
A MARSHALL CAVENDISH 42 COMPUTER COURSE IN WEEKLY PARTS

LEARN PROGRAMMING - FOR FUN AND T4IE FUtURE

Vol. 4 	 No 42

GAMES PROGRAMMING 44

WARGAMING: THE ART OF COMMAND 1301

The game comes to life as you take charge of your army

APPLICATIONS 28

A COMPUTER INTERIOR DESIGNER-2 1308 Al
Complete your room planner program by adding these lines

GAMES PROGRAMMING 45

DESPERATE DECORATOR 	 1314

Simple to program, fun to play—start chasing the paint drips

LANGUAGES 3

LOGO: BEYOND THE DRAWING BOARD 1317

Explore LOGO's sprites, maths and word-handling

BASIC PROGRAMMING 85

UNDERSTAND THE OPERATING SYSTEM 1322

Find out what makes your machine tick

MACHINE CODE 44

CLIFFHANGER: ROCKY II 	 13281

The second part of the routine to rain boulders on Willie's head

INDEX
The last part of INPUT, Part 52, will contain a complete, cross-referenced index.
For easy access to your growing collection, a cumulative index to the contents
of each issue is contained on the inside back cover.

PICTURE CREDITS
Front Cover, Dave King. Page 257, Nick Farmer. Page 258, K.
Goebel/ZEFA/Hussein Hussein. Pages 260, 261, Ray Duns. Page 262, Tony
Stone/Hussein Hussein. Pages 264, 266, 267, Alan Baker. Pages 269, 270, 272, Dave
King. Pages 277, 279, Nick Farmer/Nick Mijnheer. Page 283, Digital Arts. Pages
284, 286, 288, Peter Bentley.

© Marshall Cavendish Limited 1984/5/6
All worldwide rights reserved*

The contents of this publication including software, codes, listings,
graphics, illustrations and text are the exclusive property and copyright of
Marshall Cavendish Limited and may not be copied, reproduced,
transmitted, hired, lent, distributed, stored or modified in any form
whatsoever without the prior approval of the Copyright holder.

Published by Marshall Cavendish Partworks Ltd, 58 Old Compton Street, London WIV 5PA,
England. Typeset by MS Filmsetting Limited, Frome, Somerset. Printed by Cooper Clegg
Web Offset Ltd, Gloucester and Howard Hunt Litho, London.

HOW TO ORDER
YOUR BINDERS
UK and Republic of Ireland:
Send £4.95 (inc p & p) (1120.95) for
each binder to the address below:

Marshall Cavendish Services Ltd,
Department 980, Newtown Road,
Hove, Sussex BN3 7DN

Australia: See inserts for details, or
write to INPUT, Times Consultants,
PO Box 213, Alexandria, NSW 2015

New Zealand: See inserts for details, or
write to INPUT, Gordon and Gotch
(NZ) Ltd, PO Box 1595, Wellington
Malta: Binders are available from local
newsagents.

There are four binders each holding 13 issues.

BACK NUMBERS
Back numbers are supplied at the regular cover price (subject to availability).

UK and Republic of Ireland:
INPUT, Dept AN, Marshall Cavendish Services,
Newtown Road, Hove BN3 7DN

Australia, New Zealand and Malta:
Back numbers are available through your local newsagent.

COPIES BY POST
Our Subscription Department can supply copies to any UK address regularly at £1.00 each.
For example the cost of 26 issues is £26.00; for any other quantity simply multiply the number
of issues required by £1.00. Send your order, with payment to:

Subscription Department, Marshall Cavendish Services Ltd,
Newtown Road, Hove, Sussex BN3 7DN

Please state the title of the publication and the part from which you wish to start.

HOW TO PAY: Readers in UK and Republic of Ireland: All cheques or postal orders
for binders, back numbers and copies by post should be made payable to:

Marshall Cavendish Partworks Ltd.

QUERIES: When writing in, please give the make and model of your computer, as
well as the Part No., page and line where the program is rejected or where it does
not work. We can only answer specific queries — and please do not telephone. Send
your queries to INPUT Queries, Marshall Cavendish Partworks Ltd, 58 Old
Compton Street, London WIV SPA.

INPUT IS SPECIALLY DESIGNED FOR:
The SINCLAIR ZX SPECTRUM (16K, 48K,128 and +),
COMMODORE 64 and 128, ACORN ELECTRON, BBC B
and B+,and the DRAGON 32 and 64.

In addition, many of the programs and explanations are also
suitable for the SINCLAIR ZX81, COMMODORE VIC 20, and
TANDY COLOUR COMPUTER in 32K with extended BASIC.
Programs and text which are specifically for particular machines
are indicated by the following symbols:

SPECTRUM 16K,
4811,128, and + 	I COMMODORE 64 and 128

El ACORN ELECTRON,
BBC B and B+ ICI DRAGON 32 and 64

TANDY TRS80
7181 	VIC 20 IT COLOUR COMPUTER

INITIALIZATION
GIVING ORDERS

MOVING AND DIRECTIONS
STATUS

THE COMPUTER'S MOVE

Instil some discipline into the unruly
rabble and stop them milling about
the battlefield. Issue orders with
these new routines and put your
masterplan into action

Now you have the routines which will place
your armies on the battlefield and you have
added the movement routine, you will want to
be able to issue commands to your army.

There are a number of factors connected
with your troops which will affect the way
they perform on the battlefield:
• Factor one, the unit's current order (what
you told them to do last time)
• Factor two, the direction of current
movement
• Factor three, weaponry
• Factor four, armour
• Factor five, initial strength
• Factor six, current strength
• Factor seven, morale or attitude
• Factor eight, position
• Factor nine, terrain

These factors correspond to the nine elements
in the troop array that you set up last time.
Position and terrain have already been filled,
in connection with the movement routine,
and in this article you will fill in the other
elements.

At the start of the game initial values will
have to be fed into the troop array. Weaponry
and armour values will be fixed. Morale will
be roughly the same each time, but may well
vary slightly—peasants are probably not
going to be very keen on fighting, whereas
knights, having to keep up appearances, are
never cowardly. Strength could vary quite
considerably from game to game. Orders and
direction could be set to arbitrary values at the
start, but in Cavendish Field, everyone starts
from Halt, meaning that direction is
unimportant.

The following routines set up the troop
array either by reading in appropriate data, or
performing a calculation, or both. In fact,
once you have the program working at the end
of part four, you may wish to try experiment-
ing with different ways of setting up these
initial values.

VISITING THE QUARTERMASTER
This routine initializes the unfilled array
elements:

190 REM Initialization
200 LET vc= 0: LET de =0
310 REM
320 PAPER 7
330 INK 0
340 CLS
360 DIM t$(8,12): DIM o$(5,12): DIM

w$(5,9): DIM m$(5,12): DIM a$(4,12):
DIMr$(4,12):DIMc(8)

380 FOR i=1 T0 5: READ o$(i),
w$(i),m$(i): NEXT i

390 F0R i=1 T0 8: READ t$(i): NEXT i
400 FOR i=1 T0 4: READ a$(i),

r$(i): NEXT i
410 LET u$=CHR$148+ -CHR$149+CHR$

150 +CHR$150 +CHR$151+CHR$151+
CH R$152 + CHR$152:LET u$ = u$ + u$

415 LET x$="NnYy"
420 RETURN
2760 DATA "fire","none","cowardly","halt",

"bow"," unwilling"

2770 DATA "move","sword","willing",
"status","axe","brave"

2780 DATA "rout","lance","valiant"
2790 DATA "knights","sergeants","men-at-

arms","men-at-arms","archers","archers",
"peasants","peasants"

2800 DATA "none","plains","jerkin",
"village","chainmail","woods","plate",
"hills"

2810 DATA 5,4,3,5,3,3,4,3,2,3,3,1,2,2,1,2,3,2,
3,2,0,3,1,0

190 REM INITIALIZATION
195 DEF FNR(X)= INT(RND(1)*X) +1
200 VC = 0:DE =0
210 P0KE53281,5
220 PRINT CHR$(144)
340 PRINT "0"
360 DIM T$(7),0$(4),W$(4),M$(4),A$(3),

R$(3)
380 F0R 1= 0 T04:READ 0$(1),W$(1),M$(1):

NEXT I
390 F0R 1=0 T07:READ T$(I):NEXT I
400 F0R 1=0 T03:READ A$(1),R$(1):NEXT I
415 W$="NNYY"
420 RETURN

2870 DATA FIRE,NONE,COWARDLY,HALT,
B0W,UNWILLING

2880 DATA M0VE,SW0RD,WILLING,STATUS,
AXE,BRAVE

2890 DATA ROUT,LANCE,VALIANT
2900 DATA KNIGHTS,SERGEANTS,MEN-AT-

ARMS,MEN-AT-ARMS,ARCHERS,ARCHERS
2910 DATA PEASANTS,PEASANTS
2920 DATA NONE,PLAINS,JERKIN,VILLAGE,

CHAINMAIL,WO0DS,PLATE,HILLS
2930 DATA 4,3,3,4,2,3,3,2,2,2,2,1,1,1,1,1,2,2,

2,1,0,2,0,0

190 DEF PROCinit
200 vic= FALSE:def = FALSE
360 DIM type$(7),order$(4),wpn$(4),mor$(4),

arm$(3),ter$(3)
380 F0R i=0T04:READ order$(i),wpn$(i),

mor$(i):NEXT
390 FORi=0T07:READ type$(i):NEXT
400 F0Ri=0T03:READ arm$(i),ter$(i):NEXT
420 ENDPR0C
2570 DATA fire,none,cowardly,halt,bow,

unwilling,move,sword,willing,status,axe,
brave,rout,lance,valiant,knights,sergeants,
men-at-arms,men-at-arms,archers,archers,

peasants,peasants,none,plains,jerkin,village,
chainmail,woods,plate,hills

2620 DATA 4,3,3,4,2,3,3,2,2,2,2,1,1,1,1,1,2,2,
2,1,0,2,0,0

310 REM
330 COLOR 4,1
340 PCLS
360 DIM T$(8),0$(5),W$(5),M$(5),A$(4),

R$(4)
380 F0R J=1 TO 5:READ 0$(J),W$(J),

M$(J):NEXT J
390 F0R J=1 TO 8:READ T$(J):NEXT J
400 F0R J=1 TO 4:READ A$(J),R$(J): NEXT
415 X$="NnYy"
420 RETURN
2760 DATA FIRE,NONE,COWARDLY,HALT,

B0W,UNWILLING
2770 DATA MOVE,SWORD,WILLING,STATUS,

AXE,BRAVE
2780 DATA R0UT,LANCE,VALIANT
2790 DATA KNIGHTS,SERGEANTS,MEN AT

ARMS,MEN AT ARMS,ARCHERS,
ARCHERS,PEASANTS,PEASANTS

2800 DATA NONE,PLAINS,JERKIN,VILLAGE,
CHAINMAIL,WO0DS,PLATE,HILLS

2810 DATA 5,4,3,5,3,3,4,3,2,3,3,1,2,2,1,2,3,2,
3,2,0,3,1,0

Initial values are READ from the DATA lines,
along with words which are equivalent to the
various numeric values fed into the array. The
words will be used in the text window to
display the status of the battle clearly.

GIVING ORDERS
The whole game hinges on the player giving
orders to the army—without this there would
be no combat, and no winning or losing.

There are four orders you can give to your
troops: Fire, Halt, Move and Status. The
order to fire only applies to the archers, and
they will fire on request even if there is no
target around.

Giving orders to units has its own trade-
offs. The more realistic the game, the more
complex the giving of orders. The simpler the
game, the easier it is to give orders. One result
of this is that a realistic game will be very
much more difficult to play; and if you wish to
have a game that's easy to play, you'll have to
make sacrifices in terms of nearness to reality.
After you have written some wargames you'll
probably formulate your own ideas on the
best compromise.

The routine in Cavendish Field goes
through each of the player's units in turn,
identifying the unit to which orders can be
given by changing its colour on the display. It
also prints a message which asks if the
standing orders for that unit (number x) are to
be changed—the units continue doing whate-
ver they were instructed by the last order
issued to them until the player changes the
order. If the player doesn't want to change the
orders to that unit, all that needs to be done is
to press the N key. If Y is pressed, then a
menu of the four possible commands is given.

If Fire is selected, and the unit isn't
archers, then another order is requested. Halt
is self-explanatory. Move asks for a direction
to be input. No check is made at this stage if a
move is possible, so you may wish to modify
the game so that no move option is displayed
if no move is possible—but remember, add-
ing input checks slows the game down. Status
responds with a description of the current
state of the unit.

SELECTING A UNIT
When it is the player's turn, the first unit is
highlighted, followed by the other seven in
turn. The unit which changes colour is the
unit which the player must consider—should
the orders be changed? As the unit is high-
lighted, prompts appear in the text window,
along with the current orders.

1380 REM Select unit for orders
1390 GOSUB 2540
1400 INK 0
1410 PRINT FLASH1;AT T(i,8),T(i,9);u$(i)
1420 PRINT AT 17,0;"Unit number ❑ ";i;" ❑ ";

t$(1);" ❑❑❑❑❑❑ "
1430 PRINT AT 18,0;"Current orders are

to ";o$(T(i,1));"111";
1440 IF T(i,1) = 3 THEN PRINT AT

18,284(T(i,2))
1450 REM Dummy for repeat loop
1460 PRINT AT 19,0;"Do you want to change

orders (Y/N)?"
1465 LET y=0: LET y$=1NKEY$
1466 IF y$="" THEN GOTO 1465
1470 FOR k =1 TO 4
1475 IF x$(k)=y$ THEN LET y =k
1480 NEXT k
1490 IF y=0 THEN GOTO 1450
1500 RETURN

1380 REM SELECT UNIT FOR ORDERS
1390 GOSUB 2540
1400 CL=6
1410 P=T(1,7):Q=T(1,8):GH=VAL(MID$

(U$,I + 1,1)) + 67:GOSUB2600
1420 PRINT "UNIT NUMBER ❑ ";1+1;" ❑ ";

T$(1)
1430 PRINT "CURRENT ORDERS: ❑ ";0$

(T(1,0));" ❑ ";
1440 IF T(I,0) =2 THEN PRINT

MID$(I$,T(1,1),1)
1445 PRINT" El"
1450 PRINT"DO YOU WANT TO CHANGE

ORDERS? (Y/N)"
1460 REM DUMMY FOR LOOP
1465 Y$="":GETY$
1470 FOR K=1 T04
1475 IF MID$(W$,K,1)=Y$ THEN Y=K
1480 NEXT K
1490 IF Y=0 THEN 1460
1500 RETURN

LI
1380 DEF PROCunitsel
1390 PROCclean
1400 COLOUR 0
1410 PRINT TAB(T%(i,7) +1,T%(i,8) + 1);

MID$(unst$,i + 1,1)
1420 PRINT TAB(2,23);"Unit numberill";i +1;

"111";type$(1);"111111111E1
1430 PRINT TAB(2,24);"Current orders: I11";

order$(T%(i 3 0));" El";
1440 IF T%(i 30) = 2 THEN PRINT

MID$(dir$,T%(i,1),1)
1450 REPEAT
1460 PRINT TAB(2,25);"Change orders (Y/N)?"
1470 yn$=GET$

1480 yn = INSTR("NnYy",yn$)
1490 UNTIL yn
1500 ENDPROC

fgln
1380 REM SELECT UNIT F0R ORDERS
1390 GOSUB 2540
1400 COLOR 4
1410 DRAW"BM"+STR$(T(1,9)*8)+","+

STR$(T(1,8) * 8):UU=VAL(MID$(U$,I,1)):
A$=UC$(UU):GOSUB 3030

1420 DRAW"BM0,144":A$= "UNIT "+
STR$(1)+" ❑ "+T$(1)+" ❑ ❑ ❑ ❑ ❑
❑ ❑ ":GOSUB 3190

1430 DRAW"BM0,152":A$ = "ORDERS ARE
TOE ❑ ❑ "+ 0$(T(1,1))+"111":
GOSUB 3190

1440 IF T(I,1) =3 THEN DRAW"BM160,152":
A$= MID$(I$,T(1,2),1):GOSUB 3190

1450 REM
1460 DRAW"BM0,160":A$="CHANGE

ORDERS ❑ ❑ Y OR N":GOSUB 3190
1465 Y=0:Y$=INKEY$
1466 IF Y$="" THEN 1465
1470 Y =INSTR(1,X$,Y$)
1490 IF Y=0 THEN 1450
1500 RETURN
3000 X9= PEEK(200):Y9= PEEK(202):LINE

(X9,Y9) - (X9 +7,Y9+7),PRESET,BF
3010 POKE 200,X9: POKE 202,Y9:DRAW A$
3020 RETURN
3030 X9 = PEEK(200):Y9 = PEEK(202):

C9 = PEEK(178):COLOR 2:LINE(X9,Y9) -
 (X9+7,Y9+7),PSET,BF

3040 POKE 178,C9:GOTO 3010
3050 REM DATA FOR LETTERS & DIGITS
3060 DATA BR4,BDD5RU3NR2U2ERFND5BR4

BU,D6R3EUHEUHBR5,NR5D6R5BR3BU6,
NR3D6R3EU4BUBR4,NR5D3NR3D3R5BR3
BU6,NR5D3NR3D3BR8BU6,NR5D6R5U2
BU4BR3

3070 DATA ND6D3R5D3U6BR3,R5L2D6L3R5
BR3BU6,BD5RFREU5L2BR6,ND6D3R3FD2
BU4U2BR4,D6R5BR3BU6,ND6DR5ND5
UBR3,ND6DR2D3R3D2U6BR3

3080 DATA D6R5U6NL5BR3,D6U3R5U3NL5
BR3,D6UR3FRBU2U4NL5BR3,D6U2R3FDU
BU2NL2U3NL4BR4,NR5D3R5D3NL5BU6
BR3,R5L2ND6BR5,D6R5U6BR3

3090 DATA D4RFDRUEU4BR4,D6UR5DU6
BR3,D2RFGND2ERFND2HEU2BR4,D2RFD3
RU3EU2BR4,R4D2GLGD2R4BU6BR3

3100 DATA BR3LGD4FREU4BR4BU,BR2DNL2
D5L2R5BU6BR3,BDRERFDGL2D3R4BU6
BR3,BDRERFDGFDGLHLBU5BR8,D4R5UD3
BU6BR3,NR5D2R3FD2GLHLBU5BR8,BDB
R5LHLGD2NR2D2FREUBU4BR4

3110 DATA R5D2LGLGD2BR7BU6,BR3LGDF
GDFREUHEUBUBR4,BR3LGDFR2D2GLHL
BU2BR4U2BUBR4

3120 REM SET UP CHARACTER ARRAYS

3130 DIM LE$(26)
3140 FOR K9=0 TO 26:READ LE$(K9):NEXT
3150 FOR K9=0 TO 9:READ NU$(K9):NEXT
3170 RETURN
3180 REM ROUTINE TO PRINT A$
3190 FOR K9=1 TO LEN(A$)
3200 B$=MID$(A$,K9,1)
3210 IF B$> ="0" AND B$< ="9" THEN

DRAW NU$(VAL(B$)):GOTO 3240
3220 IF B$=" El" THEN N9=0 ELSE

N9= ASC(B$) - 64
3230 DRAW LE$(N9)
3240 NEXT
3250 RETURN

The text window displays the current orders
to that unit, and it changes colour on screen.
The player is then asked DO YOU WANT
TO CHANGE ORDERS (YEN)?

