
ISSN 0265-2919

COmPUTER
^^^l^^l

^^^^^^^^^^

^^lll^llllllllllll^^ ^lill^^^^ ^^^211^^^^^^^^^^^ ^lllllll^^^

mABTERIHG YDUR HDmE CDfTlPUTER IH 54 LUEEKS
13

mmmm

An(S fmmm
IR£1 Aus$1.95 NZ$2.25 SA R1.95_Sing $4.50 USA & Can $1.95

Hardware Focus

SordM5A low-cost micro from Japan with
excellent graphics and a promising future

Softwar

250

Chain Mail We look at an alternative to the

indexed list for data structures

Basic Programming

Rank And File We continue our Basic

programming project by looking at ways in

which to organise data

244

Insigiits

Pinball WizardA new program to design

your own computer games

Cruise Control The technology behind one
of the latest computerised missiles

Brighter Outlook Computers help to •

forecast weather accurately

Tracing PaperAn image can be represented

by X-Y co-ordinates. We examine one of the

ways in which this can be done

241

243

248

258

PasswordsTo Computiri 9
Against All Odds Parity checking, the oldest

method of detecting errors when sending

numbers, is still in use today

253

Gottfried Leibniz Scientists are working to

perfect this 17th-century mathematician's

idea of a language of logic

^ound And LigSfJ]

Introducing Sound . . . And LightA new
series to help you make the most of your
computer's special effects

260

246

Next Week
• We look at the Tandy Color

Computer, a home computer

that has been on the market for

some time and is well supported

by software and peripherals

• Apple's Lisa might just look

like an expenshre business

mkirocomputer but its software

will revolutkmise computing,

both in business and at home

• CRTs (Cathode Ray Tubes)

form the heart of both

televisions and monitors.

However, there are other forms

of display, and we'll be looking

at how some of them work

Editor Richard Pawson; Consultant Editor Gareth Jefferson; Ait Director Oavid Whelan; Production Editor Catherine Cardwell; Staff Writer Roger Ford; Picture Editor ClauciiaZeff; Designer Hazel Bennington; ArtAssistants Liz Dixon,

Safu Maria Gilbert; Suli Editors Tracy Ebbetts, Robert Pickering; ReseardierMelanie Davis; ContributorsTimHeath,HenryBudgett, Brian Morris, Elizabeth Coley, Richard King; GroupArtDirector Perry Neville; IManaging Director Stephen
England; Consultant David Tebbutt; PuMisiiedbyOrbisPuMisliingLtd: Editorial Director Brian I nnes; ProjectDevetopment Peter Brookesmith; ExecutiveEditorChris Cooper; ProductionCo-ordinatorlanPaton; CirculationDirectorDavid

Breed; Marteting Director Michael Joyce; Designed and produced by Bunch Partvraite Ltd; Editorial Office 39 Goodge Street, London W1 ; © 1983 by Orbis Publisbing Ltd: Typeset by Universe; Reproduction by Mollis Morgan Ltd; Printed in

Great Britoin by Artisan Press Ltd, Leicester

HOME COMPUTER COURSE - Price UK 80p IR £1.00 AUS 31.95 NZ $2.25 SA R1.95 SINGAPORE $4,50 USA and CANADA $1.95

How to obtoin your copies of HOME COMPUTER COURSE - Copies are obtainable by placing a regular order at your newsagent.

Back Numbers UK and Eire - Back numbers are obtainable from your newsagent or from HOME COMPUTER COURSE. Back numbers, Orbis Publishing Limited. 20/22 Bedfordbury, LONDON WC2N 4BT at cover price, AUSTRALIA Back
numbers are obtainable from HOME COMPUTER COURSE, Back numbers, Gordon & Gotch (Aus) Ltd, 114 William Street, PO Box 767G Melbourne, Vic 3001, SOUTH AFRICA, NEWZEALAND, EUROPE & MALTA; Back numbers are available at

cover price from your newsagent. In case of difficulty write to the address in your country given for binders. South African readers should add sales tax.

How to obtain binders for HOME COMPUTERCOUI^- UK and Eire: Please send E3. 95 per binder if you do not wish to take advantage of our special offer detailed m Issues 4, 5 and 6. EUROPE: Write with remittance of £5.00 per binder (incl.

p&p) payable to Orbis Publishing Limited, 20/22 Bedfordbury, LONDON WC2N 4BT MALTA: Binders are obtainable through your local newsagent price £3.95. In case of difficulty write to HOME COMPUTER COURSE BINDERS, Miller (Malta)

Ltd, M A. Vassalli Street, Valletta, Malta. AUSTRALIA: For details of how to obtain your binders see inserts in early issues or write to HOME COMPUTER COURSE BINDERS, First Post Pty Ltd, 23 Chandos Street, St. Leonards, NSW 2065. The
binders supplied are those illustrated in the magazine. NEW ZEALAND: Binders are available through your local newsagent or from HOME COMPUTER COURSE BINDERS, Gordon & Gotch (NZ) Ltd, PO Box 1595. Wellington, SOUTH AFRICA:
Binders are available through any branch of Central Newsagency. In case of difficulty write to HOME COMPUTER COURSE BINDERS, Intermag, PO Box 57394, Springfield 2137.

Note - Binders and back numbers are obtainable subject to availability of stocks. Whilst every attempt is made to keep the price of the issues and binders constant, the publishers reserve the right to increase the siated prices at any time when
circumstances dictate. Binders depicted in this publication are those produced for the UK market only and may not necessarily be identical to binders produced for sale outside the UK. Binders and issues may be subject to import duty and/or

local taxes, which are not included in the above prices unless stated.

Pinball Wizard
The Pinball Construction Set— a remarkable advance in software
design — allows you to design and play your own pinball games on
the screen of an Apple computer

mil

Even in the fast-developing microcomputer

industry, where one can reasonably expect

remarkable new developments to be quite

commonplace, it is still a rare thing to come across

a product that is radically different both in concept

and quality. Such a piece of software is Budgeco's

Pinball Construction Set (PCS). Running on a 48

Kbyte Apple II, with one disk drive and ajoystick,

this package performs an apparently simple

function. It gives the user a picture of a bare

pinball table, and a menu of 38 different types of

'furniture' that are used to equip it to the player's

own design. There is, in addition, a functions

menu from which to choose the tools you can use.

Having filled the table according to your plan—
you are allowed to position upto 128 pieces on the

table, but there is no limit to the number of times

you may use any one type — all that remains is to

play the game. You do this by selecting yet

another function with the joystick. Up to four

players may take turns, but each is allowed only

one ball, instead of the three on most pinball

Do-lt-Yourself Games

The Pinball Construction Set

displays an empty table; .

a

variety of types of 'furniture' —
bumpers, targets, roll-overs,

flippers and so on; and, in the

column on the right, the tools

for placing the objects on the

table. This column also contains

functions for adjusting the size,

shape, colour and degree of

interaction of the pieces, as well

as for saving finished games on

disk

machines, and there is no 'free ball' facility. At the

end of the game, pressing ESCAPE gets you back to

the menu. You are encouraged to go on

developing the table after each game by the degree
of feedback you get every time you play.

Both in its conception and execution, PCS
points the way towards truly user-friendly

software. As soon as the program is loaded (and

this requires the user simply to insert the disk and

press RETURN) virtually all the action is controlled

from the joystick. The first tool to be used is a

hand. It is moved so that it points to an object in

the 'furniture' menu (such as a bumper or a

flipper) andwhen you press thejoystick button the

hand 'picks up' the object indicated. The hand

pulls it to its desired position on the table, and

when you release the joystick button, the object is

put firmly in place.

The interesting thing here is that you are

moving not only the collection of data that defines

the shape ofthe object, but also the set of rules that

will govern the way it behaves when you come to

play the game. A flipper, for example, always

movps through 45 degrees, first up and then back

down again. A bumper always repels the ball

whilst accelerating it according to a definable

'kick' factor. The ball obeys the Newtonian laws of

motion, and falls down the table according to the

laws of gravity.

But having said all this, there is one tool

(suitably given the symbol of a planet in partial

sunlight) that allows you to alter the parameters of

the real world — gravitational force, for example,

or even time! This function is also controlled by

the joystick. The position of each value on a scale

is altered, just as one would move a slide-type

Kids' Stuff

PCS even gives you authentic

sounds and the equivalent of

flashing lights! But it's actually

more fun to devise and build

games than to play them. Now,

if it had a TILT built into it. .

.

step By step

These four pictures show

various stages in the

construction of a pinball game.

First of all the basic pieces are

installed, then a polygon is

added to form a central island.

The polygon is deformed and

painted orange. Finally, some of

the objects are tied together (by

means of an AND gate) so that a

bonus is scored when all three

have been activated

Ready To Go

Once the game is composed on

the table it can be saved on disk.

Because all the operating

functions 'travel' with the table,

the original software package

isn't needed to re-run the

program

audio volume control by 'pushing' it up or

'pulling' it down.
All the other functions that one would expect in

a well developed graphics package are also

available. There are 'tools' for stretching and
deforming lines by pulling them out between

predetermined nodes (called 'rubber-banding');

for painting the blocks with one of the colours

from the palette; and for magnifying small

portions of the graphic image so that you can work
in greater detail.

