
ISSN 0265-2919

Osop

17
IIIMt3lt:. ^ I

lill Aus $1.95 NZ $2.25 SA R195 Sing $4.50 USA & O

CONTENTS

fflardware
In M

Outer Limits Even an inexpensive home
computer like the Sinclair ZX81 can evolve

into a sophisticated data processing system

Tandy MC-10 This compact machine offers

good colour at a low price

Software

326

330

Top GearWe explore a variety of techniques

for writing more efficient Basic and speeding

up your programming

328

Changing Places We look at ways to

manipulate the database we have created in

our Basic Programming course

^sights

336

Sitting Pretty Alternative designs for

computer keyboards and screens could
make them more pleasant to use

Hot Rods Not all joysticks are attached to a
fixed base unit

PasswordsTo Computin

Track RecordA Disk Operating System
keeps a record of the track and sector

numbers of every block of data

321

332

Pioneers In Computin

Konrad Zuse Like other early computers,

Zuse's machines were developed for military

purposes

324

340

^ound And Light

Sound Systems . • . The Light Program
An introduction to the graphics facilities on
theBBC Micro and a fiSther look at sound
ontheVic-20

Next Week
• The Apple II has been

described as the Volkswagen

of microcomputers. We look

at the latest model, and

explain the reasons for its

cult-like following

• BASIC is the most popular

language for home

imputing, but by no means

the only one, or indeed the

best. We look at several

alternatives

• Hard disks are faster than

floppy disks, and have greater

capacity. Soon they'll be

available for home

computers. We examine how

they work

Editor Richard Pawson; Consuttant Editor Gareth Jefferson; Art Dbtctor David Whelan; Production Editor Catherine Cardweil; Staff Writer Roger Ford; PictHre Alitor Claudia Zeff; Desigiier Hazel Bennington; ArtAssistants Liz Dixon,

Safu Maria Gilbert; Sub Editors Robert Pickering, Keith Parish; itesearct»r Melanie Davis; Contributors Tim Heath, Henry Budgett, Brian Morris, Lisa Kelly, Steven Colwill, Richard King, Geoff Nairns; Group Art Director Perry

Neville; IMani^ingDirectn'Stephen England; Consuitant David Tebbutt; PubHsifedbyMisPulriishingLtd: EditorialUrector Brian Innes; Project Devetopment Peter Brookesmith; Executive EiHtor Chris Cooper; Production Co-ordinator

Ian Paton; Circulation Director David Breed; IWarfceting Director Michael Joyce; Designed and imiduced ttf tench Partwoifcs Ltd; blttoriai Office 85 Charlotte Street, London W1 ; © 1983 by MMs Putisbing Ltd: typeset by Universe;

Reprodirction by MuNis Morgan Ltd; Printed in Great Britain by Artisan Press Ltd, Leicester

HOIME COIMPUTER COURSE - Price UK 80p IR £1,00 AUS $1.95 NZ $2.25 SA R1.95 SINGAPORE $4.50 USA and CANADA $1.95

ifcw to obtoin your copras of HOIME COMPUTER COURSE - Copies are obtainable by placing a regular order at your newsagent.

Bade Numbers UK and Bre - Back numbers are obtainable from your newsagent or from HOME COMPUTER COURSE. Back numbers, Orbis Publishing Limited, 20/22 Bedfordbury, LONDON WC2N 4BT at cover price. AUSTRALIA- Back

numbers are obtainablefrom HOME COMPUTER COURSE. Back numbers, oordon & Gotch (Aus) Ltd. 114 William Street, PO Box 767G Melbourne, Vic 3001. SOUTH AFRICA, NEW ZEALAND, EUROPE & MALTA: Back numbers are available at

cover price from your newsagent. In case of difficulty write to the address in your country given for binders. South African readers should add sales tax.

itowtoc^inbimtersforHOMECQIMPUTERCOURK-UKandEire: Please send £3.95 per binder if you do not wish to take advantage of our special offer detailed in Issues 4, Sand 6. EUROPE: Write with remittance of £5.00 per binder (inct.

p&p) payable to Orbis Publishing Limited, 20/22 Bedfordbury LONDON WC2N 4BT, MALTA: Binders are obtainable through your local newsagent price £3.95. In case of difficulty write to HOME COMPUTER COURSE BINDERS, Miller (Malta)

Ltd. M. A. Vassalli Street, Valletta, Malta. AUSTRALIA: For details of how to obtain your binders see inserts in early issues or write to HOME COMPUTER COURSE BINDERS. First Post Pty Ltd, 23 Chandos Street, St. Leonards, NSW 2065. The

binders supplied are those illustrated in the magazine. NEW ZEALAND: Binders are available through your local newsagent or from HOME COMPUTER COURSE BINDERS. Gordon SGotch (NZ) Ltd, PO Box 1595. Wellington
.
SOUTH AFRICA:

Binders are available through any branch of Central Newsagency In case of difficulty write to HOME COMPUTER COURSE BINDERS, Intermag, PO Box 57394, Springfield 2137.

Note -Binders and back numbers are obtainable subject to availability of stocks. Whilst every attempt is made to keep the price of the issues and binders constant, the publishers reserve the right to increase the siated prices at any time when

circumstances dictate. Binders depicted in this publication are those produced for the UK market only and may notnecessarily be identical to binders produced for sale outside the UK. Binders and issues may besubjectto import duty and/or

local taxes, which are not included in the above prices unless stated.

Insights

Sitting Pretty
'Ergonomics' is the science of making machines more pleasant to

use. With computers, research has been concentrated on the
screen and keyboard

There are two aspects of design: aesthetics, or

beauty in form and appearance; and ergonomics,

which is the study of the relationship between
workers and their environment. No matter how
well something functions, we will be unhappy
using it if it is ugly in appearance. Similarly, the

environment in which we are working must not be
distracting or uncomfortable.

As a factor in the choice of which

microcomputer to buy, the ergonomic quality will

probably be less of a consideration than the price

and performance of the machine. It is, however,

worthwhile to give some thought to the physical

environment in which you use the computer. First

of all, do you work at something that resembles an

office workstation, with adequate desk space on a

working surface set at the right height for you? Or
do you simply plug your home computer into the

family television set and work with it on your lap,

or, worse stiU, lying on the ground in front of the

television set?

Computer progranmiing is quite complicated

enough on its own, without making it more
difficult by working in a completely unsuitable

environment. There are many ways in which you

THE HOME COMPUTER COURSE 321

can create a more comfortable workstation. Let us

start by considering what can be done to make the

screen more comfortable to read. Ifyou are using a

domestic television set, then you will be unable to

benefit from recent developments that help

reduce or eliminate screen glare in monitors.

These include filters to minimise reflection and
specially coloured screen phosphors. But you can

improve the quality of display on a television set

by placing a filter over the screen. Simple coloured

filters are easy enough to obtain, and it is also

possible to use a polarising filter, which eliminates

reflections. These methods help to achieve high

contrast at low brightness levels, and thus avoid

unnecessary eyestrain.

External lighting levels are also important.

When working at night it is considerably better to

use a low-set desk lamp that illuminates the

keyboard and any notes from which you are

working, but leaves the screen in comparative

darkness. The distance from eye to screen is also

important— the body should be approximately an
arm's-length from the screen. TTie display itself

should be tiltable, so that the plane of the screen is

at 90 degrees to the line from your eye to the

Body Language

While the human body may vary

in size and shape, the

proportions stay fairly constant,

as any student of figure drawing

soon realises. The study of

ergonomics makes use of this

consistency to define general

rules for laying out working

environments. With a home

computer or a VDU these

suggest that the screen should

be at arm's length (to minimise

changes in eye focus when

looking backwards and

forwards between screen and

source document). The position

of the keyboard is also dictated

by these same rules

centre of the screen. This can be easily achieved by
placing a book or two under the front of the set.

However, you may encounter another problem at

this point — your own reflection in the screen. A
filter with a matt surface will remove this quite

effectively.

Once the screen has been made comfortable to

use, we can go on to consider the physical layout

and attributes of the keyboard. The most

important factors are the height of the keys above
the desk on which the keyboard is placed, and the

angle of the rows of keys relative to each other. In

ideal circumstances, the keyboard will be low
enough for the operator's wrists and forearms to

rest flat on the desk in front of it, and it should be
adjustable for rake. Unfortunately, few home
microcomputers are designed with the required

low profile. Sinclair's ZX series, the Oric-1 and
the Jupiter Ace are exceptions, but they all have
even greater problems with their keyboards
because of their use of either multi-layer

membranes or moulded rubber sheets in place of

sprung keys. Multi-layer membranes have no
*feer whatsoever, and in the case of the ZX80 and
81, are spaced in such a way as to defy anyone to

touch-type on them. The combination of these

factors makes entering long programs an

exhausting task. The Oric-1 and Spectrum
attempt to circumvent this problem by producing
an audible signal that a key has been depressed
sufficiently to make contact. But that is hardly an
adequate compensation. There are a number of

companies supplying alternative keyboards — full

size, with sprung keys — for the Sinclair

computers, but the well designed examples are

expensive. They also maintain the single key entry

convention devised by Sinclair to speed operation

in BASIC, which is a constant source of irritation for

even a semi-skilled typist.