The Dragon/Tandy program has ad-
ditional lines (from 3000 to 3250) for drawing
letters and numbers on the high resolution
graphics screen.

ISSUING ORDERS
This routine displays the order options if the
player wishes to change the orders given to a
particular unit.

1900 REM Select Action
1910 GOSUB 2540
1920 PRINT AT 18,0;"Options are:"
1930 FOR j =1 TO 4
1940 PRINT AT 17 + j,8; o$(j,1);

" - '';o$(j)
1950 NEXT j
1960 REM Dummy for loop
1962 LET a = 0
1965 LET f$="FfHhMmSs"
1970 LET g$=INKEY$: IF g$=`"' THEN

GOTO 1970
1975 FOR k=1 TO 8
1980 IF f$(k)=g$ THEN LET a = INT

((k + 1)/2)
1985 NEXT k
1990 IF a < =0 THEN GOTO 1960
2000 IF i< >6 AND i< >5 AND a=1

THEN GOSUB 2540: PRINT AT 18,8;"No
bows" : GOSUB 2410: GOTO 1910

2010 IF a=4 THEN GOSUB 2440: RETURN
2020 LET T(i,1) = a
2030 IF a=3 THEN GOSUB 2050
2040 RETURN

1900 REM SELECT ACTION
1910 GOSUB 2540
1920 PRINT "OPTIONS ARE: El"
1930 FOR J = 0 TO 3
1940 PRINT LEFT$(0$(.1),1);"E - El"; 0$(J)

1950 NEXT J
1960 REM DUMMY FOR LOOP
1965 F$="FHMS"
1970 GET G$:IF G$="" THEN 1970
1973 A= -2
1975 FOR K=1 T0 4
1980 IF MID$(F$,K,1)=G$ THEN A=K-1
1985 NEXT K
1990 IF A< = -1 THEN 1960
2000 IF 1< >4 AND 1< >5 AND A=0

THENGOSUB2540:PRINT "NO BOWS":
GOSUB2410:GOTO 1910

2010 IF A=3 THEN GOSUB 2440:RETURN
2020 T(I,0) = A
2030 IF A=2 THEN GOSUB 2050
2040 RETURN

1900 DEF PROCactsel
1910 PROCclean
1920 PRINT TAB(2,23);"Options are:"
1930 FOR j=0T03
1940 PRINT TAB(12,24+j); LEFT$(order$(j),

I);"O - 111";order$(j)
1950 NEXT
1960 REPEAT
1970 g$= GET$
1980 A%= (INSTR("FfHhMmSs",

g$) +1) DIV 2-1
1990 UNTIL A%> -1
2000 IF i< >4 AND i< >5 AND A%=0

THEN PRINT"No bows":GOT0 1920
2010 IFA%= 3 THEN PROCstat: ENDPROC
2020 T%(i 3 0) = A%
2030 IF A%=2 THEN PROCww
2040 ENDPROC

1900 REM SELECT ACTION
1910 GOSUB 2540
1920 DRAW"BM0,152":A$="OPTIONS ❑ ❑

❑ ❑ ":GOSUB 3190
1930 FOR J=1 TO 4
1940 DRAW"BM104," +STR$(144 +J*8):

A$ = LEFT$(0$(J),1) + "D El" + 0$(J):
GOSUB 3190

1950 NEXT J
1960 REM
1962 A= 0
1965 F$="FHMS"
1970 G$=INKEY$:IF G$="" THEN 1970
1980 A= INSTR(1,F$,G$)
1990 IF A< =0 THEN 1960
2000 IF I < >6 AND I < > 5 AND A=1

THEN GOSUB 2540:DRAW"BM64,152":
A$= "NO BOWS":GOSUB 3190:
GOSUB 2410:GOTO 1910

2010 IF A=4 THEN GOSUB 2440: RETURN
2020 T(I,1) = A
2030 IF A=3 THEN GOSUB 2050
2040 RETURN

Lines 1920 to 1950 display the four options.
Lines 1965 to 1985 read the keyboard, and set
A (or a) equal to the order number-0 is Fire,
1 is Halt, 2 is Move and 3 is Status.

The Fire option will be dealt with in the
next part of Cavendish Field. The Move and
Status options will be dealt with below. There
is no routine for Halt, because the Move
routine is simply by-passed. The direction
element in the troop array is not reset because,
as you will see later, it is used in the hand-to-
hand combat routine.

Line 2020 feeds the value of A into the
troop array. The order number is placed in
the first element of the array.

A NEW DIRECTION
If the player issues an order to move, a
direction must be given also. This routine
handles the movement options.

a
2050 REM Decide Movement Direction
2055 GOSUB 2540
2060 PRINT AT 17,0;"Which way (NSEW)?"
2065 LET g =0
2070 REM Dummy for loop
2080 LET g$=1NKEY$: IF g$="" THEN

G0TO 2080
2090 IF CODE (g$) > 90 THEN LET

g$=CHR$ (CODE (g$) —32)
2095 FOR k =1 TO 4
2100 IF i$(k)=g$ THEN LET g = k
2105 NEXT k
2110 IF g = 0 THEN GOTO 2070
2120 LET T(i,2)=g
2130 RETURN

2050 REM DECIDE MOVEMENT DIRECTION

2055 GOSUB2540
2060 PRINT "WHICH WAY? (NSEW)"
2065 G=0
2070 REM DUMMY FOR REPEAT LOOP
2080 GET G$:IFG$=""THEN 2080
2090 IF ASC(G$) >90 THEN

G$= CHR$(ASC(G$) —32)
2095 FOR K=1 TO 4
2100 IF MID$(I$,K,1)=G$ THEN G = K
2105 NEXT K
2110 IF G=0 THEN 2070
2120 T(I,1) = G
2130 RETURN

2050 DEF PROCww
2060 PRINT"Which way (NSEW)?"
2070 REPEAT
2080 g$= GET$
2090 IF ASC(g$) >90 THEN

g$=CHR$(ASC(g$) -32)
2100 g=INSTR(dir$4)
2110 UNTIL g
2120 T%(i,1)=g
2130 ENDPROC

2050 REM DECIDE MOVEMENT DIRECTION
2055 GOSUB 2540
2060 DRAW"BM0,144":A$ = "WHICH WAY

❑ ❑ N ❑ S ❑ E ❑ W":GOSUB 3190
2065 G
2070 REM
2080 G$=INKEY$:IF G$="" THEN 2080
2100 G =INSTR(1,1$,G$)
2110 IF G< =0 THEN 2070
2120 T(I,2) = G
2130 RETURN
The routine checks that the letter input by the
player is either N, S, E or W. If it is, then Line
2120 feeds the move direction code into the
second element of the troop array.

STATUS
If you want to find out the status of any key
unit while planning the big push, you can
select the Status option.

2440 REM Unit status
2450 GOSUB 2540
2460 PRINT AT 17,0;"UNIT ❑ ";i;" ❑ ❑ ❑ ❑

Type:111";1(i)
2470 PRINT AT 18,0;"Weapon:111";4(T(i,3))
2480 PRINT AT 18,15;"Armour:111";a$(1 - (i,4))
2490 PRINT AT 19,0;"Strength:111";7(i,7)
2500 PRINT AT 19,14;"Attitude:";m$(1 - (i,5))
2510 PRINT AT 20,0;"Location: 0";r$

(m(T(i,8),T(i,9)) + 1)
2520 GOSUB 2410
2530 RETURN

2440 REM STATUS OF UNIT
2450 GOSUB 2540
2460 PRINT"UNIT ❑ ";1+1;

"E TYPE: ❑ ";T$(I)
2470 PRINT "WEAPON: 0";W$(T(1,2));

"000 0 0 OARMOUR:C1";A$
(T(I,3))

2480 PRINT "STRENGTH: ❑ ";T(1,6)
2500 PRINT "LOCATION:0";R$(M(T(1,7),

T(1,8)));"0 ❑ ❑ ATTITUDE: 0";
M$(T(1,4))

2520 GOSUB 2410
2530 RETURN

2440 DEF PROCstat
2450 PROCclean
2460 PRINTTAB(2,23); "Unit0"; i +1;

"DE1171171 Type: ❑ "; type$(i)
2470 PRINTTAB(2,24); "Weapon: El"; wpn$

(T%(i,2))
2480 PRINTTAB(2,25); "Armour: 111"; arm$

(T%(i,3))
2490 PRINTTAB(2,26); "Current strength: ❑ ";

T%(i,6)
2500 PRINTTAB(2,27); "Located in ❑ "; ter$

(FNmread (T% (i,7), T%(i,8)))
2510 PRINTTAB(2,28); "Attitude is ❑ "; mor$

(T%(i,4))
2520 PROCpause
2530 ENDPROC

2440 REM UNIT STATUS
2450 GOSUB 2540
2460 DRAW"BM0,144":A$ = "UNIT" + STR$

(I)+" ❑ OD ❑ TYPE ❑ "+T$(1):
GOSUB 3190

2470 DRAW"BM0,152":A$ = "WEAPON
O " + W$(T(1,3)):GOSUB 3190

2480 DRAW"BM120,152":A$ = "ARMOUR
O " + A$(T(1,4)):GOSUB 3190

2490 DRAW"BM0,160":A$=
"STRENGTH" + STR$(T(1,7)):GOSUB 3190

2500 DRAW"BM120,160":A$ = "ATTITUDE
❑ "+ M$(T(1,5)):GOSUB 3190

2510 DRAW"BM0,168":A$ = "LOCATION
111"+ R$(M(T(1,8),T(1,9)) +1):
GOSUB 3190

2520 GOSUB 2410
2530 RETURN
All the elements in the troop array (or their
equivalents in words) are displayed.

THE EFFECT OF ORDERS
The routine tells the player if a particular unit
is complying with the order.

1020 REM Effect of orders
1030 FOR i =1 TO 16
1032 IF t(i,1) > 3 THEN GOTO 1140
1035 INK 0: GOSUB 2540: PRINT AT

17,0;"Unit ❑ ";i;" ❑ decides to act"
1040 LET c1=1: IF i > 8 THEN LET c1=2: INK

cl
1050 IF T(i,1) = 3 THEN LET b=i: GOSUB

1160
1055 IF T(i,1) =2 THEN GOTO 1140
1060 IF T(i,1) =1 THEN LET sh = i: GOSUB

1710: GOTO 1140
1070 FOR f = -1 TO 1
1080 FOR g= -1 TO 1
1090 FOR e =1 TO 16
1100 IF (T(i,8)+f =T(e,8)) AND

(T(i,9) +g = T(e,9)) AND T(e,1) < >5
THEN LET us= i: LET th=e: GOSUB 1510

1110 NEXT e
1120 NEXT g

1130 NEXT f
1140 NEXT i
1150 RETURN

1020 REM EFFECT OF ORDERS
1030 FOR I= 0 T0 15
1032 IF T(I,0)>2 THEN 1140
1034 G0SUB2540:PRINT"UNIT ❑ ";1+1;" ❑

DECIDES TO ACT"
1040 CO=1:IF 1>7 THEN C0=9
1050 IF T(I,0) =2 THEN B = I:GOSUB 1160
1055 IF T(I,0) =1 THEN 1140
1060 IF T(1,0) =0 THEN SH = I:GOSUB 1710:

G0T0 1140
1070 FOR F= -1 T0 1
1080 FOR G = -1 TO 1
1090 FOR E= 0 T0 15
1100 IF(T(1,7) + F=T(E,7))AND(T(1,8) +

G =T(E,8))ANDT(E,0)< >4THEN US= I:
TH = E:GOSUB1510

1110 NEXT E
1120 NEXT G
1130 NEXT F
1140 NEXT 1
1150 RETURN

LI
1020 DEF PR0Ceffect
1030 F0R i = 0 T0 15
1031 COL0UR 0
1032 IF T%(i 3 0) > 2 THEN 1140
1035 PROCcIean:PRINT TAB(2,23);"Unit ❑ ";

i + 1;" ❑ decides to act"
1040 c1=(i111DIV 8) +1:C0L0URcl
1050 IF T%(i 3 0) = 2 THEN PR0Cmove(i)
1055 IF T%(i 3 0) =1 THEN G0T01140
1060 IF T%(i 3 0) = 0 THEN PR0Cfire(i):

G0T0 1140
1070 FORfig = -1T01
1080 FORgif = -1T01
1090 FORen=0T015
1100 IFT%(i,7) +fig =T%(en,7)AND T%

(i,8) + gif = T%(en,8) AND T%(en,
0) < >4 THENPR0Ccombat(i,en)

1110 NEXT:NEXT:NEXT
1140 NEXT
1150 ENDPR0C

1020 REM EFFECT 0F 0RDERS
1030 F0R 1=1 T0 16

1032 IF T(I,1)>3 THEN 1140
1035 C0L0R 4:G0SUB 2540:DRAW

"BM0,144":A$= "UNIT" + STR$(1)+
"DACTS":G0SUB 3190

1040 CL= 3: IF 1>8 THEN CL=4:C0L0R CL
1050 IF T(I,1) =3 THEN B=1:G0SUB 1160
1055 IF T(I,1)=2 THEN 1140
1060 IF T(I,1) =1 THEN SH = I:

G0SUB 1710:G0T0 1140
1070 FOR F= -1 T0 1
1080 F0R G= -1 T0 1
1090 FOR E =1 T0 16
1100 IF (T(I,8) + F=T(E,8)) AND (T(I,9) +

G = T(E,9)) AND T(E,1)< >5 THEN
US= I:TH = E:G0SUB 1510

1110 NEXT E,G,F
1140 NEXT I
1150 RETURN

The routine operates quite simply. It cycles
through each of the sixteen units and acts on
its order. It will only allow combat if a unit
has move orders, because that unit is then the
attacker. If it finds halt orders, it moves on to
the next unit, taking no action. If it finds fire
orders, it calls the missile routine. If it finds

move orders it calls the movement routine.
When movement has been carried out it

looks at each map square adjacent to the unit's
new position-Lines 1070 to 1150. If the
adjacent square is occupied by an enemy unit
the combat routine is called-you will see
how to enter this in the next part.

THE COMPUTER OPPONENT
The computer gives orders to its units in a
more or less random way. In the last part of
this series of articles you'll see how to give
your opponent some degree of intelligence,
but for the moment, this simplified routine
will give you a playable wargame.

2140 REM Enemy selects action
2150 LET T(e,2) =3
2160 LET T(e,1)=FN r(3)
2170 IF T(e,1) =1 AND T(e,3) < >2 THEN

G0TO 2160
2180 IF T(e,1) =3 THEN IF FN r(2) =1 THEN

LET T(e,2) = FN r(4)
2190 RETURN

2140 REM SELECT ENEMY ACTI0N
2150 T(E,1) = 3
2160 T(E,0) = FNR(3) -1
2170 IF T(E,0) = 0 AND T(E,2) < >1 THEN

2160
2180 IF T(E,0) = 2 THEN IF FNR(2)=1 THEN

T(E,1) = FNR (4 - 1)
2190 RETURN

1E1
2140 DEF PR0Censl
2150 T%(en,1) = 3
2160 T%(en,0) = RND (3) - 1
2170 IF T%(en,0) = 0 AND T%(en,2) < >1

THEN 2160
2180 IF T%(en,0) =2 THEN IF RND(2)=1

THEN T%(en,1) = RND(4) -1
2190 ENDPROC

2140 REM ENEMY SELECTS ACTI0N
2150 T(E,2) =3
2160 T(E,1) = RND(3)
2170 IF T(E,1)=1 AND T(E,3) < >2 THEN

2160
2180 IF T(E,1)=3 AND RND(2) =1 THEN

T(E,2) = RND(4)
2190 RETURN
The routine generates a random number in
Line 2160 which decides on the action to be
taken by each of the computer's units in turn.

If movement is selected, the movement
isn't completely random because the units
will tend to move south-see Line 2150.

Once you've drawn your room
outline, try your hand at designing a
few items of furniture then set
about perfecting your room plan
before saving the lot to tape or disk

This, the second and final part of the room
planner program, contains the remaining sec-
tion of the listing and instructions on how to
use the options available. The first three
options are described in detail in each
machine's section, the other four are
standard.

a
The various options are:
• Option one, design the room plan
• Option two, position furniture
• Option three, design your own furniture
• Option four, save the design
• Option five, load your design
• Option six, print out your design
• Option seven, exit program
The first question you are asked in option one
is the maximum dimension of the room (in
metres). Enter this information and press
IENTER I. To draw the room, press 'SPACE' if you
want to draw the walls—otherwise choose
(W)indow, (D)oor or (B)lank for any other
opening.

Once you've pressed the relevant key, you
are then asked for a direction and distance.
Key in this information and the questions will
be repeated. This is to allow you to enter a
diagonal line (by specifying so much up, so
much to the right, for instance). If the line is a
simple horizontal or vertical, you will already
have supplied enough information, so enter 0
to both these questions the second time they
are asked; for a diagonal enter a new direction
and distance. Continue until the room plan is
complete, then press Q to return to the main
menu. A few minutes' practice will show you
exactly how this works.

