
i

ardware Focus

Acorn Electron We look at the third

generation Acorn home computer 370

Software ^i^^^^^^^^^^^l P

Make Believe Simulation in the classroom
helps keep school costs down and provides

valuable assistance to pupil and teacher

366

Basic Programming >
Dummy Run We must now create dummy
data files for our address book before we can
run the program

376

CallMy Bluff Computer games can be
much more challenging than Space Invaders

or PacMan

Best Bet We examine ways in which home
computers can be used as an aid to decision-

making, both at home and at work

Jet Propelled Fast, silent printers that offer

full colour are now available for most home
computers at a reasonable price

361

368

372

Memory Maps We explain how space in

memory is allocated to different tasks by the

microcomputer's operating system

Pioneers In Computing

Double ShuffleA brief history of the

tabulator— precursor to the computer

364

380

Sound Proof . . . Light EntertainmentWe
look at the Dragon 32's sound generation

and further aspects of the BBC Model B's

graphics

374

NextWteek
• We examine Memotech's MTX
— 16 colours; four sound

channels with hi-fi connector;

BASIC, LOGO and Assembler as

standard, with PASCAL as a

ROM-based extra — all for less

than £300

• Uncommitted Logic Arrays,

found in most second generation

microcomputers, malce the

computer designer's job much

easier and the end product much

less expensive

A complete index to THE HOME
COMPUTER COURSE will appear

with Issue 24

EdftwRichardPawson; ConsuttantEditorGareth Jefferson; ArtDirector David Whelan; ProductionEditorCatherineCardwell; StaffWiiter Roger Ford; PictureEditorClaudiaZeff; Designer Hazel Bennington; ArtAssist»it Liz Dixon; Sub
Editors Robert Pickering, Keith Parish; Researcher Melanie Davis; Contributors Tim Heath, Henry Budgett, Brian Morris, Lisa Kelly, Steven Colwill, Richard King, Geoffrey Nairns; Group Art Director Perry Neville; Managbig Director

Stephen England; Consultant David Tebbutt; Published by Orbis Publishing Ltd: Editorial Director Brian Innes; Project Development Peter Brookesmith; Executive Editor Chris Cooper; Production Co*ordinator Ian Paton; Circulation

Dfaectw David Breed; Mariceting Director Michael Joyce; Designed and produced by Bunch PartworicsUd; Editorial Office 85 Charlotte Street, London W1;© 1963 by OrtiisPublfc^^
Ud; Printed in Great Britain by Artisan Press ltd, Leicester

HOME COMPUTER COURSE - Price UK 80p IR £1.00 AUS $1.95 NZ $2.25 SA R1.95 SINGAPORE $4.50 USA and CANADA $1.95

How to obtain your copies of HOME COMPUTER COURSE - Copies are obtainable by placing a regular order at your newsagent.

Back Numbers UK and Eire - Back numbers are obtainable from your newsagent or from HOME COMPUTER COURSE. Back numbers, Orbis Publishing Limited, 20/22 Bedfordbury, LONDON WC2N 4BT at cover price. AUSTRALIA Back

numbers are obtainable from HOME COMPUTER COURSE. Back numbers, ciordon & Gotch (Aus) Ltd, 114 William Street, PO Box 767G Melbourne, Vic 3001. SOUTH AFRICA, NEWZEALAND, EUROPE & MALTA: Back numbers are available at

cover price from your newsagent. In case of difficulty write to the address in your country given for binders. South African readers should add sales tax.

How to obtain binders for HOME COMPUTER COURSE - UK and Eire: Please send £3.95 per binder if you do not wish to take advantage of our special offer detailed in Issues 4, 5 and 6. EUROPE: Write with remittance of £5.00 per binder (incl.

p&p) payable to Orbis Publishing Limited, 20/22 Bedfordbury, LONDON WC2N4BT. MALTA: Bindersare obtainable throughyour local newsagent price £3.95. In caseof difficulty write to HOME COMPUTER COURSEBINDERS, Miller (Malta)

Ltd, M. A. Vassalli Street, Valletta, Malta. AUSTRALIA: For details of how to obtain your binders see inserts in early issues or write to HOME COMPUTER COURSE BINDERS, First Post Pty Ltd, 23 Chandos Street, St. Leonards, NSW 2065. The

binders supplied are those illustrated in the magazine. NEW ZEALAND: Binders are available through your local newsagent or from HOME COMPUTER COURSE BINDERS, Gordon & Gotch (NZ) Ltd, PO Box 1595. Wellington. SOUTH AFRICA:
Binders are available through any branch of Central Newsagency. In case of difficulty write to HOME COMPUTER COURSE BINDERS, Intermag, PO Box 57394, Springfield 2137.

Note - Binders and back numbers are obtainable subject to availability of stocks. Whilst every attempt is made to keep the price of the issues and binders constant, the publishers reserve the right to increase the stated prices at any time when
circumstances dictate. Binders depicted in this publication are those produced for the UK market only and may not necessarily be identical to binders produced for sale outside the UK. Binders and issues may be subject to import duty and/or

local taxes, which are not included in the above prices unless stated.

COVER PHOTOGRAPH BY IAN McKINNELL CHESS SET COURTESY OF HARRODS

Call My Bluff
Chess-playing programs are difficult to write, but it is possible even
for beginners to construct a simple, Intelligent' game program

Many people, when they begin writing their own
computer programs, dream of the day when they

will know enough to be able to write a program
that plays chess. This is not because chess

programs are unavailable, of course. Such
programs abound in number, both as packages

available for home computers and in the form of

dedicated chess-playing machines. But writing

chess programs can become an obsession, even

among programmers who are not particularly

keen on chess as a game. A possible reason for this

is that we regard the game as being a highly

intellectual pursuit, and therefore a computer that

can play chess is a step towards creating an

intelligent machine. It would be very difficult to

explain to you how to write a complete chess

program from scratch, however. But we can

explain some of the principles on which

computerised 'intelligent' games are constructed,

and to a level where you could write a fairly

sophisticated program in basic.

It should be remembered, however, that the

'games' we are concerned with are not arcade

games, adventures or simulations, all of which

require different programming techniques and

different imaginative skills. We'll begin our

discussion of intelligent games with what you
might consider to be a trivial example, but one that

demonstrates many of the principles of intelligent

game writing.

Most children (as well as grown-up children) are

familiar with the game Scissors-Paper-Stone. The
rules are simple: both players must think of one of

these three objects, and then simultaneously hold

up a hand in a shape representing the chosen

object. The winner is determined according to

three rules: scissors beats paper (by cutting), paper

beats stone (by covering), and stone beats scissors

(by blunting them).

To anyone who has followed the Basic

Programming course, it should be a simple

exercise to write a program to play the computer's

part and keep the score. The RND function is used

to select one element from a three-element string

array containing 'SCISSORS', 'PAPER' and 'STONE'.

The chosen element is then PRINTed when the

space bar is pressed. The player types in his own
choice (the program relies on his honesty), and the

Invisible Hand

Dedicated chess-playing

machines contain the same

components as home

computers: a CPU, RAM, and

the program in ROM, and differ

only in the method of input and

output. The Phantom, shown

here, uses a servo-mechanism

and magnets that enable the

computer to move the chess

pieces automatically. When, for

example, a knight jumps over

another piece, a sophisticated

algorithm is employed that

removes any obstruction and

then replaces it after the move

THE HOME COMPUTER COURSE 361

program calculates who won, displaying the result

and an accumulating score for itself and its

opponent. If the RND function is truly random,

then the scores should even out over a large

number of rounds, no matter what strategy the

player adopts. Now we need to determine how we
can improve the computer's strategy to ensure that

it will win over a large number of rounds.

When we looked at random functions (see page

209), we learnt that generating a truly random
sequence ofnumbers is an impossible task for both

humans and computers, though the latter make a

much better approximation. Over many rounds of

our game the human player will invariably favour

one of the objects more than the others. You can

write a subroutine in your program that keeps

track of the player's choices, using an array with

three elements called, let's say, CH0ICE(1),

CH0ICE(2), and CH0ICE(3). Each time the player

makes a choice, one is added to the total in the

corresponding array element. The computer can

then establish which object is more often presented

by its opponent, and play the object that beats this

preferred choice.

the game. So rather than keep a record of his

opponent's choices since the start of the game, it

would be better that the program simply recorded,

let's say, the last 20 choices. This wiU require a

CHOICE array of 20-by-three elements, and a more
sophisticated subroutine to add up the three

colunms and hence predict the best choice for the

computer's next turn.

However, the most serious shortcoming of this

algorithm becomes apparent if the player deduces

the computer's strategy. Then it is relatively easy

for him to play in a way that ensures that the

computer will lose on more than halfthe turns. The
player could, for example, consistently play the

same object, and then switch to another

unexpectedly, and so on. What we need is a

different algorithm that avoids these problems.

