
A MARSHALL CAVENDISH 40 COMPUTER COURSE IN WEEKLY PARTS

LEARN PROGRAMMING - FOR FUN AND THE FUTURE

Vol. 4 	 No 40

GAMES PROGRAMMING 41

MACHINE CODE LIFE GAME 	 1237

Colourful, entertaining and easy to program

MACHINE CODE 42
■■Iir

CLIFFHANGER: CLOUDING OVER

Add some feature to the skies above your game

APPLICATIONS 26

ASKING THE STARS 	 12451

A program for a party game-a horoscope generator

GAMES PROGRAMMING 42

WARGAMING: FIRST STEPS 	 1254

Understanding how to program the simulation and the strategy

BASIC PROGRAMMING 83

USING COMMODORE COLOUR SPRITES 1258

Putting sprites together into a complete game

LANGUAGES 1

NEW LANGUAGES: LOOKING AT LOGO 1264

The first of a new series begins with an easy new language

INDEX
The last part of INPUT, Part 52, will contain a complete, cross-referenced index.
For easy access to your growing collection, a cumulative index to the contents
of each issue is contained on the inside bock cover.

PICTURE CREDITS
Front cover, George Logan. Pages 1237, 1238, 1239, Jeremy Gower. Pages 1240,
1241, The image Bank/C) Production Co./Bernard Fallon. Page 1242, Spectrum.
Pages 1245, 1246, 1247, 1248, 1249, 1250, 1251, 1252, 1253, Peter Beard. Pages
1254, 1255, 1256, 1257, George Logan. Pages 1258, 1259, Chen Ling. Pages
1264, 1265, 1266, 1267, Dave King.

© Marshall Cavendish Limited 1984/5/6
All worldwide rights reserved*

The contents of this publication including software, codes, listings,
graphics, illustrations and text are the exclusive property and copyright of
Marshall Cavendish Limited and may not be copied, reproduced,
transmitted, hired, lent, distributed, stored or modified in any form
whatsoever without the prior approval of the Copyright holder.

Published by Marshall Cavendish Partworks Ltd, 58 Old Compton Street, London W1V 5PA,
England. Typeset by MS Filmsetting Limited, Frome, Somerset. Printed by Cooper Clegg
Web Offset Ltd, Gloucester and Howard Hunt Litho, London.

HOW TO ORDER
YOUR BINDERS
UK and Republic of Ireland:
Send £4.95 (inc p & p) (IRL5.95) for
each binder to the address below:

Marshall Cavendish Services Ltd,
Department 980, Newtowh Road,
Hove, Sussex BN3 7DN

Australia: See inserts for details, or
write to INPUT, Times Consultants,
PO Box 213, Alexandria, NSW 2015

New Zealand: See inserts for details, or
write to INPUT, Gordon and Gotch
(NZ) Ltd, PO Box 1595, Wellington
Malta: Binders are available from local
newsagents.

There are Jour binders each holding 13 issues.

BACK NUMBERS
Back numbers are supplied at the regular cover price (subject to availability).

UK and Republic of Ireland:
INPUT, Dept AN, Marshall Cavendish Services,
Newtown Road, Hove BN3 7DN

Australia, New Zealand and Malta:
Back numbers are available through your local newsagent.

COPIES BY POST
Our Subscription Department can supply copies to any UK address regularly at £1.00 each.
For example the cost of 26 issues is £26.00; for any other quantity simply multiply the number
of issues required by £1.00. Send your order, with payment to:

Subscription Department, Marshall Cavendish Services Ltd,
Newtown Road, Hove, Sussex BN3 7DN

Please state the title of the publication and the part from which you wish to start.

HOW TO PAY: Readers in UK and Republic of Ireland: All cheques orpostal orders
for binders, back numbers and copies by post should be made payable to:

Marshall Cavendish Partworks Ltd.

QUERIES: When writing in, please give the make and model of your computer, as
well as the Part No., page and line where the program is rejected or where it does
not work. We can only answer specific queries-and please do not telephone. Send
your queries to INPUT Queries, Marshall Cavendish Partworks Ltd, 58 Old
Compton Street, London WI V SPA.

INPUT IS SPECIALLY DESIGNED FOR:
The SINCLAIR ZX SPECTRUM (16K, 48K,128 and +),
COMMODORE 64 and 128, ACORN ELECTRON, BBC B
and B+,and the DRAGON 32 and 64.

In addition, many of the programs and explanations are also
suitable for the SINCLAIR ZX81, COMMODORE VIC 20, and
TANDY COLOUR COMPUTER in 32K with extended BASIC.
Programs and text which are specifically for particular machines
are indicated by the following symbols:

Crr SPECTRUM 16K, re;1
am- 481028, and + [At"- COMMODORE 64 and 128

El ACORN ELECTRON,1%#
BBC B and B+ HIBERL DRAGON 32 and 64

7181 CK VIC 20 1114 TCOLLYR COMPUTER

THE RULES OF LIFE
INITIAL PATTERN

A GENERATION COUNTER
CREATING THE COLONY

MACHINE CODE DATA

Tell your micro a few simple rules
and you can simulate the struggle
for life of uni-cellular organisms. The
trick of this game is to set up the
colony for optimum survival

In this game the TV screen represents the
world in which cells can live, multiply and
die. The screen is divided into invisible
squares, each of which can contain one of the
cells. If you look at the diagram of the grid
you'll see that each cell can have a maximum
of eight neighbours. The rules of Life deter-
mine whether a cell lives or dies or whether a
new cell is born.

The rules are:
• a cell is born into a space that has exactly
three neighbours
• a cell survives to the next generation if it
has two or three neighbours
• all other cells die
The computer uses these rules to determine
the future of every square on the screen and
shows how an initial colony of cells develops.
In BASIC this would be impossibly slow so
the program is written in machine code
allowing each generation to be displayed in
about one second.

The program also displays successive gen-
erations in a different colour so the effect is
quite mesmerizing as you watch the original
colony spreading out, breaking up into smal-
ler groups, dying out or rejuvenating.

The shape of the initial colony is crucial as

some patterns die out after only a few gener-
ations while others last for hundreds. Your
job is to input the cells that make up the initial
colony. One of the aims of this game is to
devise an initial pattern that will last the
greatest number of generations—there is a
generation counter that keeps you informed
of how well your colony is doing. But it can be
more interesting to create a colony that
develops in an intriguing way. The diagrams
show a few interesting initial patterns to try
out.

CREATING THE COLONY
Here's how to input the initial pattern.

On the Spectrum use the cursor keys to
move round the screen, ENTER to create a cell,
M to delete a cell and Q to finish.

On the Commodore use the cursor keys to
move round the screen, the space bar to enter
a cell, 'DEL to delete and 'RETURN' to finish.

On the Acorn use the Z, X, P and L keys to
move the cursor, the space bar to toggle a cell
on or off, and RETURNS to finish.

Finally, on the Dragon and Tandy use the
arrow keys to move, the space bar to toggle a
cell on and off, and 'ENTER to finish.

Now type in and try the program yourself:

5 CLEAR 28671: F0R N= USR "A" T0 USR
"A" + 7: READ A: P0KE N,A: NEXT N

6 DATA 0,24,60,102,102,60,24,0
7 G0SUB 200
10 P0KE 23658,8: BRIGHT 1: B0RDER 0: INK

6: PAPER 0: CLS
20 F0R N=0 T0 21: PRINT AT N,0;

PAPER 1, - ❑❑❑❑❑❑❑❑ ":
NEXT N

30 PL0T 63,0: DRAW 0,175: DRAW 192,0:
DRAW 0,-175: DRAW —255,0: DRAW
0,175: DRAW 63,0

40 PRINT AT 2,1; PAPER 2; INK
7;" ❑ LIFE ❑ "; PAPER 0; INK 6;AT
5,1;" EIGEN ❑ ❑ ";AT 6,1;" H0000LI"

70 RAND0MIZE USR 28672: LET X=20: LET
Y=10

80 PRINT AT Y,X; 0VER 1;" ■ ": F0R N=1
T0 10: NEXT N: PRINT AT Y,X; 0VER
1;"•"

90 LET A$=1NKEY$: IF A$ "" THEN G0T0
80

92 IF A$="Q" THEN G0T0 110
94 IF C0DE A$=13 THEN PRINT AT

Y,X;CHR$ 144: P0KE 30000+
((Y — 1)*23) + (X-8),144: G0T0 80

95 IF A$="M" THEN PRINT AT Y,X;" ❑ ":
P0KE 30000 + ((Y-1)*23)+
(X-8),32: G0T0 80

100 LET X = X— (A$ ="5")*(X> 8) + (A$=
"8")*(X <30): LET Y=Y— (A$="7")*
(Y> 1) + (A$ = "6")*(Y <20): G0T0 80

110 0VER 0: RAND0MIZE USR 28711
120 PRINT AT 21,7; FLASH 1;"ANY KEY T0

RESTART": F0R N=1 T0 200: NEXT N
130 LET A$=INKEY$: IF A$ ="" THEN

G0T0 130
140 G0T0 10
200 LET L=500: REST0RE L: F0R N =28672

T0 28951 STEP 8
210 LET T= 0: F0R D=0 T0 7
220 READ A: P0KE N +D,A: LET T=T + A:

NEXT D: READ A: IF A< >T THEN PRINT
FLASH 1;"DATA ERR0R AT LINE ❑ ";L:
ST0P

230 LET L=L+10
240 NEXT N
250 RETURN
500 DATA 33,25,117,1,211,3,62,32,484
510 DATA 119,35,13,32,249,5,242,6,701
520 DATA 112,33,48,48,34,0,113,34,422
530 DATA 2,113,33,48,117,34,252,112,711
540 DATA 33,248,118,34,254,112,201,243,

1243
550 DATA 42,252,112,6,1,197,88,6,704
560 DATA 8,80,62,22,215,123,215,122,847
570 DATA 215,126,35,254,32,40,10,214,926
580 DATA 142,245,62,16,215,241,215,62,1198
590 DATA 144,215,4,120,254,31,32,233,1033
600 DATA 193,4,120,254,21,32,214,42,880

610 DATA 252,112,237,91,254,112,229,213,
1500

620 DATA 1,200,1,197,221,33,4,113,770
630 DATA 1,0,7,213,221,94,0,221,757
640 DATA 86,1,229,25,235,225,26,254,1081
650 DATA 32,209,40,1,12,221,35,221,771
660 DATA 35,5,242,107,112,126,254,144,1025
670 DATA 121,56,18,254,2,40,4,254,749
680 DATA 3,32,14,126,254,32,32,11,504
690 DATA 58,251,112,24,6,254,3,40,748
700 DATA 242,62,32,18,35,19,193,13,614
710 DATA 32,185,5,242,99,112,209,225,1109
720 DATA 237,83,252,112,34,254,112,33,1117
730 DATA 4,113,43,126,60,254,58,40,698
740 DATA 4,119,195,203,112,62,48,119,862
750 DATA 195,186,112,62,22,215,62,6,860
760 DATA 215,62,2,215,33,0,113,62,702
770 DATA 16,215,62,6,215,6,4,126,650
780 DATA 35,215,16,251,58,251,112,60,998
790 DATA 254,151,32,2,62,144,50,251,946
800 DATA 112,62,127,219,254,31,218,40,

1063
810 DATA 112,251,201,149,248,118,48,117,

1244
820 DATA 48,49,54,49,233,255,234,255,1177
830 DATA 1,0,24,0,23,0,22,0,70
840 DATA 255,255,232,255,0,0,0,0,997

5 FOR Z=0 TO 278:READ X:POKE
49152 + Z,X:CO = CO +1:NEXT Z

6 IF CO< >279 THEN PRINT "DATA
ERROR!":STOP

10 POKE 53280,6:POKE 53281,0:POKE
198,0:POKE 2,1

20 PRINT "0 g1":FoR Z= 0 TO 39:POKE
1024 +Z,160:POKE 1984 + Z,160

25 POKE 55296 +Z,14:POKE
56256 + Z,14:NEXT Z

30 X =500:C =32
35 N =0:FOR Z=1064 T0 1064+22*40

STEP 40
40 POKE 832+ N,Z - (INT(Z/256) * 256).P0KE

857+ N,Z/256
45 N=N+1:NEXTZ
100 GET A$
105 POKE 1024+X,C:IF A$=CHR$(13)

THEN POKE 198,0:G0T0 200
110 IF A$="11" AND X-1 >39 THEN

X= X - 1
120 IF A$="kr AND X+1 <960 THEN

X = X +1
130 IF A$=" ❑ " AND X-40>39 THEN

X -= X - 40
140 IF A$="gg" AND X+40<960 THEN

X=X+40
150 C=PEEK(1024+X):POKE 1024+

X,102:POKE 55296 + X,3
160 IF A$=" ❑ " THEN C=87
170 IF A$=CHR$(20) THEN C=32
180 GOTO 100
190 PRINT " j111§1";NU:NU= NU +1:SYS

49152:IF PEEK(197) < >64 THEN RUN 10
200 GOTO 190
210 DATA 169,0,133,251,32,159,192,166,251,

189,64,3,133,252,133,254,189
220 DATA 89,3,133,253,24,105,190,133,255,

160,0,177,252,201,32,208
230 DATA 16,200,192,40,208,245,230,251,

165,251,201,23,208,216,76,178,192
240 DATA 224,0,240,12,192,0,240,8,192,39,

240,4,224,23,208,3,76,34,192
250 DATA 136,177,254,24,105,1,145,254,200,

200,177,254,24,105,1,145,254
260 DATA 136,136,166,251,202,189,64,3,133,

252,189,89,3,24,105,190,133
270 DATA 253,32,15,193,200,32,15,193,200,

32,15,193,232,232,189,64,3,133

280 DATA 252,189,89,3,24,105,190,133,253,
136,136,32,15,193,200,32,15

290 DATA 193,200,32,15,193,136,166,251,
189,64,3,133,252,189,89,3,133,253

300 DATA 76,34,192,162,0,138,157,40,194,
157,0,195,157,0,196,157,0,197,232

310 DATA 208,241,96,162,0,189,64,3,133,
252,133,254,189,89,3,133,253,24

320 DATA 105,190,133,255,160,0,177,254,
201,2,144,21,201,2,240,39,201,4

325 DATA 176,13,177,252
330 DATA 201,87,240,29,169,87,145,252,76,

230,192,169,32,145,252,165,253
340 DATA 24,105,212,133,253,165,2,145,252,

165,253,24,233,211,133,253
350 DATA 200,192,40,208,202,232,224,23,

208,178,230,2,165,2,201,16

360 DATA 208,4,169,1,133,2,96,177,252,24,
105,1,145,252,96

10 M0DE1 :VDU 19,1,3,0,0,0,19,2,5,0,0,0,23,
224,0.60,126,102,102,126,60,0

20 DIM MC 300,W1 ❑ 2440:W1 =W1 +
40:W2= W1 +1200:T1= &74:T2= &75

30 F0R T=0 T0 7:READ MC?T:NEXT:
ADD = MC:PR0CASS

40 CLS:F0R T = W1 —40 T0 W1 +1199:
?T= 0:NEXT:X =19:Y =15:PRINT"ENTER
Y0UR PATTERN N0W"

50 VDU 31,X,Y+1:A$=GET$
60 IF A$="Z" AND X>0 THEN X=X-1
70 IF A$="X" AND X<39 THEN X=X+1
80 IF A$="P" AND Y>0 THEN Y=Y-1
90 IF A$="L" AND Y<29 THEN Y=Y+1
100 M=W1 + r40 +X:IF A$=" ❑ " THEN

?M= &3E 0R ?M:VDU (?M*64) + 32,8
110 IF A$< >CHR$(13) THEN 50
120 G =0:PRINTTAB(0,0)"GENERATI0N

NUMBER"SPC(10):VDU 23;8202;0;0;0;
130 ?T2 = (?T2 + 1) AND 3:IF ?T2=0 THEN

?T2=1
140 G =G +1:PRINTTAB(20,0);G:CALL LIFE:

Six generations exist at once

C0L0UR3:*FX15,0
150 IF INKEY(—99) THEN PRINTTAB(0,10)

"LIFE TERMINATED AFTER :17;G;" E GEN-
ERATI0NS""`PRESS RETURN" ELSE 130

160 IF GET =13 THEN 40 ELSE 160
170 DATA 0,1,2,40,42,80,81,82
180 DEF PROCASS:F0R T=0 T0 2 STEP

2:P%= MC + 8:[0PT T
190 .LIFE:JSR SET:.L2:JSR CELL:JSR BUMP
200 JSR CHECK:BCC L2:JSR MVE:JMP SH0W
210 .CELL:LDA #-0:STA T1:LDX #8:LDA # 0
220 STA T1:LDX #8:.C2:DEX:BMI C3:LDA

ADD,X:TAY:LDA (&70),Y: BEG C2:INC
T1:BNE C2:.C3:LDX T1

230 .C3:LDX T1:LDY #41:LDA (&70),Y:CPX
#2:BEQ C5:CPX #3:BNE C4:CMP
0:BNE C5:LDA T2:]:?P%= &2C:
P%=P%+1:[0PT T

240 .C4:LDA #0:.C5:STA (&72),Y:RTS
250 .SET:LDA # (W1 —41)MOD 256:STA &70
260 LDA # (W1 —41)DIV 256:STA &71
270 LDA # (W2 — 41)MOD 256:STA &72
280 LDA # (W2 — 41)DIV 256:STA &73:RTS
290 .BUMP:INC &72:BNE B2:INC &73
300 .B2:INC &70:BNE B3:INC &71
310 .B3:RTS
320 .CHECK:LDA &70:CMP # (W2 —41)MOD