In option two, use 6 and 7 to move the
flashing arrow opposite the object you wish to
select. Press S and the object will appear in
the middle of the screen. You can then move it
left, down, up or right using keys 5, 6, 7 or 8.
To rotate the object, use A for anticlockwise
and C for clockwise.

To draw the items in option three, you use
the same procedure as the room plan, except
the object will not appear until all the dimen-
sions have been entered. The first question
you will be asked is the number of sides (1-15)
and then you are instructed to enter a two

letter identity code. You can then proceed to
draw the item.

Option four saves both the screen and the
data for the furniture. You can load in a saved
design using option five. The print option—
option six—will only work if you have a
Sinclair printer connected*

To use this program with the Commodore 64,
you need to have Simons' basic or the
INPUT Hi-Res Utility. If you have the
latter, you'll need to make a couple of alter-
ations to the listing* In Line 4, the 224
(printed in bold type) changes to 32 and in
Line 5, 225 changes to 63.

When you run the program, the main
menu will appear on the screen offering seven
options:
• Option one, design the room plan
• Option two, position furniture
• Option three, design your own furniture
• Option four, save the design
• Option five, load your design
• Option six, print out your design
• Option seven, exit program
If you press 1 to select the first option, you
will be asked for the length of the room in
metres; insert the largest dimension, then
press !RETURN I. You are then offered the
options of pressing different keys to select
what to draw. If you want to depict a wall,
press the space bar, otherwise choose
(W)indow, (D)oor, or (B)lank—which is for
any other type of opening.

Next, you will be asked for a direction and
distance. Insert this information, press
RETURN and the question will be repeated. If
you simply want a vertical or horizontal line
press the space bar. A diagonal line needs to
be specified in two directions (so much up, so
much to the right, for instance) so in this case
enter a second direction and distance*

In option two, use the Z, X, ; and / keys to
move the flashing asterisk to the item of
furniture you wish to select from the menu
and press S (for select). Use the same keys to
move the asterisk to the proposed site and
press P (for place). To adjust its position,
press A and Z, X, ; or / to move the item and L
to rotate it clockwise or K to rotate it

COMPLETE THE ROOM OUTLINE
DESIGN YOUR OWN FURNITURE

AND ROOM LAYOUT
SAVE YOUR DESIGNS
LOAD YOUR DESIGNS

PRINT YOUR DESIGNS
ROTATE YOUR FURNITURE

DELETE AND REDESIGN
SELECT A TIME

EXIT THE PROGRAM

anticlockwise. To end rotation, press A; you
can then straighten any objects with K or L.
When you are satisfied with the position of
the piece, press Q. To see the object you are
carrying press 1* Press E again to exit.

To design the furniture in option three,
you use the same technique used for drawing
the room. No item can be larger than two
metres or have more than 8 sides* You will be
asked to give your item a number and a two
letter code to identify it*

The remaining options allow you to save a
design, to save or load a stored program* If
you have a suitable screen dump program,
you can also print out your design. The final
option allows you to quit the program.

LI
When you run the program, the main menu
will appear showing the seven options:
• Option one, design the room plan
• Option two, position furniture
• Option three, design your own furniture
• Option four, save the design
• Option five, load your design
• Option six, print out your design
• Option seven, exit program
For the first option, press 1, and you will
be asked to enter the maximum length of the
room in metres. Key in this information and
press 'RETURN S. A dot which indicates the
starting point for the room plan will then
appear in the lower left hand corner of the
graphics window.

When you draw your room you can press
different keys and choose to insert a window
or door (W) or simply leave a blank space (B)*
If you want to draw a wall all you need to do is
enter a direction (U)p, (D)own, (R)ight or
(L)eft and a distance, so U4 (RETURN) will
give you a four metre wall drawn upwards on
the screen* To draw a diagonal you must enter
two directions and distances such as U4L4
IRETURNI*

If you make a mistake and want to clear the
room plan, press C. When you're satisfied
with your room plan press F. This will return
you to the main menu and you can then go on
to option two.

In option two, the room plan you have just
created will remain in the graphics window,
ready for you to position the furniture* While
you are offered a choice of ten items of
furniture, only five are predefined* (All of
these relate to the kitchen*) The remaining
five can be defined as you wish using option
three. The predefined items are located at the
bottom of the screen and you will need to
move them up into the room plan.

To do this, use the cursor keys to position
the flashing asterisk in the centre of the

chosen item and press S (for select). Now use
the same keys to move the asterisk to the point
in the room where you want to place the item
and press P (for place)*

Once the items are in position, you can
carry out final adjustments* Move the flashing
asterisk to the centre of an item, then press A.
You can now use the cursor keys to move the
furniture one way or the other* If you want to
rotate it, press L or K—or to delete it press
ICOPYI with the E key depressed. To fix the
item in its final position press ICOPYI. Press Q
to return to the main menu.

Although this is listed as the third option,
new items of furniture must be designed
before you design the room plan, since the
furniture planner uses the same graphics
space. If you should forget this, you can save
your room plan then load it back after
designing the furniture.

Each piece must first be given a file
number, and also identified by letter code so
that you can tell whether it is a cupboard or a
table, for instance. To define a new item,
enter two letters to define the item, for
example, type to for table* To design the
furniture you simply use the same method as
designing the room, except all measurements
must be entered in centimetres* No item can
be larger than two metres (200 cm) square, or
have more than eight sides*

The remaining options allow you to save a
design to a recorder, or load one back again* If
you have a suitable screen dump program you
can use this with option six to take a printout
of the design. And, finally, there is a quit
option*

1M1
When you run the program the main menu
will appear on the screen showing the seven
options:
• Option one, design the room plan
• Option two, position furniture
• Option three, design your own furniture
• Option four, save the design
• Option five, load your design
• Option six, print out your design
• Option seven, exit program
If you choose option one, you will be asked to
enter the maximum length of the room in
metres. This allows the computer to scale the
plan to fit the screen* To start drawing, press
the space bar for a black line, B for a blank
area, W for a window or 0 for a door* You will
then be asked for a direction and distance*

Once you have entered this information the
questions will be repeated* This is to allow
you to plot a diagonal line, by specifying so
much to the right, so much up, for instance.
You only need to enter a new direction and

distance if you want a diagonal, otherwise
press 'ENTER I. If you make a mistake, press C
to clear the plan and F to return to the menu.

With option two, a room plan drawn using
option one will remain on the screen, together
with a cross-shaped cursor. This can be
moved around pixel-by-pixel using the arrow
keys* Pressing ISHIFTI with the arrow keys will
make the cursor move quicker. When the
cursor is in the correct place, press P, and you
will be asked for the number of the item you
wanted sited there-0 = sink, 1= cooker,
2 = table, 3 = fridge and 4 = cupboard. You
are given a choice of numbers 0-9, but only
0-4 are pre-defined in this option, and the
remaining furniture can be defined as you
want using option three* To delete an object,
put the cross back on the corner and press D
followed by the number of the object* Make
sure you position the cross accurately, other-
wise the object will not be totally deleted.

You can rotate an item, by pressing R* You
will then be asked to enter a rotation angle
between 0 and 360* Once you've done this, all
the objects drawn will be at this angle until
you press R once again-0 is the default
setting. To return to the main menu press F.

Option three allows you to design your
own items, though they must not be more
than two metres deep or wide*

First of all you're asked the number of the
items, then you can design it in the same way
as designing the room* If you make a mistake,
press C to start again. Once you've finished,
press F to return to the main menu. All
distances in this option must be given in
centimetres.

The remaining options allow you to save a
design or load in one you have previously
recorded* If you have a suitable screen dump
program you can choose to make a printout,
too* There is also a quit option*

7010 INPUT "ENTER DIRECTION
(U,D,L,R)? ";D$

7020 INPUT "ENTER DISTANCE? ";D:
RETURN

7040 LET Z= CODE INKEY$: FOR K=1 TO
LEN K$: IF CODE (K$(K)) =Z THEN LET
K= LEN K$: GOTO 7060

7050 NEXT K: GOTO 7040
7060 NEXT K: RETURN
8000 DIM S(10): LET NF =0: LET

F$="000": LET MAX= 5: LET R = 0: LET
SC = 175/MAX: GOSUB 6060

8010 DIM 0(10,30): DIM O$(10,2)
8020 FOR N=1 TO 5: FOR K =1 TO 8: READ

0(N,K): NEXT K: NEXT N
8030 FOR N=1 TO 10: READ 0$(N): NEXT N
8032 FOR N = USR "A" TO USR "A" + 7:

READ A: POKE N,A: NEXT N
8035 FOR N=1 TO 10: READ S(N):NEXT N
8040 RETURN
8090 DATA .5,0,0,- .5,- .5,0,0,.5
8100 DATA .75,0,0, - .5,- .75,0,0,.5
8110 DATA .5,0,0, - .75,- .5,0,0,.75
8120 DATA .5,0,0, - .5, - .5,0,0,.5
8130 DATA .5,0,0, - .5,- .5,0,0,.5
8150 DATA "CU","CO","WA","Sl","FR",

"XX","XX","XX","XX","XX"
8160 DATA 16,32,64,255,64,32,16,0
8170 DATA 4,4,4,4,4,0,0,0,0,0

1730 GOSUB 30000
1740 OX=160:0Y=140:X=OX:Y=OY
1750 HIRES 3,6:CSET(0)
1770 PRINT "CIENTER THE NO OF THE ITEM

YOU WISH TO":INPUT "DEFINE";Z
1775 IF Z<6 OR Z>10 THEN 1770
1776 Z=27-1
1780 PRINT "gi ENTER A TWO LETTER CODE

FOR THE ITEM":INPUT H$((Z + 1)/2)
1790 PRINT "VENTER MAXIMUM LENGTH

OF ROOM":INPUT "(METRES)";LE
1795 IF LE <1 THEN PRINT "D":GOTO

1790
1800 CSET(2):TEXT 0,0,"LENGTH ❑ = ❑ 2 ❑

METRES0 0 0 0 0 WIDTH 0 = 020
METRES",1,1,8

1805 TEXT 35,10,"ENTER DISTANCES IN
CENTIMETRES",1,1,8

1806 TEXT 100,20"8 SIDES MAXIMUN",1,1,8
1810 SC =189/LE
1820 NS = .5
1830 G=1
1840 IF Y>0ANDY<199ANDX>0AND

X <319THENPLOTX,Y,1
1845 DE(Z,G) =0:DE(Z+ 1,G) = 0:G =G +1
1850 BLOCK 0,168,319,199,0
1880 PT=1
1940 GOSUB 780
1950 GX = X + NS*(NX(1) + NX(2)):

GY=Y+NS*(NY(1)+ NY(2))
1951 IFGX<0ORGX>319ORGY<0OR

GY > 1990RX < 00RX > 319ORY < 0OR
Y>199THEN1953

1952 LINE X,Y,GX,GY,PT
1953 X=X+NS"(NX(1)+ NX(2)):Y=Y +NS*

(NY(1) + NY(2))
1960 DE(Z,G)= (NX(1)+ NX(2))/100:DE

(Z+ 1,G) = (NY(1) + NY(2))/100:G = G + 1
1965 IFG > 9THEN2020
1980 BLOCK 0,168,319,199,0
1990 TEXT 0,168,"PRESS C TO CLEAR

EQUIPMENT",1,1,8
1992 TEXT 0,176,"OR F WHEN

FINISHED",1,1,8
1993 TEXT 0,184,"OR <SPACE> TO

CONTINUE",1,1,8
1994 GET C$:IF C$="" OR(C$< >"1=1"

ANDC$ < > "F"ANDC$ < >"C")
THEN 1994

2000 IF C$="C" THEN HIRES 3,6:F1=0:
NX(1) =0:NX(2)=0:NY(1)=0:NY(2) =0

2001 IF C$="C" THEN FOR F=1 TO 9:DE
(Z,T) = 0:DE(Z +1,T) = 0:NEXT F:G =1:
GOTO 1800

2010 IF C$--- "0" THEN 1850
2020 GOSUB 30010:RETURN
2100 GOSUB 30000:CSET(0)
2105 NM$="":1NPUT "RENTER NAME TO

SAVEPJ";NM$:IF NM$="" THEN
CSET(2):RETURN

2110 GOSUB 20000:POKE 24432,LEN(NM$):
POKE 24388,DV

2120 FOR Z=1 TO LEN(NM$):POKE
24432 +Z,ASC(MID$(NM$,Z,1)):NEXT Z

2130 SYS 24379:CSET(2):RETURN
2190 CSET(0)-NM$=""
2195 INPUT "DENIER NAME TO

LOADH";NMVFNM$=""THEN
CSET(2):RETURN

2200 GOSUB 20000:LOAD NM$,DV,1:END
2290 COPY:RETURN
10000 POKE 198,0:WAIT 198,1:PRINT

"D":CSET(0):C$=""
10005 INPUT C$:CSET(2):RETURN
20000 INPUT "D(T)APE OR (D)ISKM";IN$
20010 IF IN$="D" THEN DV= 8:RETURN
20020 IF IN$ ="T" THEN DV=1:RETURN
20030 GOTO 20000
30000 POKE 24346,251:POKE 24348,253:SYS

24320:RETURN
30010 POKE 24346,253:POKE 24348,251:SYS

24320:RETURN
30020 POKE 198,0:WAIT 198,1:POKE

198,0:RETURN

1310 DEF PROCselect
1320 i = 0
1330 FOR J=1 TO 30
1340 IF ABS(take(1)-put(J,1))< =0.25*

scale AND ABS(take(2) - put(J,2)) < =
0.25*scale THEN i=put(J,3):J=30:GOTO
1360

1345 NEXT
1350 FOR J=1 TO 10:IF ABS(take

(1)-32-J*110)< =40 AND ABS
(take(2) -100) < =30 THEN i =J:J =10

1360 NEXT:IF i< >0 THEN SOUND1, -15,
128,5

1370 ENDPROC
1380 DEF PROCputdown
1390 VDU 7
1400 PROCplace(take(1),take(2),i)
1410 J=0
1420 REPEAT
1430 J=J+1
1440 UNTIL put(J,3) =0 OR J=30
1450 put(J,1)=take(1):put(J,2)=take(2):put

(J,3) = i:put(J,4) = phi:i =0
1460 ENDPROC
1470 DEF PROCplace(e,f,g)
1480 MOVE e-0.2 * scale,f:VDU 5:

PRINTh$(g):VDU 4:MOVEe,f:g =g*2 -1
1490 PLOT0,def(g,1)%-def(g +1,1)*s,def

(g,1) * s + def(g + 1,1)%
1495 FOR TG =2 TO 9
1500 PLOT9,def(g,TG)*c-def(g+1,TG)*s,def

(g,TG) * s+def(g+1,TG)*c
1510 NEXT
1520 ENDPROC
1530 DEF PROCadjustment
1540 FOR H=1 TO 30
1550 IF ABS(take(1) - put(H,1)) < = 0.25*

scale AND ABS(take(2)-put(H,2))< =
0.25*scale THEN j=put(H,3):ax=put(H,1):
ay = put(H,2):phi = put(H,4):h = H:H = 31

1560 NEXT:IF H < >32 THEN ENDPROC
1570 c=scale*COS(phi):s=scale*SIN(phi)
1580 REPEAT
1590 PROCplace(ax,ay,j)
1600 IFINKEY(-26) ax = ax - 8
1610 IF INKEY(-122) ax=ax +8
1620 IF INKEY(-58) ay =ay +8
1630 IF INKEY(- 42) ay = ay - 8
1640 IF INKEY(-71) phi = phi+ RAD(5)
1650 IF INKEY(-87) phi = phi - RAD(5)
1660 IF INKEY(-35) GCOL3,0:flag2 =1

ELSE GCOL3,1
1670 c=scale*COS(phi):s=scale*SIN(phi)
1680 PROCplace(ax,ay,j)
1690 UNTIL INKEY(-106)
1700 IF flag2 =0 THEN put(h,1)=ax:put

(h,2)=ay:put(h,3)=j:put(h,4)=phiDELSE
FOR TG =1 TO 4:put(h,TG) =0:NEXT

1710 phi = 0:c =scale:s= 0:flag2 =0
1720 ENDPROC
1730 DEF PROCownequipment
1740 CLS:CLG
1750 INPUT"Enter the number of the item you

want to define",Z:IF Z<1 OR Z>10
THEN PRINT"Re-";:GOTO 1750

1760 INPUT"Enter a two letter I.D. for the
item"h$(Z):h$(Z) = LEFT$(h$(Z),2)

1770 put(Z,3) = Z:Z = Z"2 -1
1780 CLS:INPUT"Enter maximum length of

room in METRES"length
1790 VDU5:MOVE300,1023:PRINT"LENGTH

AND WIDTH = 2 METRES":VDU 4
1800 scale = 790/length
1810 nscale = 790/200
1820 G =1
1830 PROClines(2)
1840 CLS:CLG:ENDPROC
2100 DEF PROCsave
2105 PROCpoint(take(1),take(2))
2110 CLS
2120 VDU 28,0,31,39,28
2130 PRINTTAB(5,31)"FILE NAME WILL BE

SCREEN"

The seven options for designing your own furni-
ture are shown at the bottom of the screen

Designing a fitted kitchen takes only a few minutes
once you are familiar with the program

2140 VDU 7
2145 !&7881 =scale
2150 *SAVE"SCREEN"5800 ❑ 7890
2160 CLS
2180 ENDPROC
2190 DEF PROCIoad
2200 CLS:CLG
2210 VDU 28,0,31,39,28
2220 VDU 7
2230 *LOAD"SCREEN"
2235 scale = !&7881
2240 CLS
2260 ENDPROC
2270 DEF PROCprint
2280 CLS
2285 VDU26
2290 REM ADD SCREEN DUMP
2295 VDU 24;0;199;1279;1023;28,0,31,39,28
2300 PRINT TAB (5,29) "PRESS ANY KEY