Nevertheless, it would be worthwhile developing

programs that use both the fully random and the

modiiSed random methods, and observing the

scores when these are used by unsuspecting

players.

Because humans are incapable of making a

totally irrational or random decision, it follows that

9

6

5

2 5 8 9

Winning

Position
'Position evaluation' is

fundamental to any board

game program — even if the

game is as simple as noughts

and crosses. In this case, the

board is represented as a

three by three array, the

player's noughts by the value

one, and the computer's

crosses by a four. Using these

values, any position can be

evaluated by adding up the

totals for every row, column

and diagonal. A total of 12 in

any of these lines indicates

that the computer has won;

three means that the player

has won; a total of eight

shows that two crosses have

been played and the computer

can win; and so on. The

values one and four are used

because these ensure that

every combination of noughts

and crosses gives a unique

total

Three problems arise with this method. Firstly, if

the computer consistently plays the same object

then the player is very quickly going to take

advantage of this. Therefore, the computer must

generally be made to choose fi'om the three objects

using the RND function, while a routine should be

added to ensure that it will more frequently choose

the object that will beat the player's most preferred

choice.

The second problem is that the player will tend

to change his favourite object over the course of

every choice must be a function of the previous

choices. That function may be extremely

complicated, and the player ahnost certainly isn't

aware of it, but if the computer can work out a

good approximation to that function, then it

should be able to win fairly consistently. Because

each player will have an individual subconscious

formula, and will probably change this formula

over the course of a long game, the program must

be made to interpret the formula while it is playing.

Programs that can learn like this are called

'heuristic' programs.

An heuristic program enables the computer to

detect alterations in its opponent's strategy, and

modify its algorithm accordingly. Such a program

would have to keep a record of, let's say, the last 50

choices of both opponents, in an array. It

constantly scans through this track record applying

a statistical technique known as 'correlation'.

This involves the computer in making hundreds

ofcomparisons between the player's choice and his

previous choice, or the one before that, or the

choice made five turns ago. The computer

performs the same operation on its own choices.

Let's consider the correlation between the player's

move and his previous move, for example. We'll

call Scissors — element 1, Paper— element 2, and

Stone— element 3. First we must set up a three by

three array, called say C0RR1 , because it represents

our first correlation test. Now we must work

through our game history, looking at the player's

choices for die last 50 moves. Every time he

followed Scissors (1) by Stone (3), we add one to

the element C0RR1(1,3); when Stone (3) is

followed by Paper (2), one is added to element

C0RR1(3,2) and so on.

If the player is making truly random choices,

then there should be approximately equal values in

each element of C0RR1 — but this is very unlikely

to be the case. So, if the player chose Paper last,

then the element in row 2 (Paper) of C0RR1 with

the largest value will give us tihe best guess as to

what he will choose next. The greater the

difference between the elements in any row, the

better the correlation is, and the more reliable the

prediction will be. However, it is possible that there

will be little correlation between the player's choice

and his previous choice, in which casewe must also

perform correlation calculations on the second to

last choice, or between the player's choice and the

computer's previous choice.

A problem arises if the various correlation

routines all predict different results for the player's

next move. The program has to decide which is the

most reliable advice. In this simple game, all it

needs to do is see which test has the most

pronounced correlation. For example, the COR R1

array might predict the following probabilities:

Scissors 51%, Paper 29%, Stone 20%; whereas

C0RR2 (which, say, compares the player's choice

with the computer's last choice) might give:

Scissors 24%, Paper 60%, Stone 16%. Clearly

C0RR2 has the better correlation, so its prediction

should be selected. An intelligent games program

will in fact frequently consist of a number of

subroutines, each working on different strategies,

and each advising the main routine of the best

move. The playing routine can regard these

subroutines as a 'conmiittee', and act on a majority

decision. But as the game proceeds, it can award

marks to each routine according to whether its

advice was good or not.

If there does turn out to be some correlation

between the player's moves or choices and the

previous moves of the computer, then it is possible

5 CLS

10 DIMC1(3,3),C2(3,3),C3(3,3)

20 CR=0

30 FOR 1=1 TO 3

40 IFC1(PL,I) >CRTHEN BG=I: CR=C1(PL,I)

50 IFC2(PP,I) >CRTHEN BG=I: CR=C2(PP,I)

60 IFC3(P3,I)>CRTHEN BG=I CR=C3(P3,I)

70 NEXTI

80 CT=BG-1

90 IF BG=1 THEN CT=3

100 GETPTIFPT=OTHEN 100

110 REM LINE 100 WAITS FOR A DIGIT TO

120 REM BE PRESSED.

130 IFCT=PT-1 THEN CS=CS+1

140 IFCT=PT-2THEN PS=PS+1

150 IF CT=PT+1 THEN PS=PS+1

160 IFCT=PT+2THEN CS=CS+1

170 CLS

180 PRINT "YOUR CHOICE: ";PT

190 PRINT "MY CHOICE: ";CT

200 PRINT "YOUR SCORE IS ";PS

210 PRINT "MY SCORE IS ";CS

220 C1(PL,PT)=C1(PL,PT)+1

230 C2(PP,PT)=C2(PP,PT)+1

240 C3(P3,PT)=C3(P3,PT)+1

250 P3=PP

260 PP=PL

270 PL=PT

280 GOTO 20

to program in some kind of 'bluffing' factor that

will deliberately mislead the player. This works

best in gambling games, where the stakes increase

as the game continues, and it is worthwhile losing

the early rounds to win the later ones.

At the State University of New York at Buffalo

(reported in Scientific American, July 1978) a

collection of poker-playing programs (all of them

with a learning capability) were set against each

other for several thousand games. The overall

winner was a program called the Adaptive

Evaluator of Opponents (AEO), which made an

initial judgement about the strength of its

opponents' hands, and modified this estimate as

each game proceeded. The SBI program, 'Sells

and Buys Images', did surprisingly badly — its

technique was to bluff in order to 'seU' a false image

to its opponents, or effectively to 'buy' the playing

style of others. The Bayesian Player (BP) tried to

make inductive inferences, and improve its play by

comparing the predicted consequences of its

actions with the actual consequences. Finally, the

Adaptive Aspiration Level (AAL) program

attempted to mimic a feature believed to exist in

human playing: adapting the level of aspiration

(that is, the degree of risk it is prepared to take)

according to its past record and current status.

No two chess programs or other artificially

intelligent routines work in exactly the same way.

But by experimenting with the techniques we've

outlined here on progressively more complicated

games, you may eventually be able to join the

exclusive club of chess program writers.

Slow Learner

This program, based on the

game Scissors — Paper —
Stone, illustrates how a

program can 'learn' as a game

progresses. The computer

selects from the numbers 1,2

and 3, compares its choice

with the one you have typed in

and adjusts the score. The

GET statement has been used

so that you can simply press

the three number keys in rapid

succession. If you attempt to

make your sequence random,

you should find that after a

couple of hundred key-

presses, the computer's score

will pull ahead. It is possible

to fool this program and

hence continue to win, but

more sophisticated routines

can be added to it to prevent

you from doing this

THE HOME COMPUTER COURSE 363

Passwords To Computing

Map Reading
High-level languages like Basic manage memory automatically

;

otherwise we need a detailed layout of the memory in order to find

our way around the computer

The CPU at the heart of a computer has an

addressing range that determines the maximum
number ofmemory locations it can access, and for

most home computers this is 64 Kbytes. That

memory space must contain all the RAM and
ROM that comes with the machine, any expansion

RAM or ROM that can be added on, and all the

special interfacing chips and ports, which are

regarded by the CPU as memory locations as well.

One of the most important aspects of the design of

a computer is the 'memory map' — the list or

diagram that specifies which parts of the memory
space are allocated to each of the machine's

functions. If your programming is restricted to

System Overhead

A computer with 4 Kbytes of

RAM may in fact have only 3

Kbytes available to the user for

programs. The difference is the

system overhead, a section of

the RAM that is reserved by the

operating system whenever the

machine is switched on. Part of

this is used for system

variables, such as temporary

values when computing

complex expressions, and

pointers to where various things

are currently held in memory

Empty

Space for expansion RAM must

be reserved in the memory map.

Some systems permit more

than 64 Kbytes to be added on,

butthis is generally 'bank

switched' — a special circuit

switches the relevant section of

RAM into, and out of, the

memory map as needed

User RAM
The size of this determines the

sophistication of the programs

that you can run, and is perhaps

one of the most important

considerations when buying a

home computer

BASIC then you don't need to know about the

memory map in any detail. But if you venture into

machine code, or have ideas about building your

own hardware add-ons, then it becomes of vital

importance.