The ideal layout of a keyboard requires the

rows of keys, as viewed from the side, to be
arranged as if to form part of the circumference of

The Shorthand Machine

Where there is a need to record

speech, and the stenographer

has no means of slowing the

speaker down, a device known

as a Palantype is often

employed. Shorthand machines

of this type use a shorthand

version of the phonetic spelling

a drum. This would minimise the directional

movement of the typist's fingers. The only home
computers that fit this specification are: the BBC
Micro, the Commodore 64 (as well as the later

Vic-20s), and the Apple II.

The layout of the keyboard itself has long been

a major bone of contention with designers. When
typewriters first became available in the 19th

century, there were as many different keyboard

layouts as there were manufacturers, but in

general the most frequently used character keys

were grouped together at the centre of the

keyboard. When the 'typebasket' was introduced,

in the 1870's, manufacturers discovered that even
quite slow typists could cause the type bars tojam
against each other. The problem occurred most
frequently with words such as *ten', where the

commonly used letters in the English language

(which were conveniently placed next to each

other on the keyboard) were used in rapid

Accession. The solution adopted was to move
those letters most often found adjacent to each

other in words, further apart in the typebasket —
hence the now standard QWERTY keyboard,

designed by Scholes and Gliden in the United

States. There is no reason at all why an electronic

keyboard should be constrained by this layout

except to maintain a standard approach — an
interesting example of a de facto global standard

becoming undesirable and yet impossible to

change.

However, some efforts to develop alternative

keyboards have been made. In 1977, Mrs Lillian

G. Malt employed the flexibility inherent in

electronics hardware to produce a keyboard

shaped to fit the hand, which is considerably less

tiring to use than the standard design. It is also

much quicker in operation — reports of 300 and
more words per minute are commonplace.

Unfortunately, it has not succeeded in breaking

the QWERTY stranglehold on keyboard layout.

One very useful feature that this keyboard
(called the Maltron) shares with many
microcomputers is detachability. Most home
computers do not have built-in monitors and are

themselves small enough to be moved around, but

this is not the case with many microcomputers

designed for office use. Increasingly, keyboards

are being designed to be as slim as possible and are

attached to the microcomputer by an umbilical

cord. IBM's PC Junior has gone one step further:

the communications link between the keyboard

and the microcomputer is similar to television and
video recorder remote controls, and works by
means of infi"a-red light.

Because ergonomics is not a totally objective

science — it is the study of how workers relate to

their working environment, and that relationship

tends to change from time to time — it is not

possible to give hard and fast rules. The keynote is

long-term comfort.This requires the arrangement

of tools and equipment so that all your energies

can be devoted to the task in hand, without it being

necessary to change position constantly, and
without becoming unduly tired.

There are several further things that the home
computer user can experiment with in order to

improve his working environment. When we
discussed Apple's Lisa (see page 261), we noted

that there were alternatives to the keyboard when

322 THE HOME COMPUTER COURSE

working with menu-driven software. You might

care to attempt an inexpensive version of this

using ajoystick or trackball, and gauge for yourself

the benefits. Of course, you will need to write

some small programs to work with, but by using

PEEK and POKE within the confines of screen

memory this is not a difficult task.

Alternatively, if your computer allows you to

re-specify the value for any particular key, you
might care to rearrange the keyboard, sticking

labels over the keys to indicate their new values. In

this case it is perhaps easiest to PEEK the value of

the eight bytes that make up the character into an

array with eight variables, change the values

within the array, and then POKE them back again.

You could POKE the eight bytes that make up the

character straight into the space allocated for the

character that you wish to replace, but if you use

this method remember to save the first set of

values in a temporary array and then move each

character to its new position in order. Save the

Keystrokes

Before electronic keyboards

were devised, each key on the

typewriter had to be physically

connected to the tiny character-

shaped casting that made the

impression on the paper. This

imposed constraints on the

layout of the keyboard, for it

was essential to keep commonly

used keys separated so that the

bars that carried the characters

would not clash. Though this is

no longer necessary, we still

retain the familiar QWERTY
layout. Keyboards such as the

Maltron, which places keys

according to their frequency of

use, have not proved popular

program that performs this operation on cassette,

because when you switch your machine off (or

reset it), the value of each character will revert to

the original!

Finally, if your interests extend to simple

carpentry, you might consider constructing a

purpose-built workstation, with the keyboard

recessed into the worktop and the television set or

monitor conveniently angled. Commercial

versions of the workstation usually provide

additional space for mass storage (disk or cassette

drives) on shelves located under the worktop, and

allow all the leads to be hidden away. Ergonomics

is basically applied common sense, but a little

thought will be repaid by a significant reduction in

backache and eyestrain.

Future

Alternatives
Many computer designers

would dispense with

keyboards completely if they

could. Newer types of

microcomputer, with larger

memory and faster

processing speeds, allow

other devices such as

joysticks, trackballs and mice

to be used instead, with

appropriate software

m<

Ozm
CO

THE HOME COMPUTER COURSE 323

Track Record
The function of the Disk Operating System (DOS) is to keep tabs on
where everything is kept on the disk. Without a DOS, programming
would be very hard work

Before a computer is able to run any kind of

applications program, it first needs its own
internal set of programs to manage the various

parts of its system, and to make sense of the

instructions that comprise the user's program.

This internal set of programs is called the

Operating System (OS), and on most home
computers this resides permanently inside the

computer in the form of ROM memory
Generally, we are totally unaware that the

Operating System is functioning, which is why we
refer to it as being 'transparent in operation'.

If your system includes a disk drive then a large

part of that OS will be concerned with the various

disk operations. We call that set of routines the

Disk Operating System, or DOS. You might see

those three letters used in the names of
proprietary products — Microsoft's operating

system, for example, is called MSDOS. A DOS
will typically come in one of three forms. It may
comprise part of the ROM inside the computer.
An example of this is the Sinclair Spectrum,
which has the commands for operating the

Microdrive (not really a disk, of course, but
similar in operation) built in.

but offer considerable advantages over 'non-

intelligent' disk units. For instance, they don't eat

up valuable user memory, and can be left to

execute a complex disk operation while the

computer itself continues with the applications

program.

TTiirdly, the DOS may reside inside the

computer RAM. This technique is increasingly

popular in business systems, in which the disk

drives are built into the computer, and there is

plenty of RAM available (say, more than 128

Kbytes as standard). For the manufacturer, this

has the advantage of eliminating the need to

create a completely new set of ROMs every time

there is a minor modification to the DOS, and the

user benefits from a choice of one of a number of

proprietary operating systems that will run on the

same hardware.

But how does the DOS get into RAM in the

first place? This question immediately arises when
the system is switched on. The DOS needs to be
transferred from the disk into RAM, but if there is

no DOS in the computer to tell it how to control

the disk, how can it load something into RAM? A
program caimot 'pull itself into RAM by its own

BAM DIRECTORY

DISK SURFACE

Ring of Truth
The magnetic recording surface

on a disk is divided up into

concentric tracks and radial

sectors. The intersection of a

track and sector is called a

block, storing typically 128

bytes. The function of the DOS,

with the help of a directory and a

Block Availability Map, is to

keep tabs on what is stored in

each block

READ/WRITE HEAD

SECTOR

Another type stores the DOS in ROM within

the disk unit itself. This is only applicable when
the disk is an ^intelligent' device (such as the

Commodore Disk Unit), meaning that it

incorporates its own microprocessor ROM and
RAM. These are more expensive to manufacture,

m<

C/5

bootstraps', so the computer has to have a tiny

program built into ROM, which it executes

whenever the machine is switched on. This

program is called the 'bootstrap' (from the

analogy above) and is itself a very simple form of

DOS. The bootstrap's job is simply to find the

324 THE HOME COMPUTER COURSE

PasswordsTo Computing

main DOS on the disk, and transfer it byte by byte

into RAM, whereupon that DOS can take over

and perform some far more sophisticated

functions. This process of switching the computer

on, then waiting for the DOS to take over, is

called *booting-up'. When it is finished, a greeting

is printed on the screen with a prompt to indicate

that the computer is ready for a conmiand from

the user.

Whichever form the DOS in a system takes, its

main function is looking after the locations of the

contents of the disk. You may remember that a

disk (see page 114) is divided into concentric

rings, called tracks, which are in turn divided into

sectors; and the intersection of a track and sector

is called a block. A block can typically hold 128

bytes of information, and is the smallest unit that

the disk can read or write at a time. One of the

main reasons for having a DOS is to enable the

computer to remember the exact location of

everything on the disk. This task is more awesome

than it sounds. Let's suppose our disk drive has a

capacity of 320 Kbytes — enough to store 20

programs of 16 Kbytes each. With each block

holding 128 bytes, loading one of those programs

without the benefit of a DOS would require you to

specify 128 different blocks, each with its own
track and sector number!

Local Directory

Filename Type Location (Track-Sector)

Invaders Prog 20-1,20-7.20-2...

Temperat Prog 25-11,26-5,26-12...

Budget Prog 23-12,24-3,24-9...

Budgetdat Data 27-1,27-7,27-2...

The directory on a disk typically occupies the centre track. It

contains a list of the filenames, file types (program, data, and

perhaps other categories) and track and sector numbers where

the file is stored

In order to perform this function, the DOS
keeps a disk directory. This is usually located in

the middle track of the disk because it has to be

referenced frequently, and this minimises the

distance the read/write head has to move. The
speed of operation of a disk is far more dependent

on the time taken to move the head from track to

track than on the speed at which the disk spins.