TO RETURN TO MAIN MENU";: M$=
GET$

2310 CLS
2330 ENDPROC

1
1210 OX= X:OY=Y
1220 IF 1$= CHR$(8) AND X>0 THEN X=

X — 1
1230 IF 1$= CHR$(9) AND X<185 THEN

X =X + 1
1240 IF 1$= CHR$(94) AND Y>0 THEN Y=

Y — 1
1250 IF 1$= CHR$(10) AND Y<185 THEN

Y=Y + 1
1260 IF 1$= CHR$(21) AND X>7 THEN X=

X-8

1270 IF I$=CHR$(93) AND X<177 THEN
X= X + 8

1280 IF 1$ = CHR$(95) AND Y>7 THEN Y=
Y — 8

1290 IF 1$ =CHR$(91) AND Y<177 THEN
Y=Y+ 8

1300 PUT(OX — 3,0Y— 3) — (0X+ 3,0Y + 3),
S,PSET

1310 IF 1$ ="P" THEN 1360
1320 IF 1$ ="D" THEN 1430
1330 IF 1$ ="R" THEN 1500
1340 IF 1$ ="F" THEN FORK =1T04:

PCOPYKEITOK+4:NEXT:GOT090
1350 GOTO 1160
1360 SOUND 190,1
1370 COLOR0:GOSUB 340
1380 1$ =1NKEY$:IF I$<"0" OR I$>"9"

THEN 1380
1390 COLOR1:GOSUB 340
1400 N=VAL(I$)
1410 COLOR0,1:A$=0$(N):

GOSUB 1540
1420 GOTO 1160
1430 SOUND200,1
1440 COLOR0:GOSUB 340
1450 1$ =1NKEY$:IF 1$ <"0" OR I$>"9"

THEN 1450
1460 COLOR1:GOSUB 340
1470 N=VAL(1$)
1480 COLOR1,1:A$=0$(N):

GOSUB 1540
1490 GOTO 1160
1500 CLS:PRINT "ANGLE OF ROTATION

(0-360)":INPUT RT
1510 IF RT<0 OR RT>360

THEN 1500

1520 RT=(RT/180)*3.141
1530 SCREEN1,0:GOT01160
1540 IF A$="" THEN RETURN
1550 P = 1:X1 = X:Yl = Y
1560 B$=MID$(A$,P,1)
1570 D$ = MID$(A$,P +1,1)
1580 D=VAL(MID$(A$,P+2,1NSTR(P,A$,

";")— (P + 2)))
1590 P= INSTR(P,A$,";") +1
1600 D=D/100:D2=FNA(D):

OX= X:OY = Y
1610 IF D$="R" THEN XA=D2*COS(RT):

YA= —D2*SIN(RT)
1620 IF D$ ="L" THEN XA= — D2*COS(RT):

YA= D2*SIN(RT)
1630 IF D$="D" THEN XA=D2*SIN(RT):

YA= 02*COS(RT)
1640 IF D$="U" THEN XA= — D2*

SIN(RT):YA= —D2 * COS(RT)
1650 XA=INT(XA+.5):YA=INT(YA+ .5)
1660 X=X+XA:Y=Y+YA
1670 IF B$="D" THEN LINE(OX,OY)— (X,

Y),PSET
1680 IF P<LEN(A$)THEN 1560
1690 X=X1:Y=Y1:RETURN
1700 CLS:LINE INPUT "FILENAME:";F$
1710 SG = PEEK(188)*256
1720 CLS:PRINT"SAVING:";F$
1730 CSAVEM F$,SG,SG +6143,35252
1740 GOTO 90
1750 CLS:LINE INPUT "FILENAME:";F$
1760 PRINT"PLEASE START TAPE & WAIT"
1770 CLOADM F$
1780 GOTO 90
1790 REM ADD SCREEN DUMP ROUTINE
1795 GOTO 90

This will teach you to use the right
paint! As the runs start to form,
your carpet is right in the way and
you'll have to wield your roller
swiftly if you're going to save it

Getting drips of paint on the carpet is one of
the nightmares of the do-it-yourself de-
corator. In this game we give you the oppor-
tunity to improve your drip-stopping techni-
que without the damage.

The aim of the game is to prevent the runs
of paint dripping down the screen (the wall)
and reaching the carpet, using your paint
roller. You control the position of the 'roller'
graphic on screen, using the keyboard.

In order to perform the calculations quick-
ly enough, the program contains machine
code. There are checksums to catch any DATA
errors but it is still wise to SAVE the program
before you RUN it, in case of any mistakes.

 	I
1 CLEAR 28671: G0SUB 100
5 CLS : PRINT AT 8,2;" ENTER LEVEL 0F

DIFFICULTY"'TAB8;" <1 > DEASY'"TAB
8;" <2> Li FAIRLY EASY'"TAB 8;
" < 3 > ❑ N0RMAL"TAB 8;"<4> ❑
DIFFICULT"'TAB 8;" <5> ❑
IMP0SSIBLE"

6 LET D$=INKEY$: IF D$ <"1" 0R
D$> "5" THEN G0T0 6

7 POKE 28951,((D$="1") * 200)+((p$=
"2")175) + ((D$ = "3780) + ((D$ =
"4740) + (D$ = "5")

10 B0RDER 0: PAPER 7: INK 2: CLS : LET
a$="": F0R n =1 T0 32: LET
a$ = a$ + " 7": NEXT n

14 POKE 28953,0: F0R n=1 T0 4: PRINT
PAPER 2;a$;: NEXT n

15 F0R N =19 T0 21: PRINT PAPER 6;AT
N,0;A$: NEXT N

16 PL0T 0,143: DRAW 255,0
20 RAND0MIZE USR 28672: RAND0MIZE

USR 28702
40 PRINT AT 12,7; FLASH 1; PAPER 5; INK

0;" ❑ G ❑ A ❑ M ❑ E ❑ 0 ❑ V ❑ E ❑ R ❑
'"; FLASH 0;AT 14,7;PAPER 7;"FINAL
SCORE ❑ ";: LET B$="": F0R
N = 28945 T0 28950: LET
B$=B$+CHR$ (PEEK N): NEXT N:
PRINT B$

45 FOR N =1 T0 500: NEXT N
50 IF INKEY$="" THEN G0T0 50
60 RUN 5

100 LET L=500: REST0RE L: F0R N=28672
T0 28961 STEP 8

110 LET T= 0: F0R D = T0 7: READ A:
POKE N + D,A: LET T=T+ A: NEXT D

120 READ A: IF A< >T THEN PRINT "DATA
ERR0R AT LINEI71";L: ST0P

130 LET L-=L+10: NEXT N: RETURN
500 DATA 33,34,113,6,0,62,32,119,399
510 DATA 35,16,252,33,128,100,34,32,630
520 DATA 113,33,48,48,34,17,113,34,440
530 DATA 19,113,34,21,113,201,205,228,934
540 DATA 112,89,22,0,33,34,113,25,428
550 DATA 126,60,254,156,200,245,229,205,1475
560 DATA 176,34,209,193,245,126,254,255,1492
570 DATA 40,2,120,18,241,254,0,71,746
580 DATA 62,128,40,4,203,31,16,252,736
590 DATA 70,176,119,58,25,113,214,64,839
600 DATA 50,25,113,194,194,112,237,75,1000
610 DATA 32,113,62,0,33,26,113,197,576
620 DATA 205,214,112,193,62,223,219,254,1482
630 DATA 245,203,31,203,31,48,16,203,980
640 DATA 31,48,15,203,31,48,14,203,593
650 DATA 31,48,13,241,195,156,112,12,808
660 DATA 24,7,4,24,4,5,24,1,93
670 DATA 13,241,121,254,240,48,13,120,1050
680 DATA 254,150,48,8,254,32,56,4,806
690 DATA 237,67,32,113,237,75,32,113,906
700 DATA 197,33,29,113,205,214,112,193,1096
710 DATA 121,230,248,79,89,22,0,33,822
720 DATA 34,113,25,72,6,24,126,185,585
730 DATA 32,5,61,119,205,252,112,35,821
740 DATA 16,244,42,23,113,45,32,253,768
750 DATA 37,242,197,112,62,127,219,254,1250
760 DATA 203,31,218,30,112,201,229,120,1144
770 DATA 205,176,34,235,225,1,3,0,879
780 DATA 237,176,235,201,42,118,92,237,1338
790 DATA 91,120,92,25,237,90,84,93,832
800 DATA 41,41,25,41,41,41,25,34,289
810 DATA 118,92,76,201,213,245,17,22,984
820 DATA 113,26,60,254,58,32,6,62,611
830 DATA 48,18,27,24,244,18,241,209,829
840 DATA 201,48,48,48,48,48,48,200,689
850 DATA 0,64,0,0,0,255,255,255,829
860 DATA 128,100,36,36,37,37,35,35,444

The roller is under keyboard control on the Y,
U, I and 0 keys. The machine code handles
the roller movement, the drips and the score.

In the BASIC program, Line 1 makes

space for the machine code and calls lines 100
to 130 to read in the machine code from the
DATA (Lines 500-860). Lines 5-7 set the
difficulty level and POKE the delay variables
accordingly. Lines 10-16 set the screen and
Line 20 calls the machine code. Lines 40-60
end the game and determine the score.

10 DATA 162,0,169,0,157,0,203,232,208,250,
#1381

15 DATA 169,5,141,32,208,32,108,193,162,0,
I 	#1050
20 DATA 169,6,157,192,7,232,224,40,208,

248, # 1483
25 DATA 96,173,186,3,141,184,3,172,185,3,

#1146
30 DATA 173,182,3,133,251,173,202,3,141,

203, # 1464
35 DATA 3,173,183,3,133,252,32,248,192,169,

#1388
40 DATA 0,145,251,165,197,201,50,208,47,

56, # 1320
45 DATA 165,251,233,1,206,203,3,133,251,

165, # 1611
50 DATA 252,233,0,133,252,206,184,3,173,

184, # 1620
55 DATA 3,201,0,208,21,169,8,141,184,3,

#938
60 DATA 165,251,233,56,133,251,165,252,

233,1,# 1740
65 DATA 201,32,144,108,133,252,165,197,

201,55, #1488
70 DATA 208,47,24,165,251,105,1,238,203,3,

#1245
75 DATA 133,251,165,252,105,0,133,252,238,

184, # 1713
80 DATA 3,173,184,3,201,9,208,21,169,1,

#972
85 DATA 141,184,3,165,251,105,55,133,251,

165, # 1453
90 DATA 252,105,1,201,62,176,55,133,252,

173, # 1410
95 DATA 141,2,201,2,208,5,152,56,233,8,

#1008
100 DATA 168,173,141,2,201,1,208,5,152,24,

#1075
105 DATA 105,8,168,169,255,145,251,140,

185,3, # 1429

THE PROGRAM
CATCHING THE DRIPS
KEYBOARD CONTROL

CHECKING THE SCORE
MOPPING UP

110 DATA 173,203,3,141,202,3,173,184,3,
141,#1226

115 DATA 186,3,165,251,141,182,3,165,252,
141, # 1489

120 DATA 183,3,169,0,141,201,3,169,19,141,
#1029

125 DATA 4,212,165,252,141,1,212,169,18,
141,#1315

130 DATA 4,212,32,248,192,76,29,193,162,0,
1148

135 DATA 189,0,202,205,185,3,208,23,189,0,
#1204

140 DATA 203,205,202,3,208,15,201,0,240,
11, # 1288

145 DATA 56,233,1,157,0,203,169,33,141,4,
#997

150 DATA 212,232,208,222,96,174,4,220,32,
79, # 1479

155 DATA 193,134,2,189,0,201,170,189,192,
3, #1273

160 DATA 166,2,160,0,17,253,145,253,254,0,
#1250

165 DATA 203,189,0,203,201,199,208,3,76,
24, # 1306

170 DATA 229,238,201,3,173,200,3,205,201,
3, # 1456

175 DATA 208,209,76,31,192,189,0,203,168,
185, # 1461

180 DATA 0,199,133,253,185,0,200,133,254,
189, # 1546

185 DATA 0,202,24,101,253,133,253,165,254,
105, # 1490

190 DATA 0,133,254,96,169,32,133,252,169,
0, #1238

195 DATA 133,251,160,0,169,0,145,251,200,
208, # 1517

200 DATA 251,24,165,252,201,63,240,4,230,
252, # 1682

205 DATA 208,236,162,0,169,0,157,0,64,232,
#1228

210 DATA 224,63,208,248,162,0,169,3,157,0,
#1234

215 DATA 4,157,0,5,157,0,6,157,232,6, # 724
220 DATA 232,208,241,169,29,141,24,208,

169,59,# 1480
225 DATA 141,17,208,96,0,0,0,0,0,0, # 462
230 PRINT "0 gg > Pig/P0KING DATA

gg gg ": F0R Z=0 T0 43:T=0:C= 0
235 F0R ZZ=0 T0 9:READ X$:X=VAL(X$):

C=C+1:T=T+X
240 PRINT "CILINE"PEEK(63) + PEEK(64)"

256,"ITEM"C,"T0TAL"T:P0KE 49152+Z
10+ZZ,X

245 NEXT ZZ:READ X$:IF LEFT$(X$,1) < >
"#" THEN PRINT "AgITEM
MISSING!":END

250 IF VAL(RIGHT$(X$,LEN(X$)-1))< >T
THEN PRINT "gDATA ERR0R!":END

255 PRINT:NEXT Z:PRINT " > a DATA
0K•, P0KING M0RE NUMBERS...":
CLR:X= 8224

260 F0R Z=1 T0 8:G0SUB 290:
X=X+1:N=N+1:NEXTZ

270 X= X + 312:IF N <256 THEN 260
280 G0T0 300
290 Z1 =INT(X/256):Z2 = X - Z1*256:P0KE

50944+ N,Z2:P0KE 51200+ N,Z1:
RETURN

300 F0R ZZ=0 T0 31:F0R Z=0 T0 7:P0KE
51712 +ZZ*8 +Z,ZZ * 8

310 P0KE 51456 + ZZ*8 +Z,Z:NEXT Z,ZZ
1010 P0KE 53280,6:PRINT "0 Ag "

TAB(8)"ENTER DIFFICULTY(1 -9)?"
1020 GET A$:IF A$<"1" 0R A$>"9"

THEN 1020
1030 PRINT"0";:LV=VAL(A$)
1040 SYS 49152:F0RZ= 0T023:PRINT"VV.A

1111111.1111111111k11111.11.1111
PJ1111111.11.11111111P1111111
pjpnikipipp.vv";:NEx -rz

1050 P0KE 960,128:P0KE 961,64:P0KE 962,
32:P0KE 963,16:P0KE 964,8

1060 P0KE 965,4:P0KE 966,2:POKE 967,1:
P0KE 968,LV*3- 2

1070 S =-54272:P0KE S+5,7:P0KE S + 6,12:
P0KE S +24,5:P0KE 970,179

1080 P0KE 950,163:P0KE 951,59:P0KE 954,4:
P0KE 953,16

1090 T1$ = "000000":SYS 49183:SC = VAL
(T1$)*5:P0KE 53280,15

1100 K$ = LEFT$(" ❑ Y0U SC0RED" + STR$
(SC) + "DAT LEVEL" + STR$(LV) + "0
❑❑❑❑❑❑❑❑❑❑❑❑❑❑ ",36)

1110 PRINT "Dingfignall"K$"g":IF
SC > Z(LV) THEN Z(LV)= SC

1120 F0R Z=1 T0 9:PRINT
" 	pj pi LEVEL"
Z,"/ISC0RE",Z(Z)"gg":NEXT Z

1130 PRINT "IIIMINNIIIPRESS S T0
START GAME 0R E T0 EXIT ❑r

1140 GET A$:IF A$="S" THEN 1010
1150 IF A$< >"E" THEN 1140
1160 SYS 58648

The first program section (Lines 10-310)
contains the machine code DATA and the
second (Lines 1010-1160) is the BASIC
program.

The machine code section is contained in
DATA statements and there are checksums in
case you make any errors in copying the
lengthy list of numbers. This part of the pro-
gram controls the roller. It moves it around

 under keyboard control on the Irg , SHIFT,
/, and ; keys and checks for any collisions
with the paint. It also plots the 256 drips.

Lines 1010-1030 enter the difficulty fac-
tor. You are offered a choice of a degree of
difficulty ranging from 1 to 9. Line 1040 calls
the routine to set up the Y coordinates and
then prints borders down each side of the
screen. Line 1090 sets the clock, executes the
machine code, works out the score and
changes the border colour.

nil
10 M0DE4
20 ?&72= 80:?&71 =80
30 VDU 19,1,1,0,0,0
40 DIM MC ❑ 1000,YP0S ❑ 144
50 PR0CASS
60 CLS:F0R T=YP0S T0 YP0S +144:

?T= 255
70 NEXT
80 PRINTTAB(10,10)"1 -VERY EASY"TAB

(10,12)"2 - EASY"TAB (10,14)
"3 - N0R MACTAB (10,16)
"4 - DI FFICULT"TAB (10,18)
"5-IMP0SSIBLE"

90 PRINTTAB(10,22)"WHICH ONE";
100 A=GET-48:IF A> 0AND A<6 THEN

?&77=A*20 ELSE 100
110 CLS:VDU5:M0VE0,76:DRAW1280,76
120 TIME= 0:CALL MC
130 VDU4:PRINTTAB(7,29)"Y0U SC0RED ";

TIME;" P0INTS"TAB(14,30)"0N LEVEL ";
?&77/20

140 *FX15,0
150 END
160 DEF PR0CASS:F0R T=0 T0 2 STEP 2
170 P%= MC:[0PT T
180 .DRIP:LDA &FE64:AND # 96:BNE D3:

LDA &75:CLC:ADC # 16:TAX
190 LDY YP0S,X:DEY:CPY #20:BCS D2:RTS
200 .D2:TYA:STA YP0S,X:JSR PLT
210 .D3:DEC &75:BPL D4:LDA #127:STA&75
220 .D4:DEC &76:BPL DRIP:LDA &77:STA

&76:JSR BRUSH:JMP DRIP
230 .PLT:LDA #25:JSR &FFEE:LDA #69:

JSR &FFEE:JMP XY
240 .MVE:LDA #25:JSR &FFEE:LDA #4:

JSR &FFEE:JMP XY
250 .BAR:TXA:CLC:ADC #24:TAX:LDA #25:

JSR &FFEE:LDA # 5:JSR &FFEE
260 .XY:LDA #0:STA &70:TXA:ASL A:R0L

&70:ASL A:R0L &70
270 ASL A:R0L &70:JSR &FFEE:LDA &70:

JSR &FFEE:LDA #0:STA &70:TYA
280 ASL A:R0L &70:ASL A:R0L &70:JSR

&FFEE:LDA &70:JSR &FFEE:RTS
290 .BRUSH:LDA #18:JSR &FFEE:LDA #0:

JSR &FFEE:JSR &FFEE
300 LDX &71:LDY &72:STY &74:INC &74:

JSR MVE:JSR BAR:LDY #24
310 .B1:LDA YP0S,X:CMP &74:BEQ B13:

CMP &72:BNE B15
320 .B13:ADC # 3:STA YP0S,X
330 .815:DEX:DEY:BPL B1
340 .B2:LDA &71:STA &73:LDA &72:STA &74:

LDA &EC:CMP #128 + 97:BNE B3:DEC
&73:JMP B7

350 .B3:CMP #66+128:BNE B4:INC &73:
JMP B7

360 .B4:CMP # 55 + 128:BNE B5:INC &74:
JMP B6

370 .B5:CMP # 86 + 128:BNE B8:DEC &74
380 .B6:LDA &74:CMP # 20:BCC B8:CMP

#240:BCS B8:STA &72:JMP B8
390 .B7: LDA &73:CMP # 15:BCC B8:CMP

#120:BCS B8:STA &71
400 .B8:LDA #18:JSR &FFEE:LDA #0:JSR

&FFEE:LDA #1
410 JSR &FFEE:LDX &71:LDY &72:JSR MVE:

JSR BAR
420 .B9:RTS
430 .CH:LDY #24
440 .C1:LDA YPOS,X
450]NEXT:ENDPROC

Paint runs on the Dragon

The assembly language from Line 160 on
controls the movement of the roller via the Z,
X, P and L keys. It also controls the drips and
the score.