256:LDA &71:SBC # (W2 — 41)DIV 256:RTS
330 .MVE:LDY #41:JSR SET
340 .M2:LDA (&72),Y: STA (&70),Y:JSR

BUMP:JSR CHECK:BCC M2:RTS
350 .SH0W:LDA #30:JSR &FFEE:LDA

#10:JSR &FFEE:JSR SET:LDY #41
360 .SH2:LDA #17:JSR &FFEE:LDA

(&70),Y:PHP:JSR &FFEE
370 PLP:BEQSH3:LDA#224:]:?P%=-&2C:

P% = P% + 1:[
380 .SH3:LDA # 32:JSR &FFEE:JSR B2:JSR

CHECK:BCC SH2:RTS:]NEXT:ENDPR0C

A stable colony lives on

L7_11 11"
This program will not run if a disk drive is
attached, as these use the same memory area:

10 CLS0: CLEAR 200, 30999
20 FORK=0T011:T=0:FORJ=0T016:READ

A:P0KE31000+ K*17 +J,A:T=T + A:
NEXT:READS

30 IF T< >S THEN PRINT" ❑ DATA ERR0R
IN LINE";1000+ K*10;"D0 NOT RUN
!!":END

40 NEXT
50 CLS0:FORK=0T03:PRINT©r32,

"generation";:P0KE31203 + K,48: N EXT:
P0KE65475,0

60 PM0DE3:P0KE179,128:PCLS
70 DEFUSR0 = 31000
80 X = 2064:Y =1
90 P=PEEK(X):POKEX,(P ❑ 0R51')AND(NOT

(P ❑ ANDFY))
100 A$=INKEY$:IF A$ = " 	THEN90
110 POKEX,P
120 IF A$="T" AND X>1183 THEN

X=X-32
130 IF A$=CHR$(10) AND X<3040 THEN

X=X+32
140 IF A$=CHR$(8) AND(X >1152 OR

(X=1152ANDY=1)) THENY=Y+1:IF
Y > 2 THEN Y=1:X=X-1

150 IF A$=CHR$(9) AND(X <3071 OR
(X=3071ANDY= 2)) THENY=Y-1:IF

V<1 THENY=2:X=X+1
160 IF A$=CHR$(13) THEN180
170 G0TO 90
180 H=USR0(0)
190 IF INKEY$< >"Q" THEN 180
200 G0T050
1000 DATA 182,121,226,139,16,183,121,226,

142,121,227,108,132,166,128,129,58,2425
1010 DATA 37,9,134,48,167,31,140,121,231,

37,239,198,4,206,4,11,142,1759
1020 DATA 121,231,166,130,167,192,140,

121,227,38,247,51,200,28,90,38,238,2425
1030 DATA 142,13,0,204,0,0,237,129,140,28,

128,37,249,142,4,128,206,1787
1040 DATA 13,64,166,128,133,10,39,2,141,

47,51,65,133,5,39,2,141,1179
1050 DATA 39,51,65,140,12,0,37,233,142,4,

128,206,13,64,166,132,52,1484
1060 DATA 2,230,192,134,10,141,52,230,192,

134,5,141,46,53,2,167,128,1859
070 DATA 140,12,0,37,231,57,52,2,108,200,

192,108,200,64,31,48,196,1678
080 DATA 63,39,8,108,200,191,108,95,108,

200,63,193,63,39,8,108,200,1794
090 DATA 193,108,65,108,200,65,53,130,

165,98,39,19,193,2,39,32,193,1702
100 DATA 3,39,28,230,98,67,52,2,228,224,

231,98,32,17,193,3,38,1583
110 DATA 13,230,98,196,143,250,121,226,

52,2,234,224,231,98,57,0,0,2175

Meteorology may not be your strong
point, but now's the time to add a
bit of weather to the game*
Cliffhanger now gives you clouds,
sun or sound effects

As if Willie did not have enough problems
with the goats and the sea, there is a cloud
threatening to rain on his picnic! But don't
worry, the cloud is menacing only on the
Spectrum and Commodore versions of
Cliffhanger.

On the Acorn version of the game, the
cloud is a fair weather cumulus which is
unlikely to rain on anything. It doesn't even
move about, so Acorn owners are being given
some special sound effects for their game this
week.

And on the Dragon, Willie is even luckier.
It is a brilliantly hot day with not a cloud in
the sky. But the sun does sail through the
summer sky during the course of the game.

a
The following routine sends the cloud sailing
through the sky:

chm Id (57345),hI
Id bc,57144
Id a,47
Id d,3
Id e,2
call blk
Id de,129
sbc hl,de
jr nz,cnr
Id a,0
Id (57348),a
ret

cnr 	Id de,144
Id hl,(57345)
sbc 411,de
jr nz,cnl
Id a,1
Id (57348),a

cnl 	ret
org 58970

blk

Memory location 57,347 contains the cloud
delay. This tells the cloud how fast to move
across the sky. The speed is specified when
the level is initialized by the number loaded
into this location.

The cloud delay is loaded into the ac-
cumulator, decremented and loaded back. If
it has been decremented to zero, the cp 0 and

the jr z instructions jump the return instruc-
tion and go on to the rest of the routine which
moves the cloud. If the delay hasn't counted
down to zero, though, the processor returns
and postpones moving the cloud until the
routine is called again later.

NOTHING BUT BLUE SKIES
The first thing the routine has to do is reset
the cloud delay. If it was left at zero the
routine would have to be called 256 times
before it counted down to zero again—which
would mean that the cloud was moving
mighty slow. So the number 6 is loaded into
the accumulator and put into 57,347. This
puts a fairly stiff breeze behind the cloud so
that you can see it moving on the screen.

The number 45 is then loaded into the
accumulator. It is going to be carried into the
blk routine in this register. The blk routine
prints a block of characters. The dimensions
of the block are carried in D and E—D carries
the number of columns and E the number of
rows. The blk routine itself calls the print
routine that has been used throughout this
game. So HL should carry the screen po-
sition, BC the data pointer and A the colour.
45 is cyan on cyan—in other words, the cloud
is blanked out by printing over it.

BC is loaded with the address of the start of
the screen. This will give the appropriate blue
sky data. HL is loaded with the contents of
57,345 and 57,346 which are the pointers to
the current position of the cloud.

The cloud is three columns wide and two
rows deep. So 3 is loaded into D and 2 is
loaded into E. Then the blk routine is called to
print up the block of blue sky.

WHICH WAY BLOWS THE WIND?
Memory location 57,348 is used as a flag to
tell the cloud which way the wind is blowing.
It is originally set by the initialization routine.
If it is set to 1, the wind is blowing to the left.
And if it is 0, the wind is blowing to the right.

The contents of 57,348 are loaded into the
accumulator and compared with 0. If they are
0, the jr z instruction jumps to the crt label
and the cloud position pointer in HL is
incremented—which moves the pointer one
character square to the right.

If they are not 0—in other words, the
contents of 57,348 are 1—the jr z instruction
does not operate and HL is decremented-
which moves the cloud position pointer one
character square to the left. The next
instruction—jr—simply jumps over the inc
instruction.

BRING ON THE CLOUDS
The cloud position pointers in 57,345 and
57,346 are updated by loading the contents of
HL back into them. Then the data pointer in
BC is loaded with the address of the beginn-
ing of the cloud data.

A is loaded with 47, which is white on
cyan—the cloud colour. D is loaded with 3
and E is loaded with 2 again. The cloud is the

org 58795
cld 	Id a,(57347)

dec a
Id (57347),a
cp 0
jr z,cdm
ret

cdm Id a3 6
Id (57347),a
Id a,45
Id bc,16384
Id h1,(57345)
Id d,3
Id e,2
call blk
Id a,(57348)
cp 0
jr z,crt
dec hl
jr chm

crt 	inc hl

CHECKING FOR WIND
DELAYED ACTION

REVERSING DIRECTION
ENVELOPES

CLOUD SYNCHING

The 'CLIFFHANGER' listings published in this
magazine and subsequent parts bear absolutely no
resemblance to, and are in no way associated with,
the computer game called 'CLIFF HANGER' re-
leased for the Commodore 64 and published by
New Generation Software Limited.

same size whether you are blanking it out or
drawing it in.

Then the blk routine is called which prints
the cloud in its new position up on the screen.

You must then check whether the cloud has
reached the edge of the screen, otherwise it
could scroll over the end and start appearing
one row up on the other side of the screen
when you next try to move it.

First the routine checks to see whether it
has reached the extreme left of its path. DE is
loaded with 129—the screen position of the
left-hand end of its track—and the contents of
DE are subtracted from the screen position
pointer in HL. If the result is not zero, it has
not reached the leftmost end and the jr nz
instruction jumps on to check whether it has

reached the right-hand end*
But if the result is zero, it has reached the

leftmost end and the jump is not made. The
accumulator is loaded with 0 and that is
loaded back into the wind direction flag to tell
the cloud to go to the right next time.

The cnr routine checks to see if the cloud
had reached the extreme rightmost end of its
path by subtracting 144 from the position
pointer. If it is at the far right, 1 is loaded back
in the wind direction flag to tell the cloud to
go to the left next time.

ON THE BLOCK
The following routine prints a block of
character squares on the screen, D columns
by E rows:

org 58970
blk 	push hl
blj 	push de

push hl
z push de

call print
inc hl
pop de
dec d
jr nz,z

Obviously the cloud moving program will not
work until this routine is in memory too, as it
calls the blk routine.

Again, this routine won't work without the
print routine in memory, as this routine is
called as well.

pop hl
Id de,32
add hl,de
pop de
dec e
jr nz,bIj
pop hl
ret
org 58217

print

ALRIGHT SQUARE?
The screen position pointer in HL and the
numbers of columns and rows in the DE are
stored on the stack twice. This is because the
routine has to work in two dimensions, using
two loops.

Once the parameters have been stored the
print routine is called which prints the first
character up on the screen.

HL is then incremented to move it along to
the next character square to the right. The
block dimensions are popped off the stack and
the horizontal parameter—the number of
columns—is decremented. If it has not
counted down to zero, the jr nz instruction
jumps back to the beginning of the loop again
to print up the next character square in the
row.

When D has decremented to zero, the first
row of the block has been completed.

Then HL is popped off the stack and 32 is
added to it. This operation is done with the
DE register as it is a two-byte addition. The
result is in HL so the screen pointer is
effectively moved down the screen one line.
DE is popped off the stack again to reset D
and the E register is decremented. E counts
down the rows.

If it has not counted down to zero the jr nz
instruction sends the processor back to the
beginning of the loop to start printing up the
next row.

When E has counted down to zero, the
processor drops out of the loop and HL is
popped off the stack. This resets the screen
position pointer.

The following routine moves the cloud back
and forth across the screen, depending on
which way the wind is blowing:

ORG 22528
LDA $C00B
BEQ LEFT
INC $D004
LDA $D004
CMP #255
BNE RET
LDA #0
STA $C00B

RET RTS
LEFT DEC $D004

LDA $D004
CMP #60
BNE RET
LDA #1
STA $C00B
RTS

Memory location $C00B is used as a flag to

tell the cloud which way the wind is blowing.
A 0 in that location indicates that the wind is
blowing to the left, a 1 means it is blowing to
the right.

This flag is loaded into the accumulator. If
it is zero the BEQ instruction branches for-
ward to the LEFT routine. If not—that is, if the
contents of $COOB are 1—the processor
continues.

The X coordinate of the cloud's position is
stored in memory location $D004. The cont-
ents of this location are incremented because
the cloud is moving to the right.

The next X coordinate is then loaded into
the accumulator. The cloud sprite only moves
up to the position with an X coordinate of 255
(this saves having to deal with the most
significant bit).

If the X coordinate has not reached 255,
the BNE RET instruction branches forward to
the RTS instruction and the processor returns.

But if the cloud has reached its most extreme
right-hand position and its X coordinate has
reached 255 the branch is not made and the
accumulator is loaded with 0. This is stored
back in the wind direction flag to tell the
cloud to move to the left next time.

BY THE LEFT
The LEFT routine works in much the same
way as the routine that moves the cloud to the
right.

This time though the X coordinate is
decremented and the result is compared with
60—which is the X coordinate of the extreme
left-hand end of the cloud's path. If it has
reached this point, a 1 is stored back in the
wind direction flag to tell the cloud to move to
the right next time.

121
Being short of cloud movement, this oppor-

tunity has been seized to give you some of the
Acorn's extensive range of sound effects. And
there will be more in a forthcoming part.

This program produces the crunch, the
hiss, and a loud and a quiet envelope for the
tune. It also has a provision to turn the sound
off, if you want to have a quiet game. Don't
forget to set up the computer as normal before
you key it in.

30 FORPASS = 0TO3STEP3
40 RESTORE
80 DATA4,1,0,0,0,0,0,0,126,255,255,255,126,

126
90 FORA% = &1491T0&149E:READ?A%:NEXT
100 DATA16,0,4,0,5,0,20,0
110 FORA% = &14A0TO&14A7:READ?A%:

NEXT
120 P%= &14A9
130 [OPTPASS
140 .Crunch
150 JSROff
160 LDA#8
170 LDX # &91
180 LDY# &14
190 JSR&FFF1
200 LDA # 7
210 LDX # &A0
220 LDY # &14
230 JSR&FFF1
240 RTS
250]
290 DATA0,0,4,0,4,0,20,0
300 FORA% = &14BFT0&14C6:READ?A%:

NEXT
310 P%= &14C8
320 [OPTPASS
330 .Hiss
340 JSROff
350 LDA # 8
360 LDX # &91
370 LDY# &14
380 JSR&FFF1
390 LDA # 7
400 LDX # &BF
410 LDY# &14
420 JSR&FFF1
430 RTS
440]
510 P%= &152B
520 [OPTPASS
530 .Off
540 LDA&80
550 AND# 128
560 BEQLb1
570 PLA
580 PLA
590 .Lb1
600 RTS
610]
660 DATA2,1,0,0,0,0,0,0,126,255,255,255,

126,126
670 FORA% = &1 B6ATO&1 B77: READ?A%:

NEXT
680 P%= &1B78
690 [OPTPASS
700 .Loud
710 LDA# 2
720 SIAM B6A
730 LDA # 8
740 LDX # &6A
750 LDY # &1 B
760 JSR&FFF1
770 LDA # 3
780 STA&1B6A
790 LDA # 8
800 LDX # &6A
810 LDY# &1I3
820 JSR&FFF1
830 RTS
840]
890 DATA2,2,0,0,0,0,0,0,63,255,255,255,63,63
900 FORA% = &1895T0MBA2:READ?A%:

NEXT
910 P%= &1BA3
920 [OPTPASS
930 .Quiet
940 LDA # 2
950 STA&1 B95
960 LDA # 8
970 LDX # &95
980 LDY # &1B
990 JSR&FFF1
1000 LDA # 3
1010 STA&1B95
1020 LDA # 8
1030 LDX # &95
1040 LDY # &18
1050 JSR&FFF1
1060 RTS
1070] NEXT

To test the sound effects load the rest of the
game into memory and call them in turn:

?&80 = 0:CALL &14A9

gives the crunch;

CALL &14C8

makes the snakes hiss;

CALL &1878:?&80 = 4:R EPEAT: CALL &1100:
UNTIL ?&80 = 0

calls the loud envelope and

CALL &1 BA3:?&80 = 4:REPEAT:CALL &1100:
UNTIL ?&80 = 0

calls the quiet envelope.

CRUNCH
The crunch envelope DATA is in Line 80 and
the sound DATA is in Line 100. This is then

READ into data tables at &1491 to &149E and
&14A0 and &14A7 by Lines 90 and 110.

The assembly language routine starts off
by jumping to the subroutine labelled Off.
This is the routine that switches the sound
off, so the crunch routine quickly checks to
see whether the sound effect is required.

A is then loaded with 8. This parameter
fixes the envelope when it's output through
the routine at &FFF1. X is loaded with
&91 and Y is loaded with &14. These are the
low and high bytes of the address of the
envelope data table. Then the routine at
&FFF1 is called and the envelope is defined
by the data.

A is then loaded with 7, which gives the
SOUND command when &FFF1 is called. Xis
loaded with &AO and &14. These are the low
and high bytes of the address of the beginning
of the sound data table. And when this data is
output, the sound of the crunch is made.

HISS
The hiss has its own sound data in Line 290.
The same envelope as the crunch is used.

The hiss routine works much the same as
the crunch. Off is checked to see if the sound
is wanted. The envelope data is output
through &FFF1, followed by the hiss data
which makes the sound.

THE SOUND OF SILENCE
To switch the sound off, memory location
&80 is POKEd with 128—in other words, bit
seven is set.

The off routine checks this by loading the
contents of &80 into the accumulator and
AN Ding it with 128. If bit seven is set the
processor returns directly from the routine. If
not, the stack is decremented twice before the
processor returns. This pulls the last return
address—that is, the one where the Off
routine was called—off the stack. So when the
processor hits the RTS at the end of the Off
routine, it returns to the place where the
sound effect routine was called* And as the
Off routine is called before the sound effect
routine is executed, no sound is made.

TURN IT UP
The data for the loud envelope is in Line 660.
Note that parameters 9, 13 and 14—which
control the attack and decay volume—are set
to their maximum.

The instructions in Lines 710 and 720 put
2 into the first byte of the envelope data. This
is a little superfluous as it already contains 2.
But this byte carries the channel number
which is going to be changed later. For now,
though, the envelope of channel two is being
defined.

