new piece has been placed next to one of the
computer's pieces.

LETTER-DRAWING ROUTINE
You will need to add this routine to the
program to enable you to write on the high-
resolution screen. It is similar to the one
described in detail on page 192:

9100 DATA BR4,ND4R3D2NL3ND2BE2,
ND4R3DGNL2FDNL3BU4BR2,NR3D4
R3BU4BR2,ND4R2FD2GL2BE4BR,
NR3D2NR2D2R3BU4BR2

9110 DATA NR3D2NR2D2BE4BR,NR3
D4R3U2LBE2BR,D4BR3U2NL3U2BR2,
ND4BR2,BD4REU3L2R3BR2,D2ND2
NF2E2BR2

9120 DATA D4R3BU4BR2,ND4FREND
4BR2,ND4F3DU4BR2,NR3D4R3U4BR2,
ND4R3D2NL3BE2,NR3D4R3NHU4BR2

9130 DATA ND4R3D2L2F2BU4BR2,BD
4R3U2L3U2R3BR2,RND4RBR2,D4R
2U4BR2,D3FEU3BR2,D4EFU4BR2

9140 DATA DF2DBL2UE2UBR2,DFN

D2EUBR2,R3G3DR3BU4BR2
9150 DATA NR2D4R2U4BR2,BDEND

4BR2,R2D2L2D2R2BU4BR2,NR2BD
2N R2BD2R2U4BR2,D2R2D2U4BR2,
NR2D2R2D2L2BE4,D4R2U2L2BE2
BR2,R2ND4BR2,NR2D4R2U2NL2U
2BR2,NR2D2R2D2U4BR2

9200 DIM LE$(26)
9210 FOR K=0 TO 26:READ LE$(K):NEXT
9220 FOR K=0 TO 9:READ NU$(K):NEXT
9230 RETURN
9300 FOR K=1 TO LEN(A$)
9310 B$=MID$(A$,K,1)
9320 IF B$> ="0" AND B$< ="9" THEN

DRAW NU$(VAL(B$)):GOTO 9350
9330 IF B$=" ❑ " THEN N=0 ELSE

N =ASC(B$) —64
9340 DRAW LE$(N)
9350 NEXT
9360 RETURN

PROLOGUE
10 MODE6:VDU

19,0,4;0;0;
20 PRINT TAB(15,5);

"Othello"

30 PRINT TAB(4,10);"Do you
want to go first (Y/N) ?";

40 REPEAT
50 x$=GET$
60 UNTIL INSTR("YyNn",x$) > 0
70 PRINT x$
80 cp%=1:IF x$="N" OR x$="n" THEN

cp%=2
90 DIM b%(8,8),c%(8),d%(8,2),

x%(60),y%(60),n%(60)
100 b%(4,4) =1: b%(4,5) =2
110 b%(5,4) =2: b%(5,5) =1
120 FOR f%=1 TO 8:READ d%(f%,1): READ

d%(f%,2): NEXT
130 DATA —1,-1,0,-1,1, —1,-1,0,1,

0,-1,1,0,1,1,1
140 VDU 23,241,0,60,126,126,126,

126,60,0
150 MODE5
160 VDU 19,2,4,0;0;
170 VDU 23;8202;0;0;0;

Lines 10 to 80 look after the initial screen.
The screen colours and mode are set up, then
the title and the first go prompt are displayed.
The choice is error-checked in Line 60.

Lines 90 to 170 initialize the display.
b%(x,y) represents the board, and the values
stored in each element represent the status of
the corresponding square on the board. If an
element is zero, the square is empty; if it is
one, a piece belonging to the player occupies
it; and if it is two, the square is occupied by
one of the computer's pieces. c%(x) is used in
checking the player's move, d%(x,y) contains
x and y displacements for the eight possible
directions of movement.

Lines 100 and 110 set the initial positions
of the pieces on the board. Each player has
two pieces positioned at the centre of the
board. The DATA in Line 130 are the possible
displacements from this initial position, with
the negative numbers being to the left or top
of the board.

