
Penonal
World, July 1982

BRITAIN'S LARGEST SELLING MICRO MAGAZINE

ANATOMY OF THE BBC MICRO
We delve into what the manual doesn't tell you

r ,.
I

© 1982 Felden Productions. Reprinted from Personal Computer World July 1982 issue.
Published by Sportscene Publishers (P.C.W.) Ltd. 14 Rathbone Place London WIP IDE England

Tel: 01-631 1433

~k db

Even if you're still waiting for your BBC Computer, you can become an
expert on the machine with this special, three-part delve into its innards: expansion

possibilities, use of the sound generator and a detailed memory map of the system. To
kick off, Paul Beverley of Norwich City College talks about expanding the 'Beebon '.

EXPANDA-BEEB!
If you have been trying to sort out
how the BBC Computer actually
works, either from a hardware or soft-
ware point of view, you will probably
have come to the same two conclusions
as I have. Firstly, it's a very complex
system, but secondly it is extremely
versatile and expandable. Everything
possible seems to have been done to
ensure that this is not a 'dead-end'
machine which you will have to throw
away after a year or two when its
basic technology is, inevitably, super-
seded. As you can see from Figure 1,
the basic computer is just the starting
point for connecting to all sorts of
other systems.

Obviously the system supports all
the usual peripherals - VDU, cassette,
disk, etc - but the most important
single feature which ensures that this
system will keep going much longer
than most is the Acorn Tube. I have
no doubt that some other manufac-
turer could, and possibly will, come
out with a machine which, on the face
of it, has the same features as the BBC
machine, but is only half the price and
is available off the shelf. But beware
of imitations! If it does not have an
Acorn Tube then it will be a dead-end
machine.

The Tube
What's so special about the Tube?
Well, it's a high speed (2MHz) communi-
cation system requiring a quite com-
plex hardware interface (in a ULA!) to
pass bytes back and forth between two
processors. It uses FIFO buffers and
interrupts, so it allows true parallel
processing. The idea is that the 6502
on the main board should handle all
the input and output (keyboard, VDU,
printer, cassette, disk, user ports, etc)
which all takes quite a lot of comput-
ing time, while the second processor
does the language processing, calcu-
lations and so on.

The first gain you get from this is
that the processing speed, even using a
6502 as second processor, is more than
doubled. The reason is that, with only
one processor, every time it wants to
output some data it has to stop its
calculations, output the data and then
pick up the calculations where it left
off. With two processors, however, the
second processor, having done some

calculations, simply shoots the data
off down the Tube, allowing the I/O
processor to deal with it in its own
time, and carries on with the calcu-
lations unhindered.

Those who are not so keen on the
6502 will be pleased to know that you
do not have to use the same processor
on either end of the Tube. You could
equally well use a Z80 as the language
processor so that you can take
advantage of its superiority over the
6502 for data processing applications.
Also, choosing a Z80 second processor
opens up the vast array of CP/M soft-
ware currently available, since the Z80
second processor board which Acorn is
producing is said to be 'fully CP/M
compatible'. However, you obviously
cannot use any of the CP/M software
which is machine specific, so that rules
out virtually all the 380Z software, for
example.

The other factor giving an overall
speed improvement is that both the
Z80 and 6502 second processor boards
will be working at a clock rate of at
least 3 MHz and Acorn is in fact trying
to push the speed up to 4 MHz.

Why stop there? Why be satisfied
with a Z80? Acorn is at present
developing a second processor board
using the National chip, the 16032,
which, it is also hoped, will run at 4
MHz and Unix, UCSD, Pascal,
Fortran, Cobol and at least another
half dozen other high-level languages
are being talked about for 'sometime
in '83'. That would give the machine a
level of processing power similar to
some of the present day minicomputers
at a fraction of the cost and, some
would say, with much greater relia-
bility. Acorn says it is trying to get all
these boards on the market by the
autumn.

Memory expansion
Apart from the gain in speed achieved
by using a second processor, there is
also a gain in size and speed of
memory access. The maximum amount
of memory which one 8-bit processor
can address is limited to 64 kbytes -
and this has to include both ROM and
memory-mapped input/output, as
well as RAM. The model 'B' BBC
Computer has 32 kbytes of ROM,
memory-mapped I/O, and 32 kbytes

of RAM but, since to make use of the
highest resolution of graphics you
need 20k of RAM, and since nearly 4k
is used up for operating system work-
space, serial I/O buffers, sound buffers,
soft key buffers, etc, you are really
down to about 8k for your program
and variable storage.

Paged memory.expansion
One possible means of improving on
this that has been provided is the
capacity for accessing an extra 64k of
RAM, ROM or I/O in a 'paged' mode
via the 1 MHz extension bus. That is
to say, you store the top eight bits of
the auxiliary address in a special
register (FCFFH) and then as you
read and write to locations FDOOH to
FDFFH you will actually be address-
ing locations in the specified page of
the auxiliary RAM - but obviously
this is much slower than accessing the
on-board RAM. This is not only
because the access is at 1 MHz rather
than the 2 MHz at which the 6502 is
running, but because of the time taken
in setting up the paging register. Also,
some thought would have to be given
to the software implementation of this
system. For more information on this
you could get a copy of 'Application

-Note 1: The 1 MHz Extension Bus', on
, sale from Acorn.

.r,

Second processor
memory
If you have a second processor, even an
8-bit one, it will immediately provide an
extra 64k of addresses. There will have
to be a small 'bootstrap' ROM on the
second board in order to get it started
on power-up, but Acorn suggests there
will be the capacity for 60k of RAM on
both the 6502 board and the Z80 board.
Also, this RAM will be accessed at the
full 3 or 4 MHz at which the second
processor is running.

If you then go to the 16-bit second
processor, you are into the megabyte
region in terms of memory capacity. We
don't yet know what Acorn will be pro-
viding in the way of RAM with the new
board, but the 16032 has an addressing
range of 16 megabytes (24-bit address)

Command lines
The other very important feature for
software expansion is the command line
structure. Any command which is pre-
fixed by an asterisk is called a command

EXPANDA-BEEB!
which should be enough for most appli-
cations! You may think that this
amount of memory would be pro-
hibitively expensive, but no doubt by
the time the board is in production the
price of RAM will be only a fraction of
its present cost and 16 megabytes will
be reasonably realistic. If you doubt
whether Acorn really intends to im-
plement the 16-bit second processor,
just take a look at the. cassette tape
format and you will see that all
addresses are 32 bits long, and not 16
bits as in all currently available 8-bit
machines.

Language expansion
Anyone who has used the RML 380Z
will appreciate the advantages of holding.
the high level language interpreter in
RAM instead of ROM. It makes the
system very flexible in that you can use
Basic one minute and then, say, Pascal
the next. However, anyone who has
used the cassette version of the RML
380Z will also know the disadvantages
of this idea. The time spent loading 16k
of high level language every time you
want to use the machine, and the
frustration of crashing the machine by
over-writing the interpreter through
injudicious POKEing, can soon dampen
one's enthusiasm for the idea.

In the BBC machine, however, you
get what seems to be the best of both
worlds. Resident in the machine at any
one time you can have up to four differ-
ent 16 kbyte interpreters. Acorn says
that these will include Pascal, Forth and
Lisp, a CAD package and a word pro-
cessor, and also possibly Comal for the
ardent structurists! Also I am sure that
as this machine becomes more widely
used, independent companies will be
producing alternative interpreters.