It is not so much the individual functions and
capabilities of the Pinball Construction Set that

are important, however, as its overall operating

philosophy. Object oriented programming —
where each operating element of the software

package carries with it details of how it will work
and how it interacts with any of the other objects

or elements — lends itself to the production of

programs that need very little computing

experience or aptitude on the part of their users.

This programming method will be used almost

exclusively in the fifth generation of computers

currently being developed. Object oriented

programming is hailed as the most important

breakthrough in the field of software science since

high level languages were first introduced in the

late fifties.

Most home computers have quite sufficient

memory capacity and processing power for their

user's needs. Any increase in that capacity and
power is likely to be used to increase user

friendliness. The truly remarkable thing about

PCS is that it manages to achieve a high degree of

user friendliness in only 48 Kbytes.

While object oriented programming applies

itself readily to games and other graphics

programs, it takes a little more programming
ingenuity to introduce it into the field of business

software. Though they do not use graphics as their

o

main means of communication, spreadsheet

packages (like Visicalc and Supercalc) are object

oriented to a certain degree, in that each field or

cell can contain both a piece of data and the

relationships that define it.

Another example is Apple's Lisa system, which

uses a 'mouse' to manoeuvre a pointer around the

screen to select the program (represented by a

graphic symbol) that you wish to run. The word
processor, for example, is represented by a sheet

of typing paper; the graph plotting program by a

sheet of squared paper.

Perhaps the most fascinating of all its functions

is the method Lisa uses to transfer data from one
program to another. One of its 'Icons' (the name
given to pictorial representations of functions on
the screen) is a clipboard. If we wanted to take a

small section of a spreadsheet and reproduce it as

a graph, it is necessary only to define the window
on the spreadsheet, transfer that window to the

clipboard (which is a temporary storage area) and
carry it across to the graph plotter program.

When we talked about arcade games (see page

221), we noted that there were a number of

generically different types. PCS could well form a

new category. It is tempting to suppose that the

next step the home computer games industry will

take will be the production of Maze and Chase

Construction Sets, Space Invaders Construction

Sets, and so on; at which point many games
program writers could find themselves redundant.

Objective Outlook

As well as being an intriguing

and educational game, the

Pinball Construction Set is a

fine example of object

oriented programming. In

normal programming, the

structure of the data is

defined, and then program

routines are written to

manipulate this. In object

oriented programming, the

calculations and procedures

are inseparable from the data.

In the pinball program,

moving the symbol for a

pinball machine's flipper onto

the board not only sets up the

data (in this case, the shape

of the flipper), but arranges

for the associated routines to

be set up to activate the

flipper.

Object oriented

programming lends itself to

visual applications.

Spreadsheets are another

example: the field that

displays a result will also

contain the formula to get that

result.

The current trend for

business workstations that

simulate the layout of items

on a desktop also derives

from the same idea. Pointing

to an image of a piece of

typing paper on the screen

activates the word processor,

whilst pointing to a miniature

drawing of a filing cabinet will

file the results away

242 THE HOME COMPUTER COURSE

Cruise Control
Cruise missiles are a controversial subject, but they contain some
interesting computer technology— such as bubble memory—
which will soon be appearing in home computers

When Neil Armstrong took his one small step

onto the surface of the moon, it was largely due to

computerised guidance systems. Of course,

interplanetary rocketry relies on very precise

engineering, but without computer hardware and

software it would never be possible to perform

positional calculations either fast enough, or with

sufficient accuracy, to allow one object to engage

with another at a vast distance— even an object as

big as the moon.
When one considers current military

requirements that call for the placement of

warheads to within 20 or 30 metres (70 to 100

feet) after a flight across a continent, then the

scope of data processing power needed to

perform the calculations becomes enormous.

Early military experience showed that the

fundamental problem with missiles was that once

fired, no correction was possible. The first major

advance came with the development of simple

guidance systems that were able to judge where

the rocket was in relation to a point on the earth's

surface (the launch site) by deducing how far it

had travelled, and in what direction. But even a

first-class modem system of this type will be prone

to significant error.

Another, and more accurate, method uses

satellites in geo-stationary orbit as reference

points. The main drav/back to these systems is that

the flightpath of the missile — and probably its

target — are deducible by the enemy very soon

after launch, given the capability ofmodem over-

the-horizon radar systems. To combat this

vulnerability, the ideal military requirement was

for a low-flying missile with a small radar cross-

section that could actually decide for itself the

course it would fly to its target. And so the Cmise

missile was bom.
The Cruise missile constantly updates its

position by analysing the contours of the ground

over which it is flying. This is done by matching a

succession of height-above-ground readings,

from an extremely accurate radar altimeter, with a

contour map of the terrain stored in an on-board

bubble memory.
This system, developed by McDonnell

Douglas, is known as TERCOM (TERrain

contour Matching), or DPW-23. Each missUe

has stored in its bubble memory some 25 'route

profiles' that it compares with the terrain it is

passing over. However, there are drawbacks to

this. For example, the system is not usable over

water as that has no permanent features. It is also

not reliably accurate over sand desert, where the

terrain is in constant motion. Neither, one

suspects, is it accurate in the depths of a North

European winter, when the terrain will be

significantly altered by the large seasonal

snowfalls.

Cmise does not use this guidance system from

the moment oflaunch. It remains inertial while the

missile flies at altitude in friendly airspace. Once it

is vulnerable to attack from the air or the ground, it

dives to within 15m (50 ft) of the ground for its

flight over enemy territory. Even though it may be
up to a kilometre (1,100 yds) off course at this

point, it is predicted that it will be sufficiently close

to one of its 25 mapped routes to be able to

relocate itself precisely.

When the missile nears its target it tums on a

Terminal Correlator Unit which contains — once

again in bubble memory — a detailed digital

picture of the target area as it would be seen from

an on-coming missile. Tests have shown that this

system is likely to be accurate to within 18m (60

ft), after a flight of some 2,800km (1,750 miles).

Self-Seeking Missile

The General Dynamics

JTomahawk' Ground Launched

Cruise Missile is 6.40m (21ft)

long, and weighs less than one

and a quarter tons (1 ,200kg).

Fired from a tube mounted on a

mobile launcher, it starts life as

a conventional rocket, but soon

deploys small wings and settles

down to low-level flight

powered by a remarkably small

and compact turbo-fan jet

engine

COURTESY OF NEW SCIENTIST

Bubble, Bubble

In bubble memories, 'bubbles'

of magnetic force are created to

form a
'1

', and not created to

represent '0', on a tiny chip of

garnet. The advantages are the

packing density — currently

one million bits, or 1 28 Kbytes

per chip — and no loss of

contents when the power is

turned off. However, bubble

memories react considerably

more slowly than conventional

RAM

THE HOME COMPUTER COURSE 243

Chain IMaii
Indexing is one way of structuring large quantities of data, such as
names and addresses. The Linked List or chain is an alternative with

distinct advantages

In a computer's memory there is only data, byte

after byte of it, stored in thousands of voltage

patterns. Meaning is given to those bytes by the

data structure that the central processor imposes.

Those various data structures decide whether any

particular byte is interpreted as part of an

instruction, or as digits belonging to a larger

number, or as a character code.

From the user's point of view some kinds of

data structure are virtually wired into computers.

Programming languages usuallydemand that data

be structured in a limited number of ways. Basic

imposes the idea of numeric and string data types,

and supplies variables and array structures for

manipulating those types. Other languages

usually support those and additional structures.

The strength and variety of its data types are major

components of a language's power.

The BASIC data structures — variables and
arrays — will be all that we need to simulate some
other ways of looking at data.

The indexed array is a useful data structure, and
easily implemented in basic. It has its limitations,

however, particularly when the data to which it

refers is likely to change often and/or

unpredictably.

Suppose British Telecom keeps a file of its new
subscribers for eventual inclusion in the next issue

of the telephone directory. Until that time, the

names and addresses have to be kept in alphabetic

order for easy reference, but the file is constantly

growing, and the additions arrive unpredictably.

On Monday the file NewSubS ()
might look like

this when it's read into the array:

NewSub$(

)

Index (

)

(1) Jones (2)

(2) Atkins (3)

(3) Carter (6)

(4) Rogers ID

(5) Smith (4)

(6) Drake (5)

The array Index
() shows the order in which to read

NewSubS () so that the entries are in alphabetic

order. Thus, the first item alphabetically is

NewSubS (2), Atkins. The second item is NewSubS

(3), Carter. In this example only the names are

shown, but in fact a directory entry comprises

name, initials, and address — typically about 60
characters. Moving blocks of 60 characters

around in memory is slow (as sorting requires

; 244 THE HOME COMPUTER COURSE

many data moves) and wastes memory, so it is

more efficient to leave NewSubS () unsorted, and

create Index () instead. Now a new name, Bull, has

to be added to the file, so the arrays look like this:

NewSub$(

)

index (

)

(1) Jones (2)

(2) Atkins (7)

(3) Carter (3)

(4) Rogers (6)

(5) Smith (1)

(6) Drake (4)

(7) Bull (5)

Notice that the contents of Index () above the new
insertion are unchanged, and its contents below

the insertion are in the same order as previously,

but have all been moved one place down in the

array. Insertion to an index therefore requires:

finding the position of the new element, moving
every element between there and the end of the

index down one, and writing in the new entry. This

is preferable to doing the same thing with the

actual data, NewSubS, but is still relatively slow, if

the index is large.