Line 20 sets up the starting point of the
roller. Lines 30-50 define the colour of the
paint, set aside memory and assemble the
machine code. Lines 60-70 set up the starting
point of the 128 drips. Lines 80-100 contain
the menu for the degree of difficulty and set
up the delay factor which occurs each time the
paint is pushed up the screen. Lines 110-120
play the game and Line 10 shows the score.

For the Tandy change 223 to 247 and 2654 to
2678 in Line 1070.

10 CLEAR200,15799:CLS
20 F0RK 0T013:T = 0:F0RJ = 0T025:READ

A:T=T+A
30 P0KE15800 + K*26 + J,A
40 NEXT:READA:IF T < > A THEN PRINT

" ERR0R IN DATA IN LINE";
1000+ 0 0:END ELSENEXT

50 CLS:PRINT@6,"SELECT SKILL LEVEL."
60 PRINT@200,"1 — EASY":PRINT@232,

"2 — SIMPLE":PRINT@264,
"3 — MIDDLING":PRINT@296,
"4 — DIFFICULT":PRINT@328,
"5 — IMPOSSIBLE"

70 A$=INKEY$:IF A$<"1" 0R A$>"5"
THEN 70

80 LV = VAL(A$):P0KE16162,6 — LV:POKE
16164,128 +64*(LV>2):P0KE16167,RND
(256) —1

90 PM0DE3,1:PCLS2:SCREEN1,0
100 C0 L0 R4: LI N E (0,0) — (255,0), PSET:

C0L0R3:LINE(0,168) — (255,191),PSET,BF
110 DEFUSRO =15800:S = USR0(0)
120 SC = 0:CLS:F0RK =- 5T00 STEP — 1:

SC= SC*256 + PEEK(16173 + K):NEXT
130 PRINT@8,"YOU SC0RED ";SC
140 PRINT@161,"PRESS ANY KEY F0R

AN0THER GO":A$ =INKEY$

150 IF INKEY$="" THEN150 ELSE50
1000 DATA 127,63,33,127,63,37,79,95,253,

63,45,253,63,47,253,63,49,142,19,14,191,
63,51,158,186,48,2585

1010 DATA 137,1,0,191,63,41,48,137,19,223,
191,63,43,204,0,128,142,63,53,167,128,
90,38,251,141,29,2591

1020 DATA 182,63,37,176,63,36,183,63,37,38,
243,141,119,23,0,145,190,63,34,48,31,38,
252;125,63,33,2426

1030 DATA 39,226,57,206,63,53,141,59,196,
127,52,4,51,197,166,196,198,32,61,211,
186,31,1,53,4,31,2641

1040 DATA 152,84,84,58,230,132,38,1,57,
132,3,64,139,3,198,3,74,43,4,88,88,32,249,
234,132,231,2553

1050 DATA 132,108,196,166,196,129,168,37,
5,134,1,183,63,33,57,190,63,38,79,95,179,
63,38,36,2,48,2439

1060 DATA 31,179,63,38,36,2,48,31,195,255,
254,36,2,48,1,52,16,163,225,37,3,131,0,1,
253,63,2163

1070 DATA 38,57,134,247,127,63,40,120,63,
40,183,255,2,246,255,0,193,223,38,3,124,
63,40,26,1,73,2654

1080 DATA 129,127,34,233,57,190,63,51,198,
3,134,85,167,128,90,38,251,190,63,51,
116,63,40,36,10,31,2578

1090 DATA 16,203,3,196,31,39,2,48,1,116,63,
40,36,8,31,16,196,31,39,2,48,31,116,63,
40,36,1451

1100 DATA 8,188,63,43,34,3,48,136,32,116,
63,40,36,14,188,63,41,37,9,48,136,224,52,
16,141,13,1792

1110 DATA 53,16,191,63,51,198,3,111,128,90,
38,251,57,31,16,142,63,53,147,186,52,4,
196,31,88,88,2347

1120 DATA 48,133,53,4,88,73,88,73,31,88,
73,137,92,134,12,225,132,38,4,106,132,
141,6,48,1,74,2034

1130 DATA 38,243,57,52,22,142,63,45,198,6,
26,1,166,132,137,0,167,128,90,38,247,
53,150,1,3,0,2205

The Dragon/Tandy machine code routine
handles the score and drips. It then checks
whether you are pressing the arrow keys, and
if one is depressed the roller is moved accord-
ingly. If a drip is moved up, it executes a delay
and increases the score.

In the basic program, Line 10 makes space
for the machine code and calls the routine to
read in the machine code from data state-
ments. Lines 20-40 read in the machine code
from the data statements. Lines 50-80 set
the difficulty level and poke the delay vari-
able accordingly. Line 100 sets the screen.
and calls the initialisation machine code rout-
ine and then the game loop machine code.

Lines 1000-1130 contain machine code.

CREATING SPRITES
ANIMATION

SPEED CONTROL
MATHEMATICS

WORDS

Move on from line drawings to
animated cartoons. But there's more
to LOGO than just pictures, as you
will see from its maths and word-
handling abilities

This, the third and final part of the series on
LOGO looks at an exciting aspect of Turtle
graphics which appears in some versions of
the language—sprites. These are multiple
Turtles with redefinable shapes which can be

set in motion and used to create simple
animations. As with the sprites which are
available in BASIC on the Commodore 64,
they can be controlled and defined easily. At
least three of the four versions of LOGO for
the BBC and Electron have the facility to
incorporate sprites, but, because of limited
memory, you will need to purchase a 'sprite
board' to fit into the computer. Commodore
LOGO has sprites available on a utilities disk,
supplied with the LOGO disk.

Sprites enable the LOGO user to step

beyond drawing pictures and create simple
animated cartoons. In particular, children
find sprites exciting and are often motivated
to learn other programming skills through
wanting to control them. Sprites have the
same qualities as Turtles—in fact, the screen
Turtle is itself a pre-defined sprite* In the
same way as with the Turtle, your sprite can
move, turn, raise and lower its pen and
hide. Different versions of LOGO have dif-
ferent numbers of sprites, and each sprite has
its own number from 0 upwards. The Turtle

is sprite 0* When you type in a normal Turtle
graphics command you are talking to sprite 0,
and the Turtle responds.

LOOKING AT SPRITES
All the machines apart from the Commodore
load the sprites together with LOGO* To use
sprites with Commodore LOGO you must
first load them from the utilities disk which is
supplied with the LOGO disk* Insert the
utilities disk in the disk drive and type:

READ "SPRITES

After loading the sprites you speak to them
with TELL followed by the number of the
sprite or sprites you wish to address. Sprites
other than sprite 0 are invisible, and sit in the
centre of the screen waiting for a command*
In Commodore LOGO, if you want to see the
sprite, you must type ST before giving its first
command. In other versions the sprites
become visible automatically when you speak
to them for the first time, after that you must
use ST*

To send sprite 1 forward 50 units type:

TELL 1 FD 50

If you then type RT 90 sprite 1 will turn right
90 degrees. Sprite 0 will stay in the same
position*

To turn sprite 0 90 degrees to the right
type:

TELL 0 RT 90

If you then type: FD 50 sprite 0 will move
forwards 50 units and sprite 1 will stay still.
The other sprites are invisible in the H0ME
position.

TELL 1 HOME
TELL 0 HOME

This will bring them back to the centre of the
screen.

TELL 0 FD 50
TELL 1 RT 90 FD 50
TELL 2 RT 180 FD 50
TELL 3 LT 90 FD 50

This will send four sprites out in a cross.
In some versions of LOGO you can talk to

more than one sprite simultaneously by using
square brackets, as you can see if you type:

TELL [0 1 2 3]
RT 135
FD 100
HOME

to make an interesting pattern. This is not
possible in Commodore LOGO which only
allows communication with one of the sprites
at any one time.

Sprites which can be spoken to simulta-
neously can carry out procedures simulta-
neously. For example:

TO STAR :SIDE
REPEAT 5 [FD :SIDE RT 144]
END

TO POSSPRI
TELL 1 RT 72
TELL 2 LT 72
TELL 3 RT 144
TELL 4 LT 144
END

TO SPRISTAR :SIDE
POSSPRI
TELL [0 1 2 3 4] ST
FORWARD :SIDE
STAR :SIDE
END

STAR defines a five pointed star requiring an
input called SIDE.

POSSPRI positions five sprites in different
directions.

SPRISTAR makes the sprites visible and tells
each sprite to move forwards distance SIDE
and draw a star size SIDE.

TELL [0 1 2 3 4] opens communication with
sprites 0, 1, 2, 3, and 4 simultaneously. It's
like a party political broadcast, sent out on all
channels at once, so there's no avoiding it—
but remember that Commodore LOGO only
allows you to speak to one sprite at a time.

CREATING SPRITES
LOGO allows you to create your own shapes
for the sprites* To do this you must enter the
sprite editor. To use the sprite editor in
Commodore LOGO you must insert the
utilities disk and type:

READ "SPRED

The file SPRED also contains the sprite com-
mands in the file SPRITES so loading SPRED
will give you the commands to use sprites and
the sprite editor.

The sprite editor contains a number of
screens upon which you can plan out shapes
for the sprites. You can only draw on one
screen at a time* The screens, and hence the
shapes you draw on them, have numbers. In
Commodore LOGO you edit the shape of the
sprite you are talking to. In other versions you
edit a particular screen.

If you are talking to sprite 1 on Commo-
dore LOGO, EDSH will put you into the sprite
editor for the shape being used by sprite
number 1. This will normally be shape No 1.
EDSH stands for EDit SHape.

In other versions of LOGO, EDSH requires
an input* EDSH 1 allows you to edit the sprite
shape on screen No 1. It makes no difference

which sprite you are currently addressing, or
which shape the sprite has.

When you type EDSH a grid appears on the
screen* This is the sprite editor, and in
Commodore LOGO it contains the image of
the current sprite on a 24 x 21 grid—the other
versions are blank. Each character position on
the grid represents a pixel of the sprite, and
each can be filled in or blanked out causing
the corresponding pixel on the sprite to be
filled or emptied*

The editing cursor is moved right, left, up
or down with the cursor keys. The character
marked by the cursor` can be filled if empty, or
emptied if filled, by pressing special keys.
Merely passing the cursor over a character will
not change it. In Commodore LOGO the *
and + key both fill the character beneath the
cursor* The + key leaves the cursor in the
same place and the * moves it on to the next
character* The — key deletes the character
beneath the cursor* The I DELI key deletes the
character beneath the cursor and moves the
cursor one space to the left. Holding down
ISHIFT I and pressing ICLR I blanks out every
character in the editor and creates an 'invis-
ible sprite', or blank grid.

It is a good idea to plan out your sprite
shapes on a piece of graph paper before using
the sprite editor* When you are satisfied with
the shape on screen, you exit from the sprite
editor with or ICTRL I and C.

Once you have created different sprite
shapes you can assign them to the sprites with
the command SETSHAPE. In Commodore
LOGO the initial shape numbers will corre-
spond to the sprite numbers* Sprite No 1 will
have shape number 1 and so on. In other
versions of LOGO all the sprites have shape 0
which can only be changed with SETSHAPE.
For example:

TELL 1 SETSHAPE 1

will give sprite No 1 the shape which exists in
screen No 1 in the sprite editor.

TELL 1 SETSHAPE 2

will give sprite No 1 the shape that exists on
screen No 2.

In Commodore LOGO:

TELL 1 SETSHAPE 2

will give sprite number 1 the same shape as
sprite number 2. Changing the shape of sprite

No 2 with EDSH while talking to sprite 2 will
also change the shape of sprite 1. In case you
feel like someone holding four phone convers-
ations at the same time, and forget who you're
talking to, the command WHO will tell you
which sprite you're addressing. Type:

TELL 2
WHO

and LOGO will respond:

RESULT: 2

ANIMATION
Once you have mastered the sprite editor it is
a small step to creating simple animated
graphics. To get a horse to gallop across the
screen we could use EDSH 1 to draw the horse
in one position and EDSH 2 to draw it in
another.

TO CLIP
TELL 1 SETSHAPE 1
REPEAT 5 [FORWARD 1]
END

TO CLOP
TELL 1 SETSHAPE 2

REPEAT 5 [F0RWARD 1]
END

T0 GALL0P :FURL0NG
REPEAT :FURL0NG [CLIP CL0P]
END

Using REPEAT 5 [FORWARD 1] instead of
FORWARD 5 gives LOGO more to do and
makes the sprite move more slowly. CLIP gives
the sprite the first horse shape and moves it
forwards five units. CLOP changes the shape
to the second position of the horse and moves
it forward another five units.

GALLOP requires a numerical input for the
value of FURLONG which will tell the horse
how many times to CLIP and CLOP.

GALLOP 20 will make the horse CLIP CLOP
20 times and move forwards 200 units.
Alternating between CLIP and CLOP will swap
the sprite between shape 1 and shape 2 and
give the effect of a galloping horse. The
movement could be made more sophisticated
by adding extra shapes for the sprite to
assume during its journey.

SPEED CONTROL
Some versions of LOGO have a command

called SETSP for SETSPeed. SETSP requires an
input and sets a sprite in motion at the speed
determined by the input.

TELL 1 SETSP 100

will set sprite number 1 in motion at speed
100. You can then address another sprite and
sprite 1 will remain in motion until it is told
otherwise. Its constant state will be speed
100.

Commodore LOGO does not have SETSP.
It can be simulated with:
TO MOTION :SPEED
FORWARD :SPEED
MOTION :SPEED
END

This is a simple recursive procedure which
will set a sprite in continual motion. You will
not be able to give another command until
you have interrupted MOTION with ICTRL I and
the G key.

To create a simple 'cartoon' you can draw
the background with the turtle, design your
`animation shapes' with the sprite editor, and
use SETSH to create moving people, objects or
machines*

MORE THAN MEETS THE EYE
Because of the popularity of Turtle Graphics
and exciting features such as sprites, LOGO
is often mistaken as a 'graphics only lan-
guage', whereas in fact it has full mathema-
tics, and word and list processing capabilities*
LOGO's ancestor, LISP, was designed to
handle words and lists in the world of Ar-
tificial Intelligence. So the next sections look
at some of LOGO's word and list processing
features and some of its mathematical
capabilities.

MATHEMATICS
LOGO does not distinguish between integers
(whole numbers such as 1, 56 and 1984) and
real numbers (numbers with a decimal frac-
tion such as 1.2, 34.001 and 6.345789)*

Mathematical operators are the same as in
BASIC* You add and subtract with + and
—, multiply with * (not with x) and divide
with /* All mathematical operations must be
written on the same line, not in columns as
with pencil and paper.

If you tell the Turtle to move

FORWARD 33 +33

LOGO will do the sum and move the Turtle
66 units forwards.

BACK 120/3

will move the Turtle back 40 units.
Typing:

FORWARD 6 — 3*2

could lead to confusion. In BASIC, the rules
of priority mean that the multiplication would
be done before the division, but does LOGO
subtract 3 from 6, multiply the answer by 2,
and move the Turtle 6 units forwards; or does
it multiply 3 by 2 first, and subtract that from
6, getting 0 and leaving the Turtle where it
is? In fact, the same rules apply as in BASIC.
LOGO does anything that is enclosed in
brackets first, it multiplies and divides before
it adds and subtracts, and, obeying the above
rules, it works from left to right.

You can see the results of your calculation
using PRINT, which requires an input, and
prints it on the screen*

PRINT 2+ 21 gives 8 on the screen*
PRINT (2+ 2)*3 gives 12*

You can also use PRINT in a procedure:

TO CUBE :NUMBER
PRINT :NUMBER*:NUMBER*:NUMBER
END

CUBE requires a numeric input and gives you
the cube of that number. For example:

CUBE 3
27
CUBE 10
1000

This is a procedure which gives the average of
two numbers:

TO AVERAGE :FIRST :SECOND
PRINT (:FIRST+:SECOND)/2
END

Because FIRST and SECOND are in brackets,
LOGO adds them before dividing by 2.
Various inputs will show you how this works.
The procedure accepts two inputs, like:

AVERAGE 2 4

to give a result of 3 or:

AVERAGE 1 2

which results in 1*5 being printed up. You
might like to try extending the program to
take more inputs.

Note the way in which the calculations
above are entered. The mathematics we are
used to has the arithmetical sign between the
numbers involved, as in 2*2 = 4, 3 + 3 = 6.
This is known as 'infix notation' which just
means that the symbol is inserted between the
numbers that you are computing.