A is loaded with 8, and X and Y with the
low and high bytes of the envelope data as
before. Then the subroutine at &FFF1 is
called which defines the envelope. Next 3 is
loaded into the accumulator and stored in the
first byte of the envelope data. The envelope
for channel three is about to be defined.

A is loaded with 8 and the X and Y registers
are loaded with the low and high byte of the
address of the beginning of the data table
again. Then the envelope is fixed by calling
&FFF1.

The quiet envelope is set in exactly the
same way. The DATA is in Line 890. Here,
though, the amplitude parameters are set to
63, halfway down their range. And, obvi-
ously, the X and Y registers are loaded with
the start address of the data of this quiet
envelope.

ig !HI
Giving the Dragon and Tandy version of the
game a cloud would have involved a lot of
extra data. Besides, because of the colour set
that has been used the cloud would have had
to be blue, red or green, none of which is
entirely appropriate. And as this version of
the game takes place on an extremely hot
day—witness the yellow sky—a cloud is not
really necessary. Instead, the following rout-
ine moves the sun about:

OR G 19727
MOVSUN 	DEC 18258

BNE SUNRET
LDA # 5
STA 18258
SYNC
LDX # 1569
LDA # 30

MOVA 	PSHS A
LDA # 2

MOVB 	ANDCC # $FE
PSHS CC
CLRB

MOVC 	PULS CC
ROR B,X
PSHS CC
INCB
CMPB # 14
BNE MOVC
LSL ,X
PULS CC
ROR ,X
DECA
BNE MOVB
LEAX 32,X
PULS A
DECA
BNE MOVA

SUNRET 	RTS

To test this routine key in:

10 EXEC 19426
20 EXEC 19727
30 GOTO 20

Memory location 18,258 contains the so-
called sun delay. This stops the sun whizzing
about the sky like a flying saucer. The sun
delay is set to five at first.

The first instruction of this routine decre-
ments the sun delay. If it has not been
decremented to zero, the BNE instruction
branches forward to the RTS at the end of the
routine and the processor returns. But if it has
decremented to zero the BNE instruction does
not make the branch and the processor cont-
inues. In other words, the movement of the
sun is slowed by executing this routine only
once every five times it is called.

When the routine is executed, the first
thing it does is reset the sun delay by loading 5
into A and storing it back in 18,258.

IN THE SYNC
The SYNC command synchronizes the rest
of the routine with the TV scanner. This is
to prevent the sun's position from being
changed while it is actually on the screen.

X is loaded with the screen address of the
top left-hand corner of the sun. A is loaded
with 30—the sun is 30 lines deep. A is then
pushed onto the stack to preserve it. And A is
loaded again with 2. This is a loop counter
which will cause the sun to be scrolled across
the screen by two pixels.

The condition code register is AN Ded with
$FE. $FE is 11111110, so the seven most
significant bits of the condition code register
are left unchanged while the least significant
bit is cleared. The carry flag is bit zero of the
condition code register so this instruction
effectively clears the carry flag.

The condition code register is then pushed
on the stack to preserve it. And the B register
is cleared. This is going to be used as an offset.
The routine is now set up ready to do the
scrolling.

THE SUN ROTATES
The next part of the routine actually shifts the
sun. First the condition code register is pulled
off the stack. The first time round this loop
this makes sure that the carry flag is clear.

ROR B,X then 'rotates', one place to the
right, the bits in the screen location pointed to
by X + B. The purpose of a rotate is to shift
all the bits along one place: the end place that
is emptied by this process is filled by the
contents of the carry flag, and the bit that
overflows out of the 'other end' of the location
is in turn put into the carry flag.

So all the pixels that make up that part of
the sun are shifted along one place to the
right. The leftmost pixel in that location is
switched on or off, depending what is in the
carry flag, and the condition of the rightmost
pixel is stored in the carry flag. The first time
round the loop the leftmost pixel of the first
byte is switched off, that is, it is set to the sky
colour and the rest of that byte of the sun is
shifted along one pixel.

The pixel that has been pushed into the
carry flag is then preserved by pushing the
carry flag back onto the stack. The loop
counter in B is incremented and compared to
14—the part of the sky that the sun is on is 14
character squares wide, so comparing it to 14
checks to see whether the last byte of the area
that has to be scrolled has been shifted.

If B has not counted up to 14 yet, the BNE
instruction sends the processor back to deal
with the next character square. When it has
reached the end the processor drops out of the
loop and continues.

LOOSE ENDS
This is a northern hemisphere game and the
sun moves from left to right. It would be very
unnatural if, when the sun reached the end of
the screen, or at least bumped into the score, it
bounced back and started travelling in the
opposite direction.

Instead, the sun is going to scroll round
and appear again at the other side of the
screen rather smartly. There is no night in
Cliffhangerland.

LSL ,X logically shifts, to the left, the
contents of the screen position pointed to by
X. X has not been updated during this part of
the routine, so it still points to the left-hand
end of the sun area. This shifts the left-hand-
most bit out of the register. The rightmost bit
that has been shifted out of the rightmost
screen position is pulled off the stack back
into the carry flag.

It is then rotated into the leftmost
position on the screen by the ROR ,X. The
counter in A is then decremented and, if it
hasn't yet counted down to zero, the pro-
cessor branches back to shift the sun along
one more pixel.

When the sun has been shifted two pixels
LEAX 32,X adds 32 to the contents of X and
moves the screen position pointer onto the
next line down the sun. The line counter is
pulled off the stack back into the accumulator.
This is decremented and the BNE instruction
sends the processor back to scroll the next row
of character squares if it has not counted
down to zero.

If it has, the processor moves onto the RTS
and returns.

MONEY/CAREER
COMMUNICATION/TRAVEL

HOME
AFFAIRS OF THE HEART

ALL THE DATA YOU NEED

CHARACTER PROFILES BY
STAR SIGN

PREDICTIONS FOR THE
YEAR AHEAD

FACT OR MUMBO-JUMBO?

Some people say that your character
and destiny are determined by the
stars* Type in INPUT's horoscope
program and find out about the real
you, and what's in store in '85

Amuse your friends with INPUT's horo-
scope program, a fun application for your
micro. When you type in the program, you'll
be able to retrieve character profile inform-
ation, and predictions for the coming
year. The predictions are under
four separate headings—Money/
Career, Communication/Travel,
Home and Affairs of the
Heart. Using a computer
is far better than

wading through pages of printed material,
particularly if you have a number of people
with different star signs.

Astrology and horoscopes have intrigued
people from the earliest times, and cause
much controversy in homes and scientific
discussion everywhere. Some famous scien-
tists such as Einstein and Jung put great faith
in horoscopes, while most of their colleagues

would refuse to have anything to do with
them at all. In the last decade, the hornets'
nest has been well and truly stirred by
research by psychologists in Britain and
France, which has, at last, turned up some
evidence in favour of astrology which is
difficult to refute. But whether a person's
personality is actually governed by planetary
position at birth is open to argument.

INPUT's program classifies people just by
their sun sign—the sign you look under

when reading horoscopes in news-
papers—rather than the exact

time of birth that an astro-
loger would have to

use to give the
most 'accurate'

reading.

PROGRAM FEATURES
The program asks for your date of birth, and
tells you which star sign you are. You then
have the choice of asking for a character
profile or a prediction for the next year.

If you choose the first option, the program
chooses two statements about your star sign
from the eight it has stored in memory.
Choosing the second option will let you
choose either Money/Career, Communica-
tions/Travel, Home or Affairs of the Heart.
Two predictions will appear. The machine
has only two predictions stored for each
heading (for each star sign), so there is no
variation in output if you choose the same
prediction option, unlike the character option.

THE PROGRAM
There is one piece of program for each
machine. The DATA lines which follow are
common to all, although some small alter-
ations need to be made. See the DATA section
for what to do for your machine.

To accommodate all the DATA the Acorn
program will only work in MODE 7, so the
program will not run on the Electron.

a
5 POKE 23658,8
10 INPUT "ENTER YOUR DATE OF BIRTH

(e.g. ❑ 012,3,65) ❑ ";X,Y,Z
20 IF X<1 OR X>31 OR Y<1 OR Y>12

THEN G0T0 10

40 GOSUB 700
90 CLS : PRINT AT 1,1;"YOUR STAR SIGN

IS:El"; INVERSE 1;A$
100 PRINT AT 5,1;" ❑ DO YOU WANT

:—""TAB 3;" <1 > A CHARACTER
PROFILE'"TAB 3;" <2>A PREDICTION
FOR 1985'"TAB 3;" < N > TO ENTER A
NEW DATE."

120 LET K$=INKEY$: IF K$ < "1" OR Ks>
"5" AND K$< >"N" THEN GOTO 120

130 IF K$ = "2" THEN GOTO 300
140 IF K$="N" THEN GOTO 10
150 CLS : PRINT AT 0,15— ((LEN (A$))/2);A$
160 FOR B=1 TO 2: LET A= INT (RND*4) + 1
170 FOR N=1 TO A: READ B$,C$,D$: NEXT N
180 PRINT ": PRINT B$'C$'D$: NEXT B:

PAUSE 0: GOSUB 700: GOTO 500
300 CLS : PRINT AT 8,8;"WHICH

PREDICTION : —"TAB 4;" <1 >
MONEY/CAREER'"TAB 4;" <2>
COMMUNICATION/TRAVEL'"TAB 4;
"<3> THE HOME ❑P"TAB 4;"<4>
AFFAIRSOOFEITHED HEART"

310 LET K$=1NKEY$: IF K$="" THEN
GOTO 310

320 IF K$<"1" OR K$>"4" THEN GOTO 310
330 RESTORE (4000 +320*(ST-1)): FOR

T=1 TO (VAL K$) —1: FOR N = 0T0 7:
READ B$: NEXT N: NEXT T

335 CLS : PRINT AT 1,15— ((LEN A$)/2);A$"'
340 FOR T=0 TO 7: READ B$: PRINT B$':

NEXT T
500 PRINT AT 21,10;"ANOTHER GO ?"
510 IF INKEY$="Y" THEN GOTO 90
520 IF INKEY$< >"N" THEN GOTO 510
530 STOP
700 FOR T=1 TO 12: RESTORE

(1000 + 250*(T — 1))
710 READ A$,A,B,C,D
720 IF B=Y AND X> =A THEN LET ST=T:

LELT=1 2: NEXT T: RETURN

730 IF D=Y AND X< =C THEN LET ST=T:
LET T=12: NEXT T: RETURN

740 NEXT T: RETURN

10 POKE 53280,0:POKE 53281,0
20 DIM H$(11,7,3),D(3,11),S$(11),P$(11,3,7)
30 FOR K=0 TO 11:READ S$(K),D(0,K),

D(1,K),D(2,K),D(3,K)
35 FOR J=0 TO 7:FOR L=0 TO 2:READ

H$(K,J,L):NEXT L,J,K
40 FOR K=0 TO 11:FOR J=0 TO 3:FOR

L=0 TO 7:READ P$(K,J,L):NEXT L,J,K
50 PRINT "DINPUT YOUR DATE OF BIRTH

(EG 24,5,85)":INPUT D,M,Y
55 D=INT(D):M=INT(M)
60 IF D<10RD>31ORM<10RM>12OR

(D>30AND(M=4ORM=6ORM=9OR
M =10))0R(D>29ANDM =2)THEN50

70 SS= 0
80 IF M<D(1,SS)+12*(SS=2ANDM=1)OR

M > D(3,SS)-12*(SS=2ANDM =12)
THEN 86

82 IF (M=D(1,SS)ANDD<D(0,SS))0R
(M=D(3,SS)ANDD>D(2,SS)) THEN 86

84 GOTO 90
86 SS = SS +1:GOTO 80
90 PRINT "DMYOUR STAR SIGN

ISPJI";S$(SS)
100 PRINT "gip >INDO YOU WANT: —"
110 PRINT "ggapipipli — OA

CHARACTER PROFILE"
120 PRINT "HMV— OA PREDICTION

FOR 1985":PRINT —
TO ENTER A NEW DATEIL"

130 GET K$:IF K$<"1" OR (K$>"2" AND
K$< >"N") THEN 130

140 IF K$="2" THEN 190
145 IF K$="N" THEN 50
150 PRINT "0"SPC(16— LEN(S$(SS))/2),

SVSS)"gg"
160 C =8:FOR K=1 TO 2:B= INT(RND

(1)*8):IF B< >C THEN C = B:GOTO 170
165 K=1:NEXT K
170 FOR L=0 TO 3:PRINT H$(SS,C,L):

NEXT L,K
180 GOTO 240
190 PRINT "ppm >WOULD YOU

LIKE :—"
200 PRINT "NONNI — EA MONEY/

CAREER PREDICTION"
202 PRINT "MP— OA

COMMUNICATION/TRAVEL"
204 PRINT "11113— DA PREDICTION FOR

THE HOME"
206 PRINT "PJPJ4— ❑ AFFAIRS OF THE

HEARTIL"
210 GET K$:IF K$<"1" OR K$>"4" THEN

210
220 PRINT "0"SPC(16— LEN

(SVSS))/2),SVSS)"gg"

230 FOR K=0 TO 7:PRINT P$(SS,VAL
(K$)-1,K):NEXT K

240 PRINT "M"SPC(12)"a1MIANOTHER
GO (Y/N)?' ,

250 GET K$:IF K$ < >"Y" AND K$ < >"N"
THEN 250

260 IF K$ ="Y" THEN 90
270 PRINT "LT:END

10 MODE7
20 VDU26:INPUTTAB(0,23)"ENTER YOUR

DATE OF BIRTH ❑ (e.g. 12,3,65)",X,Y,Z
30 IF X<1 OR X>31 OR Y<1 OR Y>12

THEN 20
40 ER=0:T= -1:REPEATT=T+1:IF T=12

THEN ER =1:GOTO 70
50 RESTORE (1000+250*T)
60 READ A$,A,B,C,D
70 UNTIL (B=Y ❑ AND X> =A) OR

(D=YEAND X< =C) OR ER=1
80 IF ER=1 THEN 20
90 VDU 12,28,4,23,37,3:PRINTTAB

(6,0)"YOUR STAR SIGN IS :
"TAB(15 - LEN(A$)/2,2)A$

100 PRINT'""DO YOU WANT:-"" - ❑ A
CHARACTER PROFILE'""2-
PREDICTION FOR '85'"'"N- ❑ ENTER A
NEW DATE"

110 D=GET:IF D=50 THEN 210
120 IF D=78 THEN 20
130 IF D< >49 THEN 110
140 CLS:PRINTTAB(15 - LEN(A$)/2,0)A$"'
150 A= RND(8):RESTORE

(1000 + 250*T + 10)
160 B=RND(8):IF B=A ❑ THEN 160
170 FOR P=1 TO 8:READ B$,C$,D$
180 IF P=A OR P=B THEN PRINTB$'C$'D$'
190 NEXT
200 GOTO 280
210 CLS:PRINTTAB(0,5)"WHICH WOULD

YOU LIKE-"
220 PRINT""1- MONEY/CAREER'2-

COMMUNICATIONS/TRAVEL'3-
HOME"'"4- AFFAIRS OF THE HEART"

230 D=GET-49:IF D<0 OR D>3 THEN
230

240 CLS:PRINTTAB(15- LEN(A$)/2,0)A$"'
250 RESTORE (4000+1.* 320+ D*80)
260 FOR P=0 TO 7:READ B$:

PRINTB$:IF P=3 THEN PRINT
270 NEXT
280 PRINTTAB(0,20)"ANOTHER GO

(Y/N)?";:D = GET AND &5F
290 PRINTCHR$(D)
300 IF D=89 THEN 90 ELSE MODE7:END

11An
10 PCLEAR1
20 DIMH$(11,7,3),D(3,11),S$(11),P$(11,3,7)
30 FORK= 0T011:READS$(K),D(0,K),D(1,K),

D(2,K),D(3,K):FORJ = 0T07:FORL= 0T02:
READH$(K,J,L):NEXTL,J,K

40 FORK = 0T011:FORJ = 0T03:FORL = 0TO
7: READMK,J,L):NEXTL,J,K

50 CLS:INPUT" INPUT YOUR DATE OF BIRTH
111171171OUE1111 0(EG 24,5,85) ❑ ";D,
M,Y:D = INT(D):M = INT(M)

60 IF D<1 OR D>31 OR M<1 OR M>12
OR (D>30 AND (M=4 OR M=6 OR
M=9 OR M=10)) OR (D>29 AND
M=2) THEN 50

70 SS= 0
80 IF M <D(1,SS) +12*(SS = 2ANDM =1)

OR M>D(3,SS)-12*(SS=2AND
M=12) OR(M=D(1,SS)ANDD<D(0,SS))
OR(M = D(3,SS)ANDD > D(2,SS)) THEN
SS = SS +1:GOT080

90 CLS:PRINT" YOUR STAR SIGN
IS ❑ ";S$(SS)

100 PRINT:PRINTTAB(10)"DO YOU
WANT: - "

110 PRINT:PRINTTAB(3)"1 - OA
CHARACTER PROFILE"

120 PRINTTAB(3)"2- OA PREDICTION FOR
1985":PRINT:PRINTTAB(3)"N- ❑ TO
ENTER A NEW DATE"

130 K$=INKEY$:IF K$<"1" OR (K$ > "2"
AND K$< >"N")THEN 130

140 IF K$="2" THEN 190 ELSE IF K$="N"
THEN 50

150 CLS:PR1NT@16-LEN(S$(SS))/2,S$(SS):
PRINT

160 C =8:FORK =1T02:B = RND(8) -1:IF
B< >C THENC= B ELSEK=1:NEXT

170 FORL= 0T03:PRINT@L*32 + K*128,H$
(SS,C,L):NEXTL,K

180 GOT0240
190 CLS:PRINT@10,"WOULD YOU LIKE - "
200 PRINT:PRINT" ❑ ❑ 1 -A MONEY/

CAREER PREDICTION":PRINT" ❑ 02 -A
COMMUNICATIONS/TRAVEL":PRINT

"El ❑ 3—A PREDICTION FOR THE
HOME":PRINT"I=104 —AFFAIRS OF THE
HEART"

210 K$=INKEY$:IF K$<"1" OR K$>"4"
THEN 210

220 CLS:PRINT@16— LEN(S$(SS))/2,
S$(SS):PRINT

230 FO R K = 0T07: PR INT@64 + 32*K — 32*
(K> 3),P$(SS,VAL(K$) —1,K):NEXT

240 PRINT@448," ❑ ANOTHER GO (Y/N) ?"
250 K$=INKEY$:IF K$ < > "Y" AND

K$ < >"N" THEN 250
260 IF K$="Y" THEN90 ELSECLS:END

THE DATA
The DATA lines that follow can be entered as
they stand into the BBC machine. If you own
a Commodore, Dragon or a Tandy machine,
make sure you enclose any DATA containing a
colon (:) in inverted commas—see the lines
containing commas in the printed listing.
Spectrum owners should enclose their DATA
in inverted commas except for any numbers.

