
A MARSHALL CAVENDISH 43 COMPUTER COURSE IN WEEKLY PARTS

LEARN PROGRAMMING - FOR FUN AND THE FUTURE

Vol. 4 	 No 43

APPLICATIONS 29

dffifaMPOSER PROGRAIUmimilim

Master micro music without fuss

MACHINE CODE 45

.reemsrarnewiter9.•...
- 11111 CLIFFHANGER: STEPPING OUT 	1338

Start the routines that allow Willie to walk and jump

GAMES PROGRAMMING 46

WARGAMING: INTO BATTLE 	 1346

Add the combat routines and start to play the game

LANGUAGES 4

PUTTING TOGETHER PASCAL 	 1352

The basics of a versatile and structured language

GAMES PROGRAMMING 47

MATCH THAT! A COMPUTER PUZZLE 	1356

Try to guess the patterns that the computer generates

BASIC PROGRAMMING 86

FILE IT—DON'T FORGET IT 	 1358

The mechanics of saving information out of a program

INDEX
The last part of INPUT, Part 52, will contain a complete, cross - referenced index.
For easy access to your growing collection, a cumulative index to the contents
of each issue is contained on the inside back cover.

PICTURE CREDITS
Front cover, Graeme Harris. Page 1333, George Logan/Kuo Kang Chen. Page
1334, George Logan. Page 1336, George Logan/Spectrum. Pages 1338, 1340,
1342, 1344, Phil Dobson. Pages 1347, 1348, Graeme Harris. Pages 1352, 1353,
1355, Gary Wing. Page 1357, George Logan. Pages 1359, 1362, Jeremy Gower.

© Marshall Cavendish Limited 1984/5/6
All worldwide rights reserved.

The contents of this publication including software, codes, listings,
graphics, illustrations and text are the exclusive property and copyright of

. Marshall Cavendish Limited and may not be copied, reproduced,
transmitted, hired, lent, distributed, stored or modified in any form
whatsoever without the prior approval of the Copyright holder.

Published by Marshall Cavendish Partworks Ltd, 58 Old Compton Street, London W1V 5PA,
England. Typeset by MS Filmsetting Limited, Frome, Somerset. Printed by Cooper Clegg
Web Offset Ltd, Gloucester and Howard Hunt Litho, London.

HOW TO ORDER
YOUR BINDERS
UK and Republic of Ireland:
Send £4.95 (inc p & p) (1R£5.95) for
each binder to the address below:

Marshall Cavendish Services Ltd,
Department 980, Newtown Road,
Hove, Sussex BN3 7DN

Australia: See inserts for details, or
write to INPUT, Times Consultants,
PO Box 213. Alexandria, NSW 2015

New Zealand: See inserts for details, or
write to INPUT, Gordon and Gotch
(NZ) Ltd, PO Box 1595, Wellington
Malta: Binders are available from local
newsagents.

There are four binders each holding 13 issues.

BACK NUMBERS
Back numbers are supplied at the regular cover price (subject to availability).

UK and Republic of Ireland:
INPUT, Dept AN, Marshall Cavendish Services,
Newtown Road, Hove BN3 7DN

Australia, New Zealand and Malta:
Back numbers are available through your local newsagent.

COPIES BY POST
Our Subscription Department can supply copies to any UK address regularly at £1.00 each.
For example the cost of 26 issues is £26.00; for any other quantity simply multiply the number
of issues required by £1.00. Send your order, with payment to:

Subscription Department, Marshall Cavendish Services Ltd,
Newtown Road, Hove, Sussex BN3 7DN

Please state the title of the publication and the part from which you wish to start.

HOW TO PAY: Readers in UK and Republic of Ireland: All cheques orpostal orders
for binders, back numbers and copies by post should be made payable to:

Marshall Cavendish Partworks Ltd.

QUERIES: When writing in, please give the make and model of your computer, as
well as the Part No., page and line where the program is rejected or where it does
not work. We can only answer specific queries— and please do not telephone. Send
your queries to INPUT Queries, Marshall Cavendish Partworks Ltd, 58 Old
Compton Street, London WI V SPA.

INPUT IS SPECIALLY DESIGNED FOR:
The SINCLAIR ZX SPECTRUM (16K, 48K,128 and +),
COMMODORE 64 and 128, ACORN ELECTRON, BBC B
and B+,and the DRAGON 32 and 64.

In addition, many of the programs and explanations are also
suitable for the SINCLAIR ZX81, COMMODORE VIC 20, and
TANDY COLOUR COMPUTER in 32K with extended BASIC.
Programs and text which are specifically for particular machines
are indicated by the following symbols:

SPECTRUM 16K,
48K,128, and + -I] COMMODORE 64 and 128

El ACORN ELECTRON, 114
BBC B and B+ 	 - — DRAGON 32 and 64

T 	 TRS80 a um C4 VIC 20 	TCOLODUYR COMPUTER

WHAT IS A MUSIC COMPOSER
HOW TO ENTER THE NOTES

PLAYING A TUNE ON
THE KEYBOARD

CREATING A PIECE OF MUSIC

With this handy package, your
computer becomes a notebook for
your musical ideas—and a band to
play back the masterpieces which
you have just created
There are two ways of getting your computer
to play a tune, either by encoding the tune in
numbers the computer understands and writ-
ing a program to play it, or by using a music
composer program that takes care of all the
programming for you* All you have to do is
enter the music*

Several articles in INPUT have shown you
how to program your computer to play a piece
of music. This is not too difficult but you do
need a good knowledge of the BASIC sound
commands—which often do not bear much

relationship to music. Usually these require
several numbers to define each note and you
need to remember—or look up in the
manual—the correct values for pitch, ampli-
tude, duration and so on. Programming the
Dragon and Tandy to play music is easier
than the other computers but even with these
you still have to deal with all the other details
of programming.

Another problem with writing a program
to play music is that it is very difficult to alter
or edit the tune later on and you can't hear
how it sounds until the whole tune has been
entered* Also, the music you've created is tied
to the program and you need to write a new
program for each new piece of music*

The music composer takes care of all these
things for you leaving you free to concentrate

on the music itself. And you don't need to
know anything about programming in order
to use it*

Most of the programs are quite long so they
have been split into three parts* Enter the first
part now and SAVE it ready to add the second
part next time.

ENTERING THE NOTES
Once you've loaded the complete music com-
poser into your computer you can enter a tune
in a variety of ways. The exact method is
described below for each computer, and there
will be more detailed instructions with the last
part of the program. But whichever method is
used, you can alter the tune by changing,
inserting or deleting notes until it sounds just
right* And you can replay it at any time to

hear how you are getting on. You can also
alter the tempo of the tune and change the
octave. The Acorn and Commodore 64
programs also let you alter the sound of the
note so you can even choose which 'instru-
ment' plays the tune.

The Spectrum and Commodore 64,
Dragon and Tandy programs all work in a
similar way. You can choose whether you
enter the notes by typing in their name such as
A or F (the Spectrum and Commodore use a
simple code) or you can choose to play the
keyboard like a piano, with the computer
automatically remembering the notes. You
can mix the two methods if you like, playing
parts of the tune and entering other parts one
note at a time.

The Vic program uses the Super Expander
cartridge which has many of the music com-
poser routines already available. The tune is
entered by typing in the names of the notes.
You cannot enter notes by playing the key-
board, but you can hear them as you type in
their names.

The Acorn program is quite different and
is designed to make use of the high resolution
graphics available on the BBC and Electron.
Instead of entering the names of the notes,
you are presented with musical staves and a
selection of notes, rests and clefs which you
can position on the staves using a few simple
keypresses. You can very quickly produce a
professional-looking musical score that you
can replay using various instruments. It is
also very easy to edit. If you insert or delete
any notes the remaining notes automatically
move to make room or close up the space.

Full instructions on the facilities will be
given as the program develops.

1 0 BORDER 0: PAPER 0: INK 7: CLS
40 LET maxnotes=1500: LET ct= 0: LET

tempo = .1: POKE 23609,128: POKE
23658,0: DIM m(35)

95 FOR i=1 TO 35: READ m(i): NEXT i
100 DIM t(maxnotes + 1): GOTO 110
105 CLS : PRINT "Please wait. Tune being

cleared"
110 FOR i =1 TO maxnotes: LET t(i) = 0:

NEXT i
190 CLS
200 PRINT INVERSE 1;AT 0,9; " MAIN

MENU "; INVERSE 0; "'TAB 5;"[1] — Play
on keyboard""TAB 5;"[2] — Enter
Notes""TAB 5;"[3] — Replay Tune"

210 PRINT 'TAB 5;"[4] — Edit Tune""TAB 5;
"[5] — Clear Tune'"'TAB 5;"[6] — Save
Tune'"'TAB 5; "[7] — Load Tune"

270 PRINT "TAB 3;"Enter Option — (Q) to
Exit";

300 LET A$=1NKEY$: IF A$=`"' THEN
GOTO 300

310 LET A= CODE (A$)
320 IF (A<49 OR A>55) AND A< >113

AND A< >81 THEN GOTO 190
330 IF A=49 THEN GOSUB 1000
340 IF A=50 THEN GOSUB 2000
350 IF A=51 THEN GOSUB 3000
360 IF A=52 THEN GOSUB 4000
365 IF A=53 THEN GOTO 105
366 IF A=54 THEN GOSUB 5000
367 IF A=55 THEN GOSUB 6000
370 IF A=113 OF A=81 THEN ST0P
380 GOTO 190
1000 CLS
1001 LET len =1: LET1$="Semi quaver"
1002 INPUT "[E]XTEND LAST TUNE OR

[S]TART ❑ ElEINEW TUNE ?";i$
1003 IF i$< >"e" AND i$< >"s" THEN

GOTO 1002
1004 LET num =1: IF i$="e" THEN LET

num = ct*2 +1: LET tn = num
1005 IF i$="s" THEN LET ct= 0
1010 PRINT "Play Notes on the Keys

from"'"<Q> — lowest note
to' < M > — highest note"'"Two and a
half Octaves are'""available, middle C being
key l''

1060 PRINT AT 17,0;"Note length ="
1070 FOR i=1 TO 100: NEXT i
1075 LET 0$ =""
1080 LET N$=1NKEY$: IF N$="" THEN

GOTO 1075
1085 IF N$= 0$ THEN GOTO 1080
1090 LET N =CODE (N$)
1091 IF N=33 THEN LET len =1: LET

1$ ="Semi quaver"
1092 IF N=64 THEN LET len =2: LET

1$ ="Quaver"
1093 IF N =35 THEN LET len =4: LET

1$ ="Crotchet"
1094 IF N=36 THEN LET len =8: LET

1$ = "Minim"
1096 IF N =37 THEN LET len =16: LET

1$ ="Semi-breve"
1097 PRINT AT 17,13;" ❑ ❑ ";3;

"DOILIEE"
1099 IF N < >32 AND N<>13 THEN GOTO

1109
1100 IF i$="s" THEN LET CT= INT

(num/2): RETURN
1102 LET CT= CT+ INT ((num — tn)/2):

RETURN
1109 IF N <60 THEN LET index= N —47
1110 IF N>90 THEN LET index= N —87
1112 IF N> =60 AND N< =90 THEN GOTO

1080
1115 IF index = 5 OR index = 9 OR index =16

OR index = 20 OR index = 21 THEN GOTO
1080

1116 IF index = 2 THEN LET t(num)= len: LET

t(num + 1) = —4: GOTO 1127
1118 IF index< =0 THEN GOTO 1080
1120 BEEP len/10,m(index)
1125 LET t(num)= len: LET

t(num +1) = m(index)
1126 PRINT AT 15,0;INT (num/2)+1;

" Notes in store"
1127 LET num = num +2
1130 LET 0$= N$
1140 GOTO 1080

10 POKE 53280,11:POKE 53281,0
20 PRINT-EigggiggagggggAggigg

g"TAB(11)"OCHOPIMPJ
piStlYEINIITHIH"

30 PRINT TAB(11)" ❑❑❑❑❑❑❑❑

❑❑❑❑❑❑❑❑❑ "

40 NS= 0:TEMPO = 90:SID = 54272
100 DIM WF(2),AT(2),DE(2),SU(2),RE(2),

CR(2),V0ICE(2,500)
110 DIM PW(2),FR(2),SY(2),RM(2),FI(2),

NS(2),H(96),L(96)
120 FOR 1=1 TO 96:READ H:

NW= H:NEXT I
130 FOR 1=1 TO 96:READ L:

L(I) = L:NEXT I
140 GOSUB 2005:GOSUB 9000:

GOSUB 6000:GOSUB 2050
200 PRINT "ID gg C"TAB(9)"COMSYNTH

OPTIONS MENU"
220 PRINT"ggill0 - PLAY ON

KEYBOARD/REPLAY TUNE"
230 PRINT"g1 - CHANGE VOICE 1

PARAMETERS"
240 PRINT"Dg2 - CHANGE VOICE 2

PARAMETERS"
250 PRINT"g3 - CHANGE VOICE 3

PARAMETERS"
260 PRINT"M4 - CHANGE GENERAL

PARAMETERS"
270 PRINT"g15 - ENTER NOTES"
280 PRINT"gg6 - EDIT TUNE"
305 PRINT"g7 - INITIALISE PARAMETERS

OF ALL VOICES"
310 PRINT"g8 - SAVE TUNE"
315 PRINT"g9 - LOAD TUNE"
320 PRINT"NDAMIDIDIMENTER

OPTIOND]pj — RI pi (Q) TO EXITH

325 R=0
326 LINE= 3
330 GET A$:IF A$="" THEN 330
335 IF A$="Q" THEN SYS 58648:END
340 A = ASC(A$) -ASC("0")
345 IF A<0 OR A>9 THEN 330
350 ON A + 1 GOSUB 2500,3000,3000,

3000,4000,7000,7500,2000,9300,9400
360 GOTO 200
1000 PRINT "DOPTION El";A;" ❑

SELECTED"
1010 RETURN
2000 PRINT "0"
2005 PRINT " ITIgg"TAB(12)"> NJ

INITIALISED] <":FOR 1=0 TO 2
2010 WF(1)= 0:ATM =0:DE(1)=0:

SUM =15
2020 REM =0:PW(I) = 2048:FR(I) =4291:

SY(I)= 0
2030 RM(I)=0:FI(I)=0
2040 NEXT I
2045 FF=1500: FR=0: VOL = 15: LP =0:

BP= 0: HP=0: V3=0
2048 GOSUB 6000:RETURN
2050 FOR 1=0 TO 2
2060 FOR J=0 TO 500
2070 VOICE(I,J) = 0
2080 NEXT J,I
2090 RETURN
2500 PRINT "OPRESSDJ<P> WO PLAY

+ pj [SHIFT KEY]ljTO STORED]
<R> 	REPLAYDI -"

2510 GET D$:IF D$="" THEN 2510
2520 IF D$< >"R" AND D$ < >"P" AND

D$< >"n" THEN RETURN
2521 IF D$="R" THEN 2900
2522 IF D$="P" THEN 2533
2523 INPUT "CINVOICEDJ";VO:INPUT

"OCTAVE pi " ; oc
2533 PRINT " p PLAY ON TOP 2 ROWS OF

KEYBOARD"
2534 PRINT"DPOICE 1 ONLY SOUNDS"
2538 PRINT"gg gg < RETURN > TO FINISH"
2540 N = PEEK(203):GET Z$:IF N =64 THEN

2560
2550 GOTO 2570
2560 POKE SID + 4,CR(0):GOTO 2540
2570 IF N=1 OR N=60 THEN RETURN
2580 NN =12:N2= 0:IF N=62 THEN

HF=8:LF=97:NN=0
2590 IF N=59 THEN HF =8:

LF =255:NN =1
2600 IF N =9 THEN HF = 9:

LF =104:NN =2
2610 IF N=8 THEN HF=9:

LF=247:NN =3
2620 IF N=14 THEN HF =10:

LF = 143:NN = 4
2630 IF N=17 THEN HF=11:

LF=48:NN =5
2640 IF N=16 THEN HF=11:

LF =218:NN =6
2650 IF N=22 THEN HF =12:

LF =143:NN = 7
2660 IF N=19 THEN HF=13:

LF = 78:NN =8
2670 IF N=25 THEN HF=14:

LF =24:NN =9
2680 IF N=24 THEN HF=14:

LF =239:NN =10
2690 IF N=30 THEN HF = 15:

LF=210:NN =11
2700 IF N=33 THEN HF = 16:

LF=195:NN= 0:N2=1
2710 IF N=32 THEN HF =17:

LF=195:NN =1:N2=1
2720 IF N=38 THEN HF =18:

LF = 209: NN =2:N2 =1
2730 IF N=35 THEN HF=19:

LF= 239:NN = 3:N2 =1
2740 IF N=41 THEN HF = 21:

LF=31:NN=4:N2=1
2750 IF N=46 THEN HF= 22:

LF= 96:NN =5:N2=1
2760 IF N=43 THEN HF = 23:

LF=181:NN=6:N2=1
2770 IF N=49 THEN HF= 25:

LF=30:NN =7:N2=1
2780 IF N=48 THEN HF = 26:

LF=156:NN = 8:N2 =1
2790 IF N=54 THEN HF = 28:

LF=49:NN = 9:N2=1
2800 IF N=51 THEN HF= 29:

LF=223:NN =10:N2 =-- 1
2803 IF NN< >12 THEN 2810
2805 GOTO 2540
2810 POKE SID,LF:POKE SID +1,HF:

POKE SID +4,CR(0) +1
2811 IF D$="P" THEN 2540
2812 M =VAL(STR$(NN) + STR$(0C+ N2)):

V = VAL(STR$(M) + STR$(VO)) — 	0:
V =V —1

2814 VOICE(V,NS(V))= M:NS= NS+ 1:NS
(V) = NS(V) +1:WAIT 197,64

2820 GOTO 2540
2900 CT= 0
2904 IF VOICE(0,CT) < > 0 OR VOICE(1,

CT) < >0 OR VOICE(2,CT)<> 0
THEN 2908

2905 POKE SID +4,CR(0):POKE SID +11,
CR(1):POKE SID +18,CR(2)

2906 RETURN

Ell
Enter and SAVE these two programs
separately.