Swapping between languages is
simplicity itself. When you first switch
on the machine you find yourself in
Basic or whichever language ROM you
have in the default position, and then to
change to another language, you simply
say '*PASCAL' or '*LISP'. This can be
done either in immediate mode or from
within a program; so it will be possible,
without the user being aware of it, to
change from one language to another
even as a program is running!

This is possible because, on power-up,
the operating system interrogates each
of the installed ROMs to find out how
much 'private' workspace and how
much 'public' workspace it needs. It
then reserves the requisite amount of
private space for each ROM, decides on
the largest amount of public space need-
ed by anyone ROM and sets the value
of PAGE accordingly. This ensures that
the ROMs can all work together with-
out overwriting each other's private
workspace but minimises the total
amount of workspace by defining a
public 'scratch-pad' area. '

line and is 'offered' to each of the
language ROMs in turn to see if they
recognise it. If they do, then they will
execute it, but if it is not recognised by
any of the language ROMs it will be
passed on to the service ROMs -
graphics packages, voice synthesiser,
user EPROMs, etc, and if it is not on
their list of commands it is finally
passed to the current file system, disk or
net, where, if a file of that name exists,
it will be loaded and executed.

ROM cartridges
Another' form of expansion which has
been provided is the strange-looking
hole at the left-hand side of the key-
board. This is not to provide extra cool-
ing but to allow you to plug in ROM
cartridges - rather like the Atari games
cartridges. These could contain pro-
fessionally -produced applications pro-
grams which, as a matter of interest, will
be extremely difficult to copy as they
could only be RUN and not LOADed.
This will be very useful in situations
where the user is to be a complete com-
puter novice. Also they could be used to
provide an alternative character set or to
give extra vocabulary to the voice
synthesiser.

Although I have spoken of these
applications of the ROM extension as
alternatives, it should be noted that you
can in fact have up to 16 ROMs all
piggy-backed onto the same connector
- that is to say electrically piggy-
backed, not piled up on top of each
other! So, when a command line is en-
countered which is not recognised by
any of the language ROMs, it will be
passed on to the ROMs within the
cartridge to check whether each in turn
might recognise it.

Machine operating
system
It is the use of a very extensive (16k)
machine operating system which makes
it so easy to change high-level interpret-
ers. What this means is that the sort of
things you need to do in any language,
such as writing to the screen, reading
and writing to cassette, disk, serial I/O,
printers, etc, are allprovided asfirmware
subroutines. Many of these routines are
vectored so that if you want to intercept
them you can redirect them to some
code you have written by changing the
appropriate vector. Also it means that
changing filing systems from cassette to
disk or net is just a matter of changing
the vectors.

Many of the firm ware routines have
been provided with expandability. If
you look at the VDU calls especially,
you will see that many of them are
followed by strings of zeros, 'to allow
for future expansion'. For example, to
change logical colour 1 to actual colour
6 you use 'VDU 19,1,6,0,0,0', the last
three zeros being redundant to the call.
Similarly, the so-called 'advanced
graphics call', VDU23, 0 has to have a
total of 10 bytes in it. The third byte is
the register within the 6845 CRT con-
troller chip and the fourth is the data

that you want to put in it. Then you
need to follow it with six zeros. That
represents a lot of future expansion!

Incidentally, if you want to 'see' the
internal workings of the machine, try
this:
MODE 4 (or any other two colour mode)
VDU19,0,4,0,0,0 (change background
colour)
VDU23;12;0;0;0 (use zero page upwards
as video RAM).

You will then see what an 'interrupt
driven machine' looks like.

Extension bus
I have already mentioned the 1 MHz
extension bus with reference to memory
expansion, but there is much more
which can be hung on this bus than
just 64k of paged addresses. First of all
you could use some of the 64k addresses
for memory mapped I/O - such as the
6522 versatile interface adaptor, as is
used for the printer and user ports on
the basic machine - and you could also
address a number of ADC and DAC
devices such as the ZN427 and ZN428
which, having tristate buffers, can be
put directly onto the data bus. This
would then make complex data
acquisition systems a distinct possibility.
You could also make use of these
addresses for your own machine code
routines by storing them in EPROM.
Acorn is already in the process of pro-
ducing a suitable programmer for the
BBC micro. The list of applications of
the 1 MHz bus is ,endless, limited only
by your imagination.

Paged addressing only uses addresses
&FCFF to &FDFF, so there is almost
the whole of page &FCOO to be
accounted for. The idea is that this
should be used for memory-mapped
devices that only have a small memory
requirement. As you can see from the
system plan, it is this bus onto which
the Teletext and Prestel acquisition
units are connected. Here are the
preliminary allocations which Acorn is
suggesting:
FCOO- FCOF Test hardware
FC10 - FC13 Teletext
FC14 - FC1F Prestel
FC20 - FC7F Not yet allocated
FC80 - FC8F Test hardware
FC90 - FCBF Not yet allocated
FCCO - FCFE User Applications
FCFF Paging register for 64k

paged addresses
FDOO- FDFF Access to paged memory

As you will also see from the system
plan, the bus will support Eurocards and
there are alreadv a number of these
available from Acorn, originally intend-
ed for the Systems 3, 4, and 5 but
equally applicable to the BBC system.
You will, however, need some sort of
buffered back-plane if you want to use
more than one card - again Acorn is
busy preparing one for production at
the moment.

The actual Eurocards currently avail-
able include a 'universal' interface for
digital I/O including 6522 and 8255
parallel I/O chips and a 6850 for serial
I/O. Then there's a laboratory inter-
face which has 16 I/O lines, optically
buffered with an output drive capability
of 3 amps at up to 48 volts, and an
analogue interface with two 12-bit
DACs and an eight-channel, 12-bit ADC
with a conversion time of 100 jrs per
channel, all controlled by a 6522 VIA.
There's also a 32k dynamic RAM card

.I

Intelligent terminal
Another exciting possibility for schools
and colleges is to use the BBC Computer
as a terminal to a mini or mainframe
computer. This is made possible by the
RS{23 interface and the programmable
serial processor (another ULA!) which
provide bi-directional data flow with
control through 'ready to send' and
'clear to send' lines. The RS423 standard
is compatible with RS232, but has
superior drive capabilities. Since the
serial processor is programmable, it is a
simple matter to select the baud rates
for transmit and receive and these can
be any of the standard rates up to 9600
baud - at a push it will even go up to
19,200 baud though Acorn doesn't
guarantee its operation at this speed. It
is worth noting that the transmit and
receive baud rates are set separately so
that split rates can be used, ie, when the
user transmits, since .it comes from a
keyboard, its speed is limited and you
would therefore use a relatively slow
transmission rate, but the big computer's
replies can be relatively fast, depending
on the length of cable and/or the limit-
ations of any modem.