On these pages we show what a typical memory
map contains. Our example is closer to a 6502-

based system than one based on a Z80, but most

features are common to both. Some
manufacturers print a complete map in the user's

handbook, while others remain very tight-lipped

about the design. However, you will usually find

that some user group has managed to work it all

out by experimentation.

364 THE HOME COMPUTER COURSE

This reserved section of

memory is for the exclusive use

of the CPU and is organised as a

UFO (Last In/First Out) data

structure. A byte can be either

'pushed' onto the top of the

stack or 'popped' from the top

back into the CPU. When a

GOSUB routine is performed in

BASIC, for example, the CPU

will push onto the top of the

stack the location in memory to

which it eventually has to

RETURN. The stack is

extensively used when

evaluating arithmetic

expressions, and in

FOR... NEXT loops

Buffers

A keyboard buffer must be

reserved in memory so that

characters aren't lost if they are

entered faster than the program

can process them. A cassette

buffer is also required, because

most operating systems write

data to cassette in blocks

Strings

If the BASIC on your computer

requires you to specify the

length of all strings in advance,

then they will be stored in a

table in the same way as

dimensioned variables. If,

however, it has 'dynamic

strings' that can change in

length, then the actual data will

be stored separately in an area

of memory that is constantly

changing in size. At intervals,

the operating system will

instigate a 'garbage collection'

that simply cleans up the string

area and removes data that is

obsolete

System RAM
Some computers have system

RAM that is not listed as part of

the user RAM. This is generally

used for the screen RAM (where

one byte corresponds to each

character location on the

screen) and the colour RAM

(where one byte specifies the

foreground and background

colours for a single character

position). Computers with a

wide variety of graphics modes

and resolutions will need to use

memory from the user RAM,

and this results in a much larger

system overhead. In a games

program, for example, the

graphics can represent the

greatest part of the memory

requirement

Empty

When you use a program from a

cartridge, it appears in the

memory map as expansion

ROM. Some machines have

spare ROM sockets on the

printed circuit board for

plugging in additional

languages. These will also be

reserved in the memory map

Input/Output Chips

The CPU can communicate only

with devices that appear as

locations in the memory map,

so all interface ports and other

chips must be included on the

map. These will include the

interfaces for keyboard,

cassette deck, the video

controller, and external

interfaces such as the printer.

The CPU generally addresses

memory in the form of blocks

(typically 4 Kbytes each).

Therefore, the Input/Output

chips may occupy 4 Kbytes of

the memory map, even though

only a dozen or so locations are

actually used

Passwords To Computing

System ROM
In a home computer, ROM is

used to store information that is

always needed and never

changes. The most fundamental

component of the ROM is the

operating system, which is the

set of machine code programs

that look after the operation of

the computer. These programs

perform functions such as

scanning the keyboard, and

storing or retrieving information

on cassette. Another

component is the BASIC

interpreter, which translates

programs from BASIC into the

low-level instructions

understood by the CPU

Video Controller

The most sophisticated

graphics, such as sprites and

multiple-mode resolution, are

increasingly handled in

hardware rather than in the

software. The video

controller(s) will appear in the

memory map as a dozen or so

single-byte registers, which

determine every visual

component, from the

background screen colour to the

exact position of each sprite

Sound Controller

Crude sound effects can be

achieved in software, but

computers with multiple voices,

or with ADSR sound control,

invariably have a dedicated

sound controller — the output

of which is fed into a small

amplifier

Peripheral Interface Adaptors

are used to handle most simple

interfacing with keyboards,

cassettes, joysticks and

printers. The most

sophisticated chips (such as the

6522 Versatile Interface

Adaptor) can convert between

parallel and serial data, and

have built-in timers, which can

be used in programming or to

control transmission rates

Character Generator

This is the best example of ROM
memory being used to store

data rather than programs — in

this case the patterns of bits

that define how the characters

appear on the screen. Some

computers allow all or part of

the character set to be copied

into RAM, and this permits

other characters to be defined

by the user

Kernel

The 'kernel' (it has a different

name on almost every machine)

is the heart of the operating

system. When the machine is

switched on, the CPU will

automatically jump to this

location and begin executing

the kernel program. It will

search through the RAM area to

determine how much memory is

available, and check to see if a

program cartridge is plugged in.

The kernel also handles the

most elementary forms of input

and output

THE HOME COMPUTER COURSE 365

Make Believe
Simulation software allows

experiments to be performed
without apparatus, specimens or

materials, and it is suitable for

use at home or in the classroom

Simulation programs, such as the familiar

arcade games that put you at the controls of a

racing car or aeroplane, are designed to give

you an experience as close as possible to the real

thing. There is, however, a wide range of

simulation software available that aims to

educate rather than just exhilarate. Simulation

programs are very useful in many areas of

school curricula; and especially in those

subjects (such as science) where practical

experimentation is too dangerous, time

consuming, expensive or complicated.

Simulation programs can be used as

educational tools in the home as well. For

example, in a program called Car Journey,

children can use their arithmetic and reasoning

skills to 'drive' a car around Britain. Simulation

programs are perhaps the most exciting type of

educational software currently marketed.

Unfortunately, they are available only for a

small range of machines — the BBC Micro, the

Spectrum, the RML 380Z, and the Apple —
the machines most favoured in schools.

This program demonstrates how the eye works,

and how the various parts need to be correctly

adjusted in order to see clearly. It simulates the

path that light rays take from an object to the

retina (the back of the eye where images are

formed). You act as the brain, controlling such

elements as the object distance, the size of the

iris and the focal length of the lens, in order to

focus the image on the retina. You are

presented with a cutaway diagram of the eye on

the screen, with the relevant parts labelled. By
using the conmiand LIGHT, the path ofabeam of

light can be plotted from an object to the eye. If

the other variables are correctly chosen you

should get the message I N FOCUS. Ifnot it will be

BLURRED.

Once you have mastered the functioning of a

normal eye, defects such as short sight can be

simulated. When it is discovered that it is

impossible to focus on a distant object, you

must add an extra lens in front of the eye. If

correctly chosen, this lens restores normal

vision and you have just prescribed your first

pair of glasses. Although developed primarily

for physics and biology lessons, this program is

often used in general computer literacy

courses, to introduce computers to young
people. Given the simplicity of the subject

matter, the excellent error-trapping and the

ease of use, it is easy to understand why. The
program is produced by Longmans for the

BBC Micro.

Ballooning

Scon

9

Ballooning is a home education program for

children of eight to twelve years. It is available

for the Spectrum from Heinemann
Educational Software. The user is at the

controls ofa hot air balloon, and has to fly it. On
the screen you see a cross-section of the

countryside, with the balloon initially sitting on

the ground. Also shown are four instruments:

rate of climb/fall indicator, air temperature

gauge, altimeter and fuel gauge. There are just

two controls: a gas burner to heat the air and

make the balloon rise, and a vent that lets the air

escape and the balloon descend.

A simple 'flying lesson' teaches the user how
to use the instruments and controls to take off,

fly and land the balloon. After mastering this,

you can fly your own 'mission'. This consists of

366 THE HOME COMPUTER COURSE

landing the balloon at selected locations

(marked with an X) where the balloonist

receives some instructions. For example, one
task is to 'help farmer rescue sheep' — the

sheep are to be found in a field marked with an

S. If the balloon runs out of fuel, it must land to

take on extra gas cylinders.

After a few false starts, crashing into trees

and so on, you soon learn how to control the

balloon accurately, by using short bursts of the

burner. Also, it is not long before you learn to

watch the instruments so as to predict when to

use the vent or burner. Perhaps the most

important benefit is learning to control a system

that incorporates a substantial 'time-lag'.

This program, as well as being a realistic

simulation, is great fun to use and probably one

of the few subjects that has appeal to girls as

well as boys.

Car Journey

800KC0

ty lUtw/

C) O

t

r

Speed <kr;i/h>

Available from Heinemann Educational

Software for the Spectrum, this is a home
education program in which the user takes on

the role of owner of a small delivery service.

Various decisions have to be made with regard

to which delivery contract to accept, how fast to

drive, and what type of vehicle to use. In doing

this the user has to perform calculations

involving money, distance, time and even

petrol consumption. A map of Britain is

displayed, showing 15 cities and the major

motorways. A speedometer, milometer, fuel

gauge and a clock are also shown.

The first task is to decide which city to start

from, and then you have to choose a contract

you think you can fulfil from a list of a dozen.

For example, one contract is to pick up a

consignment of diamonds from Bristol at 1200

hours and deliver it to Dover before 1800 hours

on the same day. To do this, you must hire a car,

drive it to Bristol, pick up the diamonds and

drive down to Dover. If you're successful, you

are paid £400, plus a £ 10 bonus ifyou are early,

and can then choose another contract. Money
has to be spent on overnight stops, vehicle

repairs, petrol and speeding fines, and ifyou do
not fulfil a contract you incur a hefty £100 fine.