Dragon/Tandy owners should enter the
DATA as upper case only.

1000 DATA PISCES,20,2,20,3
1010 DATA You are the psychics of the
1020 DATA "zodiac, being the most intuitive"
1030 DATA and sensitive of the signs.
1040 DATA You are compassionate and
1050 DATA empathize readily with other
1060 DATA people's problems.
1070 DATA You absorb atmospheres and need a
1080 DATA "happy environment, mixing with"
1090 DATA those you can relax with.

1100 DATA You like alcohol and need to be
1110 DATA careful not to over-indulge.
1120 DATA "El"
1130 DATA You are so generous you
1140 DATA frequently don't have enough
1150 DATA money for yourself.
1160 DATA You are highly artistic. Often
1170 DATA "gifted in music, dancing, drawing"
1180 DATA or photography.
1190 DATA "You live and breathe religion,"
1200 DATA but not necessarily in the
1210 DATA conventional sense.
1220 DATA "Compatibility: Virgo, Gemini,"
1230 DATA Sagittarius.
1240 DATA Colours: Sea green/blue.
1250 DATA AQUARIUS,21,1,19,2
1260 DATA You consider your friends to be
1270 DATA as much a part of your family as
1280 DATA your blood relatives.
1290 DATA You are independent from an early
1300 DATA "age, but will often have a house"
1310 DATA full of friends.
1320 DATA You belong to more clubs and
1330 DATA societies than other star signs
1340 DATA and may be a member of CND.
1350 DATA You are both inventive and
1360 DATA "innovative, producing forward"
1370 DATA "looking designs, or ideas."
1380 DATA You find it hard to relate to one
1390 DATA "person, and may be thought"
1400 DATA detached in relationships.
1410 DATA You wear bizarre clothes which
1420 DATA are more interesting than
1430 DATA stylish!
1440 DATA "You choose social work, politics"
1450 DATA and electronic engineering as
1460 DATA careers.
1470 DATA "Compatibility: Capricorn, Libra."
1480 DATA Colour: Electric blue.
1490 DATA "El"
1500 DATA CAPRICORN,22,12,20,1
1510 DATA "You are the most ambitious sign,"
1520 DATA coolly making long term career
1530 DATA plans from an early age.
1540 DATA Capricorn children seem to be
1550 DATA mature serious adults from
1560 DATA birth.
1570 DATA You need to guard against
1580 DATA rheumatism and all ailments
1590 DATA which affect the bones.
1600 DATA Capricorn careers include
1610 DATA "osteopath, mathematician,"
1620 DATA "accountant and financier."
1630 DATA "You are careful with money, but"
1640 DATA what you buy is of quality and
1650 DATA lasts.
1660 DATA You are recognizable by your
1670 DATA serious demeanour and black
1680 DATA looks.
1690 DATA You have more acquaintances than
1700 DATA "friends, your only real allies"

1710 DATA being your family.
1720 DATA "Compatibility: Taurus, Cancer,"
1730 DATA Aquarius.
1740 DATA Colours: Black and dark shades.
1750 DATA SAGITTARIUS,23,11,21,12
1760 DATA You are a born optimist and are
1770 DATA fun-loving with a good sense of
1780 DATA humour.
1790 DATA You enjoy parties and
1800 DATA "participating in team games, but"
1810 DATA your weak spot is the hip/thigh.
1820 DATA You love travelling abroad and
1830 DATA mixing with the local inhabitants.
1840 DATA "El"
1850 DATA You have a good ear for
1860 DATA "languages, can be fluent in many,"
1870 DATA and love travelling.
1880 DATA "Careers: journalists,"
1890 DATA "broadcaster, lecturers,"
1900 DATA "philosophers, sportsmen."
1910 DATA "You are gregarious, and find it"
1920 DATA difficult to settle in one place
1930 DATA long enough to be monogamous.
1940 DATA "You love animals, and"
1950 DATA "unfortunately, gambling can be a
1960 DATA weakness.
1970 DATA "Compatibility: Pisces, Virgo,"
1980 DATA Gemini.
1990 DATA Colours: Royal Blue/Violet.
2000 DATA SCORP10,24,10,22,11
2010 DATA "You are the most passionate sign,"
2020 DATA "intense in relationships, and if"
2030 DATA "crossed, vengeful."
2040 DATA You are recognizable by your

2050 DATA penetrating eyes and your
2060 DATA interesting nose.
2070 DATA Six months before or after the
2080 DATA "birth of a Scorpio, a relative"
2090 DATA dies.
2100 DATA You have an inquisitive mind and
2110 DATA love solving mysteries.
2120 DATA "0"
2130 DATA Scorpio men and women are very
2140 DATA attractive to the opposite sex.
2150 DATA "0"
2160 DATA "Careers: police, surgeons,"
2170 DATA "psychology, social work, and"
2180 DATA positions of power.
2190 DATA You are not the most talkative
2200 DATA "people, but what you say is"
2210 DATA incisive and sometimes mordant.
2220 DATA "Compatibility: Cancer, Libra."
2230 DATA Colour: Maroon.
2240 DATA "0"
2250 DATA LIBRA,24,9,23,10
2260 DATA You are the charmers of the
2270 DATA "zodiac, recognizable by your"
2280 DATA beautiful manners.
2290 DATA You do not like to be left on
2300 DATA your own. You need the
2310 DATA companionship of other people.
2320 DATA "You are excellent hosts, easily"
2330 DATA able to create an atmosphere of
2340 DATA harmony.
2350 DATA "You have dimples on your cheeks,'
2360 DATA and cupid-bow lips. Illnesses
2370 DATA affect your kidneys.
2380 DATA You are sometimes said to be in

2390 DATA love with love and never go for
2400 DATA long periods without a partner.
2410 DATA Libran careers include
2420 DATA "hairdresser, beautician, judge,"
2430 DATA conciliator and lawyer.
2440 DATA Your good sense of style can
2450 DATA achieve harmony in your
2460 DATA clothes by using colours well.
2470 DATA "Compatibility: Aquarius, Aries,"
2480 DATA Scorpio.
2490 DATA Colours: Pastel shades.
2500 DATA VIRG0,24,8,23,9
2510 DATA You are hypochondriacs and never
2520 DATA go anywhere without a box of
2530 DATA pills for any ailment.
2540 DATA "You have a lithe body, but are"
2550 DATA never happy with your figure and
2560 DATA sometimes verge on the anorexic.
2570 DATA You are fastidious and your homes
2580 DATA will always be pristine clean.
2590 DATA "El"
2600 DATA "You are critical by nature,"
2610 DATA paying much attention to detail
2620 DATA in all aspects of life.
2630 DATA "Careers: librarians,"
2640 DATA "statisticians, critics, forensic"
2650 DATA "scientists, or doctors."
2660 DATA You seldom have large families
2670 DATA as disorder makes you physically
2680 DATA ill.
2690 DATA "You are practical by nature, and"
2700 DATA when working in an office you
2710 DATA will be very well-organized.
2720 DATA "Compatibility: Pisces, Gemini,"
2730 DATA Sagittarius.
2740 DATA Colour: Dark blue.

2750 DATA LE0,24,7,23,8
2760 DATA Both sexes wear the most
2770 DATA expensive clothes and jewellery
2780 DATA and are incredibly vain.
2790 DATA "Like lions, you may well have a"
2800 DATA mane of hair in a rich golden
2810 DATA colour.
2820 DATA You enjoy drama and may spend
2830 DATA "your free time at the theatre, or"
2840 DATA at the drama club.
2850 DATA You love of rich food is a
2860 DATA danger to your heart. You are
2870 DATA prone to heart attacks.
2880 DATA You are generous with your money
2890 DATA —provided you have a say in
2900 DATA what's being bought.
2910 DATA "Careers: jewellers, actors, drama"
2920 DATA "teachers, leaders of any kind."
2930 DATA "E"
2940 DATA "Your lair is liable to be a large"
2950 DATA detached house. Neighbours are an
2960 DATA infringement on your space.
2970 DATA "Compatibility: Cancer, Aries."
2980 DATA Colours: Gold and Amber.
2990 DATA "E"
3000 DATA CANCER,22,6,23,7
3010 DATA "You are very shy, hiding your"
3020 DATA green/blue eyes beneath rounded
3030 DATA lids.
3040 DATA You always remain close to your
3050 DATA parents (especially your mother)
3060 DATA even when married.
3070 DATA "You are normally timid, but would"
3080 DATA fight to the death to protect
3090 DATA your family.
3100 DATA Your home is your castle and only

3110 DATA very special friends are allowed
3120 DATA in.
3130 DATA You are happiest living by
3140 DATA "water—a river, stream, or by"
3150 DATA the sea.
3160 DATA "Careers: nurse, gardener, sailor,"
3170 DATA "cook, teacher and photographer."
3180 DATA "
3190 DATA "You cling to the past, and love"
3200 DATA collecting antiques. You have a
3210 DATA photographic memory.
3220 DATA "Compatibility: Leo, Scorpio."
3230 DATA Colours: White and Silver.
3240 DATA "0"
3250 DATA GEMINI,22,5,21,6
3260 DATA "You have a slim figure, and long,"
3270 DATA slender limbs.
3280 DATA "0"
3290 DATA You are a chatterbox and could
3300 DATA blissfully spend all day talking
3310 DATA about nothing.
3320 DATA You are the communicators of the
3330 DATA "zodiac, recognizable by the way"
3340 DATA you talk with your hands.
3350 DATA Both sexes suffer from 'nerves'
3360 DARA "and insomnia, and must guard"
3370 DATA against over-exhaustion.
3380 DATA Your homes will often be found
3390 DATA deserted; you will often be
3400 DATA visiting a friend or neighbour.
3410 DATA You are easily stifled in
3420 DATA "relationships,and avoid clinging"
3430 DATA mates.
3440 DATA "Careers: tele-sales, journalists"
3450 DATA "salesmen, teachers, writers."
3460 DATA " Ill"
3470 DATA "Compatibility: Sagittarius,"
3480 DATA "Pisces, Virgo."
3490 DATA Colour: Yellow.
3500 DATA ARIES,21,3,20,4
3510 DATA "You spend money liberally, but"
3520 DATA put your own needs first.

3670 DATA sportsmen.
3680 DATA "0"
3690 DATA "Your clothes are very bold, often"
3700 DATA "tight-fitting or low-cut, but"
3710 DATA simple in design.
3720 DATA "Compatibility: Taurus, Libra, Leo."
3730 DATA Colour: Bright red.
3740 DATA "0"
3750 DATA TAURUS,21,4,21,5
3760 DATA You are very affectionate and
3770 DATA romantic.
3780 DATA " E"
3790 DATA "You are good with money, you

need"
3800 DATA financial security more than any
3810 DATA other sign.
3820 DATA "Normally placid, you can have a"
3830 DATA "fearsome temper, particularly in"
3840 DATA defence of your spouse.
3850 DATA Your self-indulgent nature leads
3860 DATA you frequently to the doctor for
3870 DATA a diet.
3880 DATA You can become very possessive in
3890 DATA "love, and expect your partner to"
3900 DATA reject the opposite sex.
3910 DATA "You are very sensual, enjoying"
3920 DATA the feel of silky fabrics against
3930 DATA the skin.
3940 DATA "Careers: archeologists, banker,"
3950 DATA "farm-workers,market"
3960 DATA stall-holder.
3970 DATA "Compatibility: Aries, Capricorn."
3980 DATA Colours: Pale blue/pink.
3990 DATA "0"

3530 DATA "0"
3540 DATA "You are courageous in adversity,"
3550 DATA "quick-tempered, but forgive"
3560 DATA easily.
3570 DATA "You are physically fit, and"
3580 DATA prefer sports where you can excel
3590 DATA individually.
3600 DATA "You suffer from headaches, and"
3610 DATA are prone to cuts and bruises.
3620 DATA "0"
3630 DATA "You enjoy other people's

company,"
3640 DATA especially those who let you have
3650 DATA your way.
3660 DATA "Careers: forces, butchers,"

4000 DATA From February you will be
4010 DATA working more in seclusion than
4020 DATA "usual, and could develop a"
4030 DATA religious attitude to your work.
4040 DATA "In the Spring, you might find"
4050 DATA you incur more travelling
4060 DATA expenses than usual.
4070 DATA "El"
4080 DATA You would enjoy a late holiday
4090 DATA in 0ctober/November digging or
4100 DATA delving into the mysteries of
4110 DATA former empires.
4120 DATA June will witness you adopting
4130 DATA a much more sober and serious
4140 DATA attitude to both day-to-day and
4150 DATA higher matters.
4160 DATA June will see you working hard
4170 DATA "and spending money on your

home,"
4180 DATA possibly installing some sort
4190 DATA of electrical appliance.
4200 DATA July/August will find you torn
4210 DATA between priorities at home and
4220 DATA at work.
4230 DATA " H"
4240 DATA A relationship which starts in
4250 DATA January could prove lasting.
4260 DATA " L:"
4270 DATA "
4280 DATA 0ctober sees you in an amorous
4290 DATA "mood, enjoying a passing"
4300 DATA relationship which will be at
4310 DATA odds with some of your friends.
4320 DATA For many years to come you
4330 DATA have the advantage of having a
4340 DATA very powerful planet aiding your
4350 DATA career.
4360 DATA 0ver the past couple of years
4370 DATA you have been wondering if you
4380 DATA have chosen the right path. In
4390 DATA '85 you will know the answer.
4400 DATA The period from February to
4410 DATA April finds you travelling back
4420 DATA and forth short distances to
4430 DATA meet loved ones.
4440 DATA You are likely to holiday late
4450 DATA "in the year, (during September"
4460 DATA "/0ctober), with friends."
4470 DATA "Li"
4480 DATA You will be enjoying
4490 DATA entertaining at home during July
4500 DATA and will have to be careful not
4510 DATA to put on weight.
4520 DATA A misunderstanding with
4530 DATA someone in the family could
4540 DATA occur in March.
4550 DATA "H"
4560 DATA An intense relationship could
4570 DATA develop in September from
4580 DATA something which appears to others
4590 DATA to be nothing but a flirtation.

4600 DATA Men may find themselves involved
4610 DATA with a mother figure in
4620 DATA "December, but this is unlikely"
4630 DATA to last into the New Year.
4640 DATA By the end of '85 you could
4650 DATA find that you have reached a
4660 DATA "position of authority, through"
4670 DATA "clear, positive thinking."
4680 DATA You must guard against feeling
4690 DATA too sympathetic for those
4700 DATA "without, and leaving not enough"
4710 DATA for yourself.
4720 DATA Very harmonious communications
4730 DATA in January could make you very
4740 DATA popular at work.
4750 DATA " ❑ "
4760 DATA Foreign sightseeing travel by
4770 DATA "air is likely in September, but"
4780 DATA guard against theft.
4790 DATA " ❑ "
4800 DATA Home will look like a
4810 DATA battleground in March. Try to
4820 DATA avoid confusing statements
4830 DATA which could cause a rift.
4840 DATA You could find yourself
4850 DATA decorating the home in April.
4860 DATA "H"
4870 DATA " El"
4880 DATA There is the possibility of a
4890 DATA "relationship in August, but you"
4900 DATA "could both battle to be dominant,"
4910 DATA neither wishing to give in first.
4920 DATA A lasting relationship could
4930 DATA develop with someone who has a
4940 DATA shared interest or activity
4950 DATA during November.
4960 DATA September's planetary positions
4970 DATA might mean a change of career
4980 DATA which you were beginning to
4990 DATA consider last year.
5000 DATA "You won't be poor in '85,and"
5010 DATA will make small donations
5020 DATA to charities which care for
5030 DATA the elderly.
5040 DATA You will be socializing a
5050 DATA "great deal, all year from"
5060 DATA February.
5070 DATA " H"
5080 DATA You will be joining so many
5090 DATA "societies, particularly higher"
5100 DATA "education, that you may forget"
5110 DATA you have a home.
5120 DATA You will enjoy a romantic
5130 DATA interlude at home in January.
5140 DATA " 0 "
5150 DATA "
5160 DATA February sees the beginning of
5170 DATA a very active year for you
5180 DATA outside the home.
5190 DATA " ❑ "
5200 DATA A romance could develop at

5210 DATA "Christmas, but physical"
5220 DATA attraction might be lacking.
5230 DATA "
5240 DATA A deeper relationship which
5250 DATA has its frivolous side could
5260 DATA "develop in June, but this might"
5270 DATA be a fiery/dramatic relationship.
5280 DATA "Despite summer disagreements,"
5290 DATA "you, as last year, are working"
5300 DATA hard consolidating your
5310 DATA position at work.
5320 DATA You must guard against
5330 DATA overspending both on yourself
5340 DATA "and others or house, which may"
5350 DATA be a little extravagant.
5360 DATA You might even take up voluntary
5370 DATA "work in the next few years, with"
5380 DATA a view to counselling others.
5390 DATA 	"
5400 DATA You are likely to want to travel
5410 DATA "in late July, but financially"
5420 DATA it might be better to wait until
5430 DATA August.
5440 DATA You could find that your family
5450 DATA takes a collective interest in

5460 DATA some form of higher education.
5470 DATA "0"
5480 DATA It's possible that your family
5490 DATA becomes close to a friend who's
5500 DATA an eternal optimist.
5510 DATA "0"
5520 DATA From the second week in November
5530 DATA to December sees the possibility
5540 DATA of an intense relationship
5550 DATA with an older person.
5560 DATA A romantic ethereal affair could
5570 DATA develop at the beginning of the
5580 DATA "year, but this might fade as you"
5590 DATA turn your attentions to work.
5600 DATA The second half of June to
5610 DATA August witnesses you
5620 DATA reassessing your career.
5630 DATA "El"
5640 DATA "Financially, you might find"
5650 DATA yourself consolidating gains
5660 DATA made in '84 — the result of
5670 DATA careful long-term planning.
5680 DATA You might find yourself becoming
5690 DATA more and more interested in
5700 DATA talking about or discussing
5710 DATA political issues.
5720 DATA Foreign travel is probable in
5730 DATA May — possibly sightseeing or
5740 DATA touring.