10 VDU23,255,1,3,2,6,4,4,2,2
20 VDU23,254,192,64,96,32,64,64,128,128
30 VDU23,253,2,3,2,6,10,18,39,42
40 VDU23,252,128,0,0,0,0,0,192,32
50 VDU23,251,74,82,74,74,66,34,18,15
60 VDU23,250,16,16,16,16,16,32,32,192
70 VDU23,249,2,2,2,18,18,8,0,0
80 VDU23,248,15,16,32,112,112,0,0,0
90 VDU23,247,192,33,16,16,8,9,16,16
100 VDU23,246,0,0,0,1,2,12,56,0
110 VDU23,245,32,64,128,0,0,0,0,0
120 VDU23,243,0,0,124,130,130,130,124,0
130 VDU23,242,0,0,124,254,254,254,124,0
140 VDU23,241,0,0,0,0,0,0,0,0
150 VDU23,240,0,124,124,0,0,0,0,0
160 VDU23,239,0,0,0,0,0,0,124,124
170 VDU23,238,0,0,0,0,0,0,0,0
180 VDU23,237,0,0,32,16,8,8,16,48
190 VDU23,236,16,8,56,32,16,8,0,0
200 VDU23,235,0,0,64,120,16,16,32,32
210 VDU23,234,64,64,128,0,0,0,0,0

220 VDU23,233,0,0,64,120,16,16,160,96
230 VDU23,232,64,64,128,0,0,0,0,0
240 VDU23,231,36,36,126,36,36,36,126,36
250 ENVELOPE1,1,0,0,0,1,1,1,100, —2,0,

—1,120,70
260 ENVELOPE2,1,1, —1,0,2,2,1,100,— 2,0,

—1,120,70
270 ENVELOPE3,1,1, —1,0,4,4,1,100, — 2,0,

—1,120,70
280 ENVELOPE4,1,0,0,0,1,1,1,127,1, —1,

—126,120,70
290 ENVELOPE5,1,0,0,0,1,1,1,127,1, —1,

—127,120,100
300 CHAIN"COMP"

Call this next program "COMP".

10 "KEY0IMMODE61W
FX41M*FX12,01M

20 MODE4
30 PROCInit
40 REPEAT
50 PROCM(0,13)
60 IFA%= 67PROCChangespeed
70 IFA%=68PROCDelete
80 IFA%=69PROCEnvelope
90 IFA%=73ANDF3%= 0ANDNO%<

LT% + 1 PROCInsert
100 IFA%=76PROCLoad
110 IFA%-80PROCPlaytune
120 IFA% = 81AN D F3% = 1TH EN

PROCInsertexit
130 IFA%=83PROCSave
140 IFA%= 84PROCTie(NO%-1,N0%)
150 IFA%=86PROCV
160 I FA% > 13ANDA% < 91GOT050
170 PROCno:IFNO%=LT%+1:UNTIL0
180 VDU5
190 IFI%<7THENPROCEnter
200 I FA% > 13ANDA% < 91GOT060
210 IFI%=12ANDF%PROCDrawtrebleclef

(SE%):S(0,N0%) = 256:S(1,N0%) = 0:
NO% = NO% + 1:F%= —1

220 IFI%=13ANDNOTF%PROCDrawbassclef
(SE%):S(0,N0%)=257:S(1,N0%)= 0:
NO%=NO%+1:F%— —1

230 IFI%= 120RI%=13THENPR0Cno:GOTO 50
240 IFI%>6ANDI%<12PR0CDrawrest

(I%-7,SE%+64):S(0,N0%) = 251 + I%:
S(1,N0%) = I%

250 NO%= NO%+ 1
260 IFX% < = 1100GOT0320
270 IFH% < > 2MOVE65,SE% — 60:PRINT;

NO%
280 IFH%=2PROCDisplay(E%(1),NO%-1):

H%= 1:IFX%>100GOT0320
290 X%=20:H%=H%+1:SE%=ST%(H%)
300 IFF%PROCDrawbassclef(SE%)ELSE

PROCDrawtrebleclef(SE%)
310 E%(H%) = NO%
320 PROCno:VDU5:UNTIL0
330 DATA 11,7,4,2,1

340 DATA 1,2,3,4,5,6,8,9,10,12,16,17,18,20,
24,32

350 DATA —16,-12,0,6,16,23,32,39,48,55,
64,71,80,93,97,108,112,124

360 DATA 5,13,21,25,33,41,49,53,61,69,73,81,
89,97,101,109,117,121,129,137,145,149,
157,165,169,177,185,193,197,205

370 DEFPROCRead
380 D$="":REPEAT
390 FORC%= 0T0100:NEXT: * FX15,1
400 D%= GET
410 IFD%=13THEN470
420 IFD%< 480RD% > 57AND(D%<1270R

LEN(D$) =0):VDU7:GOT0390
430 IFD%=127D$=LEFT$(114,LEN

(D$)-1):GOT0460
440 IFLEN(D$) =3VDU7:GOT0390
450 D$=D$+CHR$(D%)
460 VDUD%
470 UNTILD% = 13
480 D%=VAL(D$)
490 ENDPROC

Tandy users will need to make one or two
changes to this program and these will all be
given with part three.

10 CLEAR 5000
20 MX = 250:R1$ = "whqes":R2$="12345":

R3$="abcdefgCDFGAp":NY$="Q2W3
ER5T6Y7U1900P@AZSXDCVGBHNMK, L.;

A"+CHR$(10) + CHR$(8) +
CHR$(9)+"0" + CHR$(21) + CHR$
(93) + CHR$(13) + CHR$(12)

30 DIM N$(MX),C$(12)
40 FOR 1=1 TO 5:READ LE$(I),

L2$(1):NEXT
50 FOR 1=1 TO 12:READC$(I):NEXT
60 DATA WHOLE,1,HALF,2,QUARTER,4,

EIGHTH,8,SIXTEENTH,16
70 DATA c,C,d,D,e,f,F,g,G,a,A,b
80 FOR 1=1 TO MX:N$(1)="****":

NEXT

90 NN = 0:0C$="3":TE=8:LE$="w0":
LE=1

100 CLS:PRINT@4,"MUSIC COMP0SER
MAIN MENU"

110 PRINT@96,"1: LOAD MUSIC FROM
TAPE"

120 PRINT"2: SAVE CURRENT MUSIC TO
TAPE"

130 PRINT"3: PLAY ON THE KEYBOARD"
140 PRINT"4: ENTER NOTES"
150 PRINT"5: CHANGE OVERALL TEMPO"
160 PRINT"6: LIST/EDIT NOTES"
170 PRINT"7: PLAY TUNE IN MEMORY"
180 PRINT"8: GLOBAL OCTAVE CHANGE"
190 PRINT"9: EXIT PROGRAM"
200 PRINT@454,"ENTER OPTION NUMBER";
210 A$=INKEY$:IF A$<"1" OR A$>"9"

THEN 210
220 OP = VAL(A$)
230 ON OP GOSUB 1900,2020,480,760,420,

1360,1560,1720,250
240 GOTO 100

250 CLS:PRINT" ARE YOU SURE
(Y/N) ?":POKE329,255

260 A$=INKEY$:IF A$< >"Y" AND
A$< >"N" THEN 260

270 IF A$="Y" THEN CLS:END ELSE100
280 PRINT@132,"NOTE ❑ ❑ ❑ OCTAVE ❑ ❑

❑ ❑ LENGTH"
290 RT= 0
300 FOR L=160 TO 320 STEP 32:

PRI NT@L:N EXTL:PRINT@160, —;
310 FOR L=NN —5 TO NN
320 IF L<1 THEN 410
330 PRINTUSING "# # 	❑ ";L;
340 A$= N$(L)
350 B$=LEFT$(A$,1):IF B$> ="a" AND

B$< ="g" THEN C$=CHR$(ASC
(B$) — 32) + "0" ELSE C$=
B$ +" #"

360 IF B$="p" THEN C$="— ❑ "
370 PRINT C$;" ❑❑❑❑❑❑❑ ";

MID$(A$,2,1);"0 ❑ ❑ ❑ 0111";
380 PRINT LE$(INSTR(R1$,MID$

(43, 1)));
390 IF MID$(A$,4,1)="." THEN PRINT"."

ELSE PRINT
400 IF RT< > 0 THEN RETURN
410 NEXT L:RETURN
420 CLS:PRINT@7,"CHANGE TEMPO

OPTION"
430 PRINT:PRINT"CURRENT TEMPO

IS";TE
440 PRINT@128,"ENTER NEW TEMPO

VALUE";:INPUT ST
450 IF ST= 0 THEN RETURN
460 IF ST <0 OR ST> 255 THEN 440
470 TE= ST:RETURN
480 CLS:POKE329,255:C=VAL(OC$):IF

C > 3 THEN C= 3:0C$= "3"
490 PRINT@7,"'0RGAN' PLAY MODE"
500 PRINT@64,"OCTAVE:";C;TAB(14);

"LENGTH:";LE$(1NSTR(R1$,LEFT$(LE$,
1)));

510 IF MID$(LE$,2,1)="." THEN PRINT"."
ELSE PRINT

520 PRINT@448,"UP/DN =OCTAVE ❑ ❑ ❑

❑ ❑ ELEFT/RT= LENGTHENTER =
MENU 0 0 ❑ 0 0 ❑ 0 El CLEAR =-
DELETE";

530 GOSUB280
540 IF NN =MX THEN PRINT@416,

"MAXIMUM NUMBER OF NOTES
ENTERED!";:FORD=1T010.00:NEXT:
RETURN

550 I$=INKEY$:IF 1$="" THEN 550
560 P=INSTR(NY$,I$):IF P=0

THEN550
570 IF P > 36 THEN600
580 OC$= MID$(STR$(C INT((P — 1)/

12)),2):1$ = C$(P —12*INT((P
1)/12))

590 GOT0700

Id a,45
Id de,514
call 58970
Id bc,57000
Id a,40
inc hl
Id de,258
call 58970
Id de,22592
add hl,de
Id a,(h1)
cp 45
jp z,mby
cp 43
jr z,mby
cp 15
jr z,mby

Id a,0
in a,254
bit 2,a
jr nz,mft
Id b,1
bit 3,a
jr nc,mlj
Id b,129

mlj Id a,b
Id (57335),a
jr mct

mft bit 3,a
jr nz,mct
Id a,1
Id (57334),a

mct Id h1,(57332)
Id de,191
sbc hl,de
jr nc,mor
Id a,1
Id (57336),a

mor ret

mma Id de,3
Id h1,1548
call 949
Id hl,(57332)
Id de,22561
add hl,de
Id a,(Wel

Until now Willie has been a sitting
target. It is time he started moving
about. In part one of this three-part
article, Willie takes his first faltering
steps on the cliff

Willie has suffered crushing boulders, pre-
cipitous potholes, fatal snake bites and
drowning in the sea. Now he has a chance to
fight back – well, to dodge the worst dangers
at least. In the next three parts of Cliffhanger,
you put together the routines that make Willie
run and jump so he can avoid the hazards*

The following program makes Willie walk
forward and test to see whether he has met
with any hazard—or reward. Don't forget,
there are brackets round the 254 if you are not
using the INPUT assembler.

org 59153
man Id a,(57335)

cp 0
jp nz,jmp
Id a,(57334)
cp 1
jr z,mma
Id h1,(57332)

dec hl
Id bc,16384

cp 43
jr z,mby
cp 44
jr z,mts
cp 42
jr z,mby
Id de,32
add hl,de
Id a,(h1)
cp 15

jr z,mby
cp 45
jr z,mby
cp 43
jr z,mby
Id hl,(57332)
Id a,40
Id bc,57016
Id de,514
call 58970

CHECKING BELOW
SCANNING THE KEYBOARD

WALKING FORWARD
CHECKING FOR BOULDERS

READY FOR NEXT CALL

The 'CLIFFHANGER' listings published in this
magazine and subsequent parts bear absolutely no

resemblance to, and are in no way associated with,

the computer game called 'CLIFF HANGER' re-
leased for the Commodore 64 and published by

New Generation Software Limited.

inc hl
Id (57332),hI

mts Id a,f)
Id (57334),a
ret

You can call this routine even though you
don't have the rest of the man-moving rout-
ines in memory. Although this program calls
them, it will not crash if you try to execute it
before they are entered. A return, which will
be overwritten later, is added at the end so
that even if the missing routine is called, no
damage will be done.

WALKABOUT
Memory location 57,335 contains the variable
that tells Willie whether he is going to jump or
not. The contents of this location are loaded
up into the accumulator and compared to
zero. If not zero, the man is going to jump
and the processor jumps off the jmp routine.
This is not in place at the moment and the
processor simply jumps to a ret and returns to
the place from which the routine was called.

If the man is not about to jump the
processor continues* The contents of memory
location 57,334 are then loaded into the
accumulator* This location contains the so-
called man-mode. There are two pictures of
Willie—one with his legs together and one
with his legs apart* When he is standing still,
the picture with his legs together is printed
over and over again. But when Willie is
walking the two pictures are alternated. The
man-mode tells the processor which picture
to print up next.

The cp 1 instruction looks to see which
picture is to be printed up-0 or 1. If picture 1
is required—the legs apart—jr z,mma sends
the processor off to the routine that prints up
that picture. And if picture 0 is required the
processor continues.

THE INVISIBLE MAN
When Willie walks forward he opens his legs,
then moves forward one character space,
where he appears with his legs together. So an
algorithm for this would run: print Willie
with his legs closed, print Willie with his legs
open and print him with his legs closed again

one character square further forward. Willie
with his legs open is two characters wide, and
with his legs closed, he is only one character
square wide. So this gives a fairly smooth
movement*

But each time you print him with his legs
closed you have to overprint him with sky in
the square behind, otherwise you will get a
trail of Willies with their legs apart all across
the screen.

The instruction Id h1,(57332) loads Willie's
position—which is stored in memory location
57,332—into the HL register. This is then
decremented to move back one position.

BC is then loaded with 16,384. This is the
address of the top of the screen—where there
is sky. A is loaded with 45 and DE is loaded
with 514* The block print routine at 58,970 is
then called. Remember how this works. The
contents of HL are the screen position. BC
contains the data pointer. A specifies the
colour-45 is cyan on cyan. And DE fixes the
block size. 514 gives a block size of two by two
character squares* D contains the number of
rows that are in D and the number of columns
that are in E-2 x 256 + 2 = 514.

So when the block routine is called it prints
a block of two-by-two character square of
cyan sky in the position immediately behind
where you are about to print the new Willie.
In other words, it blots out the old Willie
who, with his legs apart, took up four charac-
ter squares.

WILLIE REVISITED
Now you have to print up the new Willie with
his legs together. The data for that starts at
57,000. So BC is loaded with 57,000. A is
loaded with 40, which is blue on cyan,
Willie's colours.

HL is incremented to move it back again to
Willie's new position—it was decremented
earlier, remember. And DE is loaded with
258—giving a block of one by two
(1 x 256 + 2 = 258), the size of Willie with his
legs together. The block routine at 58,970 is
then called again to print him up.

WHAT'S WILLIE WALKING ON?
As Willie has just moved forward one charac-
ter square it would be a good idea to see what

mby Id a,2
Id (57336),a
ret

jmp ret

he is now standing on. If he has walked onto a
snake, a pothole or is attempting to walk on
water, you're going to have to tell Willie that
he is dead.

The first thing to do is to check the
attribute of the square under Willie's feet.

The attributes file starts at 22,528. The
point presently in HL gives the screen po-
sition of Willie's head. But as you want the
attribute of the square under his feet, which is
two character squares down from there, you
must add an extra 64.

So 22,592 is loaded into the DE register
pair and added to HL. The result of the add
hl,de instruction is always left in HL. The
contents of the memory location now pointed
to by HL are loaded into A. So the accumula-
tor now contains the attribute of the charac-
ter square immediately under Willie's feet*

This is then compared with 45, cyan on
cyan, the attribute of sky which is what you
have filled the pothole with. If 45 is found, the
jr z,mdy instruction sends the processor off
to a little routine which makes Willie die.

If what is under Willie's feet is not sky, the
contents of the accumulator are compared to
43—magenta on cyan, the attribute for the
snake—and 15—white on blue, the attribute
for sea. If either of these is found the
processor goes off to the mby routine again
and kills Willie. If not, the processor goes
sailing through, missing that routine, and
Willie is saved.

WILL 'E JUMP?
Printing Willie on the screen one place for-
ward with his legs together is effectively the
end of the action. And provided he is not
dead, now is the time to check whether Willie
is about to move again. This is done by use of
the in command (see page 731).

First, A is loaded with 0. This means the
whole keyboard is going to be scanned so that
any block of keys can be used to control
Willie's movement. M and N or J and K or U
and I, or any of the other appropriate combin-
ations can make Willie jump and walk, though
on the instruction page, M and N were
specified.

The in command is then used to look at
port 254. And the instruction bit 2,a looks
at bit two to check to see whether the M—or J
or U—key has been pressed. All the bits are
usually held high—that is, set to 1—but when
they are pressed they are reset to 0* So if the
M key has been pressed, bit two is 0.

In that case, the processor ignores the jr
nz instruction. But if the key has not been
pressed, the processor jumps on to the mft
routine.

If the key has been pressed and Willie is

required to jump, B is loaded with 1. Then bit
three is tested in the same way.

If the N key is not pressed and the bit three
is set to 1, the jr nz instruction makes the
processor jump the next instruction. But if it
is pressed, the jr nz instruction does not
operate and B is loaded with 129*

So if the M key alone is pressed and Willie
jumps but does not move forward, B contains
1. And if the M and N keys have been pressed
and Willie jumps and moves forward, B
contains 129.

Whichever route the processor takes, the
contents of B are transferred into A and then
loaded into memory location 57,335. This,
you'll remember, is the memory location that
was checked at the beginning of this routine to
see whether Willie was going to jump or not*

The significance of these numbers 1 and
129 will be revealed in the next two parts of
Cliffhanger which deal with jumping and
jumping forward.

The jr mct instruction makes the processor
jump over the next little routine.

FORWARD MARCH!
If M has not been pressed, the processor
jumps to the mft routine. This checks to see
whether the N key has been pressed on its
own—in other words, if Willie is not jumping
but simply marching forward.

Bit three is tested again to see if the N key
has been pressed. Note that the input port 254
is still in the accumulator—the processor
jumped straight here after bit two was tested.

If it hasn't been pressed, the jr nz instruc-
tion jumps straight on to the next routine. But
if it has been pressed, A is loaded with 1 and
this is stored in memory location 57,334. This
is the so-called man-mode location which was
checked at the beginning of the routine to see
which picture of Willie was to be printed up
on the screen. A 1 in this location means that
Willie is to be printed with his legs open—in
other words, he is about to walk forward.