If a heavy load is accepted, the car has to be

swapped for a larger van, which costs more to

hire, consumes more petrol and is slower.

As well as developing a knowledge of

vehicles and roads. Car Journey also helps

extend the more abstract skills of decision

making and logical thought. It even teaches

simple economic theory because, in weighing

up the pros and cons of a certain contract, the

user is performing cost/benefit analysis.

Survival

m— T

B M

You
have beer^i kill'=-d b"

nr vr l1 for 1

If you have ever wondered what it must be like

to be a lion (or even a mouse) then Survival is

for you. It enables you to play the part of one of

six animals (hawk, robin, lion, mouse, fly or

butterfly) and experience some ofthe problems

of their day to day existence and the decisions

they have to make to stay alive.

The world is represented by a grid of squares

on the screen, and you move around this grid

(your position being shown as the letter A) by
pressing keys on the keyboard. Your main
concerns are to find food (the squares marked
by an 0) and to avoid predators (marked by an
X). As you move nearer a marked square, a

close-up grid on the right of the screen shows
exactly what predator or food you have

encountered. Also shown are two meters that

indicate how much energy and water you have

left. If your energy level gets low you quickly

have to find some food, and if the water runs

out you have to move next to a blue square (a

river); if, however, you accidentally 'fall' into a

blue square you will drown.

Some animals have a harder time than

others: the butterfly's only source of food is

flowers, and these can be difficult to find. The
hawk, however, can survive on snails, flies and
mice but can fall prey to a human hunter.

Through using Survival, you can learn how
various species fit into the food chain and
appreciate some of the problems faced in

surviving in the wild.

THE HOME COMPUTER COURSE 367

Best Bet
Finding optimum solutions to problems is sometimes
straightforward, but often it requires advanced mathematics.

Computers take the job in their stride

Perfect Fit

Arranging patterns on a sheet of

material in order to minimise

wastage is a good example of

computerised optimisation. One

such application is in cutting

sheet metal, another is

tailoring. Here the computer

displays its suggested layout on

the screen, and an experienced

operator can then make minor

adjustments with the aid of a

lightpen

In every decision we make there is invariably a

compromise — for example, between cost and

effectiveness, or cost and time. We are unlikely to

obtain absolute maximum output for absolute

minimum cost. The 'optimum' result will fall

somewhere between the two.

Ifwe take as an example the choicebetween two

brands of washing powder, the reasoning behind

the decision might go something like this: *If I buy

this washing powder, it will cost me 48 pence for

150 grams, but if I buy that one, it will cost 90

pence for 300 grams. But what if I must use 20 per

cent more of the less expensive washing powder to

obtain the same result? Which brand is cheaper

then?' When everything is reduced to a common
form — in this case to percentage differences

between products — the answer is easy to predict,

even before any mathematical calculation is

performed.

The concept of 'weighting' a calculation by a

constant value is quite normal, and works well

when the differences between similar components

(the price, for example, or the physical weight),

are themselves constant. But when these

differences change at different rates, then the

mathematics becomes more complex, and we
must resort to a form of calculus (in whichwe solve

a number of equations that use the same terms

simultaneously) in order to arrive at the right

answer. Where the number of terms is small, we
might choose to enter them into a matrix, and then

manipulate it. Another way is to guess at the

answer, and then modify the guess successively

until it fulfils all the conditions. Of course, the

better the guess, the less time the process will take.

Optimisation techniques such as these are

essential to commerce and industry, and are

universally applied, especially in manufacturing

and construction. Linear Programming, Critical

Path Analysis, and PERT (Programme

Evaluation Research Technique), are just some of

the names given to this optimising method. They

predate the computer era by some 30 years in their

original forms, and previously required a great

deal of manpower to come up with a correct

answer in an acceptably short period of time.

Applications of this type are quite suitable for

home computers, but one should bear in mind that

matrix (two-dimensional array) operation

requires rather a lot ofmemory space, and that the

matrix arithmetic is in itself quite complex.

Fortunately, there are a number of software

packages for small microcomputer systems, so the

technique is readily available.

One commercial area that has benefited

considerably from optimisation is that of clothes

CDZ
cco

cnzo
I—
cc
rDm
U-o
>
CO

oo
X
a.<
cc
CDO

CD

CCO

CO
LLJ

zo
—5

z
>
UJ

368 THE HOME COMPUTER COURSE

hsights

J

4

or ,f 0^

^^^^

200g SARDINES

400g STEAK

LITRE MILK

10

50

240

28

10

80

150

90

10

15

MINIMUM REQUIREMENT

PER WEEK
250

25

1000

80

20

150

400

500

1300

200

8.5kg

3.751

II

Diet

Optimisation
In this example, the object is

to find the optimum

combination of four

foodstuffs that satisfies a

specified minimum dietary

requirement at the minimum

cost. For this we must tell the

computer: the nutritional

components (pink) and price

per unit (blue) of each

foodstuff, and the minimum

requirement of each

nutritional component for the

week (yellow). The computer

finds the most critical element;

and manipulates the rest of

the grid around it to find the

optimum balance, shown

here in green. In this example,

the requirements have been

satisfied with potatoes and

milkonly, at the minimum

cost of £4.2272 per week.

(N.B. this diet is not

recommended)

CO
LU

o

2;

manufacturing. Cloth normally comes in standard

units of width — and sometimes of length as well

— and the manufacturers' problem is to minimise

waste when cutting the cloth, while paying

attention to factors like the direction of the nap of

the fabric (the way the pile lies).

In one of the most advanced manufacturing

tailors in Europe the placing ofpiece-patterns into

a given length of material for the production of

made-to-measure suits is worked out using

optimising techniques, and the suggested result is

shown on a visual display unit. At this point, using

object-oriented programming methods (see page

262), the computer operator is requested to

exercise his judgement and experience in an

attempt to improve on the computer's calculation.

The operator makes an improvement, on average,

one time in five.

Because the requirements of each job, or each

garment, are different, this is an excellent example

of the intelligent use of low-level computerised

optimisation combined with the experience of the

operator. More comprehensive methods are used

in industries that repeatedly cut identical objects

from sheet material, where the full process of

optimisation is allowed to run its course. Because

the cutting or stamping operation forms part of a

production line, the identical operation will be

performed thousands of times. In this case, the

cost of the optimisation process divided by the

number of units manufactured is more than

covered by the savings in wastage.

Critical Path Analysis, as its name suggests, is a

method of determining the most important job

stream in a manufacturing or construction process

— that is, the part of the job with the greatest

potential for holding up everything else if it is not

completed on schedule. It is very firmly time-

based, the period required for the execution of a

segment being its value in the CPA diagram or

table. Its most common use is during the planning

stage of construction projects, so that the builders

can allocate men and materials to the various

aspects of the project in the right order —
plumbing before floorboards, painters after

plasterers. Once again, there are software

packages available for a wide variety of

microcomputers.

While the mathematics of the optimising

process may be rather daunting to the untrained,

there can be no denying the success and strength of

the technique itself. It is one of the few 'number-

crunching' tasks commonly carried out on small

microcomputers, and is an important component
in artificially-intelligent systems, replicating (as it

so often does) applied common sense.

Motorway Madness

Apart from social factors, the

design and routing of

motorways, whether in town or

in the country, is very dependent

on optimising techniques. The

architect will be most concerned

with the gradient of hills and

sharpness of bends, but the

farmer whose land is taken over

has a rather different set of

criteria. When a new road is

being planned a vast amount of

data is gathered, which serves to

make up a comprehensive

model of the situation. This

model is then used for a variety

of purposes, from graphic

representations to route

optimisation

THE HOME COMPUTER COURSE 369

o
>-Q

Master Clock Crystal

Acorn Electron
In the two years that elapsed
between Acorn's BBC Model B
and Electron, microcomputer
technology has developed
dramatically

The Acorn Electron is an elegant computer that

lives up to its initial impression of being a robust

and well designed machine. As a scaled down
version of the BBC Micro, it isn't quite as

impressive in performance, but feels more
comfortable to use. Most of the features of the

BBC Micro have been incorporated into the

Electron. For example, the SOUND command is

used in conjunction wdth the ENVELOPE command
to synthesise different types of musical

instruments on both machines.

All of the BBC Micro's graphics modes are

available on the Electron, with the exception of

Teletext (MODE 7), which is generated in the BBC
machine by a special chip. This chip is not

available on the Electron's circuit board, and so

Teletext-like displays can only be produced by
redefining most of the characters and imitating

Teletext using MODE 6 (which is, however,

restricted to two colours). This is a pity, because

the Telextext mode on the BBC Micro is a very

economical way of producing quite complex
displays without using a lot of memory.

Input and output facilities are also less

impressive than on the BBC Micro. Visual output

is via TV channel 36, as well as through composite

video and RGB sockets to monochrome or colour

monitors. But apart from the cassette port there is

no immediately usable interface.