Suppose, now, that we structure the data in a

different way. Leave NewSubS () unsorted

because manipulating it is slow and expensive, and
establish a parallel array called LookUp (), whose
contents are simply numbers referring to positions

in NewSubS ().

UstHead(2)

NewSubS (

)

Lookup

(

) Index (

)

(1) Jones (4) (2)

(2) Atkins (3) (3)

(3) Carter (6) (6)

(4) Rogeis (5) (1)

(5) Smith (0) (4)

(6) Oralce (1) (5)

The first difference is that a simple variable called

ListHead is needed: it points to NewSubS (2) which is

alphabetically the first element of NewSubS () .The

next difference is that the number (0) has been

used in LookUp (5) : this indicates that NewSubS (5) is

alphabetically the last element of the array.

The next difference is the contents of Index
()

and LookUp (). Index
() has to be read: 'the first

element is in NewSubS (2), the second is in NewSubS

(3), the third is in NewSubS (6)'...etc. while ListHead

() is readi 'the first element is in NewSubS (2); Then
Lookup (2) says that the next element is in NewSubS

(3); LookUp (3) says that the next element is in

NewSubS (6); and so on. LookUp (5) says that

NewSubS (5) is the last element.

Index
() gives an absolute position for elements

of the file, while LookUp () gives only relative

positions — any item in LookUp
() tells you only

where to find the next element, and says nothing

about absolute position. The number in Index (4)

points to the fourth item in the alphabetically

ordered file, whereas the number in LookUp (4)

points only to the item that comes after NewSubS

(4) in the ordered file. LookUp () implements the

data structure called a 'Linked List'. Reading a

Linked List is like following a treasure hunt: at the

start you're told yDur first destination; when you
get there you find a clue which points you to your

next destination, and so on. Reading an Indexed

Array is like being on a car rally: at the start you're

told all your destinations and the order in which to

visit them.

The great advantage of the List structure is its

flexibility. Consider the List after insertion of the

new element, Bull:

UstHead (2)

NewSuliSO Lookup (

)

(1) Jones (4)

(2) Atkins (7)

(3) Carter (6)

(4) Rogers (5)

(5) Smitli (0)

(6) Drake (1)

(7) Bull (3)

The array LookUp
() has changed in only two

places:

i) LookUp (2), which formerly pointed to NewSubS

(3) as containing the next alphabetic element

after NewSubS (2), now points to NewSubS (7)

since it is now the next alphabetic element after

NewSubS (2)

ii) LookUp (7), which was unused, now points to

NewSub$(3) as the next item after NewSubS (7)

in the alphabetic ordering.

This illustrates the general process of insertion to a

Linked List: find the element of the list which
should come just before the new element, and
make that element point to the new element; then

make the new element point to the element that it

has displaced. These simple operations will be all

that is required for insertion to a Linked List, and
only the first of these is affected by the size of the

List. Inserting an element to a List is like inserting

a new link into a chain — decide where to put the

link, break the chain, join the preceding link to the

new one, and the new link to the succeeding link.

Linked Lists are sometimes called Chained Lists.

The numbers in LookUp
()
— the links — are

sometimes called Pointers.

A striking feature of Lists is their strong

seriality ; it is impossible to find an element in a List

except by starting at the beginning and inspecting

every element until the target is found. The List is

implemented here by using arrays, which are

designed to be Direct Access structures, but the

List has effectively turned them into Sequential

Files. In other languages, such as lisp and pascal,

the List facility is built-in.

Lists are useful structures for handling dynamic
data (data that regularly changes), and can be
powerful tools when dealing with either natural

language (as in speech recognition) or artificial

language (when compiling programs), where the

data itself natturally forms a list of elements.

THE HOME COMPUTER COURSE 245

Sound And Light

Introducing

Sound
Sound And Light is a new series

that will teach you how to get the

most from the sound and
graphics facilities on your
computer

As home computers have developed over the last

few years the features provided have become
more comprehensive. Games facilities have been

of vital importance to the popularity of each new
computer and much time and effort has gone into

developing sophisticated colour graphics

capabilities. Though not so obvious in

importance, sound and music-making features

have been developed to a similar degree. If you

asked successful games writers how important

sound routines were in their programs they would

probably place them a close third behind the game
concept and graphics. Intelligent use of sound

effects and music add considerably to the

excitement and entertainment value of all arcade-

type games.

In addition to games applications it is possible

to further your knowledge of music by using the

sound capabilities provided by your home
computer. In many cases special music commands
are provided in basic to enable you to write short

programs to play quite complex tunes that even

include chords. Some computers also provide

ways to change the nature of the sound to make it

more pleasing to the ear or approximate the

sounds ofconventional musical instruments. In all

cases the computer keyboard can be configured,

by means of a suitable program, to act in a similar

manner to a piano keyboard, enabling you to play

music in 'real time'.

Even if you have little knowledge of

programming it is possible to write short and

simple programs that make reasonably

sophisticated musical sounds. If you wish to use

the sound facilities to their best advantage, most

software houses produce comprehensive music

programs that enable you to write and play tunes

immediately. Whichever approach you take, it is

useful to understand how your computer

generates, shapes and controls its sound output.

. .And Light
Low and High Resolution
Graphics on microcomputers can be divided into

two categories: low resolution and high

resolution. The difference between low and high

resolution is best described by considering how a

character (a letter, number or shape) is made up.

If you take a close look at a standard character

printed on a television screen you can see that its

shape is made up of a group of small squares.

These squares are called picture elements, or

'pixels', and every character or shape that appears

on the screen is an £irrangement of these in a

pattern. On most home computers the characters

are formed from a square of 64 pixels, grouped

into eight rows of eight. The letter *A' can be made
up of a pixel pattern like this:

PIXEL PATTERN

BIT PATTERN

0

0

0

0
0

0
0

0

0

0

0

1

1 1 0

1 1 1

0

0

110 0 11111111
1 1

1 1

1 1

0 0

0

0

0

0

0

0

0

0

1 1

1 1

1 1

0 0

0

0

0

0

0

0

0

0

1

Each illuminated pixel on the grid can be

represented in the computer's memory by a T
and each dark pixel by a '0'. Eight bits make a

byte, so each row of the character grid may be

stored in one single location of the computer's

memory. Thus it takes eight memory locations to

hold a single character.

Graphic displays are sometimes made up of

blocks the size of whole, half, or quarter character

grids. Graphics designed using these large, simple

building blocks are said to be oflow resolution. On
many home computers it is now possible to design

graphic displays that are built up from single

pixels. These are high resolution displays. A good
way to demonstrate the difference between the

two types is to^look at a plot of a sine curve, as

illustrated, using both kinds of resolution.

o
><

Q

LOW RESOLUTION s HIGH RESOLUTION

246 THE HOME COMPUTER COURSE

Oscillators
Oscillators are electronic circuits that produce
repetitive signals. When these signals are

amplified and fed to a speaker they make sounds

of a given pitch. The number of oscillators

provided by home computers varies between one
and four— the more oscillators you have the more
notes you can play at once.

Three characteristics describe the sound
created: fi-equency, envelope (which includes

volume) and waveform. Frequency will be
introduced in this instabnent and envelope

generators and waveform dealt with in the second.

Frequency
This is the most important characteristic that we
need to control, as it determines the pitch of the

sound. Frequency is the number of times a signal

repeats itself every second and is measured in

hertz (Hz, cycles per second). Sounds that can be
heard by the human ear have frequencies greater

than 20Hz but less than about 20,000Hz.

Although we cannot hear frequencies below 20Hz

they can be used to modify the characteristics ofan
audible sound. This technique is called

modulation and at present can be applied only on
the Commodore 64 among home computers.

However, it is not necessary to delve deeply into

fi*equencies. What you really need to know is how
to play musical notes. The ease with which you can
do this varies enormously from one machine to

another. Some have basic commands that work
out the frequencies for you so that you need only

specify a pitch number or even a musical letter

symbol — A, A#, B, and so on. Others make it

much more difficult by providing only a table in

the user manual where you look up the frequency

corresponding to the required note and POKE the

frequencyvalue into amemory location. The table

shows accurate conversions for the scale ofmiddle
C. It will also be useful for those wishing to

program music in machine code, where basic is

unable to help you calculate the frequencies.

Music Notes To Frequencies

You can work out the frequency

of each note in the scale by

multiplying the frequency of the

note one semitone below it by

1 .0594631 . This may appear a

little baffling but if the

multiplication is carried out 12

times the original frequency is

doubled. There are 12

semitones in an octave (the

difference between two notes

with the same letter) so

doubling the frequency moves
the sound up one octave. This

table provides accurate

conversions from music note

symbols (for the scale of middle

C) to frequencies

BO

261.63
293.66

329.63 349.23
392

440
493.88.

523.25

User-Defined Cliaracters
To create unusual and attractive screen displays it

is often useful to have characters available that are

different from the normal alphanumeric character

set. The Vic-20 and Commodore 64 have a

special set of graphic characters that can be used

directly from the keyboard, but even these do not

cover every eventuality. On most home
computers it is possible to create new characters.

