
ISSN 0265-2919

l^80p

mPUTER
rriASTERinG your HomE compuTER in e4 lueeks

gee sorti"*

««e error CH.C ^^.^„»,n.

P»on««'»

IjHardware^

Aquarius We take a look at a new micro
aimed at the younger generation 290

Order Of Play Sorting is a very important
computer function. We examine some of the
different methods available

Amazing Facts Maze games like PacMan
have swept the world, yet the programming
techniques they use are quite simple

286

288

Basic Programming^^^H|H|Hf >
Branching Out It's time to refine the menu on

o

procedure for our computerised address l^l,

book program

Insights
^ m

Your Obedient Servant From fictional

beginnings, robots became fact. We look at

some aspects of their operation

Mice And Men As menu-driven software
becomes more common, altematives to the
keyboard become more practical

281

296

PasswordsTo Computing

Detective WorlcWe examine some ways of
avoiding the problems of corruption during
data transmission

298

Pioneers in Computing ^ f
Norbert Wiener BSc at 14, PhD at 18,

Wiener single-handedly developed the
science of cybemetics

300

Sound And Light ^
f

Some practical programming hints for these
two popular home computers

284

Next Week
• We examine the Sharp MZ-700,

a low cost home-and-business

computer with built-in printer and

cassette player

• Inexpensive rotiot aims are

now becoming available for a

wide range of home computers.

We look at the Colne Robotics

Amidroid

• A modem can open up a whole

new worid for the home computer

user. We suggest some

applications

f^.f'^^?,?l!!^°ov'l°S"""I??'*"r.^
Art Director David Whelan; ProdiictionBHior Catherine Cardwel I; Staff Writw Roger Ford; Pteture Editor Claudia Zeff; Deslgiier Hazel Bennington; ArtAssistants Liz Dixon

Safu Maria Gilbert, Sub Editors Robert Pickering, Keith Parish; Researdwr Melanie Davis; ContrilNitors Tim Heath, Henry Budgett, Brian Morris, Lisa Kelly, Steven Colwill, Richard King, Bob Chappell; Group Art Director Perry
Neville; ManaglngpiroctorStephen England; Consultant David Tebbutt; PuUstwdbyOrtrisPubHsMngUd: EdttorWDIrectorBrianlnnes; ProfoctDovoloiHnent Peter Brookesmith; Exocutlwe Editor Chris Cooper; ProductionCo^inator
^2°il;J^'^!^?*!III.?i??" ^El^i^^ii S*^*?!?. ^oy<^^' Dw^nwl ««» IMOducod by Bunch Partworks Ltd; Editorial Office 85 Charlotte Street, London W1 ; © 1983 by Oibis PulJsMng Ltd: IVpeset by Unlvefw:
HeproductMn by Mums Morgan Ltd; Printed in Diaat Britain by Artisan Press LM^

HOME COMPUTER COURSE - Price UK 80p IR £1.00 AUS 31.95 NZ S2.25 SAPI.95 SINGAPORE $4.50 USA and CANA0A^1.95
How to obtain your copies of HOME COMPUTER COURSE - Copies are obtainable by placing a regular order at your newsagent.
Bade Numbers UK and Eire - Back numbers are obtainable from your newsagent or from HOME COMPUTER COURSE. Back numbers, Orbis Publishing Limited, 20/22 Bedfordbury LONDON WC2N 4BT at cover price AUSTRALIA Back
numbers are obtainable from HOME COMPUTER COURSE, Back numbers, Gordon & Gotch (Aus) Ltd, 114 William Street, PO Box 767G Melbourne, Vic 3001. SOUTH AFRICA, NEWZEALAND, EUROPE & MALTA: Back numbers are available at
cover price from your newsagent. In case of difficulty write to the address in your country given for binders. South African readers should add sales tax.

How to obtain binders for HOME COMPUTER COURSE - UK and Eire: Please send £3.95 per binder if you do not wish to take advantage of our special offer detailed in Issues 4, 5 and 6. EUROPE: Write with remittance of £5.00 per binder (mcl

p&p) payable to Orbis Publishing Limited, 20/22 Bedfordbury, LONDON WC2N4BT MALTA: Binders areobtainable through your local newsagent price £3.95. In case of difficulty write to HOME COMPUTER COURSE BINDERS, Miller (Malta)
Ltd, M. A. Vassalli Street, Valletta, Malta. AUSTRALIA: For details of how to obtain your binders see inserts in early issues or write to HOME COMPUTER COURSE BINDERS, First Post Pty Ltd, 23 Chandos Street, St. Leonards NSW 2065 The
binders supplied are those illustrated in the magazine. NEW ZEAUND: Binders are available through your local newsagent or from HOME COMPUTER COURSE BINDERS, Gordon & Gotch (NZ) Ltd, PO Box 1595. Wellington. SOUTH AFRICA-
Binders are available through any branch of Central Newsagency In case of difficulty write to HOME COMPUTER COURSE BINDERS, Intermag, PO Box 57394, Springfield 2137.

Mote -Binders and back numbers are obtainable subject to availabilityof stocks. Whilst every attempt is made to keep the price of the issues and binders constant, the publishers reserve the right to increase the siated prices at any time when
circumstances dictate. Binders depicted in this publication are those produced for the UK market only and may not necessarily be identical to binders produced for sale outside the UK. Binders and issues may be subject to import duty and/or
local taxes, which are not included in the above prices unless stated.

Your Obedient Servant
Industrial robots can now visually recognise objects and learn new
tasks by imitating human actions

The term 'robot' is derived from the Czech word

for work, robota. It was coined by playwright

Karel Capek in his 1920 play R. U.R. (Rossum's

Universal Robots) and was subsequently

enthusiastically adopted by science fiction writers.

Despite the many fictional accounts of the powers

of robots, they are nothing more than an

electromechanical extension of the computer,

with all a computer's limitations and failings.

Their origins are to be found in the machine

shops of the fifties, where the theory of numerical

control of machine tools was first applied. These

first efforts were predictably crude: machines that

were controlled by five-hole paper tape (the sort

used by telex machines), which at best could only

move one fixed tool from point to point around

the object they were working on.

The next step in their development was the

introduction of the ability to change tools in mid-

job. This was accomplished by the use of a

'carousel' or rotating rack of tools, all with

identical fixings, which could be selected and

fitted to the tool holder under program control.

Even with this refinement, a particular machine

could perform only one type of task: a lathe was

still a lathe, even though it could perhaps do all the

turning jobs required in a particular process. At
around the same time, remotely-controlled hands

and arms were being developed to work in

dangerous environments — beneath the ocean,

for example, or in laboratories handling

radioactive materials. These manipulative devices

were merely extensions of the operator's own
hands, but computers were soon used to control

them directly. The robots that have since been

developed are more accurately referred to as

'robot arms', as they consist of one tool holder

mounted on an extending or articulated arm.

If we wish to understand how robots are

programmed, we must first consider them in

relation to the space in which they operate. Most
industrial robots are fixed in position, so the space

will be a sphere that is flattened at the bottom, and

we can think about the question of control of the

robot as a simple exercise in three-dimensional

geometry. The centre of the spheroid will be the

robot's 'shoulder' joint, and the radius will be the

length of the extended arm, measured from the

'shoulder' to the tip of the 'fingers' — the gripper

or tool holder. Any point within this space can be

expressed as three co-ordinates: for example, as

distances north/south, east/west and up/down,

from a 'datum point' or zero position. In this case

the co-ordinates are known as Cartesian, after the

17th-century French mathematician Rene
Descartes. Alternatively, the position can be

expressed in spherical co-ordinates. In everyday

language this could be, say: 'at a distance of two

metres in a direction north-east and thirty degrees

above the horizontal'. The datum point in this case

is the robot's 'shoulder'.

However, the problem of programming the

robot involves giving it a set of instructions about

moving from place to place, and so there is yet a

third method of positioning the tool holder.

Celluloid Hero

R2D2, the endearing robot from

'Star Wars' was in fact

controlled by a human operator.

Its design, however, reflected

what many people think robots

ought to look like

THE HOME COMPUTER COURSE 281

Battery-powered Robot

The Hero-1 is a completely self-

contained battery-powered

robot that combines some of

the functions of a turtle with the

manipulative ability of a robot

arm. Costing some £2,500 —
or £1,600 in kit form — it might

appear, at first glance, to be an

expensive toy. But, it is in fact, a

remarkably flexible computer

system in its own right, with

such advanced features as

speech synthesis, light level

sensors, auditory input and,

(because it's mobile), an

ultrasonic range finder that also

doubles as a movement

detector

Known as point-to-point positioning, this requires

the datum point to move with the tool holder.

Typically, industrial robots are accurate to

within one millimetre. Even the simpler models —
available for a few hundred pounds and capable

of being used with any home computer that has

eight-bit parallel output — are accurate to within

two millimetres. That observation in itself is

interesting given that the cost differential is at least

50-1.

There are two generally accepted methods of

driving robot arms. For those with a low payload,

stepper motors (electric motors that move by a

predetermined amount each time current is

applied to them, as used in disk drives to position

the read/write head) are sufficient. But for robot

arms used on a production line, where heavier

weights need to be manoeuvred, it is more
common to employ hydraulic rams to move the

various parts of the arm around their fulcra (the

points around which they pivot). It is quite a
simple matter to measure the volume of hydraulic

fluid being passed into the rams, and to deduce
fi-om that the movement at the other end, to well

within the operational requirements of accuracy.

Industrial robots invariably contain a purpose-
built minicomputer (or a large capacity

microcomputer in later models) that does nothing

but control the arm, and run a programming
language designed for that purpose. As there is no
requirement to do more than indicate co-

ordinates, and issue simple commands like CLOSE
GRIPPER or OPEN GRIPPER, the programming
language contains no instructions for handling
text. Program instructions are entered through an
enlarged numeric keypad attached to the

computer by means of a long 'umbilical cord', so

that the operator may move around the robot arm
while entering the instructions. The more
advanced versions of these 'pendant panels,' as

they are called, include a precision joystick.