Expansion is clearly possible through a large

edge connector at the back of the machine.

Unfortunately, this protrudes from beneath a

A
i

TV Signal Control Crystal

A major reason for the stability

of the image generated by the

Electron is the fact that it has a

special separate crystal, which

is used to time the display

TV Modulator And

Output Socket

Composite Video Socket

Dynamic Duo

The brains behind the Electron were Chris Curry (left) and

Herman Hauser (right), who were also largely responsible for the

design of the BBC Micro. Curry was a development engineer

working for Clive Sinclair, when he employed Hauser. The two

men subsequently founded Acorn

Cassette Socket

Cassette Motor Relay

The voltage used in the motor of

a cassette deck is higher than

the computer can handle, so it

is isolated from the computer's

electronics by this miniature

relay

Speaker.

RGB Socket

CD
>-

ledge in the casing, and on an unexpanded
machine the only protection provided for it is a

plastic cover. No details are given in the manual
about what signals it produces, nor any suggestion

as to what may be connected to it. But it is clearly

intended that some kind of expansion box will

plug into it because there are threaded brass

sockets moulded into the casing nearby, which are

used to provide a mechanical link between the

computer and the add-on.

The built-in basic is the now well-known BBC
dialect; but this has been considerably expanded
and here has many features that make the machine

Keyboard Connector

The number of pins (22) reveals

that the keyboard's output is not

decoded into ASCII. If it were

decoded, there would be only 10

pins at most (eight for the data,

plus the 5v and the ground).

This is probably a function of

theULA

370 THE HOME COMPUTER COURSE

Hardware Focus

Keyboard

The keyboard is among the best

of any home computer, with real

typewriter-style keys of very

high quality. In practice the

keyboard is very similar to that

on the BBC Micro. There are no

separate function keys, but the

same facilities are provided by

the Caps Lock key, which if

pressed in tandem with a

number key, converts it into a

function key.

This is extended to the letter

keys and three of the

punctuation keys, which

produce BASIC keywords if they

are pressed while the Caps Lock

is held down

Expansion Connector

No details of pin values or

signal timings are'given, but it is

obvious that most of the system

bus will be available through

this connector, as well as TTL

and power lines. Therefore,

considerable expansion should

be possible

CPU

Controlling the machine is a

standard 6502A processor,

clocked at 1.79 MHz. This

actually makes the decisions,

something which the ULA

cannot do by itself

RAM
Bytes are loaded from RAM into

the CPU in two halves. First, the

lower four bits are accessed

(one bit coming from each of

the four chips), followed by the

upper four. In most machines all

eight bits of each byte would be

stored in the same chip

•Uncommitted Logic Array

This is the biggest ULA ever

manufactured. Apart from the

ULA, the 6502 CPU, the ROM
and the RAM, there are only

nine other chips on the board,

all of which are standard TTL

logic, each providing just a

handful of logic gates

Blank 28-Pin Area

This 28-pin area, marked out for

a chip and with an unfilled link

nearby, would suggest that

either additional bank switched

ROM may be added, or that a

different type of chip may be

used

Power Conditioning Circuitiy

The Acorn Electron is unusual in

requiring a 19v AC supply. This

has the advantage of being

more stable, but needs a more

complex circuit to modify it for

computer usage

a pleasure to use. Particularly useful is the OSCLI

routine, which allows a basic program to send

commands directly to the operating system, and
this permits experienced users to remove some of

the constraints of basic. The assembler package,

which is a feature unique to BBC basic, has also

been expanded. It has additional keywords for

defining variable storage and string printing, both

of which are a chore in Assembly language.

In performance the Acorn Electron is better

than average. The picture is very steady and sharp,

with good clear colour and definition. When some
serious expansion facilities, such as disk drives, are

available, the Electron will certainly become a

justifiably popular machine.

Acorn Electron

PRICE

£199

SIZE

340xl6ax65mm

CPU

6502

CLOCK SPEED

1.79MHz

MEMORY

64 Kbytes of ROM
32 Kbytes of RAM (with no

on-board expansion)

VIDEO DISPLAY

Up to 32 lines of 80 characters.

Eight colours with background

and foreground independently

settable. 127 pre-defined

characters and 255 user-definable

characters

INTERFACES

Channel 36 TV, composite video,

TTL RGB, cassette, system bus

(undocumented)

LANGUAGES SUPPLIED

BBC BASIC with in-line assembler

OTHER LANGUAGES AVAILABLE

Should run some other AcornSoft

languages such as FORTH and

LISP, provided that they are RAM-

based. ROM-based languages

such as BCPL and PASCAL are

incompatible with the unexpanded

machine

COMES WITH

Installation and BASIC manual, TV

lead, power transformer,

introductory cassette

KEYBOARD

56 typewriter-style keys. Single

key BASIC keyword entry. 10 user-

definable function keys

DOCUMENTATION

Simply excellent There is plenty

of real detail available for the

experimenter or the serious

programmer. Every BASIC

keyword is separately explained;

and there is a good section on the

Assembly language, which is very

important considering the in-line

assembler. The functions of the

operation system are also well

described. Thanks to this wealth

of information, most tasks should

be relatively easy to accomplish

with the machine

THE HOME COMPLTER COURSE 371

ImJ Insights

Jet Propelled
Full colour printed output Is

available at a realistic price,

thanks to a printer that sprays

coloured inks onto the paper.

one dot at a time

The different types of printing mechanism

available to thehome computer user produce print

ofvariable quality. The best results are achieved by

full-character impact printers (the daisy wheel is

an excellent example of this type); and the poorest

reproduction comes from electrostatic and

thermal printers. However, the dot matrix printer

(see page 74), though noisy and producing

typography of only moderate quality, is the most

popular system for home computer use.

When printer/plotter devices like the Tandy

CGP 115 first appeared, the limitations of the dot

matrix printers became more apparent. The

printer/plotter machines use miniature ballpoint

pens to create complete characters and line

graphics on the paper, and these are often in four

colours. But the printers most likely to surpass the

popularity of the dot matrix printer operate on the

principle of firing a stream of microscopic drops of

ink in controlled patterns at a sheet ofpaper. These

machines are called 'ink jet' printers.

Already well established in the industrial and

commercial sectors (alongside the equally

sophisticated laser printer); these devices are now

beginning to make an appearance on the home

computer market. The system works by pumping

liquid ink from a reservoir to the tip of a very fine

jet. Here minute droplets of ink are charged to a

high voltage before being ejected. The valve

mechanism is commonly made of piezoelectric

material, which allows the droplets to be shaped by

very high frequency vibrations.

As the droplet leaves thejet it is suspended by an

electric field, which also propels it towards the

paper. The sheet of paper is stretched over a sheet

ofmetal (and not a hard rubber roller or platen as it

would be with an impact printer). The metal sheet

is charged to the opposite potential to that held by

the droplet and, as opposite charges attract, helps

to pull the ink into the paper. This technique may

seem unreliable, but surprisingly little mess occurs.

About the worst that can happen is the jet getting

clogged or the ink drops becoming oversized.

In principle an ink jet printer works in the same

way as a dot matrix printer with only one hammer.

The string of ASCII characters arriving at the

printer is stored in a buffer until either it is full or a

Carriage Return is received. The printer then

examines the characters one by one and looks up

their corresponding patterns in ROM. Generally,

each character will be made up of a number of dots

arranged on an eight by eight grid, and the printer

builds these patterns up on the paper. It takes eight

372 THE HOME COMPUTER COURSE

Guided Missiles
The first ink jet printers used a

more sophisticated system

and were very expensive.

Inside the nozzle, a

piezoelectric device emitted a

constant stream of charged

ink droplets. These could be

guided vertically by two

electrodes, as the head moved

across the paper. When no

mark was required, the

droplets could be steered into

a scoop and then recycled

back into the main reservoir

RESERVOIR

ELECTRODES.

SCOOP

Priming Pump

This manual pump is used to

force ink through the nozzles

should they start to become

clogged, or simply to get the

ink flowing

Circuit Board

This printer contains its own

6809 microprocessor, ROM and

RAM. All the incoming data

needs to be buffered, because

the mechanism prints only one

line of dots with each pass of the

head

Print Head Lock

An ink jet mechanism is far

more delicate than other

printing devices , and the

head must be locked in the

rest position when not in use

The correct operating

procedure used immediately

after it is turned on is not

complicated, but failure to

observe it could result in

damage to the machine

Sparkling Characters

An interesting variation on the theme of liquid ink jet printers is the 'dry

ink' printer. Available both as an Olivetti product and as Acorn's

dedicated printer for the BBC Micro, the unit is based on the principle of

spark erosion. Printers of this type usually employ a high voltage spark

to burn a hole in special silvered paper (the ZX Printer is a typical

example) . The Olivetti system, however, uses the spark to carry minute

particles of carbon from the tip of a replaceable rod to make an

impression on the paper.