5750 DATA "El"
5760 DATA You may feel inclined to move
5770 DATA near to water over the next ten
5780 DATA or so years.
5790 DATA "El"
5800 DATA It's possible that a member of
5810 DATA the family could become
5820 DATA interested in a particular
5830 DATA religion/way of life.
5840 DATA The end of October could see a
5850 DATA long-lasting relationship
5860 DATA developing.
5870 DATA "0"
5880 DATA Permanent commitments may be
5890 DATA made by men at the beginning of
5900 DATA "October, and women at the"
5910 DATA beginning of November.
5920 DATA June sees you enjoying your
5930 DATA "chosen career, travelling to"
5940 DATA meet people in connection with
5950 DATA your job.
5960 DATA October could herald a generous
5970 DATA pay rise as the result of union
5980 DATA negotiations.
5990 DATA " 0"
6000 DATA "All this year, as last, you will"
6010 DATA have been talking about your
6020 DATA career.
6030 DATA "El"
6040 DATA October/November see you
6050 DATA becoming a bearable companion
6060 DATA "again, and being light-hearted"
6070 DATA for once.
6080 DATA In '85 you may be sheltering a
6090 DATA "newly divorced friend, or a"
6100 DATA student in your home.
6110 DATA "El"
6120 DATA An unexpected occurrence in
6130 DATA winter '85 —'86 could mean a new
6140 DATA home for you.
6150 DATA "El"
6160 DATA Romance blooms in September
6170 DATA provided your independent
6180 DATA attitude towards setting up a
6190 DATA home doesn't ruin things.
6200 DATA There is a possibility of
6210 DATA marriage or sealing of a
6220 DATA permanent relationship in
6230 DATA October.
6240 DATA The end of May would be a good
6250 DATA time for you to begin a new job
6260 DATA if you feel the need for a
6270 DATA change.
6280 DATA You could find any job change
6290 DATA financially profitable — this
6300 DATA could be the end of an era.
6310 DATA "El"
6320 DATA October/November sees you having
6330 DATA "fun and socializing, but come"
6340 DATA "December, you'll have to take"
6350 DATA care not to be too domineering.

6360 DATA Spring '85 could find you in
6370 DATA "much warmer climes, although you"
6380 DATA must be careful of a holiday
6390 DATA tiff with a partner.
6400 DATA You may have to care for an
6410 DATA "elderly female relative; outside"
6420 DATA influences should ease the
6430 DATA burden in October and November.
6440 DATA "Enjoy Christmas, but guard"
6450 DATA against broken limbs during
6460 DATA the festivities.
6470 DATA "0"
6480 DATA '85 is a year of friendships
6490 DATA rather than affairs for you.
6500 DATA "El"
6510 DATA "0"
6520 DATA A spring romance could flourish
6530 DATA "briefly while on holiday, but"
6540 DATA both partners will have a
6550 DATA detatched approach.
6560 DATA February/April are significant
6570 DATA "months for your career, with"
6580 DATA the possibility of a pay rise.
6590 DATA "El "
6600 DATA Come September you will be
6610 DATA feeling quite comfortable
6620 DATA financially. You will spend
6630 DATA money socializing.
6640 DATA A dispute at work in September
6650 DATA could lead to you going on
6660 DATA strike or handing your notice
6670 DATA in.
6680 DATA "Foreign travel is very likely,"
6690 DATA especially a first time visit
6700 DATA at the beginning of August.
6710 DATA "El"
6720 DATA June sees you enjoying the
6730 DATA company of male members of the

6740 DATA "family, and relaxing at home."
6750 DATA "III"
6760 DATA "Come August, you will either be"
6770 DATA gardening or buying antiques
6780 DATA for the home.
6790 DATA "III"
6800 DATA In June you could embark upon
6810 DATA a relationship that could be
6820 DATA "quite physical, the romance not"
6830 DATA starting until October.
6840 DATA "In October, you may conceive"
6850 DATA children.
6860 DATA "CI"
6870 DATA "E"
6880 DATA Over the next 13 years you could
6890 DATA find that you will be able to
6900 DATA subtly influence the careers of
6910 DATA many people.
6920 DATA July and August are important
6930 DATA months for money matters —
6940 DATA your purchases in August are
6950 DATA liable to be wise buys.
6960 DATA You must watch what you say in
6970 DATA July/August as you may find
6980 DATA yourself in hot water.
6990 DATA "E"
7000 DATA Travel abroad is possible in the
7010 DATA last two weeks of December and
7020 DATA at the end of the year
7030 DATA generally.
7040 DATA September sees you inviting
7050 DATA strangers or foreigners into
7060 DATA your home.
7070 DATA "III"
7080 DATA You will feel very active in
7090 DATA "September, and will be torn"
7100 DATA between your social life and
7110 DATA doing things in the home.

7120 DATA You could spend most of
7130 DATA September at home enjoying a
7140 DATA relationship that could lead to
7150 DATA estrangement from others.
7160 DATA Men will feel romantic at the
7170 DATA "beginning of July, and women"
7180 DATA will feel romantic during June
7190 DATA and July.
7200 DATA March to May will see you
7210 DATA sorting out your finances; you
7220 DATA may feel like spending money
7230 DATA impulsively.
7240 DATA In December you are likely to
7250 DATA take a job or choose a career
7260 DATA which will give you more freedom
7270 DATA to communicate.
7280 DATA There should be many
7290 DATA opportunities for foreign travel
7300 DATA throughout '85 especially by
7310 DATA air.
7320 DATA An unexpected journey might come
7330 DATA about in December which might
7340 DATA offer the chance of romance.
7350 DATA "CI"
7360 DATA In June you could have vigorous
7370 DATA discussions with the family
7380 DATA about an elderly or invalid
7390 DATA member.
7400 DATA August could see you spending
7410 DATA money on luxury items for the
7420 DATA home.
7430 DATA "El"
7440 DATA A 'behind closed doors'
7450 DATA relationship which had its
7460 DATA beginning in January should take
7470 DATA off in February

7480 DATA A relationship could develop at
7490 DATA "work in October, but the partner"
7500 DATA might become interested in an
7510 DATA older person.
7520 DATA After February you could find
7530 DATA yourself becoming involved in
7540 DATA legal matters which affect your
7550 DATA career.
7660 DATA There is the possibility of a
7570 DATA "small financial gain in June,"
7580 DATA which you may invest in your
7590 DATA own career.
7600 DATA August looks like being a lively
7610 DATA time in the home for you and
7620 DATA you will have some heated
7630 DATA political debates.
7640 DATA If you decide to move in '85
7650 DATA carefully consider all the
7660 DATA "implications, particularly"
7670 DATA during August and April.
7680 DATA The second two weeks of May sees
7690 DATA you making short trips to visit
7700 DATA friends and relations.
7710 DATA "E"
7720 DATA There is a possibility of travel
7730 DATA in July with someone who is
7740 DATA not necessarily your partner.
7750 DATA "El"
7760 DATA A spring romance could end if
7770 DATA you become too possessive. You
7780 DATA could be left for someone more
7790 DATA frivolous.
7800 DATA "For women, a friendship formed"
7810 DATA with a father figure could
7820 DATA develop into something lasting.
7830 DATA "El"

Designing a computer wargame is a
fascinating project* Find out what's
involved and then mobilize your
micro when you start to enter
INPUT's own tactical land battle game*

With the advent of computers, wargames
have truly come of age. Despite wargames
being around for thousands of years, playing
them has been, until recently, a cumbersome
process involving acres of floorspace and
whole phalanxes of small models. A computer
consigns all that to the dustbin, brings in a
screen-based map, and may even be your
opponent.

Wargames have, of course, a serious and
deadly purpose, teaching the military how to
fight wars more successfully. And though any
wargame has, as its main aim, the killing of an
enemy, it is certainly true that there is a great
deal of interest to be had from creating and
playing computer wargames. This interest,
though, is more akin to that experienced in
playing chess than the zap-pow excitement of
arcade-type killing games.

The screen display of a wargame shows a
map of the battle or war, usually with the
positions of both sides shown. However, a
computer game can have a greater degree of
realism than traditional types because it is
possible, if you wish, to have the opponent's
units deployed on the board, but not dis-
played until their position has been dis-
covered. Computer wargames may be for two
players, or like the one you'll see developed in
INPUT, a game in which one side is con-
trolled by the computer.

The game the generals play tries, of course,
to simulate every aspect of a real war as closely
as possible. In a home computer game you
won't be able to reproduce everything exact-
ly. Nor would you want to—the result of
including everything would be a game too
horribly realistic for your players to find
entertaining enough to play.

DESIGNING A WARGAME
War is about moving 'combat units' (which
are usually human beings, but may be tanks or
field guns) until they reach enemy units,
when they attempt to compel each other to
submit, almost always by fighting. The basic
ingredients of a wargame, then, are two
armies, their movements, and combat be-
tween the opposed combat units.

Starting with this as a base, you can
consider the broad outline of the design of

your wargame. Is the game to take place on
land, sea or air? Is it to be a large-scale
strategic game with many armies, a smaller
tactical game between two armies on a single
battlefield, or a skirmish between individual
combatants?

Historical period will have a great in-
fluence over the type of game—what kind of
technology (if any) is available to the comba-
tants, and who are the combatants going to
be.

You may wish to try to relive some histor-
ical battle, perhaps trying to force Napoleon's
armies through to Moscow, or you may wish
to invent your own conflict. At this stage, you
can let your imagination run riot.

The next stage is to think of the 'rules' of
your wargame, making decisions on all the
details you want to include in your game, and
under what circumstances they will help or
hinder each army. For example, you may
want your game to include a consideration of
armour: wearing armour may protect a soldier
during fighting, but it will slow him down as
he moves to fight (or retreats after fighting).

It will be tempting to include as many of
these components as you can think of, to make
your wargame more realistic. But your
computer's memory will limit the number of
different points of detail you can include, and
how complicated you can make your rules.

It's best to stick to the most important
components:
• Geographical information on where the
troops are and what the terrain is like—how it
affects movement, and what cover it provides.
• Troops: how many are there; what
weapons and armour do they have; how fast
can they move?
• Movement: consider rules about how far
units can move, and how far terrain affects
movement.
• Orders: a mechanism for giving orders, and
perhaps some possibility that the troops will
disobey.
• Computer choice: how 'intelligent' will the
computer be?
• Combat: what type? Combat is usually
divided into missile combat and hand-to-
hand combat. Missiles can be anything from
throwing axes to intercontinental rockets.

SETTING UP THE GAME
Once the type, period and components of the
game are determined you need to consider
how they will be represented on your micro.
There are two aspects to consider—how the
game will appear to the player, and how the
game will appear to the computer.

In this series of five articles you will see
what is involved as you build a small wargame
called Cavendish Field. It is a tactical land
battle, fought between two medieval armies.
However, the game isn't set in any particular
period.

Like most computer wargames, Cavendish
Field displays a map showing the disposition
of the two armies and the terrain. The players
(in this case, you and the computer) act as the
commanders of their own units, and must
make decisions on strategy, and issue appro-
priate commands to their men.

Full instructions on how to play the game
will be given when the program is completed
in part four of this article, but generally, the
player is given the option of issuing new
orders to each unit, or leaving them as they
are. The game proceeds by taking turns to
organize the disposition of the troops, which
may or may not result in conflict. The
outcome of any conflict is determined by the
relative type and strengths of the
combatants—plus a certain amount of luck.
Play continues until one player has reduced
the other's forces to an untenable level.

This game will show the important
graphics information—the map, with the
armies—continuously, but reserve an area for
displaying the temporary text instructions
and prompts.

It is best to use user defined graphics for
the map display. This way, it is simple to
handle the two areas of the display by using
text-handling instructions for both. In the
case of the Dragon and Tandy programs,
UDGs have to be set up by DRAWing on the
high resolution screen—so this has been used
throughout, and a short routine for printing
on the high resolution screen has been added.

You need to know what the UDGs will
represent. In this game there are four kinds of
terrain—plains, villages, woods and hills.

WARGAMES BEFORE THE
COMPUTER

COMPUTER WARGAMES
DESIGN CONSIDERATIONS

HISTORICAL PERIOD

THE RULES' ROLE
SCREEN DISPLAY

SETTING UP THE UDGS
CLEARING THE TEXT

AREA

Detailed planning
of wargames

Having decided on the broader aims of
your wargame, it's very important to get
the details right. You should decide on
all the factors which are relevant to
combat in your game. For example, you
might wish to distinguish between mis-
sile conflict (whether it's arrows or neu-
tron bombs) and hand-to-hand skir-
mishing. In most cases, you need at least
two different missile types, two different
troop types and some representation of
range. As a missile weapon will be less
effective at longer ranges, it becomes
important to know how fast (or how far)
the two troop types can move.

This might bring in considerations of
armour. Heavy armour slows troops
down, but protects them better. Armour
will affect not only missile combat, but
hand-to-hand combat.

Combat might also be affected by
terrain (fighting knee-deep in nettles is
harder than fighting in the open), cover
(it is harder to hit a target behind a castle
wall, than one behind a bush), the num-
ber of troops fighting, and so on.

At this planning stage, it's very im-
portant to bear in mind that you will
almost certainly not be able to include
everything you want in your game, even
if you have a very large amount of
memory available, so you have to balance
the features in your game against the
amount of RAM you have.

Blank space can be used to represent plains, so
no UDGs are needed. Two UDGs each are
needed to give a fair representation of hills,
villages, units and forest.

Each army has eight units: one leader with
his knights, a second body of knights (ser-
geants), two units of men-at-arms, two units
of archers, and two of peasants. The two
bodies of knights need a UDG each, but as
each of the pairs of units will be armed with
the same weapon, the same graphic can be
used twice.

This gives a total of nine UDGs, as follows:
number one, village; number two, forest;
numbers three and four, hills; number five,
leader (represented by a flag); number six,

knights (a mace); number seven, men-at-arms
(a shield); number eight, archers (a bow); and
number nine, peasants (a sword).

SETTING UP THE UDGs
This section sets up nine UDGs.

210 FOR k=1 TO 9
220 READ a$
230 FOR 1=0 TO 7
240 READ a
260 POKE USR a$ + I,a
270 NEXT I
290 NEXT K
2570 DATA "a",16,16,60,126,255,189,231,231
2590 DATA "b",16,56,84,16,56,84,146,16
2610 DATA "c",8,20,34,65,6,8,16,224
2630 DATA "d",0,48,72,132,2,0,0,0
2650 DATA "e",128,240,255,252,143,128,128,

128
2670 DATA "f",64,240,72,68,68,68,78,68
2690DATA"g",255,231,231,129,129,231,102,

60
2710 DATA "h",249,70,38,25,9,5,3,1
2730 DATA "i",1,2,4,8,16,160,64,160

Ii
10 CLR
21 PRINT CHR$(142)
22 POKE52,56:POKE56,56:CLR
23 POKE 56334,PEEK(56334)AND254
24 POKE1,PEEK(1)AND251
25 FORI=0T0583:POKEI +14336,

PEEK(1 + 53248):NEXT I
26 POKE1,PEEK(1)0R4
27 P0KE56334,PEEK(56334)0R1
28 POKE 53272,(PEEK(53272)

AND240) +14
29 FORI=0T071:READP:POKE(14848+1),P:

NEXTI
2640 DATA 16,16,60,126,255,189,231,231
2650 DATA 16,56,84,16,56,84,146,16
2660 DATA 8,20,34,65,6,8,16,224
2670 DATA 0,48,72,132,2,0,0,0
2680 DATA 128,240,255,252,143,128,128,128
2690 DATA 64,240,72,68,68,68,78,68
2700 DATA 255,231,231,129,129,231,102,60
2710 DATA 249,70,38,25,9,5,3,1
2720 DATA 1,2,4,8,16,160,64,160

El
210 VDU23,224,&1010;&7E3C;&BDFF;&E7E7;
220 VDU23,225,&1 C08;&082A;&2A1 C;&0849;
230 VDU23,226,&0000;&8870;&0106;

&0000;
240 VDU23,227,&2418;&01C240806;&00F0;
250 VDU23,228,&F080;&F8FF;&809F48080;
260 VDU23,229,&0201;&0804;&E010;

&A060;
270 VDU23,230,&F040;&4448;&4642;&464F;

280 VDU23,231,&E7FF;&8181;&66E7;
&183C;

290 VDU23,2324827D42945;&0911;&0205;
300 VDU19,2,4,0,0,0,19,3,2,0,0,0
320 COLOUR 131:COLOUR 0:CLS

210 FOR K=1 T09
220 READ A$
230 UC$(K)=A$
290 NEXT K
2570 DATA BR2D2L2D5RU2R3D2R3U4L2

UL2D2
2590 DATA BR2R3DRDLDL2ND4L3U2R3DL3
2610 DATA BD3E2R2UD2RFGLG3
2630 DATA BD3E2RF3
2650 DATA ND7FR2FD5UNR3L2
2670 DATA ND7FR4DNR2DNFL3UR2
2690 DATA R5ND6DL5D5R3DL
2710 DATA NR3DRF6U4LHE2DL
2730 DATA BR7G7E2UNF3H2DR

The Spectrum program and the Commodore
program use the same DATA, but treat it in
different ways. The Spectrum sets up the
UDGs in characters 124 to 133, but in the
Commodore program, a protected block of
memory must be reserved in the main
program, into which ROM characters can be
copied. The new characters are stored from
location 14848 onwards, as characters 68 to
77.