Another programming method, knovm as

'Follow Me', is especially useful in tasks that do
not require particularly accurate tool placement,

such as paint spraying. Here the robot arm
includes a provision for the operator to grasp the

tool holder, directly move it around the job, and
have those movements entered directly into the

computer's memory. The robot will then repeat

those movements every time the program is

executed.

In all these methods, the position being defined
is that of the tool holder itself. The operator is not
concerned with the relative positions of the

individual sections of the robot. The

RIST EXTENSION

Angular

Movement
One of the most difficult

aspects of programming a

robot arm is converting the

geometry. We are used to

specifying positions using

Cartesian or x,y,z co-

ordinates. What the robot

needs are angles for the

'elbow' joint, the 'shoulder'

joint, the 'waist' rotation, and

the distance that the wrist

must extend. In simpler

systems the programmers

must give the values for all

four. More sophisticated

robots can perform all the

conversions from Cartesian

co-ordinates

mo
oo

282 THE HOME COMPUTER COURSE

Insights

programming language resident in the robot's

control computer works out what they should be.

It also performs any necessary optimisation,

ensuring that the tool moves from one place to

another by the shortest possible route. The
orientation of the tool holder is controlled

automatically, maintaining both horizontal and
vertical relative positions unless instructed

otherwise. The speed ofpoint-to-point movement
is also automatic: the tool holder is disengaged

slowly, moves rapidly to within a short distance of

workpiece was in position, and then allowed to

continue. Of course, this isn't foolproof either,

and for situations where complete reliability is

required, it is possible to install an image
recognition system based on charge-coupled

device (CCD) television cameras. These cameras
focus the image directly onto an array processing

microchip (a chip split up into a hundred or more
individual photosensors, each capable ' of

registering not just black or white but also a range

of intermediate tones). Each individual sensor

Factory Act

Robot arms, like the one seen

here at work in a die casting

shop, are taking over more and

more of the dirty, dangerous

and repetitive jobs to be found

in industry. The cleaning of

castings preparatory to their

being machined is a good

example. The casting, fresh

from the mould, is much too hot

for human hands, and would

normally be put to one side to

cool. The robot, however, is not

susceptible to heat so can deal

with it immediately and

despatch it on to the next

operation

the destination point, and then slows down to re-

engage the workpiece at the new site.

The robots we have discussed so far are capable

only of 'blind obedience', repeating the same task

at exactly the same location, irrespective of

external influences. Their main use is in the

engineering industry, especially in the production

of motor vehicles. This has long been organised

into production lines, in which the component or

partially completed vehicle is always precisely

located in space and time. This is vitally important

to the successful operation of a robot production

process, for if the component is wrongly

positioned, the robot will not adapt its activity

accordingly. In an attempt to overcome this, a

variety of sensors can be fitted to the tool holder.

The simplest of these can be an ordinary on/off
microswitch. Contingency plans can be built into

the control program (a WAIT command, for

instance), to be executed if the switch is not

brought into contact with the workpiece, but more
sophisticated plans will require human
intervention.

An alternative to pressure sensing might

involve the use of a light sensor. If a light source

were positioned so as to be obscured from the

sensor on the tool holder by the workpiece, the

tool holder could be stopped before it reached

collision point, put into WAIT mode until the

requires perhaps one byte ofmemory to define the

contrast in the grey scale. Initially each object is

'photographed' a number of times, and a learning

program averages out the values. At run time, the

CCD camera makes an image of the object, which

is then compared with the reference image in

memory. If the two match, then the operation can

go ahead. By this method it is possible to check

that the correct workpiece is present, and that its

position and attitude are correct.

A further use of this image processing system is

in the selection ofcomponents from a 'mixed bag'.

This 'picking and placing', as it is known, is an
increasingly common application for small robots

as an adjunct to a regular production line. In

addition to the production process itself, industrial

robots are commonly used in the testing and
quality control stages, often in pairs to allow a
greater degree of flexibility in the positioning of

the product.

We started by considering the robot in fiction—
and with good reason. There are few better

examples of truth following fantasy than in the

development of the industrial robot, and there is

no reason why robots should not eventually

become the self-contained and 'self-motivated'

entities of science fiction. This will not happen,

however, until Artificial Intelligence is more than

just a concept.

THE HOME COMPUTER COURSE 283

Sounding Out Vic
A close look at sound generation
on theVic-20...

TheVic -20 was one ofthe firsthome computers to

appear in the UK. As a consequence, its facilities

may appear to be a little lacking in comparison

with more recent computers. Additionally,

Conmiodore don't make it particularly easy to

construct sound or music programs as Vic-20
BASIC, in common with Commodore 64 basic, has

no commands that relate specifically to sound. All

sound control is achieved by a series of POKEs into

memory locations. This principle also applies to

the Commodore 64 and the techniques outlined

here for the Vic-20 would be useful to the

Commodore 64 user. The degree ofsound control

available is limited to volume (equivalent to

envelope with A = D = R = 0), frequency on three

oscillators and a noise generator. Output is

available via the television speaker alone. In

addition, due to inaccuracies in the way the Vic-
20 selects frequencies it is impossible to obtain the

correct pitch for all notes on the musical scale.

With only these capabilities the Vic-20 has little

value for music making; although with thought,

patience and a little knowledge of basic

programming these limited features can be used to

create 'tunes' of two and three note chords.

Sound Control
The Vic-20 is supplied with three square wave
oscillators and a noise generator. Each oscillator

covers approximately three octaves of sound,

offset in frequency as follows:

Osc.1 Osc.2 Osc.3 Freq. Range (Hz) Octave

• (65.41-123.47) 1

• • (130.81-246.94) 2

• • • (261.63-493.88) 3

• • (523.25-987.77) 4
• (1046.5-1975.53) 5

This arrangement allows the user to cover five

octaves in total with at least one oscillator

available in each octave. Octave 3, which starts at

middle C and contains the standard referenceA at

440Hz, is available to all three oscillators.

Control of the oscillators is exercised by
changing the contents of five memory locations as

follows:

Memory Location

P0KE36874,X

POKE 36875,X

P0KE36876,X

POKE 36877,X

Oscillator

1

2

3

noise

In each case X is a whole number between 135 and
24 1 (0 switches that oscillator off), which refers to

a table of equivalent note values on page 73 of the

booklet supplied with each Vic-20. Before the

selected frequency can be heard the volume level

must be set, as follows:

POKE 36878,V

where V can be set between O(off) and 15(loud)

affecting all oscillators and noise. For example:

POKE 36874,21 9:P0KE 36875,21 9:P0KE

36876,21 9:P0KE 36878,7

This plays referenceA at 440Hz on oscillator 1,A
an octave higher on oscillator 2 and A an octave

higher still on oscillator 3, all at a mid-range
volume of 7. Don't forget to POKE each location to

0 to turn them off!

Notes And Pauses
Without a duration for each note and the correct

pauses between them, a sequence of notes blurs

one into another. To facilitate these 'wait' periods,

one of two methods can be used to make the

computer 'mark time' between POKEs. The first

method is FOR... NEXT loops where the pause is

timed by a long empty loop such as:

10 POKE 36878,7

20 POKE 36876,203

30 FOR P=1 TO 200

40 NEXT P

50 POKE 36878,0

60 POKE 36876,0

This sequence ofcommands plays the noteD# for

200 FOR. ..NEXT steps. However, this method
depends on careful external timing of the loop for

accuracy. An easier and more elegant^ay to set

durations and pauses is by using the Vic-20's

built-in clock, which counts in 60ths of a second

(jiffys) and can be referenced within a program
using the variable Tl. This is extremely useful, as a

command can be constructed to 'wait' for an
accurately measured period of time, as follows:

10 POKE 36878,7

20 POKE 36876,203: D=TI

30IFTI-D<15 THEN 30

40 POKE 36878,0

50 POKE 36876,0

These commands play the same note as before but

for a period of 15 jiffys (a quarter of a second). D is

set at the value ofTl when the sound is switched on.

Line 30 counts off 15 jiffys before proceeding to

line 40. Tunes can be constructed by using the

same principle to pause before playing a different

note, and so on. Next timewe look at the Vic-20 in

the Sound And Light series, we'll investigate how
to play tunes.

284 THE HOME COMPUTER COURSE

ound And Light

Lighting Up Dragon
...and graphics capabilities of the
Dragon 32

The Dragon 32 computer features a particular

dialect of basic known as 'Microsoft Extended
Colour Basic'. Several other computers on the

market are also based on this version of basic,

most notably the Tandy range of colour

computers. Microsoft basic is easy to use and has a
good range of commands to draw lines, circles,

and other geometric shapes. Once drawn, these

shapes n^y be coloured in to give impressive

screen displays for little programming effort.

The Dragon 32 has seven levels of resolution,

giving the user the ability to work with the screen

divided into 512 individual points at the lowest

level, and up to 49, 152 points at the highest. There
are eight colours available, but the choice may be
limited to four or even two colours when working

in high resolution.

Modes Of Resolution
The normal 16 rows by 32 columns character

screen forms the lowest level of resolution and the

PRINT® command enables a character to be
placed in any one of the 512 screen locations. As
well as the normal character set there are also 16

low resolution graphics characters available in

eight colours.

The next mode of resolution divides the screen

into 32 rows and 64 columns. The size of each

square in this mode is therefore a quarter ofthat of

a normal character. Points of this size can be
plotted on the screen by the SET command and
may be rubbed out by the RESET command.

Both ofthe abovemodes can be displayed at the

same time and are termed the low resolution text

screens. There are also five levels of high

resolution screens, but these cannot be displayed

simultaneously or with the low level screens. The
five high resolution modes offer choices based on
the standard of resolution and the number of

colours available and are selected using the PMODE
command.

PMODE Resolution Colours Available

0 128*96 2

1 128*96 4

2 128*192 2

3 128*192 4

4 256*192 2

There is, of course, a trade-offbetween resolution,

colour and the amount ofmemory needed to store

the screen information and this must be taken into

account when writing large basic programs that

also use high resolution displays.