This is usually achieved by redefining the binary

patterns of the eight locations ofmemory in which
a character is stored. In the process the old set of

binary patterns is often lost, or 'overwritten', and
the 'user-defined' character takes on some of the

properties of the one it has replaced in memory.
Thus the new character can be used in PRINT

statements by simply pressing the key of the

character it has replaced. Here is an example of a

user-defined character, together with its

associated binary codes:

PIXEL PATTERN

SIT PATTERN

128 64 32 16 8

10 0 11
0 10 11
0 0 10 0

0 0 0 1 1

0 0 0 1 1

0 0 10 0

0 0 10 0

0 110 0

4

0

0

1

0

0

1

1

2

0

1

0

0

0

0

0

1 1

1

1

0

0

0

0

0

0

0

4
1 1

1

The ease with which user-defined characters can
be set up varies greatly according to the computer
being used. For example, with the Sinclair

Spectrum's USR command, all that is required is to

enter the appropriate binary patterns; whereas on
the Commodore 64 the user first has to move the

complete character set from ROM to RAM
before POKEing in to memory the eight decimal
equivalents of the bit patterns that make up the

shape. However, several character-designing

utility programs, available from independent
suppliers, make life easier for the Commodore 64
owner.

To create larger figures it is possible to group
two or more user-defined characters together.

The alien figures shown (right) were constructed
from four user-defined characters. The program,
which runs on the Commodore 64, PRINTs the

character groups on the screen in three different

colours. The characters were created by using a

short routine to move the normal character set

from ROM to RAM and replace the graphics

characters
, , a , and ' ' by

reading in decimal numbers from DATA statements

and using POKE commands to place them in the

appropriate locations. Full details of how you can
do this will be given in a forthcoming instalment.

Even when sprites (see page 152) are available

there is often a limit to the number that can be
displayed at any one time on the screen, so user-

defined graphics come in useful where many
similar shapes need to be displayed at the same
time.

Extra Terrestrial

These alien creatures were

created from four characters,

each defined by the

programmer. This method can

be used on many machines that

don't have sprites

THE HOME COMPUTER COURSE 247

Insights

Brighter Outlook
Use of high-speed computers, both to process satellite images and
analyse patterns of data, has made weather forecasts a great deal

more accurate than they used to be

Pictures From Space

The Meteosat 2 weather

satellite, launched in June 1 981

,

is in a geostationary orbit (that

is, it does not move in relation to

the earth) some 35,880 Km
(22,300 miles) above the

equator, on the zero meridian. It

gathers information from a large

number of earth stations

The results of many of the most complex data

processing tasks are present in our everyday lives,

often without us knowing about them. One of the

most advanced computer applications, requiring

greater data processing capacity than almost any

other in the country, gives us daily information

about our weather conditions and what we can

expect from them. Given the complexity of

weather forecasting, it is perhaps surprising that

our forecasters come up with the right answers as

often as they do. Computer aided prediction is an

immense asset to them in dealing with the vast

array of possibilities.

The climatographic factors that affect the

weather patterns over the British Isles, and to a

lesser extent the Atlantic seaboard of the

European landmass, are extremely complex.

Primarily, they are conditioned by our proximity

to both the North Pole and the Atlantic Ocean.

Being situated on the eastern side of the Atlantic,

we are more prone to the climatic effects created

within its 2,500 mile width, because of the

'Coriolis effect'. This phenomenon is due to the

earth's west-to-east spin. It is best understood if

we remember that at the equator an object on the

earth's surface is travelling at more than 1,600

kilometres per hour (1,000 mph); and this

powerful spinning motion, combined with the

normal pole-to-equator wind patterns, creates the

prevailing westerlies (winds that originate in the

west) in the Northern Hemisphere. It is this

constant onslaught of wet air — rising and falling

according to local variations in temperature —
that causes the predominant weather conditions in

Britain.

Weather forecasters in the United Kingdom
rely primarily on observations from data

collection stations spaced at strategic locations in

the Atlantic— weather ships, buoys, balloons and
patrolling aircraft — to provide them with

information about approaching conditions. They

then predict what will happen as these climatic

phenomena approach the land mass, according to

the known behaviour of similar phenomena in the

past.

Before March 1979, when the Meteosat 1

weather satellite was launched, the onlymethod of

prediction available to forecasters was to plot

reports from the weather stations onto a map to

build up an isobaric chart. Isobars are imaginary

lines that join points of equal barometric pressure,

rather as contour lines on a map join points of

equal height. From these it is possible to decide on
the speed and direction ofwarm and cold fronts—
and their associated cyclones and anticyclones —
and thus make what are best described as

educated guesses about the expected weather

conditions.

While isobaric charts are by far the most

common, they are by no means the only maps that

the Meteorological Office produces. From the

vast weather database held in its computer system

it can produce charts that show average

3 ^V«V «
Number Crunchers
One of the chief uses of large computers in scientific research is

to process purely numerical information in the form of very large

and complex equations. Pure science applications such as

nuclear physics, and applied science applications such as

meteorology have similar requirements. While one could

perform calculations of this complexity on a home micro, the

length of time taken would be prohibitive — as a result not only

of the number of terms in the equation, but also of the sheer

magnitude of the numbers involved, which can go to 30 or more

decimal places. In order to perform this function in a reasonable

time, one needs very fast computers with very large amounts of

memory

temperature, rainfalls, hours of sunshine per day,

and so on.

The Meteorological Office still follows this

procedure for its accurate charts of current

conditions, but now also uses the images received

from Meteosat. These are analogue signals which

are digitised for processing and display by the

computer in the form of artificially coloured maps.

The images create a live picture of the weather

pattern as it occurs. They are regenerated

approximately every four minutes, so the

forecaster is able to observe the creation of

weather systems in real time.

Meteosat 2, which replaced the earlier satellite

in June 1981, sits in a geostationary orbit some
35,880 km (22,300 miles) above the Equator. It

gathers data from a large number of earth stations

spread out across the surface of the globe, and

relays that information to anyone who wishes to

subscribe to the system.

It would be theoretically possible to analyse and

interpret this information (though not in real time)

on a home computer by writing the received data

to disk as it arrives from the satellite. However, the

signal is an analogue one, so the conversion might

be difficult. You would also need to install your

own dish aerial precisely aligned with the satellite.

The processing ofthese satellite images is only one
very small function of the Meteorological Office's

computer system. Along with other similar

organisations in other parts of the world, it

maintains a global weather system model and
extracts from this model a vast amount of

statistical data. This forms the database of

historical information from which trends in global

Earth Stations

Satellite receiving aerials

(known as dish aerials, after

their shape) can vary immensely

in size and complexity. The one

shown here is capable of both

receiving and transmitting, and

is not confined to signals from

geostationary satellites. It has

sophisticated computer control

that allows it to track an orbiting

satellite precisely

and local climate are plotted. It includes not only

barometric data, but also details of wind speed

and direction, rainfall, and temperature— not just

at sea or ground level but also at specific altitudes.

Collection of this data is important for

historical analysis. It is vital to agriculture, to many
industries, and to the economy and ecology of

whole continents, for it is only by this means that

changes in climate can be recognised. Examples of

this include the results of the progressive

destruction of the Amazon rain forest and the

increase in size of the polar ice-caps that could

indicate the approach of another ice age.

Isobaric Charts

The 'weather maps' that we see

on television or in our

newspapers are actually charts

of barometric pressure. The

concentric lines join points of

equal air pressure. Winds flow

anti-clockwise around a 'low',

clockwise around a 'high' (the

reverse in the southern

hemisphere), and wind speed is

directly related to the distance

between the isobars

THE HOME COMPUTER COURSE 249

Sord
Though this machine features

only four Kbytes of user memory
as standard, its superb graphics

facilities mean that the user can

still write worthwhile programs

Most of the early home computers were designed

in California, USA. More recently, British-

designed machines have started to capture a large

share of the worldwide market. However, it can

only be a matter of time before the Japanese

dominate the scene, as they have done in every

other consumer electronic market. The SordM5 is

certainly not the first Japanese microcomputer,

but it is the first to have made a significant impact

on the home, as distinct from the business market.

It is a solid and compact machine similar in size

to the Sinclair Spectrum, but is considerably

heavier and feels much more robust. In many
other respects it has similar capacities, with a

Z80A CPU, single-key entry for basic, and

program/data storage on cassette. Inte'mally,

however, it's much more sophisticated, as

witnessed by the built-in Centronics printer port.

But the two major differences are the size of the

RAM memory — which at four Kbytes (expand-

able to 36 Kbytes) is much smaller in the

unexpanded machine — and the inclusion of

dedicated graphics and sound chips.