REWARDING?
There is just one last thing to check—has
Willie reached his just reward?

Willie's position is stored in memory loc-
ation 57,332* And the contents of this location
are loaded into HL. Then 191 is loaded into
DE-191 is the screen location where the
reward is printed.

The contents of DE are subtracted from
the contents of HL* At this point, if
Willie has not reached the reward the jr nc
instruction jumps forward to the ret at the end
of this part of the routine and returns. But if
there is a carry, Willie has reached his
reward and I is loaded into the accumulator

and stored in 57,336. This is the memory
location that is checked by the initialization
routines and tell them to increment the score
and start the next screen.

That done, the processor hits the ret and
returns*

ONE PACE FORWARD
DE loaded with 3 and HL with 1548. Then
the BEEP routine at 949 is called. This makes
the walking sound effect* For the significance
of the parameters 3 and 1548 see page 732.

But before Willie goes marching off it
would be as well to check what is in front of
him. His position is loaded into the HL
register and 22,561 is added to it. Adding
22,561 points to the attribute of the character
square 33 after the one pointed to by the
contents of 52,332. That points to Willie's
head, so 33 on is one square down—where his
feet are—and one square forward—in other
words, the square directly in front of his foot.
This is then loaded into the accumulator by
the Id a,(hI).

The attribute of the square in front of
Willie's foot is then compared to the attribute
for the sea-15, white on blue; a snake-43,
magenta on cyan; the slope-44, green on
cyan; and the boulder-42, red on cyan. If the
attribute for the sea, a snake or a boulder is
found, the jr z,mdy instruction jumps the
processor on to the routine that kills Willie.
And if the attribute for the ground is found,
the processor jumps on to a routine which
keeps Willie stationary. Obviously, if there is
ground in front of him, Willie cannot move
until he is told to jump.

But checking the character square in front
of Willie is not enough. You have to check the
character square below the position he is
about to move to as well. So DE is loaded with
32 and this is added to the contents of HL.
This moves the pointer there 32 character
squares along, so that it ends up one square
below the place it started from.

The attribute of that character square is
loaded into the accumulator by the Id a,(hI)
instruction and the contents of the ac-
cumulator are compared to the attribute for
the sea, a space and a snake again. If any of
these are found, the jr z,mdy jumps on to
the die routine.

Assuming Willie is still alive, HL is loaded
with Willie's original position again. A is
loaded with 40—Willie's colour. BC is loaded
with 57,016—the address of the beginning of
the data for the picture of Willie with his legs
apart. And DE is loaded with 514—Willie
with his legs apart takes up two by two
character squares* Then the block printing
routine at 58,870 is called which prints up on

the screen the picture of Willie with his legs
apart.

HL is then incremented and loaded back
into memory location 57,332* This updates
Willie's position so that next time this routine
is called it starts from one place further to the
right.

STAND STILL
The mts routine is called directly when Willie
finds the slope in front of him and cannot
move forward without jumping. But the
processor also reaches it when it has finished
printing up Willie with his legs apart*

A 0 is loaded into the accumulator and
stored in memory location 57,334. This tells
the processor to print up the picture of Willie
with his legs together next time—either in the
same place if Willie cannot move forward, or
one space on if Willie with his legs apart has
been printed on the screen and HL
incremented.

The processor then returns.

DYING THE DEATH
If Willie has drowned in the sea, trodden on a
snake, fallen down a pothole or been hit by a
boulder, the mdy is called. This tells the rest
of the program that Willie is dead.

It does this by loading 2 into the ac-
cumulator and storing it in 57,336. Elsewhere
in the program there will be routine's chec-
king this memory location.

After that has been done, the processor
returns again.

Then there is another ret, with the label
jmp alongside it. This is going to be over-
written next time, but it stops the routine
crashing if jmp is called.

Before you start to move the man about you
have to have a couple of other small routines
in memory. Firstly, you have to check the
keyboard or joystick to see which way Willie
is supposed to move* Then you have to check
to see what is underneath Willie's feet to see
that he has not trodden on a snake, fallen
down a pothole or stepped into the sea.
Routines performing these simple tasks will
be covered in this part of Cliffhanger.

The next part will provide routines that
make Willie jump up and down and jump
backwards and forwards. Then the whole lot
will be combined in one routine which moves
Willie whichever way you want him to go*

STICKS AND ZONES
The following routine looks at the keyboard
and joystick and returns their values in
location $0384.

0RG 20992
LDA # 0
STA $0384
LDA $D000
TAY
AND # 16
BEQ JUMP
LDA $028D
CMP #1
BEQ JUMP

RETURN TYA
AND #8
BEG RUN
LDA $0005
CMP #12
BEQ RUN
RTS

JUMP LDA #2
STA $0384
JMP RETURN

RUN 	LDA $0384
0RA #1
STA $0384
RTS

A is loaded with 0 which is then stored into
memory location $0384. This clears out any
previous value from the storage area the
routine is going to use to return the keyboard
or joystick value.

Then A is loaded with the contents of
$DC00* This is not a memory location, rather
it is a register of the Complex Interface*
Adaptor (CIA). Data from port A appears in
$DC00*

The contents of this register are transferred
into Y to save them temporarily* Even though
the TAY instruction means Transfer the cont-
ents of A into the Y register, again it is only a
copying process* So the contents of $DC00
are now in A—where they can be
manipulated—and Y where they are stored.

The contents of the accumulator are then
ANDed with 16. This isolates bit four which is
the bit that carries the status of the joystick's
fire button.

The bits of the joystick register are norm-
ally set to 1. But if that direction is chosen, or
the fire button pressed, the appropriate bit is
reset to 0. So if the fire button has been
pressed, the BEQ instruction branches the
processor on to the JUMP routine.

If the fire button has not been pressed—or
no joystick is attached—the processor moves
on to the next instruction* It loads the
accumulator with the contents of memory
location $028D which contains the flag which
indicates whether the shift, I CTRLI or RE keys
have been pressed*

The contents are compared with 1* If they
are 1, the shift key has been pressed and the

BEQ instruction sends the processor off to the
JUMP routine*

FORWARD WITH WILLIE
The contents of the joystick status register
stored in Y are then transferred back into the
accumulator by the TYA. These are ANDed
with 8 to check on bit three, which will be re-
set to zero if the joystick has been pushed to
the right* If it has, the BEQ instruction will
branch the processor to the RUN routine.

If the joystick has not been pushed to the
right—or is not plugged in—the contents of
memory location $0005 are loaded into the
accumulator. This returns the character
string corresponding to the key being pressed.

The contents of the accumulator are then
compared to 12, the keyboard code for Z. And
if a Z has been pressed the BEQ instruction
jumps to the RUN routine*

JUMP ABOUT
The JUMP routine loads the accumulator with
2 and stores it in $0384* Then it returns to
check whether Willie is running too by
jumping back to the label RETURN*

The RUN routine loads up the contents of
$0384 and ORs them with 1* This sets bit
zero, leaving bit one—which may or may not
have been set earlier—alone* The result is
stored back in $0384*

The processor then hits an RTS and returns*

DOWN BELOW
Before you start moving Willie, this little
routine takes a look at the character immedi-
ately under him. It does this to check whether
he is standing on firm ground or whether he's
trodden on a snake, has fallen down a pothole
or is standing in the sea.

0RG 21328
LDA $C012
CLC
R0R A
STA $0352
LDA $C011
CLC

The double density coordinates for Willie
that you worked out before are stored in
memory locations $C011 and $C011. The
double density X coordinate in $C012 is
loaded into the accumulator.

To convert this back into a regular coordi-
nate it has to be divided by two. This is done
simply by rotating the contents of the ac-
cumulator one place to the left. Note that the
carry flag is cleared first* A rotate moves
whatever is in the carry flag into the empty bit
of the register. So if, for any reason, the carry

ROR A
STA $0353
JSR $5000
LDY # 0
LDA ($FB),Y
RTS

flag was set you'd get a spurious result here*
Clearing the carry flag here precludes this.
The result is stored in $0352 which is the
memory location used to pass the X coordi-
nate into the multiplication routine in part
nine of Cliffhanger (see page 1146).

The next four instructions take the double
density Y coordinates through the same pro-
cess* Again the carry flag is cleared before the
rotation—it would have been set by the
previous rotation if a 1 had been shifted out of
the least significant bit—and the least signifi-
cant bit is ignored.

Note that the double density Y coordinate
in $C012 is already pointing to the character
square below Willie, so it does not have to be
adjusted now*

The multiplication routine at $5000 is
then called. This, as you have seen, converts
X and Y coordinates into a screen position
which is stored in memory locations $FB and
$FC.

The character displayed on the appropriate
screen location is then loaded into the ac-
cumulator by LDA ($FB),Y* The Y is set to
zero, but indexed indirect addressing is the
only form of indirect addressing available.
And this instruction takes as its base address
the contents of memory locations $FB and
$FC.

The processor then returns to the main
man-moving routine, where it was called,
with the character in the space below Willie in
the accumulator*

LI
The following routine prints up Willie on the
screen and checks to see whether he is dead or
not. Set up the computer as normal before
you key it in*

30 FOR PASS = 0-103STEP3
40 RESTORE
90 DATA5,18,3,4
100 DATA 11,225,18,3
110 DATA 1,8,226,8
120 DATA10,227,18,3
130 DATA2,8,11,228
140 DATA8,10,229,4
150 DATA0
160 FORA% = &1 E67T0&1 E7F:R EA D?A%:

N EXT
210 DATA5,18,3,4
220 DATA11,225,18,3
230 DATA1,8,226,8
240 DATA10,227,18,3
250 DATA2,8,11,230
260 DATA8,10,231,4
270 DATA0
280 FORA%= &1E8OT0ME98:READ?A%:

N EXT

290 P%= &1E99
300 [OPTPASS
310 *PTman
320 LDX&7A
330 LDY&7B
340 JSR&1964
350 LDX # 0
360 LDA&7C
370 AND # &1
380 BEQLb1
390 LDX # 25
400 *Lb1
410 LDA&1 E67,X
420 JSR&FFEE
430 INX
440 CMP#0
450 BN ELbl
460 RTS
470 . Death
471 LDA&7A
472 AND # &1
473 BEQ Lb2
474 LDA&7B
475 AND # &1
476 BEQLb2
477 RTS

You can only test the part of this program that
prints Willie on the screen* To do so, load up
all the other parts of Cliffhanger you have
assembled so far and key in the following
instructions:

CALL &1 D77:CALL &1 D9B:CALL &1 E99

This should print Willie at his starting
position.

A WALKING PICTURE
This program starts off with two blocks of
DATA* The first block is in Lines 90 to 150
and is READ into a data table from &1E67 to
&1E7F. It is the data for a picture of Willie
standing still.

The second block is in Lines 210 to 270
and is READ into a data table from &1E80 to
&1E98. This is the data for a picture of Willie
walking*

MACHINE CODE MAN
Willie's position is stored in zero-page mem-
ory locations &7A and &7B* His X coordinate
is in &7A and his Y coordinate is in &7B. So
when you enter the machine code routine.
The contents of &7A are loaded into the X
register and the contents of &7B are loaded
into the Y register*

The processor then jumps to the subrout-
ine at 8E1964. This moves the graphics cursor
to Willie's position. X is then loaded with 0.
This is being used to specify that Willie is in
a whole square position. To get a smooth

animation effect Willie is moved halfa character
square at a time. But he starts off in a whole
character square position*

The contents of &7C are then loaded into
the accumulator. This location carries the
instructions for which way Willie is to move
next* If bit seven is set it tells him to jump. If
bit six is set it tells him to go to the left* If bit
five is set it tells him to go to the right* If bit
four is set it tells him to drop down one
character square. If bit three is set it tells him
to drop down two character squares. If bit two
is set it tells him to drop down three character
squares—he's dead. Bit one is not used and if
bit zero is set Willie is in a half character
square position*

The contents of &7C are then AN Ded with
1* If the result is 0—that is, bit zero is 0—the

478 .Lb2
480 LDA# 0
490 LDX&7A
500 LDY&7B
510 DEY
520 DEY
530 JSR8t1 DBD
540 CMP#13
550 BEQDead
560 CMP#14
570 BEQDead
580 INY
590 INY
591 LDA&70
592 AND # &F
600 JSR8t1 DBD
610 CMP#0
620 BEQDead
630 RTS
640 .Dead
650 LDA&7C
660 0RA # &4
670 STA&7C
675 JSR &1515
680 RTS
690 }NEXT

BEQ in Line 380 branches over the next
instruction. But if the result is 1, the branch is
not made and X is loaded with 25.

WHICH WILLIE?
The index in the X register is then used to
load up the data for a picture of Willie. The
25, obviously, offsets the pointer from the
data for Willie standing still and Willie
walking.

So the LDA&1 E67,X in Line 410 loads up
the appropriate character of the picture
data—either the walking or standing
picture—and JSR&FFEE prints the charac-
ter on the screen.

The IN X in Line 430 then increments the
offset to pick up the next piece of data* This is
compared to 0—you'll note that both blocks

of data end with a 0. So if a 0 is not found, the
BNE instruction in Line 450 sends the pro-
cessor back to the Lbl label to pick up and
print the next part of Willie on the screen.

But if a 0 is found, the BNE instruction in
Line 450 does not operate and the processor
hits the RTS in Line 460 and returns.

DEATH TO WILLIE'
The next part of the routine checks whether
Willie is dead or not and starts—
appropriately enough—with the label Death
in Line 470* First the routine checks to see
if Willie is in a half X or Y position—in
that case he can't be dead and the processor
returns.

First the X coordinate is loaded in the
accumulator from zero-page memory location

&7A* If the least significant bit is set, Willie
is in half-character position. So it is AN Ded
with 1. This isolates bit zero—and if it is not
set the processor branches forward* If it is set
the processor continues and checks the Y
coordinate.

If both are in half-character positions the
processor hits the RTS in Line 477 and
returns.

Then A is loaded with 0 and the X and Y
registers are loaded with the X and Y coordi-
nates of Willie from zero-page memory loc-
ations &7A and &7B* Y is then decremented
twice so that it points to a position two
character squares below Willie*

The processor then jumps to the routine at
&1DBD (see page 1278) which returns the
UDG number of the character in that sauare.

LDB #129
MAND STB 18261

LDA 18264
BNE MANC
LDX 18249
PSHS X
BRA MMI

MANA LDA 18262
CMPA #$F7
BNE MAND
LDA #1
STA 18264
BRA MAND

MANC LDX 18249
LDU #1536
JSR CHARPR
LEAX 254,X
JSR CHARPR
LDX 18249
LEAX 1,X
PSHS X
LEAX 353,X
LDA ,X
CMPA #$D5
BEQ MDYA
CMPA #$FF
BEQ MDYA
CMPA # $50
BEQ MTS
LDA 18251
BEQ MMO

MMI LDX ,S
LDU #17774
JSR CH

$FF02*

DX ,S
LEAX 256,X
JSR CHARPR
CLR 18251
BRA MANE

MMO LDX, S
LDU #17814
JSR CHARPR
LDX ,S
LEAX 256,X
LDU #17846
JSR CHARPR
LDA #1
STA 18251

MANE LDX ,S
STX 18249
PULS X
RTS

MDYA PULS X
MDY LDA # 2

STA 18252
RTS

MTS PULS X
LEAX —1,X
PSHS X
BRA MMI

JUM RTS
CHARPR EQU 19402

This is compared with 13 and 14, the UDG
numbers for the snake's tongue and the
snake's head. If either is found, Willie is dead
and the BEO instructions in Lines 540 and 560
branches forward to the Dead routine.

Y is then incremented twice to bring the Y
pointer back to Willie's feet* A is loaded with
contents of &70 which are AN Ded with &F to
isolate the background colour. And the rout-
ine at &1DBD is used again to return the
UDG number of the character square there.

The number returned in A is compared to
O. And if 0 is found, then the character at
Willie's feet is not recognised. This means
that the boulder UDG has got mixed up with
the UDG for Willie's feet. The routine would
recognise either of them separately, but when
they are both printed in one character square,
it cannot. In that case, the BEQ instruction in
Line 620 sends the processor to the Dead
routine.

If not, the processor hits the RTS in Line
830 and returns.

DEAD BUT NOT FORGOTTEN
If Willie is dead, the processor is directed to
the Dead routine which starts in Line 640.
The contents of Willie's condition location,
&7C, are loaded into the accumulator.

It is ORed with 4 which sets bit two* This is
the bit that makes Willie drop down three
character squares and buries him. The result
is stored back in &7C where it can be referred
to by other routines later. The processor
jumps to the subroutine at &1515 which
gives the death sound effect.

The processor then hits the RTS in Line
670 and returns.

The following program makes Willie walk
forward and tests to see whether he has met
with any hazard—or reward.

0RG 19902
MAN LDD 18249

ANDB #31
CMPB #30
BNE MANI
LDA #1
STA 18252

MANI LDA 18261
LBNE JUM
LDX 18249
LEAX 544,X
LDX ,X
CMPX #$5555
LBEQ MDY
CMPX # $AAAA
LBEQ MDY
CMPX # $5FF5

This routine calls others which you don't
have in memory yet, so do not call it unless
you have put RTS's in the appropriate places
to stop it crashing.

REWARDED
The first part of this routine looks to see
whether Willie has reached his rewards. So
Willie's screen position is loaded into the D
registMM0 As there are 32 positions across the
screen-32 is 2/5—you only need to look at
the last five bits of the screen location to work
out Willie's X coordinate. And if his X
coordinate has reached 30, the X coordinate
of the reward, Willie must have reached it—as
his Y position is fixed by the slope which he must
be on or above.

So the contents of B are AN Ded with 31—B
is the low byte of the AB register pair that
makes up D. This isolates the fiv

crashing*

ignificant bits. These are then compared to
30.

If the last five bits do contain 30, 1 is
loaded into A and stored in the die variable at
18,252. This tells the processor to bring on
the next screen. If not, the BNE instruction
branches the processor over these
instructions.

JUMP OR HAZARD
A is loaded with the contents of 18,261, the
jump variable. If they are not 0, Willie is
jumping and the processor makes the long
branch to the JUM routine. It has to make a
long branch because it is longer than 256
bytes.

Next you must check to see whether Willie
has stepped on something nasty—a hole, a
snake or the sea. So Willie's position is loaded
up from 18,249 into the X register this time.

The LEAX 544,X then adds 544 to Willie's
position. Willie is two character square's tall
so to get down to his feet you need to add
2 x 256 which is 512. But there is one empty
line of pixels between Willie's feet and the
ground, so you add an extra 32 to clear; that
makes 544.