The directory is a list of all the files (which may
be programs or files of data) currently on the disk,

with details of the file name, file type, and a list of

the blocks (each specified by track and sector)

where that file is stored. There may be some other

entries, such as the date when a back-up copy of

the file was last made, or a list of the users who
can access a particular file.

When a new file is to be stored, the DOS must

first look up something called the Free Sector List

or the Block Availability Map (BAM). This has a

single bit corresponding to every block on the

disk, and as a block is used the value of its bit is

changed from zero to one. Some home computers

with disk drives feature a utility program that

displays the BAM on the screen, and you can

watch the entries being made as you save a

program. When a file is erased, the DOS doesn't

bother to wipe clean all the blocks used in that

file; it simply changes the entries in the BAM to

indicate that the contents of those blocks are now
unwanted.

Room To Spare

TRACKS

DIRECTORY

TRACK

Before the DOS can store a new file and make an entry in the

directory, it must first consult the Block Availability Map (BAM)

or Free Sector List. This is a section of memory in which each bit

corresponds to a block on the disk. A binary 1 indicates that the

block is in use, 0 that it is free (we've shown it as solid or empty

squares). Notice that the innermost tracks (at the bottom of the

map) have fewer sectors than the others, because they are so

much shorter

Another feature of this system is that files are

not stored, as would be expected, in consecutive

neighbouring blocks. Suppose, for example, that

a track consists of 12 sectors, numbered 1 to 12

clockwise. The first 128 bytes of a program might

be found in sector 1, the second in sector 7, the

third in sector 2 and so on. This is because there is

a small time lapse while a block's contents are

transferred to the memory buffer used to write

each block. If the DOS had to write consecutive

sectors, it would have to wait for one complete

revolution of the disk between each write — thus

slowing the system down. Furthermore, a disk

I.Q. Test

Some disk drives contain their

own microprocessor and RAM.

These are called 'intelligent'

drives, and the DOS is

incorporated in the form of

ROM. Where 'non-intelligent'

drives are used, the DOS is

stored inside the computer

that has been in use for some time, with files that

change in length each day, will end up with a

BAM looking like a piece of Gruyere cheese, and

new files will have to be fitted into the holes.

A Disk Operating System has many other

functions, including formatting new disks

(marking out the tracks and sectors on a blank

disk and creating an empty directory), making

back-up copies, and *tidying-up' full disks. More
sophisticated versions include a variety of data

handling structures (see page 204).

THE HOME COMPUTER COURSE 325

Outer Limits
The ZX81 is still the cheapest computer available. But with the right

add-ons it can be expanded into a very sophisticated machine
HSiliiiipiMiiWWi

Sinclair's ZX81 offers the best value for money of

any microcomputer on the market today, even in

its basic form. But there are a surprising number
of add-on units available which can turn it into a

remarkably sophisticated microcomputer system.

These include high resolution colour graphics,

speech synthesis and communications

capabilities. Of course, the computer itself has

some deficiencies, but these can be overcome by

the addition of a variety of readily available items

such as professional standard keyboards, extra

Random Access Memory and programmable

joystick controllers.

RAM Pack

In standard form the ZX81 has

only one Kbyte of RAM, and 123

bytes of that are taken up by

system variables. Consequently,

memory expansion is perhaps

the first requirement of a new

owner. Sinclair's own memory

upgrade shown here comes in

only one form — 16 Kbytes —
but alternatives such as the

Cheetah version offer as much

as 64 Kbytes,

^^^^

m

^^^^^

CO

o
CO

CO

o
cc
•«t

Also Available...

In addition to the units shown

here, there are other devices

available to enhance the ZX81 's

performance. A colour card, for

example, will provide up to 16

colours on the TV display, and a

sound generator will give three

programmable 'voices'. Bi-

directional ports can support up

to 16 input/output devices at

once. Far from being a small

and unsophisticated home
computer best suited for playing

games and learning the

rudiments of BASIC

programming, Sinclair's ZX81

can be expanded to meet the full

potential of its Z80

microprocessor

Acoustic Couplers

Modulator/demodulators come

in two forms: direct connection

modems, which require an

additional jackplug connector

into the telephone system, and

acoustic couplers such as the

Micro-Myte 60, shown here,

that use the telephone handset

itself.

Direct-connect modems,

which are generally rather more

expensive, generate and

recognise electronic signals that

represent the Os and 1 s of the

information being received or

transmitted. Acoustic couplers,

which may be battery powered,

translate the Os and Is into

audible tones for transmission

over the telephone network, and

perform the same process in

reverse to receive information

Forth ROM
Sinclair ZX microcomputers use

a rather idiosyncratic version of

BASIC, and while it is not

possible to install a different

dialect, one can change the

language completely— to

FORTH, for example. There are

two ways of doing this: either by

loading the new language into

RAM from cassette, which

means that the computer will

revert to BASIC each time it is

switched on or reset; or by

swopping the BASIC ROM for

another. This FORTH-in-ROM

from David Husband goes

further than most— it allows

ten or more programs to run on

the computer simultaneously

This facility can only be fully

exploited in control

applications, where several

devices must be programmed

independently

326 THE HOME COMPUTER COURSE

Hardware

Speech Synthesis

Another interesting extra from

Cheetah is the Sweet Talker

speech synthesis unit.^Sweet

Talker uses an allophonic

system, and hence is much less

complex to program than units

that work in phonemes

(allophones are groups of like-

sounding phonemes). There are

other similar units available for

ZX81 and many other^home

microcomputers

Hebot

The Hebot turtle, available

either ready-made or in kit form,

is one of the more sophisticated

of the dedicated floor robots. It

comes complete with software

to drive it, and there are a

variety of extras available such

as photosensors, which can be

used in conjunction with

reflecting tape stuck down onto

the floor, to make the robot

follow a predetermined path

Joystick Controller And Joystick

Given that many of the ZX81s

sold must be used for games

playing, it is perhaps rather

strange that Sinclair has not

produced its own joysticks and

controllers. However, a wide

variety are available, and these

are either non-programmable,

which specify for you which key

strokes will be made by the

joystick, or programmable,

where the user decides which

keys will be simulated. The

model shown here, from AGF

Hardware, is programmed by

moving connecting cables

around. Others are programmed

through the computer. This one

will accept any switch-type

joystick, and also a trackball

ZX Printer

Sinclair's own ZX Printer uses

aluminised paper that is

sensitive to electricity. Instead

of printing in a conventional

manner, the print head removes

the aluminised coating to reveal

a darker surface beneath. While

reasonably fast in operation, the

limited paper type and width are

major problems. It is possible to

use a normal printer, however,

via an interface card. Cards are

available to support RS232 and

Centronics interfaces

Keyboards

The multi-layer membrane

keyboard is perhaps the ZX81 's

least satisfactory feature, so it is

hardly surprising that a number

of companies offer alternative

full-size keyboards with

conventional sprung keys. The

MapsoftZXSI keyboard, shown

here, is available from Maplin

Electronics either as a kit or

ready-built.

In addition to the normal

character set, the Mapsoft

keyboard provides three extra

keys. For less than £30 it is a

very useful addition to any ZX81,

though similar products can

cost more than twice as much.

Another approach is a stick-on

keyboard the same size as the
.

ZX81 's own, which is used in

conjunction with the original. It

makes locating a particular key

rather easier, but has no other

effect

THE HOME COMPUTER COURSE 327

Top Gear
By paying careful attention to variables and program structure, you
can speed up the operation of almost any Basic program

Basic is, despite what its critics say, a versatile

language and a powerful educational aid. You can

write any program in basic, provided your

machine has enough memory and the execution

time is not important. However, because basic is

usually interpreted rather than compiled (see

page 184), it can be painfully slow in executing

programs — especially those that require the same

instruction to be translated and executed

repeatedly.

Sorting, for example, is a highly repetitive

process: the procedure is carried out within a

loop, and there are smaller loops nested inside the

main loop (see page 286). If 100 items are to be

sorted, the program may make between 2,500

and 5,000 iterations of the loop. A basic sort will

always be slow, but the way the code is written can

make a significant difference to the speed of

execution. If an instruction is to be repeated 5,000

times, and if coding it properly can save one

hundredth of a second of execution time for each

repetition, then there will be a total saving of 50

seconds — a considerable improvement for the

user.

To observe the difference that good and bad

coding can make, you will need a timing

mechanism and a 'testbed' program. If you own a

Commodore computer, you can use the system

clock, with the associated variables Tl$ and Tl, as

part of the testbed program. If your computer

doesn't have an accessible clock, you'll have to use

a stopwatch to time the code in execution. It is

also a good idea to make your program 'beep' at

you when it starts and finishes, so that you'll know
when it's operating.

The testbed program looks like this:

1000 L=500

2000 PRINT "***GO***":REM "BEEP"

instructions here

2100TI$="000000"

2200 FOR K=1 TO L

2900 NEXT K:T9=TI

2950 REM "BEEP" instructions here

3000 PRINT "******ST0P******"

3100 PRINT "That took ";(T9/60);" seconds"

Lines 2100 and 3100 are for Commodore users.

For other machines, delete or replace them with

appropriate code. The space between lines 2200

and 2900 is where we will put the code to be

timed. Notice that the timings will refer to L

repetitions where L is the limit of the loop. Testing

only one execution of a piece of code would be

very inaccurate because the system clock

measures only in 60ths of a second, and there is a

timing overhead imposed by the code of the

testbed program as well.