The graphics are handled by a TI 99 1 8, 9928 or

9929 (depending on the country in which the

computer is sold), which gives a resolution of 192

X 256 dots in up to 16 different colours. There are

four main graphic modes, three ofwhich may have

up to 32 independently moving sprites, which can

Printer Connector

A Centronics compatible

parallel printer interface is

available at this socket,

allowing many widely available

printers to be directly connected

to theM5

Modulator

The output from the VDP is

converted into a standard TV

signal

Audio Connector

The audio output can be fed into

an amplifier from this socket

VDP

The Texas TMS 9929 Video

Display Processor (in the UK

version of the MS) is

responsible for controlling the

screen, and can handle up to 32

separate sprites

Joypad Connectors

The two Joypads plug in here,

for games playing

The ROIVI Cartridge

One of the best features of the M5 is that the language can be

changed because it is kept in a ROM cartridge. Three versions of

BASIC are available for the M5: BASIC-I (simple, for beginners);

BASIC-G (very strong on graphics); and BASIC-F (scientific and

mathematical). There is also a special user-oriented, general-

purpose program called FALC, which has a combination of

spreadsheet, filing and graphics functions, and can be used to

develop sophisticated applications for home or business use

Video RAIVI

All the data needed to handle

the screen, including the actual

images, is held in this 1 6 Kbyte

block of RAM

250 THE HOME COMPUTER COURSE

Hardware Focus

Tape Connector

The tape interface is a DIN-type

socket, and has connections for

controlling the tape-recorder

motor

The Joypads

The joypads are the Sord equivalent of joysticks. They work by

sending a signal for each of four diagonal directions. Since these

signals actually interrupt the CPU, no matter what task it is

executing, the response time is very fast indeed

Power Connector

Power is supplied here from a

small transformer

CPU

The processor in the Sord M5 is

the well-known Z80A. This one

is clocked at3.58MHz

Custom Chip

The M5 uses a piece of

sophisticated custom logic to

achieve its advanced functions

at a reasonable price

ROM
The only built-in programs in

the machine are a set of low-

level control programs, which

are called up by the user

program. These take care of the

details of handling the screen,

keyboard and cassette

RAM
The user memory is contained

in these two large chips, and is

separate from other areas of

RAM

CTC

Much of the cleanness of

operation of the M5 is derived

from the use of this advanced

Clock Timer Controller, which

times and triggers various

operations in the machine

be standard-sized or enhanced. The machine can

display upper and lower case letters, punctuation

and numbers. It has line and block drawing

symbols, as well as a very large range of accented

lower case letters for use with foreign languages—
and since any character can be redefined, the

possibilities are very wide indeed.

Other machines use the same graphics chips —
in particular the TI99/4A (see page 189) - and it

is the use of such dedicated chips that makes the

Sord M5 so effective despite its lack of RAM.
Since the screen memory is totally separate from

the program memory, the only contents of the

main RAM will be the actual program, plus, of

course, the data needed by the variables.

Something that is currently being hotly argued

over in the home computer industry is the

THE HOME COMPUTER COURSE 251

S0RDM5
PRICE

£145

SIZE

185x70x55mm

WEIGHT

1kg

CPU

Z80A

CLOCK SPEED

3.58MHz

MEMORY

8 Kbytes ROM

20 Kbytes RAM, of which 16

Kbytes are used for graphic

display.

With the addition of cartridges the

ROM can be expanded to 16 Kbytes

and the RAM by 32 Kbytes

VIDEO DISPLAY

Up to 16 colours, which can be

used on different 'planes'. There

are sprite graphics and four

different screen modes: two

graphic, one text and a 'multi-

colour' mode

INTERFACES

Cassette, printer (Centronics),

joypads, ROM cartridge, audio

LANGUAGE SUPPLIED^

Language cartridge is integer

Basic, BASIC-I

OTHER LANGUAGES AVAILABLE

BASIC-G (graphics), BASIC-F

(floating-point BASIC), FALC (a

spreadsheet and database

language)

COMES WITH

Power supply adaptor, cassette

leads, television lead, two joysticks

with leads, BASIC-I cartridge and a

cassette with two games

KEYBOARD

55 keys: eight shifts giving all

alphanumeric characters, 28

BASIC statements, and 64 graphic

patterns

DOCUMENTATION

There is an 18-page User Guide

that describes how to connect up

the computer, how to load and play

the two games, with a page

dedicated to simple fault-finding.

There is no description of the

BASIC language or of using the

cassette or other interfaces for any

other purposes than for playing the

games supplied

proposed 'MSX standard', developed by a group

of major Japanese manufacturers, including Sord.

The idea is that if manufacturers stick to these

proposed standards for the design of home

computers (covering both hardware and the

dialect of basic to be used), it will be possible to

write software that will run on all such machines,

without modification. In terms of the graphics

chips, the Sord M5 fulfils that standard.

However , MSX also specifies that the sound

chip must be the AY-3-8910 from General

Instruments. To make sounds, the Sord M5 (like

the BBC Micro) uses a TI 76489 chip, which has

better control over the range of sounds produced

than the GI chip, though it is similar in having

three tone channels and one noise channel. This

means that the M5 is not a true MSX machine.

However, it is sufficiently close to give an idea of

what such machines will be like in use.

Three different versions of basic, several

utilities, some games and other applications can be

supplied in ROM cartridge form, and since these

may be up to 16 Kbytes in capacity, some useful

programs may well appear for this machine.

The M5 may be a littie more expensive than

other computers of similar physical appearance,

but the quality is definitely worth the extra cost.

The Sord M5 Keyboard

The rubber keyboard is slightly

larger than the Sinclair

Spectrum's, and a lighter touch

makes it more suitable for

typing. A total of 55 keys can be

used in a number of ways, to

obtain alphanumeric

characters, graphic symbols, or

whole BASIC keywords, by

means of the FUNC key. All keys

will repeat automatically if held

down — which is very useful for

screen editing

252 THE HOME COMPUTER COURSE

Passwords To Computing

Against All Odds
'Even parity' ensures that the number of 1 bits in a byte is always

even. This makes transmission errors easier to detect

One of the main advantages of digital computers

over analogue devices is that the errors and

inaccuracies that occur in all electrical circuits do

not accumulate as a signal is passed through many
circuits (see page 239). However, when data is

transmitted over any distance — whether by

means of a serial interface and a pair of wires, or

over a telephone line — the background electrical

'noise' in the line can sometimes be enough to flip

a single bit from 0 to 1 , or vice versa. Normally, the

receiving computer would have no way of

knowing that this had happened, and would

accept the erroneous data as being correct.

Lx)ok at what happens if one bit in the ASCII

code for the letter Q becomes corrupted:

[] 1 0 1 0 0 0 1 (Transmitted ASCII code for Q)

[] 1 0 0 0 0 0 1 (Received ASCII code for A)

An error such as this in the transmission of data

would, at the least, be a nuisance and could be

potentially catastrophic. However, you will

remember that ASCII codes are assigned only to

values up to 127, which requires only seven bits

(numbered 0 to 6). The Most Significant Bit (bit

seven) is therefore often used as a 'parity' bit, to

detect when an error has occurred.

There are two conventions for using parity bits:

'even parity' and 'odd parity'. We shall consider

the former. 'Even parity' means that the parity bit

(bit seven in an ASCII code) is set so that the total

number of 1 bits in the byte is always an even

number. Here's how the letters A and Q would look

with even parity:

[0] 1 0 0 0 0 0 1

(the ASCII code for A with even parity)

[1] 1 0 1 000 1

(the ASCII code for Q with even parity)

There are two 1 bits in the ASCII code for A, so the

parity bit is made 0 so that the total of all eight bits

is even. In the ASCII code for Q, there are three 1

bits, so the parity bit is made a 1. This brings the

total number of 1 bits to four, which is an even

number.
Now let's see what would happen if bit four in

our ASCII letter Q became corrupted as in the

example above.

[1] 1 0 0 0 0 0 1 (corrupted ASCII Q)

When the parity of the byte is checked (either by

software or by special hardware) it is seen that the

correct Q has an even number of Is in it (including

the parity bit). The corrupted by contrast,

accidentally had bit four changed from a 1 to a 0,

but the original parity bit — bit seven — is still a 1.

When the parity of this corrupted byte is checked,

it will be found to have an odd number of 1 bits,

and so this byte is known to be corrupted and can

be rejected. If you think about it, you will see that

even if the parity bit itself were to become

corrupted in transmission, the fact that an error

had occurred would still be picked up by the parity

checking process, and the byte would be rejected.

Ifyou look at the ASCII codes used in your own
computer, you will probably find that bit seven

(the Most Significant Bit, or MSB) is in fact used,

but not as a parity bit. This is done to enable the

computer to have an additional character set

(usually a set of graphics characters), and because

errors in data transmission inside a computer are

very rare. Parity is normally used only when
transmitting data over long distances, or when
recording data onto a magnetic recording surface

(such as tape or disk) which is equally susceptible

to 'bit errors'.

Parity checking is fine for indicating that a given

byte has been transmitted incorrectly, but it does

not indicate which bit in the byte was wrongly

transmitted, so the error cannot be corrected by

the receiving computer. Worse still, if two bits in a

byte become corrupted, an incorrectly

transmitted byte could be taken as a correct one.

But in cases where the receiving device detects

an error, it can send back an error message and the

software can arrange for the incorrect byte to be

transmitted again. More sophisticated error

detecting and correcting schemes have been

devised that can pin-point which bit or bits were in

error, enabling them to be corrected auto-

matically. Error correcting codes are a subject that

will be discussed later in the course.