What is much more exciting is the
possibility of using the BBC micro as an
intelligent colour graphics terminal. It
would seem on the face of it to be a
relatively simple piece of programming
to allow the mini or mainframe to con-
trol the BBC's colour graphics. The idea
of a room full of BBC machines linked
on an Econet to common disks and
printer which could then link straight
into a mainframe would be extremely
attractive, giving you the best of both
worlds - the processing power and
memory capabilities of the mainframe
plus the independence of the micros.
And certainly if we are talking in terms
of cost effectiveness for an educational
establishment, there can be nothing
currently available to touch this system.

I still have not mentioned the on-
board Avto-D converters which could be

- but don't forget that it is only acces-
sible in the paged mode and then only
at 1 MHz. So if it's extra memory
capacity you need, then you should go
for a second processor board.

Econet
Another very powerful expansion facility
is the Acorn Econet. This will be particu-
larly useful in schools and colleges but
could also be put to good use in business
applications. It is a simple communi-
cation system using only a cheap four-
wire telephone type cable to link to-
gether up to 254 computer stations
which can be Atoms, Systems 3, 4 or 5,
or BBC Computers. Apart from allowing
any machine to communicate with any
other machine, the idea is that you
should be able to use it to allow a
number of machines to share the use of
expensive peripherals such as disks or
printers. One of the systems has to be
dedicated as a 'file server' and another
as a 'printer server', though either of
these systems can revert immediately to
being ordinary systems if disks or
printer are not required. If you divide
out the cost of the disks, printer and
server systems among the number of
other systems which have immediate
access to them, its cost effectiveness
very soon becomes apparent.--~

used for games applications or scientific
measurement, or the light pen input
which has a variety of applications.
Then there is the user I/O which
employs a 6522 versatile interface
adaptor and can be used for a very wide
range of control applications. Soveven
without any major expansion, the
machine has quite a fair bit of control
capability.

Conclusions
I'm sure there will be various criticisms
of this new system, but it seems to me
that it has the potential for a very wide
range of applications. I think that the
area where it will be most heavily used
will be education, especially with the
Econet system and the possibility of
use as dumb or intelligent terminals,
but I can also see the system getting
quite well used in business applications,
especially with the Z80 second processor
running CP/M - though I do think it

will need a better quality keyboard in
this area.

The other area in which It may well
be quite extensively used is in scientific
and simple industrial control. It repre-
sents, in terms of hardware, a cheap
solution to many simple control and
monitoring problems and a number of
companies are already considering its
use in terms of IEEE 488 bus
applications.

All in all, it seems to me that whether
your interests lie in business, education-
al, scientific, control or games appli-
cations, this system provides a possibility
for expansion which is unparalleled in
any other machine available at present
- although where one leads, others will
follow. Judging by the current sales
figures, I don't believe that even those
recalcitrant ULAs will stop this system
becoming the best-selling computer
system in Britain and maybe even in one
or two other countries.

Speaker

3-voice
music
synthesiser
+
speech
synthesiser

BBC Computer
2MHz 6502 CPU
32k dynamic RAM
16k machine operating

system ROM
4 selectable ...

16k language RaMs
cartridge ROM packs

TV aerial IMHz
extension
bus

Fig 1The BBC Computer system.

J

1
J

If you've been struggling to get sound out of your BBC micro,
Mark Holmes can help you.

SOUND ADVICE

Fig 2

Many users of the BBC Computer will
have been very disappointed to discover
the lack of information on the control
of the sound generator in the User's
Guide. Those of us hoping to learn
something from the noise producing pro-
grams on the 'Welcome' cassette became
more dismayed on discovering that
these noises had been created using a
short machine code routine accessing
the memory-mapped SN76489 directly.
The sound generator provides four inde-
pendent channels, three of which pro-
duce independently programmable
square waves and the fourth which can
be programmed to produce either grey
noise or a pulse wave.

The power of the sound generator
system lies not in the choice of chip,
which is not the most exotic available,
but in the software which handles its
control. Once a sound is programmed
and initiated, the microprocessor is
returned to the user. Updating the
sound is achieved by interrupting the
processor when required, enabling com-
plex sounds to be generated requiring
extensive control with the minimum of
awareness from the programmer.

There are two commands available
from Basic for the control of the
generator: SOUND and ENVELOPE.
The SOUND command causes a sound
request to be added to the sound buffer
and thus queued for output, The sound
buffer can store up to four SOUNDs for
each channel, not including the one
currently executing. SOUND is des-
cribed by one 16-bit parameter and
three single byte parameters. The
ENVELOPE command is described by
14 single byte parameters defining fre-
quency (pitch) and amplitude (volume)
envelopes for a sound, An envelope is a
description of how a sound varies in
note and volume; a full appreciation of
how the shape of the envelope affects
the sound produced can only really be
gained through experimentation and the
process of trial and error.

The SOUND command can be used
either to produce a sound of constant
frequency and amplitude or to produce
a sound predefined by the use

SOUND 1, -15,10,100

channel C.~tcf I
amplitude duration

Fig 1

ENVELOPE n, t, fr!, fr2, fr3, ftl, ft2, it3, a, d, s, r, 11, 12/' . ",
envelope no / frequency ;nvelope amplit:de envelope

time-base period

of the ENVELOPE command - see
Figure 1 which produces a long, low-
pitched note.

The duration can be in the range of
0-255; a value of 255 gives a note
without end and durations of less than
255 define the duration of the note in
50ms units.

The pitch parameter describes the
initial frequency of the sound within a
range of ° to 255. The available preset
frequencies are based on quarter semi-
tones, I believe.

The amplitude or envelope number
can be used either to describe the ampli-
tude of a note of constant pitch and
amplitude if it is a number in the range
--16 to -1, or to identify a predefined
envelope in the range ° to 15.

The channel parameter is a two-
byte value passing four separate items of
information. The least significant four
bits (or hex digit) describe the destina-
tion channel for the sound. As ° is a
reasonable default value for the other
sub-parameters (these being the other
three hex digits) this parameter will
mostly be passed as a single decimal
digit in the range 0-3, corresponding to
the channel number. The most sig-
nificant next digit can be a ° or a 1: if
it's 1 the sound buffer will be flushed
and the sound passed immediately to
the generator, otherwise it will be
queued.

The second most significant digit
enables the synchronisation of up to
four sounds to be played as a chord.
The value, between 1 and 3, describes
the number of other sounds having the
same value for this parameter required
before the chord can be sounded, eg:
SOUND &0201, -14,150,20
SOUND &0202, -12, 100,40
SOUND &0203, -10,50,60

The third most significant digit may
be ° or 1. This parameter allows a
'dummy' sound to be sent to the
generator which has no effect other
than to .allow the previous sound to be
heard when it might otherwise be
truncated.

Figure 2 shows the form which the
ENVELOPE command takes. The first
parameter is an index in the range 0 to
15 which identifies the envelope, as
used for the SOUND command. The
second parameter, in the range 1-127,
describes the time intervals at which the
envelope is updated in units of 10ms.
This will normally be 1, allowing rapid
changes in the envelope, but longer,

more extended sounds are possible by
using greater values for this parameter.
If the top bit of this parameter is set,
the frequency envelope will only be run
through once even if the end of the fre-
quency envelope is reached before the
amplitude or duration terminates the
sound; otherwise, the sound will cycle
through the frequency envelope,
restarting as the end is reached.