Here are some general rules for writing

efficient basic, roughly in order of importance:

1. Avoid aU arithmetic in loops.

Exponentiation (x^, meaning 'x raised to the

power of 3', for example), and mathematical

functions (cos(y), meaning 'the cosine of the

angle y', for example) are particularly slow.

Multiplication and division are slower processes

than addition and subtraction, but even the

quickest of these operations (addition) is

relatively slow.

In the testbed program insert these lines:

900 Z=1.1

2300 X=Zt3

and run it. On our test machine 500 repetitions

took 27.95 seconds. Now replace line 2300 with:

2300 X=Z*Z*Z

and run it. This took 3.55 seconds — a dramatic

difference!

Further investigation will reveal the level of

exponentiation at which it becomes worthwhile

replacing repeated multiplication by the

exponentiation function. On our computer this

was at the 18th power (when X=Zt18).

Remember, however, that to calculate Z^^, for

example, repeated multiplication would be

useless, whereas the exponentiation function (t)

works for all real numbers, including negative

ones.

Use the testbed program to see how long the

other arithmetic processes take, and compare

alternatives. Is it quicker to divide a number by 2,

or multiply it by 0.5, for example?

2. Use variables rather than numerical

constants.

Every time a numerical constant (7,280 for

example) occurs in a basic instruction, time is

spent translating the number into usable form.

Try this line:

2300 X=X+7280

On our machine that took 4.63 seconds to

execute 500 repetitions, whereas:

328 THE HOME COMPUTER COURSE

Software

900 C=7280

2300 X=X+C

took 2.75 seconds to do the same number of

repetitions.

3. If you must use the GOTO statement, jump

forward in your program rather than back. If

you must jump back, however, jump to the

start of the program rather than back a few

lines.

The same is true for GOSUB. On meeting a GOTO or

GOSUB instruction the basic interpreter compares

the target line number with the current line

number. If the target is greater than the current,

the interpreter simply searches forward, line by

line, until it is found. But if the target is less than

the current, then the search always begins from

the very first line of the program. This means that

it may be more efficient to place subroutines and

frequently used sections at either end of a

program. Add 56 REM lines at the start of the

program, to make it up to typical length, and try:

2300 GOTO 2400

2400 GOTO 2500

2500 GOTO 2900

This took 2.33 seconds for 500 repetitions,

whereas:

2300 GOTO 2500

2400 GOTO 2900

2500 GOTO 2400

took 4.85 seconds.

4. Initialise all variables in order of access

frequency.

Variable names are stored by the interpreter in a

symbol table in the order in which they first

appear in a program. The later a variable occurs in

the table, the longer it takes to find it and access its

contents. For the same reason you should avoid

using a new variable in a program where you can

resort to one previously used by the program but

currently not in use.

If a variable is used inside nested loops — as is

conmion in sorting — that variable is accessed

frequently, so initialise it at the start of the

program before any other variable, with a dummy
value if need be:

1000 L=500:C=7280:X=0:Z=1.1

2300 A=0

took 2.2 seconds for 500 repetitions, whereas:

1000 A=0:L=500:C=7280:X=0:Z=1.1

2300 A=0

took 2.06 seconds.

5. Avoid using strings.

String operations use up memory in ways that

arithmetic does not, and a system program called

the Garbage Collector may have to be called

every now and again by the interpreter to tidy up

TOP OF MEMORY
BYTE NO. 65535

Memory Map
This a simplified memory

map of a typical home

computer. Most

microprocessors can address

up to 64K (65536 bytes),

which will be divided up into

ROM, RAM, and unused

space. When considering the

speed of a BASIC program,

one of the most important

factors is the way in which

strings are stored. Whenever

the contents of a string are

altered, a complete new copy

of the string will be made in

memory. Eventually, all the

free memory will be used up

and BASIC will have to invoke

the Garbage Collector, which

tidies up the string memory.

This might take several

seconds, and in a program

that manipulates a lot of

strings, this could slow down

the program considerably

BYTE NO. 0

BOnOM OF MEMORY

OPERATING

SYSTEM

SCREEN

MEMORY

STRING

DATA

FREE MEMORY

NUMERIC

VARIABLES

BASIC

PROGRAM
TEXT

SYSTEM

DATA

This is the set of standard

programs held in ROM, which

the computer needs to

operate internally

Each byte of this RAM
corresponds to a character

position on the screen

When a string is defined or

altered, the characters will be

stored in this section of RAM

As the variable list or the

length of strings increases,

the free memory is used up

Numeric variables typically

occupy seven bytes each: two

for the variable name, and five

to hold the number in

floating-point format

The text of a program is

stored here, usually in the

form of ASCII codes.

However, to save memory,

keywords like PRINT and

INPUT are stored as one byte.

This is called tokenising

All computers use up some of

their RAM for internal

variables and buffers for

cassette and keyboard

the contents of string memory. This procedure can

take a lot of time.

A general demonstration of this is difficult to

write because computers vary so much in their

memory management: you have to fill up most of

the user memory with data — a large numeric

array will do— then perform string manipulations

that will cause the Garbage Collector to be called.

On our machine we entered:

40 POKE 52,32:P0KE 56,32:CLR

to reduce severely the amount of memory
available to basic programs, and then entered:

1000 L=500:DIMT$(L)

1100 FOR K=1 TO L

1200 T$(K)="A"+"B"

1300 PRINT K

1400 NEXT K

which uses up a lot of string memory and provides

a string array for later use. The PRINT statement is

executed in every iteration, displaying the value of

the loop counter. When we ran this version of the

testbed program, the printing repeatedly paused

as the Garbage Collector was called to rearrange

memory. Sometimes the pause lasted more than

three seconds. The program continues:

2300 A$=LEFT$(T$(L),1):B$=A$+RIGHT$(T$(L),1)

and this took 30.03 seconds for 500 repetitions.

When we ran the same program with much more

memory available, garbage collection was not

visible, and the timed loop took 8.66 seconds.

THE HOME COMPUTER COURSE 329

Tandy MC-10
Although clearly designed to be
low in price this computer offers

good colour, and many features

of more expensive

Reset Button

Because it's large and bright,

red, the reset button is much

easier to find than on some

other machines. When using

the MC-10, take care not to

bump the back of the machine

too hard kere

Cassette Interface

Tandy MC-10 Keyboard

The keyboard is a button-type,

but it's better than many. The

keys are hard plastic with

engraved legends that take

longer to wear off, and there's a

real space bar. Unfortunately,

there's only one SHIFT key,

which is placed on the right-

hand side, and the large button

on the left is the more

conveniently positioned

CONTROL key. The feel of the

keys is comfortable, but they

are not suitable for speed-

typing

Remote control is provided

through this five-pin DIN plug

on pins 1 and 3. Signal input is

on pin 4, output on 5, and the

signal ground is on pin 2

System Bus

This is not explained in the

manual, though it is obviously

intended to be used with some

unspecified expansion units.

There are, however, enough.,

lines to handle some complex

devices

This is also a DIN plug, but is

constructed of four pins. Carrier

detect is on pin 1, receive data

on pin 2, ground is on pin 3 and

transmit data on pin 4

ROM
This is soldered firmly onto the

board, and so is not likely to be

replaced with upgrades or

alternatives. The Microsoft

BASIC is stored on the 8 Kbytes

of ROM

The Tandy MC-10 is a compact little machine

that achieves a lot using a few sophisticated chips.

The keyboard is a button-type, though slightly

larger than others of that kind, and possesses a

proper space bar. Other features make the

machine quite easy to use. Single-key basic

keyword entry, for example, is achieved by

holding the CONTROL key down while pressing the

desired function key. The machine also defaults to

'all capitals' mode when it's switched on, and the

lower case mode is a toggle — activated by

pressing SHIFT 0, and de-activated by pressing the

same keys again.

The screen display is smaller than that of most

other home computers. There are only 16 lines of

32 characters, and only fairly low resolution

graphics can be achieved. The display has other

shortcomings as well, including rather limited

colour facilities, although the quality of the colour

is very good. Most surprisingly, it will not display

lower case characters, which are recognised but

shown as inverse upper case letters instead. Text

can only be green on black or vice versa, and
though the block-graphic symbols may be in any

one of nine colours, either the letter or the

Unusually, the Tandy MC-10

uses a 6803 processor, rather

than one of the more popular

types. This processor is a

member of one of the older

families, and isn't as well-

known as the 6502 or Z80.

However, it's a useful 8-bit chip

with a reasonable instruction

set

Static RAM
The nominal 4 Kbytes of user

RAM is held on these two

2 Kbytes X 8-bit static RAM
chips, as are the screen RAM
and some system variables

6847 VDP

In common with many otfl

machines, the screen is

controlled by a special chip,

which in this case is the MC
6847 Video Display Processor.

This chip is the same as that

used in the Dragon 32, and (in

theory at least) can be

programmed for different

screen formats. In practice,

however, this is seldom done

330 THE HOME COMPUTER COURSE

Hardware Focus

Heat Sink

The Triac power regulating

transistor becomes very hot

when it's running, and the heat

is dissipated by this large piece

of metal

.TV Modulator

This converts the data streahi

produced by the video circuitry

into a Channel 36 TV signal, but

with no sound on the TV signal.