LANGUAGE

PUBUSHER'S NUMBER

BOOK NUMBER

CHECK DIGIT

Just Checking

The last digit in an International

Standard Book Number (ISBN)

is a check digit — equivalent to

parity in a computer. Multiply

the first digit (Ohere) by 10, the

second (5) by 9, and so on, then

add the results together. You

will find that the check digit has

been set such that the result is

exactly divisible by 11

Basic Programming

Rank And File
Continuing our programming project to develop a computerised

address book, we now look at how our file of data will need to be split

up into records and fields

We ended the previous instalment of the Basic

Programming course by setting the task of refining

the elements ofthe programming exercise through

one or more layers of *pseudo-language', up to the

point where the examples could be coded into

BASIC. We will start by revising this exercise and

giving some possible solutions. The first

'Statement of Objectives' for the exercise was:

INPUT

A name (in any format)

OUTPUT

1. A forename

2. A surname

In our first level refinement we found that this

could be broken' down into six steps (later we

found that the last step could be dispensed with).

These were:

1. Read the name (* READ *)

2. Convert all the letters to upper case (* CONVERT *)

3. Find the last space (SPACE)
4. Read the surname (READSURNAME)
5. Read the forename (* READFORENAME)
6. Discard the non-alphabetics from the forename

We are treating all of these activities as

subroutines and the name we have assigned to

each subroutine is given in brackets.

Unfortunately, most versions of basic are unable

to call subroutines by name and it will be necessary

when writing the final program to insert line

numbers after the respective GOSUBs. During the

development phase, however, it is much easier to

refer to subroutines by name. These names can

then later be incorporated in REM statements. We
are indicating this use of named subroutines by

putting the names within asterisks. In languages

that can call subroutines by name (such as

pascal), subroutines like these are usually

referred to as 'procedures'.

Even though your basic may not be able to

handle procedures, it is recommended that you

pretend it can while programming at the pseudo-

language stage. Similarly, your version of basic

may not be able to handle long variable names

such as COUNT or STREETNAMES, but at the

pseudo-language level it is easier and clearer to

assume that it can. Try to make them descriptive.

It is much clearer to call a temporary variable for a

string TEMPSTRINGS than to call it XV$.

Fortunately, many versions of basic now allow

longer variable names.

We have already developed the second of the

steps (Convert all the letters to upper case)

through a second and third level ofrefinement and

created a short program in basic to do this task.

We will now attempt this for the other steps:

2ND REFINEMENT

3. (Find last space)

BEGIN

LOOP while unscanned characters remain in NAMES

IF Character = "
"

THEN note position in a variable

ELSE do nothing

ENDIF

ENDLOOP
END

3RD REFINEMENT

3. (Find last space)

BEGIN

READ FULLNAMES

LOOP (while unscanned characters remain)

F0RL = 1 to length of FULLNAMES

READ character from FULLNAMES

IF character = "
"

THEN LET COUNT = position of character

ELSE do nothing

ENDIF

ENDLOOP
END

We are now in a position to code from pseudo-

language into programming language:

10 INPUT "INPUT FULL NAME "; FULLNAMES

20 FOR L = 1 TO LEN (FULLNAMES)

30 LET CHARS = MIDS (FULLNAMES,L,1)

40 IF CHARS = " "THEN LET COUNT = L

50 NEXT L

60 PRINT "LAST SPACE IS IN POSITION ";COUNT

70 END

Note that line 10 is a dunmiy input for testing the

routine; line 60 is a dummy output, also for

testing; and line 70 will have to be changed to

RETURN when the routine is used as a subroutine.

Now let's try the same process for step four:

2ND REFINEMENT

4. (Read surname)

BEGIN

Assign characters to right of last space to SU RNAM ES

END

3RD REFINEMENT

4. (Read surname)

BEGIN

READ FULLNAMES

254 THE HOME COMPUTER COURSE

Locate last space (call * SPACE subroutine)

LOOP while characters remain in string after space

READ characters and add to SURNAMES
ENDLOOP

END

Before going on to code this into basic, you should

note some potential pitfalls. In locating the last

space in the final refinement above, the pseudo-

language calls for the use of the *SPACE*

subroutine, but it would not be possible to write

this out in basic and test it if the *SPACE*

subroutine had not already been written. As a

general rule, it is not worth coding each module

into BASIC (or any other high level language) until

the whole program has been developed in pseudo-

language. However, if you do wish to test a

module, you may need to write some dummy
variable values as well as dummy inputs and

outputs. In the example above, COUNT is the

variable that holds the value of the position of the

last space in FULLNAMES. In testing, we can cheat a

little by assuming that the routine to do this works

properly:

10 LET FULLNAMES = "TOM BROWN"
20 LET COUNT = 4

30 FOR L = COUNT + 1 TO LEN (FULLNAMES)

40 LET SURNAMES = SURNAMES + MIDS

(FULLNAMES,L,1)

50 NEXT L

60 PRINT "SURNAME IS "; SURNAMES
70 END

Here is the process for finding the forename (step

five). Remember, we decided that a forename is a

concatenation of all the alphabetic characters up

to the last space in the name. Full stops,

apostrophes, spaces and so on were to be

discarded.

2ND REFINEMENT

5. (Read forename)

BEGIN
'

LOOP while characters remain in FULLNAMES up to

last space

Scan characters

IF character is not a letter

THEN do nothing

ELSE add character to FORENAMES

ENDIF

ENDLOOP
END , .

3RD REFINEMENT

5. (Read forename)

BEGIN

LOOP while characters remain up to COUNT

LET TEMPCHARS = Lth character in string

IFTEMPCHARSisnotaletter

THEN do nothing

ELSE LET FORENAMES = FORENAMES +

TEMPCHARS
ENDIF

ENDLOOP

Now we are ready to code into basic, but as an

intermediate stage, we are going to use un- s

numbered basic statements in a structured format §

so that you can compare the structure with the i

stage above:

CODING

5. (Read forename)

REM BEGIN

REM LOOP
F0RL = 1 TO COUNT -1

LET TEMPCHARS = MIDS (FULLNAMES.L,1)

LET CHAR = ASC(TEMPCHARS)

IF CHAR>64 THEN FORENAMES =

FORENAMES + CHRS(CHAR)

REM ENDIF

NEXT L: REM ENDLOOP
REM END

In ordinary basic this would be:

10 FOR L = 1 TO COUNT-

1

20 LET TEMPCHARS = MIDS(FULLNAMES,L,1)

30 LET CHAR = ASC(TEMPCHARS)

40 IF CHAR > 64 THEN FORENAMES = FORENAMES
+ CHRS(CHAR)

50 NEXT L

60 END

As it stands, however, this program would not

work. There are three problems with it: COUNT

needs to be assigned a value; there is no provision

for inputing a name (assigning a string to

FULLNAMES); and there is no 'output' in the form

of a print statement for us to check if it has worked

properly.

If this routine were part of a subroutine, the

parameters passed to it (the input) and the

parameters passed from it (the output) would

have to be handled elsewhere in the program. This

is a very important consideration: the flow of

information within a program should always be

carefully thought through before we begin to code

into BASIC This is particularly important when we
are using variables (COUNT, for example) and the

same variable name is used in different parts ofthe

program. There is no point in calling a subroutine

that uses a variable such as COUNT ifthe subroutine

has no way of knowing what its value is supposed

to be. If a subroutine initialises the value of COU NT,

that value will remain the same unless a new value

is assigned later— perhaps in another subroutine.

This is one reason why it is not good progranmiing

practice to jump out from the middle of a loop,

since the value of the loop variable will be

unknown. Consider the consequences of having

these two program fragments as parts of different

subroutines in a program:

Part of subroutine X

F0RL = 1 TOLEN(WORDS)
LET CHARS = MIDS(W0RDS,L,1)

IFCHARS = ". "THEN GOTO 1550

NEXT L

Part of subroutine Y

F0RQ = 1 TO LIMIT

LET A(L) = P(Q)

NEXTQ

,THE HOME

Basic Programming

This part of subroutine Y is reading values into a

subscripted array, where the subscript is denoted

by the variable L. If subroutine Y is called after

subroutine X, and if the test condition in

subroutine X has been met (that one of the

characters is a "
. "), the value of L would be

completely unpredictable and so we would not

know which element of the array values were

being assigned to in subroutine Y. Apart from the

error of branching out of a loop, this subroutine

also uses a GOTO, and this practice should also be

avoided. GOTOs lead to confusion and they should

be avoided wherever possible.

To avoid confusion when using variables, it is

good practice to make a list ofthem at the pseudo-

language stages of program development,

together with notes saying what they are being

used for. Some languages (but not basic) allow

variables to be declared as local' or 'global'— that

is, they have values that apply either in only part of

a program (local) or throughout the whole

program (global). Many variables, such as those

used in loops (for example, the L in LET L = 1 T0 1 0),

are almost always local, so it is often wise to

initialise the value of the variable before it is used

(for example, LET L = 0). Some languages, such as

PASCAL, insist oh this; and although basic always

assumes the initial value of a variable is 0 (unless

otherwise stated), initialising is still

recommended.
So far we have formulated a reasonable

definition of a name for the purposes of our

computerised address book, and developed some

routines that can handle names in various ways

that we shall use in our complete program. Now
let's once again distance ourselves from the details

of program coding and consider the structure of

the 'records' in our address book 'file'

The terms 'record', 'file' and 'field' have fairly

specific meanings in the computer world. A file is

a whole set of related information. In a computer

system it would be an identifiable item stored on a

floppy disk or on a cassette tape and it would have

its own name, usually referred to as a filename. We
can consider our entire address book as a file, and

we shall call it ADBOOK.