The printer has several advantages over conventional matrix

printers: it is almost silent, the printhead is very light (doing away with

the need for powerful motors), and almost any kind of paper will work

with the system. The only real drawbacks are that the printing speed is

slow, the head prints only one line of dots on each pass across the

paper, and the 'ink' tends to smudge

^.i9ht.|;d

passes of the printing head to create each line of

characters, but this is speeded up by allowing the

printer to operate in both directions. While the first

buffer's worth of characters is being printed out in

this way, the next buffer is being fiUed for printing

as soon as the first one is empty. The only

difference between the ink jet and the matrix

unihammer is that the former fires electrically

charged droplets of ink at a page, while the latter

imprints a needle through an ink covered ribbon.

In their commercial form, ink jet printers can

produce a printed sheet in just a few seconds. The
quality of printout, however, can depend on the

paper quality: the more absorbent the paper, the

more the ink soaks in and blurs the image. At their

best, Inkjet printers can produce an output quality

several times better than that of a dot matrix

printer. For large volume business printing they

are perfectly adequate. If you need high quality

and high speed printing, then the laser printer

(which works on the same principles as a
photocopier) is the only answer.

Metal Electrode

Immediately behind the paper

is a metal sheet, which is

charged with the opposite

potential to that applied to the

ink droplets. This causes the

droplets to accelerate towards

the paper

Drive Motors

The traverse of the print head is

achieved with a conventional

motor, while the paper advance

is driven by a stepper motor—
as on a dot matrix printer

Print Head

This contains four nozzles

(one for each of the inks) and

piezoelectric cells, which

provide pulses of pressure

that create the blobs of ink

Ink Packs

Special ink has to be used to

prevent the jets from

constantly blocking. Black ink

comes in a separate pack to

the red, blue and yellow,

because it is used more often

Flexible Links

Most printers feature flexible

ribbon cables between the PCB

and print head. An ink jet has

the additional problem of

feeding four different inks to a

fast-moving device

The latest, and possibly most interesting,

application of the ink jet principle is that used by
Tandy in the CGP 220 machine. Here, at last, the

home computer user can find true colour printing.

As well as printing in blade, the Tandy CGP 220
contains separate reservoirs and nozzles for

magenta (red-blue), cyan (blue-green) and yellow

inks. These colours may be unfamiliar to those

used to working with colour graphics on a

television screen, but they are the painter's

equivalent of red, green and blue, and it is possible

to produce the entire spectrum by mixing them
together.

Compared to the colour printing achieved fi*om

multi-coloured ribbons fitted to matrix printers,

the results fi'om the Tandy system are considerably

better. The penalty for this is, surprisingly, not the

price, but the fact that the paper used has to be
absorbent, and therefore the printout can be rather

blurred. Perhaps this is not really such a big price to

pay for a full colour printout of your work.

THE HOME COMPUTER COURSE 373

Sound Proof
Sound synthesis using the

Dragon 32

The Dragon 32 is supplied with only a single

square wave oscillator for programming sound,

but the wonderfully simple sound conmiands

allowed by Microsoft Extended Colour basic

enable the construction ofmusic strings that play a

passable tune with one command. Unfortunately,

there is no means of generating noise. This is very

strange as it is difficult to imagine an arcade-type

game that does not require noise at some point to

make the sound effects interesting.

The SOUND command is useful for sound effects

only and the format is as follows:

SOUND P,D

where: P = Pitch (1-255) and D = Duration (1-

255). Pitch is highly inaccurate and bears little

relation to a standard musical scale, though middle

C can be approximated with the value 89 and

reference A at 440Hz is about 159. Duration is

similarly inexact but 16 is near to one second, 32

roughly equivalent to two seconds and so on.

This program shows how SOUN D can be used for

a special effect; in this case, with a little

imagination, a UFO taking off:

10 FOR P=10 TO 170 STEP 10

20 FOR D=16 TO 1 STEP -1

Light

Entertainment
The second instalment of the

graphics capabilities of the BBC
Model B

BBC BASIC does not provide the full range of high

resolution commands that are available on some

microcomputers. For example, there are no CIRCLE

or PAINT commands. However, it is possible to

simulate most facilities using a few lines of BBC
BASIC.

The graphics screen has the same co-ordinates

regardless of the level of resolution selected, and

the axes have their origin in the bottom left-hand

comer.The following commands provide control

over the graphics screen:

l\/IOVEx,y

30 SOUND P,D

40 NEXT D

50 NEXT P

PLAY can set an exact pitch, duration and volume

for a note. It can also specify a string of such notes

to be PLAYed with a selected pausebetween them at

a variable tempo. This makes the construction of

tunes with different note lengths and pauses very

easy — all PLAYed with this single command:

PLAY"T;0;V;L;N;P"

where: T = Tempo (T1-T255); 0 = Octave (Ol-

05); V = Volume (V0-V15); L = Length of note

(L1-L255); N = Note value (1-12 or note letter);

and P = Pause before next note (P1-P255).

It isn't strictly necessary to use the semi-colons

between parameters but it would be wise to

include them for clarity. The example is very much

an arbitrary representation as the parameters can

be set in any order. T, 0, V, and L retain their values

until specified otherwise. In fact, T, 0, V, L, and P

default to T2, 02, W15, L4 and PO respectively, unless

otherwise specified, so it isn't always necessary to

include them in the PLAY statement.

Where timing is involved, as in L and P, the

values specified can be thought of as ^notes', and

fractions of ^notes' where L1 or P1 is a whole note,

L2 or P2 a half note and so on. The actual timing of

these is selected by the tempo parameter T, where

T1 is slow (a note has a long duration) and T255 is

This command moves the graphics cursor to the

point with (x,y) co-ordinates, but does not draw a

line. Note that the graphics cursor can move

completely independently of the text cursor.

DRAWx,y

As the name suggests, DRAW draws a line from the

current graphics cursor position to the point on the

screen with the (x,y) co-ordinates.

PLOTk,x,y

PLOT is a multi-purpose command; its function is

governed by the value given to the variable k:

Value of k Function

0 move relative to last point

1 draw line fi*om origin in foreground

colour

2 draw line from origin in inverse

colour

3 draw line from origin inbackgroimd

colour

4 same as MOVE

5 same as DRAW

6 same as DRAW but in inverse colour

7 same as DRAW but in background

colour

374 THE HOME COMPUTER COURSE

very fast (a note has a short duration). In addition,

note lengths can be more flexibly defined by the

addition of dots such as L1...or L5. where each dot

increases the note length by half its normal value.

Therefore L1... = 1 + 2 + 2= 2i notes and L5. =
5 + ^ = w note.

TTiere is no absolute way in which the

relationship between note and tempo can be
represented. The values required can vary for each

tune and are best selected by trial and error. This

may be a little time consuming but it makes the

command very flexible.

The parameter 0 specifies the octave in which
the next note is to be played. 01 starts with C at

131Hz and 05 ends with B at 2093Hz. Middle C
begins 02 which is the default octave. Within an
octave, notes can be specified in two ways. In the

first case a number can be used that corresponds to

a musical note as follows:

1 2 3 4 5 6

c C# D D# E F
7 8 9 10 11 12

F# G G# A A# B

This makes it possible to specify a note as a variable

within a selected octave. Alternatively, the

required note letter can be used directly to make
the statement easier to understand in a listing.

The above explanations are best illustrated with

an example. The following conmiand plays F (6)
in the default octave 02, for half a note length (L2)

at default volume V15. It then pauses for a quarter

note length (L1) at volume V20. Tempo is set at T3:

PLAY "T3;L2;6;P4;03;V20;Lt;A#"

< F > < A# >

pause

In addition, the T, 0, V, and L parameters can be
varied by preset amounts fi*om within the

command by the addition of a suffix:

Suffix Effect

+ Adds one to current value

Subtracts one from current value

> Multiplies current value by two
< Divides current value by two

The format is: T+, T-, T > or T< for each

parameter.

The most useful Dragon facility is the ability to

PLAY tunes using substrings. These are first

defined, and then PLAYed in any order or repeated:

10 A$="F;A#;6"

20 B$="C;D#;F;P4;XA$;"

30 PLAY B$

This defines A$ and then includes it in B$ as

substring XA$. The resulting tune is C—D#—F—
P4—F—A#—G. This technique can be continued as

necessary where sequences of notes are repeated a

number of times within a piece of music. In all

cases the semi-colon foUowing a substring must be
included, as in XA$, above.

Higher numbers repeat these eight functions but

with extra effects, such as dotted lines instead of

solid lines. Values of k between 80 and 87 fulfil a
particularly useful function. PLOT80,x,y joins the

point (x,y) to the two previously plotted points to

form a triangle. The triangle is then filled in with

the current foreground colour. This provides the

only simple means of PAINTing graptdc shapes.