The X register is then loaded with the
contents of the two bytes under Willie's feet.
It is compared to $5555, $AAAA and $5FF5.
$5555 is the colour yellow, which means there
is sky—that is, a hole—under Willie's feet.
$AAAA is blue, or the sea. And $5FF5 is red
on yellow, the colour of the snake. To under-
stand how these

time*

rs are made up see pages
248 and 249.

If any of these is found under Willie's feet
he is dead and the LBEQ instruction makes the
processor branch to the MDY routine what'll
kills Willie.

IN KEY
The next thing to do is to take a look at its
keyboard to see if any key has been

544*

sser
M and N control Willie's running and jump-
ing so pressing them has to be detected.

Firstly, the B register has to be cleared.
This is going to be used to carry the variable
that controls whether Willie is going to jump.
And memory location 18,264 is cleared as well
because that is goingsnake* used to store the
variable that controls Willie's walking.

To look to see whether a key has been
pressed you have to look at the keyboard
matrix. Here you are trying to detect an M or
an N. The letter M is in column four of row
six and the letter N is in column four of row
seven.

To examine the state of any key you have to
write the row number into $FF02 and the
status of that row comes back in $FF00. So to
look at the N key you store $BF in $FF02.
$BF is 10111111 in binary—it's plain to see
why this selects row seven. The result in
$FFOO is loaded into the accumulator and
stored in 18,262.

M is examined in the same way. But this
time $DF-11011111 binary—is written into
$FF02 and the result is stored in 18,263.

LBEQ MDY
CLRB
CLR 18264
LDA # $BF
STA $FF02
LDA $FF00
STA 18262
LDA #$DF
STA $FF02
LDA $FF00
STA 18263
CMPA # $F7
BNE MANA
LDB #1
LDA 18262
CMPA #$F7
BNE MAND

CM PA #$F7 then compares the result with
F7, or 11110111. You're looking to see
whether the key in row four has been
pressed—that is, grounded—remember.

If $F7 is not found—and Willie is not
jumping—the BNE instruction branches the
processor forward to MAN A. But if it is found
B is loaded with 1 to indicate a vertical jump.

The result of the examination of the row
the N key is in, stored in 18,262, is then
loaded into the accumulator and compared
with $F7. Note that the N key is in the same
column as the M key, though a different row.
If it is not found, the BNE instruction bran-
ches over the next instruction. But if it is
found, B is loaded with 129 to indicate that
Willie is going to do a diagonal jump. What-
ever is in B-1 or 129—is stored in 18,261.

WILLIE WALKER
The contents of memory location 18,264 are
loaded into the accumulator* This is the
location which stores the variable that indi-
cates whether Willie is walking or not. It was
cleared earlier in the program, remember, but
it is not necessarily clear at this point because
the routine which checks whether Willie is
walking—which starts at the label MANA-
branches back to MAND.

If the contents of memory location 18,264
are not zero and Willie is walking the BNE
instruction branches the processor on to
MANC where the program starts to make
Willie walk. If not the X register is loaded
with the contents of 18,249, the location
which stores Willie's screen position, and
pushes it onto the stack. BRA MMI then makes
the processor branch to MMI where Willie is
printed up on the screen in the position given
by the last item on the stack.

If the M key is not pressed and Willie is not
jumping, the processor jumps to MANA to see
if Willie is walking. The result of the examin-
ation of the N key, stored in 18,262, is loaded
back into the accumulator and compared to
$F7* If it is not found, the BNE instruction
branches the processor straight back to
MAND* Memory location 18,264 is still clear
so that Willie is printed up in the same place
again. This means that he is, effectively,
standing still*

But if the N key has been pressed and
Willie is required to walk, 1 is loaded into the
accumulator and stored in 18,264. When the
processor now branches back to MAN D, Willie
will start to walk.

VVILLIEWIPED OUT
When Willie starts to walk, the first thing you
have to do is wipe him off the screen at his old
position. Otherwise you would leave a trail of

Willies across the screen.
X is loaded with Willie's screen position

from 18,249 and U—the data pointer—is
loaded with 1536, which is the top left-hand
corner of the screen* So when the processor
jumps to the CHAR PR subroutine it prints two
squares of sky over Willie. This gets rid of the
top half of Willie.

To get rid of the bottom half of Willie, 254
is added to X and the CHAR PR is called again.

Willie's position is loaded up into the X
register again and 1 is added to it. This moves
him forward one character square. It is
pushed onto the stack to store it.

You now have to check that Willie is not
going to walk into anything dangerous. LEAX
353,X increments the pointer to a byte directly
in front of Willie's leg. And LDA ,X loads that
byte up into the accumulator* This is then
compared to $D5 which is the colour graphic
for a snake's tongue and $FF, the boulder.
If either of these are found Willie is about
to die and the BEQ instruction takes the
processor off to the MDYA routine which per-
forms the slaughter*

It is also compared to $50 which is the
colour graphic for the slope of the hill. And if
this is found, the processor goes off to the MTS
which prints Willie back in the same place and
prevents him walking.

MOVING PICTURES
Memory location 18,251 is used as a flag to
tell the processor which picture of Willie to
print up next* There are two—one with his
legs apart, the other with his legs together.
When these are printed alternately as Willie is
moved forward it gives the impression that he
is walking*

The flag in 18,251 is loaded into the
accumulator. If it is set to zero, the BEQ
instruction branches the processor forward to
the routine beginning with the label MMO.
This prints up the picture of Willie with his
legs apart* But if the contents of 18,251 are
not zero and the flag is set to 1, the branch is
not made and the processor continues into the
MMI routine which prints up a picture of
Willie with his legs together.

Note that if Willie is not walking the
processor jumps straight in at MMI and prints
up Willie with his legs together.

X is then loaded with the contents of the
last item on the hardware stack. If you look
back you will see that the last thing to be
pushed onto the hardware stack is Willie's
new position, one character square on from
his last position*

U, the user stack pointer which is used as a
data pointer by the CHAR PR routine, is loaded
with 17,774, the start address of the data for

Willie with his legs together. The processor
then jumps to CHAR PR and prints up the top
half of Willie*

The X register is loaded up again and
incremented by 256. This moves the pointer
down one character square, to the position of
Willie's bottom half. CHARPR is then called
again to print up Willie's bottom half. Note
that U does not have to be loaded up again. It
is the user stack pointer so it is automatically
adjusted as the data is printed up on the
screen.

Memory location 18,251 is then cleared so
that the other picture of Willie—the one with
his legs apart—is printed up next time* Then
the processor branches to MANE.

Then following that is the MMO routine
which prints up the other picture of Willie. It
works in exactly the same way. U is set to
17,814 this time, though, which is the start
address of the data for the picture of Willie
with his legs apart. And at the end of the
routine 1 is loaded into A and stored in
18,251. This is done to get Willie with his legs
together printed up next time the man-
moving routine is called*

Whichever Willie is printed the processor
gets to the MANE routine. It loads Willie's
new print position back up into X and stores it
in 18,249* The last item on the stack is then
pulled off into X to stop the hardware stack
growing uncontrollably. The processor then
returns.

DEAD OR IMMOBILE
If Willie has trodden on something nasty and
is dead, the processor is sent to MDYA or
MDY—which label it goes to depends on
where he did it. If he stepped on something
nasty at the beginning of the program, before
Willie's new position was pushed onto the
stack, it goes to MDY. But if Willie's new
position has already been pushed onto the
stack before Willie takes the fatal step, it goes
to M DYA, so that the new position is pulled off
the stack first.

A is then loaded with 2—the value that
indicates that Willie is dead. And this is stored
in 18,252, the location of the so-called die
variable.

That done, the processor returns.
If Willie has walked into a slope, the

processor is sent to MTS. Here Willie's new
position is pulled off the stack again. This
time though, the item pulled off the stack is
used. It is decremented by 1 and pushed back
onto the stack.

The processor then branches back to MMI
and prints up Willie with his legs together in
the same position as before so he effectively
stands still.

Here comes the crunch. At last
combat can begin, with routines for
missile combat and hand-to-hand
fighting* Test morale on the beaten
side and tot up the casualties

Cavendish Field is now almost completed;
you can give your troops orders and move
them about the battlefield. What is missing is
the combat routines, and when you have
entered these you will be able to try out your
game.

What happens when the two sides engage
in combat can be very complex, but again,
decisions have to be made about what is going
to go into your game. In the simplest case of
combat, you could say something like: 'If two
units meet, then the biggest one wins.' This
assumes that the relative sizes of the units is
the deciding factor in combat. Or you may
decide that the outcome depends on the level
of morale, or the number of surviving horses,
or whatever. No-one really knows what wins
battles, so in any wargame it is a matter of
choice and program design to decide which
factors are important.

MISSILES
In Cavendish Field there are two different
kinds of combat-missile (arrows) and hand-
to-hand. This first routine deals with missile
combat.

1710 REM Missile Routine
1720 GOSUB 2540
1730 PRINT AT 18,0;"Unit ❑ ";

sh;" ❑ fires"
1740 LET fx = 5: LET fy = 5: LET gp= -1
1745 LET st = 9
1750 IF sh >8 THEN LET st=1
1770 FOR m=st TO (st + 7)
1780 LET tm =ABS (T(m,8)-T(sh,8)): LET

ty =ABS (T(m,9)-T(sh,9))
1785 IF tm <fx AND T(m,1) <5 AND ty<fy

THEN LET fx=tm: LET fy=ty: LET gp = m
1790 NEXT m
1800 IF gp= -1 THEN PRINT AT 19,0;

"Nothing in range" : GOSUB 2410:
RETURN

1810 LET C=8 -T(gp,4) - ABS (fx-fy)
1820 IF gp<3 OR gp= 9 OR gp= 10 THEN

LET C=C+1
1830 IF m(T(gp,8),T(gp,9)) =2 THEN LET

C=C-2
1840 IF T(gp,1)< >2 THEN LET C= C+ 1
1850 LET C=(C+ (INT (T(sh,7)/40)) + FN

r(3)) * 10
1860 LET T(gp,7) = T(gp,7) - C
1870 PRINT "That causes ❑ ";C;

" casualties on unit ❑ ";gp
1875 GOSUB 2410
1880 LET un=gp: GOSUB 2200
1890 RETURN

1710 REM MISSILE ROUTINE
1720 GOSUB 2540
1730 PRINT"UNITEI";SH + I;" ❑ FIRES"
1740 FX=5:FY=5:GP= -1
1745 BG =8
1750 IF SH>7 THEN BG=0
1770 FOR M= BG TO (BG +7)
1780 TM = ABS(T(M,7) - T(SH,7)):TY = ABS

(T(M,8) - T(SH,8))
1785 IF TM < FX AND TY<FY AND

T(M,0) <4 THEN FX = TM:FY = TY:GP = M
1790 NEXT M
1800 IF GP= -1 THEN PRINT "NOTHING

IN RANGE":GOSUB2410:RETURN
1810 C=8 -T(GP,3)- ABS(FX - FY)
1820 IF GP<2 OR GP=8 OR GP=9 THEN

C = C + 1
1830 IF M(T(GP,7),T(GP,8)) =2 THEN

C = C - 2
1840 IF T(GP,0)< >2 THEN C= C +I
1850 C= (C+ (INT(T(SH,6)/40))+FNR(3))*

10
1860 T(GP,6) =T(GP,6) -C
1870 PRINT "UNITI71";GP+1;" E SUFFERS

❑ ";C;" ❑ CASUALTIES"
1875 GOSUB 2410
1880 UN=GP:GOSUB 2200
1890 RETURN

1710 DEF PROCfire(sht)
1720 PROCclean
1730 PRINT TAB(2,23);"Unit ❑ ";sht + 1;"E

fires"
1740 fx=5:fy=5:G%= -1
1750 IF sht > 7 THEN st =0 ELSE st =8
1770 FOR m=st TO (st +7)
1780 IF ABS(T%(m,7) -T%(sht,7)) <fx ❑

AND ABS(T%(m,8)-T%(sht,8))<fyE
AND T%(m,0) <4 THEN fx =ABS
(T%(m,7) - T%(sht,7)):fy = ABS(T%
(m,8) -T%(sht,8)):G% = m

1790 NEXT
1800 IF G%= -1 THEN PRINT TAB(2,24);

"Nothing in range":PROCpause:ENDPROC
1810 C%=8-T%(G%,3)- ABS(fx -fy)
1820 IF G%<2 OR G%=8 OR G%=9 THEN

C%= C%+1
1830 IF FNmread(T%(G%,7),T%(G%,8)) =2

THEN C%= C%- 2
1840 IF T%(G%,0) < > 2 THEN C%= C%+ 1
1850 C%= (C%+ (T%(sht,6) DIV

40) + RND(3)) * 10
1860 T%(G%,6) = T%(G%,6) - C%
1870 PRINT"That causes III ";C%;

" casualties on unit ❑ ";
G%+ 1:PROCpause

1880 PROCmorale(G%)
1890 ENDPROC

tglii
1710 REM MISSILE ROUTINE
1720 GOSUB 2540
1730 DRAW"BM0,152":A$ = "UNIT" +

STR$(SH)+" ❑ FIRES":GOSUB 3190
1740 FX=5:FY=5:GP= -1
1745 ST=9
1750 IF SH >8 THEN ST=1
1770 FOR M=ST TO (ST + 7)
1780 TM = ABS(T(M,8) - T(SH,8)):TY = ABS

(T(M,9)-T(SH,9))
1785 IF TM < FX AND T(M,1) <5 AND

TY < FY THEN FX = TM:
FY =TY:GP = M

1790 NEXT M
1800 IF GP= -1 THEN DRAW"BM0,160":

A$="NOTHING IN RANGE":GOSUB
3190:GOSUB 2410:RETURN

1810 C=8 -T(GP,4)- ABS(FX - FY)
1820 IF GP<3 OR GP=9 OR GP=10 THEN

C=C+1
1830 IF M(T(GP,8),T(GP,9)) =2 THEN

C = C - 2
1840 IF T(GP,1) < >2 THEN C=C+1
1850 C= (C+ (INT(T(SH,7)/40)) +

RND(3))*1 0
1860 T(GP,7)=T(GP,7)-C
1870 DRAW"BM0,160":A$ = "CAUSES" +

STR$(C)+" E CASUALTIES ON UNIT" +
STR$(GP):GOSUB 3190

1875 GOSUB 2410
1880 UN=GP:GOSUB 2200
1890 RETURN

MISSILE COMBAT AND THE
ARCHERS

CHECKING RANGE
HAND-TO-HAND COMBAT

COUNTING CASUALTIES

TESTING MORALE
SCATTERING UNITS

WINNERS AND LOSERS
COMMENCING BATTLE

INSTRUCTIONS

The missile combat routine is called every
time the archers are ordered to open fire—in
other wargames you might have more than
one kind of unit which can open fire*

When a unit is ordered to fire G% (or gp or
G P) is set to —1 in Line 1740. Next, the
routine will decide if there is a suitable target*
The coordinates of the shooting unit are
compared with the coordinates of each of the
enemy units. Line 1780 compares the dif-
ference between the shooter's position and the
target's. If the target is within a five-square

range, G% (or gp or GP) is set to the target
unit's number. If more than one target is
within range, the nearest unit will be
remembered.

If no target is found, G% (or gp or GP) will
remain at —1, and the player will receive a
NOTHING IN RANGE message. The rout-
ine then ends.

If the routine finds a target, the casualties
are worked out* Casualties are stored in C%
(or C).

Several factors affect whether losses are

heavy or light. First, Line 1810 starts with a
value of 8 and subtracts the armour class of
the target, and then a factor for range. Line
1820 checks if the target is cavalry, and if it is,
adds 1 to C% (or C). Line 1830 checks if the
target is in cover (terrain = type 2), then 2 is
subtracted. Line 1840 checks if the target is
moving (recorded as the current order not
being Halt) in which case 1 is added (archery
attacks are more effective if the unit is
charging). Finally, Line 1850 adds the result
to one fortieth of the strength of the shooting

4) + M(T(TH,7),T(TH,8)) + FNR(3) +2
1615 WN =TH:LO = US
1620 IF AT> DF THEN WN =US:LO=TH
1630 WC = INT(T(WN,6)/10):

IF WC<1 THEN WC=1
1640 T(WN,6) =T(WN,6) —WC
1650 LC= INT(T(L0,6)/5):IF LC <1 THEN

LC=1
1660 T(L0,6) =T(L0,6) — LC
1670 PRINT WN + 1;" III LOSES ❑ ";WC;

" ❑ ";LO + 1;" 0 LOSES El ";LC
1680 GOSUB 2410
1690 UN = LO: GOSUB 2200
1700 RETURN

unit, adds a small random number, and
multiplies the result by ten. The result is the
number of casualties suffered by the target
unit. The casualties are subtracted from the
current strength of the target unit, and a
routine to test morale is called.