Within a filewe have records. These are also sets

of related information. If we think of our address

book as a card index box, the file would be the

whole box full of cards and the records would be

the individual cards — each one with its own
name, address and telephone number.

Within each record we have fields. The fields

can be considered as one or more rows of related

information within the record. Each ofthe records

in our ADBOOK file will have the following fields:

NAME, ADDRESS and PHONENUMBER. A typical

record would look like this:

Peter Edvadsen

16AHolford Drive

Worsley

Manchester

061-540 2588

In this record there are three fields: the name field,

which comprises alphabetic letters (and, possibly,

the apostrophe in names such as Peter O'Toole);

the address field, which comprises a few numbers

and many letters; and the telephone number field,

which comprises only numbers (ignoring the

problem of whether or not to allow hyphens in

numbers like 01-258 1 191). Before we can begin

to write a program to handle complex information

such as this with flexibility, we must decide how to

represent the data within the computer. One way

might be to consider all the information within a

record to be just one long character string. The

problem with this approach is that extracting

specific information is extremely difficult. Let's

assume that the following entry is just one long

character string:

PERCIVAL R. BURTON

1056 AVENUE OF THE AMERICAS

RIO DEL MONTENEGRO
CALIFORNIA

U.S.A.

(415) 884 5100

If we were searching the records to find the

telephone number of PERCIVAL R. BURTON, would

it be safe to assume that the last 14 characters in

the record represented the number? What if we

had included the international dialling code, like

this: 0101 (415) 884 5100? Then the number

would have had a total of 19 characters. To

overcome this difficulty, the telephone number is

assigned a separate field, and the program will give

us all the characters (or numbers) in that field

when requested.

The difficulty with this approach is that there

has to be some way of relating the various separate

fields, so that referring to one field (the name field,

for example) can give us the other fields on the

record, as well. One way this could be tackled is to

have a further field associated with the record just

for indexing purposes. If a record was, for

example, the 15th record in the file, its index field

would contain the number 15. This could then be

used to point to the elements in a number of

arrays. To illustrate this, let us suppose one record

looked like this:

Jamie Appleton NAME field

15PantbachRoad STREET field

Llandogo TOWN field

Gwent COUNTY field

0594 552303 PHONE NUMBER field

015 INDEXfield

Ifwe knew the name of this person and wanted his

telephone number, aU we would have to do would

be to search through the elements of the array

holding the names until a match was found. We
would then find which element of the array the

name was in — in this case, number 15. Then all

we would need to do would be to find the 15th

element in the PHONE NUMBER array to get the

right telephone number.

If we had a number of friends in the Forest of

256 THE HOME COMPUTER COURSE

Basic Programming

Dean area, we might want the program to search

for everv occurrence of 'Cinderford' in the TOWN
field. The program could search through the

TOWN fields and note the location of each

occurrence of Cinderford. All that would then be
necessary, to print the names and addresses of all

these friends, would be to retrieve all the elements

having the same number from all the arrays for

each 'Cinderford' record. Using this approach,

there would be no need to inspect the INDEX field,

and the technique has the merit of being a

relatively simple operation.

In the next instalment we will look at some of

the problems involved in searching through lists to

find specific items.

Exercise
Assume that records with the following fields

will be adequate for our computerised address

book:

NAME field

STREET field

TOWN field

COUNTY field

PHONE NUMBER field

Suppose that one of the options offered by amenu
in the computerised address book is:

5. CREATE A NEW ENTRY

You type 5 and the program branches to the part

where new records are created (you may assume
that there are no entries in the address book yet).

Since the program is to be fully menu-driven, you
will always be prompted for the entries expected
- with prompts such as ENTER THE NAME, ENTER
TH E STREET and so on. Here is a list ofthe expected
results:

1 . An element in an array for the name

2. An element in an array for the street

3. An element in an array for the town

4. An element in an array for the county

5. An element in an array for the phone number

Your task is to develop this, through a process of

top-down programming using a pseudo-

language, to a point where direct conversion into

BASIC becomes possible. The pseudo-language can
follow your own rules; we only suggest that you
use capital letters for keywords such as IF, LOOP
and so on, and small letters for descriptions in

ordinary English of the operations to take place.

Basic Flavours
Step 3

SPECTRUIM 10 INPUT INPUT FULL NAME";F$

15 LET COUNT=0
20 FOR L=1 TO LEN F$

30 LET C$=F$(L)

40IFC$=" "THEN LET COUNT =L
50 NEXT

L

60 PRINT-LAST SPACE IS IN

POSITION";COUNT

70 STOP
9990DEFFNM$(X$,P,N)=X$(PT0

P+N-l)

9991 DEFFNL$=X$(TON)
9992 DEF FN R$=X$(LEN X$-N+1 TO)

In this programming project, the string

functions MID$, LEFTS, RIGHTS will be much

used. Their equivalents in Sinclair BASIC are:

LEFTS(FS,N) replace by F$(TON)
RIGHTS(FS,N) replace by

FS{LEN(FS)-N+1 TO)

MIDS(F$,P,N) replace by

F$(PTO P+N-1)

MIDS(FS,P,1) replace by F$(P)

Note that string variable names on the

Spectrum cannot be more than one letter long

(plus the "S").

Step 4

5LETS$=""

10 LET FS="TOM BROWN"
20 LETC0UNT=4
30 FOR L=C0UNT+1 TO LEN FS

40 LETSS=SS+FS(L)

50 NEXT

L

60 PRINT "SURNAME IS ";SS

70 STOP

Steps

30 LETCHAR=CODETS
40 IF CHAR>64 THEN LET CS=C$+CHR$

CHAR
50 NEXT

L

60 STOP

In this fragment, the problem of single letter

string variable names has arisen: FS is the

Spectrum equivalent of the variable

FULLNAMES, SO CS has to stand in for the

variable FORENAMES.-

Part of subroutine X

FOR L=1 TO LEN WS
LETCS=WS(L)

IF CS="." THEN GOTO 1550

NEXTL

Part of subroutine Y

FOR 0=1 TO LIMIT

LETA(L)=P(Q)

NEXTQ

Of the most popular home computers, only

the BBC Micro supports long variable names

such as FULLNAMES. The Spectrum allows

long numeric variable names, but only single

letter string variable names. The Dragon 32,

Vic-20, and Commodore 64 support long

variable names, but only the first two

characters are significant, so that

FULLNAMES is valid, but refers to the same

memory location as FUJIYAMAS: both have

the same first two characters.

On the Oric-1 variable names cannot be

more than two characters (first a letter then a

number or a letter), while the Lynx allows only

single letter variable names, though both

lower- and upper-case letters are valid and

distinct.

5LETCS=""
10 FOR L=1 TO COUNT -1

20 LETTS=FS(L)

THE HOME COMPUTER COURSE 257

L^J Insights

Tracing Paper
Images drawn on paper can be
transferred into your computer
by means of a digitiser or

graphics tablet

Among the most powerful features found in the

current generation of home computers are the

graphics capabilities. With a few simple

commands, designs and patterns can be created

and colours changed. All this requires

programming knowledge, as it is not yet possible

to create an image on paper first and load it into

the computer as a completed work. Light pens

Cross-hairs

Cross-hairs and a magnifying

glass help to position the cursor

more accurately. Resolution to

within 0.25mm is by no means

uncommon

Data Entry Buttons

Most cursors feature more than

one push button — the means

by which the operator can

indicate that a particular point

needs to be recorded. In an

alternative mode, the digitiser

will take continuous readings as

the cursor is moved

Cursor

This device is moved by hand to

trace over the image that is

being digitised

(see page 156) facilitate the editing and

manipulation of an image once it is on the screen,

but they cannot be used to copy a picture from a

sheet of paper.

Designers of cars, aeroplanes and micro-

processors as well as interior decorators,

landscape gardeners and fashion designers can all

benefit from a computer graphics system. Once

the design is safely stored in the computer's

memory, additions and alterations can be tried

without wasting valuable raw materials. So what is

needed is an input device that can translate the

lines and curves of the drawing or design into a

language that a computer can understand.

In the professional market the 'graphics tablet'

has been around for almost as long as the

computer. However, low-cost alternatives for the

home user have only recently become available.

High-precision graphics tablets, also known as

'digitisers' because they convert analogue shapes

and images to digital information, use a wide

variety of techniques to produce the required

information. The most accurate systems can

resolve an image to around l/4nmi (1/ 100th of

an inch) — sufficiently accurate for engineers and

draughtsmen. All digitisers feature a flat

baseboard, onto which the image drawn or

painted on paper is laid.A stylus, which may be an
ordinary pen or a sophisticated electronic device,

is then traced over the image. The position of the

stylus is detected by the digitiser and transmitted

as a changing pair of co-ordinates to the

computer.