In LOGO the command is usually given
followed by a number of units, as in
F0RWARD 100. This is known as 'prefix
notation'. The command precedes, or pre-

fixes the number it is using. Some versions of
LOGO use prefix as well as infix notation for
mathematical calculations.

4/2 could also be written as DIVIDE 4 2
6 + 7 could be written as SUM 6 7
3*4 could be written as PRODUCT 3 4
8 — 7 could be written as SUBTRACT 8 7
When using SUBTRACT and DIVIDE, re-

member the first number is the one you are
SUBTRACTing from or DIVIDEing into.

A WAY WITH WORDS
Using the " symbol after PRINT tells LOGO
to treat the string of characters following " as
a word. Here are a few examples:

PRINT "SWIM

results in SWIM being printed

PRINT "B0RAGTHUNG

displays BORAGTHUNG

PRINT "1 FORY0U2F0RME

gives 1FORYOU2FORME and

PRINT "A2599*9(S3& =

prints up A2599*9(S3& = .
As this demonstrates, LOGO treats almost

any combination of symbols as a word if they
follow " although further punctuation can
upset this. But if you try entering:

PRINT SWIM

LOGO will respond with I DON'T KNOW
HOW TO SWIM.

This isn't because LOGO has never been
in the water but because there was no " before
SWIM. Without the quote marks, LOGO tries
to evaluate SWIM. Because it is not a number,
LOGO assumes it must be a procedure, and
since there is no procedure called SWIM,
LOGO gives an error message*

The following three examples show how
the entry following the quote marks is
analyzed:

PRINT "2 + 2

gives 2 + 2

PRINT 2+2

gives 4 and

PRINT "2 + 2

gives 4.
PRINT "2 + 2 tells LOGO to print the three

characters 2 + 2* Without quotes, PRINT 2+ 2
tells LOGO to evaluate the expression 2 + 2,
the result is 4. The third result is the
interesting one. A space indicates the end of a
word in LOGO, so the computer expects to

print the first 2 in PRINT "2 + 2. However,
after the space it meets the + . Because of the
space, it treats this as a normal mathematical
operation and so it tries to apply it—checking
back to see if the word before can be treated as
a number. It can, so it continues to add it to
the following number. The result is 4.

If you type:
PRINT "'MORNING DOROTHY

LOGO replies

'MORNING
I DON'T KNOW HOW TO DOROTHY
Because of the apostrophe, there is no quote
before DOROTHY* LOGO does not treat it as a
word and expects it to be a procedure. There
is no procedure named DOROTHY so it gives
the appropriate error message.

PRINT "'MORNING "D0R0THY
gives a response of

'M0RNING
Y0U D0N'T SAY WHAT T0 D0 WITH
D0R0THY

The quotes tell LOGO that DOR0THY is a
word. DOROTHY is not immediately preceded
by a command, so LOGO doesn't know what
to do with the word and it prints an error
message.

HANDLING LISTS
LOGO combines words into groups to form
lists* A list is enclosed in square brackets. We
have already encountered lists in turtle
graphics, for example [FORWARD 10 RIGHT
30] and [HEXAGON] are both lists. A list can
consist of commands, words or other lists.
Given:

PRINT ['MORNING DOROTHY]

LOGO replies:

'MORNING DOROTHY

Trying these longer examples gives interest-
ing results showing how the brackets are
understood. Only the outer pair are re-
cognized as indicating the extent of the list—
any others are just read as part of the string*

PRINT [1 2 BUCKLE MY SHOE 3 4 KNOCK AT
THE DOOR]

prints

1 2 BUCKLE MY SH0E 3 4 KN0CK AT THE
D00R

while

PRINT [HERE IS AN EXAMPLE 0F A LIST
[THIS LIST C0NTAINS FIVE W0RDS]]

displays

HERE IS AN EXAMPLE 0F A LIST [THIS LIST
C0NTAINS FIVE W0RDS]

and

PRINT [[5 6] [G0SH] [#%] [IS IT P0ETRY?]]

gives

[5 6] [G0SH] [# Vol [IS IT P0ETRY?]

Many of the features of using words and lists
use the same as those you encounter using
Turtle Graphics. Writing procedures, recur-
sion and using variables are common to both
areas of LOGO. But there is an aspect of word
and list processing which does not occur in
Turtle graphics*

In Turtle graphics you are always talking
to the Turtle* You do not have to specify that,
when a procedure calls another procedure,
such as RACETRACK calling OUTER, the second
procedure is to be used with the Turtle.

However, words, lists and numbers do not
know what you want to do with them and you
must explain everything carefully to them;
where to go and what to do.

If you had written AVERAGE as:

T0 AVERAGE :FIRST :SEC0ND
(:FIRST + :SEC0ND) / 2
END

and then typed:

AVERAGE 3 4

LOGO would reply with something like:

YOU DON'T SAY WHAT TO DO WITH 3*5 IN
LINE (:FIRST + :SECOND) / 2 AT LEVEL 1 OF
AVERAGE.
In the original procedure you told LOGO to
PRINT that line, so it knew what to do.

LOGO has a similar reaction to PRINT
'MORNING "DOROTHY, as in the example
above*

There are two parts to handling numbers,
words and lists. The first is the 'working out
stage' where the numbers or data are mani-
pulated, such as doing the sum in AVERAGE*
The second part is 'what to do with it when
it's worked out'. This might be simply print-
ing the result on the screen using PRINT, or
sending the information to another
procedure.

OTHER NEW LANGUAGES
The three parts of this series on LOGO
should have supplied you with enough in-
formation to allow you to experiment with
this language. The next issues will be dealing
with PASCAL but later on you will see some
examples of LISP and FORTH.

Without the Operating System,
working with your computer
would be hard indeed. Get to
know about this fundamental
facet of your micro

All computers work in, and understand, just
one language—machine code* This is an
interpretation of the minute variations of
electrical voltage on which the computer
operates. It can be represented by the user as a
simple set of easily remembered letters and
figures, or as difficult as a seemingly incom-
prehensible list of binary numbers. Whatever
the form, few people can work comfortably

with machine code, so you need a link or
interface with the computer to enable com-
munication at a simpler level. This interface is
the Operating System (OS)-a chunk of
software which manages the functions of the
computer and makes it possible for you to
communicate with the machine.

Whatever language you use, be it BASIC
or one of the others covered in the Languages

course starting on page 1264, this language
still uses the operating system as its means of
controlling the computer*

Although it is not necessary to understand
in detail how the OS works, knowing about it
helps to extend your programming skills and
get more out of your micro. The extent to
which you delve into the OS depends on the
design of your computer* Within this limit,

WHAT IS THE OS?
WORKING TO ORDER

UNDERSTANDING BASIC
ENTRY POINTS

MEMORY BLOCK

REGISTER SET
CASSETTE HANDLING

TEXT MANAGEMENT
PRINTER VARIABLES

ROUTINES OF INTEREST

this article aims to acquaint you with the OS
of your micro and show how you can use some
of its extensive range of fast-acting routines.

WHAT IS THE OS?
The OS is just a form of sophisticated
machine code program that lets the processor
within a computer respond to your com-
mands. It controls the machine's interactions

with the outside world, the screen, key-
board, sound generator and other input and
output ports. The OS also ensures that mem-
ory space is properly allocated and that the
processor and you use it efficiently. When you
switch on the computer, the OS initializes
certain ROM routines and sets up the internal
registers and pointers—all before it gives you
the go-ahead sign that it is ready. On all the
machines covered here, the operating system
is normally concerned with handling your
BASIC commands, but it is also able to deal
with other languages*

Most of the OS's minute-to-minute busi-
ness is to do with setting and checking
pointers. For example, it is important that the
processor knows the start and end of BASIC
programs* As the program is edited, the size
changes and the pointers must be updated.

The same principle applies to the setting
up and maintenance of storage space for
variables and, especially, arrays. When an
array is DI Mensioned, an area of memory has
to be reserved for it and then cleared after the
array is no longer needed. It is essential that
the OS is efficient in the way it manages
memory, otherwise a few large programs or
arrays would use up all the memory. This
management of memory is called housekeep-
ing, and good housekeeping is one of the
hallmarks of an efficient computer.

The OS incorporates a series of software
routines, and these have been carefully ar-
ranged so that they can be called by the
programmer, as well as by the OS itself* Most
of the routines are not needed by the BASIC
programmer, because the functions they per-
form are embedded into commands you
would normally enter from BASIC* A good
example of this is the BASIC keyword INPUT.
This actually uses several OS routines, in-
cluding input, channel setting, keyboard scan
and buffer transfer, but the BASIC user can
call them all with the one command.

Another example of an OS routine being
called from BASIC is the Commodore state-
ment CLR. This forces the OS to do any
housekeeping as necessary. The effect is to
make any RAM that has been used (but is no
longer needed) available to you, the pro-
grammer, by wiping all variables.

WORKING TO ORDER
Whenever you give the computer a command,
the OS brings the appropriate section of the
computer into action. For example, if you
type an A at the keyboard, it is the OS that
instructs the micro to output A on the screen.
To do this, it detects that a key has been
pressed. On some machines, including the
Spectrum and Commodores, the OS polls the
keyboard regularly to detect keypresses. On
others, such as the Acorns, a keypress sends
an interrupt signal to the OS, which scans
the keyboard to see which key was pressed.

To react to a keypress, the OS jumps to the
routine it uses to output a character. This is
one of many machine code routines which are
executed rapidly. If you now press I R ETU RN I or
IENTER I, the OS runs a 'new line' routine.

UNDERSTANDING BASIC
When you RUN programs in a language, such
as BASIC, the instructions held in memory
are interpreted, or translated into the machine
code the computer understands. At the same
time, the code sets up the registers so that the
OS routines can be accessed. In this way, the
same routines that let the computer respond
to your input at the keyboard, say, are used
by the OS to execute your BASIC programs.

Why then, you might ask, is BASIC so
much slower than machine code, since it
makes use of these fast-acting routines? The
answer is that the language must be interpre-
ted from keywords—such as PRINT—and
other symbols before the OS routines are
accessed. The long time needed to translate
BASIC is the reason many arcade games, and
any programs that must respond fast, are
written in machine code.

The time it takes to write in machine code is
generally reckoned to be about ten times the
time you would spend on a BASIC program
to do the same task, but the result may be fifty
times faster. However, the ease of program
writing is why most people stick to BASIC,
unless machine code is absolutely necessary*

It would still be greatly to the advantage of
BASIC programmers to be able to access OS
routines directly, rather than via the interpre-
ter, and take advantage of the many efficient

routines. Unfortunately, the OS of most
home micros is not intended to be accessed
directly from BASIC.

On the Dragon, for example, the OS forms
an integral part of the 16K Microsoft BASIC,
and on the Commodores, the OS comprises
the BASIC Interpreter, a collection of Kernal
routines and a Kernal Control program* Even
more restricting, the Spectrum does not allow
you, except by machine code, to change the
contents of the registers, which is essential for
routing the OS to the various routines. The
Acorns are in a category of their own. Their
OS is accessed regularly from BASIC—as *FX
calls and VDU commands*

Despite such a diversity of access provided
on various machines, there are a number of
features which users of even the most restric-
tive system can put to good effect, either to
shorten coding or to solve the problems of
bugs.

The OS routines are accessed by the keyword
USR which you also use to execute a machine
code routine which you have placed some-
where in memory. Try the direct command
RANDOMIZE USR 0. This executes a full
system reset* For BASIC programs, there are
a few useful system variables that can be
POKEd*

POKE 23561 with a number in the range 1 to
255 sets the time delay before the keys auto-
repeat* The normal setting is POKE 23561,35.
Similarly, POKE 23562,5 is the normal auto-
repeat interval, but you can vary it between 1
and 255. These changes can be useful in
games programming, or any program that
requires user response at the keyboard*

Locations 23606 and 23607 hold the ad-
dress of the start of the table of dot patterns
for the character set. If you POKE 23606,8 (the
low byte), the pointer is set one character
along in the table, so anything you type will
appear as the next character. Try this POKE,
then type 1, 2, 3, 4* Notice that what you get is
2, 3, 4, 5, which gives a simple method of
coding BASIC code, to discourage anyone
from reading it. A program coded this way
would execute normally, but output to the
screen would be jumbled. If you now POKE
23607,0 (the high byte), the pointer is set to
look at the start of ROM, so the characters
appear as a meaningless jumble*

Location 23658 provides the only means of
forcing (CAPS LOCK I when a BASIC program is
running* POKE 23658,0 changes mode from
upper to lower case characters, and POKE
23658,8 gives upper case only.

PLOT on the Spectrum specifies an absolute
position from the origin of the screen, but

DRAW is relative to the last point specified.
Sometimes an absolute DRAW is required, and
this is provided by locations 23677 and 23678.
For example, enter PLOT 128,85 to place a dot
at the centre of the screen. Now suppose you
wish to draw a line from this point to the top
right of the screen given absolute coordinate
(255,175)* DRAW 255,175 would, in fact,
specify a point off screen but DRAW
255 — PEEK 23677, 175— PEEK 23678 will give
the desired line. By subtracting PEEK 23677
from the X coordinate and PEEK 23678 from
the Y coordinate, you are returning the
relative DRAW coordinates.

The nearest thing to a user clock on the
Spectrum is the frame counter for the TV
screen. Three locations specify this-23672,
23673 and 23674. If they are POKEd with 0 the
frame counter is set to 0. These are then
incremented automatically by interrupts.
Here is a simple program to use this facility as
a timer or clock:

10 POKE 23674,0: POKE 23673,0: POKE
23672,0

20 BORDER 0:PAPER 0:INK 6:CLS
30 DEF FN t() = INT ((65536*PEEK 23674

+ 256*PEEK 23673 + PEEK 23672)/50)
40 LET t= FN to
50 LET h = INT (t/(60*60))
60 LET m = INT (t/60)
70 LET s = t — ((h10)*60) — (m*60)
80 LET t$ = "[" + STR$ h + ":" +

STR$ m + ":" + STR$ s + "]"
90 PRINT AT 1,15— ((LEN t$)/2);

";t$;" fl ,,

100 GOTO 100

Line 10 zeros the frame counter and Line 30
defines function t to read the counter. This
reading is set to t (Line 40), from which
hours, minutes and seconds are derived.

ra 1 imi■■
To access an OS or ROM routine on the
Commodore, use SYS, followed by the ad-
dress in decimal*

SYS 58648 resets the screen to the normal
resolution and colours* This is much simpler
than a series of POKEs, which is the usual
method in BASIC*

SYS 58692 (58719 for the Vic 20) clears the
screen. The usual method is a print followed
by an inverse heart graphic symbol, but this
symbol is not available on some printers. So
the ROM call has a clear advantage.

To scroll the screen up a line, enter SYS
59626 (59765 for the Vic 20)* This can be
much simpler than graphics symbols to move
the cursor*

A cold start can be forced by SYS 64738
(64802 for the Vic 20).

There are a number of ways of interacting
with the OS from BASIC, depending on the
complexity of the task to be done. The first is
the OS Command Line Interpreter (OSCLI).
Its role is to translate simple commands into
OS actions. Whenever a statement appears in
a program with a * in front of it, the rest of the
statement is passed to OSCLI. This means that
in multi-statement lines, there can be only
one * and this must begin the last statement.
OSCLI has two other limitations. The first is
that it knows nothing about BASIC variables,
so although *MOTOR 1 will switch on the tape,
A =1 : *MOTOR A will produce an error. A full
list of the commands recognized by OSCLI
appears in the User Guide* The second
limitation is that OSCLI controls only a limited
range of functions* To progress beyond these,
you must use individual machine code sub-
routines within the OS.

ENTRY POINTS
The OS has a limited number of well-defined
entry points, so programs written using one
version of the OS will work with later ver-
sions* Moreover, it allows you to use a second
language processor* Three such entry points
will be described—OSBYTE (address &FFF4),
OSWOR D (address &FFF1) and OSCLI (ad-
dress &FFF7)*

It is not sufficient to just call a subroutine;
information must be passed to it, telling it
what to do. The simplest way to do this is to
use the registers of the 6502 processor, which
actually executes the machine code* The three
main registers are the accumulator A, and the
index registers X and Y. Each can hold a
single eight-bit number* So the first way to
use an OS routine is to place values into the A,
X and Y registers, then call the routine*

Many OS actions can be controlled in this
way, using the OS BYTE call, and an easy way
of accessing it, using OSCLI, has been pro:
vided. The statement *FX A, X, Y means 'load
the A, X and Y registers with the values given
and then execute OSBYTE'. The commas in
this command may (as for other OSCLI com-
mands) be replaced with spaces. If a value is
omitted, it is taken as zero*

Sometimes this method of using OSBYTE is
not convenient, and the routine must be
called directly. There are two ways to do this
from BASIC—the statement CALL (address)
and the function USR (address), where 'ad-
dress' is the routine's address in memory. In
both cases, before the routine is executed, the
values of the integer variables A%, X% and Y%
are placed into the A, X and Y registers* On
return from the routine, USR has a four-byte

value constructed from the processor status
register (P) and the Y, X and A registers (in
order of significance). So *FX 18 could be
replaced by A% = 18 : X% = 0 : Y%= 0 : CALL

i &FFF4, or A%=18 : X%= 0 : Y%= 0 :
variable = USR (&FFF4).

The simple *FX method will not work when

leyou wish the OS routine to return a value, for
xample, the number of a character on the

screen. In this case, provided the information
fits into the processor's registers, the USR
function can be used*

Where many bytes of data must be passed
between BASIC and the OS, the OSWORD
call can be used* In this case the data is placed
into a block of memory locations. The two-
byte address of this is split between the X and
Y registers, and a number telling OSWORD
what to do is placed into A. The usual method
of access from BASIC is then via CALL.

BASIC VARIABLES
As just mentioned, there are difficulties in
using OSCLI if it is necessary for it to use
BASIC variables. For instance, suppose you
want to SAVE an area of memory. The obvious
way is to use the command *SAVE* This
expects three parameters to follow: the file
name, the start address, and the finish address
plus 1 (both' in hex) of the memory area. If
these three items are in the BASIC variables
A$, S% and F%, then the obvious method
(*SAVE A$ S% F%) will not work. Instead,
you must construct a string S$ = "*SAVE
0" + A$ + "0" + STR$ — S% + "0" +
STR$ — F%. The term STR$ — converts a
number to its string equivalent in hex. To
complete the operation, S$ must be passed to
OSCLI. If you have BASIC 2 (Electron and
some BBCs) then this can be done by the
statement OSCLI S$.