THE MAIN LOOP
180 REPEAT
190 PROCdisplayboard
200 IF (cs%+ ps%) =64 THEN PROCgameover
210 LET eg%= 0:IF cp%= 1 THEN

PROChumanmove:IF eg% = 1 THEN
PROCgameover

220 IF (cs%+ ps%) =64 THEN PROCgameover
230 IF cp%=2 THEN PROCcomputermove
240 UNTIL FALSE

This is the core of the program. From these
few lines, the remainder of the program is
called. Line 190 displays the board, and if the
board is full, Line 200 or Line 220 call
PROCgame over.

Line 210 checks the end game flag (eg%),
and cp% for the human's move. If cp% is two,
then Line 230 calls PROCcomputer move.

DRAWING THE BOARD
250 DEFPROCdisplayboard
260 CLS
270 COLOUR 3:PRINT TAB(6,6);

"12345678"
280 LET ps%= 0:LET cs%= 0
290 FOR f%=1 TO 8
300 COLOUR 128:COLOUR 3:PRINT

TAB(4,f%+ 7);f%
310 FOR g% = 1 TO 8
320 COLOUR 129:COLOUR 0
330 IF (g%+f%) MOD 2=0 THEN COLOUR

130
340 IF b%(f%,g%) =0 THEN PRINT

TAB" + 5,7 + g%);" ❑ ";
350 IF b%(f%,g%) =1 THEN PRINT

TAB(f%+ 5,7 + g%);CHR$(241);:
ps%= ps% + 1:SOUND 1, — 8,RND(50)
+ 50,1

360 IF b%(f%,g%) =2 THEN COLOUR
3:PRINT TAB (f%+ 5,7 + g%);
CH R$(241);:cs% = cs% +1

370 NEXT g%:PR INT:NEXT f%
380 p$=" ❑ ps%= 1 THEN

p$="111Point111111111"
390 q$=" ❑ PointsEl ❑ ":IF cs%= 1 THEN

LET q$ = " ❑ Point 111 ❑ 0 "
400 COLOUR 128:COLOUR 3
410 PRINT TAB(2,1);"You ❑ :";

ps%;p$
420 PRINT TAB(2,20);"Me ❑ ❑ :";

cs%;q$
430 ENDPROC

PROCdisplay board redraws the
board column by column after

each move, plotting the
pieces in the correct
colours. In addition,

the scores for
both the player

and the
computer are

calculated and
displayed at the side

of the board.

CUMULATIVE INDEX

An interim index will be published each week. There will be a complete index in the last issue of INPUT.

A
Applications

	

hobbies file, extra options 	947-952
text-editor program

852-856,878-883,914-920

	

Auto-repeat, Commodore 64 	976

B
BASIC

adding instructions to
Acorn, Dragon, Spectrum 	844-851

Basic programming
colour commands, Acorn 	953-959
designing a new typeface 	838-843
drawing conic sections 857-863,889-895
mechanics, principles of

	
933-939

multi-key control
	

974-979
programming function keys

	
825-829

secret codes
	

960-965
speeding up BASIC programs 921-927

Beasty
connecting and controlling

	
887-888

Binary search routine 	926-927
@BLOCK, Commodore 64

	
877

C
Ciphers

see codes, secret
Circles

drawing
	

858
uses of
	

863,893-894
Cliffhanger game

part 1—title page
	

904-913
part 2—adding instructions

	
928-932

part 3—adding a tune
	

966-973
Codes, secret
	

960-965
Colour

filling in with
Acorn
	

953-959
routines for changing

Commodore 64
	

872-877
Conic sections
	

857-863,889-895
Cryptography 	 960-965
@CSET, Commodore 64
	

872
Curves, drawing
	

857-863,889-895

D
Digital clock routine 	896-898
Distance code program 	960-962
Drawing a new typeface 	838-843
Duel program

Acorn, Dragon, Spectrum 	977-979

E
Editing

using a keys
Acorn 	 829

using text-editor program
852-856,878-883,914-920

Egg-timer program, Acorn 	955-956
Ellipses

drawing 	 858-859
uses of 	863,890-891,894-895

Engineering
see Mechanics

Envelope, Acorn 	 971
Envelope, parameters of

Commodore 64 	 968-969

F
Filling in with colour

Acorn
	

953-959
Form letters routine

in text-editor program
	

914-920
Formatting

with text-editor program
	

914-920
Function keys, programming

Acorn, Commodore 64, Vic 20
	

826-829

G
Games

cliffhanger 	904-913,928-932,966-973
goldmine 	 830-837,864-871
multi-key control for 	974-979
othello 	 980-984
wordgame 	 899-903,940-945