The Acorn program simply uses VDU
statements to set up the UDGs. In this case,
they are set up in characters 224 to 232.

The Dragon/Tandy program uses DRAW
instructions elsewhere in the program to set
up the characters. In each of the DATA lines
there is a string of instructions from which the
characters can be outlined.

There is a drawback with using UDGs like
this on the Commodore and Acorn machines.
On the 64, although the program itself is only
6K in length, when RUN it consumes a great
deal of extra RAM, owing to the size of the
arrays used. The arrays mean that only a little
over 10K of memory remains for any elabor-
ations you may with to add. The problem is
even more acute on the Acorns. In order to
display a background colour, a colour for
terrain and two different colours for the
armies, yet have a map large enough for an
interesting battle, MODE 1 is needed. This
needs 20K of memory by itself, so all REM
statements, and unnecessary spaces have been
omitted from the listing in order to make sure
that the program will run.

SCREEN DISPLAY
These few lines are necessary to clear the area
assigned for printing up your instructions:

❑❑❑❑❑❑❑ ":NEXTK
2555 PRINTPS$;
2560 RETURN

2540 DEF PROCclean
2550 FOR k=23T030:PRINT TAB(0,k);

SPC(39):NEXT
2560 ENDPROC

%CIA
2540 REM CLEAR TEXT

WINDOW
2550 PMODE0,4:PCLSO: PMODE3,1
2560 RETURN

The programs treat the screen display as two
`windows'—a text window, and a map
window.

The text window has to be cleared and re-
written frequently during the game, but the
map window has a constant display with
occasional small movements of the units it
shows.

All four machines see the screen as just one
continuous section—not the two that the
program needs. So these routines are desig-
ned to clear just the area set aside for the text
window.

The next part of this article on wargaming
deals with the map, an

PMODE0,4:PCLS0:
fferent

units around.

a 2540 REM Clear text screen
2550 FOR k=17 TO 21: PRINT AT k,0;

"00000000000000
❑❑❑❑❑❑❑❑❑❑❑❑❑❑❑
❑❑❑ ": NEXT k

2555 RETURN

405 Pss="Ingggnggigigggig
glAlggggggggggigg"

2540 REM CLEAR TEXT WINDOW
2545 PRINTPS$;
2550 FOR K=1 TO 5:PRINT "El ❑

❑❑❑❑❑❑❑❑❑❑❑❑❑❑❑
❑❑❑❑❑❑❑❑❑❑❑❑❑❑❑

If you want to play games with your
Commodore, they're far better if you
use sprites* We have already shown
you how to manufacture them, now
see how to make them more mobile

Sprites are an essential feature of any game on
the Commodore 64. Earlier articles on the
subject looked at the creation of high-
resolution and multicolour sprites and the
various important registers of the VIC-II
chip which are used to control them (see pages
168 to 172 and 776 to 783). You will find it
useful to refer to these during the course of
this article. Now you can find out how to go
about actually using and manipulating
sprites.

BANKS FOR THE MEMORY
The first thing any program using sprites has
to do is to define—or call up from memory—
the necessary sprite data. But where is this
data kept?

Each sprite, you may recall, requires 64
bytes—of which 63 are taken up by the
definition itself (3 bytes per horizontal line,
and there are 21 lines). An extra byte is added
to the end of the sprite pattern definition to
act as a separator and its value is always zero.
These 64 bytes can be placed anywhere in
memory that's free for such storage.

But a quick look at any memory map will

show that large amounts of the Commodore's
64K of total memory is used by things like the
video display, character set—and don't forget
BASIC program work area and the operating
system! So the amount of room left for sprites
is restricted.

The memory can conveniently be split into
four 'banks' of 16K each as follows (the A
value is used to select the bank as explained
later):

Bank 	Range 	A Value
0 	0 	–16383 	3
1 	16384-32767 	2
2 	32768-49151 	1
3 	49152-65535 	0

The VIC chip which does all the work of
controlling the sprites has one slight
problem—it can 'see', or access, only a single
bank of memory at a time. And the memory
available to store sprites is spread over all four
banks, with some banks being more useful
than others for storing a lot of sprite data.

So, all in all, you have to be pretty careful
about exactly which areas in memory you use
to store the sprite data.

SELECTING THE BANK
Unless you tell it otherwise the system de-
faults to Bank 0. But with all the system
variables, and things like screen memory,
space for sprite storage here is fairly tight. But
don't neglect possible storage areas away from
the main RAM which commences at 2048.
There's room for three sprites in the cassette
buffer area at 828 upwards (not of much use if
a tape unit is used though!), and one some-
where between 679 and 767.

Even allowing for a fairly large BASIC
program—say 8K—you've still got a fair
amount free above this before the Bank 0
ceiling at 16383 is reached. But a hi-res screen
requires another 8K in this bank, although
rarely used with sprites.

SELECTING THE BANK
USING THE DATA

PLAYING THE GAME
THE PROGRAM

POINTING THE WAY

SWITCHING ON
TYPE, COLOUR AND SHAPE
POSITION AND MOVEMENT

COLLISIONS AND PRIORITIES
FURTHER USES

If you want to store a lot of data you can
move BASIC so that it starts very much
higher, to give you more room, or you can
transfer some to one of the other banks. The
other video banks can be accessed by setting
what's called the bank select bits of register
56578 using the following POKE routine,
which may of course be contained within a
program:

POKE 56578, PEEK(56578)0R3

This sets the data direction to output. You can
then select the video bank using the 'A' value
listed above:

POKE 56576, (PEEK(56576)AND252)ORA

Take care when storing data for UDGs if
you're using these at the same time as sprites.
You'll have to find room for both the UDGs
and the sprite data.

USING THE DATA
In the previous sprite article, eight sprite
definitions were provided for use in the
example program below. The program also
uses the two other sets of sprite data on page
1261. These are alternative forms of the
rowing boat and the whale and are used to
create the animation effects. How the
program works is explained in each section
that follows.

1 POKE 51,255:POKE 55,255:POKE 52,47:
POKE 56,47:CLR

5 POKE 53280,7: POKE 53281,3:V=53248:
POKE V + 21,0

6 FOR Z=49152 TO 49173:READX:POKE Z,X:
NEXT

7 DATA 162,0,172,4,220,169,160,153,33,5
8 DATA 172,4,220,169,227,153,33,5,232,208,

237,96
10 A$="❑❑❑❑❑❑❑❑

CIEL"
15 PRINT "ElMgligaigni";A$;:FOR

Z=1 TO 11
20PRINT"a1111=11=01=11=10111111

❑❑❑❑❑❑❑❑❑❑❑❑❑❑❑
❑❑❑❑❑❑❑❑❑❑❑❑❑❑❑
•";:NEXT Z:PRINT "a";

25 FOR Z=1 TO 140:PRINT "a El M";
30 IF Z>79 THEN PRINT "u";
35 NEXT Z:FOR Z=0 TO 39:POKE 1984+Z,

160:POKE 56256+ Z,5:NEXT Z:T1$=
"000000":G =10

38 POKE 2040,192:POKE 2041,197:POKE
2042,195:POKE 2043,193:POKE 2044,194

39 POKE 2045,196:POKE 2046,199:POKE
2047,200

40 POKE V +27,82:POKE V+ 28,213:POKE
V +37,13:POKE V + 38,2

50 POKE V + 39,8:POKE V+ 40,12:POKE

V + 41,4
55 POKE V +42,10:POKE V + 43,5:POKE

V+ 44,1:POKE V+ 45,0:POKE V + 46,0
70 PRINT"gin";GG
90 GOSUB 1000
92 POKE V+ 8,180:POKE V+9,76
94 POKE V + 10,160:POKE V + 11,50
96 POKE V+ 12,130:POKE V+13,55
98 RX = 200:RY =- 140:TY = 81
100 IF T1$ > "000100" THEN PRINT

"ig 	>111GAME OVER, (PRESS
SPACE BAR":GOTO 1300

101 A$=RIGHT$(A$,39)+LEFT$(A$,1):
PRINT "IgigggggggggiM";A$:SYS
49152

102 PRINT "I§11";TAB(33);TI$:PRINT"Ig
gggggggggligggliggigIgng
gg gg grspc(G)"g o"

103 IFRND(1)>.50 ANDG>1THEN
G=G-1:GOT0105

104 IFG<38THENG=G +1
105 IF G=INT(RX/8) THEN GG = GG +1:

G = INT(RND(1)*38) + 1:PRINT "Igi";
GG:GOTO 1200

106 PRINT" ❑ "SPC(G)" 	*"
110 BX= BX -SP:IF BX< 0 THEN POKE

V +21,PEEK(V+21)AND254:GOSUB 1000
115 POKE V,BX AND 255:POKE V+ 1,BY
120 Z=INT(BX/256):POKE V + 16,(PEEK

(V+ 16)AND254) +
130 TX=TX+2

135 IF TX> 400 THEN POKE V + 21,
PEEK(V + 21)AND 253:TX = 0

140 POKE V + 2,TX AND 255:POKE V + 3,TY
145 Z= INT(TX/256):POKE V + 16,

(PEEK(V + 16)AND253) +
150 POKE 2041,197 + RND(1)*2
160 IF AY=0 OR AX=0 THEN DD=1:

AX=150+ INT(RND(1) * 100) +1
170 AX = AX —1:AY = AY + DD:

POKE V + 4,AX:POKEV + 5,AY
180 IF AY> 60 AND (PEEK(V + 31)

AND4) = 4 THEN DD = —1
190 GET K$:IF K$ ="gg" THEN RX= RX — 8
195 IF K$="pj" THEN RX= RX + 8
200 SYS 49152:IF RX < 0 THEN RX = 380:

POKE V + -21,(PEEK(V + 21)AND127)+ 128
210 IF RX > 380 THEN RX=0:POKE V+21,

PEEK(V+ 21)AND127:RX=
220 Z= INT(RX/256):POKE V +16,(PEEK

(V+ 16)AND127) +1282
230 POKE V + 14,RX AND 255:

POKE V+15,RY + RND(1)*2
240 IF K$ = " gl" OR K$ = " El" THEN

POKE 2047,200+ RN D(1)*2
250 PX = PX — 8
260 IF PX <0 THEN POKE V +21,PEEK

(V + 21)AND247:PX = 500:PY = 50 +
RND(1) * 30

270 Z= INT(PX/256):POKE V + 16,
(PEEK(V + 16)AND247) + 8*Z

280 POKE V + 6,PX AND 255:
POKE V +7,PY

999 POKE V + 21,255:GOTO 100
1000 SP = 2:BX = 360:BY = 80:POKE

V + 23,192:POKE V + 29,192
1010 IF RND(1) > .50 THEN SP= 4:BY= 90:

POKE V + 29,193
1015 IF RND(1) > .75 THEN SP= 6:BY= 100:

POKE V + 23,193:POKE V + 29,193
1020 RETURN
1200 POKE 54296,15:POKE 54278,240:POKE

54276,33:FOR Z = 1 TO 30:POKE 54273,
Z + 30

1210 POKE 54273,30 — Z:NEXT Z:POKE
54276,32:POKE 54273,0:GOTO 110

1300 GET K$:IF K$ < > "D" THEN 1300
1310 RUN

This program uses the data for the sprites set
up on pages 776 to 783 plus the two new sets
for the animated sprites. To enter this new
sprite data first LOAD in the sprite editor from
page 777 and the old sprite data; then enter

the new data into the edItorby pressing E and
following the prompts. You'll now have ten
sets of data which you should SAVE ready for
use in this program.

Type NEW to clear the memory then
reLOAD the data with:

LOAD "sprite file name",1,1

Remember to change the first 1 in the com-
mand to an 8 if the data is on disk, and use
your own file name inside the quotes. Once
the data is LOADed type NEW and then enter or
LOAD in the program above.

One point to remember is that you must
always turn off the sprites before SAVEing any
program that uses them. So if you have both
the program and sprites in memory and want
to SAVE the program first enter:

POKE 53248 + 21,0

and only then SAVE the program.
The V + notation (where V = 53248, the

start location of the VIC chip) is used extens-
ively in this and the other programs in this
article and throughout the explanation here.
The table on page 172 which is reproduced
here and the descriptions on pages 781 to 783
explain this notation and its uses.

PLAYING THE GAME
The main purposes of the program is to show
how the sprites are set up and used, but the
picture also forms the basis of a simple game.
The object is to manoeuvre the rowing boat to
collect the 'starfish' before your time runs
out. Use the two cursor keys to move the boat
to the left and right. You have to position the
boat over the starfish, but you can only pick it
up if the starfish is also stationary. You have
one minute per starfish and you'll hear a
sound each time you catch one.

THE PROGRAM
Here is a brief run through the program so
you know what each section does. The prin-
ciples are explained more fully below. The
first part of the program is mostly concerned
with setting up the background. Lines 6, 7
and 8 store the machine code for the sea
movement, then Lines 10 to 35 set up the rest
of the background. Notice the POKE at the end
of Line 5. With V equal to 53248 this is the
same as the POKE mentioned earlier that turns
off all the sprites.

Lines 40 to 55 point to the sprite data and
colour the sprites. Lines 92 to 96 position the
three stationary sprites—the tree, the cloud
and the mountain.

The next section from Line 100 to 106
provides the timing for the game and moves
the starfish. After this are the small sections to
deal with each of the movable sprites in turn.
Lines 110 to 120 are for the yacht, Lines 130
to 150 the whale, Lines 160 to 180 the
balloon, Lines 190 to 240 the rowing boat,
and Lines 250 to 280 the plane. Lines 1000 to
1200 form a subroutine to move the yacht and
alter its size. Finally Lines 1200 and 1210
make a sound when you pick up a starfish and
the last two lines let you have another go.

POINTING THE WAY
The sequence of using a sprite starts by
calling in the necessary data used for its
definition. This is handled by that sprite's
pointer—one of values contained in an eight
byte block just above the screen location,
normally starting at 2040. To call up a sprite
you have to POKE its pointer into the correct
location shown below. The pointers indicate
where the data is stored and you can find out
what they are for each sprite on pages 780 to
783. In the program, Lines 38 and 39 set up
the pointers for all the sprites.

There are only ever eight sprite numbers
and eight pointer locations, but many more
sprites can be displayed by altering the
pointers in the locations. For example, the
whale is animated in Line 150 by randomly
changing between pointer 197 and 198, each
pointer pointing to different sets of data.

Sprite Number
(SN) 	Pointer location

0 	 2040
1 	 2041
2 	 2042
3 	 2043
4 	 2044
5 	 2045
6 	 2046
7 	 2047

0 1 	0 0 0 16 0 0 4 0 2 64 0 0 18 0 0 64 0 0 	0 0 0 	0 	0 	0 	0 0 	0 0 0 	0 0 0 	0 0 0 0 0 0
32 96 0 	0 	112 0 248 56 1 254 60 3 191 62 7 254 127 255 192 255 	0 0 40 0 	0 	36 0 	0 	36 0 	0 	16 0 	0 	20 0 	0 85 0 	0
255 255 243 255 255 1 255 254 0 255 252 0 63 240 0 15 128 0 	0 	0 	82 0 255 251 255 255 239 255 63 239 252 15 191 240 0 128 0 2 128 0
0 0 0 0 	 0 0 0 0
sprite pointer =198 	 sprite pointer = 200
start address =12672 	 start address = 12800
end address =12735 	 end address =12863

This pointer block is always just above the
screen location, so if your program relocates
the screen, the sprite pointer data also has to
move.

Each sprite pointer can hold a value of 0 to
255. The following formula can be incorpo-
rated within a program to locate the first byte
of the 64 bytes of each sprite definition:

location = (bank') 6384) + (pointer value * 64)

Thus if the pointer value of sprite 0 is 192 and
the default bank 0 is used, as in the example
program, the data is stored in location 92*64,
equals 12288 onwards.

Rapid adjustment of pointers can be used
to create the illusion that many more than the
normal eight sprites are being displayed at
once.