Although there are only a limited number of

colours available in high resolution, the Dragon
does have a facility for selecting one of two colour

sets. This is accomplished by the SCREEN
command. For example, SCREEN 1 ,0 selects a high

resolution screen and colour set 0. SCREEN 1,1

again selects a high resolution screen but this time

an alternative colour set is used.

PAINT

This command is very useful in assisting the

programmer to produce interesting pictures.

Using PAINT causes the computer to start

colouring in the screen from a given point until

a boundary line is reached. This means that

circles, triangles and any other closed shape can
be filled in simply.

DRAW
DRAW mimics the movement of the pencil on
the screen, allowing the user to draw lines in

any one of four directions. The DRAW
command will also allow the completed picture

to be rotated or enlarged.

GET and PUT

GET instructs the computer to store a screen

display in its memory and PUT causes such a

display to be reprinted on the screen.

PSET and PRESET

These commands are the high resolution

equivalents of SET and RESET discussed earlier

and switch a particular point on the screen

either on or off. The colour ofthe point can also

be determined.

UNE
The LINE command joins two specified points

together with a straight line in high resolution.

CIRCLE

CIRCLE allows the user to draw high resolution

circles with a given centre and radius. Fractions

ofa whole circle may also be drawn to form arcs

and the circular shape may be condensed to

produce ellipses.

The Dragon 32 is a reasonably priced computer
with many advanced commands to aid graphics

programming. It is more suited to uses that involve

static displays rather than those that require fast-

moving action. The high resolution mode
commands, in particular, make this an ideal

computer for the adventurous-minded child. The
Dragon's main drawback is its inability to display

both text and high resolution graphics on the

screen simultaneously. This means that it cannot

be used to display statistical data in the form ofbar

charts or pie charts.

Colour Command
This display is typical of the

effects that can be achieved on a

Dragon using just a few of its

high level commands

High Resolution

Here is a short program for the

Dragon 32 to demonstrate

some of its high resolution

capabilities. The program uses

PMODE 3; this is not the highest

mode but it does allow some

use of colour.

10PCLS:PMODE3,1
20SCREEN1,0
30 COLOR 0,1

40 FORX=0 TO 127 STEP 10

50LINE(X,85)-(127,85-X/3),

PSET
60LINE(X,85)-(127,85+X/3),

PSET
70LINE(255-X,85)-(127,85-

X/3),PSET

80LINE(255-X,85)-(127,85+
X/3),PSET

90 NEXT X

100 CIRCLE(127,85), 128,4,0.3

110CIRCLE(127,85),30,4,3

120PAINT(130,30).3,4

130 PAINT(130,130),3,4

140 GOTO 140

150 END

THE HOME COMPUTER COURSE 285

Order Of Play
The ability to sort information into order is essential to most
programs, and there are many ways of doing it

Bubble Sort

This diagram illustrates the

Bubble Sort for a reduced hand

of nine cards (T is the Ten card).

The ordered part of the hand

grows from the right-hand end

with each pass. The 1 and 2

underneath the hand of cards

indicates the two cards currently

being compared

Begin Sort

2893T5K67 Begin Pass 1

1 2

8293T5K67
1 2

8923T5K67
1 2

8932T5K67
1 2

893T25K67
1 2

893T52K67
1 2

8 9 3 T 5 K

8 9 3 T 5 K

2 6

1 2

6 2

1

8

9

9

T

T

K

8 K

K 8

7

2

2

2

2

2

2

2

End Sort

End Pass 1

End Pass 2

End Pass 3

End Pass 4

End Pass 5

End pass 6

Insertion Sort

With the Insertion Sort, the

ordered part of the list grows

from the left-hand end. Cards

are moved directly to their

correct position in the list as

they are inspected

Begin Sort

2893T5K67
2 1

8293T5K67
2 1

9823T5K67
2 1

9832T5K67
2 1

T 9 8 3 2 5 K 6 7

2 1

T 9 8 5 3 2 K 6 7

2 1

K T 9 8 5 3 2 6 7

2 1

KT9865327
2 1

KT9876532
End Sort

Sorting is one of the most widely used computer

operations, but it is a task at which computers are,

by their own standards, highly inefficient.

According to operational research, between 30

and 40 per cent of all computing time is spent in

sorting, and if you add the associated tasks of

merging data and searching for specific items, then

the figure probably rises above 50 per cent.

Programmers have probably spent as much
time inventing sort algorithms (general methods

of solving problems) as computers have spent

doing the actual sorting. Advanced sorting

methods are extremely difficult to analyse, but it is

quite easy to understand the simplest methods

computers use to sort data with the aid of the

example of sorting a pack of playing cards.

Lay 13 cards of the same suit on a table.

Arrange them in a line, in no particular order, but

the Ace and the Two should not be at the right-

hand end ofthe line. The cards are to be sorted into

descending order (King, Queen, Jack... Ace),

starting at the left. This is an almost trivial task for

us, and requires so little thought that it is difficult to

describe exactly how we might do it. If, however,

you were to specify that only one card can be

moved at a time, that no card can be placed on top

of another, and that the cards are to cover as little

of the table as possible, the task becomes a lot less

trivial, and an efficient method is hard to

determine. In this analogy the cards are pieces of

data, the maximum surface covered corresponds

to the computer memory required, and you are the

program. How do you solve the problem?

1) Put a coin below the leftmost card to act as a

position marker and to remind you where you are

in the sort. Compare the marked card with the card

to its right. Are they in descending order? If they

are not, swap their positions, leaving the coin

where it is, and obeying the rule of only moving

one card at a time and not placing cards on top of

each other. Notice what you have to do to swap

them.

2) When the two cards are in order, move the

coin one place to the right and repeat Step 1. You
are now in a loop that will end once you move the

coin into the rightmost position. Reaching this

position is called making a 'pass' through the

cards.

3) At the end of the first pass look at the cards.

The Ace, which is the lowest card in the suit, has

found its way to the rightmost end of the line, and
so is in its correct place. If you make a further pass

through the cards, as detailed in Steps 1 and 2, the

Two card will be moved to its correct place. This is

repeated, through pass after pass, until the whole

suit is in descending order.

You may have noticed several drawbacks to this

method. It is very tedious; it is not economical, as

simply exchanging the positions of two cards

requires three different operations; and, above all,

many of the comparisons made between different

cards are unnecessary. For example, after one pass

the Ace is in its correct place, so there's no point

moving the coin into position 13 (where no
comparison is possible, anyway). On the second

pass, because the card on the right is in its correct

place, there was no need to move the pointer to

position 12. In general, each pass will end one

place to the left of the endpoint of the previous

pass.

Knowing where to stop is another problem. A
computer will continue comparing cards

indefinitely unless it is told to stop. The only sure

rule is: stop after a pass with no swaps. In other

words, if you've gone through the data without

altering its order, then it must be in order.

The method of sorting we have investigated is

called the 'Bubble Sort'. Its advantages include

simple progranmiing techniques, little use of extra

memory and reasonable efficiency with small

amounts of partially ordered data. These are the

criteria by which a sort algorithm must be judged,

although when the data to be sorted is extensive,

speed may have to be sacrificed for economy of

memory simply because computer memory may
not accommodate both the raw data and a sorted

copy. For this reason, we'll ignore algorithms that

require taking data from one array and moving it

to the sorted position in a second array. The
second method of simple sorting is based more
directly on the way that we would sort cards.

1) Lay the shuffled cards out again and place a

penny coin beneath the second card from the left.

Whichever card the penny is beneath at the

beginning of each pass, we will call the 'penny

card'.

2) Push the penny card out of the line, leaving a

gap, and place a twopenny coin beneath the card's

immediate left. Call this card the twopenny card.

3) Compare the penny card with the twopenny

card. If they're in order, then push the penny card

back into place and skip to Step 4. If they're not in

order, then push the twopenny card into the gap

and move the twopenny coin one place to the left

to mark a new twopenny card (if the twopenny

card is at the extreme left, this will not apply, so

286 THE HOME COMPUTER COURSE

dftware

K I0« ^10

One way to illustrate a Bubble Sort is with a complete suit of

cards that have to be sorted so that the King ends up on the left

and the Ace on the right. First the leftmost two cards are

compared, and because they are found to be out of order, they

are swopped over. Then the second and third cards are

compared, and again swopped. By the fifth comparison, this sort

method has picked up the Ace, and in ail subsequent

comparisons, the Ace is swopped from left to right, until at the

end of the first 'pass' it has 'bubbled' its way to the right-hand

end. By repeating this whole process for the second pass, the

two will end up next to the Ace. However, it may take up to 12

such passes before all the cards are in order

place the penny card in the gap and proceed to

Step 4).

Compare this twopenny card with the penny
card (the displaced one). Now repeat Step 3 until

the correct position for the penny card is found.

4) Move the penny one position to the right and
repeat Steps 2 and 3. When you can't move the

penny any further right, the cards will all be in

order.

This is called an 'Insertion Sort', and is very

similar to the way people sort a hand of cards.

Although it is a little harder to program than a

Bubble Sort it is a far more efficient method. Later

in the course, we will look at some more complex
algorithms for sorting data.