Users of BASIC 1 must pass the string S$
to OSCLI by the memory-block technique.
This can be summarized in the procedure
PROCOSCLI below:

DEF PROCOSCLI ($0S%)
X% = OS% MOD 256: Y%= 0S% DIV 256
CALL &FFF7
ENDPROC

This method assumes that a block of memory
sufficient to hold OS$ has been reserved
elsewhere in the program. For instance, DIM
OS% 100 will reserve sufficient roogi for OS$s
up to 100 characters long. BASIOri users can
now pass S$ to OSCLI with the statement
PROC0SCL1(S$).

So if you want to use a BASIC variable
with an OSCLI command, construct a string
containing the command, then pass this to
0SCLI as described above.

There are many hundreds of the straight-
forward * FX type of command, most of which
appear in your User Guide* For instance, * FX
210, 1 will switch off the sound generator
(recommended if you like to play games or
run music programs after midnight) and *FX
210, 0 switches it on again* Next consider * FX
138, X, Y. This inserts the character with ASCII
number Y into buffer number X. The key-
board buffer is number 0. The following is an
example of using this OSBYTE routine with
CALL:

10 *FX18
20 *KEY0RUN1M
30 *KEY1A% = 138:X% = 0:Q$ = "LIST" +

STR$Q% + "," + STR$(0% +100) +
CHR$13:FOR1%=1TOLENQ$:Y%=
ASCM13(Q$,I%,1); CALL&F F F4: N EXT:CLS:

40 *KEY2Q%= Q% +100:CLSIM
50 *KEY3Q% = Q% —100:CLSIM
60 *KEY4Q%= Q% + 500:CLSIM
70 *KEY5Q% = Q%— 500:C LSI M
80 *KEY6Q%= ERL— ERLCIM0D1001M
90 END

The idea is that you LOAD and RUN this
program before you start a programming
session* It sets up the soft keys or function
keys so that every time you press 153, Lines
CM to Q%+ 100 are LISTed. Keys ® to ug
increment and decrement 0% and clear the
screen. So to look through a program, all you
have to do is to alternately press key 111 and
one of the others* If your program has ended
with an error message, hitting f6 and then Ill
will LIST the lines around the error.

The heart of the program is the definition
of Eg (Line 30). The first thing this does is to
set A% and X% so that later, OSBYTE with
A =138 can be called. Next Q$ is constructed
to be the word LIST plus the strings represent-
ing the numbers 0% and Q% +100, with a
comma between* The FOR 1% loop then uses
ASC and MI D$ to place the ASCII number of
each character in Q$ into Y%* The CALL &FFF4
uses OS BYTE to place each character into the
keyboard buffer. In this way, the correct LIST
command is typed for you. Note that 0$ is
terminated with CH R$13, which is equivalent
to 'RETURN I being pressed at the end of the
LIST command* The *FX 18 in Line 10
removes any previous *KEY definitions.

FETCHING NUMBERS
The next type of call to consider are those that
return a value* A useful example of this type is
OS BYTE with A =135* On return from this, X
contains the character at the text cursor and Y
contains the MODE number* The following
program is a typical application of this call:

10 MODE4
20 PROCSETUP
30 ?&D0 = ?&D0 OR 2
40 FOR H% = 0T030
50 PRINT"SCREEN SAVE TEST"
60 NEXT
70 PROCSCREENSTORE
80 CLS
90 PRINTTAB(4,12)"PRESS RETURN TO

RESTORE SCREEN"
100 REPEAT UNTIL GET= 13
110 PROCSCREENREPLACE
120 ?&D0=?&D0 ❑ AND 253
130 END
150 DEFFNC(X%,Y%)
160 A%= 135:V% = VPOS:H% = POS
170 VDU31,X%,Y%
180 A%= (USR(&FFF4)AND&FFO0)DIV&100
190 VDU31,H%,V%
200 = A%
220 DEFFNMODE
230 A% = 135
240 = (USR(&FFF4)AND&FF0000)DIV

&10000
260 DEFPROCSETUP
270 DIM S$(10)
280 FORI% = 0T010:S$(1%) = STR1NG$(251,

"*"):S$(1%) = "":NEXT
290 ENDPROC
310 DEFPROCSCREENSTORE
320 RESTORE
330 FORI% = 0TO FNMODE:READ N%:NEXT
340 VDU31,0,0
350 FORI% = 0 TO N% — 1
360 S$(I%DIV250) = S$(I%DIV250) + CH R$

FNC(POS,VPOS):VDU9
370 NEXT
380 ENDPROC
400 DATA2560,1280,640,2000,1280,640,

1000,1000
420 DEFPROCSCREENREPLACE
430 VDU31,0,0
440 FORI% = 0 TO N% — 1
450 VDU ASC(MID$(S$(I%DIV250),I%MOD

250 + 1,1)):NEXT
460 ENDPROC

The program stores an entire screen of text in
a string array. The test program in Lines 10 to
130 PRINTs a message on the screen, stores the
screen, clears it and then restores it after
RETURN I is pressed. To use these procedures,
you must switch off the screen scrolling; Line
30 does this and Line 120 switches it on
again. It is one of the few omissions in the OS
that a call is not provided to do this task.

The section of particular interest is
FNC(X%,Y%) Lines (150 to 200). This func-
tion returns the number of the character on
the screen at position X%, Y%. Line 160 sets
A% to 135 for the OS BYTE call and stores the

present position of the text cursor in H% and
V%. Line 170 uses VDU31 to move the cursor
to X%, Y%* Line 180 actually calls OSBYTE
with USR. To extract the contents of the X
register on return (the second byte of USR),
the value of USR is ANDed with &FF00 and
then divided by &100. The function places
the cursor back to its initial position in Line
190, and in Line 200 returns the ASCII value
of the character*

Another variation of this call can be found
in Lines 220 to 240, where the function
FNMODE returns the MODE number, again
using OSBYTE with A =135. This time the
value needed is returned in the Y register (the
third byte of USR, hence the different AND
and DIV numbers). There are three other
procedures in the program. PROCSETUP
(Lines 260 to 290) reserves sufficient room in
a string array S$() to store any text screen*
PROCSCREENSTORE (Lines 310 to 380) actu-
ally stores the screen. It does this by first
placing the text cursor at the top left (Line
340) and then using FNC at each point on the
screen (Lines 350 to 370). The VDU9 in Line
360 moves the cursor forwards one position
each time through the loop. Notice that in
Line 330, FNM0DE is used to find the number
of characters on the screen in a particular
MODE. These numbers are stored in the DATA
statement (Line 400). PROCSCREENREPLACE
(Lines 420 to 460) uses a FOR loop to print the
string array and so restores the screen.

MEMORY BLOCK
The final type of call includes all those that
use a block of memory to pass information.
The general-purpose call of this type is
OSWORD. Two useful forms are A = &D,
which returns the last two positions of the
graphics cursor, and A = &A, which gives
access to the definitions of the characters used
on the screen.

Here, OSWORD with A = 0 is used. This
inputs a string of a specified length from the
current input stream (usually the keyboard).
The string entry is terminated with RETURN.
DELETE and CTRL U work as they should,
deleting single characters or the entire input.
If more than the specified number of charac-
ters are input, the extra ones are ignored and a
beep is sounded. Although the action of this
call could be duplicated in BASIC, the use of
OSWORD saves memory and programming.
The following program is an example of how
it is used.

10 PR0CSETUP
20 M0DE6
30 PRINT"INPUT Y0UR W0RD"
40 PRINT"(less than 15 letters please)"

50 PRINT" > »
60 A$= FNINLINE(15,32,122)
70 PRINT'ANAGRAMS 0 ❑ > > ❑ ";
80 L%= LEN A$
90 FOR I%=1 TO L%
100 11%= RND(L%):I2%= RND(L%)
110 IF 11%=12% GOT0100
120 IF 11%>I2% IT%= I1%:

11% = I2%:12% = IT%
130 A$ = LEFT$(A$,11% — 1) + MID$(A$,12%,

1) + MID$(A$,11%+1,12%-11%-1)+
MID$(A$,11%,1) + M1D$(A$,12%+ 1,
L%-12%)

140 NEXT
150 PRINT'TAB(15) A$;
160 1$ = GET$
170 *FX21,0
180 IF 1$ = "A" GOTO 20 ELSE 90
190 END
200 DEFPROCSETUP
210 OSWORD = &FFF1
220 DIM PBLOCK 4
230 DIM STRING 100
240 X%= PBLOCK ❑ M 0 D 256
250 Y%= PBLOCK E DIV 256
260 A% = 0
270 ?(PBLOCK + 0) = STRING -IM0D 256
280 ?(PBLOCK +1) = STRINGI IDIV 256
290 LTH = PBLOCK + 2
300 MIN = PBLOCK + 3
310 MAX = PBLOCK + 4
320 ENDPROC
330 DEFFNINLINE(LLTH,LMIN,LMAX)
340 ?LTH = LLTH
350 ?MIN = LMIN
360 ?MAX = LMAX
370 CALL OSWORD
380 = $STRING

This program prints out anagrams of any
word you INPUT. Pressing A lets you enter a
new word; pressing any other key generates a
new anagram.

The need often arises to input information
in just the form that this OSWORD routine
allows, so you can use this program to provide
a data entry sub-program within other
programs. This facility is provided by func-
tion FNINLINE(LLTH,LMIN,LMAX) (Lines 330
to 380), which returns the input string. Its
arguments are the maximum string length
(LLTH) and the minimum and maximum
ASCII values of characters accepted.

REGISTER SET
Before using FNINLINE, PROCSETUP (Lines
200 to 320) must be called (as in Line 10)*
This arranges registers for the OSWORD call*
Line 210 places the address of OSWORD into a
variable of the same name. OSWORD with
A = 0 needs a block of five memory locations

to be reserved. These are to contain the low
and high bytes of the address of another block
of memory (to hold the input string), the
maximum length of the string, and the mini-
mum and maximum ASCII values allowed.
Line 220 reserves this block at location
PBLOCK, and Line 230 reserves room for a
string of 100 characters at location STRING.
Lines 240 to 260 set up the processor's
registers; the address PBLOCK is placed in X%
and Y%, and A% is set to 0. Lines 270 and 280
place the address STRING into the first two
locations in PBLOCK. Lines 290 to 310 place
the address of the last three locations in
PBLOCK into LTH, MIN and MAX.

After all this work, FNINLINE is simple. In
Lines 340 to 360, the query indirection
operator (?) is used to POKE the function's
parameters in the memory locations LTH, MIN
and MAX. Line 370 does the OSWORD CALL.
In Line 380, the string indirection operator
($) is used to get the input string from the
block STRING.

Lines 10 to 190 are an example of the use of
this general-purpose input routine. The
crucial part is Line 60, where A$ is set to the
function FNINLINE. The values of its argu-
ments specify an input length of 15 letters
with ASCII values between 32 (space) and
122 (z)* The rest of the program generates
anagrams of the input. Note the use of *FX 21,
0 in Line 170, which flushes the keyboard
buffer and protects the program from heavy-
handed users.

When you use an OS call, you are almost
programming in machine code* If anything
goes wrong with a machine code program, it
can erase itself, so it is advisable to SAVE your
programs before you RUN them.

WU!
The OS ROM routines are accessed using the
EXEC command, and, additionally, there are
many useful OS variables which can be
PEEKed.

CASSETTE HANDLING
All cassette routines access one of two main
subroutines. These are BLKIN—at address
47422 (42763 for Tandy)—which reads a
block of 255 bytes from tape, and BLKOUT-
address 47513 (42996 for the Tandy)—which
writes a block to tape. Of more use to the
BASIC programmer are the following
locations:

121—Gives the current status of cassette
I/O, and takes the values 0 (closed), 1 (open
input) or 2 (open output). This can be PEEKed
before attempting to open a file to avoid AO
(already open) errors crashing your program.

144—Used by the OS as the length of the

leader tone. If you have problems with auto-
matic level controls on your cassette, try
poking a higher value in this location.

149/150—These hold the value for the
delay after a MOTOR ON command is issued.
POKE 149,0: POKE 150,1 gives no delay, which
is useful when using AUDIO ON/OFF with
motor control.

TEXT MANAGEMENT
The next useful section of the OS is the test
I/O. This includes keyboard input, screen
and printer output* Frequently, a 'Press any
Key' message appears in programs, with a
loop such as:

100 IF 1NKEY$ = "" THEN 100

This line can be replaced with the much
shorter EXEC 34091 (44539 for the Tandy). If
you want a flashing cursor to appear as well,
use the alternative OS routine by EXEC 41194
(36038 for the Tandy)* location 135 contains
the ASCII code of the last key pressed, and by
poking 255 in locations 337 to 345 (338 to 345
for the Tandy) before reading INKEY$, an
auto-repeat can be achieved on the 32K
machines. Location 329 (282 for the Tandy) is
the (CAPS LOCKS flag. You can force lower case
entry by PO K Eing a 0 here. A value of 255 gives
upper case, and any other value gives upper
case and also disables the SHIFT 0 function*

The OS routine at 47735 (43304 for the
Tandy) will clear the text screen.

PRINTER VARIABLES
There are a number of variables which relate
to the printer that are useful to know. Lo-
cation 153 can be POKEd to alter the separ-
ation between items printed separated by a
comma; the default is 16. To make the
POS(— 2) function work correctly, location
155 should be POKEd with the printer line
width (for example, 40, 80, 132)* Location
330 contains the number of characters in the
'End-of-Line' (EOL) sequence. This is 1 by
default. Locations 331 to 334 are the EOL
characters; by default these are CR (13), LF
(10), 0, 0* These can be altered to suit a
particular printer. Location 328 is the auto-
linefeed flag. If set to 0, the micro assumes the
printer has automatic wrap-round (the de-
fault). Any other number causes the EOL
sequence to be printed after the number of
characters indicated by location 155.

Due to a bug in Dragon BASIC, the
computer will hang up if you try to access the
printer when one is not connected. Your
program can avoid this by using
(PEEK(&HFF22)AND1). This gives a value of 1
if no printer is connected, but 0 if one is
connected and ready.

GRAPHICS
With regard to graphics, no useful OS ROM
routines can be used from BASIC, but there
are a number of locations which can be
PEEKed and POKEd:

182—PMODE number of current graphics.
183/184—End address of current graphics*
186/187—Start address of graphics.
188—Start of page 1—the default is 6 but

may be higher with a disk operating system.
200—Current X coordinate of graphics
cursor.

202—Current Y coordinate of graphics
cursor.

ROUTINES OF INTEREST
EXEC 48466 (43486 for the Tandy)—Update
all joysticks—this removes the bug in the

JOYSTK command.
EXEC 46004 (40999 for the Tandy)—Does

the same as pressing RESET.
EXEC 46080 (41142 for the Tandy)—

Restart the BASIC; gives sign-on message
and NEWs program.

EXEC 36055 (46481 for the Tandy)—Does a
controlled Garbage Collection (or tidying up
of memory) of strings. It avoids the em-
barrassing pauses that often occur unex-
pectedly in programs of this type. The
amount of free string space remaining can be
calculated by

PEEK(35)*256 + PEEK(36) — PEEK(33)*256 —
PEEK(34)

By default, this is set to 200 bytes, keeping an
eye on this value in programs can avoid OS
(out-of-string space) ERROR occurring.

Willie had better watch out. Those
boulders are ready to roll. And in the
second part of this two-part article,
the rocks are going to come
crashing down on him

So far, Willie is in no danger from your
boulders* The rock-rolling routine is only
half finished and will probably crash if you try
to execute it* But he shouldn't be complacent*
This second part of the routine is going to set
the stones rolling* And Willie better get ready
to jump out of the way*

There are two main parts to this routine, both
of which were called from the routine in part
one of this article* The first part prints up the
boulder in its second position to make it look
like it is rolling and checks to see if it has hit
Willie* The second part blanks out a boulder
if it has reached the edge of the screen or the
surface of the water and starts it off again at
the top of the screen.

Once you have keyed it in and assembled it,
the boulder-moving routine should now
work. Remember, though, that you must have
the rest of the game in memory because other
routines—like print—are called.

org 59097
bma Id hl,(57356)

Id de,22528
add hl,de
Id a,(hl)
cp 40
jr nz,bnh
Id a,2
Id (57336),a

bnh Id h1,(57356)
Id a,42
Id bc,57128
call 58217
inc hl
call 58217
Id a,0
Id (57358),a
ret

bri Id h1,(57356)
Id bc,15616
Id a,45
call 58217
Id h1,223
Id (57356),hI
ret

In the last part of Cliffhanger you had to look
at the attribute of the character square under-

neath the boulder to see it had reached the
water or was flying through the air. But here
you want to look at the attribute of the
position the boulder is about to move into to
see if it has hit the man*

So the new boulder position is loaded into
HL from the memory location it is stored in,
57,356* Remember that the variable in HL
was decremented at the end of the first part of
this article. So when the routine is called
again, the boulder-position variable points to
the screen position one character to the left of
the boulder. The processor then branches to
this routine and prints the next boulder
picture in the same position to make it look
like it is rolling* So, in fact, this boulder
picture is printed in a screen position before
the other one*

DE is loaded with 22,528 and this is added
onto the contents of HL* The result—the
pointer to the attribute of the position at
which the boulder is about to be printed—is
left in HL.

The HL pointer is then used to pick up the
attribute of that character square and load it
into A, using direct addressing* This is
compared to 40, which is the attribute for
blue on cyan, the colour of the Willie against
the sky*

If the attribute of that square is not 40, and
the rock has not hit Willie, the jr nz,bnh jumps
the processor forward over the next to
instructions*

TO DIE, TO SLEEP
If Willie has been mortally wounded by the
oncoming rock, the variable in 57,336 has to
be set to 2*

This is done by loading 2 into the ac-
cumulator and loading the contents of the
accumulator into 57,336.