Goldmine game
part 1—basic routines 	830-837
part 2—option subroutines 	864-871

Graphics
colour commands, Acorn 	953-959
effects using curves 	857-863,889-895
hi-res

for custom typeface 	838-843
setting up new commands

Commodore 64 	 872-877
in goldmine game 832-837,870-871
in othello board game 	982,984

Greensleeves tune
machine code routine for 	966-973

H
©HICOL, Commodore 64
	

874
Hobbies file, extra options for

	
947-952

Hydraulic ram
program to demonstrate
	

938-939
Hyperbolas

drawing
	

860-861
uses of
	

863,894-895

Instructions, adding to BASIC
Acorn, Dragon, Spectrum

Interrupts
use of in clock routine

K
Keyboard, matrix of

Keypresses
detecting

in cliffhanger game
how they work
multiple, programming for

L
Letter-generator program
Levers and fulcrums

program to demonstrate
@LINE, Commodore 64
LOGO language
@LOWCOL, Commodore 64

M
Machine code

games programming
904-913,928-932,966-973

routines for hi-res graphics
Commodore 64 	 872-877

routine to alter BASIC 	844-849
timer routine 	 896-898
tune routine 	 966-973

Mathematical functions
in mechanics 	 935
speedy use of 	 923-924
to draw curves 	857-863,889-895

Matrix generation 	 974-976
Mechanics

programs to show principles 	933-939
Memory

saving vs speed 	 923
storing new keystrokes in

Acorn, Commodore 64, Vic 20 827-829
storing new typeface in 	 842

Morse code program 	963-965
@MULTI, Commodore 64 	872-874
Multi-key control, programming for

974-979
Music

machine code routine kir 	966-973

N
@NRM, Commodore 64
	

872

0
Operating system software

Acorn, Commodore 64, Vic 20 	826-828
OS WORD, Acorn 	 956
Othello board game

part 1—basic routines 	980-984

R
@REC, Commodore 64
	

876-877
ROBOL language 	 887
Robotics 	 884-888

S
Scaling

custom typeface 	 841-843
parabolas and hyperbolas 859-861,863

Search routine
binary and serial 	 924-927
in text-editor program 	914-920

Serial search routine 	924-925
SID chip, Commodore 64 	 968
Sort routines

in hobbies file program
Acorn, Commodore 64, Dragon,

Tandy 	 947-952
in text-editor program 	914-920

Speeding up BASIC programs 921-927
St. Cyr cipher program 	962-963

Text-editor program
part 1—basic routines 	852-856
part 2—editing facilities 	878-883
part 3—sorting, searching,

formatting and printout 	914-920
Timer routine

for BASIC lines 	 922
machine code 	 896-898

Turtle 	 885-887,888
Typeface. setting up new 	838-843

V
Variables

managing for program speed
	

923-925

Wordgame
part I—basic routines
	

899-903
part 2—adding the options

	
940-945

844-851

896-897

Parabolas
drawing
	

859-860
uses of
	

863,891-893
Peripherals

974-976 	robotics
	

884-888

PLOT

	

827,829 	new commands

	

929-932 	Acorn 	 953-959

	

826,974 	@PLOT, Commodore 64 	874-876

	

974-979 	Polygons, drawing 	 893-894
Ports, input/output 	 884

addresses for keyboard
Spectrum 	 974

PROCedures, Acorn

	

838-843 	advantages of 	 922,924
use of to fill with colour 	954-959

	

933-935
	

Pulleys

	

876
	

program to demonstrate 	935-938
888
874

The publishers accept no responsibility for unsolicited material sent for publication in INPUT* All tapes and
written material should be accompanied by a stamped, self-addressed envelope.

Find out about the two cornerstones of
Computer Aided Design programs—
PICKING AND DRAGGING, and
RUBBER BANDING

LJ Paint the landscape for
CLIFFHANGER. Give Willie some cliffs
to climb with some graphics data in
part four of the machine code game

Use the CALENDAR PROGRAM to
remind yourself of all those things you
normally forget—birthdays, TV licence,
you name it!

U Complete the OTHELLO game and
issue a challenge to your computer—
it's now ready to take you on at this game
of strategy

Take your musical skills one
stage further. Learn how to play
CHORDS on the COMMODORE 64
and BBC

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36