For example, try:
ENVELOPE 1, 1, 3, -3,3,20,20,20,
127,0,-127,-127,126,0
SOUND 1, 1, 30,100
or
ENVELOPE 1, 129, 3, -3,3,20,20,
20,127,0,-127,-127,126,0
SOUND 1, 1, 30, 100

The frequency envelope is separated
into three segments for /' envelope
definition. Each segment.Is described by
a pair of parameters which define the
segment in terms of a rate of change of
frequency and a number of time units
for which this rate holds.

fr1, fr2 and fr3 describe the rate at
which the frequency changes during a
given segment. This rate is described by
a value between -127 and 127, where a
negative value describes a decreasing
frequency and a positive value an
increasing frequency.

ftl, ft2 and ft3 are values in the
range of ° to 255 and describe the
number of timebase units during which
the rate of change is applied - see
Figures 3 and 4. If a large rate of change
is used over a long period, the sound
will cycle through the range of fre-
quencies several times, creating some
interesting effects.

The amplitude envelope follows the
pattern used by some other sound
generating devices, that is the ADSR
system (attack, decay, sustain, release).
The first four parameters of the ampli-
tude section correspond to these
elements and the final two parameters
describe the amplitude levels at points
within the envelope. The attack para-
meter describes the rate at which the
amplitude rises to level 1 (range 1 to
127). The decay parameter, a slight
misnomer, can describe a rate of rise or
fall to the second amplitude level (range
-127 to 127). The third amplitude
parameter, sustain, describes the rate of
fall from the second level to the end of
the sound as defined by the duration in
the SOUND command. The sustain
parameter, like the release parameter,
describes the rate of fall of the sound
after the 'official' end of the sound,
This part may be truncated by a follow-
ing sound in the same channel and so
use of a dummy sound may be called
for - see Figure 5.

If the value of decay is 0, the sound
will continue at an amplitude set by level
1 until the end of the sound. If the value
of sustain is ° then the sound will con-
tinue at level 2. If the value of the

1
I

Fig 5

release parameter is 0, the pitch and the
amplitude reached at the end of the
duration will be continued ad infinitum.

Channel 0, the 'noise' channel, is
controlled principally via the pitch
parameter of the sound command. If bit
2 of this parameter is set then the
channel will produce grey noise, other-
wise it will produce a pulse wave. Bits 0
and 1 control the frequency of a pulse
wave. If both bits are set then frequency
will be linked to the frequency of
channel 1, eg:

10 ENVELOPE 1,1, -1,1, -1, 40, 40,
40,127,0,0,0,20,0

20 SOUND 1,1,30,40
30TIME=0:REPEAT UNTIL TIME>500
40 FOR 1=0 TO 7
50 SOUND 0, -15, I, 100
60 PRINT I
70 NEXT I

This short program demonstrates
what sounds can be made via,the noise
channel. The FOR... NEXT loop index
used to provide the different value for
the 'pitch' parameter of SOUND is
printed out as each SOUND is placed in
the sound buffer. The first five values
are rapidly printed as the sound buffer
fills up, subsequent numhers are printed
more slowly as-vacancies- occur in the

buffer on the termination of the earlier
sounds. There is no synchrony between
the printing of the numbers and the
sounds emitted.

The actual duration of a generated
sound will depend on either the dura-
tion as defined in the SOUND command
or the description of the amplitude
envelope in the ENVELOPE command
that is the sound will end if the ampli-
tude reaches O. The value of the release
parameter will have no effect if this
occurs.

To achieve maximum effect from the
sound generator, I recommend you use
an external speaker. A 3-4in speaker
placed in a suitable box or tube for
resonance, produces a considerable
increase in volume and improvement in
tone. A 3.5mm jack-socket enables the
connection of the external speaker, hi-fi
amplifier or an earphone. The latter
may be advisable if the computer shares
the living room with other members of
the family.

PITCH

frl (GRADIENT)= +10
200

ft3 = 50

L
100~~~====~~~~~========~======;;~~--~TIME 90
50

ENVELOPE1, 1,10, -5,1,10,30,50,127,0,0, -127,126, °
SOUND1,1,100,18

Fig 3

250

170

PITCH THIRD SEGMENT

30t..~~~===- ~ ~ ~~
TIME30

ENVELOPE 1,1,1,2,4,30,70,20,127,0,0, -127,126,0
SOUND 1,1,0,24

Fig 4

100 120

126

AMPLITUDE

L---------------------------------------~----------------~--.TIME
I.. DURATION AS DESCRIBED IN SOUND-----.....,

ENVELOPE 1, 4,0,0,0,0,0,0,5, -1, -10, -1,126,60
SOUND 1,1,50,60 .

60

(DECAY =6)

What the map covers
The memory map is in several parts. The
page usage section summarises the use
of each page of memory (a 'page' is a
block of 256 bytes; &XOO to &XFF -
this would be Page X).

The action addresses section lists
all the Basic keywords, with the token
that represents each, and their action
addresses (where applicable). Keywords
with tokens less than &8F do not have
their action addresses stored in a table
and neither are they jumped to from the
standard despatching routine. Instead,
they are dealt with as they are encoun-
tered - ie, the procedure is along the
lines of 'get byte from Basic text. Is it
&84? If so, jump to &9BI4, else carry
on'. Because of this, they may be dealt
with in more than one place - the loca-
tion I have given is the principal one.
A token of &8D precedes a line number
in text. The line number is stored
neither in ASCII nor hex but in a
complicated manipulation of the hex of
the number. The reason for this is not

David Christensen has been taking the Basic ROM apart
and reports his findings.

MAPPING
OUT THE BEEBON

One of the useful features built into
the BBC Computer is the built-in
assembler. This facilitates the writing of
very powerful machine-code programs,
but the process can be made easier still
if existing firmware routines can be
called. To make this possible, I have
compiled a memory map for the
machine.

The map is derived from one of the
first released machines, which the
Department of Industry used for prizes
in its MAP schools competition. I would
like to thank Portsmouth Grammar
School's Computing Department, and in
particular the Director of Computing,
Mr Roy Thornton, for allowing me to
use their BBC micro for this map.

The machine, originally a Model A
but upgraded to allow it to talk to a
printer, had the language installed in
ROM, but the Machine Operating Sys-
tem (MOS) was only in EPROM. Since
this gave 'No filing system' errors with
*DISK/C and *NET without checking
the presence of the required hardware
and since there is no room to add these
functions, Acorn must be going to sub-
stantially update the ROM from the ver-
sion I studied. For this reason, I am
giving here only the memory map of the
Basic used areas.

Throughout the map I have used
hexadecimal as the numbering system
for addresses. To be consistent with the
BBC usage, I am using '&' to represent
hexadecimal.

readily apparent - I would be grateful if
anyone could enlighten me on this
subject.

The zero page locations section out-
lines the use made by the language of
zero page. Not every use of each loca-
tion is given, otherwise locations like
&37,38 would need about a page each,
but I have tried to include all the impor-
tant ones. Much of zero page is not
used. In the Model A machine I was
using, none of &50 - 9F was used,
although the user guide only guarantees
that &70 - 8F is reserved for the user.

The ROM locations section gives the
locations of various routines in the
Basic ROM. Where applicable, I have
given the entry points to the routines-
they may well go lower in memory than
the location specified, as well as higher.
The map is not continuous - there are
some routines between those given
which I have not stated, either because
they are fragments which on their own
perform no function or because they
are unimportant.