THE CLASH
Hand-to-hand combat is calculated in a
similar way.

a
1510 REM Combat
1520 IF (us<9 AND th <9) OR (us>8 AND

th >8) THEN RETURN
1530 IF T(us,1) = 5 OR T(th,1) =5 THEN

RETURN
1540 GOSUB 2540
1550 PRINT AT 18,0;"Combat!!!"
1560 LET at= INT ((T(us,7) —

T(th,7))/50)
1570 LET at = at + T(us,3) — T(th,4) + T(us,

5) + FN r(5)
1580 IF ABS (T(us,2)—T(th,2)) <>2 THEN

LET at = at + 2
1590 IF us<3 0R us=9 OR us=10 THEN

LET at = at +1
1600 LET dr= INT ((T(th,7)—T(us,7))/60)
1610 LET dr = dr + T(th,3) — T(us,4) — T(th,

5) + m(T(th,8),T(th,9)) + FN r(3) +2
1615 LET wn=th: LET lo= us
1620 IF at > dr THEN LET wn= us: LET lo =th
1630 LET wc= INT (T(wn,7)/10): IF wc <1

THEN LET wc =1
1640 LET T(wn,7) =T(wn,7) —wc
1650 LET lc = INT (T(Io,7)/5): IF Ic <1 THEN

LET lc =1
1660 LET T(Io,7) = T(Io,7) — Ic
1670 PRINT wn;" ❑ loses ❑ ";wc;" ❑ ";lo;" ❑

loses ❑ ";Ic
1680 G0SUB 2410
1690 LET un =lo: G0SUB 2200
1700 RETURN

1510 REM COMBAT
1520 IF(US<8 AND TH<8)0R(US>7 AND

TH > 7)THEN RETURN
1530 IF T(US,0) =4 0R T(TH 2 0) =4 THEN

RETURN
1540 G0SUB 2540
1550 PRINT "COMBAT!!!"
1560 AT= INT((T(US,6)—T(TH,6))/50)
1570 AT = AT + T(US,2) — T(TH,3)+

T(US,4) + FNR(5)
1580 IF ABS(T(US,1)—T(TH,1))< >2 THEN

AT = AT + 2
1590 IF US<2 0R US=8 0R US=9 THEN

AT= AT +1
1600 DF=INT((T(TH,6)—T(US,6))/60)
1610 DF= DF+T(TH,2)—T(US,3)+T(TH,

1510 DEF PROCcombat(us,th)
1520 IF (us<8 AND th<8) OR (us>7 AND

th >7) THEN ENDPROC
1530 IF T%(us,0)= 4 OR T%(th,0) = 4 THEN

ENDPROC

1540 PROCclean
1550 PRINT TAB(2,23);"Combat!!!"
1560 an = (T%(us,6) - T%(th,6)) DIV 50
1570 an = an + T%(us,2) - T%(th,3) + T%(us,

4) + RND(5)
1580 IF ABS(T%(us,1) - P/0(th,1)) < > 2

THEN att = att + 2
1590 IF us<2 OR us= 8 OR us= 9 THEN

att= att+ 1
1600 clef= (T%(th,6) -T%(us,6)) DIV 60
1610 clef = clef +TV0(th,2) - T%(us,3) +T%

(th,4) + FNmread(T%(th,7),T%(th,8)) +
RND(3) + 2

1620 IF att > def THEN win = us:
lose = th ❑ ELSE win = th:lose = us

1630 wc = rio(win,6) DIV 10:IF wc <1 THEN
wc =1

1640 T%(win,6) = T%(win,6) - we
1650 lc = T%(lose,6) DIV 5:IF le < 1 THEN

lc= 1
1660 T%(lose,6) =T%(lose,6) - Ic
1670 PRINT win + 1;" 0 loses 0 ";wc;" ❑ "

lose + 1;" ❑ loses 0 ";Ic
1680 PROCpause:PROCmorale(lose)
1700 ENDPROC

1510 REM COMBAT
1520 IF (US<9 AND TH <9) OR (US>8

AND TH > 8) THEN RETURN
1530 IF T(US,1) = 5 OR T(TH,1) = 5 THEN

RETURN
1540 GOSUB 2540
1550 DRAW"BM0,144":A$ = "COMBAT

❑ ❑ ❑ ":GOSUB 3190
1560 AT= INT((T(US,7) - T(TH,7))/50)
1570 AT= AT + T(US,3) - T(TH,4) +T

(US,5) + RND(5)
1580 IF ABS(T(US,2) - T(TH,2)) < > 2 THEN

AT = AT + 2
1590 IF US<3 OR US=9 OR US=10 THEN

AT= AT +1
1600 DF = INT((T(TH,7) - T(US,7))/60)
1610 DF = DF + T(TH,3) - T(US,4) +

T(TH,5) + M(T(TH,8),T(TH,9)) + RN D
(3) + 2

1615 WN = TH:LO = US
1620 IF AT > DF THEN WN = US:L0 = TH
1630 WC= INT(T(WN,7)/10):IF WC <1 THEN

WC= 1
1640 T(WN,7) = T(WN,7) - WC
1650 LC= INT(T(L0,7)/5):IF LC <1 THEN

LC =1
1660 T(L0,7) = T(L0,7) - LC
1670 DRAW"BM0,160":A$ = STR$(WN)+

"0 LOSES" + STR$(WC) + " 0" + STR$
(LO) + " 0 LOSES" + STR$(LC):
GOSUB 3190

1680 GOSUB 2410
1690 UN = LO:GOSUB 2200
1700 RETURN

The routine is called every time two units
meet and RETURNs, or ENDPROCs on the
Acorns, immediately if the two units belong
to the same army. If the unit is being
routed, Line 1530 RETURNs also.

The main difference between hand-to-
hand combat and missile combat is that both
sides have something to say in the affray. This
means that hand-to-hand combat is a messier
business requiring two sets of casualties to be
calculated.

In Line 1560 the attackers start with one
fiftieth of the difference between the two
sides. Next, the difference between the
attacker's weapon and the defender's armour
is added, along with the value of the attacker's
morale, and a random number up to five.

The attackers also gain a bonus if the
enemy is not directly facing them. This will
be the case either if the unit is not moving
directly towards the attacker, or (when the
unit has halted) if it was not moving in that
direction last time it moved* This is why the
`direction' element of the troop array is never
reset, and must always hold a direction.
Historically, it seems that attacking the rear or
flank was one of the most significant of
combat factors. Finally, the attackers get a
bonus of one point if they are cavalry.

Defenders are treated similarly. Starting at
Line 1600, they lose one sixtieth of the
difference in numbers, plus the difference
between the defender's weapon class and the
attacker's armour class, plus the defender's
morale, plus a bonus for the terrain they are
defending, plus a fixed bonus of 2 and a
random factor of up to 3. The random fact6r
is intended to represent the fact that defend-
ing is easier than attacking, but sometimes the
bloodlust of the attackers can intervene to
overpower the innate advantage of defending.

The attackers will now have a value (at), as
will the defenders (df). The side with the
largest value wins that round of that fight, and
therefore, loses only one tenth of its strength
in casualties. The lower's forces are reduced
by one fifth. Finally, the morale test is called
for the loser.

THE MORALE MINORITY
The psychological factor is very important in
warfare* It is very unlikely that an army will
win a battle, equipped with the most powerful
tanks in the world, if the troops hate their
generals, think that the enemy have a just
cause, or don't like the idea of fighting
anyway. There are thousands of factors invol-
ved in the individual psychology of soldiers,
and no game has ever come close to represent-
ing them all. At the most ridiculous level, the
attitude of a warrior to the current fight can

depend on whether he had a good night's
sleep, or not, or on the quality of his last meal.

Not only can morale be complicated, but it
can effect just about every aspect of the battle,
giving a boost, or hampering the sides. In
Cavendish Field, morale is only tested when a
unit loses a fight, or is fired upon.

2200 REM Unit Morale Test
2210 IF T(un,6)—T(un,7)<((T(un,6)/100)*

((T(un,5) + 2))) THEN RETURN
2220 GOSUB 2540
2230 PRINT AT 18,0;"Losses are too great."
2240 PRINT AT 19,0;"Unit ❑ ";

un;" ❑ disintegrates"
2250 GOSUB 2410
2260 LET T(un,1) = 5
2270 PRINT AT T(un,8),T(un,9);"0"
2280 RETURN

2200 REM UNIT MORALE TEST
2210 IF T(UN,5) —T(UN,6) < ((T(UN,5)/100)*

((T(UN,4) + 2) * 10)) THEN RETURN
2220 GOSUB 2540
2230 PRINT "LOSSES ARE TOO GREAT"
2240 PRINT "UNIT0";UN+1;" ❑

DISINTEGRATES"
2250 GOSUB 2410
2260 T(UN,0) =4
2270 P=T(UN,7):Q=T(UN,8):

GH=32:GOSUB 2600
2280 RETURN

Ell
2200 DEF PROCmorale(un)
2210 IF T%(un,5) —T%(un,6) < ((T%(un,5)/

100)*((T%(un,4) + 2) * 10)) THEN
ENDPROC

2220 PROCclean
2230 PRINT TAB(2,23);"Losses are too great."
2240 PRINT TAB(2,24);"Unit ❑ ";un+1;" ❑

disintegrates"
2250 PROCpause
2260 T%(un,0) =4
2270 PRINT TAB(T%(un,7) + 1,T%(un,8) + 1);

"
	

,

2280 ENDPROC

2200 REM UNIT MORALE TEST
2210 IF T(UN,6) —T(UN,7) < ((T(UN,6)/100)*

((T(UN,5) + 2)10)) THEN RETURN
2220 GOSUB 2540
2230 DRAW"BM0,152":A$ = "LOSSES ARE

TOO GREAT":GOSUB 3190
2240 DRAW"BM0,160":A$ = "UNIT" +STR$

(UN) + ❑ DISINTEGRATES":GOSUB 3190
2250 GOSUB 2410
2260 T(UN,1) = 5

2270 X9 = T(UN,9) * 8:Y9=T(UN,8) * 8:LINE
(X9,Y9) — (X9 +7,Y9+7),PRESET,BF

2280 RETURN

Line 2210 subtracts the current strength from
the initial strength and compares it with the
base morale of the unit. If the unit has
suffered 30 % casualties and is cowardly, it
disintegrates and takes no further part in the
battle. On the other hand, a unit which has a
higher morale can suffer up to 70 0 ° casualties
before disintegrating.

If you feel the routine is too clear-cut, you
may want to extend it by adding a small
random factor, considering if the unit was in
cover, or examining the overall situation (how
many enemy units are left, how many friendly
units are nearby?).

When a unit fails the morale test, a message
to that effect is displayed by Lines 2230 and
2240. The command element of the array is
set to five (or four in the case of the Acorn and
Commodore), which means that the unit has
been routed. The unit is blanked from the
screen, and ignored in all further requests for
orders and combat. However, because there
are deserters milling all over the battlefield,
the unit can still be an obstacle to movement,
all the more hazardous because it is 'in-
visible' to the commander.

THE ARMISTICE
There are a few finishing touches to be added
to the program: first, a victory condition.

2290 REM Test for victory
2300 LET gd= 0: LET bd =0
2310 FOR m=1 TO 8
2320 IF T(m,1) < >5 THEN LET gd =gd +1
2330 IF T(m + 8,1) < >5 THEN LET

bd = bd +1
2340 NEXT m
2350 IF gd> bc1 * 2 OR (bd <2 AND gd >2)

THEN LET vc=1
2360 IF bd>gd * 2 OR (gd <2 AND bd > 2)

THEN LET de =1
2370 RETURN
2380 REM End Message
2390 IF vc=1 THEN PRINT "VICTORY!!"
2395 IF de = 1 THEN PRINT "A crushing

defeat"
2400 RETURN

2290 REM TEST FOR VICTORY
2300 GD=0:BD=0
2310 FOR M =0 TO7
2320 IF T(M,0)< >4 THEN GD=GD+1
2330 IF T(M+8,0)< >4 THEN BD=BD+1
2340 NEXT M

2350 IF GD> BD*2 OR (BD<2 AND GD>2)
THEN VC =1

2360 IF BD>GD*2 OR (GD<2 AND BD>2)
THEN DE=1

2370 RETURN
2380 REM MESSAGE
2390 IF VC=1 THEN PRINT "VICTORY!!"
2395 IF DE=1 THEN PRINT "A CRUSHING

DEFEAT"
2400 RETURN

Ell
2290 DEF PROCvicdef
2300 gd = 0:bd =0
2310 FOR m = 0T07
2320 IF T%(m,0) < >4 THENgd =gd +1
2330 IF T%(m + 8,0) < >4 THEN bd= bd +1
2340 NEXT
2350 IF gd>bd*2 OR (bd <2 AND gd >2)

THEN vic=TRUE
2360 IF bd >9(1*2 OR (gd <2 AND bd >2)

THEN def =TRUE
2370 ENDPROC
2380 DEF PROCmess
2390 IF vic=TRUE THEN PRINT "VICTORY!"

ELSE PRINT"A crushing defeat"
2400 ENDPROC

2290 REM TEST FOR VICTORY
2300 GD=0:BD=0
2310 FOR M=1 T08
2320 IF T(M,1)< >5 THEN GD=GD+1
2330 IF T(M+8,1)< >5 THEN BD=BD+1
2340 NEXT M
2350 IF GD>BD * 2 OR (BD <2 AND GD>2)

THEN VC=1
2360 IF BD>GD*2 OR (GD<2 AND BD>2)

THEN DE=1
2370 RETURN
2380 REM END MESSAGE
2390 IF VC =1 THEN DRAW"BM0,176":A$=

"VICTORY":GOSUB 3190
2395 IF DE=1 THEN DRAW"BM0,176":A$=

"A CRUSHING DEFEAT":GOSUB 3190
2400 RETURN

The routine looks to see if one side has twice
as many units as the other, or if one side has
less than two units. A message is displayed to
display the outcome.

Other victory conditions could be added.
One factor which decided many medieval
battles was the death of the leader, but adding
this condition to the game could have its own
problems. The game then simply becomes
centred around one unit.

Another condition might be that half of
one army had reached the opponent's
baseline. Half could be measured either in
units, or in total strengths of units.

Yet another criterion for victory could be
the absolute number of casualties caused, in
which case a variable containing the total
number of casualties would have to be set up
to count the dead after each exchange.

LET BATTLE COMMENCE
You now have all the routines that make up
Cavendish Field. All you need now to marshal
your troops is the main loop.

10 CLEAR
30 GOSUB 190
40 GOSUB 470
50 GOSUB 860
60 REM Dummy for Repeat loop
70 FOR i =1 TO 8
80 IF T(i,1) <4 THEN GOSUB 1380: IF y>2

THEN GOSUB 1900
90 IF T(iO) <5 THEN INK 1: PRINT AT

T(i,8),T(i,9);u$(i)
100 NEXT i
110 FOR e=9 TO 16
120 IF T(e,1) <4 THEN GOSUB 2140
130 NEXT e
140 GOSUB 1020
150 GOSUB 2290
160 IF vc< >1 AND de< >1 THEN GOTO

60
170 GOSUB 2380
180 STOP
2410 REM Delay
2420 PRINT AT 21,7;"{PRESS ANY KEY}"
2425 LET g$= INKEY$: IF g$=" THEN

GOTO 2425
2430 RETURN

35 GOSUB 190
40 GOSUB 470
50 GOSUB 860
60 REM DUMMY FOR REPEAT LOOP
70 FOR I = 0 TO 7
75 Y = 0
80 IF T(I,0) < >4 THEN GOSUB 1380:IF

Y>2 THEN GOSUB 1900
90 IF T(I,0) < >4 THEN P=T(1,7):Q= T(I,8):

GH=VAL(MID$(3,1+1,1))+67:CL=1:
GOSUB 2600

100 NEXT I
105 GOSUB 2540
110 FOR E=8 TO 15
120 IF T(E,0) < >4 THEN GOSUB 2140
130 NEXT E
140 GOSUB 1020
150 GOSUB 2290
160 IF VC< >1 AND DE< >1 THEN 60
170 GOSUB 2380
180 END
2410 REM DELAY

2420 PRINT"1110111111111001=1:1
[PRESS ANY KEY]"

2425 GET G$:IF G$="THEN 2425
2430 RETURN

10 MODE1
30 PROCinit:PROCcr:PROCds
60 REPEAT
70 FORi = 0TO7
80 IF T%(i 3 0) < >4 THEN PROCunitsel : IF

yn > 2 THEN PROCactsel
90 COLOUR1:IF T%(i 30) <4 THEN PRINTTAB

(T%(1,7) + 1,T%(1,8) + 1);MID$(unst$,
i +1,1)

100 NEXT
110 FORen =8T015
120 IF T%(en,0) < >4 THEN PROCensl
130 NEXT
140 PROCeffect:PROCvicdef
160 UNTIL vic OR def
170 PROCmess
180 END
2410 DEF PROCpause
2420 PRINT TAB(10,30);"[PRESS ANY

KEY]":G = GET
2430 ENDPROC

MI hi
1 0 CLEAR 500:PMODE 3,1:COLOR 2,1:PCLS:

SCREEN1,0:DU= RND(—TIMER)
30 GOSUB 190
40 GOSUB 470:GOSUB 3130
50 GOSUB 860
60 REM
70 FOR I =1 TO 8
80 IF T(I,1) <4 THEN GOSUB 1380:IF Y> 2

THEN GOSUB 1900
90 IF T(I,1) <5 THEN COLOR 3:DRAW

"BM" + STR$(T(1,9)*8) + "," + STR$
(T(I,8)*8):UU = VAL(MID$(U$,I,1)):A$=
UC$(UU):GOSUB 3000

100 NEXT I
110 FOR E=9 TO 16
120 IF T(E,1) <4 THEN GOSUB 2140
130 NEXT E
140 GOSUB 1020
150 GOSUB 2290
1601F VC< >1 AND DE< >1 THEN 60
170 GOSUB 2380
180 GOSUB 2410:CLS:END
190 REM INITIALIZATION
200 VC= 0:DE = 0
2410 REM DELAY
2420 DRAW"BM80,176":A$ = "PRESS ANY

KEY":GOSUB 3190
2425 G$ = INKEY$:IF G$=" THEN 2425
2426 LIN E(0,176) — (255,183),PRESET,BF
2430 RETURN

BBC owners with a disk filing system should

type the following before they want to RUN
the saved program:

*TAPE
FORA% = 0TO&1980:?(&E00 + A%) =
?(PAGE +A%):NEXT
PAGE = &E00
OLD

First, all except the Commodore and Acorns
CLEAR some memory space. The Acorn and
Dragon/Tandy set up the graphics mode.
Routines to initialize the game and draw the
map are then called.

The main loop begins at Line 60 and ends
at Line 160. It cycles through eight requests
for the player to give orders, eight calls to the
computer's order selecting routines—one for
each unit on the field. It then has 16 calls to
the routine that allows the orders to take
effect, followed by one call to the test for
victory or defeat. Finally, the victory message
is printed if the victory test was found true.

At the end of the main loop is a short
routine (starting at Line 2410) which is used
to pause the game at appropriate moments.

PLAYING INSTRUCTIONS
Immediately you RUN the program the com-
puter gets on with drawing the map. The
terrain symbols appear first, followed by the
opposing units, and the border.

Now's the time to start building your
strategy. A series of prompts appear in the
text 'window'. Starting from unit one, the
unit number and description—for instance,
knights—along with the current orders—halt,
perhaps. The player is asked Change (YEN)?

If the answer is Y, a menu of order options
is displayed: Fire, Halt or Move. The Fire
option is only open to the archers, so any
attempt to make another type of unit fire will
make the message 'No Bows' appear, and the
machine will wait for another choice. If the
Move option is chosen, the prompt 'Which
way? (N,S,E,W)' appears, ready for the
player's choice.

This process is repeated for each unit—the
one that's highlighted is the one you have to
make the decision on.

THE AFTERMATH
At this stage, Cavendish Field is about as
simple as a wargame can be, but still be
playable. There are numerous opportunities
to tinker with various aspects of the program.