10 REM* SORT ALGORITHMS *
1 1 REM*******^(-************-X-
100 INPUT "HOW MANY ITEMS TO BE SORTED" ;LT

IF LT<3 THEN LET LT=3
LET LT=INT(LT)
DIM R (LT) , C (LT)

LET 2=0: LET Q=0:LET P=0
LET i=i:let o=o:let ii=2:let TH=2
INPUT "HOW MANY TESTS ";N
FOR CT=I TO N

GOSUB 4000
TH

150
200
250
300
350
400
450
500
550
600
650
700
750
800
850
900
950
1000
1050
1 100
1150
2999
3000
3001
3100
3200

FOR SR=I TO
GOSUB 5000
PRINT: PRINT
PRINT "TEST

PRINT: PRINT
#" ; CT+SR/ 10

INPUT "HIT RETURN TO BEGIN SORT " ; A*
PRINT "THE UNSORTED LIST IS"

GOSUB 3000
ON SR GOSUB 6000,7000
PRINT "THE SORTED LIST IS"
GOSUB 3000
NEXT SR
NEXT CT
END
REM*********************
REM* PRINT THE LIST *
REM*********************
FOR K=I TO LT
PRINT R (K)

;

3300 NEXT K
3400 PRINT
3500 RETURN
3999 REM*********************
4000 REM* RND GENERATOR *
4001 REM*********************
4100 RANDOMIZE
4200 FOR K=I TO LT
43C)^ LET C (K) =INT (100*RND)
4400 NEXT K

4500 RETURN
4999 REM*********************
5000 REM* RND REGENERATOR *
5001 REM*********************
5100 FOR K=I TO LT
5200 LET R(K)=C(K)
5300 NEXT K

5400 PR I NT: PR I NT
5500 RETURN
5999 REM*********************
6000 REM* BUBBLE *
6001 REM*********************
6050 PRINT "BUBBLE SORT - GO ! ! ! !

!

6100 FOR P=LT-I TO I STEP-I
6150 LET F=-I
6200 FOR Q=I TO P
6250 LET 2=Q+I
6300 IF R(Q)<R(2) THEN LET D=R(Q):

LET R (Q) =R (Z) : LET R(Z)=D:LET F=0
6350 NEXT Q
6400 IF F=-I THEN LET P=I
6450 NEXT P

6500 PRINT "BUBBLE SORT - STOP ! ! ! !

!

6550 RETURN
6999 REM*********************
7000 REM* INSERTION *
7001 REM*********************
7050 PRINT "INS-^RTION SORT - GO !!!!!
7100 FOR P=I l' TO LT
7200 LET D=R(P)
7300 FOR Q=P TO II STEP-I
7400 LET R (Q)=R (Q-I

)

7500 IF D<=R(Q) THEN LET R(Q)=D:LET Q=II
7600 NEXT Q

7700 IF D>R(I) THEN LET R (I) =D
7800 NEXT P

7850 PRINT "INSERTION SORT - STOP !!!!!
7900 RETURN

High-Speed Sort

This BASIC program

demonstrates the difference in

efficiency between a Bubble

Sort and Insertion Sort. The

code has been written with

speed in mind, so we have not

documented the operation of

the routines. The listing should

run on most machines, but see

page 215 for ON... GOSUB
flavours, and page 175 for RND
and RANDOMIZE

THE HOME COMPUTER COURSE 287

Software

Siren City

This Commodore 64 game is a

development on the traditional

'aerial view' game. A police car

patrols a city, complete with roads

and buildings

Ring of Darkness

Though this game for the Dragon

is really an Adventure - style

game, it contains a three-

dimensional maze as one of its

major elements. Pits and ladders

allow you to move up and down

Way Out

A realistic three-dimensional

image can be achieved on a

Spectrum with Way Out. Move the

joystick fractionally, and your view

will change also

Amazing Facts
People have long been fascinated by mazes— and maze games on
the home computer are no exception

Mazes have always been a source of fascination

and enjoyment to both young and old alike,

whether they are big enough to get lost in, or

small enough to hold in the palm of the hand. The
maze has, in fact, become the basis of a huge

variety of computer games, ranging from a very

simple two-dimensional aerial view of a maze,

right up to extremely complex mazes in three

dimensions. The latter sort actually simulate a

view of the maze from within, so that the player is

encouraged to imagine that he is inside a real

maze. To help him get his bearings, or confuse

him even further, some of these three-

dimensional mazes also combine brief glimpses of

an aerial view of the maze.

Ring of Daricness

As mazes have become more sophisticated in

their visual and sound effects, so have the

imaginations of their programmers been allowed

to wander. A player wishing to take a leisurely

stroll around a maze should avoid those that

conceal man-eating monsters. An example of

such games is 3D Glooper (available for the

Commodore 64), in which the player searches the

maze for special floor tiles, and can be attacked at

any moment- by screen-filling monsters. The
impending arrival of these creatures is

announced, however, by the steady munching

sounds fi*om their approaching jaws.

Atic Atac (Spectrum) is a fdly animated chase

in which the player can assume any of three

different characters. The maze is a multi-level

series of pits, stairways and large dungeons

through which you race against time. The
dungeons are occupied by a variety of graphically

depicted creatures and objects.

A program that comes close to simulating what

it actually feels like to be travelling through a

maze is Way Out. The view is in true three-

dimensional perspective, and as you move your

joystick fractionally to the left or right the scene

shifts proportionately in that direction.

Let us now consider some of the basic

programming techniques used in constructing

mazes.

Siren City

i

Way Out

Making Mazes
The usual way of storing information about a

maze is by using a two-dimensional array —
M$(ROW,COLUMN), for example. Each ceU of the

array would define the characteristics of that cell

of the maze. You could, for example, use a string

of four characters to represent south, west, north

and east. Zero could indicate the absence of a

wall and one the presence of a wall. Thus, if

M$(5,6) contained the string "1011" this would

indicate that the cell in row five, column six was

288 THE HOME COMPUTER COURSE

bounded by walls to the south, north and east.

To save on memory space, the array cx)uld be

numeric rather than string, and the four-digit

number regarded as a binary number. In our

example above, the cell containing north, east

and south walls would contain the number 11

(1011).

All cells would start with four walls. By
randomly generating the entrance from anywhere

along the perimeter, the next cell could be chosen

at random from any of the three adjacent cells.

When that cell is chosen, the sequence continues

— randomly selecting a cell from any of the three

adjacent cells, disregarding the one you have just

come from.

As each new direction is chosen, the

appropriate 'wall' is removed from the cell you

are about to leave and the cell you are about to

enter. Checks must be made to ensure you don't

move outside the boundaries of the maze (unless

the particular perimeter cell is to be the exit

point), or create closed circuits (all parts of a

maze should be accessible from any otiier part).

sibilities), two adjacent walls (four possibilities),

three adjacent walls (four possibilities).

Using the appropriate binary number (0-15)

for each of these, it is possible to 'rotate' the

number left or right to obtain the appropriate

view faced by the player. For example, a north

wall could be represented by 2 (0010), south wall

by 8 (1000), east wall by 1 (0001) and west wall

by 4 (0100). If the player facing north in a 'west

wall only' room (4) turned to face the west, his

view of tiie room would now be one bounded by a
north wall (since facing forward in a three-

dimensional display is always to the 'north'). As
the player turned to his left (the west), moving the

bit pattern one place to the right supplies the

description we want, i.e. west wall binary 0100

(decimal 4) becomes binary 0010 (decimal 2 — a

north wall!) The bits are moved in the opposite

direction when turning right, twice for an about

turn. It is necessary, of course, to include a system

for 'wrapping around' the bits that are lost from

the left- or right-hand end of the half-byte during

this process, otherwise the identifying

Ant Attack

When this game is run on the

Spectrum, the computer's screen

acts as a window onto a large

maze-like field of play. As the play

moves, the screen will move,

revealing more of the scene

When a cell that has fewer than four walls (i.e.

a cell that has already been visited) is

encountered, the program must choose another

of the remaining adjacent cells. If all adjacent cells

have been visited, the program has to 'step back'

to the previous cell visited and take a new branch.

Another method of recording the charac-

teristics of a cell is by a more sophisticated use of

binary numbering, which is especially useful for

displaying three-dimensional perspectives.

There are 16 possible ways a cell can be built: no
walls, walls on all sides, a single wall (four

possibilities), walls on opposite sides (two pos-

characteristics of a cell will be changed each time

the player turns within it. A cell originally defined

as 0011, for instance (walls to the north and east),

must become 0110 if the player turns to the right,

and 1100 if he turns completely around.

In machine code, there are special instructions

for rotating binary numbers l6ft and right. In

BASIC, a four-bit binary number expressed as a

decimal number in the range 0-15 can be shifted

left by multiplying the number by two, and then

subtracting 15 if the result exceeds 15. To rotate

right: divide by two if it is an even number, or add

15 and then cUvide by two for an odd number.

THE HOME COMPUTER COURSE 289

mum

Hardware Focus

Aquarius
It comes from a company
famous for their toys, but the
Aquarius is a serious computer
at a bargain price

With its Z80 processor and button-iype

keyboard, the Mattel Aquarius is in the Spectrum

class of microcomputer. However in many ways

it is a much more flexible machine, largely

because its built-in expansion bus has been well-

exploited by its designers.

A variety of expansion modules can be

connected through this bus, ranging from small

RAMpacks of 4 Kbytes to a large expansion

chassis. Perhaps the most useful of these is the

'small expansion chassis', which has two slots for

extra memory or program packs, as well as two

extra sound channels and two hand controllers.

Plugging a 16 Kbyte RAMpack in one slot and a

proprietary ROMpack, such as Finplan, in the

other would give a quite versatile system. .

The 4 Kbytes ofRAM built into the machine is

hardly generous, but with expansion of up to 64

Kbytes ofRAM with the large expansion chassis,

it's possible to run as large a machme as any home
computer.

The keyboard and display of the Aquarius,

however, lack the quality of larger machines.

There's no space bar, and the keys don't respond

very sensitively or quickly, so ifs not suitable for

touch-typing. The 24 line by 40 character screen,

though bigger than some, is not adequate for

small business use.

The display has 16 colours that can be used for

either the text or the background. Though lacking

user-definable characters, it has 256 displayable

symbols, including upper and lower case letters.

Mini Expander

This device features two cartridge ports, allowing a program

cartridge and memory pack to be connected simultaneously. It

also features the two 'hand controllers' and three additional

sound channels

CO

The Aquarius Ksyboard

The keyboard is one of the

weaker points of the Aquarius.

Though claimed to be a

'standard' QWERTV layout, it is

only just deserving of the name

There is no space bar, only one

SHIFT key, RETURN is in an

unconventional position and the

spacing isn't quite the same as

on a typewriter

Aquarius Printer

This low-cost printer uses a thermal printing mechanism and so

requires special thermal paper. It can print at a rate of 80

characters per second, across a total width of 40 columns. A

four-colour printer/plotter is also available

and a selection of graphics symbols. It can also be

used as a 320 X 192 pixel high-resolution screen.