VDU X is equivalent to the more usual basic

command PRINT CHR$(x). We saw in the

introduction to graphics on the BBC Micro that

VDU can be followed by a series of numbers. VDU
v,w,x,y,z is equivalent to:

PRINT CHR$(v);CHR$(w);CHR$(x);CHR$(y);

CHR$(z) .

The VDU conmiands allow the user access to the

part of the BBC's operating system that controls

graphics and screen display. Although VDU
commands may be used within basic programs
they actually work independently of the language

employed. Thus the same VDU commands could

be used for a graphics display in pascal or any
other language offered for the BBC. Each of the

BASIC graphics facilities so far discussed can also be
implemented by the appropriate VDU command.

Defining characters is very easy on the BBC

Micro. VDU 23 controls this function. In the section

on user-defined graphics (see page 247) we
learned that normaJ ASCII codes are constructed

from a block ofeight by eight pixels. The pixels that

are visible can be represented by a 1 in binary and
those not visible by a 0. Each row of eight bits can
then be converted to its decimal equivalent, giving

a total of eight decimal numbers to define a

character. VDU 23 allows the user to redefine the

character with an ASCII code between 224 and
255. For example:

10 REM DEFINE A CHARACTER
20 MODE 2

30 VDU 23,240,16,56,124,146.16,16,16,0

40 PRINT CHR$(240)

50 END

This short piece ofprogram redefines the character

with ASCII code 240 to create an arrow shape.

The last eight numbers define this new shape, and
line 40 PRINTs the character on the screen.

VDU 24 and VDU 28 respectively control the

creation of graphics and text 'windows' on the

screen. Using these functions, graphics and text

output to the screen can be limited to definable

areas. This can be particularly useful when
designing interactive programs where a split screen

is desirable. All that is required to define a graphics

window is to specify the co-ordinates ofthe bottom
left- and top right-hand comers.

MODEI
This short program listing draws

a colourful spiral flower on the

screen using MODE 1 resolution.

Note the use of fHled in triangles

to produce the flower petals.

10 REM FLOWER

20CLS

30 M0DE1
40 FOR D=1 TO 3

50 A=600 ; B=500

60 MOVEA,B

70 FOR 0=1 T0550STEP3
80GCOL0,RND(3)

90 S=(C/(RND(5H0))

100X=S*5*SIN{C/16)+A

110Y=S*5*COS(C/16}+B

120 PL0T85,X,Y

130 NEXT C

140 NEXT D

150 END

The spiral pattern is produced by

the combination of sine and

cosine in lines 100 and 110.

Normally this relationship

between the x and y co-ordinates

produces a circle but the

FOR.. .NEXT loop gradually

increases the radius C producing

the spiral effect. The co-

ordinates of the centre of the

spiral, A and 8, may be altered to

re-position the flower

THE HOME COMPUTER COURSE 375

Basic Programming

Dummy Run
In order to use data files it is first necessary to create them in

skeleton form, and then fill them with information

At the end of the last instabnent of the course,

readers were left with the problem of solving this

apparent dilemma: how can we make a program

read in a file that does not exist (on tape or disk)

when the program is first run? The initial activity

we are likely to want the program to perform will

be to read in the data file and assign this data to

arrays or variables. Yet, ifwe insist on writing to the

file first, whenever the program is run, we will have

to be very careful in the programming not to lose

all the data in the file. As we discovered last time,

attempting to open a non-existent file will either

simply not work, or else cause the program to

'crash' (stop functioning).

Fortunately, there's a very simple solution.

Many commercial software packages include an

'install' or 'set-up' program that has to be run

before the program proper can be used, and this is

the approach that we shall adopt. Such programs

typically allow the user to do a small amount of

'customising' (such as selecting whether the printer

to be used will be an Epson or a Brother, parallel or

serial, and so on), but they also create data files that

will later be used by the main program.

Remember, unlike program files, data files can be

accessed by any program (see page 316).

To solve our problem and allow *RDINFL* (the

routine that reads in the file and assigns the data to

the arrays) to be performed, we can write a very

simple set-up program that does nothing more

than open a file and write a dummy value into it.

We will choose a value that can be subsequently

recognised by the program proper as not being a

valid address book record. A suitable value would

be the character string @ Fl RST, because no name or

address, no matter how obscure its origin, is likely

to start with this particular string. *RDINFL* will

have to be slightly modified so that when it opens

and reads in from the file, it tests for this value

before going any further. If your computer doesn't

have the @ symbol, then you will have to replace it

with '!' or another character — as long as this is a

string that won't occur naturally in your address

book. First, however, here is the set-up program:

10 REM THIS PROGRAM CREATES A DATA FILE

20 REM FOR USE BY THE ADDRESS BOOK

PROGRAM
30 REM IT WRITES A DUMMY RECORD THAT CAN

40REMBEUSEDBY*RDINFL*
50 REM
60 REM
70 OPEN "0",#1, "ADBK.DAT"

80 PRINT #1, "@FIRST"

90 CLOSE #1

100 END

As mentioned previously in the Basic

Programming course, the details of reading and

writing files differ considerably from one version

of BASIC to another, but the principle is abnost

always the same. First, the file must be declared

OPEN before it can be used for either input or

output. Then the direction of data flow is declared,

either IN or OUT. Next a 'channel' number is

assigned to the file. This allows more than one file

to be open and in use at the same time (for the time

being, however, we will use only one file). Finally,

the name of the file we wish to use must be

declared.

Line 70 in the program (left) is in Microsoft

BASIC and is similar in principle to the OPEN

statements used by most basics (BBC basic is

somewhat different — see page 319). OPEN, of

course, declares that a file is to be OPENed and '0'

says that data will be output. #1 is the number we

are assigning to the file for this operation; a

different file number could be used later if needed.

ADBK.DAT' is the name we have given to the file.

Line 80 simply writes a single record to the file.

The syntax of writing data to a file is usually (in

most basics) exactly the same as the syntax used

for PRINTing, except that the PRINT statement must

be followed by the file number — #1 in this case.

Line 90 CLOSEs the file. Files may be left open

for as long as needed in the program, but 'open'

files are very vubierable and should be CLOSEd as

soon as possible within the program in order to

protect the data in them. If, for example, you were

to accidentally switch off the computer while the

file was open, you could find that data has been lost

when you next read the file.

There is some confusion over the way the terms

record and file are used in computers, and this

confusion is worst when we are talking about

databases, on the one hand, and data files on the

other. In a database, the file is a whole set of related

information. Using the analogy of an office filing

cabinet, the file could be a drawer labelled

PERSONNEL. This file could comprise one

record (a card in a folder) on each person in the

company Each record (card) would contain a

number of fields, identical for each record,

containing such information as NAME, SEX,

AGE, SALARY, YEARS OF SERVICE etc.

If the PERSONNEL file were computerised, all

the information would be treated in exactiy the

I
376 THE HOME COMPUTER COURSE

Basic Programming

same way conceptually — one file containing

many records, each record containing many fields

— just like our computerised address book.

A sequential file on a disk or cassette tape,

however, doesn't care how the information in it is

used or organised by the program. Data files just

contain a series of data items, and each individual

item of data is called a record. A single record in a

data file wouldn't, therefore, normally correspond

to a record in the database sense of the word.

It's up to the program to read in records from the

data file and assign them to variables or arrays.

These variables and arrays need to be organised to

form a 'conceptual' record containing a limited set

of related information. There is no one-to-one

relationship between the records in a data file and
the records comprising a database.

Once the set-up program has been run it should

never be needed again. In fact, if it ever were run

again it would destroy any 'legitimate' data you
might have entered in the address book database.

We will see why this would happen when we look

at the modified *RDINFL* program.

When the program is run it does not 'know' if

there is legitimate data in the data file or not. The
first thing *RDINFL* does is to OPEN the 'ADBK.DAT'

file and read in the first record (or data item). This

is not read into an element in an array, as you might
expect, but into a special string variable we have

called TESTS. Before any other records are read in,

TESTS is checked to see if it contains the string

©FIRST. If TESTS does contain ©FIRST, the program
knows there is no valid data in the file and so there

is no point in trying to read in any more data and
assign it to arrays. Consequently, the file can be

closed and the rest of the program can continue.

Since there is no valid data in the file, the user can

do nothing useful until at least one record has been
entered and so the value of TESTS can also be used

to force the program to go to the *ADDREC*

subroutine so that at least one valid record will be

added before anything else can be done.