Basic interpreter
operation
The basic operation of the interpreter
is very much to Microsoft standards,
although there are several striking
differences compared to something
like PET Basic. The most obvious is the
existence of a Basic stack, located at the
top of Basic memory (ie , just below
HIMEM) which moves downwards. It is
used as a temporary store for anything
from variable references (when evalua-
ting expressions) to the entire used part
of the processor stack (when performing
PROC, etc). The Basic stack pointer is a
two-byte pointer in memory locations
&04,05.

Another obvious difference is that
there is no routine in the BBC micro
equivalent to CHARGET in the PET.
This means that, as far as I can see, the
only way of adding extra commands to
the Basic is to intercept the error
handling routine and to test for a new
command when a syntax error is
encountered. The error handling routine
can be intercepted because of one of the
peculiarities of the BBC micro - when
an error condition is encountered,
the interpreter executes a 6502
BRK instruction located immediately
before the error message. The BRK
handling routine, after restoring the
stack and pointing &FD,FE to the loca-
tion of the BRK instructions, performs
a JMP (&0202) which normally jumps

to &B433 which performs ON ERROR.
Note that if no ON ERROR is provided
by the user, the interpreter still needs a
Basic error handling program to execute
and for this reason &B433 - &B460
contains the text of the following
Basic program:
REPORT: IF ERL<>O PRINT
"at line"; ERL;
PRINT: END

It is conceivably possible, therefore,
that the contents of &0202,0203 could
be altered to point to a routine which
would check for additional commands
and afterwards re-enter execution of the
Basic. It would, however, be much more
difficult than intercepting CHARGET
on the PET. This use of the BRK vector
would make it difficult to include a
monitor in any later versions of the
ROM.

The writer(s) of the interpreter seem
to have a strong dislike for indexed
loops. This means that the firm ware is
slightly faster, but much larger, than
the equivalent 'indexed' written version.

The overall form of the interpreter
could be described as 'well structured'.
For instance, the main 'evaluate expres-
sion' subroutine, if entered at the
highest possible level (which is one
above the normal entry point of
&9B03), proceeds as follows:
928C JSR &9B03
9B03 JSR &9B4C
9B4C JSR &9B76
9B76 JSR &9ClD
9ClD JSR &9DAE
9DAE JSR &9DFD
9DFD JSR &AEIB
AEIB LDY &IB
etc.

This nest of subroutines can be
entered at any level, depending on the
range of keywords allowable in the
expression to be evaluated. Examination
of these stages in this nest of subrou-
tines also clearly shows the operator
hierarchy.

The arithmetic in the interpreter
contains several nice features: when
rounding, it performs the binary equi-
valent of rounding to the odd last digit
in a number when the next least signi-
ficant one is 5, eg 33.15 rounds to 33.1
while 33.25 rounds to 33.3. Also,
square roots are calculated by using
Newton's successive approximation
method and performing only five
iterations after the initial approxima-
tion. .

Most arithmetical routines test to see
if integer arithmetic can be used, and
use it wherever possible. This is another
of the speedy features of BBC Basic.

r

MAPPING OUT THE BEEBON
For example, using one of A% to Z% as
the control variable in a FOR loop is
about three times as fast as using a
floating point variable. Also,
FOR 1%= 1 to 10000 :
A% = B% + C% : NEXT
is twice as fast as
FOR I = 1 TO 10000 :
A = B + C: NEXT

The method of storing variables is
very different to that used in, for
example, the PET. Separate regions
are not allocated for numeric,
string and array variables, but they
are all put one after another from TOP
(the end of the Basic program) upwards.
As well as this, the 'system integer
variables', ie, @%to Z%, are stored from
&0400 onwards @ % at 0400, A% at
0404, B% at 0408, etc) and the memory
from &0480 onwards is used to keep a
catalogue of the variables:

0482,3 points to first variablestarting with A
0484,5 points to first variablestarting with B
04C2,3 points to first variablestarting with a
04F4,5 points to first variablestarting with z
04F6,7 points to first definition of a FN
04F8,9 points to first definition of a PROC

Within the variable storage area, all
variables are stored according to the
same general format, as shown in Figure
1. The top of the variable storage is
pointed to by &02, 03, which I have
called VARTOP.

The program is stored according to
the format in Figure 2.

One of the few things I have found
that could be called a mistake in Basic
is to do with the allocation of strings;
if the following program line is encoun-
tered:
100 A$ = "ABCDEFGH"

i

Name of Variable* I~I VALUE I
*includes $, %, etc,
where applicable, but
does not include
first letter of name

The format of the ~alue depends on the type of variable:

'LO: HI I
Address
of next

. variable

Where bit 7 of the MSB of the mantissa is the sign bit

The last line in the program has the format

IHI:LODi§~FF: I

Floating point

~
MSB LSB

Integer

~
LSB MSB

String

ILO:HI~
Pointer to
location of
text

L1 is the space (in bytes) allocated for the string.
L2 IS the length of the string.
L2 may well be less than Lj , if for example you perform A$ = "0123456789"
then AS = "01234", L2 will be 05 but Ll will be OA.

ILO: HI I LO: HII'LO: HI' Value 0,0 I valueo,ll1valueN,NI
No of No of No of \..\------~y,.-------.
bytes in elemenths elements Each formatted as above
array in Oth in Nth
header dimension dimension

Fig 1Variable storage

&OEOO~I HI : LO [J Text of Line ~ _

Line # Length Next Line
NB. HI-LO of line

Fig 2 Program storage

then ABCDEFGH is transferred into
variable storage space.

This also occurs when data is read
from DATA statements. This means
that, for example, allocating a 100 byte-
long value to a string from data state-
ments actually uses 200 bytes of
memory. You might not consider this
too much of a problem, but with a
Model A in Mode 4 with, say, a 600-
byte program, you only have 2k of
RAM available for variables. If you
wanted most of your variables to be
strings stored in data statements, you
would then find you had a meagre 1k
at your disposal, not the 2k you might
expect.

This problem cannot be avoided with
the method of manipulating strings used
in the BBC micro, but a slightly diffe-
rent method would allow the string
pointer to point into the Basic program
text.

I have come across several interesting
facets ?f the language: TAB (x,y) does
not skip over characters on the screen,
but under certain circumstances erases
them with spaces; EVAL (" ") gives 'no
such variables' rather than the 0 you
might expect; INPUT "ENTER X",
X, "ENTER Y", Y is a valid syntax; the
SOUND command has the following syn-
tax: SOUND OSC, CHANNEL, FREQ,
DUR, where OSC is the voice number 0-3
(O=white noise generator), CHANNEL
specifies the envelope to be used (if it
is negative, the 'default envelope' is used
with a volume equal to the absolute
numbe~ given with -15 = max VOlume),
FREQ IS ° - 255 and DUR is 0 - 254
(255 means 'don't stop'); ENVELOPE
is followed by 14 parameters which are
signed bytes (ie, 255 =-1): ENVELOPE
CHANNEL, P2, P3, P4, P5, P6, P7, P8,
P9, PlO, Pll, P12, P13, VOLUME. It
is not easy to describe what all of these
do, but some of the simpler ones are
shown in Figure 3. With the white noise
generator, there are eight basic sounds
selected by frequencies ° - 7. Program-
mers writing rifle-range type games
may be interested in this sound:
ENVELOPE 1,0,0,0,0,0,0,0,0,1,0,254,
100,128
SOUND 0,1,5,1

See page 88 for further details of
SOUND and ENVELOPE.