The display is output to the television, with no
provision for monitor output. The quality is

average with a noticeable bias towards blue

shades and slightly blurred characters, but the

picture is steady and bright, with a good range of

colour.

Sound is available on this machine, although it

lacks the sophisticated envelope and waveform

controls found on others. A fairly standard

Microsoft BASIC is built in, but Extended basic and

an Aquarius logo are promised.

One of the most interesting add-ons planned

for the Aquarius is the BSR X-10 system, which

can control a range of household appliances. This

system allows up to 255 different electrical

devices to be controlled in response to signals

generated by a central unit. No additional wiring

is needed, since these signals are in the form of

pulses sent down the domestic ring main. The
pulses aren't large enough to make any difference

to the mains current, but an X-10 detector

plugged into any mains wall socket can pick up

the code and alter the current supplied to its local

appliance according to the command sent.

The controller unit is programmed in weekly

cycles by the Aquarius, and during this

programming operation the computer is

unavailable for other uses. Provided tiie preset

program is satisfactory, the computer is free for

ordinary use at any otfier time.

RF Connector

TV-compatible output appears

here — there is no provision for

monitor output

Power Connector—

—

Power is applied here from a

small transformer

RAM
The built-in 4K of user memory

is contained in these chips

CO

LLI>
UJ
»—
CO
CO
DC

o

% • • . • •

The standard Microsoft 8K

BASIC is held in these chips.

The extensions that have been

added to handle the graphics

and sound take up the rest of

the ROM space

Modulator

The screen display signal is

converted into a standard TV

signal, and appears on

Channel 36

290 THE HOME COMPUTER COURSE

Hardware Focus y^-^

AQUARIUS

Printer Connector

A unique Mattel-designed

printer interface connects

through this socl<et, which is

suitable only for the two printers

supplied by Mattel

Expansion bus

A variety of add-ons can be

plugged in here. These range

from a single 4K RAM module

to an expansion chassis, which

can take several 16K RAMpacks

as well as a selection of useful

programs in ROMpacks

PRICE

£49.95

SIZE

345 X 150 X 55nfim

CLOCK SPEED

3.5 MHz

MEMORY
10 Kbytes of ROM, plus 4 Kbytes

of RAM, expandable to 64 Kbytes

VIDEO DISPLAY

24 lines of 40 characters, 16

colours with background and

foreground independently

settable; 256 pre-defined

characters but no user-definable

characters

INTERFACES

Cassette, printer, expansion bus

LANGUAGES SUPPLIED

Microsoft BASiu

OTHER LANGUAGES AVAILABLE

Microsoft Extended BASIC and

Aquarius LOGO have been

promised by Mattel. These will be

in ROMpackform

COMES WITH

Installation manual and BASIC

manual, TV lead

KEYBOARD

49 button-style keys. The reset

button is physically shielded to

prevent it from being accidentally

pressed

DOCUMENTATION

The documentation is particularly

good for beginners, with a useful

set of flip-cards that describe

each major function of the

machine and the built-in BASIC.

There is a shortage of technical

detail, but for the market that the

Aquarius is aimed at it sets a

good example

CPU

The processor is a Z80, which

runs at a clock frequency of 3.5

MHz

CRT Controller

Designing the electronics that

control the video display is now

the most important aspect of

computer design. This

controller chip is larger than the

microprocessor itself

Security Chip

This custom-designed chip is

intended to make it very difficult

for anyone other than the

manufacturers to produce

program cartridges that will run

on the Aquarius

•Tape Connector

The tape interface is a DIN-type

socket and has connections for

controlling the tape-recorder

motor

THE HOME COMPUTER COURSE 291

Basic Programming

Branching Out
As a long program is developed, its structure takes on the

appearance of a tree, with more branches at each successive stage

of refinement

In the last instalment of the Basic Programming

course, we took a look at some of the problems

involved in searching through a list to find a

specific item — assuming that the list had already

been sorted into order. This is a topic to which we
will return in more detail when the time comes to

start writing search routines. In the meantime,

however, we will develop the theme of top-down

progranmiing to produce code for the second two

parts of the main program. This contains four calls

to subroutines or procedures:

MAIN PROGRAM
BEGIN

INITIALISE (procedure)

GREET (procedure)

CHOOSE (procedure)

EXECUTE (procedure

END

The first procedure, *INITIALISE*, will involve

numerous fairly complex activities — setting up

arrays, reading data into them, performing various

checks and so on— and we will leave the details of

this procedure until later. The next two parts ofthe

main program comprise the GREET and CHOOSE

procedures. In developing these procedures, we
will suggest a methodology that helps prevent the

many layers involved in top-down program

development from becoming disorganised and

confusing.

The problem with the top-down refinement

approach to program development is that the

number of steps needed before we are ready to

start coding into a high level language is

indeterminate. Two or three steps may be enough

for simple procedures, but more difficult

procedures may require many steps before the

problem has been sufficiently analysed to allow

'source code' (as the high level language program is

called) to be written. This means that writing a

program using this method is similar to drawing a

tree lying on its side. As the 'branches' proliferate

(that is, as the refinements become more detailed)

they take up more space on the page. Eventually, it

becomes impossible to fit everything onto a single

sheet, and that is the point where it becomes easy

to lose track of whafs going on.

One very effective way to organise the

documentation of the program is to number the

stages of its development systematically. We have

used Roman numerals to indicate the level of

refinement and Arabic numerals to indicate the

subsection of the program. A separate sheet of

loose-leaf paper is then used for each level of

refinement and the pages for each program block

or module can be easily kept together. Here is the

numbering system for our program:

I MAIN PROGRAM
BEGIN

1. INITIALISE

2. GREET

3. CHOOSE
4. EXECUTE

END

As mentioned above, we are leaving the

development of INITIALISE for the moment, and

concentrating on developing the GREET and

CHOOSE procedures.

II 2 (GREET)

BEGIN

1. Display greeting message

2. LOOP (until space bar is pressed)

ENDLOOP
3. CairCHOOSE*

END

III 2 (GREET) 1 (display message)

BEGIN

1. Clear screen

2. PRINT greeting message

END

III 2 (GREET) 2 (LOOP wait for space bar)

BEGIN

. 1. LOOP (until space bar is pressed)

IF space bar is pressed

THEN
ENDLOOP

END

lll2(GREET)3(call*CH00SE*)

BEGIN

1. GOSUB *CHOOSE*

END

At this point it should be clear that III-2-1 and III-2-3

are ready to be coded directly into basic, but^iat

III-2-2 needs another stage of refinement:

lY 2 (GREET) 2 (LOOP)

BEGIN

1. LOOP (until space bar is pressed)

IF INKEYS is not space THEN continue

ENDLOOP
END

We are now at the point where all the coding into

292 THE HOME COMPUTER COURSE

Basic Programming

BASIC for GREET can be tackled with little further

refinement:

IV 2 (GREET) 1 (display message) BASIC CODE

REM *GREET* SUBROUTINE

PRINT

PRINT

PRINT

% PRINT

PRINTTAB(12);"*WELC0MET0THE*"

PRINTTAB(9);"*H0ME COMPUTER COURSE*"

PRINTTAB(6);"*C0MPUTERISED ADDRESS
BOOK*"

PRINT

PRINTTAB(5);"(PRESS SPACE BAR TO CONTINUE)"

V 2 (GREET) 2 (LOOP wait for space bar) BASIC CODE

LETL = 0

F0RL = 1T01
IFINKEYSO" "THEN LET L = 0

NEXTL

IV 2 (GREET) 3 (call *CHOOSE*) BASIC CODE

GOSUb 'CHOOSE*

RETURN

Notice that we have now started to initialise

variables in the various routines that we write, by

using statements of the form LET I
= 0. Strictly

speaking, this is unnecessary in some of the

circumstances in which we have used it.

Nevertheless, it is agood habit to get into ifyou can

remember, and if you have enough RAM space

available. There are three reasons: first because

having a list of LET statements at the start of any

routine serves as a useful reminder of what local

variables that routine uses. Secondly, because you

cannot be sure of what was left in a variable from

the last time it was used in a routine (though this

does not always matter). Thirdly, as we shall be

explaining to you later in the course, putting in

statements of the form LET I
= 0 in the right order

can speed up the execution of a program.

We have changed the way in which we use a

FOR.. .NEXT loop to simulate a DO.. .WHILE or

REPEAT... UNTIL structure from previous

instalments of the course. Instead of using FOR I = 0

T0 1 or FOR I
= 0 to 1 STEP 0, we are now using FOR I

=

1 to 1. This will run correctly on all the home
computers we regularly cover, where the other

methods required 'Basic Flavours' for various

machines. FOR I
= 1 TO 1...NEXT I will execute the

loop just once. However, if anywhere in the body

of the loop I is set to 0 then the loop will execute

again, and so on. We can either insert a LET I = 0

statement as the result of an exit condition failing

or we can set I to 0 immediately after the FOR

statement, and set it to 1 if the exit condition

succeeds. Thus, both the following loops achieve

the same objective:

FOR I
= 1 TO 1

LETI = 0

IFINKEY$ =
"

NEXT I

" THEN LET I
= 1

FOR I
= 1 TO 1

IFINKEYS < >
NEXT I

or

" THEN LET 1
= 0

The BASIC code we have just produced is all that is

needed for the complete GREET block in the main

program. We haven't put in line numbers because

we can't really do that until all the program

modules are ready for finjd coding. For instance,

we do not know at this stage what the appropriate

line numbers are for the GOSUB conmiands. If you

want to test the module at this stage, it will be

necessary to create some dummy inputs and

dummy subroutines. Some points to note about

this program fragment are the use of the TAB

function and the 'clear screen' statements. TAB

moves the cursor along the line by thenumber (the

'argument') specified in the brackets. The
numbers we have given will print the message

neatly centred in a screen 40 characters wide. If

your display has less than this (for example, the

Spectrum displays 32 characters per line) or more
(larger computers usually display 80 characters),

these TAB arguments will need to be altered

accordingly. The instruction to clear the screen in

many versions of basic is CLS, but the version of

Microsoft BASIC used to develop this program does

not support this. Instead, we have used PRINT

CHR$(12), since our machine uses ASCII 12 as its

'clear screen' non-printable character — others

conmionly use ASCII 24 for the same function.