In the final part you will see how the
computer can be made into a cleverer oppo-
nent, but before you add the new routines, try
playing the game as it stands. Beginners, in
particular, can get to grips with the strategies
involved in wargaming.

To many people, the most viable
alternative to BASIC as a general
purpose language is Pascal, in which
powerful structures encourage good
programming habits

For those raised on one language, learning
another may come easily, or it may require a
more dedicated effort* The difference isn't
only down to the individual—it also has to do
with the relationship between the two
languages.

If the structure and syntax of the two
languages are similar, it becomes simply a
matter of translation—of learning a new
vocabulary but then applying the same rules.
But there is also the case where the difference
between the languages is such that to some
extent you have to forget all the rules you
already know and apply a new thought
process*

The first language covered in this course,
LOGO, was designed to be easily accessible
for beginners in computing* But if you were
brought up on BASIC—almost inevitably the
case for home computer owners—it may be
much harder to adapt* Sometimes, this can be
so much so that it seems difficult to under-
stand the claims that LOGO is easy to learn!

Fundamentally, this is because of the dif-
ference in thought processes required for
LOGO, since the vocabulary is much simpler
than BASIC* LOGO is a much more struc-
tured language than most forms of BASIC,
and it encourages you to adopt structured
thought patterns. (Of course, BBC BASIC
has the capability for equally structured
forms, but there is no particular need to adopt
them at an early stage as there is in LOGO*)

The next language in the course is Pascal,
in which structures form an even more im-
portant part. In fact, the language cannot exist
without them. For the BASIC programmer
who is used to going straight to the keyboard
and gradually developing a program by add-
ing a little bit here and changing a little bit
there, this can seem completely alien—
although if you have adopted structured
habits in BASIC it will prove far easier to
adapt*

So why learn Pascal? Apart from forcing
you to adopt good programming habits, it can
have certain advantages over BASIC. Its
main use is in longer programs, where it can
be significantly shorter than BASIC—and
much quicker. It is particularly good for
number-crunching and business-type applic-
ations programs.

THE BACKGROUND TO PASCAL
Pascal was invented in 1970 by Professor
Niklaus Wirth of the Federal Institute of
Technology in Zurich, and named after Blaise
Pascal, one of the great mathematicians and
philosophers of the seventeenth century.

Wirth's idea was that Pascal should be used
to teach students to program using funda-
mental concepts of structure* The language
itself encourages the programmer to think
about the structure of the program before
starting to write* And Wirth built into it a
range of features that allows the programmed

solution to contain the structure of the in-
formation that is to be processed.

In other words, writing a program in
Pascal means that you plan to solve the
problem before you start working on the
computer. The planned solution is then re-
fined and refined into smaller and smaller
details, until each stage in the process approx-
imates to a procedure which can be pro-
grammed* Then, and only then, is the whole
program entered.

The concept of Pascal was not totally new,
as Wirth took many of the ideas from a
language commonly used in universities and
government research establishments, known
as Algol 60* But whereas Pascal started out in
a similar environment, teaching structured
programming on large mainframe computers,
it has progressed to being widely used on
many mini and micro-computers, and is now
extensively used for writing commercial
packages.

PASCAL AND THE MICRO
Pascal is available in several versions to suit
each of the home computers covered here,
ready to be loaded from tape or disk. These
are available from normal software outlets,
although being specialised, may not be held in
stock by all dealers—especially those who deal
mainly in games. If you don't have the
software, don't worry, since you will still be
able to understand what is involved even if
you cannot run the programs* After all, much
of the point of Pascal is that you do the
majority of writing away from the machine*

There is an important difference between
Pascal and BASIC apart from the way in
which it is understood by the computer. It is
this which helps to make it faster than
BASIC, and also makes it particularly suit-
able for microcomputers in which the mem-
ory is necessarily limited.

One of the disadvantages of BASIC is that
it is normally an interpreted language* This
means that as each instruction is met, that
instruction has to be converted into machine
code and then executed* So for a single loop
such as:

10 F0R N=1 T0 100

BACKGROUND TO PASCAL
PASCAL AND THE MICRO

ALGORITHMIC DESIGN
BEFORE YOU START

A PASCAL PROGRAM

STRUCTURED LANGUAGE
IMPROVING YOUR

PROGRAMMING HABITS
THE CONCEPT OF PASCAL

PROGRAMS AVAILABLE

20 PRINT N
30 NEXT N
each statement in the loop is converted into
machine code one hundred times* And with
BASIC, the interpreter must remain resident
in memory (usually in ROM) all the time,
taking up valuable space.

Pascal, on the other hand, is usually a
compiled language. When the program has
been written, it (the source code) is translated
once, and only once, into machine code (the
object code)* When this has been done, the
compiler is no longer needed. This means that
it can be swapped in and out of memory onto
disk or cassette as required. When the

program has been compiled, the memory
space previously occupied by it is released as
additional working area. (In the case of the
BBC and Electron, the compiler relinquishes
the high resolution graphics area of memory
which it borrows*)

A compiled language is much faster than an
interpreted one because it only has to do the
translation once, rather than many times.
While BASIC compilers do exist, the lan-
guage is not designed for compilation, and so
the machine code that results from compiling
a BASIC program is often so long that the
finished program may be nearly as slow and
large as if it were interpreted* Pascal, on the

other hand, is designed for the job. At this
stage, Pascal programming is similar to writ-
ing a machine code program in assembly
language where the completed source code is
assembled to give you the machine code. The
difference is that designing a Pascal program
is much, much simpler than writing in as-
sembly language.

Pascal is thus an effective compromise. But
long before you reach the stage of trying to
run the program, it has to be designed.

ALGORITHMIC DESIGN
Structured programming in BASIC is
covered on pages 173 to 178 and 201 to 207*

But even at its most structured (BBC BASIC)
the language is not particularly strong in
structures*

The most important lesson to learn in
Pascal is to stay away from the machine
during the initial design stage* To do this, you
need some aids to planning the program*
Flowcharting is certainly one way of helping,
but flowcharts are themselves unstructured
and should only be used sparingly. Another,
and better, technique of program design is to
use an algorithm—a step-by-step method of
solving a problem.

A familiar example of an algorithm is a
recipe in a cookery book* The printed recipe
is like a finished program—it contains all the
information necessary for a cook to be able to
make the dish. In the same way, a complete
program contains all the information the
computer needs. But this is many stages down
in the development of the algorithm* When
you first sit down to design your program,
you will have much less definite ideas. So let's
look at how you might put together a recipe*
Suppose you want to make some mince pies.

Your first attempt to break down the task
(the initial algorithm) might be quite simple:

1. Make the pastry
2. Make the filling
3. Shape the pies
4. Cook them

An expert pie-maker might not need all these
steps, but the computer is very definitely at
the level of an apprentice cook on the first
day, so more information is needed*

The next stage is to break each step down
further—a process known as stepwise refine-
ment. You will meet this concept again,
particularly when you are designing larger
programs that cannot be conceived immedi-
ately or in one go. In the example above, you
could further refine step 1 as:

la* Weigh flour
lb* Weigh fat
lc. Mix fat with flour
1d. Add water

and each of these steps could be further
broken down until you reach a level of
simplicity at which the recipe is possible to
follow even when the cook is as uniformed as
your computer.

The important point in this process is that
you have considered the problem first, and
not just started on the task randomly* In
terms of Pascal programming, the method is
very similar. At this stage, you would write
each step in ordinary English. Each step is
then refined further and further refined until
it ends up as a Pascal statement. Each step in

the initial algorithm may well represent a
different procedure or function in the finished
program—but in a complex program the
process of refinement may mean that each
step actually embraces a whole set of proce-
dures by the time the program is completed.

So far, so good. But how can you end up
designing a Pascal program unless you know
what Pascal looks like, and what statements
are accepted. The answer is to look at some
examples*

A PASCAL PROGRAM
One of the characteristics of Pascal programs
is that they often tend to look unnecessarily
complicated when dealing with a simple task*
For example, look at the following program to
add two numbers and print the result. It is
much longer than the BASIC equivalent,
although it will still run faster. Don't be put
off by appearances, however. Once you start
dealing with more complicated tasks, Pascal
becomes more and more economical com-
pared to the equivalent BASIC:

program examplel (input,output);
var 	,no2,result: integer;
begin

read(nol ,no2);
result: = nol + no2;
writeln (result)

end*

This program could result from an initial
algorithm something like:

1. Set up initial conditions
2. Input numbers
3. Add numbers
4. Print result
5. Stop

As you can see, the final program is virtually
the same as this algorithm* One of the reasons
why short Pascal programs are longer than the
equivalent BASIC is that you must give steps
1* and 5*, neither of which is needed in
BASIC. You have to tell the computer what is
involved in the program, tell it to start and tell
it to finish*

Let's take the Pascal line by line:

program examplel (input,output);

means you are going to read and write within
a program called examplel . If the program did
not require input data you could just have

Program examplel (output);

The semi-colon in both these lines indicates
the end of a statement*

All variables in Pascal must be declared as a
particular type. The next line says that the
variables not, no2 and result represent whole

numbers; that is of type integer. Again the
semi-colon tells the computer that this is the
end of that statement.

var nol ,no2,resultinteger;

Now you come to the main block of the
program. The statements begin (note there is
no semi-colon as this is the start of multiple,
or compound, statement) and end* will occur at
the beginning and end of every Pascal program.
The full stop after end indicates that it is the
very last statement of this particular program
and signals a halt.

BASIC is made easier to follow by using
comments in the form of statements. This is
true of any programming language irrespec-
tive as to whether it is high or low level. Pascal
is no exception.

In Pascal any line can be commented on by
using curly brackets { and } or if your machine
does not have these (* and *). The BBC/
Electron S-Pascal compiler will accept only
{ and } which in fact are displayed on the
screen as and f.

read (no1,no2); is very similar to the BASIC
statement INPUT N01,NO2* You are allowed to

use not and not as variable names because
they have already been declared in the var
statement.

result : = not + no2;

is read as result becomes not + no 2 in much
the same way as in BASIC* Strictly speaking
this could read let result = nol + no2 to show
that we are summing the values of the
variables not and no2 and assigning this value
to a variable called result.

Another bit of programming:

writeln (result)

has a similar effect to the BASIC statement
PRINT RESULT, that is, it will output the value
of the variable result. Notice how there is no ;
after this statement. This is because a semi-
colon before an end is unnecessary as the end
itself tells us the end of a statement has been
reached* If a semi-colon is put in, most
compilers will allow it by inserting a blank
line before the end.

PROGRAMS AVAILABLE
There are Pascal programs available for all the
machines covered by INPUT, though some
are less comprehensive than others—
particularly the version for the Dragon 32.

One of the by-products of the fact that
Pascal is a compiled language is that this may
affect your ability to edit it. In some versions,
it is important to get the code right first time,
since once compiled it is inaccessible for
editing* In other versions, the program may
be compiled each time it is run, in which case
the source code is retained in memory and can
be corrected with the usual BASIC editor* In
the latter case, a small area of memory is
reserved for the program.

Pascal programs can normally be written in
either upper or lower case, but lower case is
used throughout this series of articles to
enable the programs to run the Pascal package
for Acorn machines*

The Pascal program available for the Spec-
trum has a line editor built in, a random
number function and supports graphics.

Commodore Pascal makes use of many of
the 64's standard features, though not every-
thing is covered, there's no sprite handling for
example* Part of the Commodore package is
an editor which behaves very much like the
BASIC editor but is enhanced with auto line
numbering and renumbering, FIND lists all
occurrences of a specified string and REPLACE
substitutes one string for another.

The S-Pascal program available for Acorn
machines is very adaptable and the facilities
offered by the editor are extremely sophisti-
cated. As well as full screen editing, it also
allows block copy, moves and deletions and
various search and/or replace operations.

In the next part of INPUT we will continue
with our look at Pascal and examine some of the
procedures available in the language and how
they compare to the procedures found in
BASIC.

We will also take a look at how Pascal
programs are compiled and show examples of
how when you come to write a program in this
particular language, you must work within
a precisely defined form for each statement*

Here's a quick recap of the rules in case you've
forgotten them or in case you haven't played
the game before. The object of the game is to
find out the colours of the four counters
chosen by the computer, in the least number
of guesses. The colours have to be in the right
order too.

Input your guess by typing in th'e initial
letters of the colours, for example, RBBY for
red, blue, blue and yellow or, on the Commo-
dore, a number from 1 to 6 to match the
colours on those keys. The computer then
responds by giving you a few cryptic clues
telling you how many colours are correct and
how many are in the right position—although
it doesn't tell you which colours are the right
ones! The code it uses is a white dot for a
correct colour in the wrong place a black dot
for a correct colour that's also in the right
position. Use these clues to decide on your next
guess. You have 12 goes to find the correct code.

The colours used by each of the programs
are Spectrum and Acorn: yellow, white, blue,
red, cyan and magenta, Commodore and Vic;
the colour keys from 1 to 6, Dragon and
Tandy: yellow, blue, red, cyan, mauve and
orange.

10 BORDER 0: INK 0: PAPER 4: CLS : LET
N$="671254": DIM C(4): DIM G(4): DIM
F(4,2): LET C$="YBRCM"

14 PRINT AT 16,0;"COLOURS: — """Y =
YELLOW B= BLUED C = LIGHT BLUED
111111R=RED011100M=MAUVEOW
= WHITE."

15 FOR N=USR "A" TO USR "A" +7: READ
A: POKE N,A: NEXT N

17 DATA 0,24,60,126,126,60,24,0
20 FOR K=1 TO 4: LET C(K) = VAL N$(INT

(RND*5) +1): NEXT K: LET G=1
30 INPUT "WHAT'S YOUR GUESS ? ❑ ";B$
35 IF LEN B$< >4 THEN GOTO 30
90 PRINT AT G,0;"GUESS ❑ No ";G;AT G,14;:

FOR K=1 TO 4: LET
G(K) = (7*(B$(K) = "W")) + (6*(B$(K) =
"Y")) + (B$(K) = "B") (2 * (B$(K) =
"R")) + (5*(B$(K) = "C")) + (3 *(B$(K)
="M"))

92 IF G(K)= 0 THEN LET K=4: NEXT K:
GOTO 30

95 PRINT INK G(K); BRIGHT 1;CHR$ 144;: IF
K< >4 THEN PRINT BRIGHT 1;" ❑ ";

97 NEXT K
100 PRINT AT G,24;
110 LET N=0: LET R$=" ❑ ": FOR K=1

TO 4: LET F(K,1) = 0: LET F(K,2) = 0: IF
G(K) = C(K) THEN LET
R$=R$+" ❑ "+CHR$ 16+CHR$
0 + CHR$ 144: LET F(K,1) =1: LET
F(K,2) =1: LET N = N +1

120 NEXT K
130 FOR K=1 TO 4: IF F(K,1) =1 THEN

GOTO 170
140 FOR J=1 TO 4: IF F(J,2) =1 THEN

GOTO 160
150 IF C(J)=G(K) THEN LET

R$—R$+" ❑ "+CHR$ 16+CHR$
7 + CHR$ 144: LET F(J,2) =1: LET J=4

160 NEXT J
170 NEXT K
180 PRINT AT G,23;R$: INK 0: IF N =4 THEN

PRINT AT 21,0;"YOU GOT THE CORRECT
CODE IN ❑ ";G"`GUESSES.": GOTO 230

190 LET G=G+1: IF G<13 THEN GOTO 30
200 PRINT "THE CORRECT CODE WAS ❑ ";:

FOR K=1 TO 4: PRINT INK C(K);CHR$
144;"El";: NEXT K

220 PRINT
230 PRINT "LIKE ANOTHER GAME ?"
240 LET A$=1NKEY$: IF A$="" THEN

GOTO 240
250 IF A$="Y" THEN RUN : STOP

ECK LI
For the Vic change Line 24 to POKE 36879,
110.