A simple loop running through a sequence
of 64 byte blocks could be used for an
animation routine for instance. The whale
and the rowing boat are simple examples of
this technique using just two sets of data each.

Another little trick which can save a lot of
programming effort is to use the same basic
design for several sprites. Simply locate the
required pattern in a suitable part of memory,
copy it into other parts and have more than
one of the sprite pointers accessing it! While
the main pattern is the same in each case,
small parts of the pattern may be edited and
copied back. This allows you to make each
sprite slightly different. Again this is useful
for animation.

MI to : Dui
Once the data for a sprite has been accessed,
that sprite has to be turned on (enabled) to
make it visible. This is done by location
V + 21, with each bit looking after one of the
eight sprites (SN stands for sprite number).

SN: 	7 	6 	5 	4 3 2 1 0
bit: 	7 	6 	5 	4 3 2 1 0
`ON'
value: 	128 64 32 16 8 4 2 1

Any combination of sprites may be activated
by POKEing the appropriate value in V + 21.
Thus POKE V + 21,255 would switch on-
enable—all eight sprites. POKE V + 21,0
would switch them all off. In the program,
Line 999 switches on all the sprites.

Turning on just some sprites will cause the
others to be turned off. OR must be used to
activate sprites without jeopardizing otherA
So to switch on a single sprite:

POKE V + 21,PEEK(V+ 21)0R(2ISN)

And to switch it off use:

POKE V + 21,PEEK(V + 21)
AND(255 — 2ISN)

Sprites that move need to be turned off once
they reach the edge of the screen. You can see
this happening in Line 110 which tests when
the yacht reaches the left-hand edge. When
BX < 0 the sprite is turned off and the sub-
routine at Line 1000 positions it on the other
side. A similar thing happens in Line 135 for
the whale, Lines 200 and 210 for the rowing
boat, and Line 260 for the plane.

VIC-II chip memory locations

This is a handy reference table of the
memory locations you will need to access
to control the shape, size, colour and
position of your sprites.

The V+ value numbers are the most
useful and the easiest to remember.

Decimal V + value Description
53248 	V 	Sprite-0 X position
53249 	V +1 	Sprite-0 Y position
53250 	V + 2 	Sprite-1 X position
53251 	V+3 	Sprite-1 Y position
53252 	V + 4 	Sprite-2 X position
53253 	V + 5 	Sprite-2 Y position
53254 	V + 6 	Sprite-3 X position
53255 	V+ 7 	Sprite-3 Y position
53256 	V+8 	Sprite-4 X position
53257 	V+9 	Sprite-4 Y position
53258 	V +10 	Sprite-5 X position
53259 	V + 11 	Sprite-5 Y position
53260 	V + 12 	Sprite-6 X position
53261 	V + 13 	Sprite-6 Y position
53262 	V + 14 	Sprite-7 X position
53263 	V +15 	Sprite-7 Y position
53264 	V + 16 	MSB of X coordinate
53265 	V + 17 	VIC control register
53266 	V + 18 	Raster register
53267 	V+19 	(light pen)
53268 	V + 20 	(light pen)
53269 	V+21 	Sprite display enable
53270 	V+22 	VIC control register
53271 	V+23 	Sprite 0-7 Y-expand
53272 	V+24 	VIC memory control
53273 	V+ 25 	Interrupt register
53274 	V+ 26 	Interrupt enable
53275 	V+27 	Background priority
53276 	V+28 	Select multicolour
53277 	V + 29 	Sprite 0-7 X-expand
53278 	V + 30 	Sprite collision
53279 	V+31 	Background collision
53280 	V + 32 	Screen border colour
53281 	V + 33 	Background colour 0
53282 	V + 34 	Background colour 1
53283 	V + 35 	Background colour 2
53284 	V + 36 	Background colour 3
53285 	V +37 	Sprite multicolour 1
53286 	V+38 	Sprite multicolour 2
53287 	V +39 	Sprite-0 colour
53288 	V+40 	Sprite-1 colour
53289 	V+41 	Sprite-2 colour
53290 	V + 42 	Sprite-3 colour
53291 	V+43 	Sprite-4 colour
53292 	V + 44 	Sprite-5 colour
53293 	V + 45 	Sprite-6 colour
53294 	V +46 	Sprite-7 colour

TYPE, COLOUR AND SHAPE
At some point the general physical character-
istics have to be established. Each sprite has
its own colour which is set by a register in the
following group:

SN: 	7 	6 	5 	4 	3 	2 	1 	0
Register V+46 +45 +44 +43 +42 +41 +40 +39

The normal range of colour values, 0 to 15,
may be POKEd into these locations. There-
after, each sprite that's turned on will be
displayed in the specified colour. Remaining
pixels in the sprite area will assume whatever
background colour is selected (V + 33).

In multicolour mode a sprite may have up
to four colours—three plus the background.
The main colour of each sprite is set using the
registers above. The extra two colours are set
in V + 37 and V + 38 and these colours are the
same for all multicolour sprites. Multicolour
sprites are turned on by setting register V + 28
using the following statement:

POKE V+ 28,PEEK(V + 28)0R(2ISN)

And, again, a single multicolour sprite may be
switched off using:

POKE V + 28,PEEK(V + 28)AND(255 — 21SN)

In the program, the main colours for each
sprite are defined in Lines 50 and 55. The two
extra colours for the multicolour sprites are
set in Line 40; the colours used in this case are
13—light green and 2—red. (The remaining
POKE in these lines, POKE V + 27,82, deter-
mines the 'priority' of the sprites, which is
explained later.)

Next, decide whether you want to en-
large the sprite. Any sprite can increase in
either the horizontal or vertical dimension—
or both—to double the size instantly, a useful
way of making the same sprite design 'work'
for you. For example a pulsating effect can be
achieved simply by looping back, and for-
wards between expanded and unexpanded
sprites.

For a single sprite, horizontal expansion is
achieved using location V + 29 in the follow-
ing line:

POKE V+ 29,PEEK(V + 29)0R(2ISN)

This horizontal expansion can be cancelled
using the following:

POKE V+ 29,PEEK(V+ 29)AND
(255 — 2TSN)

Similarly the expand/cancel set for the vert-
ical is:

POKE V+ 23,PEEK(V + 23)0R(2ISN)
POKE V+ 23,PEEK(V+ 23)AND
(255 — 2TSN)

In the program you can see this in Lines 1010
and 1015. This is the routine that positions
the yacht. To give an impression of perspec-
tive and distance, the boat is drawn larger
when it is nearer the foreground and smaller
when it is nearer the horizon. To add variety
its position is determined by the RND function
at the start of the lines.

POSITION AND MOVEMENT
To position a sprite on the screen you have to
specify two values: an X and Y coordinate
representing, respectively, horizontal and
vertical pixel locations. Every sprite has its
own unique X/Y POKEs using locations from
V to V + 16. For example, sprite zero uses
locations V and V + 1 for the X and Y
coordinates; sprite one uses locations V + 2
and V + 3 and so on.

The X positions run to 360 pixels, and the
Y value to 200. This represents the full screen
area, but in fact only a window on this
represents the visible area. You may have
witnessed this on games programs where
sprites seem to appear from well inside the
apparent viewing areas, starting at about the
position where the darker blue inner screen
occurs when you first switch on the computer.

The visible window begins at X location 24
and Y location 50. The sprite position is
based on its own top left-hand corner and as
its size is 24 x 21 pixels, it is conceivable that
it could be positioned on the screen but
remain completely or partly out of the main
viewing area. This is less likely if the sprite is
expanded.

A typical X and Y POKE set shown in Line
92 is:

POKE V + 8,180 : POKE V+9,76

This would position sprite 4—the tree—near
to the top centre of the screen. Now if you
wished to move that sprite, all that you need
to do is to POKE a new value in one or both
locations. There's no need to erase or other-
wise 'tidy up' the old location, and you can see
how simple it would be to initiate several
loops to control the direction and timing of
the movement.

For example, have a look at the routine to
move the plane. This is in Lines 250 to 280.
Line 250 decrements the X position by 8 each
time and Line 280 POKEs the new position in
V+6 and V+ 7.

Have a look, too, at the routine to move the
rowing boat. This is in Lines 190 to 240. The
first two lines check which key is pressed and
update the X coordinate accordingly. Line
240 also swaps between the two versions of
the sprite so the picture is animated and the
boatman appears to row.

The only slight problem occurs when the
sprite X location is to the right of the screen
when values in excess of 255 are encountered.
This is where location V + 16 is used. This
provides a ninth bit facility, seeding a start
value of 255 to the X location. Thus:

POKE V + 16,21SN : POKE V + 4,45 : POKE
V + 5,125

This positions sprite 2 at location 300,125.
The POKEd value of V + 16 may of course

be for any combination of sprites if more than
one is required to be in the right-hand area
simultaneously. The 2ISN value can be 0 Red
to protect other sprite positions. And to
return to the left-hand side of the screen you
must reset the bit to 0 for each sprite which
has used V + 16. Thus:

POKE V +16, PEEK(V+ 16)AND
(255 — 21SN)

returns sprite 2 to the left-hand side.
You can see this used in several lines in the

program—in fact for all the sprites that move
left and right. These are the yacht in Line
120, the whale in Line 145, the rowing boat in
Line 220, and the plane in Line 270. The
other moving sprite, the balloon, moves only
up and down and this means that the Y
location never exceeds 255.

COLLISIONS AND PRIORITIES
As well as being highly manoeuvrable, sprites
have one special characteristic which makes
them especially suited to games use—collision
detection. This is handled by two special
registers, V + 30 and V + 31. As explained in
the previous articles, these handle inform-
ation which can be used to flag collisions
between one sprite and any other, or one
sprite and the background data (which can be
text or graphics).

Each bit of each of the registers looks after
one of the eight sprites. And so the familiar
2ISN value crops up in the PEEKs and POKEs
which are used to both detect and act upon
collisions (see page 783). Again, several sprite
collisions can be set up simultaneously.

In the program, collision detection is used
to test when the balloon touches the sea. Look
at Line 180. A collision is checked for only if
the Y coordinate AY is greater than 60. The
test is to look at the value of:

PEEK (V + 31)AND(2ISN)

The result shows which sprite has collided
with the background. The 4 is 212 showing
sprite 2 collided.

Remember that a collision is deemed to
have taken place only when the register is set
for the relevant sprite(s), and when an 'on'
part of the sprite overlays another. The
unused edge of a sprite doesn't count, in other
words. Collisions can occur anywhere on the
screen, even in the non-visible border area.

Quite which sprite should have visual
dominance for collisions purposes is really
down to the effect desired and doesn't affect
the collision register which is interested in
only the sprites involved, not their location or
plane. But the effect can be heightened by
careful choice of sprite priority, which is
achieved by the SN—the lower the SN, the
superior it is on display. In the program the
priorities were set up right at the start by
assigning the pointer for the highest priority
sprite to location 2040; the next sprite's
pointer to location 2041 and so on.

One cautionary point, however. In multi-
colour mode, bit pair 01 (which sets whatever
colour is logged in V + 37) is not detected in a
sprite to background collision such as handled
by V + 31—even though it can be present on
the screen. But the good thing about this is
that you can use the 01 bit pattern for
colouring objects not used in collisions.

Also, note that when V + 30 or V + 31 are
read using PEEK, the registers are automati-
cally cleared. So if you wish to retain the
value, typically because you want to detect
more than one collision, save the value in a
variable until it is finished with. Any routine
which restarts a sprite collision routine should
obviously commence with PEEKs of both
locations to clear them of previous collision
data.

FURTHER ON
A further area for developing uses of sprites is
combining them with other graphics modes.
In fact, you can use sprites with all of them—
particularly effective is a combination with
bit-mapped displays, although this tends to
gobble up extravagant amounts of memory.

Even though the very nature of sprites
means they are highly controllable from
BASIC, most of their real power becomes
apparent only when machine code routines
are employed. In this way you can achieve
very rapid, flicker-free sprite movement and
animation. In particular, it's rather limiting to
stick to just eight sprites on screen at once
when so many more can be defined and
consigned to memory.

By using raster interrupts many more can
appear to be on the screen at once. A full
description of interrupts is beyond the scope
of this article. Briefly, though, the interrupt
feature appears to allow several programs to
run at once. Every 60th of a second the
computer stops what it is doing, scans the
keyboard (buffer), does a bit of electronic
tidying up and, in the normal course of
things, returns to the program in hand. But it
can just as well be directed to do something
else, for whatever length of time, before
making that return.

With a raster interrupt, in effect, a certain
amount of the screen is 'drawn' using one
routine, before being transferred to another
routine for the remainder. Because everything
takes place so quickly, parts of two or more
separate screens appear as one.

Two VIC registers figure in this: V + 17
(high bit) and V + 18. By looking at these
locations it is possible to tell exactly where the
screen is being scanned at any one instant.
And when it reaches a particular, specified
point, the program can do something else—
this is the form of what in machine code
programming is called an interrupt request.

For many children computing is no
go without LOGO, a language
designed with learning in mind*
Seymour Papert's brainchild has
revolutionized the classroom

In the 1960s computers were very expensive.
The computer power in your micro would
have cost tens of thousands of pounds, since
even the largest mainframe computers could
only store about 144K bytes. For economic
reasons computer languages were designed to
use as little memory as possible, and were
made to be easy for the computer rather than
easy for the programmer.

With the appearance of the microcomputer
in the 1970s the programming languages of
the 60s gained popularity because the new
micros, like the mainframe of the 60s, had
small memories. The idea originated that
`simple for the computer' meant 'simple for
the programmer', and the difficulties of learn-
ing languages like BASIC became accepted as
part of learning programming.

THE CHOICE OF LANGUAGE
When you switch on the majority of home
micros, including all those covered in
INPUT, they operate in BASIC (Beginners'
All-purpose Symbolic Instruction Code), and
this is the language that most micro owners
stay with. Yet there is no reason for this to be
the case. BASIC is only a machine code
program which is automatically present in the
machine—and in fact, there are still some
machines for home use on which BASIC has
to be loaded from tape or disk before you start
programming.

This means that it is perfectly possible for
you to change the language which your
computer understands—all you have to do is
to load in a machine code program which
enables it to recognize the instructions and to
perform the appropriate actions. Indeed, if
you have tried the program on pages 848 to
855, you will have discovered that it is
relatively easy to extend your machine's
BASIC with additional commands.

But it is also possible not merely to adapt
the existing program used by the BASIC
interpreter, but also to replace it completely.

Since the early days of computing, some-
thing like a hundred different languages have
been developed for various purposes, not to
mention 'home-made' languages designed for
particular computers. Some of these are so
specialized in use that you would never

encounter them except at the highest levels of
research, but others are at least as practical for
the home user as BASIC is—and in some
cases more so.

Whether or not a particular language is
available to you depends upon whether or not
you can obtain the program which enables
your micro to operate with it. Alternative
languages are usually supplied like any other
program—on tape or disk, or sometimes in
the form of a ROM cartridge. Their availa-
bility depends on which computer you have—
many business machines, for example, which
have the operating system CP/M can choose
between more than a dozen languages, and
sometimes several versions of each. And
there's a fairly good choice for most home
computers, too. The BBC, for example, can
work in six languages apart from BASIC,
while the unexpanded Dragon has three.

The next few parts of INPUT will be
examining the most popular alternatives to
BASIC to see what advantages and disadvan-
tages they have, and how you can use a new
language to extend your programming skills.

LEVELS OF COMMUNICATION
A language is a means of communication
between you and the computer. It is some-
thing that you both understand—a comprom-
ise between natural language (say, English)
and binary machine code, which is what the
machine actually works on. A language is said
to be low-level if it is close to the computer's
own. Assembly language is such an example.
The highest level languages, like PROLOG
and LOGO, can be quite close to natural
language. The next generation of computers
(called the fifth generation) will probably use
something like PROLOG to accept instruc-
tions in plain English. BASIC falls some-
where between the two, and in the view of
many programmers is not a good comprom-
ise, being neither all that easy to understand,
nor very quick for the computer to use.

The languages which INPUT is covering
span the range from high to low level. The
four, LOGO, PASCAL, LISP and FORTH,
are available for all the computers except the
Dragon, which does not have LISP. Tapes,
disks or ROMs for all the others should be

obtainable from normal software outlets,
although they may not be held in stock by
smaller stores. But don't worry if you do not
want to buy the languages now. You will be
able to understand what is involved even if
you cannot try the examples. This time, we
start with a look at LOGO.

THE BEGINNINGS OF LOGO
In 1967 a research team at the Massachusetts
Institute of Technology took a different ap-
proach to computing. They set out to create a
language that was easy for the programmer
rather than easy for the computer. The result
was LOGO.

The team was headed by Seymour Papert,
an expatriate South African. Papert had
worked closely with Jean Piaget, the famous
child psychologist, who had said that young
children can only understand an abstract
concept if it is presented in a concrete form.
He believed that a child should learn through
its own discoveries, rather than by being told
things. This approach was a strong influence
on the development of LOGO.

Another influence was the work of Marvin
Minsky, a researcher into Artificial Intellig-
ence at MIT in the 1960s. Artificial In-
telligence is the science of simulating aspects
of human intelligence in machines. Com-
puters are not intelligent, but only obey
instructions which have to be given with
detailed precision. The factors we consider
when solving a problem are immense and
varied, and thus to simulate such a process in
a computer program is a gigantic task. The
world of artificial intelligence needs pro-
gramming languages with which to simulate
human learning and decision-making abil-
ities. LISP is a powerful programming lan-
guage developed for such a purpose, which
will be covered later in the INPUT course.
LOGO is essentially a dialect of LISP, and
although it can handle words and numbers is
aimed chiefly at graphics programming.