Useful routines
Figure 4 outlines some of the most use-
ful routines. Many of the mathematical
functions (eg, SQR, LN, etc) can 1
accessed from machine code by calling
an address three higher than the action
address, but this will not work for all of
them (eg, LOG).

If you want to write hybrid Basic/
assembler programs, as most machine-
code programmers will, then variables
can be transferred into and out of
machine code using the very powerful
'CALL' command; this is best explained
with an example. Suppose you want to
access from machine code the values of
the variables A, B% and CS, and the
machine code starts, very imaginatively,
with the label 'BEGIN'. Then the Basic
statement would be
CALL BEGIN ,A,B%,C$
This would set up a parameter block at
&0600 onwards which would contain
&0600 03 05 AB OF 04 BC OF 81 CD
OF.

This shows that there are three para-
meters (from &0600): the first is

~---~~~---~~----~-~-~~----~~-~==~=--=----------....•

floating point (&0601 05) and is loca-
ted at OFAB; the second is integer
(&0604 = 04) and is located at OFBC;
the third is a string variable (&0607 =

&81) and is located at OFCD.
For a full list of what type of

variable is represented by which
number, see the user guide description
of CALL.

The 'value' (in the same sense as that
used in the description of variable
storage, above) of each variable is
stored starting at the location given.
Note that for a string this is the 'String
Information Block' as outlined above.

When a variable needs to be manipu-
lated, it must first be unpacked from
memory. This is done by storing its
type in &2C, and its address (ie, that
given in the parameter block, even for
strings) in &2A,B. Then JSR &B35B.
Integer variables will be unpacked in
lAC, floating point into FAC#l and
string variables into the string buffer.
Note that this is on top of the CALL
parameter block, so if you want to
access the parameters after string
manipulation, it would probably be best
to transfer the parameter block (from
&0600 to &0600+ (06FF) inclusive)
into Page 13 (ie, &ODOOonwards) and
use the latter as parameter block. Of
course, this latter region will be used
for other things if you have disks!

Values can be reallocated to variables
as follows: for a numeric variable, store
the type of the variable in &39, and the
type of result you have obtained in &27
(ie, saying whether it is in FAC#l or
lAC), and point to the value of the
variable in &37,38. Then JSR &B4E3.
For a string variable, store the value of
the string in &0600 onwards, its length
in &36 and point to the variable's 'string
information block' with &2A,2B. Then
JSR &8BD3. This will work when
the length of the string is now longer
than the space originally allocated, and
will then allocate a new space.

Other points
Graphics can be accessed from machine
code using the VDU codes via OSWRCH
&FFEE or &FFE3). For further details
see Chapter 7 of the user guide. POINT
cannot be performed via OSWRCH and
must be done as follows: store the
coordinates of the point in the order
Xlo, Xhi, Ylo, Yhi 'in consecutive
memory locations. Make XR, YR, lo-hi
point to the first of these, load the
accumulator immediately with 9 and
JSR &FFFl. The location immediately
after the four given will contain the
result - if it is negative, the point is off
the graphics screen. \

Many of the '*' commands are descri-
bed in the User Guide but some are not,
or only partially. These include:
*DEBUG: This does nothing at all on
the version I studied.
*MOTOR: *MOTOR 0 turns the
cassette motor off; *MOTOR 1 turns
the cassette motor on.
*NOTAPE: this turns off the tape filing
system. Attempting to use the tape
before *TAPE or TAPE3 will give 'No
filing system'.
*SPOOL: *SPOOL "FILENAME" per-
forms the reverse of EXEC, causing all
output to be copied to the tape. This is
reversed (ie, default olp restored and
file closed) by *SPOOL with no file-
name.

Many of the *FX commands are out-

Parameter

P2
P3

White Noise Generator
(OSC= 0)

Speed of Execution
Basic Attack 'Melody'

Tone Generator
(OSC 1-3)

Delay on Attack
Frequency sweep
speed (Fss) on
Attack

Basic Sustain 'Melody' Fss on sustain
Basic Decay 'Melody' Fss on Decay

Modifiers of P3 -5 respectively
Attack Speed
Sustain parameter
Decay Speed (use 128 - 255)
Start volume on Attack (which will also affect
the speed at which sound will repeat)

Fig 3 Envelope parameters

P4
P5
P6-8
PlO
PH
P12
P13

Set UpAddress (&) Function Output
9834 Test escape key

B571 OIP char in AC
updating COUNT
Evaluate ASCII for
Hex and store result
iniAC
Input string from
keyboard into
string buffer at
&0600

None

Char inAC

(&19),&lB points
to the start of the
text
None

&36= Length of
string
eg, JSR &BC17

STY &36
JSR &AC5A

will work
(&19),&1B points
to start of text
If number in lAC,
YR = &40
IfinFAC#l,
YR = &FF
Decimal olp if
&15 is +ve,
otherwise in Hex.
None
None
None
&4B,4C points to
value of variable

None
&4B,4C points to
value of variable

If escape not pressed,
has no effect. Else
performs same func-
tion as Basic would.
UsesAC only

In lAC. AC=&40 on
exit.

&37,38 points to the
start of string
(at &0600)
YR= no of chars in
string /"
If result is a (small)
integer th~
AC = .&40, result in lAC
else
AC = &FF, result in
FAC#l
As &AC5A

Stored in &0600
Length in &36

In FAC#l

(since 255 = -1). Similarly, to get a
missing bottom line back on the screen,
*TV1,0 will solve the problem. How-
ever, this will not work if the display
is too tall, only if it is in the wrong
place. ob' modifies the interlace mode of
the display, and is of little practical
use unless you are contemplating taking
pictures of the display. Note that*TV
only takes place when the MODE is
changed.

If you want to stop the cursor blink-
ing annoyingly throughout your pro-
gram, then !.&FEOO= &10200A should
solve the problem. The cursor can be
retrieved either by moving the copy cur-
sor, or with !&FEOO = &10720A in
mode 7, or !&FEOO = &10670A in
other modes.