This is the only screen output,

and there is no monitor socket

on the machine

.Power Socket

This is a normal low voltage co-

axial socket. In common with all

machines of this type, the Tandy

MC-10 takes its power from a

small low voltage transformer

plugged into a wall socket

TANDY MC-10
PRICE

£49.95

210x178x51nnm

6803

CLOCK SPEED

Power Regulator

The transformed but

unregulated power is stabilised

by this large transistor, together

with other nearby components

Power Switch

Since the MC-10 has a reset

button, this does not need to be

used as an alternative, as on

some machines

4.4 MHz

MEMORY

8 Kbytes ROM
4 Kbytes RAM

VIDEO DISPLAY

16 lines of 32 characters, 9

colours with only background

settable. 75 pre-defined

characters

INTERFACES

RS232 serial, cassette

LANGUAGES SUPPLIED

BASIC

OTHER LANGUAGES AVAILABLE

NONE

COMES WITH

Operation and BASIC reference

manuals, TV lead

KEYBOARD

48 button-style keys

DOCUMENTATION

Clear, competent and well-

designed but rather lacking in

technical information. The only

major failing is the absence of an

index. A quick-reference card is

included, which gives enough

details about the BASIC for an

experienced person to start

working the machine without

delay

Crystal

4 4 MHz is the frequency

generated by the master clock,

which is subdivided into slower

pulses and used throughout the

machine

background must be black. Consequently, it's not

possible to produce a blue shape on a red

background, even in the graphics mode!

The sound function also has limitations. There

is only one channel available, which allows

minimal variations in pitch and duration only.

Input/output facilities are to cassette (including

remote control), television and an RS232 serial

port. The serial port can be used as a data transfer

line to and from other computers or, alternatively,

to drive a printer. It can also be used to create a

network with other Tandy MC- 10s.

Games do not seem to have been a high

priority with the machine's designers, who
provided nothing in the way of paddle or joystick

ports, nor any of the special graphics and sound

controller chips found in other machines more

suited to games playing.

Some expansion possibilities are clearly

intended for the future, however, since there is a

rather mysterious system-bus ending in an edge

connector, which is covered by a screwed-on

plate. Apart from stating that 'this slot is reserved

for future memory expansion kits', the manual

says nothing else about it, and provides no clues as

to what accessories will be available to plug into it.

The documentation for the MC- 10 is typical of

that provided for Tandy's other machines: a rather

aloof style of writing with few breaks in a fairly

solid text.

As a low-cost machine, it is worth considering,

but when reading the specifications remember

that while it may have a nominal four Kbytes of

RAM, only 3,142 bytes are available to the user,

since the screen-RAM and some system variables

have to come out of this allocation.

THE HOME COMPUTER COURSE 331

Hot Rods
Two new kinds of joysticks

appear to have no moving parts.

One uses mercury switches, the

other picks up electromagnetic

signals from your body

The personal computer industry is used to rapid

technological developments, and these changes

are not confined to the computers themselves —
peripherals and add-ons are also subject to swift

refinements. For instance, in the short time since

we first discussed the mechanism of a joystick (see

page 56), two completely new types have been

marketed. The most recently developed joysticks

have, in fact, almost entirely broken away from

the conventional mechanical system described

previously.

A device called Le Stik was the first analogue

joystick to reject the usual signalling mechanisms.

Le Stik consists of a contoured handgrip, fitted

with a top-mounted fire button and a side-

mounted pause control. Unlike other devices,

which are mounted on base units, the joystick is

simply held in the air and tipped from the vertical

in the direction required, and the corresponding

image on the screen moves accordingly.

The mechanism at the heart of Le Stik consists

of four sealed tubes filled with mercury. As the

joystick tilts away from the vertical the mercury

flows in the chosen direction and makes one or

more electrical contacts, just as though a switch

Hands On

The Trickstick relies on 'mains

hum', which is the

electromagnetic radiation given

off by the ring main in every

house. Your body acts as an

aerial to mains hum, and the

sensors on the stick pick up

different levels of hum
according to the pressure

exerted by your fingers

332 THE HOME COMPUTER COURSE

Trickstick

Horizontal {Movement Controls

By rocking the thumb between

these two pads, the forward and

backward motion can be

controlled

Vertical Movement Controls

The top pad controls upward

motion, the lower one controls

downward motion

Sensitivity Control

This allows the Trickstick to be

adjusted to each individual

player's efficiency as an aerial

Fire Buttons

Each generates an independent

signal, so you could drop

bombs with the bottom one and

fire laser cannon with the other

at the same time

Fire Button

The fire button is ideally placed

for fast games action

Handgrip—

_

This is one of the few available

joysticks with a contoured

handgrip suitable for both left-

and right-handed users

Pause Button

The pause button, fitted into the

handgrip, allows the player to

take a break from the action

between alien attacks, simply by

squeezing the grip

had closed. Moving the handgrip back to a

vertical position allows the mercury to flow back

into the tubes, thus breaking the contact. The
response of the system is considerably better than

that of previous joysticks. Indeed it is often too

sensitive, especially if the game being played is

written for use with the conventional types of

joystick.

The latest method of converting hand

movements into signals that a computer can

understand is used by East London Robotics'

Trickstick. This joystick is unique in the electrical

effect it employs: it uses the human body as an

aerial to pick up mains hum (the harmless

electromagnetic radiation emitted by the ring

main in any room). Trickstick consists of a sealed

tube in a plastic casing, which is held vertically in

both hands. There are three pairs of touchpads set

into the surface of the tube: one pair controls the

forward and backward motion; another pair

controls the up and down movement; and the

remaining pair are the fire buttons.

The mains hum that the human body picks up
is transmitted through these touchpads to

sensitive circuitry, where the pulses are converted

into signals that provide the computer with

directional information. The signals can also be

analysed to show how far the movement should

be taken. The harder one presses a pad, the

stronger the signal and the more rapid the output

to the computer. In this way, the Trickstick

combines the proportional control of the

analogue joystick with the fast direct digital

control of a switch-based unit. Because different

people will affect the circuits in different ways, the

Trickstick has to be adjusted for individual

sensitivity. This is done by means of a knob
mounted in one end of the device.

The idea is certainly intriguing, and the

manufacturers have applied for a patent on the

technique. However, the reliability and

performance of the device have yet to be proven.

Mercury Switches—

—

Each mercury switch consists of

a sealed tube containing a blob

of mercury that closes an

electrical circuit when tilted.

Mercury is used because of its

density, and because the blob

will tend to stick together rather

than break up into smaller blobs

Connecting Lead

The connecting lead is

with a standard Atari-t^

that is compatible with

range of home computers

Sound And Light

Sound
Systems
A second look at the Vic-20's

sound capabilities

Last time we looked at the Vic-20 in the Sound

And Light series we learnt how the machine's

three oscillators can be controlled by POKEing

memory locations; how to set the volume levels;

and how to control the duration of a note. We
investigated how the duration of the notes and the

pauses between them can be determined by the

use of FOR ... NEXT loops or, more efficiently, by

using the Vic-20's clock to count in jiffys (60ths of

a second). Management of these three musical

elements — frequency, volume and timing —
enables you to build simple tunes on the Vic-20

and produce useful sound effects.

The Light

Program
First Steps with the BBC's

sophisticated graphics

The BBC Micro is one of the most popular home
computers in Britain. Truly stunning graphics

effects can be simply achieved in a few lines of

BASIC, and the speed at which displays are

produced on the screen using basic is also

impressive.

There are several high resolution commands in

BBC BASIC, including instructions to draw straight

lines, plot points, and plot and fill triangles. This

last function is used to colour in shapes as a series

of small triangles as there is no PAI NT-type

command available. The BBC Micro also lacks a

BASIC command to draw circles and ellipses, and

has no sprite programming capability. However, it

does have several unusual and interesting features

that the majority of its rivals do not possess. These

include the ability to mix text and graphics on the

screen, separately controllable text and graphics

cursors, and access to the part of the machine

operating system that controls screen display,

from within a basic program. This is accomplished

by the set ofVDU or screen commands. Text and

graphics 'windows' can also be defined on the

screen, enabling the user to divide up the display

into separate sections for graphics and text.

Playing Tunes
To construct a tune you must first assemble the

required notes. These could be, for example, the

notes of the first line of 'Oh, I do like to be beside

the seaside'. In the correct order these can be

selected as:

D# E F D# C A# G# G G# D# D#

Using the techniques described on page 284, the

duration of the notes and pauses can be set by

using the Tl facility. Our tune can therefore be

played by RUNning the following program (notice

the use of variables to simplify the selection of

pokes):

10 V* 36878

20 FOR I
= 1 TO 11

30READN:REM*NOTE*
40 POKE V,7:P=TI: REM *VOLON*

50 IFTI-P < 15 THEN 50: REM *PAUSE*

60 POKE V-3,N:D=TI: REM *PLAY NOTE*

70 IFTI-D < 20 THEN 70: REM ^DURATION*

80 POKE V-3,0: REM *STOP NOTE*

90 NEXT I

100 DATA 203, 207, 209, 203: REM *NOTE VALUES*

110 DATA 195, 187, 179, 175

120 DATA 179, 203, 203

130 POKE V,0: REM *VOLOFF*

140 END

Different colours can be defined for each window

and each may also be cleared independently.