10 C$="123456":D$="gggaggigggg
gigggiggigaggg":K$="0
0 0"

20 FOR K=1 TO 4:C(K)=INT(RND(1)*6)
+1:NEXT K

24 POKE 53280,6
25 G=1:PRINT "IDEMIGUESS THE

CODE"
26 PRINT "El <ENTER FOUR

NUMBERS":PRINT"PMBETWEEN 1 & 6)"
30 PRINT "i§ligg grLEFT$(D$,G):PRINT

G;:INPUT B$
40 PRINT" ❑ "SPC(10)"10:1";:N =0:

BB$="":N1= 0:N2=0

50 FOR K=1 TO 4:CC(K)=C(K):NEXT K
60 FOR K=1 TO 4:IF

VAL(MID$(B$,K,1))=C(K) THEN
CC(K) = 255

70 NEXT K
100 FOR K=1 TO 4:XX= VAL(MID$(B$,

K,1))
110 IF XX=C(K) THEN N1 =N1 +1:

N=N+1:GOTO 140
120 FOR KK=1 TO 4:IF XX=CC (KK)

THEN N2= N2+1: CC(KK)= 255: GOTO
140

125 NEXT KK
140 NEXT K:PRINT "." LEFT$(K$,N1)

"A" LEFT$(K$, N2) TAB(15)
"MECO";

150 FOR K=1 TO 4: POKE 646, ABS(VAL
(MID$(B$, K, 1))-1): PRINT ":",";:
NEXT K: PRINT "Mar

180 IF N=4 THEN 200
190 G=G+1:IF G=13 THEN 210
195 GOTO 30
200 PRINT "ggILYOU GOT THE

CORRECT":PRINT"CODE
IN"G"GUESSES":GOTO 230

210 PRINT "MILI WIN, THE
CORRECT":PRINT"CODE WAS pl.";

220 FOR K=1 TO 4:PRINT CHR$(48+C(K))
;:NEXT K:PRINT

230 PRINT "liANOTHER GAME ?(Y/N)"
240 GET A$:IF A$< >"Y" AND

A$ < >"N" THEN 240
250 IF A$="N" THEN PRINT "Q":END
255 GOTO 20

10 MODE2:COLOUR130:CLS:C$="R*YB
MCW":DIMC(4) ,G(4) ,F(4,2)

15 VDU23,224,0,24,60,126,126,60,24,0
20 FORK =1T04
22 C(K)=RND(7):IF C(K)=2 THEN 22
25 NEXT:G=6
30 COLOUR7:INPUTTAB(0,29)"ENTER

GUESS ❑ ",B$:PRINTTAB(0,29)SPC
(39);

35 IF LENB$< >4THEN30
90 E$="":FORK=1T04:D$=MID$

(B$,K,1):G(K) = INSTR(C$,D$)
92 IFG(K)= 0 THEN K=4:NEXT:GOT030
95 E$= E$ + CHR$17 + CHR$(G(K)) +

CHR$224

Let your computer challenge you to
this classic game of logical thinking*
See if you can crack the computer's
cryptic colour code and select the
correct sequence

THE RULES OF THE GAME
CHOOSING THE COLOURS

THE COMPUTER'S REPLY
WORKING OUT THE

RIGHT STRATEGY

97 NEXT:PRINTTAB(0,G);G-5;TAB(5,G)E$
100 PRINTTAB(5,G);
110 N=0:R$=" ❑ ":FOR K=1T04:

F(K,1)= 0:F(K,2)= 0:IF G(K)=C(K)
THEN R$= R$ + CHR$17 + CHR$0 +
CHR$224:F(K,1) =1:F(K,2) =1:N =N +1

120 NEXT
130 FORK =1T04:IF F(K,1)=1THEN 170
140 FORJ =1704:IF F(J,2)=1THEN 160
150 IFC(J)=G(K) THEN R$= R$+

CHR$17 + CHR$7 CHR$224:F(J,2) =1:
J=4

160 NEXT
170 NEXT
180 PRINTTAB(14,G)R$:IF N=4THEN PRINT

"YOU GOT IT IN ❑ ";G-5:GOTO 220
190 G=G+1:IF G<17 THEN 30
200 PRINT"I WON"
210 PRINT"THE CODE WAS ❑ ";:FOR K=1

T04:COLOURC(K):VDU224,32:NEXT

220 PRINT"`LIKE ANOTHER GAME ?"
230 A$=GET$
240 IF A$="Y" THEN RUN

LEI
10 DIMC(3),G(3),F(3,1):C$ =

"YBRCMO"
20 CLS:FORK=0T03:C(K)= RND(6):

NEXT:G =1:PRINT@9,"guess the code"
30 PRINT@416,"INPUT GUESS NO";G;"? ❑

❑ (EG RBYC)":PRINT@448:B$=""
40 A$=INKEY$:IF A$="" THEN 40
50 IF A$=CHR$(13) AND LEN(B$) = 4 THEN

90
60 IF A$= CHR$(8) AND LEN(B$) > 0 THEN

B$= LEFT$(B$,LEN(B$) —1)
70 IF LEN(B$) <4 AND INSTR(C$,A$) < >

0 THEN B$= B$+A$
80 PRINT@448,B$:GOT040
90 PRINT@32*G,"GUESS NO";G;:FORK= 0

T03:G(K) = INSTR(C$,MID$(B$,K+1,1)):
C=G(K)—(G(K)>3)

100 PRINT@32*G +11 +K*2,CHR$(143+
C*16);:NEXT

110 N=0:R$=" ❑ ❑ ":FORK=0T03:
F(K,0) =0:F(K,1) =0:IFG(K) = C(K)THEN
R$ = R$ + " 0" + CHR$(128):F(K,0) =1:
F(K,1)=1:N=N+1

120 NEXT
130 FORK = 0T03:IF F(K,0) =1 THEN 170
140 FORJ=0T03:IF F(J,1)=1 THEN 160
150 IF C(J)= G(K)THENR$ = R$+

"El" + CHR$(207):F(J,1) =1:J =3
160 NEXT
170 NEXT
180 PRINTR$:IF N=4 THEN 200
190 G=G+1:IF G=13 THEN 210

ELSE 30
200 PRINT@416, "OYOU GOT THE

CORRECT CODE IN";G;" ❑ GUESSES":
GOTO 230

210 PRINT@416," ❑ 1 WIN, THE CORRECT
CODE WAS"

220 FORK = 0T03: PRINT@448+ r2,"0";
CHR$(143 + C(K)*16 —16*(C(K) >
3));:NEXT

230 PRINT:PRINT" DO YOU WANT ANOTHER
GAME ?(Y/N)"

240 A$=INKEY$:IF A$ < >"Y" AND
A$ < >"N" THEN 240

250 IF A$ ="N" THEN CLS:END ELSE20

Open up a channel to your tape
recorder or disk drive and direct
your valuable data down the lines.
Knowing how to handle files is the
key to many a program

Any program that handles a lot of data must
have some convenient way of storing it. In an
earlier article, on page 105, there is a short
program showing how a simple telephone
directory can be stored in DATA statements.
The program showed how an item of data can
be searched for and printed out, but there was
no way of updating the list without BREAKing
into the program and altering the program
lines themselves. Also, it is only possible to
save the information with the program itself.
The program is thus tied to whatever inform-
ation it contains, which is not very
satisfactory.

It is obviously much better to store data
separately on tape or disk rather than in the
program. The information can be read into
the computer as easily as reading in the lines
of a program, but items can be deleted or
added much more easily—arid the person
using the program doesn't have to know
anything about programming to do so.

The data is stored on tape or disk as a file
and many of the Applications programs in
INPUT store the data in this way. The
Hobbies file, Home Finance, Calendar and
Spreadsheet programs are just a few that rely
on being able to handle large amounts of
information. If you look closely at these
programs you should be able to trace the part
that saves and loads the data. It is a small part
of the program in each case, and a great deal
more goes into things like memory allocation,
prompts, displays and such like.

By storing the information separately from
the 'core' program, you have what amounts to
a virtual memory: the basic program can be
used for any number of different subject files,
each with a different number of records or
fields, tailored to the purpose of each file.

Sequential data storage like this is a
favourite method. The programming is
straightforward and the principles are well
understood. Also, the data is convertible to a
form that can actually be passed from one
program to another or, indeed, from one
computer to another.

Where a sequential file varies from others
is that all data is stored serially, with each item
being separated only by a single byte. All the
information is collected in memory before

being written out to a file for storage.
The first step in saving a sequential file is

to write information to your storage device.
This is done using your computer's form of
the OPEN command. All of the most
commonly used commands were described in
the introductory article on pages 622 to 627.

This article explains in detail how to set up
your own files on tape and disk, so you can
incorporate them into your own programs.

CREATING A FILE
The program shows how to set up a more
sophisticated version of the telephone direc-
tory file mentioned earlier. But you could
easily change the prompts and arrays to accept
other types of information.

Entries are made under first name, second
name and number. Because telephone num-
bers will contain spaces and possibly dashes as
well, they are best treated as a string. With
other types of data you might want to have
some string arrays and some numerical arrays.
It doesn't matter what type of data is saved, or
in which order, as long as it is read back in the
same order and into the identical sort of
variable.

It is possible to send or write information
straight into a file but it is more usual, and
more convenient, to store it in an array first
and then save the whole array.

The first part of the program sets up a
simple loop so you can enter the data. Enter as
many names and numbers you like—up to the
number dimensioned in Line 10. Change the
dimension if you want more than 50. When
you've finished, press IENTER1 or !RETURN
instead of the next name and number and the
INPUT routine will stop.

The second half, from Line 100 onwards,
writes the data to a file. This part is explained
after each program.

10 DIM A$(50,15): DIM B$(50,15): DIM
T$(50,12): DIM N(1)

20 LET N=0
30 LET N=N +1
40 INPUT "FIRST NAME ";A$(N)
50 INPUT "SECOND NAME ";B$(N)
60 INPUT "TELEPHONE NUMBER ";T$(N)

70 IF A$(N)< >"11) 	111111111171
❑ 111 El El El 	N<50 THEN
GOTO 30

80 CLS: PRINT "SAVING DATA NOW"

Use this section if you are saving the data to
tape:

100 SAVE "COUNT" DATA NO
110 SAVE "F.NAMES" DATA A$()
120 SAVE "S.NAMES" DATA B$()
130 SAVE "T.NUMBS" DATA T$()
140. PRINT "DATA SAVED"
150 STOP

Use the following section if you have a
Microdrive:

90 INPUT "ENTER DRIVE NUMBER ";DRV
100 SAVE *"M";DRV;"COUNT" DATA NO
110 SAVE "`M";DRV;"F.NAMES" DATA A$()
120 SAVE "`M";DRV;"S.NAMES" DATA B$()
130 SAVE *"M";DRV;"T.NUMBS" DATA T$()
140 PRINT "DATA SAVED"
150 STOP

On the Spectrum the first section of program
from Lines 10 to 80 is common to both tape
and Microdrive, however, the second part
that saves the data is different. Both versions
save the data as an array, but with a Microdr-
ive you have to find out which drive is being
used (there may be more than one) and add
"` M"; D R V; after each SAVE command. Note
that each array must be given a file name
before it can be saved, and the instruction
DATA must appear before each array.

Type in the appropriate version of the
program and then try entering some data and
saving it ready for the next program.

There is an alternative way of saving the
data when using a Microdrive. The problem
with the last method is that the whole array
must be saved even if only a part of it is filled
up. This wastes precious space on your
Microdrive tape. The alternative version,
below, saves each item of the array separately
and stops when the data runs out.

100 INPUT "ENTER DRIVE NUMBER ";DRV
110 OPEN #4;"M";DRV;"FILE"
120 PRINT #4;N
125 FOR L=1 TO N

ADVANTAGES OF STORING DATA
IN A FILE

TAPE, DISK AND MICRODRIVE
FILES

OPENING AND CLOSING A FILE

READING AND WRITING
DETECTING AN END-OF-FILE

MARKER
DUMMY TERMINATORS

USING THE DATA

130 PRINT # 4;A$(1_)'9$(OK)
140 NEXT L
150 CLOSE # 4
160 PRINT "DATA SAVED"
170 STOP

As before, you first have to type in the drive
number. Line 110 then opens a channel to the
Microdrive. Any channel from 4 to 15 is
available (channels 0 to 3 are reserved for the
screen and the ZX printer) and channel 4 is
the one most commonly used. Line 120 then
writes the value of N—the number of data
items—to the file through this channel, and
Line 130 writes each item of data in the
arrays, one at a time, until the maximum
number N is reached. CLOSE # 4 then closes
the channel.

It is very important to type in these lines
exactly as shown. Semi-colons must be used
to separate the items in Lines 110 and 120,
and in Line 130 there must be a semi-colon
after PRINT # 4 and then the other items must
be separated by a single apostrophe.

If you want to try out this program, SAVE
the other version first, type in the new lines
and then try saving the data again, preferably
on a separate tape so you don't get mixed up.
The data should still be stored in the arrays, so
take care not to type NEW!

1 0 DIM A$(50),B$(50),T$(50)
30 N=N+1
40 INPUT "gg a FIRST NAMED •";A$(N)
50 INPUT "MISECOND NAME•";

B$(N)
60 INPUT "aTELE NUMBER•"; T$(N)
70 IF A$(N) < >"" AND N <50 THEN 30
80 PRINT "EISAVING DATA NOW"
100 OPEN 1,1,1,"FILE"
110 PRINT# 1,N —1:Q$-= CHR$(34):

C$ = ","
120 FOR Z = 1 TO N-1
130 PRINT # 1,QA(Z)QCQB(Z)QC

QT(Z)Q$
140 NEXT Z
150 CLOSE 1
160 PRINT "DATA SAVED"
170 END

For disk files change Line 100 to

100 OPEN 1,8,1, "FILE"

The file is opened by specifying the file
number, device number and address, fol-
lowed by the file name in quotes. (See the box
below for more information on the exact form
of the OPEN command.) Only one file is used
by this program so the file number is 1. The

device number is 1 for tape and 8 for disk
drive. The address is 1 which specifies that
the program is writing to a file.

PRINT # 1 means 'write the next item of
information to file 1' so the first part of Line
110 saves the value of N —1 which will be
used later when reading back the data.

The remainder of Line 110 sets Q$ equal to
a double quote mark (character 34) and C$
equal to a comma. These are then used in
Line 130 which writes the names and num-
bers to the file. The commas are used to
separate each item of data—other separators
you could use are the colon, semi-colon or a
RETURNS code (CHR$(13)). The quotes are
used to surround each data string. The quotes
are a safety measure in case the original data
contained any punctuation which the
program would take as a separator.

The CLOSE 1 instruction in Line 150 closes
the file.

10 DIM A$(50),B$(50),T$(50)
20 N = 0: R EPEAT
30 N = N +1
40 INPUT"FIRST NAME ",A$(N)
50 INPUT"SECOND NAME ",

B$(N)
60 INPUT"TELEPHONE NUMBER", T$(N)

The Commodore 64's range of file han-
dling activities is much more complex than
the other computers' and is dictated by the
exact form of the OPEN command em-
ployed. It's worth having an overall look at
this before looking at the programs in this
article. It takes the general syntax:

OPEN Ifn, dn, sa,"filename,type,
mode"

Here, Ifn stands for logical file number, dn
stands for device number, sa for secondary
address. The file name is followed by the
file type, and the mode of using the
channel that's been opened.

To OPEN a sequential file, first decide
on the Ifn. For 'solo' program applications,
normally only one channel need be open at
once and more or less any arbitrary Ifn may
be selected. It can range from 1 to 255 and
you can select any number within that
range although it's good practice to stick to
below 128 because those higher are really
designed for use in other ways.

The Ifn is accessed by both read and
write operations.

The devices which can be specified are:

0—Keyboard
1—C2N tape unit
2—RS232 user port (modem, printer etc)
3—Screen (monitor or TV)
4/5—Printer (serial IEEE)
6—Plotter
8/9—Disk units (1541)
10-255 User specified

For file handling, device numbers 1, 8 or 9
are normally all that are ever used. One of
the latter two must be used in the com-
mand structure if a disk unit is used.

The secondary address, sa, can take a
value of between 2 and 14 (15 is reserved
for specific disk commands and errors)
and indicates the channel over which input
or output is to take place.

A maximum of three sequential chan-
nels may be OPEN at once if you're using a
disk based file handling program. But note
that different sa's must be used otherwise
the first file will be automatically CLOSEd
when another file with the same sa is
OPENed.

The sa values normally used are:

0—read a file
1—write to file
2—write to file with end-of-file marker

If sa is unspecified default is 0.
Then, in quotes, follow in turn the

filename (which can be up to sixteen
characters in length), the file type and the
mode.

It's a good idea always to use a file name
even though this is not a strict requirement
of tape data saves (it's necessary for disk
saves, however). There are five different
file types to choose from. The program file
is the most common and is the default
value if you don't bother to specify which
type:

S—sequential file
U—user file
P—program file
R—relative file *
D—delete

(" indicates disk use only)

70 UNTIL A$(N)="" OR N =50
80 CLS: PRINT "SAVING DATA NOW"
100 C=OPENOUT"FILE"
110 PRINT#C,N
120 FOR L=1 TO N
130 PRINT#C,A$(N),B$(N),T$(N)
140 NEXT
150 CLOSE # C
160 PRINT "DATA SAVED"
170 END

In this example, the variable C takes the
number of the channel created by the
OPENOUT statement. There is no need to
know which channel has been opened for you
as the variable C is used throughout the
program. The statement also prepares the
tape or disk for the file by recording a header,
which includes the file name.

If a disk is used, 64 sectors are immediately
reserved when a new file is opened. One
possible problem to be aware of when using
disks is that the program will overwrite any
existing file with the same name unless the old
one is locked.

PRINT # C means 'write the next item to the
file', so Line 110 saves the value of N which
will be used when reading back the inform-
ation. Line 130 writes each of the items of
data into the file.

The last command parameter, mode simp-
ly instructs the computer on how to use
the channel that's been OPENed using one
of the following four key letters:

W—write a file
R—read a file
A—add to a sequential file
M—read unclosed file

All except the first of the command para-
meters can be omitted, when the OPEN
channel defaults to the cassette unit—
device 1.

So you can end up with OPEN instruc-
tions of many forms. Here are some simple
examples:

OPEN 1,1,1,"FILE"—write to tape
OPEN 1,1,0,"FILE"—read from tape
OPEN 1,8,1,"FILE"—write to disk
OPEN 1,8,0,"FILE"—read from disk
OPEN 1,1,1,"FILE,S,W"—write sequential
tape file
OPEN 1,1,1,"FILE,S,R"—read sequential
tape file
OPEN 1,8,1,"FILE,S,W"—write sequential
disk file

The CLOSE # C instruction closes the chan-
nel. If this is not done there may be problems,
not least of which is that data may go missing.
Always CLOSE a file at the end of a writing
routine.

Enter some names and numbers and save
the information ready for the next section of
program.

1 0 DIMA$(50),B$(50),T$(50)
30 N=N+1
40 INPUT"FIRST NAME ❑ ";A$(N)
50 INPUT"SECOND NAME ❑ ";

B$(N)
60 INPUT"TELEPHONE NUMBER II";

T$(N)
70 IF A$(N) < >"" AND N <50 THEN 30
80 CLS: PRINT "SAVING DATA NOW"

Use this section if you are saving the data on
tape:

100 OPEN"0",# —1,"FILE"
110 PRINT# —1,N
120 FORL=1TON
130 PRINT# —1,A$(L),B$(L),T$(L)
140 NEXT
150 CLOSE # —1
160 PRINT "DATA SAVED"
170 END

Use this section if you have a disk drive:

100 CR EATE"Fl LE"
110 FWRITE"FILE";N
120 FORL=1TON
130 FWRITE"FILE";A$(L);",";B$(L);",";

T$(L)
140 NEXT
150 CLOSE
160 PRINT "DATA SAVED"
170 END

The first section of this program is common,
but the second part, that writes data to the
file, is different for tape and disk.

To take the tape section first, a file is
created using the OPEN"0" command which
means open for output. This is followed by
—1 which tells the computer to send the
data to a tape recorder, and then the name of
the file in quotes.

PRINT # —1 means 'write the next item to
tape file', so Line 110 saves the value of N—
the number of data items—ready to be used
when reading back the information. Line 130
then writes each item of data to the file—note
the commas separating each item. Finally, the
file must be closed at the end of the writing
routine with the command CLOSE # —1 as
shown in Line 150.

Creating a file with a Dragon Data disk

It is very easy to confuse the OPEN com-
mands on the BBC computer especially as
they are different in Basic I and Basic II.
With Basic I:
• OPENOUT opens a new file for output
from the computer; it is used to create a
new file
• OPENIN opens an existing file for input
or output
With Basic II
• OPENOUT opens a new file for output to
the computer; this is the same as Basic I
• OPENIN opens an existing file for input
to the computer only
• OPENUP opens an existing file for input
or output and is the same as OPENIN in
Basic I
Any program written on a Basic I com-
puter will run in Basic II. But programs
written in Basic II must use OPENUP
instead of OPENIN if they are also to run in
Basic I.

drive is broadly similar except that different
commands must be used. A file is opened with
CREATE followed by the name of the file, in
quotes, up to 8 characters. Information is
written to the file using FWRITE. Note that the
file name must be specified in each writing
operation and that a semi-colon is used to
separate the items rather than a comma as
before. As a further complication, commas
have to be specially sent to the file to separate
items when there are several on the same line,
as shown in Line 130. The simple instruction
CLOSE is all that's needed at the end of this
program without having to specify a file
name.