10 REM DUMMY MAIN PROGRAM
20 PRINT CHR$(12)

30 GOSUB 100

40 END

100 REM *GREET* SUBROUTINE

110 PRINT

120 PRINT

130 PRINT

140 PRINT

150PRINTTAB(12);"*WELCOMETOTHE*"

160 PRINTTAB(9);"*H0ME COMPUTER COURSE*"

170 PRINTTAB(6);"*C0MPUTERISED ADDRESS
BOOK*"

180 PRINT

190 PRINTTAB(5);"(PRESS SPACE BAR TO

CONTINUE)"

195 LET L = 0

200 F0RL = 1T01
210 IFINKEYSO" "THEN LET L = 0

220 NEXTL
230 PRINT CHR$(12)

240 GOSUB 1000

250 RETURN
1000 REM DUMMY SUBROUTINE

1010 PRINT "DUMMY SUBROUTINE"

1020 RETURN

We will now use exactly the same approach to

refine the CHOOSE procedure.

II 3 (CHOOSE)

BEGIN

1. PRINT menu

THE HOME COMPUTER COURSE 293

Basic Programming

2. INPUT CHOICE

3. Call CHOICE subroutine

END

III 3 (CHOOSE)1 (PRINT menu)

BEGIN

1. Clear screen

2. PRINT menu and prompt

END

III 3 ((MOOSE) 2 (INPUT (3I0ICQ

BEGIN

1. INPUT CHOICE

2. Check that CHOICE is within range

END

III 3 (CHOOSE) 3 (call CHOICE)

BEGIN

1. CASE OF CHOICE

ENDCASE

END

III-3-1 (PRINT menu) can now be coded into basic:

IV 3 (CHOOSE) 1 (PRINT menu) BASIC CODE

REM CLEAR SCREEN

PRINT CHR$(12): REM OR XLS'

PRINT

PRINT

PRINT

PRINT

PRINT "1. FIND RECORD (FROM NAME)"

PRINT "2. FIND RECORD (FROM INCOMPLETE

NAME)"

PRINT "3. FIND RECORD (FROM TOWN)"

PRINT "4. FIND RECORD (FROM INITIALS)"

PRINT "5. LIST ALL RECORDS"

PRINT "6. ADD NEW RECORD"

PRINT "7. CHANGE RECORD"

PRINT "8. DELETE RECORD"

PRINT "9. EXIT & SAVE"

III-3-2 (INPUT CHOICE) and III-3-3 (call CHOICE),

however, need further refinement. Let's look first

at the next level of development of III-3-2.

Assigning a numeric value to the variable

CHOICE is perfectly simple: after the prompt, an

INPUT CHOICE conmiand will do this. However,

there are only nine possible choices. What would

happen ifwe mistakenly entered a 0, or 99? Since

the CHOICE we make will determine which part of

the program is called next, we want to be sure that

unwanted errors are not caused, so we need to

perform a 'range checking' procedure. This is a

small routine that checks to see ifthe number input

is within the acceptable range before allowing the

program to continue. Here is a sample routine

designed to trap an erroneous input.

RANGE CHECKING ROUTINE

1 REM ROUTINE

10LETL = 0

20 F0RL = 1T01
30 INPUT "ENTER 1-9"; CHOICE

40 IF CHOICE <1 THEN LETL = 0

50 IF CHOICE >9 THEN LETL = 0

60 NEXT

L

70 PRINT "CHOICE WAS ";CHOICE

80 END

Many versions of basic can make this routine

simpler by including a boolean operator in the test

like this:

10 LETL = 0

20 F0RL = 1T01

30 INPUT "ENTER 1-9";CH0ICE

40 IF CHOICE < 1 OR CHOICE >9 THEN LET L = 0

50 NEXT

L

60 PRINT "CHOICE WAS ";CHOICE

70 END

These routines also illustrate another point about

the INPUT statement. INPUT causes the program to

stop and wait for an input from the keyboard.

Basic does not know when the whole number has

been entered imtU the RETURN key has been

pressed, so you will also have to remember to press

RETURN after entering the number.

A more 'user friendly' approach would, be to

have the program continue as soon as a valid

number had been entered. This is possible using

the INKEYS function. Here, basic reads a character

from the keyboard whenever INKEYS is

encountered. The program does not stop,

however, and will proceed to the next part of the

program without pausing. It is usual, therefore, for

INKEYS to be used within loops. The loop to check

for a key being pressed can be IF INKEYS =

THEN ... — in other words, if the key being pressed

is 'nothing' (that is, no key is being pressed), go

back and check again. A suitable loop for our

purposes would be:

LETI = 0

F0RI = 1T01
LET AS = INKEYS

IFAS = "" THEN LET 1
= 0

NEXT I

The only disadvantage of using INKEYS is that it

returns a character from the keyboard, rather than

a numeric. When there is a CASE OF construct,

where one out of several choices are made (a

multi-conditional branch), it is easier in basic to

use numbers rather than characters. This is where

Basic's NUM or VAL functions come in. They

convert numbers in character strings into 'real'

numbers (that is, numeric values, notASCII codes

representing numerals). They are used like this:

LET N = VAL(AS) or LET N = NUM(AS)

By using the NUM orVAL functions, we can have the

program convert inputs, using INKEYS, into

numeric variables. This removes the need to use

the RETURN key after the number key has been

pressed. Out-of-range checking is still advisable,

however.

The following program fragment involves two

loops, one nested within the other. The inner loop

waits for a key to be pressed; the outer loop

converts the string to a number and checks that it is

within range:

294 THE HOME COMPUTER COURSE

F0RL = 1T01
PRINT "ENTER CHOICE (1-9)"

FOR I
= 1 T0

1

LETA$ = INKEY$

IFA$ = "" THEN LET 1
= 0

NEXT I

LET CHOICE = VAL(A$)

IFCH0ICE<1THEN LETL = 0

IF CHOICE >9 THEN LETL = 0

NEXTL

Finally, we reproduce a complete program in basic

for the 'CHOICE* module, including dummy input

and subroutines for testing purposes. We should

stress again that the line nimibers are for testing

purposes only, and will need to be replaced when

the final program is put together.

10 PRINT CHR$(12)

20 PRINT "SELECT ONE OF THE FOLLOWING"

30 PRINT

40 PRINT

50 PRINT

60 PRINT "1. FIND RECORD (FROM NAME)"

70 PRINT "2. FIND NAMES (FROM INCOMPLETE

NAME)"

80 PRINT "3. FIND RECORDS (FROM TOWN)"

90 PRINT "4. FIND RECORD (FROM INITIALS)"

100 PRINT "5. LIST ALL RECORDS"

110 PRINT "6. ADD NEW RECORD"

120 PRINT "7. CHANGE RECORD"

130 PRINT "8. DELETE RECORD"

140 PRINT "9. EXIT & SAVE"

150 PRINT

160 PRINT

170LETL = 0

180LETI = 0

190 F0RL = 1T01
200 PRINT "ENTER CHOICE (1-9)"

210 FOR I
= 1 T0

1

220LETA$ = INKEY$

230 IFA$ = "" THEN LET 1
= 0

240 NEXT I

250 LET CHOICE = VAL(A$)

260 IF CHOICE <1 THEN LET L = 0

270 IF CHOICE >9 THEN LET L = 0

280 NEXTL
290 ON CHOICE GOSUB 310,330,350,370,390,410,

430,450,470

300 END

310 PRINT "DUMMY SUBROUTINE 1

"

320 RETURN
330 PRINT "DUMMY SUBROUTINE 2"

340 RETURN
350 PRINT "DUMMY SUBROUTINE 3"

360 RETURN
370 PRINT "DUMMY SUBROUTINE 4"

380 RETURN
390 PRINT "DUMMY SUBROUTINE 5"

400 RETURN
410 PRINT "DUMMY SUBROUTINE 6"

,

420 RETURN
430 PRINT "DUMMY SUBROUTINE 7"

440 RETURN
450 PRINT "DUMMY SUBROUTINE 8"

460 RETURN
470 PRINT "DUMMY SUBROUTINE 9"

480 RETURN

In the next instahnent, we will look at file

structures and begin refining the INITIALISE

procedure.

Basic Flavours

SPECTRUM

CHR$(12)

ON..
GOSUB

VARIABLES

In the dummy main program, and throughout,

replace PRINT CHR$(12) by CLS, and END by

STOP.

RANGE CHECKING ROUTINE

1 REM ROUTINE

10 LETL = 0

20 F0RL = 1T01
30INPUT"ENTER1-9 ";CHOICE

40 IF CHOICE <1 THEN LETL = 0

50 IF CHOICE >9 THEN LETL = 0

60 NEXT L

70 PRINT-CHOICE WAS ";CHOICE

80 STOP

FINAL LISTING

10 CLS

then copy the list in the main text until:

240 NEXT I

250 LET CHOICE = CODE AS -48

260IFCH0ICE<1THEN LETL-0

270IFCHOICE>9THEN LETL=0

280 NEXTL
290 GOSUB (CHOICE*20 + 290)

300 STOP

then copy the main list from line 310 to line

480.

Some versions of the Oric-1 do not obey the

TAB command, even though it is part of Oric-1

BASIC: in this case, insert this line at the start

of the program:

5 LET S$="

Between the quotes in this line there should be

as many spaces as there are characters on a

complete screen line — 40 for an Oric-1. Then

whenever the program says TAB(12) replace it

by LEFT$(S$,12), copying the number in the

TAB statement into the LEFT$() function.