1

AE9C

BC17

AC5A Calc VAL of string
in buffer

AE1B Evaluate simple
expression
Assemble ASCII
string of number

9EDO

A691 FAC#l = 0
A6A4 FAC#l = 1
A6BO FAC#l = 1/F AC#l
A50E FAC#l=FAC#l+

variable
A505 FAC#l =FAC#l-

variable
A50B FAC#1 = variable -

FAC#l
ADAO FAC#l = -FAC#l
A661 FAC#l = FAC#l* variable
A6F2 FAC#l = FAC#ll

variable
A6B8 FAC#l = variable I

FAC#l
Fig 4

lined in the user guide. Some that aren't
are:
*FXO: gives firmware message ("OS
EPROM 0.10").
*FX4: selects keyboard mode. *FX4 1
means that INKEY$, GET, etc, will
return ASCII values for certain control
keys including cursor keys.
*FXll,x: sets delay (by x, which must
be a number not a variable) before a
key repeats when held down, in 100ths
of a second. The default value is 50.
*FX12,y: Sets delay between key
repeats, default of 7.
*FX15,0: Clears keyboard buffer.
*TVa,b: modifies the video display
output. 'a' modifies the vertical sync
position, which means that if your dis-
play has one line missing off the top of
the screen, *TV255,0 will rectify this

MAPPING OUT THE BEEBON
Page
number

&00
&01
&02
&03
&04

&05
&06
&07, &08

~ &09
&OA
&OB
&OC
&OD
&OE

&OE-3F
&OE-7F
&80-BF
&CO-FD
&FC-FD
&FE
&FF

Use

Zero page
Processor stack
OS use
OS use
0400-0480 system integer variable.s
0481-04FF variables catalogue
FOR/REPEAT/GOSUB stack
String buffer
Line input
Sound, envelopes
RS423 transmit buffer
RS423 receive buffer
Soft key buffer
Character definitions
Disk works pace
Start of Basic program
buffer
Model A Basic/user RA~1
Model B Basic/user RAM
Language ROM
OS ROM
Fred & Jim expansion buses
Memory-mapped I/O
OS ROM

Table 1Page usage

~ ..~
Location .,

00-01
02-03
04-05
06-07
08-09
OA
OB-OC
OD-ll
12-13
14
15

16-17
18
19-1A
lB
lC-1D
lE
IF
20
21-22
23
24
25
26
27

28
29-2B
2A-2D
2A-2B
2C
2E
2F
30
31-34
35
36
37-38

39
39-3A

3B-3C

3B
3C
3D
3E-41
42
3C-3D

LOMEM lo-hi
VARTOP (top of variables)
Basic stack pointer
HIMEM lo-hi
ERL lo-hi
Offset for text pointer
Text pointer
RND store
TOP lo-hi
No of chars in PRINT field
Flag - bit 7 set => hex o/p

for PRINT
ERROR vector default to &B443
PAGE hi byte
Secondary text pointer
Offset for 2ndary text ptr
Ptr - reset to PAGE
COUNT
LISTO option
TRACE flag &FF=on
Max TRACE line number
WIDTH
No of REPEATs left
No of GOSUBs left
15*no of FORs left
Variable type: &OO=string,

&4'O=integer, &05=f/point
&A4=FN, &F2=PROC, &OO=byte

OPT value for a-sembler
Assembled code buffer
lAC (integer accumulator)
Pointer to variable
Var iable type ' .,
FAC#l sign / POINT parameter
FAC#l overflow/underflow byte
FAC#l exponent
FAC#l mantissa
FAC#l rounding byte
Length of string
Object loc in assembler
RENUMBER ptr
Ptr for'variable name in DIM
Line crunching ptr
Action address JMP vector
Length of variable name
No of bytes into array that

variable is ptr to keyword table
RENUMBER/DELETE line no
Ptr for RENUMBER/No of inserted

spaces in LISTO
FAC#2 'sign
FAC#2 over/underflow byte
FAC#2sexponent
FAC#2 mantissa
FAC#2 rounding byte
Ptr used in DEF

Table 2 Zero page locations

3D-3E Ptr used in search for line!
crunching

Array type: &05=f/pt &04=str~ng
Hex o/p nibbles
Numeric work area
Temp store used in calculating

exponents
Counter in ser~s evaluation
Ajustments factor for ASCII/

f/point conversion
Temp store used in calculating

exponents
ptr to current variable
File no temp store
LISTO pointer/INPUT flags

3F
3F-47
42-47
43

48
48-49

4A

4B-4C
4D
4D-4E
4F
50-6F
70-8F
90-:I;F
FD-FE
FF

Not used in basic Model A
Guaranteed empty
ROM workspace
Pointer to error message
Flag: -ve if escape pressed

37-38
39-3A

Pointer to file name
Load address: 4 bytes, least

to most significant, &3B set
FFFE

Execution address: ,4 bytes as
above

Program save - lower limit: 4
bytes as above

Program save - upper limit: 4
bytes as above

·3D-40

41-44

I'. 45-48

Table 3 Zero page load/save block

8000
8003
8007
SOH'
S06D
835A
83CB
84AE
84ED
856A
8570
87E4
87ED
88AB

Jump to language initialisation
Jump to cold start
ROM titles
Language initialisation
Table of keywords & tokens
Action addresses - 10 bytes
Action addresses - hi'bytes
Assembler tables
Assembler entry point
Output hex of AC then a space
Output hex of AC
Get byte from ASCII
Crunch one word
Test char in AC: C=l if

alphanumeric
Get char from line
Crunch entire line of text
Crunch part of text
Get byte from Basic text, pointed

to by (&19), &lB
Get byte from Basic text, pointed

to by (&OB), &OA
Check presence of ',' and move text

ptr to it
Warm start
Evaluate next statement
'Type mismatch error'
Deal with '=' on start of line

(in DEFFN)
Deal with '*'
Allocate value to string variable
Perform $xxxx = string
'No roomf error
Pull string off stack into buffer
Perform PRINT# X
Out message pointed to by (&19),Y

within quotes
Increment lAC
(&2A,2B) = (&2A,2B)*(&3F,40)

Eval expression, result in lAC
Get Integer parameter from Basic text
Search for FN/PROC
Search for variable pOinted to by

(&37,38), length of name in &39
Set up FN?PROC references
Set up new variable name
Clear newly-created variable
Set up variable references (&.2A,2B)
points to variable

Set up variable reference
Set up string variable references
Set up array references
Check array subscript size
Check •=' and then evaluate RHS of

expression
Check next char is' ='
Skip rest of statement testing escape
Move past code
Test escape key

88CA
88D3
8809
8A13
8A1E
8A35
8A80
8B14
8B7E
8BAA
8BC3
8BOO
8C36
8C4B
8C5B
8CCD
8E3E
91D7
91EB
928C
9292
941B
9429

94AD
94BC
94F7
9548

95A9
967B
96AB
9789
97E2
97FA
9810
9826

c,:

r--======= ~ ===_ ~_

MAPPING OUT THE BEEBON
9839
9851
9893
9806
98C2
98F1
9942

9B03
9BEF
90FO
9EOO
9E81
9EB9
A04B
AOS7

A06C
A188
A1CB
A20F
A23E
A2AF
A2F4
A33F
A37E
A3A3
A3A6
A308
A3F2
M63
M76

A4C4
MOE
A61E
A68B
A691
A6M
A6BO
A6B8
A6F2
A889
ACSA
ACFA
AD94
ADAO
ADB5
ADOC
ADF8
AE1B

AE85
AE9C·
AFO'l
AF19

AF8S
B141
B25F
B27C
B35B

B433
B443

B400
B4EO
B4E3
B4F2
BS3A
B571
B57B
B911
B9EO
BC 17
BC10
BC42
BC4A

BCM
BCE9
B038
B069
B096

Syntax error
Move to next statement with trace

output if necessary
Copy pointers then evaiuate expr
Do TRACE output if req
Search for ELSE & execute it
Out decimal for no in &2A,2B, lo-hi
Search Basic for given line no, if

not found, C=1
Evaluate expression (main entry point)
Concatenate strings
Evaluate expr & get non-space char

into XR
Assemble PRINT output string
Assemble hex output string for PRINT
Assemble floating point output string
Convert AC to dec ASCII & store in

string buffer
Store char in string buffer, incr'ing,
pointers

Get f/point number from ASCII
FAC/l1 = FAC/l1-*10(actj,ngon mantissa

only), preserving AC
Get sign of FAC/l1
Copy FAC/l1 into FAC/l2
FAC/l1 = FAC/l1/10
Convert fixed to floating
Normalise FAC/l1
Unpack variable into FAC/l2
Pack FAC/l1 to memory
Unpack &046C onwards to FAC/l1
Unpack variable to FAC/l1 - pointed

to by (&4B,4C)
Round FAC/l1
Floating to fixed conversion
Clear FAC/l2
Convert sign in &2E and mantissa in