The name LISP is derived from 'List
Processing'. Its basic data structure is a list
rather than a numeric array or character
string, and because a list can be symbols or
other lists, it is easy to process non-numerical
data. LISP, however, is not easy to learn.

COMPUTER LANGUAGES:
DESIGN CONSIDERATIONS
CHOICE AND AVAILABILITY

OF LANGUAGES
COMMUNICATION

LOGO AND PSYCHOLOGY
LOGO AND LISP

ROBOTICS AND THE TURTLE
PSEUDO-LOGOS

PROGRAMMING IN LOGO

CONCRETE DEMONSTRATIONS
Seymour Papert and his colleagues looked for
a 'gateway' through which children could
enter the world of programming* Three areas
were discovered, graphics, music and
robotics—children were interested in drawing
pictures on the computer's monitor, in using
the computer to create electronic sounds and
tunes, and in driving machines around from
the keyboard* Of the three, robotics was most
exciting and appealing, which led to Papert
creating the robotic Turtle*

The Turtle's development was encouraged
because at that time there were no cheap
monitors. The Turtle, a floor crawling, pen
carrying robot, is controlled by the computer*
Its pen can be raised or lowered, allowing the
Turtle to draw as it moves* It allows children
to relate geometry to their own movements in
drawing or walking* Children drawing with a
Turtle are often seen turning and walking out
routines before telling the Turtle to do them.

The Turtle was named in honour of Grey
Walter, a British neurologist and cyberne-
tician who made 'cybernetic tortoises' in the
1950s* These were electrically powered veh-
icles equipped with devices which measured
the power level of their batteries—when
supplies ran low they searched for a recharg-
ing apparatus and plugged themselves in*
Grey Walter's 'tortoise' was one of the first
true robots*

The original robotic Turtle at MIT almost
became extinct for a while with the advent of
personal computers and the facility to display
things on screen simply and cheaply. It was
succeeded by its two-dimensional descend-
ant, the screen Turtle* This is a cursor,
sometimes represented as a chevron, somet-
imes as a small Turtle* It obeys the same
instructions as the robotic Turtle, doesn't
break down, and is much cheaper*

The robotic Turtle has made its comeback
in schools, however, where it enables a larger
number of children to participate in pro-
gramming activities, providing a model for
`body geometry', and an exciting concrete
introduction into an abstract world.

The article on pages 884 to 888 describes a
few of the turtles and robots that are available
for home computers* These robots are
becoming popular in primary schools and are
fulfilling their original purpose of introduc-
ing children to computer programming in an
enjoyable and comprehensible way*

SPEAKING THE LANGUAGE

So what have mechanical toys to do with a
computer language? Papert sees the computer
as a vehicle for creativity and expression of

ideas. He believes the best way for children to
learn about computers is to grow up in a
computer culture, just as the best way to learn
Italian is to spend some time in Italy. At the
1983 annual conference of America's main
professional computing association, he called
for a scheme to give every American child a
computer. He believes that the child should
program the computer, rather than the com-
puter program the child* The means he
proposed to do this is through LOGO, which
in his view gives children control over one of
our most powerful resources, provides a
framework for problem solving outside com-
puting, and enables complex mathematical
ideas to be presented in a fresh, understand-
able way*

Papert explained his philosophy in his
best-selling book, `Mindstorms, Children,
Computers and Pdwerful Ideas'. Since the
book's publication in 1980, versions of
LOGO have appeared for most popular
microcomputers* It is available for the
Spectrum, Commodore 64, Dragon 32, and
in four versions for the BBC B—most ver-
sions closely resemble the original MIT
LOGO* There are also several programs on
the market with LOGO type names, such as
`Logo Dart' and 'Logo Graphics'.

These are simulations of Turtle graphics,
which only forms a small part of LOGO* The
language has full word and list processing
facilities, sound, mathematical functions and
many other features not found in 'Pseudo-
Logo' programs.

LOGO is the first 'user friendly' language*
Because it is easy to get into and popular in
schools, the idea often arises that it is 'for
kids'* Nothing could be further from the
truth* Professor Harold Abelson, one of
Logo's designers at MIT said, 'In working
with LOGO we've discovered some import-
ant things*

`A computer language can be simple and
powerful at the same time. In fact these two
aspects are complementary rather than con-
flicting because it is the very lack of express-
ive power in primitive languages such as
BASIC that makes it difficult for beginners to
write simple programs that do interesting
things. More important, we've found that it is
possible to give people control over powerful
computational resources, which they can use
as tools in learning, playing and exploring*'

LOGO is also a growing language*
Edinburgh University is developing a version
called Control-LOGO, to enable more so-
phisticated control of robots. Papert wants
future versions to include 'worlds' in which
children can play with ideas of physics like
they play with geometry in Turtle Graphics*

PROGRAMMING IN LOGO
When you load LOGO, either from disk,
cassette or a ROM chip or cartridge. LOGO
will give you a message like:

WELCOME TO LOGO

The ? is a prompt* LOGO is waiting for you
to give it a command* If you type:

HELLO LOGO I'VE BEEN LOOKING FORWARD
TO MEETING YOU

LOGO will reply:

I DON'T KNOW HOW TO HELLO

It has looked at the first word, not recognised
it as a command, and informed you.

A command it does recognise is ST* ST
stands for Show Turtle. It will call the screen
Turtle from the depths of the computer and
onto the screen. The Turtle's shape will point
in a particular direction* This is its heading* It

is armed with a pen and ready to draw.
The command to move the Turtle forwards

is FORWARD which can be abbreviated to FD.
FORWARD is a LOGO command which re-
quires an input. The Turtle needs to be told
how far to move. Typing FORWARD 100
will send the Turtle 100 units forward. It
will draw a line behind it. If you are using a
floor Turtle, the Valiant, for example, will
move 100 centimetres in the direction it is
facing.

If you type FORWARD100 LOGO will
reply:

I DON'T KNOW HOW TO FORWARD100

This is because, without the space between
the command and the quantity LOGO sees
FORWARD100 as a different word from
FORWARD and because FORWARD100 is not in
its vocabulary it gives a non-recognition
prompt. It will give a similar reply if you type
FERWARD instead of FORWARD.

There is a simple line editor which enables
you to correct mistakes before you press

RETURN I. The cursor keys allow you to move
along the line to the mistake. The delete key
removes the character to the left of the cursor.
To insert new characters simply type them in.
The text to the right will automatically move
along to accommodate the addition. Some
versions of LOGO allow you to retrieve and
edit a line after pressing 'RETURNS.

BACK works in the same way as FORWARD.
It is abbreviated to BK. It moves the Turtle
backwards, and, as before, it requires a
numeric input. You can give any number as
an input to FORWARD or BACK. They change
the Turtle's position but not its heading.

To turn the Turtle use LEFT and RIGHT.
They can be shortened to LT and RT. Like
FORWARD and BACK, they require a numeric
input. RIGHT 39 will turn the Turtle 39
degrees to the right. LEFT 123 will turn the
Turtle 123 degrees to the left.

SOME SIMPLE GAMES
If you are using LOGO with children it is
better not to tell them that RIGHT 96 turns the

Turtle 96 degrees to the right. Let them
experiment with different inputs and discover
the effect of alternative values for themselves.
There are various games you can play to lead
them into discovering values of different
angles.

Mark a position on the screen and see how
many commands a child takes to stop the
Turtle under the mark. Or you can draw a
roadway on the screen and get the child to
navigate the Turtle along the route, losing a
point for each command and a point for each
time the Turtle leaves the road. Later in this
article you will see how to write a procedure to
draw a road.

The program can be stored on disk or tape,
and loaded whenever the children want to
play the game. If you want to play immedi-
ately, draw the route directly on the TV
screen with a suitable marker such as a wax
crayon or a marker pen of the type used on
whiteboards in school classrooms. It will wipe
off easily afterwards. This way, it is easier to
draw more complicated routes.

There is a variety of games to play with a
floor Turtle, based on mazes, knocking things
down, collecting objects from various points
etc. You can play Shove Turtle, a variation of
the pub game Shove Ha'penny using a Turtle
instead of a coin.

Shove Turtle can be played on the screen
by writing a procedure to draw the board and
place the Turtle at the start.

MORE COMMANDS
Playing with the move and turn commands
you will need some more LOGO commands
or primitives. If the screen is not in the 'wrap
around' mode, that is, if the Turtle goes off
the top of the screen but does not appear back
on the bottom, you will need to get it back on
the screen.

HOME will bring the Turtle back to its
original position and heading in the centre of
the screen.

You will also need to clear the screen in
order to draw new pictures.

CLEARSCREEN, shortened to CS, will erase
any drawings and return the Turtle to the
HOME position.

You may want the Turtle to move without
drawing. PENUP, shortened to PU, raises the
Turtle's pen. If you are using a floor Turtle
the pen in its belly is lifted. The screen Turtle
merely stops drawing.

PENDOWN, shortened to PD, lowers the
floor Turtle's pen and allows the screen
Turtle draw.

CLEARSCREEN, HOME, SHOVVTURTLE,
PENUP and PENDOWN are LOGO primitives
which do not require inputs.

Here is an example to illustrate the com-
mands so far. You need to press the 'RETURNS
key after entering each line:

SHOWTURTLE
LEFT 45
FORWARD 71
RIGHT 135
PENUP
FORWARD 50
PEN DOWN
LEFT 45
BACK 71
PEN UP
HOME
PEN DOWN

CLEARSCREEN will erase the picture if you
want to try something else.

BUILDING UP A PROCEDURE
The activities so far have all been in the
`immediate' mode. You have been talking
directly to the Turtle and it has instantly
executed your commands, like a squad of
soldiers obeying a Sergeant Major on the
parade ground. There is another mode in
LOGO, the procedural mode.

In the procedural mode you name a series
of commands and write the commands after
the name. The name you give to the proce-
dure then becomes part of LOGO's vocabu-
lary. The turtle will respond to that name by
executing the commands in its defintion. To
define a procedure use TO followed by the
chosen name. This can be any name except
the name on an existing LOGO primitive. It
makes life easier to give a procedure a name
that defines its function.

This is best understood using an example.
Here is a procedure which teaches the Turtle
to draw a zigzag:

TO ZIGZAG
FORWARD 20
LEFT 150
FORWARD 20
RIGHT 150
FORWARD 20
LEFT 150
FORWARD 20
RIGHT 150
FORWARD 20
LEFT 150
FORWARD 20
RIGHT 150
END

After typing TO ZIGZAG and pressing I RETURN
the prompt changes from ? to > . This tells
you you are in the procedural mode. At the
end of the procedure type END and the
prompt changes back to a ? telling you you are

back in the immediate mode.
ZIGZAG is now part of LOGO's vocabulary.

If you type it the Turtle will draw a zig-zag.
LOGO has a repeat command which we can

use to save typing the same thing several
times. You could rewrite ZIGZAG as:

TO ZIGZAG
REPEAT 3 [FORWARD 20 LEFT 150 FORWARD

20 RIGHT 150]
END

The routine to be repeated is enclosed in
square brackets, preceded by REPEAT and the
number of times the routine is to be repeated.

If you think of a circle as a series of short
moves and turns, REPEAT makes it easy to
draw curves. For example REPEAT 180
[FORWARD 1 RIGHT 1] draws a semicircle.

PUTTING IT TOGETHER
You now have the ingredients to draw a
racetrack. The way to solve a problem with
LOGO is to break it into what Seymour
Papert calls 'Mind Sized Bytes'. So, starting
with the inside edge, first draw a curve:

REPEAT 180 [FORWARD 1 RIGHT 1]

Then a straight edge:

FORWARD 100

You can combine two curves and two straight
edges in a procedure to draw the inside of the
track:

TO INSIDE
REPEAT 2 [FORWARD 100 REPEAT 180
[FORWARD 1 RIGHT 1]]
END

It is quite legitimate to have a REPEAT within
another REPEAT as long as you remember to
close all the brackets at the end.

For the outside of the track you need a
larger curve, created by increasing the size of
the Turtle's steps.

REPEAT 180 [FORWARD 2 RIGHT 1]

is too large, but something in between:

REPEAT 90 [FORWARD 3 RIGHT 2]

is about right.
Now, the outside of the track.

TO OUTSIDE
REPEAT 2 [FORWARD 100 REPEAT 90

[FORWARD 3 RIGHT 2]]
END

But typing:

OUTSIDE
INSIDE

doesn't give the ideal result, however.
You can write a procedure to begin the

picture in a more suitable place by defining a
procedure called BEGIN:

TO BEGIN
PEN UP
LEFT 40
FORWARD 110
RIGHT 130
PEN DOWN
END

Another procedure will move the Turtle into
a suitable position to draw the inside track and
also provides a starting line.

TO MOVE
RIGHT 90
FORWARD 30
LEFT 90
END

To see the track, call the procedures together
by typing:

BEGIN
OUTSIDE
MOVE
INSIDE

You can then write a procedure to position the
Turtle on the starting line.

TO START
LEFT 90
FORWARD 15
RIGHT 90
END

Once a procedure is in the computer's mem-
ory, LOGO allows you to use it in the same
way as any other LOGO primitive. This
means you can use the procedures to help
define new procedures. You can combine the
building blocks that you have called BEGIN,
OUTSIDE, MOVE, INSIDE and START in a new
procedure called GAME:

TO GAME
BEGIN
OUTSIDE
MOVE
INSIDE
START
END

Whenever you type GAME, the race track will
appear with the Turtle on the starting line.

All LOGO programs are constructed in
this way. Breaking a program into small
building blocks makes it easier to construct
and debug. And next time, you'll see how to
make up more complicated programs using
these techniques.

CUMULATIVE INDEX

An interim index will be published each week. There will be a complete index in the last issue of INPUT

A
Animation

of sprites
Commodore 64 	1259-1263

Applications
horoscope program 1245-1253

Artificial intelligence 1264
Astrology

See horoscope program

B
Banks, memory

range of
Commodore 64
	

1258-1259
Basic programming

moving colour sprites
Commodore 64
	

1258-1263

C
Cavendish Field game

part 1—design considerations
and setting up UDGs

1254-1257
Cells

colonies of in life game
1237-1239

Cliffhanger
part XII—adding weather

1240-1244
Clouds, programming in

machine code
Acorn, Commodore 64,

Spectrum 	 1240-1244
Collision detection, of

sprites
Commodore 64 	 1263

Colony, creating in life game
1237-1239

Colour
of sprites

Commodore 64 	1262
use of in life game 1237-1239

D
DATA statements

in horoscope program
1248-1253

in life game 	1237-1239

DRAW
use of to create UDGs in
wargame

Dragon, Tandy 	1254-1256

E
Education by computer

see LOGO
Enlarging sprites

Commodore 64 	 1262
Envelopes, sound

loud and quiet in cliffhanger
Acorn 	 1243-1244

G
Games

Cavendish Field 	1254-1257
cliffhanger 	1240-1244
horoscope program 1245-1253
life 	 1237-1239

Generation counter,
in life game 	1237-1239

Graphics
in Cavendish Field game

1254-1256
sprites 	Commodore 64
moving and storing 1258-1263

H
Horoscope program 1245-1253

Interrupt request, definition

1263

L
Languages

LOGO
	

1264-1268
Life game 	1237-1239
LOGO
	

1264-1268

M
Machine code

games programming
see cliffhanger; life game

Memory
banks, range of

Commodore 64 	1258-1259
locations of VIC-II chip

Commodore 64 	1262
storing sprites in

Commodore 64 	1258-1260
Movement

of sprites
Commodore 64 	1262-1263

of sun in cliffhanger
Dragon, Tandy 	1244

P
Party game

see horoscope program
Patterns, of uni-cellular

organisms
in life game 	1237-1239

Pointers, sprite
Commodore 64 	1260-1261

POKE
use of to enable sprites

Commodore 64 	1261-1263
use of to store sprites

Commodore 64 	1259
Predictions, by horoscope

1245-1253
Primitives, definition 	1267
procedures, in LOGO 	1268

R
Raster interrupts

use of with sprites
Commodore 64 	1263

REPEAT command, in LOGO
1268

Robotics 1266
Rotating bits

Dragon, Tandy 	1244

S
Screen display

as two 'windows'
	

1257
Sound effects

in cliffhanger
Acorn
	

1242-1244
Sprites 	Commodore 64

moving and storing 1258-1263
Strategy in games

see Cavendish Field
SYNC

use of in cliffhanger
Dragon, Tandy 	1244

Text screen
setting up in Cavendish
Field game
	

1257
Turtle, use of
	

1266-1268

U
UDGs

use of in Cavendish Field
game 	 1254-1256

V
VIC-II chip 	Commodore 64

1258
memory locations of 	1262

Wargames
see Cavendish Field

Wind, programming in machine
code

Acorn, 	Commodore 	64,
Spectrum

1240-1244

The publishers accept no responsibility for unsolicited material sent for publication in INPUT. All tapes and
written material should be accompanied by a stamped, self-addressed envelope.

Get into some
advanced program-
ming techniques by
learning what's involved
in RECURSION. These
loops within loops can be
used to solve a variety of
otherwise intractable
problems

Use your micro to take the
hard work out offurniture mov-
ing, with a ROOM PLANNER
program that lets you make sure
that everything is going tofit

Continue building up your WAR GAME
with the routines that create the map and
allow the units to move around the field

_1 LANGUAGES continues by showing you
some of the more sophisticated
GRAPHICS available in LOGO

In CLIFFHANGER, program in the routine
that starts the ROCKS ROLLING DOWN

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36