On the Oric-1, the Dragon 32, the Lynx and the

BBC Micro, replace PRINT CHR$(12) by CLS.

On the Commodore 64 and the Vic-20 replace

CHR$(12) by PRINT"shiftkey+CLR/HOME

key": this should result in a 'reverse field

heart' being printed. See the manual if you're

puzzled.

This is not available on the Lynx, but can be

replaced by line 290 in the final Spectrum

listing above.

See 'Basic Flavours' page 257.

NKEY$

See 'Basic Flavours' page 175, and

Commodore owners replace LET A$=INKEY$

by GET AS, and replace IF INKEYS="" THEN

by:

GET AS:IFAS="" THEN

THE HOME COMPUTER COURSE 295

Mice And Men
Computer designers want to

abandon the keyboard in favour
of something easier to use. One
approach is the mouse

Not long ago computers could only be accessed

through large electromechanical typewriters

called 'teletypes'. These were noisy, cumbersome
and unreliable devices that have since been

replaced by the swift and silent \lsual Display

Unit (VDU) with keyboard. The VDU
eliminated many of the problems associated with

the teletypes — not least of which was the

production of large amounts of punched tape

waste paper as the information was keyed in.

However, both the mechanical terminal and the

VDU-plus-keyboard are restricted by their

character-by-character, line-by-line format. The
user cannot move quickly around the screen —
selecting items from a menu here, altering data

there, or changing files and programs — without

being faced with the limitations of the keyed

cursor format. Freedom from the keyboard is

attained when using graphics terminals or playing

computer games with trackballs and joysticks, but

how can a serious user benefit from these?

Most of the home computers currently

available are equipped with four direction cursor

controls that can be moved around a program
listing or a text document to the position where an
amendment needs to be made. But the cursor can

be moved only in character- or line-sized steps;

the user cannot move it directly to its destination.

If the text cursor could be moved like a graphics

cursor, which can be freely manipulated under

the control of a joystick or trackball, movement of

data would be considerably faster.

Three Blind Mice

Many of the most recent business microcomputers feature a

mouse as standard, and some companies offer units as add-ons

to existing machines. Most work by means of a rotating ball on

the underside, and feature either one, two or three 'SELECT'

buttons on the top

Main Ball—

—

A large steel ball-bearing rests

on the surface across which the

mouse is moved. On some mice

the ball is made from hard

rubber to prevent it from

slipping

Encoding Wheels—

—

These two wheels make

constant contact with the ball to

pick up its movement in two

directions. The wheels are

mounted on shafts; at the end of

these shafts are encoding

devices that produce electrical

pulses as the shafts are turned

Buttons
-——

—

The function of the two buttons

will depend on the software

package in use. Usually, one is

used to select an item, and the

other to move objects around

the screen

X

Q.
<:

o
COo
cco

o
>-
CO

oo

MIcroswitches——

—

These are mounted on the PCB

beneath the buttons, and

require only a tiny movement to

make or break the circuit

A solution to this problem was first explored in

the 1960's at the Stanford Research Institute in

California; and the first 'mouse' — as the new
kind of controller that was developed was called

— was patented in 1970. The device was given the

name 'mouse' because of its appearance: a mouse
is small enough to fit into the palm of the hand; it

has a 'tail' (the cable); and the first devices usually

had two 'ears' (control buttons). Conventional

trackballs and joysticks aren't used because the

precision that they provide in positioning the

cursor isn't needed.

The mouse operates by detecting its motion
across any flat surface in the up/down and left/

right directions, as well as combinations of the

two. These movements are directly converted to

movements of the cursor — or pointer, as it is

often called — on the screen. There are two main
methods of generating the electrical signals from

the movement of the mouse. In both cases, the

underside of the mouse features a large ball that

rests on the surface across which the mouse is

being moved.
The rotation of the mouse's ball-besiring is

transferred to internal cylindrical rollers. In one

system, the ends of these cylinders are fitted with

code wheels that have alternating tracks of

conducting and non-conducting material. The
pulses received are counted by the mouse's

operating software and enable it to give a direct

reading for the cursor's position on the screen. In

Rubber Grommet

The mouse must be free to be

moved around the desk, and the

rubber grommet is particularly

important in preventing strain

on the connection between the

cable and PCB

296 THE HOME COMPUTER COURSE

Insights

IntegiWedllCircuit

In molt mice, the processing of

the electronic signals is carried

out by an interface card

mounted inside the computer.

Here, however, a custom-

designed chip is used to convert

the signals into RS232 (serial)

form

PCB

As in most computer devices,

mounting all components on a

Printed Circuit Board makes for

easier construction and

increased reliability

Interface

Most mice use their own special

nterface (dubbed a

'mousetrap') but this one can

plug into any RS232 port, using

the standard 25-way connector

the other system, two slotted discs are fitted to the

rollers. A light is continuously directed at the

discs and the beam is detected optically on the

other side of them by a photocell. The pulses of

light passing through the slots are then converted

to electrical signals, which are treated in the same

way as those of the mechanical system.

There are other systems, as well. In one case,

for example, the mouse is used in conjunction

with a special pad covered with a pattern of dots.

A light inside the mouse's body illuminates the

area of the pad covered by the mouse and this

pattern is detected by a special optical processing

chip. Any movement of the mouse will change

the pattern that the chip detects and it can

instantly calculate how far the device has moved
in any direction. This system has the advantage of

having no moving parts, but it is much more

expensive than the others.

Once the cursor has been moved to the

required place on the screen its position can be

entered into the computer by pressing one of the

'ears' (buttons) on the mouse. The number of

buttons fitted varies from one manufacturer to

another. Some systems use as many as three;

Microsoft have chosen to fit two, while the Apple

Lisa mouse has only one. The buttons c£in also be

used to select items from a menu — programs

such as Microsoft's MultiTool Word use this

facility — and give the mouse control of the

normal cursor motion. These devices can be used

with highly sophisticated software such as that

provided on the Apple Lisa. Here the button is

pressed once to select an 'icon' (see page 262)

from a screen menu, and twice to open out that

particular application.

The main advantage of all mice, and the

software that has been produced to complement

them, is that they can be used by those who have

no keyboard skills. Rather than having to type in

the name of a program or press certain letters or

numbers to select a function, the user simply

moves the mouse so that the screen cursor points

to the application or course of action that is

required, and presses a button to activate it.

Unfortunately, the mouse doesn't completely

eliminate the need for a keyboard — new text and

numbers still have to be fed into the computer —
but it does make the manipulation of that

information much simpler. Tests conducted by

Apple during the development of the Lisa

showed that a user entirely unfamiliar with a

computer can learn to work with the Lisa's

mouse-driven software in as little as 15 minutes.

Similar software running on a conventional

system takes nearly 20 hours to become familiar

with, mainly because of the problems involved in

learning to use the keyboard, and the need to

learn lengthy and complicated commands.

Electronic mice will soon be an integral part of

home computers. They are efficient and simple to

use and they don't frighten the faint-hearted as

much as the sight of a traditional qwerty

keyboard.

THE HOME COMPUTER COURSE 297

Detective Work
When data is passed from one computer to another it runs the risk of

becoming corrupted. Hamming codes can detect and correctthese
errors

Exclusive-Or

A simple Exclusive-Or gate has

two inputs and one output. If

both inputs are at logical 0 then

the output is 0. If either input is

1 then the output is 1. However,

if both inputs are 1 then the

output is 0. This last condition

differentiates the Or gate from

the Ex-Or (for short). The

operation can be represented by

a truth table. Where an Ex-Or

has more than two inputs, the

output will be 1 if there is an odd

number of 1 s at the input. Such

devices are the means by which

parity and error-checking bits

are created

We must all have heard stories about computers

making dreadful mistakes — like mailing 500
copies of the same company leaflet to one person.

The truth is, of course, that the machine is not to

blame: the mistake will have originated from a

human failing, perhaps as simple as a typing error.

The computer merely serves to amplify the

problem. Occasionally, errors arise because the

applications program hasn't been written to cope

with all eventualities — as in the case of computer-

generated final demands for gas bills of £0.00.

Sometimes, though, computers make mistakes

that can't be attributed to human intervention,

and these are usually manifested in the form of

'bit errors'. A bit error occurs when a single bit in a

section of data is transposed from a 1 to a 0 or

vice-versa. Bit errors can be caused when a

hardware component, such as a RAM chip, fails.

That's why many home computers go through a

'diagnostic' error checking software routine

whenever the power is turned on.

Most bit errors, however, are 'soft errors' — bits

get 'flipped' even though all the RAM has passed

the diagnostic test. Home computers are designed

to operate in domestic environments, but during a

summer heatwave it is quite possible for the

temperature to exceed the operating temperature

range of the components. Damage is unlikely to

be permanent, but bit errors may result in a

character on the screen suddenly changing from

an 'A to a 'B', for example, or if the bit happens to

form part of an important pointer, it may 'crash'

the program, requiring the computer to be reset.

Bit errors can also arise during periods of high

sunspot activity, when sub-atomic particles can

penetrate the atmosphere and interfere with the

flow of electrons in a miniature circuit. In

applications such as military systems, industrial

control, scientific experimentation or

international banking, errors could bring

disastrous consequences, so a variety of methods

have been adopted to detect them.

The simplest is parity checking (see page 253).

An alternative method is the 'checksum', which is

widely used when writing data onto magnetic tape

or disk. Data is typically handled in blocks of 128

bytes, the last of which to be read or written will

be a checksum byte. This byte represents the sum
of all the other bytes (each having a value in the

range 0 to 255) modulo 256 — meaning the

remainder of the sum when divided by 256.

Here's an example:

Data: 114,67,83 ... (121 other values) . .

.

36,154,198

Total of these 127 bytes = 16,673

Total divided by 256 = 65, remainder 33

Therefore checksum = 33

The total of the bytes (16,673) is equal to 65 lots

of 256 plus a remainder of 33 — the value that is

written into the 128th byte as a checksum. When
the computer reads the block back again, it

performs its own checksum calculation on the

data and if this value differs from 33 then it knows

that a bit error has occurred in the recording

process.