&31-4 to signed integer in &31-4
Incr mantissa of RAC/l1
Swap v·ariable and FAC/l1
FAC/l1 = FAC/ll*FAC/l2
Test for under/overflow
Clear FAC/l1
FAC/l1 = 1
FAC/l1 = 1/FAC/l1
FAC/l1 = Variable/FAC/l1
FAC/ll = FAC/l1/Variable
Power series evaluation
Calc VAL of string in buffer & store

in FAC/l1
lAC = NOT (lAC)
Make lAC positive
FAC/l1 = -FAC/l1
Complement lAC
Scan input line
Scan string
Evaluate single part of expr

- final destination of Evaluate
Expression subroutines

Check')' present after evaluating
expression

Get lAC value from hex in text
Convert byte in AC to fixed pt in lAC
Put AC,YR lo-hi into lAC (clearing

higher bytes
Move &OOXR to &00XR+3 into lAC
Search fo~ OEF in Basic prog
Pull processor stack off Basic stack
Transfer variables into FN/PROC
Unpack variable specified (type &

locn) by lAC into IAC/FAC/l1/string
buffer depending on variable type
Entry to error-handling routine
Default error vector for ON ERROR,

contains 'REPORT,IF ERL<>O THEN PRINT
"at line";ERL; [new line] PRINT:ENO

Evaluate expression and then ...
Get variable descriptor from Basic stack

then... .
Assign value to numeric variable
Store value of lAC in variable
Out char in AC, 'de-crunching if token
Out any char, updating COUNT
Out space, updating COUNT
Deal with ON ERROR
INPUT/!
Input string into buffer
Input line of text after printing AC

as prompt
Out <CR>, clearing COUNT
Remove Basic line from program

(specified by line no in lAC), C=l if
line not found

Insert line into Basic program
Cold start
Reset Basic pointers
Pack FAC/l1 onto Basic stack
Incr Basic stack ptr & point (&4A,B) to

f/point variable now below it

Table 5 Inside the Basic ROM

Push value of variable (type spec by AC:
00=string,f/point;&40=fixed pt) onto
Basic stack

Push lAC onto Basic stack
Push string (&0600 to <CR» onto

Basic stack
Pull lAC from Basic stack
Pull variable descriptor off Basic stack
Lower Basic stack ptr, checking memory

available
Store lAC in &OOXR to &00XR+3
Load program then .•.
Re-link Basic program
TOP = TOP+YR
Get parameters for load/save
Get file/l (for PRINT/I, INPUT/!, etc) into
AC and YR

BOA8

BOAC
BOCA
BE02
BE23
BE42

BE5C
BE7A
BE88
BEAB
BEOE
BFp,E

Token Address Keyword

Table 4 Basic action addresses

80
81
82
83
84
85
86
87
88
89
8A
8B
SC
80
8E
8F
90
91
92
93
94
95
96
97
98
99
9A
9B
9C
90
9E
9F
AO
Al
A2
A3

~ A4
AS
A6
A7
A8
A9
AA
AB
AC
AD
AE
AF
BO
Bl
B2
B3
B4
B5
86
B7
B8
B9
BA
BB
BC
BD
BE
BF
CO

9B54
9DE7
9B2F
9DDE
9B14

8DF2
8DD9

BF50
AEEF
AEE3
AF2B
AF32
AD8D
A8C6
AB56
ACC4
A8CC
A907
BF7B
A9B9
AF26
ABE7
AFCE
AFD5
AC12
AAB4
BF4F
AEF9
B1C4
AFEB
ACD3
ADOS
AC9E
AFOO
AB04
ABCD
ACF7
BF85
BFBl
ABFO
AB64
AB 92
ABD6
AF78
ABAD
A994
A7B4
A6C9
AFOB
ACEA
ABFB
AC55
AB9B
B3EE
AFEE
BOSS
AFFB

AND
DIV
EOR
MOD
OR
ERROR
LINE
OFF
STEP
SPC
TAB (
ELSE
THEN
line no
=PTR
=PAGE
=TIME
=LOHEM
=HI11EM
ABS
ACS
ADVAL
ASC
ASN
ATN
BGET
COS
&~~UNT
ERL
ERR
EVAL
EXP
EXT
FALSE
FN
GET
INKEY
INSTR
INT
LEN
LN
LOG
NOT
OPENIN
OPENOUT
PI
POINT (
POS
RAD
RND
SGN
SIN
SQR
TAN
TO or
TOP
TRUE
USR
VAL
VPOS
CHR$
GET$
INKEY$

Cl
C2
C3
C4
CS
C6
C7
C8
C9

B068
BOlD
BOC3
BOFl
ACDE
905F
BECE
BF2D
B5B5
B5AO
BA7D
BA3D
8F37
BEFA
9839

LEFT$(
MID$ (
RIGHT$(
STR$
STRING$(
EOF
AUTO
DELETE
LOAD
LIST
LISTO
NEW
OLD
RENm4BER
~iAVE
Syntax
error
PTR=
PAGE=
TIME=
LOMEM=
HIMEH=
SOUND
BPUT
CALL
CHAIN
CLEAR
CLOSE
CLG
CLS
DATA
DEF
DIM
DRAW
END
ENDPROC
ENVELOPE
FOR
GOSUB
GOTO
GCOL
IF
INPUT
LET
LOCAL
MODE
MOVE
NEXT
ON
VDU
PLOT
PRINT
PROC
READ
REM
REPEAT
REPORT
RESTORE
RETURN
RUN
STOP
COLOUR
TRACE
UNTIL
WIDTH
Syntax
error

CA
CB
CC
CD
CE
CF
DO
01
02
D3
04
05
D6
07
DB
D9
DA
DB
DC
DD
DE
DF
EO
El
E2
E3
E4
E5
E6
E7
EB

BF39
9239
927B
9224
9212
B461
BF61
8E6C
BF33
9326
BF9E
BE57
8E5E
BAED
8AED
9000
93A5
BA50
9310
B49C
B7DF
B8B4
BBEB
932F
9893
BA62

E9
EA
EB
EC
ED
EE
EF
FO
Fl
F2
F3
F4
F5
F6
F7
F8
F9
FA
FB
FC
FD
FE
FF

8B57
92D5
935A
93Al
B6AE
B934
93EF
93AE
8D33
92B6
BB39
BAED
BBFF
BFE6
BBOO
B8D5
BD29
8A59
9346
9243
BBCC
B4CC
9B39