Display Modes
TheBBC Micro has eight graphics modes, three of

which support text displays only. There is a choice

of 20, 40, or 80 characters across the screen,

depending on which mode has been selected.

Two, four or 16 colours are available, again

depending on the mode selected, but a pleasing

feature of the limited colour modes is that two or

four colours to be used in that mode are not fixed

and can be selected by the programmer from the

16 generally available.

M0D E 7 is different from all the others in that the

standard set of ASCII characters and associated

codes are not used. Instead, the display is made up

of Teletext characters. Normal graphics

commands, such as PLOT and DRAW, do not work

in MODE 7.

The following table shows the resolution and

colour choices specified by selection of any mode:

Mode Text Graphics Colours

0 80X32 640 X 256 2
1 40X32 320 X 256 4
2 20X32 160 X 256 16

3 80X25 2 (black& white)

4 40X32 320 X 256 2

5 20X32 160 X 256 4
6 40X25 2 (black& white)

7 40X25 Teletext

334 THE HOME COMPUTER COURSE

This program simply plays the notes in the correct

sequence with equal durations and pauses.

Consequently, the resulting tune is somewhat

stilted. With experimentation you can construct

more complex programs that provide different

intervals and durations for individual notes.

Sound Effects
By using two or three oscillators it is possible to

play simple chords. The program below plays the

chord ofD major (F#, A and D) starting with the

F# on its own, and adding the A and D after set

delays of one second each. The chord then

continues for a further two seconds.

10 POKE 36878,7

20 P0KE36874,233:D=TI

30IFTI-D<60THEN30
40 P0KE36875,219:D=TI

50IFTI-D<60THEN 50

60 P0KE36875,147:D=TI

70IFTI-D< 120 THEN 70

80 POKE 36878,0: POKE 36874,0

90 POKE 36875,0: POKE 36876,0

100 END

A lot can be done, however, to make the tone of

these sounds more interesting. For instance, the

volume can be varied over the duration ofa note
—

rising and falling according to a variable. For

example:

100 V = 36878

110 FOR 1= 1 TO 12

120 POKEV,l

130 NEXT I

140 POKE V,0

This causes the volume to rise in steps of 1 to a

peak of 12, where the total range is from 0 (off) to

15 (loud). Volume can be 'pulsed' by alternating a

high and low volume setting, as well. The
frequency can be similarly varied to *bend' a note

by changing line 120 above to:

POKE V-3,203+1

It is also worth trying different combinations of

noise, oscillator frequencies and volumes. This

can often result in a more pleasing tone. Whether

making music or adding sound effects to games,

the aim in computing is to reduce boredom by

avoiding the constant repetition of monotonous
notes.

We have shown how the simple sound facilities

on the Vic-20 can be manipulated to produce

interesting tones and note sequences. The main

problem is the lack of sound commands, which

involves the use of complex basic statements to

carry out relatively simple taskst This results in

long program routines that prevent the basic

interpreter from processing the code in between

notes quickly enough. The only simple way to

avoid this problem is to invest in one of the many
commercial software packages that supply extra

commands for music programming.

Commodore's Super Expander cartridge provides

a useful range of sound commands, as well as a

facility for storing tunes written with the aid of the

cartridge. However, if you require more than

rudimentary sound or music facilities from a home
computer it would be necessary to investigate

other models, such as the BBC Micro, the

Commodore 64, the Dragon 32 or the Oric-1.

The high resolution screen is defined with its

origin in the bottom left-hand comer ofthe screen,

regardless of the mode selected. Vertical values

range from 0 to 1023, and horizontal values range

from 0 to 1279. This consistent method of

mapping the screen becomes very convenient

when you decide to change the display from one

mode to another. Incidentally, if the mode of

display is changed during the course of a program

then the screen is automatically cleared.

Background, text and graphics colours are set

using the COLOUR and GGOL commands. The BBC
Micro uses the interesting idea of logical and

actual colours to allow the user to select a limited

set of colours from the 16 allowed. To illustrate

this it is best to use the example of using colour in

MODE 0 where only two colours can be specified.

Two possible foreground colours are given the

logical colour numbers 0 and 1, and unless the

computer is instructed to da otherwise, it takes 0

as black and 1 as white. The COLOUR command
selects the text foreground colour. COLOUR 1

would select logical colour number 1 as the text

colour, but it is possible to reset the logical text

colour using one of the VDU commands. VDU19

defines the logical colour. To set logical colour 1 to

green (actual colour number 2) the following

command is needed:

VDU19, 1,2,0, 0, 0,

The three noughts on the end have no significance

and are there for future expansion of the system.

The GCOL command has two numbers

associated with it. The second number is the

logical colour number for graphics display, the

first relates to the way in which that colour is used

on the screen. For the command GCOL a, b values of

a can range from 0 to 4 allowing the user to specify

whether the point or line should be displayed in

the logical foreground colour, whether it should

be ANDed, ORed or exclusive ORed with the colour

already present, or whether the original colour

should be inverted.

In a future part of the Sound And Light course

we will return to the BBC Micro and explain high

resolution capabilities, defining characters, and

look more closely at the set ofVDU commands.

THE HOME COMPUTER COURSE 335

Basic Programming

Changing Places
After looking at how to insert new records, we move on to ways of

retrieving thiem. As anticipated, we first encounter the problem of

finding an exact match

We ended the last instalment with an exercise for

you to write a database-type program that

allowed data to be entered into it. Lefs look at

some of the steps involved in entering a new
record as a way of continuing our examination of

what is involved in the INITIALISE stage of our main

program. First, let's assume that there are the

following fields and corresponding arrays:

FIELD

1 NAME field

2 MODIFIED NAME field

3 STREET field

4 TOWN field

5 COUNTY field

6 PHONE NUMBER field

7 INDEX field

ARRAY

NAMFLDS
MODFLDS
STRFLDS

TWNFLDS
CNTFLDS

TELFLDS

NDXFLDS

The meaning of most of these fields should be

reasonably clear, with the possible exception of

fields 2 and 7. Let's first consider the MODIFIED

NAME field. When we initially looked at the

problem of the data format for the name, we
debated whether to have the name format tightly

specified (rigid) or loosely specified (fuzzy) and

we opted for the latter. Since the way a name can

be entered is extremely variable, a rigid format

would have made search and sort routines very

difficult. To solve this we decided that all names

would be converted to a standardised format: all

letters converted to upper case, all non-alphabetic

characters (such as spaces, full stops, apostrophes,

etc.) removed and that there would be only a

sin^e space between the forename (if any) and

the surname.

The need to standardise names like this arises

because the sort and search routines have to have

some way of comparing like with like. On the

other hand, when we retrieve a name and address

from the database, we want to have the data

presented in the form it was originally entered.

There are two ways of handling this problem:

either each name filed is converted into standard

form only when sorts and searches are taking

place, or the name field can be converted into

standard form and stored as a separate field so

that sort and search routines can have instant

access to standardised names.

There are advantages and disadvantages in

both approaches. Converting the name fields

temporarily when they are wanted by other

routines saves memory space, since less data

needs to be stored in the file. On the other hand,

this procedure is extremely time-consuming.

However, if a separate field is reserved for the

standardised form of the name, the conversion

will need to be performed only once for each

record. And although extra memory is consumed,

searches and sorts will be executed quicker.

The other field that may cause confusion is the

INDEX field. This is really included as a spare field

to allow for future expansion or modification of

the database without the need for major rewriting

of the program. Its inclusion introduces the topic

of 'binding' — a term that means the fixing of data

and processing relationships. All the fields or

elements in each of the records are bound because

they have the same index (the same element

number or subscript in their respective arrays),

and because all the fields in a record will be stored

in a file together. This can make the addition of

new data types or relationships at a later stage a

difficult task, possibly involving the complete

reorganisation of the file structure and a major re-

writing of the program. The incorporation of the

INDEX field at this stage will make future changes

to the program much simpler.

Before attempting to add a new record to the

database, we will make a few assumptions about

the structure of the files. First, we will limit the

number of records to 50 (even though this is really

too small for a useful address book — we'll find

out how to handle large amounts of data later).

We will also assume that all the data has akeady

been transferred — as part of the INITIALISE

procedure — into arrays.

When a new record is added, it is simplest to

add it to the end of the file (that is, to the first

empty element in each array). There is a good

chance that the new record will be out of order

with the others, but that is a problem we can

investigate later. The first thing to do, therefore,

will be to find out how big the array is. Since this is

a piece of information likely to be useful in many
parts of the program, the best place to do it is in

INITIALISE. TTiis is a clear case of the need for a

global variable (that is, a variable that can be used

in any part of the program). We will call it SIZE.

Another global variable likely to be useful is the

index of the current record. Since no record will

be current when the program is first run, assigning

an initial value to CURR will have to wait until the

program does something to the data. CURR can,

however, be initialised to zero in the

INITIALISATION procedure. Initialising a variable to

zero is not strictly necessary in basic as this is done

automatically. It is, however, good practice and

336 THE HOME COMPUTER COURSE

Basic Programming

should always be done for local variables to

prevent 'side effects' from the use of the same

variable elsewhere in the program.