READING THE FILE
The program to read the file back into
memory is just a reverse of the save program.
There's also a line to display the information
on the screen so you can prove to yourself the
data really has been read in.

For tape use this section:

200 CLEAR
210 DIM N(1): LOAD "COUNT" DATA NO
215 DIM A$(N(1),15): DIM B$(N(1),15): DIM

T$(N(1),12)
220 LOAD "F.NAMES" DATA A$()
230 LOAD "S.NAMES" DATA B$()

240 LOAD "T.NUMBS" DATA T$()
250 FOR L=1 TO N(1)
260 PRINT A$(L), B$(L), T$(L)
270 NEXT L

For Microdrive use this:

200 CLEAR
205 INPUT "ENTER DRIVE NUMBER ";DRV
210 DIM N(1): LOAD *"M";DRV;"COUNT"

DATA NO
215 DIM A$(N(1),15): DIM B$(N(1),15): DIM

T$(N(1),12)
220 LOAD *"M";DRV;"F.NAMES" DATA A$()
230 LOAD *"M";DRV;"S.NAMES" DATA B$()
240 LOAD *"M";DRV;"T.NUMBS" DATA T$()
250 FOR L=1 TO N(2)
260 PRINT A$(L),B$(L),T$(L)
270 NEXT L

To use this program rewind the tape to the
start of the file then type RUN 200 to read in
the data, don't RUN the whole program again.

Line 200 is just there to clear the original
names and numbers from the computer's
memory so the program only prints out those
read from the file. Line 210 dimensions a new
array NO with one element. This is used to
store the value of N saved last time. The other
arrays are dimensioned in the next line using
this value. Since the maximum number of
elements are now known it saves reading in
empty elements of the array.

The rest of the program is very straight-
forward, and can be written simply by subst-
ituting the command LOAD instead of SAVE.
There is no need to close a file opened for
reading, only for writing.

Again, there is an alternative version for
the Microdrive (try not to get all these
versions mixed up). Once more, it is similar to
the writing procedure except that PRINT 4#
is charged to INPUT # 4 and in Line 230 the
items to be input are separated by semi-colons:

200 CLEAR
205 INPUT "ENTER DRIVE NUMBER "DRV:

OPEN #4;"M";DRV;"FILE"
210 INPUT # 4;N: DIM A$(N,15): DIM

B$(N,15): DIM T$(N,12)
220 FOR L=1 TON
230 INPUT # 4;A$(L);B$(L);T$(L)
235 PRINT A$(L);B$(L);T$(L)
240 NEXT L
250 CLOSE # 4

200 CLR: OPEN 1,1,0,"FILE"
210 INPUT#1,N: DIM A$(N), B$(N), T$(N)
220 FOR Z=1 TO N
230 INPUT # 1,A$(Z),B$(Z),T$(Z)
235 PRINT A$(Z),B$(Z),T$(Z)

240 NEXT Z
250 CLOSE 1

Again, for disk files change Line 200 to:

200 OPEN 1,8,0, "FILE"

To use this program rewind the tape to the
start of the file then type RUN 200 to read in
the data, don't RUN the whole program again.

The CLR instruction in Line 200 simply
wipes out all the original names and numbers
so you can be sure that the information
printed out really has been read from the file.
The rest of the line opens the file for
reading—note that the third number after
OPEN has changed from a 1 to a 0.

Line 210 inputs the first item of data. This
is the number of items in the array and is used
to set the limit of the loop that reads in the
data. Once N is known, the arrays are dimen-
sioned to the correct size. Line 230 then reads
in each string from the file and the next line
prints them out on the screen. Again, the file
must be closed with CLOSE 1.

200 CLEAR:C=OPENIN"FILE"
210 INPUT # C,N:DIM A$(N),B$(N),T$(N)
220 FOR L=1 TO N
230 INPUT # C,A$(0,6$(L),T$(L)
235 PRINTA$(L),B$(L),T$(L)
240 NEXT
250 CLOSE # C

To use this program rewind the tape to the
start of the file and then type GOTO 200 to
read in the data, don't RUN the whole
program again.

The CLEAR instruction in Line 200 is there
simply to wipe out all the original names and
numbers in the computer's memory so you
can see that the information printed out by
Line 235 really has been read from the file.
The rest of Line 200 opens the file for input
to the computer. It is very easy to get these
commands mixed up, especially if you have
Basic II, so have a look at the Troubleshooter
on page 1361 if you are confused.

Line 210 inputs the first item of data—N-
which is the number of items in the arrays.
You can now see why the variable N was saved
in the first procedure, it is used here to control
the loop in the reading procedure. Once N is
known, the arrays are dimensioned to the
correct size. Line 230 then reads in each piece
of information and the next line prints them
out on the screen. Again, the file must be
closed using CLOSE # C.

11A
For tape use this section:

200 CLEAR 2000:0PEN"I",# —1,"FILE"
210 INPUT # —1,N: DIM A$(N), B$(N),

T$(N)
220 FOR L=1 TO N
230 INPUT # —1,4(1-),B$(L),T$(L)
235 PRINTA$(L);B$(L);T$(L)
240 NEXT L
250 CLOSE # —1

For disk use this:

200 CLEAR 2000
210 FREAD"FILE",FROM0;N: DIM A$(N),

B$(N), T$(N)
220 FOR L =1 TO N
230 FR EAD"FILE";A$(L),B$(0,T$(L)
235 PRINTA$(L);B$(L);T$(L)
240 NEXTL
250 CLOSE

To use this part of the program first rewind
the tape to the start of the file and then type
RUN 200, don't RUN the whole program
again.

Line 200 simply clears the original vari-
ables so you can be sure that the names and
numbers printed out here actually come from
the file and not from memory*

Again, the two versions are different in
detail. The tape version opens the file for
input using OPEN"I" followed, as usual, by
—1 and the name of the file* Line 210
inputs the first item of data—N, the number
of records—and this number is used to di-
mension the arrays to the correct size. This
variable also controls the loop which reads in
the rest of the data. Note that the array
variables are in the same order in which they

were saved and that they are separated by
commas* As usual, the file has to be closed
when you've finished reading.

The disk version is similar in structure
except there is no need to use a special
command to open the file. Data is read using
FR EAD followed by the file's name. Line 210
shows the correct way to read in the first item
of data. The FRO M0 instructs the computer to
start at the beginning of the file—from byte 0.
You can specify any position although this is
only useful when using random access file*
Serial files, like the one you have just set up,
always start from 0* The rest of the data is
read by Line 230. Have a close look at the way
this line is made up—a semi-colon must
precede the first item, but the other items are
separated by commas.

THE END OF THE FILE
The last program used the loop variable N to
control the reading procedure but it is not
always possible to know in advance how many
items are to be read. A way of getting round
this is to use a special end-of-file marker. On
the Acorn, Dragon and Tandy, the marker,
called EOF, is automatically written onto the
tape or disk whenever the CLOSE command is
encountered* On the Commodore the STATUS
keyword (or ST) is used instead. The Spec-
trum, unfortunately, does not use an end-of-
file marker (but you can put in your own
dummy marker as shown later)*

So the last program can be rewritten to
keep on printing out the data until the EOF
marker is reached or, on the Commodore,

until the variable ST=64.
Here is the complete program from Line

100 onwards so you can compare it to the
earlier version. SAVE the old program, change
the lines to the ones below and then try
writing and reading the data again. You can
choose which version suits you best.

As usual, if you have a disk drive, change the
second number after OPEN to an 8.

100 OPEN 1,1,1,"FILE"
105 Q$=CHR$(34):C$=","
110 Z=0
120 Z =Z +1
130 PRINT # 1,QA(Z)QCQB(Z)QC

QT(Z)Q$
140 IF A$(Z) < >"" AND Z <50 THEN 120
150 CLOSE 1
160 PRINT "DATA SAVED"
170 END
200 CLR:OPEN 1,1,0,"FILE"
210 Z=0:DIMA$(50),B$(50),T$(50)
220 Z=Z+1
230 INPUT # 1,A$(Z),B$(Z),T$(Z)
235 PRINT A$(Z),B$(Z),T$(Z)
240 IF ST< >64 THEN 220
250 CLOSE 1

100 C=OPENOUT"FILE"
110 N=0:REPEAT
120 N=N +1
130 PRINT#C,A$(N),B$(N),T$(N)
140 UNTIL AVN)=`"' OR N=50
150 CLOSE # C
160 PRINT "DATA SAVED"
170 END
200 CLEAR:C=OPENIN"FILE"
210 DIM A$(50),B$(50),T$(50)
220 N=0:REPEAT
230 N=N +1:1NPUT#C,A$(N),B$(N),T$(N)
235 PRINTA$(N),B$(N),T$(N)
240 UNTIL EOF # C
250 CLOSE # C

Delete Line 200 and change these lines. For
tape:

100 OPEN "0", # —1, "FILE"
110 N=0
120 N=N+1
130 PRINT# —1,A$(N),B$(N),T$(N)
140 IF A$(N) < >"" AND N <50 THEN 120
150 CLOSE # —1
160 PRINT"DATA SAVED"
170 END
200 CLEAR 2000; DIM A$(50),B$(50),

T$(50):OPEN"I", # —1,"FILE"
230 N=N+1: INPUT#

— 1,A$(N),B$(N),T$(N)
235 PRINT A$(N);B$(N);T$(N)
240 IF EOF(—1)=0 THEN 230
250 CLOSE # —1

For disk:

100 CREATE"FILE"
110 N=0
120 N=N+1
130 FWRITE"FILE";A$(N);",";B$(N);","; T$(N)
140 IF A$(N) < >"" AND N <50 THEN 120
150 CLOSE
160 PRINT "DATA SAVED"
170 END
200 CLEAR 2000: DIM A$(50),B$(50),

T$(50)
230 N =N +1:FREAD"FILE";4(N),B$(N),

T$(N)
235 PRINTA$(N);B$(N);T$(N)
240 IF EOF("FILE") =0 THEN230
250 CLOSE

Line 240 in all these programs checks for the
end of file and you can see the exact form to
use for your computer. On the Commodore
Line 100 can also be written differently if you
use a tape. Try this:

100 OPEN 1,1,2,"FILE"

The number 2 in the OPEN command means
`write an end-of-file marker when the file is
closed', and causes the tape to stop running
when you come to the end of the file.

DUMMY TERMINATORS
An alternative way of checking for the end of
the file is to have some kind of dummy
variable. In fact this is the only way to check
for the end of a Spectrum Microdrive file—it
is not possible at all with a Spectrum tape file.
The procedure is quite simple. In the original
input routine, when data is first entered into
the computer, a dummy value or word can be
entered after the last proper item. This
dummy could be the word END, or ZZZ or
—999 or anything you would not normally
expect to find in the real file. Alter these lines
to see how the dummy value is used in
practice. This time when you have finished
entering the data type END instead of the next
FIRST NAME, then 'RETURN or I ENTER for the
other two prompts.

a
This is only possible with the alternative
Microdrive version that saves data one item at
a time. Line 70 needs to be changed as shown,
the writing and reading routines are given in
full:

70 IF A$(N) < >"END" AND N <50 THEN

GOTO 30
100 INPUT "ENTER DRIVE NUMBER ";DRV
110 OPEN # 4;"M";DRV;"FILE"
120 L=0
125 L=L+1
130 PRINT # 4;A$(1_)'8$(1411(L)
140 IF A$(L)< >"END" AND L<50 THEN

GOTO 125
150 CLOSE #4
160 PRINT "DATA SAVED"
170 STOP
200 CLEAR: DIM A$(50,15): DIM B$(50,15):

DIM T$(50,12)
205 INPUT "ENTER DRIVE NUMBER ";DRV
210 OPEN # 4;"M";DRV;"FILE"
215 L=0
220 L=L+1
230 INPUT # 4;A$(L);B$(L);T$(L)
235 PRINT A$(L);B$(L);T$(L)
240 IF A$(L) < >"END" AND L <50 THEN

GOTO 220
250 CLOSE # 4

70 IF A$(N) < >"END" AND N <50 THEN 30
140 IF A$(Z) < >"END" AND Z<50 THEN 120
240 IF A$(Z) < > "END" AND Z < 50 THEN

220

Make these changes to the EOF program:

70 UNTIL A$(N)="END" OR N=50
140 UNTIL A$(N)="END" OR N=50
240 UNTIL A$(N)="END" OR N=50

Make these changes to either the tape or disk
version of the EOF program:

70 IF A$(N) < >"END" AND N <50 THEN 30
140 IF A$(N) < >"END" AND N <50 THEN 120
240 IF A$(N) < >"END" AND N <50 THEN

230

USING THE DATA
The file is simply a means of storing all of the
data separately from the program. It is there
to be read by whatever program will make the
best use of it. You can, for example, use any of
the sort routines given on pages 392 to 397
and 708 to 711 to sort the list into alphabetical
order. Once sorted you can quickly search for
specific items using a binary search program
similar to the one on pages 926 and 927. By the
time you have added on other routines to add
and delete items you'll have a complete data
file similar to the program starting on page 46.
However all these routines are concerned with
handling arrays rather than files, and the
techniques involved have been covered else-
where in INPUT.

CUMULATIVE INDEX

An interim index will be published each week. There will be a complete index in the last issue of INPUT.

A
Animation

of boulders in cliffhanger
1276-1281,1328-1332

of sprites
Commodore 64 	1259-1263

with LOGO 	1317-1320
Applications

horoscope program 1245-1253
room planner program

1269-1275,1308-1313
Artificial intelligence 1264, 1294

B
Basic programming

moving colour sprites
Commodore 64 	1258-1263

operating system 	1322-1327
recursion 	1289-1295

C
Cavendish Field game

part 1—design considerations
and setting up UDGs

1254-1257
part 2—map and troop arrays

1282-1288
part 3—issuing orders

1301-1307
Cliffhanger

part 12—adding weather
1240-1244

part 13—rolling boulders 1
1276-1281

part 14—rolling boulders 2
1328-1332

Collision detection,
of sprites
Commodore 64
	

1263
Colour

of sprites
Commodore 64
	

1262

D
Desperate decorator game

1314-1316
DIMensioning arrays, in

Cavendish Field game 	1282
DRAW

absolute, how to create
Spectrum 	 1324

Drawing
in room planner program

1269-1275,1308-1313
with LOGO 	1296-1300

E
Edit mode, in LOGO 	1296
Envelopes, sound

loud and quiet in cliffhanger
Acorn 	 1243-1244

EXEC, Dragon, Tandy
to access OS 	1326-1327

F
Factorials

program to calculate
1291-1293

*FX commands, Acorn
to access OS 	1324-1326

G
Games

Cavendish Field 	1254-1257,
1282-1288,1301-1307

cliffhanger 	1240-1244,
1276-1281,1328-1332

desperate decorator 1314-1316
horoscope program 1245-1253
life 1237-1239

Garbage collection,
in LOGO 	 1299
using EXEC

Dragon, Tandy 	1327
Geometry, turtle 	1296
Graphics

in Cavendish Field game
1254-1256,1282-1288

sprites, Commodore 64
moving and storing 1258-1263
using LOGO

1296-1300,1317-1320

H
Horoscope program 1245-1253
Housekeeping, definition 	1323

1
IF *** THEN, in LOGO 	1300
Infix notation, in LOGO 1320

K
Keypresses

detecting by OS 	1323

L
Languages

LOGO 1264-1268,1296-1300,
1317-1321

Life game 	1237-1239
LOGO 	1264-1268,1296-1300

sprites, words and maths
1317-1321

M
Machine code

games programming
see cliffhanger; life game

Mathematical functions
with LOGO 	 1320

Memory
banks, range of

Commodore 64 	1258-1259
checking with LOGO 	1299
locations of VIC-II chip

Commodore 64 	1262
managing by OS 	1323-1327
storing sprites in

Commodore 64 	1258-1260

N
Nodes, memory,

in LOGO
	

1299

0
Operating system

accessing 	1324-1327
how it works 	1322-1324

OS command line interpreter
(OSCLI)

Acorn 	 1324-1326
OSBYTE, Acorn 	1324-1326
OSWORD, Acorn 	1326

P
Patterns, drawing in LOGO

Pointers, sprite
Commodore 64

POKE
use of to access OS

Spectrum 	 1324
use of to enable
and store sprites

Commodore 64 	1259-1263
Prefix notation, in LOGO 1320

Primitives, definition 	1267
Procedures, in LOGO 	1268

use of to draw patterns
1296-1300

Punctuation, with LOGO
1320-1321

Q
Quicksort program,

recursive 	1293-1294

R
Recursion

in BASIC 	1289-1295
in LOGO 	1299-1300

Room planner program
part 1 	 1269-1275
part 2 	 1308-1313

S
Sprites 	Commodore 64

moving and storing 1258-1263
Sprites, LOGO 1317-1320
Subroutines, calling

by recursion 	1289-1295
SYS, Commodore 64

to access OS
	

1324

T
Towers of Hanoi program

1294-1295
Turtle, use of 	1266-1268

for graphics 	1296-1300

U
USR, to access OS

Acorn
	

1324-1326
Spectrum
	

1324

1258
1262

w
Wargames

see Cavendish Field
Word-handling

with LOGO 	1320-1321

	

1296-1300
	VIC-II chip

Commodore 64

	

1260-1261 	memory locations of

The publishers accept no responsibility for unsolicited material sent for publication in INPUT. All tapes and
written material should be accompanied by a stamped, self-addressed envelope.

If you have favourite screen pictures or
charts you want to keep, you can take a
print-out using a SCREEN DUMP
PROGRAM. There are two versions, a
simple BASIC program, and a machine
code routine for different tones

LANGUAGES looks at PASCAL, the
structures language that many see as the
most viable alternative to BASIC

_./If you found the computer WARGAME
easy to beat, see if you can still win after
you have added MACHINE
INTELLIGENCE

The MUSIC COMPOSER continues by
adding more of the listing that lets you
compose, edit and play back

The next routine to add in
CLIFFHANGER lets your man JUMP to
avoid the hazards that face him

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36