AND THE ROCK ROLLS ON
Whatever happens the rock rolls on one more
square* If Willie is not standing there, there is
no need to worry* But if he is, you must make
sure that he is well and truly crushed*

HL is loaded up with the new screen
position, A with 42—red on cyan—and BC
with 57,128, the start address of the data for
the second boulder picture (even though it is

printed first). The print routine is then called,
which prints up the first half of the boulder.
The HL is incremented—which moves the
pointer—one character square to the right—
and the second half of the boulder is printed
up by calling the print routine again*

You will see now that the rock moves half a
character square at a time. That is why this
second rock picture occupies two bytes of the
data table. This half-frame jump makes the
movement seem much smoother and more
continuous, while the two different pictures
give the impression that the rock is rolling.

ROLLING THE ROCK
OVERPRINT THE OLD ROCK

PRINTING UP THE NEW ROCK
CHECKING FOR THE EDGE

LOOKING FOR THE SEA

The 'CLIFFHANGER' listings published in this
magazine and subsequent parts bear absolutely no
resemblance to, and are in no way associated with,
the computer game called 'CLIFF HANGER' re-
leased for the Commodore 64 and published by
New Generation Software Limited.

You will notice, too, that incrementing the
rock in the routine given by the last part and
printing the two sides of the boulder here
back to front—from left to right—you pre-
serve the smooth advancement of the screen
print position in 57,356 and eliminate the
need to check if it is still on the ground.

All that remains to be done in this part of
the routine is to reset the boulder mode
variable to 0, so that the next time the routine
is called the processor takes the other branch.
This is done by loading the accumulator with
0 and loading it into 57,358.

ROCK 'N' RETURN
The bri routine is called from the routine
given in part one of this article when the rock
has reached the left-hand side of the screen or
has fallen in the sea. All it does is to blank out
the boulder and get it ready to start again.

The blanking out is done just like it was
last time. The boulder position is loaded from
57,356 into HL, BC is loaded with the data for
a space in ROM and A is loaded with 45
which corresponds to cyan on cyan. The print
routine is then called which prints a cyan-

coloured space over the boulder so that the
character square it occupied looks just like
any other piece of sky.

HL is then loaded with 223, which is the
screen position of the boulder when it is at the
top of the slope. This is then loaded back into
57,356 so that next time the rock-rolling
routine is called the boulder starts from up
there.

This routine moves the boulder four pixels to
the left, then down four pixels if the slope
drops away and there is space below the
boulder.

0 RG 22784
LDA SD015
AND #2
BEQ RET
DEC $C008
LDA $0015
CMP #57
BEQ MSB

YY 	DEC $C002
DEC $C002
DEC $C002
DEC $C002
JSR $5100
CMP #32
BNE CHECK
INC $C009
INC $D003
INC $D003
INC $D003
INC $D003

CHECK LDA $C008
CMP #4
BEQ XX

RET 	RTS
XX 	JSR $5850

RTS
MSB 	LDA #252

STA $D002
LDA $D010
AND #253
STA $0010
JMP YY

The first thing the boulder-moving routine
has to do is check whether a boulder is
needed. So the contents of the sprite display

enable byte in $D015 is loaded into the
accumulator and ANDed with 2* The boulder
sprite is sprite number one. ANDing the
enable byte with two checks to see whether bit
one is set—in other words, it checks to see
whether sprite one is switched on.

If it is not, then there is no point in going
on with this routine and the BEQ routine
jumps to the label R ET which marks the RTS
instruction.

MOST SIGNIFICANT BOULDER
The next things that have to be checked are
whether the boulder sprite is at the edge of
255 screen range and whether the MSB regis-
ter has to be updated* This boundary occurs
at 57 in our double density coordinates.

So the double density X coordinate in
SC008 is decremented and compared to 57.
If it is 57, the processor jumps to the MSB
update routine, if not it continues*

The MSB routine simply loads 252 into the
X coordinate of the sprite one, which is stored
in $D002. The sprite is moving four pixels at
a time-252 is 256 — 4. Then the contents of
the MSB register at $D010 are loaded into the
accumulator, ANDed with 253—that is,
255 — 2—and stored back in $D010. This
clears bit one, the most significant bit of the X
coordinates.

The processor returns to the main routine
after the boulder sprite X coordinate has been
decremented to move it along four pixels.

LEFT, DOWN AND OUT
The X coordinate of the boulder sprite in
$D002 is then decremented four times, mov-
ing it four pixels to the left* Then the routine
that checks what is in the character square
below it, at $5100, is called*

The result is returned in the accumulator*
This is compared to 32—the ASCII code of a
space. If there is no space the BNE instruction
branches the processor on over the next little
routine. But if there is a space below the
boulder, the processor continues*

In that case, the double density Y coordi-

nate in $C009 is incremented to move it down
the screen four pixels. And the sprite's Y
coordinate in $D003 is incremented four
times, moving it four pixels down the screen
too*

You then have to check whether the boul-
der has gone off the edge of the screen. So the
double density X coordinate, in $C008, is
loaded back into the accumulator and com-
pared with 4* It is not allowed to decrement as
far as 0 otherwise it would start appearing on

the other side of the screen*
If it has reached as low as 4, the processor

branches over the RTS instruction and jumps
to the subroutine at $5850 which resets the
variables to put the boulder back at the top of
the slope.

The following routine moves the boulder
down the slope. Do not forget to set up the
computer as normal before you start.

20 F0R PASS = OT03STEP3
30 P%= &1E1D
40 [0 PTPASS
50 .Move
60 JSRMDEE
70 LDA&88
80 LSRA
90 LSRA
100 CLC
110 ADC# 3
120 CMP&79

130 BCCLb5
140 LDA # 38
150 STA&78
160 LDA # 46
170 STA&79
180 LDA# 0
190 STA&75
200 STA&76
210 .Lb5
220 LDA&75
230 AND # &1F
240 BNELb1
250 I NC&76
260 LDX&76
270 LDA&187C,X
280 ASLA
290 STA&75
300 .Lb1
310 LDA&75
320 AND # &80
330 BEQLb2
340 DEC&79
350 .Lb2
360 LDA&75
370 AND # &40
380 BEQLb3
390 DEC&78
400 .Lb3
410 LDA&75
420 AND # &20
430 BEQLb4
440 INC&78
450 .Lb4
460 DEC&75
470 JSRMDEE
480 RTS
490] NEXT

BOULDER NO MORE
The first thing you have to do when you move
anything on the screen is delete it in its last
position—otherwise it will leave a trail of
images behind it.

Here the deletion is done simply by jump-
ing to the boulder-printing routine given in
the last part of Cliffhanger. If you look back

you will see that the first parameter following
the machine code GCOL equivalent in that
routine is a 3. This means that the logical
colour which follows in the second parameter
is Exclusively ORed with what is already on
the screen. So if this routine is called when a
boulder is on the screen, the boulder is
overwritten by the background colour and
disappears.

AT THE SEA SIDE?
When the boulder rolls down the slope you
don't want it to run on into the sea. The
height of the tide is stored in &88. But the way
the sea advances the parameter here is the Y
coordinate times four. So the two logical
shifts right divide it by four.

Three is then added. This is to prevent any
part of the boulder going into the water. The
result is compared to &79, which is the
current Y coordinate of the boulder.

If the boulder has not reached the sea yet,
the carry flag will not be set. So the BCC
instruction in Line 130 branches the pro-
cessor over the next routine.

BACK BOULDER
If the boulder has reached the sea though, this
comparison sets the carry flag and the branch
is not made and the processor goes on to the
next instruction.

The X and Y coordinates in &78 and &79
are reset by storing the coordinates of the start
position at top of the slope 38 and 46—in
them.

The location that controls the direction the
boulder is going in, &75, is reset by storing 0
in it. And the data pointer, which follows the
profile of the slope, is set back to 0 in the same
way.

A MOVING EXPERIENCE
The contents of &75 are loaded into the
accumulator and AN Ded with 1F* Although
&75 has just been cleared by storing 0 in it,
normally when the processor goes round this
loop it contains a byte of the data table at

&187C which was given in part four of
Cliffhanger on page 1040* This is the data
which controls the drawing of the first slope.
Using this to control the path of the boulder
as well means that you don't have to worry
about it falling down potholes.

The direction byte is ANDed with IF—it is
bits 0 to 4 which specify how many character
squares the slope is going to continue in the
same direction, remember.

The BNE instruction in Line 240 checks to
see whether it has finished moving in any
given direction. If it has the processor bran-
ches forward to Line 300. But if it hasn't the
processor proceeds to the next instruction.

In that case the data pointer in &76 is
incremented to move it onto the next byte of
slope data. The pointer is loaded into the X
register and is then used as an offset in the
LDA&187C,X instruction which loads the ac-
cumulator with the next byte of the slope
data.

The slope data is then shifted one place to
the left* This effectively doubles it, because
the boulder is going to move in half character
squares—rather than the whole character
squares the original slope is drawn in. The
shift will not affect the direction the boulder
takes—provided the right bits are picked
out—only the number of places the boulder is
moved in any one direction.

The direction and distance data is then
saved in &75 by the STA&75 instruction in
Line 290*

WHICH WAY NEXT?
The direction and distance data is reloaded
into the accumulator from &75. This is
needed because the processor may not have
come directly from the previous routine. The
instruction in Line 240 might have branched
the processor over it, direct to Line 300*

AN Ding with &80 looks at bit seven. If it is
not set and the slope is continuing flat, the
processor branches over the next instruction.
But if it is set and the slope is going down, the
Y coordinate of the boulder is decremented.

Next, AN Ding with &40 looks at bit six*
This tells the boulder whether it is going left
or not. If bit six is set the boulder's X
coordinate in &78 is decremented, which
moves it left* Otherwise this instruction is
skipped.

Then the data is ANDed with &20. Bit five
tells the boulder whether it is going right. If it
is set the boulder's X coordinate in &78 is
incremented. If not, this is skipped*

The contents of &75 are then decremented.
Effectively this only decrements the distance
part of the data in the five least significant
bits. If these had already been decremented to

zero new data would have been picked up—
there is a test in Lines 220 and 230.

Once the distance has been decremented
the processor jumps to the subroutine at
&1DEE* This is the routine that prints the
boulder on the screen that was given in the
first part. The processor then returns.

TESTING
To test this routine you will have to have the
program in memory as it calls data and
routines given in earlier parts. Then key in:

CALL &1 D77:CALL &1 D9B:CALL
&1DEE:REPEAT CALL &1CCB:CALL
&1 E1 D: FOR A% = 0 TO 600:NEXT:UNTIL 0

There are two main parts to this routine, both
of which were called from the routine in part
one of this article* The first part, which starts
at the label BOK, decides which of the two
boulder pictures to print, prints it on the
screen and flips the variable which controls
which boulder is printed so that the other one
is printed next time. The second part, BRI,
blanks out a boulder if it has reached the edge
of the screen or the surface of the water and
starts it off again at the top of the screen.

Once you have keyed it in and assembled it,
the boulder-moving routine should now
work* Remember, though, that you must have
the rest of the game in memory because other
routines—like CHARPR—are called*

0 RG 	19853
BOK 	LDA 18260

BEQ BMN
LDX 18253
LDU #18038
JSR CHARPR
CLR 18260
RTS

BMN 	LDX 18253
LDU #18014
JSR CHARPR
LDA #1
STA 18260
RTS

BRI 	LDX 18253
LDU #1536
JSR CHARPR
LDX #3070
STX 18253
RTS

CHARPR EQU 19402

To give the impression that the rock is rolling,
there are two rock pictures in memory* These
are printed on the screen alternately, so it
looks like the rock is turning*

To do this the processor has to know which

rock picture was printed last time. This is
done by consulting a flag in 18,260*

The contents of this location are loaded
into the accumulator* If they are 0, the
instruction BEQ BMI jumps onto the routine
that prints up one of the rock pictures. If not
the processor continues to print up the other.

ROCK IT
If the processor continues, X is loaded with
the contents of memory location 18,253. This
is the location which stores the position the
boulder is to be printed in* U is loaded with
the number 18,038. This is the start address
of one of the rock pictures.

The processor then jumps to the CHAR PR
subroutine which prints the last eight bytes of
the user stack in the screen position pointed to
by the contents of the X register.

The CLR 18260 instruction changes the flag
in 18,260. The processor came down this
branch because the flag in 18,260 was set.
This instruction clears it. So next time this
boulder routine is called, the processor will
take the other branch and print the other rock
picture. After the flag has been reset, the
processor returns*

The next part of this routine simply prints
up the other rock picture* The X register is
loaded up in the same way, but the user stack
pointer, U, is loaded with the start address of
the other rock picture, 18,104. Then the
CHAR PR routine prints it up on the screen*

The processor reached this part of the
routine because the flag in 18,260 was set to 0.
So 1 is loaded into the accumulator and stored
in 18,260. This flips the flag so that next time
the other rock picture will be printed.

The BRI routine is called when the boulder
gets to the edge of the screen or lands in the
water* It blanks out the boulder and starts it
off at the top of the mountain*

LDX 18253 loads up the X register with the
current screen position again, and U is loaded
with the start address of a piece of sky in the
screen memory. Then CHAR PR prints a piece
of sky over the boulder.

X is then loaded with 3070, the start
position of the boulder at the top of the slope,
which is then stored in 18,253, the variable
which carries the screen position where the
boulder is to be printed—next time.

To test this routine, LOAD in the rest of
Cliffhanger and RUN this BASIC program*

5 POKE 30000,57
10 EXEC 19426
20 EXEC 19781
30 FOR K=1T0100:NEXT:GOTO 20

Line 5 is required if you have SAV Ed the music
routine separately*

CUMULATIVE INDEX

An interim index will be published each week. There will be a complete index in the last issue of INPUT

A
Animation

of boulders in cliffhanger
1276-1281,1328-1332

of sprites
Commodore 64 	1259-1263

with LOGO 	1317-1320
Applications

horoscope program 1245-1253
room planner program

1269-1275,1308-1313
Artificial intelligence 1264, 1294

B
Basic programming

moving colour sprites
Commodore 64
	

1258-1263
operating system
	

1322-1327
recursion
	

1289-1295

C
Cavendish Field game

part 1—design considerations
and setting up UDGs

1254-1257
part 2—map and troop arrays

1282-1288
part 3—issuing orders

1301-1307
Cliffhanger

part 12—adding weather
1240-1244

part 13—rolling boulders 1
1276-1281

part 14—rolling boulders 2
1328-1332

Collision detection,
of sprites
Commodore 64
	

1263
Colour

of sprites
Commodore 64
	

1262

D
Desperate decorator game

1314-1316
DIMensioning arrays, in

Cavendish Field game 	1282
DRAW

absolute, how to create
Spectrum 	 1324

Drawing
in room planner program

1269-1275,1308-1313
with LOGO 	1296-1300

E
Edit mode, in LOGO 	1296
Envelopes, sound

loud and quiet in cliffhanger
Acorn 	 1243-1244

EXEC, Dragon, Tandy
to access OS 	1326-1327

F
Factorials

program to calculate
1291-1293

*FX commands, Acorn
to access OS 	1324-1326

G
Games

Cavendish Field 	1254-1257,
1282-1288,1301-1307

cliffhanger 	1240-1244,
1276-1281,1328-1332

desperate decorator 1314-1316
horoscope program 1245-1253
life 1237-1239

Garbage collection,
in LOGO 	 1299
using EXEC

	

Dragon, Tandy 	1327

	

Geometry, turtle 	1296
Graphics

in Cavendish Field game
1254-1256,1282-1288

sprites, Commodore 64
moving and storing 1258-1263
using LOGO

1296-1300,1317-1320

H
Horoscope program 1245-1253
Housekeeping, definition 	1323

IF .** THEN, in LOGO 	1300
Infix notation, in LOGO 1320

K
Keypresses

detecting by OS 	1323

L
Languages

LOGO 1264-1268,1296-1300,
1317-1321

Life game 	1237-1239
LOGO 	1264-1268,1296-1300

sprites, words and maths
1317-1321

M
Machine code

games programming
see cliffhanger; life game

Mathematical functions
with LOGO 	 1320

Memory
banks, range of

	

Commodore 64 	1258-1259
checking with LOGO 	1299
locations of VIC-II chip

	

Commodore 64 	1262

	

managing by OS 	1323-1327
storing sprites in

	

Commodore 64 	1258-1260

N
Nodes, memory,

in LOGO

0
Operating system

accessing
how it works

OS command line interpreter
(OSCLI)

Acorn
	

1324-1326

	

OSBYTE, Acorn
	

1324-1326

	

OSWORD, Acorn 	1326

P
Patterns, drawing in LOGO

1296-1300
Pointers, sprite

	

Commodore 64 	1260-1261
POKE

use of to access OS
Spectrum 	 1324

use of to enable
and store sprites

Commodore 64 	1259-1263
Prefix notation, in LOGO 1320

Primitives, definition 	1267
Procedures, in LOGO 	1268

use of to draw patterns
1296-1300

Punctuation, with LOGO
1320-1321

Q
Quicksort program,

recursive 	1293-1294

R
Recursion

in BASIC
	

1289-1295
in LOGO
	

1299-1300
Room planner program

part 1
	

1269-1275
part 2
	

1308-1313

S
Sprites 	Commodore 64

moving and storing 1258-1263
Sprites, LOGO 1317-1320
Subroutines, calling

by recursion 	1289-1295
SYS, Commodore 64

to access OS
	

1324

T
Towers of Hanoi program

1294-1295
Turtle, use of 	1266-1268

for graphics 	1296-1300

U
USR, to access OS

Acorn
	

1324-1326
Spectrum
	

1324

VIC-II chip
Commodore 64 	 1258

memory locations of 	1262

Wargames
see Cavendish Field

Word-handling
with LOGO 	1320-1321

1299

1324-1327
1322-1324

The publishers accept no responsibility for unsolicited material sent for publication in INPUT. All tapes and
written material should be accompanied by a stamped, self-addressed envelope.

LANGUAGES continues with a look at
PASCAL, a language that needs careful
thought before you touch the keys

In the fourth part of CAVENDISH
FIELD, continue to enter the
programming that will enable you to
fight the good fight on the battlefield

In the arcade-type game that's really
on the move, Willie learns how to walk in
this part of CLIFFHANGER

If you find that writing music is a chore,
stave off the blues with a noteworthy
MUSIC COMPOSER program

Find out about the techniques for SAVING
INFORMATION from a program

L.1 See if you can outguess the computer when you
try to MATCH THAT

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36