When the program is first run, various types of

initialisation will take place and data will be

loaded from disk or tape and transferred to string

variables. The CHOOSE menu will then be

presented. If the user chooses option 6 (to add a

record to the file), the value of variable CHOICE

returned will be 6, and this will call the sub-

program ADDREC. ADDREC will assume that SIZE

has already had a value assigned to it and so it can

start prompting for inputs (note: this also assumes

that INITIALISE has akeady correctly DIMensioned

the necessary arrays).

Adding a new record also means that the file is

now, potentially at least, out of order. Since a sort

may take some time, it may not be necessary to

sort the records after each addition has been made
— that is a decision we shall defer for the moment.

Instead, we will set a flag to indicate that a new
record has been added.

We are now in a position to start making a

tentative list of possible arrays, variables and flags

that may be needed by the program.

ARRAYS

NAMFLDS (name field)

MODFLDS (modified name field)

TWNFLDS (town field)

CNTFLDS (county field)

TELFLDS (telephone number field)

NDXFLDS (index field)

VARIAB1£S

SIZE (current size of file)

CURR (index of current record)

FIAGS

RADD (new record added)

SORT (sorted since record modification)

SAVE (save executed since record

modification)

RMOD (modification made since last save)

It is likely that in the course of developing the

program a few more arrays wiU be needed.

Certainly more variables wiU be needed. As for

the flags, it is apparent that although others will be

necessary, the four given above may not all be

required. There will be no need either to save or

sort the file (assuming it is already saved and

sorted) unless a modification has taken place, so

RMOD is possibly the only flag really needed. But if

we do decide to use all four flags, the

INITIALISATION sub-program should set them all to

their appropriate values. As further practice in

top-down program refinement, let's see how easy

it is to code *ADDREC*.

1 4 (EXECUTE) 6 (ADDREC)

BEGIN

Locate current size of file

Prompt for inputs

Assign inputs to ends of arrays

Set RMOD flag

END

II 4 (EXECUTE) 6 (ADDREC)

BEGIN

(size of file is SIZE)

(prompt for inputs)

Clear screen

Print prompt message for first array(SIZE)

Input data to array(SIZE)

(prompt and input for all arrays)

Set RMOD to 1

END

All this is straightforward and does not involve

loops or other complicated structures. The next

step can be direct coding into basic. The only

points to note are that SIZE is a variable set during

the execution of INITIALISE and does not need to

be coded as part of this section.

Ill 4 (EXECUTE) 6 (ADDREC) BASIC CODE

CLS: REM OR USE PRINT CHR$(24) ETC TO CLEAR

SCREEN
INPUT "ENTER NAME";NAMFLD$(SIZE)

INPUT "ENTER STREEr;STRFLD$(SIZE)

INPUT "ENTER TOWN";TWNFLD$(SIZE)

INPUT "ENTER COUNTY";CNTFLD$(SIZE)

INPUT "ENTER TELEPHONE NUMBER";

TELFLD$(SIZE)

LETRM0D=1
LETNDXFLD$=STR$(SIZE)

GOSUB*MODNAME*
RETURN

The third to last line sets the NDXFLDS field to the

value of SIZE (converted into a string by STR$), so

that it can act as an index at a later stage. The
subroutine *MODNAME*, called just before the end

of the program, is none other than the program

described in detail on page 254. A few slight

changes will be needed to that program, but these

are just details. This subroutine has the function of

taking the ordinary (fuzzy) name input and

converting it into a standard form. The output

from this subroutine will be an element (SIZE) in

an array called MODFLDS. All name searches and

sorts can now be conducted on the elements in

MODFLDS, and since the element will have the

same index as the other fields in the record, it will

be easy to display the name and address as they

were originally entered. In other words, the search

will be made on MODFLDS but the display will

come from NAMFLDS.

That's about all that's involved in adding a new
record to the file, although we have not made
allowances for any error checking, or provision

for what would happen if there is no more space

left in the array Since all our programs are being

written in modular form, modifications and

improvements such as these can easily be made
later without having to rewrite the whole

program.

The sub-programs MODREC and DELREC (to

modify and delete records respectively) are fairly

similar to ADDREC, except that before they can be

executed we have to locate the record we want to

change. Consequently, both of these sub-

THE HOME COMPUTER COURSE 337

Basic Programming

programs will start by calling FINDREC. This sub-

program is based on a search routine similar to the

one described on page 273. The chief difference

this time is that (in all probability) no two data

items will be identical, since few people have

completely identical names.

There are two ways a search can be conducted.

One is to search through an unordered pile. This

makes the searches slower than they need to be. In

the worst case, the routine might have to search

through all of the data items before locating the

item being searched for. Searching through an

unordered pile does have the advantage, however,

that sort routines are not required every time a

record is added, deleted or modified.

If the data is ordered in some way — either

numerically or alphabetically, for example — the

program will have to search through only a small

fraction of the items in the list. The longer the list

is, the more efficient a binary search becomes

compared with searching through an un-ordered

pile. In fact, if there is enough data in the file to

warrant it, the sorting of the records after a

modification can be speeded up by conducting a

preliminary search to locate the first and last

occurrence in the array of the initial letter of the

surname in the record involved.

Another way to speed up the sort routine

might be to maintain a look-up table of the

locations in the array of the first occurrence of

each letter of the alphabet. This table, however,

would need to be carefully maintained (updated)

whenever any changes were made to the data.

The subject of searching and sorting is one of

the largest areas in programming, and books have

been devoted to it. We will not attempt to find the

optimal solution for our address book program

since this depends on a large number of factors,

including the number of records in the file and

whether or not disk drives are available.

A program in pseudo-language for a search

through the elements in the MODFLDS array is now
given. The string variable KEYS is the key for the

search. The term 'key' here means the identifying

group of characters used to specify which record

(or records) is required.

Prompt for name to be searched

LET KEYS = name (to be searched)

LET BTM = 1

LET SEARCHING = 0

LET TOP = SIZE

LOOP while (BTM < = TOP) AND (SEARCHING = 0)

LETI\/IID = INT((BTM + T0P)/2)

IFKEYS = MODFLDS(MID)

THEN
PRINT NAMFLDS(MID)

PRINT STRFLDS(MID)

PRINT TWNFLDS(MID)

PRINT CNTFLDS(MID)

PRINT TELFLDS(MID)

LETSEARCHING = 1

ELSE

IFKEYS>MODFLDS(MID)

THEN LET BTM = MID+1

ELSE LET TOP = MID-1

ENDIF

ENDIF

ENDLOOP
IF SEARCHING = 0 THEN PRINT "RECORD NOT

FOUND"

END

This piece of pseudo-language is closely based on

the program used for searching football scores on
page 275, but you will see diat it does have a

suitable output if the record cannot be found (the

last PRINT statement), which will be executed only

if the loop fails to locate an exact match between

KEYS and MODFLDS(MID).

Unfortunately, an exact match is rather

unlikely, even if the name and telephone number
you want is in the database. This is because the IF

KEYS = MODFLDS statement is totally inflexible; it

does not allow for the slightest difference between

the character string input by the user in response

to the prompt and the character string stored in

MODFLDS(MID). In an ordinary address book, the

eye scans down the page and is able to allow for

all sorts of small differences in the actual

representation of the record and what you are

looking for. The computer cannot do this.

There are, however, ways of avoiding this,

although they all involve extra progranmiing

effort and will take a little more time to run. The
first improvement would be to check only the

surname first, and for this reason it makes sense

for the name stored in MODFLDS to be in the form

SURNAME (space) FORENAME. We developed a

routine for reversing the order of a name earlier in

the Basic Programming course (see 'Basic

Ravours') and this can be incorporated as a

subroutine within the ADDREC routine when the

MODFLDS field is created.

Having successfully located the first occurrence

of the required surname, the FINDREC routine

should then check the forename part of that

element to see if it is identical to the name input

(KEYS). If it is, there is no problem — the record

has been located. If it is not, however, the problem

starts to get complicated, and we have to plan our

strategy carefully. We could, for example, search

through all the forenames, and if an exact match is

not found, start looking for an approximate

match. The difficulty here is: what exactly

constitutes an approximate match?

Instead of the "RECORD NOT FOUND" message in

the program above, it might be better to give a

message like "EXACT MATCH NOT FOUND, TRY FOR A

CLOSE MATCH? (Y/N)?" What do the words 'close

match' mean? Is Bobby a close match to Robert?

How about Robrt? Both of these represent

possible inputs in the FINDREC program. Let's try

to define what we mean by a close match and then

start to develop a program in basic to find the

closest match to an input string.

Suppose the string in memory was ROBERT.

Which of the following is the closer match: ROB or

RBRT? The second gets four letters right out of six,

338 THE HOME COMPUTER COURSE

Basic Programming

while the first gets only three out of six. On the

other hand, the first has three letters in correct

sequence, while the second has only two.

The choice is largely 2irbitrary. We will opt for

giving priority to an exact match between KEYS

and a substring of the name in memory. If no

exact match with a substring can be found, the

program will try to get the largest number of

common letters. Here's the program stated in

terms of input and output:

INPUT

A character string

OUTPUT

The closest match to the input string

The following program, in a pseudo-language

close to BASIC, will search through the strings in an

array and examine the first *n' letters in each,

where 'n' is the number of letters in the key (KEYS).