The two most accurate systems— magnetic and

258 THE HOME COMPUTER COURSE

Emitting Coil *

A high-frequency signal is given

out by this coil and is picked up

by the grid

capacitive — work by having a series of wire grids

embedded in the baseboard of the tablet. In the

magnetic system the stylus consists of a small

magnifying glass with cross-hairs that is traced

over the image. Surrounding the glass is a coil of

wire that transmits a low-power, high-frequency

signal. The signal is detected by the grids in the

baseboard and provides a direct measure of the

position ofthe stylus. The capacitive system works

the other way around: a series of coded pulses is

fed into a grid of wires and the signal is picked up

by the stylus.

An alternative to these is the acoustic system.

The stylus is electrostatically charged, and when

touched to the baseboard, gives off a tiny spark.

The time taken, for the acoustic wave created by

the spark to reach two microphones, gives a

measure of the stylus position. Amongst other

things, this offers the possibility of digitising the

third dimensions, by means of a signal passing

Insights

Baseboard

The image to be digitised is

placed flat on this board. On

some systems, an electrostatic

charge is applied to the board to

'glue' the paper temporarily flat.

Itis very important that the

image doesn't move relative to

the board

PI**

through the object.

At the lower end of the scale is the pressure-

sensitive tablet: the image is placed on it and then

traced with a stylus. This requires more pressure

than the other systems. Two electrically

conductive sheets are separated by a cellular

insulator and two different high-frequency signals

are fed into the layers. The signal detected by the

stylus when it makes an electrical connection

between the two sheets provides a measure of its

position. Typical problems encountered with this

type of system include changes in the surface

Mapping tt Out

One of the most widespread

professional uses for digitisers

is collecting data from maps

and surveys. Here, the

computer is being used to

predict the location of new

oilfields from digitised

geological data

Receiving Grid

Embedded in the baseboard is a,

grid of wires that can pick up the

signal given out by the coil. The

spacing of the grid is

considerably coarser than the

finest resolution of the digitiser,

because the processing circuitry

can interpolate from the relative

strength of the signal picked up

by adjacent wires

resistance due to damage or the differing pressure

of a hand. Given the limited resolution of home
computer graphics, the accuracy of this method is

more than adequate for today's home computers.

The cheapest and simplest digitisers are the

pantographs — based on the principle of the old-

fashioned drawing aid, constructed from linked

arms. They use co-ordinate geometry to provide a

direct measure of the position of the stylus.

Variable resistances mounted at the two joints

provide voltages proportional to the angles in the

'shoulder' and *elbow' of the jointed arm. The
resolution of the pantograph is limited by the

accuracy of both the variable resistances and the

mechanical linkages; typically it is only around

Processing Board

This PCB contains a

microprocessor, some ROM
and some RAM. This is so that it

can present the computer with

information in the form of pairs

of X-Y co-ordinates

five per cent. However, sophisticated pantographs

based on optical measurement of the rotation of

the joints can offer much better results although

they still fall short of the capabilities of the

magnetic and capacitive systems.

Optical tablets use an intersecting grid of infra-

red beams to detect the position of a stylus. They
are not nearly as sensitive as the other systems but

are quite adequate for allowing a finger to be used

to select an item from a program menu. In some
applications the infra-red sources and detectors

are placed around the edge of the visual display

unit — providing a truly interactive screen on
which images can be drawn simply by moving
your finger.

The actual data produced by a graphics tablet

or digitiser must be converted into information

suitable for display on the screen and to this end
most ofthe commercial products come with all the

necessary software. However, just entering the

data isn't the end of the usefulness of graphics

tablets. Once the information is stored in the

computer the tablet can be used as an editing tool,

allowing colour to be added or changed and
shapes to be modified. The surface of the tablet

can be programmed to act as a menu that selects

standard options from the program so that the

keyboard need only be used for selecting the main
functions. Computer animation systems (see page

18 1) all have a high-quality grapWcs tablet as their

main form of input.

THE HOME COMPUTER COURSE 259

Pioneers In Computing

1646
Bom on July 1 in Leipzig

1661

Enrols at University of Leipzig

and awarded degree at 17

1660's

Works as lawyer and

diplomat. Publishes paper on

The Art of Combination'

1672
In Paris, he develops the

principle of Sufficient Reason

1673
Calculating machine

presented to Royal Society in

England

1675
Invents calculus

independently of Newton

1676
Considers dynamics through

the concept of kinetic energy

1678
Appointed librarian and

adviser to the Duke of

Hanover

1679
Develops binary mathematics

1683
Publishes pamphlet, 'The

Most Christian War God', an

attack on Louis XIV

1690's

His genealogy of the House of

Hanover expands into a

History of the World.

Develops an interest in

linguistics and the origin of

languages

1700
Organises Berlin Academy of

Sciences

1714
Responsible for establishing

the right of succession of

George I to the vacant English

throne after the death of

Queen Anne

1716
Dies in Hanover November 14

Gottfried Leibniz

Scientists involved in the fifth

generation computers are taking

an interest in the work of this

1 7th century thinker

Gottfried Wilhelm Leibniz was the leading

scientific light of his time — the period known as

The Age of Reason. He was bom in the central

European city of Leipzig in 1646 and died in

Hanover in 1716. During his life of three score

years and ten (the sort of exact figure you might

expect from a mathematician), he invented

calculus, worked on dynamics, and made
contributions to geology, theology, history,

linguistics and philosophy. Most important of all,

he developed ideas that would be fundamental to

the creation of the computer.

He began his travels at the age of 20, after the

University at Leipzig refused to confer a doctorate

of law on him because of his youth. Throughout

his life, without any private means to support him,

Leibniz was forced to take up work that hampered

his scientific research. In his early twenties he

worked as a lawyer and diplomat; later in life he

was a librarian and adviser to royalty.

His interests were wide-ranging, and his

cosmopolitan nature led to extensive travel in

The Leibniz Calculator

Europe talking with all the great thinkers of his

time. Leibniz was a prolific letter writer, as well —
engaging in correspondence with over 600

people.

His first important contribution to philosophy

came in 1672 when he formulated the principle of

Sufficient Reason. This held, simply, that there

must be a reason for everything, and 'everything is

for the best in the best of all possible worlds'.

Turning his attention to mathematics, he then

set to work to perfect the Pascaline adding

machine invented by Blaise Pascal in 1642 (see

page 86). Leibniz sought to upgrade it so that it

would be capable of both multiplication and

division. He did so by designing a mechanical

device called the Leibniz Cylinder (see below).

Leibniz's device was a major breakthrough for its

time. Previously, because of the complexity of

manipulating Roman numerals, multiplication

had been taught only in the higher institutes of

learning. A machine that could multiply

mechanically made arithmetic more accessible.

Once Leibniz had perfected this device, he moved
on from base ten arithmetic to consider and

formalise binary mathematics.

Leibniz's greatest ambition was to devise a

universal language that could use the clarity and

precision of mathematics to solve any problem

that mankind faced. His language was to use

abstract symbols to represent the fundamental

'atoms' of understanding, with a set of rules to

manipulate these symbols. His attempt failed; but

his ideas were taken up in a more modest way in

the early 20th century by Bertrand Russell, who
tried to explain mathematics in terms of a formal

logical 'language'.

In the last few years, interest has been rekindled

in the work of Leibniz by the scientists involved in

the long-term project to create the fifth generation

of computers. These machines, it is hoped, will be

able to solve any problems of human endeavour

with the same speed and certainty that computers

oftoday execute mathematical calculations. To do
this they will require a new sort of language

altogether.

SUBTRACTION

1? —0—

CUMULATIVE RESULT

The 'Leibniz Cylinder' is still

used in mechanical

calculators today. Every time

a calculation is performed the

handle is cranked once.

Addition or subtraction is first

selected using one of the two

bevels, and then th^e cog is

positioned over the number to

be added to, or subtracted

from, the total. When the

crank is turned, the cog

engages only those splines

corresponding to the number.

The motion is then transferred

to the dial. A carry facility is

provided that moves the tens

dial one place forward on

each complete revolution of

the units wheel

CO
UJzo
—3

z
>
UJ

260 THE HOME COMPUTER COURSE

indaii~

HOME
COMPIITEP COURSE

Buytwotogetherandsave£1 .00

Buyvolumes 1 and 2 together for

£6.90 (including P&P). Simply fill in the order
formand these willbe forwarded toyou with
our invoice,

Now that your collection of Home
Computer Course is growing, it makes sound
sense to take advantage of this opportunity to

order the two specially designed Home
Computer Course binders.

The binders havebeen commissioned
to store all the issues in this 24 part series.

At the end of the course thetwo
volume binder set will prove invaluable in

convertingyour copies of thisunique series into

apermanentwork of reference

.

* Ifyou prefer tobuy the binders
separatelyplease send usyour cheque/postal
order for£3 .95 (including P&P) .We will send
youvolume 1 only Thenyoumayordervolume
2 in thesameway-when it suitsyou

!

Overseas readers: This binder offer applies to readers in the
UK, Eire and Australia only. Readers in Australia should
complete the special loose insert in Issue 1 and see additional
binder information on the inside front cover. Readers in New
Zealand and South Africa and some other countries can obtain
their binders now. For details please see inside the front cover.

Binders may be subject to import duty and/or local tax.

THE LASTWORDINLOGIC