With both parity and checksum, the computer

has no way of knowing which bit of the data has

been corrupted. If the error occurred in

transmission, then the receiving computer can

request a particular byte or block of bytes to be

transmitted again; in the case of a recording error,

there may well be no way of retrieving the

uncorrupted data.

Where errors would be unacceptable, a system

must be used that will both detect and correct

them. Hamming codes, named after their

inventor R W Hamming of Bell Telephone

Laboratories, perform this function.

All error correction systems work on the

principle of redundancy. Human languages

contain a high degree of redundancy — if a typing

1
i

f

B

R O 4 o

A

B
R

CO

UJ

298 THE HOME COMPUTER COURSE

asswords To Computing

error occurs in a manuscript, or a crackle

obliterates words in a telephone conversation, it is

often possible to recreate the words by
considering the context of the sentence.

Sometimes we build in extra redimdancy for use

in 'noisy' environments: the use of 'alpha', 'bravo',

and 'charlie' in place of 'a', 'b', and 'c' in

radiotelephony, for example.

Suppose that on our computer we send a word
of X bits in length, consisting of y bits of real data

and z redundant bits (i.e. x = y + z). In our

explanation of parity we had a value of seven for y
and one for z. For Hamming codes, z will need to

be proportionately larger. Now let's assume that a

single-bit error can occur in any of the x bits (our z

redundant bits are of course just as prone to error

as the y data bits). If the chance of a bit error in a

word is, say, one in a million, then the chance of

two errors in a word is one in a million million, so

we'll ignore this possibility.

When the data is received at the other end,

there will be x+l eventualities. Either there will

be no errors, or the first data bit will be in error,

and so on up to the xth bit. Now, with z redundant

bits we can represent 2^ situations, so that for the

word to be proof against one bit error:

T > y+z+1
I

If y is seven (for ASCII codes), then z will need to

be four. If y is four (as in our example in the

panel) then z will need to be three. However, if y is

16 then z need be increased only to 5. It follows

that Hamming codes are far more efficient for

longer word-lengths than for short ones.

In a Hamming code, each of the redundant bits

acts as an even-parity check on a different

combination of bits in the word. If any bit is

flipped in transmission then one or more of the

check bits will be wrong and the combination of

these bits will point to the erroneous bit in the

word (see example). The receiving computer's

software can then simply flip that bit back again.

The key to the way that Hamming codes work
is the different combinations of bits upon which

each Hamming bit acts as a parity check. The total

number of bits is effectively divided into several

different but overlapping sets — devised so that

no two bits appear in the same combination of

sets. The receiving computer performs parity

checks on the same sets as the sending device did

to create the Hamming code. If any one of the

bits, including the Hamming bits, has been flipped

in transmission, then one or more of these sets will

not pass the parity test. The combination of tests

failed points to a unique bit.

Some computers employ Hamming codes

even for their internal memory operations. When
this is the case, it is possible to remove one whole

RAM chip and watch the computer continue to

function! Some military computers take the

principle of redundancy to the extreme of

duplicating every single component in the

computer, and comparing the results from the two

halves after each operation.

How A Hamming Code Works

Data Hamming Code

1 El El R1!

TRUE FALSE FALSE

This principle will still work even if it is one of the

Hamming bits that gets corrupted. If all three tests fail,

for example, 111 would indicate that the rightmost bit

was corrupt, whereas if all three pass, there has been no

error. This type of correcting code fails only if there is

more than one error in the seven bits

Suppose we wish to send these

four bits of data

To them we must add a three bit

Hamming code, a unique

pattern of bits generated by the

computer to fulfill the following

conditions:

Looking at just these four of the

seven, there must be an even

numberof Is visible

Similarly out of these four there

must be an even number of 1 s

And in this set of bits, there

must be an even number of 1 s,

too. Working out the three bits

that will fit these conditions

requires the computer to solve

three simultaneous equations

But let's suppose that during

transmission, the third bit from

the left is corrupted, i.e. is

flipped from 1 toO

If the receiving computer

performs the first of the three

tests on the data, it now fails

because there is an odd number

of 1s visible. This tells us that

there has been an error, but we

still don't know which bit was

affected

Similarly the second test

produces a false result

However, the data still passes

the third test — an even number

of Is is visible

It is the combination of tests

passed and failed that indicates

the bit in error. If we express a

failed test as a 1 and a passed

test as a 0, then writing the

results in reverse order, we get

the binary for three — indicating

that the third bit was corrupted,

and should be flipped back from

Otol

THE HOME COMPUTER COURSE 299

Pioneers In Computing

Speed Restriction

Wiener was fascinated by the

idea of the steam governor —
one of the best and simplest

examples of negative feedback.

Two weights are connected by

pivoting arms to a spinning

shaft, which is in turn connected

to the flywheel of the steam

engine. As the speed of the

engine increases, the weights

will fly outward. This movement,

by means of a suitable linkage,

shuts off the throttle of the

engine slightly. This has the

effect of stabilising the speed of

the engine at any level set by the

operator. Modern computers can

implement far more

sophisticated types of control,

but the principle is still the same

Norbert Wiener

The child prodigywhose study of

mathematics resulted in the birth

of the science of cybernetics

Norbert Wiener was bom in 1894 in Missouri,

USA. After taking a degree in mathematics at the

age of 14 and receiving a doctorate in logic at 18,

he went to study with David Hilbert at Gottingen,

Germany.

Wiener's contribution to computer science

came late in his life. For many years he worked at

the Massachusetts Institute of Technology,

studying the new probabilistic physics, and
concentrating on the statistical study of the

motion of particles in a liquid (a phenomenon
known as Brownian movement). The particle

movements were so unpredictable that it was
impossible to describe them using the traditional

physics of deterministic forces. So a 'probabilistic'

method, by which only the probable location of a

particular particle at a given time could be

predicted, was the best that could be applied.

When the Second World War broke out he

offered his services to the US government and
began work on the mathematical problems

implicit in aiming a gun at a moving target. The
development of automatic gunsight guidance

systems, his studies in probabilistic physics and his

broader interest in subjects ranging from
philosophy to neurology all came together in

1948 when he published a book entitled

Cybernetics.

Cybernetics is the study of the self-governing

controls that are found in stable systems, be they

mechanical, electrical or biological. It was Wiener
who saw that information as a quantity was as

important as energy or matter: copper wire, for

example, can be studied for the energy it can

transmit or the information it can communicate.

The revolution that the computer promises is

based in part on this idea: a shift in the source of

power from the ownership of land, industry or

business to the control of information. His

contribution to computer science was not a piece

of hardware but the creation of an intellectual

environment in which computers and automata
could be developed.

The word 'cybernetics' is derived from a Latin

word meaning 'governor'. Wiener had studied the

'governor' of James Watt's steam engine, which
automatically regulated the machine's speed, and
he realised that for computers to develop they

must be made to imitate the ability of human
beings to regulate their own activities.

The thermostat in a house is an example of a

control system. It regulates the heating according

to fluctuations in temperature above or below an
optimum level. A human is needed only to set this

level. Wiener called this faculty for self-regulation

and control 'negative feedback' ~ 'feedback'

because the output of the system (the heat) affects

the future behaviour of the system and 'negative'

because the changes the thermostat brings about

are made to restore the temperature to the one set.

A system that can do this and also choose its

own temperature (and other goals) is called a

'positive feedback' system. When an automaton
can do all this and reproduce itself as well, then it

approaches the human condition.

Wiener's theory of cybernetics could be

regarded as a super science — a science of

sciences — and it has encouraged research into

many areas of control systems and systems that

deal with information. Everything is information.

What we know about the changes in the world

comes to us through our eyes and ears and other

sensory receivers, which are devices for selecting

only certain data from a totality that would
otherwise engulf us.

Information can also be studied in a statistical

way, independent of any meaning it may have.

For example, by observing the frequency with

which certain symbols occur it is possible to break

many types of codes. In the English language the

letter 'e' occurs most often, and the letter 't' is the

second most frequently used. By analysing large

samples of a code and comparing the results with

typical samples of English, it is possible to identify

key letters and thus begin deciphering the code.

Wiener died in 1964, before the

microcomputer revolution began, yet he foresaw

and wrote about many of the problems that would
arise in this new technology.

300 THE HOME COMPUTER COURSE

Home computers. Do they send your brain to

sleep - or keep your mind on its toes?

At Sinclair, we're in no doubt To us, a

home computer is a mental gym, as

important an aid to mental fitness as a set of

weights to a body-builder.

Provided, of course, it offers a whole

battery of genuine mental challenges.

The Spectrum does just that

Its education programs turn boring

chores into absorbing contests -not learning

to spell 'acquiescent, but rescuing a princess

from a sorcerer in colour, sound, and

movement!

The arcade games would test an

all-night arcade freak -they're very fast, very

complex, very stimulating.

And the mind-stretchers are truly

fiendish. Adventure games that very few

people in the world have cracked. Chess to

grand master standards. Flight simulation

with a cockpit full of instruments operating

independently. Genuine 3D computer design.

No other home computer in the world

can match the Spectrum challenge - because

no other computer has so much software of

such outstanding quality to run.

For the Mentathletes of today and

tomorrow, the Sinclair Spectrum is gym,

apparatus and training schedule, in one neat

package. And you can buy one for under

£100.

HOME
COMPUTER COURSE

^ ityou prefertobuy the binders
separatelyplease sendusyourcheque/postal
order for£3 ,95 (includingP&P) .We will send
youvolume 1 only Thenyoumayordervolume
2 in thesameway - when it suitsyou

!

Overseas readers. This
binder offer applies to readers in the
UK, Eire and Australia only Readers inAustralia should
complete the special loose insert in Issue 1 and see additional
binder information on the inside front cover. Readers in New
Zealand and South Africa and some other countries can obtain
their bindersnow. For details please see inside the front cover.

Bindersmaybe subject to import duty and/or local tax.

NEXT TOYOUR COMPUTER...YOURCOURSE MANUALS