If there is no match, a message to that effect will

be printed:

DIMARRAYS(4)

F0RL = 1T0 4

READARRAY$(L)

NEXTL
DATA "ROBERT", "RICHARD", "ROBIANA",

"ROBERTA"

LET KEYS = "RON"

LET LKEY = LEN (KEYS)

LET SEARCHING = 0

LOOP FOR INDEX = 1 TO 4

IF KEYS = LEFTS(ARRAYS(INDEX),LKEY)

THEN PRINT "MATCH IS ";ARRAYS(INDEX)

LET SEARCHING = INDEX

ENDIF

ENDLOOP
IF SEARCHING = 0

THEN PRINT KEYS; "IS NOT AN EXACT MATCH

OF ANY"

PRINT "FIRST ";LKEY; "CHARACTERS"

After this, the program could go on to look at

groups of characters LKEY long, starting with the

second character in each string. If none of these

matches, groups starting with the third character

could be searched, and so on. Finally, if none of

the triplets of characters in the strings matches, the

program could try to find which string had the

largest number of letters in common with KEYS.

This is left as an exercise for the reader.

We could in fact write pages on the subject of

*fuzzy' matching, and the different techniques

employed in commercial database packages.

Most offer the ability to search on the first few

characters in the field, like the code we have just

been developing. Others will retrieve a record if

the specified sequence of characters appears

anywhere in the field, or indeed anywhere in the

record. A 'wildcard' facility is particularly useful,

so that specifying: J?N would find JONES, or JANE

but not JOHN. The most sophisticated form of

fuzzy matching works phonetically, so that

entering SMITH would also find SMYTHE.

Basic Flavours

ZX81
SPECTRUM

"J.

LEFT$

RIGHTS

INSTR

This is the listing of the program to reverse

the order of Firstname and Surname, first

published on page 136:

100 CLS

200 PRINT "ENTER NAME IN THE FORM"

300 PRINT "FIRSTNAME SURNAME"

400 PRINT "E.G. JILL THOMPSON"
500 INPUT "ENTER NAME";N$

600 GOSUB 9500

700 PRINT "NAME IN STANDARD FORM IS"

800 PRINT N$

1000 STOP

9500 REM S/R TO REVERSE NAME ORDER

9520 GOSUB 9600

9540 IF P=0 THEN RETURN

9560 LET N$=S$+", "+F$

9580 RETURN
9600 REM S/R TO SLICE N$ AT A SPACE

9620 LET N=LEN (N$)

9630 LET P=0

9640 FOR K=1 TO N

9650IFN$(KK "THEN LET P=K

9655IFN$(K)=" "THEN LET K=N

9660 NEXT K

9670 IF P=0 THEN RETURN

9680 LET F$=N$(TOP-1)

9700LETS$=N$(P+1T0)

9720 RETURN

On the Commodore 64, Vic-20, Oric-1, and

Lynx, replace lines 9600 to 9720 of the

Spectrum listing by these lines:

9600 REM S/R TO SLICE N$ AT A SPACE

9620 LETN=LEN (NS)

9630 LET P=0

9640 FOR K=1 TO N

9650IFMID$(N$,K,1K

LET K=N

9660 NEXT K

9670IFP-0 THEN RETURN
9680 LET F$=LEF$(N$,P-1)

9700 LETS$=RIGHT$(N$.N-P)

9720 RETURN

THEN LET P-K:

On the Dragon 32 and the BBC Micro, replace

lines 9600 to 9720 of the Spectrum listing by

these lines:

9600 REM S/R TO SLICE N$ AT A SPACE

9620 LET N=LEN (N$)

9640 LET P=INSTR(N$," ")

9670 IF P=0 THEN RETURN
9680 LET F$=LEFT$(N$,P-1)

9700 LETS$=RIGHT${N$,N-P)

9720 RETURN

As we have mentioned before, INSTR is a

useful function, particularly when dealing

with database-type applications such as this.

If your machine has INSTR, then you may like

to attempt a more sophisticated form of

'fuzzy' matching.

On the BBC Micro, replace line 500 of the

Spectrum listing by:

500 INPUT "ENTER NAME", N$

THE HOME COMPUTER COURSE 339

Konrad Zuse

Doodle Bug

Zuse's computers were

developed to replace teams of

technicians working with slide

rules on aeronautical

calculations. In particular, they

were applied to the design of the

V1 and V2 (pictured) flying

bombs used so heavily in the

Second World War

While von Neumann was doing
his pioneering work in the USA,
Zuse was achieving similar

results in Germany

Inventions are often made simultaneously in

different parts of the world from ideas that have

been developed independently of each other. In

the 1940's, while the first valve computer

(ENIAC) was being developed in America, a

German engineer, Konrad Zuse, was at work on a

programmable calculator — arguably the world's

first computer.

Zuse was bom in Berlin on 22 June 1910. After

attending the city's Technical University he

worked as an aeronautical engineer for the

Henschel Aircraft Company, developing wing

design. The basic mathematical principles

involved in strengthening aircraft wings to

withstand the stresses of high-speed flying had

been laid down in the 1920's. But the individual

calculations needed for the production of each

pair of wings required teams of people working

with mechanical adding machines and slide rules.

Zuse soon came to appreciate the need for a

"machine that could do this time-consuming work
rapidly. Working with friends in his parents' flat in

the evenings, he set about building a computer

that could perform this task.

His first machine, the Zl, was a mechanical

device that could perform the four elementary

arithmetic operations, calculate square roots and

convert decimal numbers to binary notation and

vice versa. Although unaware ofthe achievements

of Charles Babbage (see page 220), whose
Difference Engine had been created to perform

the laborious calculations needed for nautical

tables, he had arrived at many similar conclusions

and some that were far in advance. Zuse's major

breakthrough was in recognising that a lever was a

switch that could be put in one of two positions ~
on and off— and could therefore be used either as

a means of storing data or as a control device.

Zuse pursued the idea ofrepresenting both data

and instructions in binary form, and in 1941 he set

out to build an electromagnetic computer, which

he called the Z2. Involved in the war effort, the

German government at first showed little interest

in his invention. However, its military potential

was eventually recognised and funds were

provided for him to develop the new Z3. This was

to be an electrical computer, with electrical wiring

in place of the mechanical linkages that he had

used in the earlier machines, and which aUowed

for a more compact and elegant design.

Zuse built the Z3 despite major handicaps. The
Allied bombing of Berlin forced him to move his

workshop several times. He was called up twice,

only to be returned from the eastern front to

continue his work. The wartime shortage of

materials forced him to improvise by scavenging

components from telephone switching gear and

using old cinema film, punched with codes of eight

holes per frame, in place of paper tape.

The Z3 could store 64 words, each of 22 bits in

length. Information was input through a keyboard

and the results displayed visually on an

arrangement oflamps mounted on a board. Sadly,

the Z3 was destroyed, along with Zuse's earlier

computers, in the saturation bombing of Berlin in

1945.

One of the computers was adapted by the

Henschel Aircraft Company to help in the

construction of the HS-293 flying bomb. This was

an unmanned plane that was launched from an

airborne bomber and guided to its target by radio

control.

Zuse's last wartime computer, the Z4, had the

length of its words increased to 32 bits. It was

evacuated to Gottingen as the Allies approached

Berlin. Eventually it ended up in Basle,

Switzerland, where it operated until 1954— one of

the most important computers working in Europe

at the time.

Zuse was unable to manufacture computers in

post-war Germany, so he concentrated on the

theory of computers. He developed a sophistic-

ated language called Plankalkiil that could deal

logically with both mathematics and more general

information. When he was able to manufacture

computers again he formed the Zuse Company,

which was Germany's major computer

manufacturer until 1969, when it was absorbed

into the Siemens Corporation. Professor Zuse is

still working in the computer industry.

340 THE HOME COMPUTER COURSE

Mentathlet

Home computers. Do they send your brain to

sleep - or keep your mind on its toes?

At Sinclair, we're in no doubt To us, a

home computer is a mental gym, as

important an aid to mental fitness as a set of

weights to a body-builder.

Provided, of course, it offers a whole

battery of genuine mental challenges.

The Spectrum does just that

Its education programs turn boring

chores into absorbing contests- not learning

to spell 'acquiescent, but rescuing a princess

from a sorcerer in colour, sound, and

movement!

The arcade games would test an

all-night arcade freak -the/re very fast very

complex, very stimulating.

And the mind-stretchers are truly

fiendish. Adventure games that very few

people in the world have cracked. Chess to

grand master standards. Flight simulation

with a cockpit full of instruments operating

independently. Genuine 3D computer design.

No other home computer in the world

can match the Spectrum challenge - because

no other computer has so much software of

such outstanding quality to run.

For the Mentathletes of today arid

tomorrow, the Sinclair Spectrum is gym,

apparatus and training schedule. In one neat

package. And you can buy one for under

£100.

COMPUTER COURSE
BINDER

* Ifyou prefer tobuythe binders
v-^^^ telyplease send usyoureheque/po^ic

order for£3 .95 (including P&P).We will send
youvolume 1 only Thenyoumayordervolume
2 in thesameway - when it suitsyou

!

Oyerseas readers; This
binder offer applies to readers in the
UK, Eire andAustralia only Readers inAustralia should
complete the special loose insert in Issue 1 and see additional
binder information on the inside front cover. Readers in New-
Zealand and South Alrica and some other countries can obtain
their bindersnow. For details please see inside the front cover.

Binders maybe subject to import duty and/or local tax.

NEXT TOYOUR COMPUTER...YOURCOURSE MANUALS