If, on the other hand, the value of TESTS is not

©FIRST, the program can assume that there is valid

data in the file and can start assigning the data to

the appropriate arrays. The modified *RDINFL*

subroutine follows:

1400 REM -RDINFL- SUBROUTINE
1410 OPEN "I", #1 ."ADBK.DAT"
1420 INPUT #1, TESTS
1430 IF TESTS = "@FIRST" THEN GOTO 1530: REM

CLOSE AND RETURN
1440 LET NAMFLD$(1) = TEST$
1450 INPUT #1 ,MODFLD$(1) ,STRFLD$(1) ,TWNFLD$

(1) ,CNTFLD$(1) ,TELFLD$(1)

1460 INPUT #1 ,NDXFLD$(1

)

1470 LET SIZE = 2

1480 FOR L = 2 TO 50
1490 INPUT #1 ,NAMFLD$(L) ,MODFLD$(L) ,STRFLD$

(L) ,TWNFLD$(L) ,CNTFLD$(L)
1500 INPUT #1 ,TELFLD$(L) ,NDXFLD$(L)
1510 REM SPACE FOR CALL TO 'SIZE'

SUBROUTINE
1520 NEXT L

1530 CLOSE #1
1540 RETURN

Line 1420 assigns a single record from the

ADBK.DAT file to the variable TESTS. The next line

then checks this to see if its value is ©FIRST. If it is, a

GOTO is used to jump to the line that closes the file

(line 1530) and then the subroutine RETURNS to the

calling program. No further attempts are made to

read in data. Assuming that there is no valid data in

the file, program control will be returned to
*

I N IT! L * , which then caUs * SETFLG *
. All this routine

does at the moment is to set the value of SIZE to 1 if

TESTS = ©FIRST. The code for *SETFLG* is given

below. Note that there are several REMs to allow

space for further flag setting should we want to do
this later.

1600 REM *SETFLG*
1610 REM SETS FLAGS AFTER *RDINFL*
1620 REM
1630 REM
1640 IF TESTS = "@FIRST" THEN LET SIZE = 0
1650 REM
1660 REM
1670 REM
1680 REM
1690 RETURN

SETFLG then RETURNS to *INITIL*, which in turn

RETU RNs to the main program. * MAI NPG * then calls

GREETS, which displays the greeting message.
* G R EETS * does not need anymodification from the

previously published version of it.

The next routine called by the main program is

CHOOSE. A very small modification to the

CHOOSE subroutine on page 357 will establish a

way of forcing the user to add a record if the

program is being run for the first time.

3500 REM ^CHOOSE* SUBROUTINE
3510 REM
3520 IF TESTS = "@FIRST" THEN GOSUB 3860
3530 IF TESTS = "@FIRST" THEN RETURN
3540 REM 'CHMENU'
3550 PRINT CHR$(12)
3560 PRINT "SELECT ONE OF THE FOLLOWING
3570 PRINT
3580 PRINT
3590 PRINT
3600 PRINT "1. FIND RECORD (FROM NAME)"
3610 PRINT "2. FIND NAMES (FROM INCOMPLETE

NAME)

"

3620 PRINT "3. FIND RECORDS (FROM TOWN)"
3630 PRINT "4. FIND RECORD (FROM INITIAL)"
3640 PRINT "5. LIST ALL RECORDS"
3650 PRINT "6. ADD NEW RECORD"
3660 PRINT "7. CHANGE RECORD"
3670 PRINT "8. DELETE RECORD"
3680 PRINT "9. EXIT & SAVE"
3690 PRINT
3700 PRINT
3710 REM 'INCHOI'
3720 REM
3730 LET L = 0

3740 LET 1=0
3750 FOR L = 0 TO 1

3760 PRINT "ENTER CHOICE (1 - 9)"
3770 FOR I = 1 TO 1

3780 LET AS = INKEYS
3790 IF AS = "" THEN 1=0
3800 NEXT I

3810 LET CHOI = VAL(AS)
3820 IF CHOI <1 THEN L = 0 ELSE L = 1

3830 IF CHOI >9 THEN L = 0
3840 NEXT L

3850 RETURN

Two lines have been added. The first tests TESTS.

This variable still contains the value read into it in

the *RDINFL* routine. If it is ©FIRST we know that

there is no valid data in the file and so the only

appropriate option is ADDREC, which is number 6.

If the test is passed, control is passed to *
FlRSTM *

, a

routine that displays an appropriate message and
sets the CHOI variable to 6. When the subroutine

returns to line 3530, TESTS is tested again (it is

THE HOME COMPUTER COURSE 377

Basic Programming

4

bound to pass) and the subroutine RETURNS to the

main program skipping the rest of the *CHOOSE*

subroutine since it is inappropriate.

You may have wondered why TESTS is tested

twice. This is to prevent the subroutine RETURNing

to the wrong point in the program. Without line

3530, the program would continue on down the

rest of * CHOOSE*
,
presenting the choice menu even

though it is not needed. It also avoids the use of

GOTOs, though IFTESTS = "©FIRST" THEN GOTO 3850

would work just as well. GOTOs make the program

messy and difficult to follow (programs making

excessive use of GOTOs are referred to as 'spaghetti

coding').

Before going on to look at * FlRSTM *
, readers are

referred back to *RDINFL* and the GOTO in line

1430. Since we have consistently argued against

using GOTO, why has one been used here? It would

have been perfectly easy to CLOSE the file and

RETURN by simply testing the value ofTESTS in two

separate lines. We used a GOTO here instead to

illustrate one of the few instances where its use is

excusable. This is within a very short and

identifiable program segment, and its function is

obvious (and made more so by the R EM comment)

.

GOTOs should never be used to jump out of a loop

(this can leave the value of variables in an

unpredictable state), never used to jump out of a

subroutine (this will confuse the RETURN

instruction unless a matching jump back into the

subroutine is used), and never used to jump to

remote regions of the program (this makes the

program all but impossible to follow).

The *FIRSTM* subroutine is simple and

straightforward: the screen is cleared and a

message is displayed informing the user that a

record will have to be entered. Line 3870 sets CHOI

to 6 so that when control is passed back to

EXECUT the *ADDREC* routine will be executed

automatically. The code for *FIRSTM* follows:

3860

3870
3880
3890
3900
3910
3920

3930
3940

3950
3960
3970
3980
3990

REM -FIRSTM* SUBROUTINE (DISPLAY

MESSAGE)
LET CHOI = 6

PRINT CHR$(12): REM CLEAR SCREEN
PRINT

"THERE ARE NO RECORDS IN"
"THE FILE. YOU WILL HAVE"
"TO START BY ADDING A

PRINT TAB(8)
PRINT TAB(8)
PRINT TAB(6)
RECORD"
PRINT
PRINT TAB(5)
CONTINUE)"
FOR B = 1 TO 1

IF INKEYS <>
"

NEXT B

PRINT CHR$(12)
RETURN

"(PRESS SPACE-BAR TO

THEN B = 0

REM CLEAR SCREEN

The *ADDREC* subroutine, given on page 379, has

two small but important changes from the version

we encountered before. After the fields have been

entered as elements in the various string arrays, the

variable SIZE is incremented and TESTS is set to a

null string (see lines 10090 and 10100). SIZE is an

important variable used in various parts of the

program so that it knows which records are being

operated on. SIZE was originally set to 0 as part of

the *CREARR* subroutine. Later, in *SETFLG*, it is

set to 1 if TESTS = "©FIRST". This is done so that

when *ADDREC* is first executed, the INPUT

statements will put the data into the first element of

each array. In other words, INPUT "ENTER

NAME";NAMFLDS(SIZE) is equivalent to INPUT

"ENTER NAME";NAMFLDS(1).

Line 10090 increments SIZE, so that it now
becomes2. If *ADDREC* is executed again, data will

be entered into the second element of each array.

Finally, *ADDREC* sets TESTS to " " in line 10100.

This is done because a record has now been

entered (though not yet stored in the tape or disk

data file). If *CHOOSE* is executed again, as it must

be to save the data and exit the program, we will

not want to be forced to add a new record again. If

TESTS were not cleared, the program would get

stuck in an endless loop, and the only way to get

out of it would be to reset or unplug the computer,

and all the data would be lost.

By setting TESTS to a null string, the tests in lines

3520 and 3530 of * CHOOSE* wiU fail and aUow the

options menu to be displayed. What then happens

to SIZE will depend on which routine is executed.

So far we have only ensured that SIZE = 1 if there is

no valid data in the file, and that this is incremented

by 1 each time a record is added. But what would

happen if there had been a number of valid records

in the file? To answer this we'll have to look at

RDINFL again.

Line 1420 reads the first data item into TESTS. If

it is not @ Fl RST, it is assumed to be a valid data item.

The records in the file are always in the same order,

namely: NAMFLD, MODFLD. STRFLD, TWNFLD,

CNTFLD, TELFLD, NDXFLD, NAMFLD, MODFLD, etc. If

the first record read out is valid data, it must belong

in the first element of the NAMFLDS array, so line

1440 transfers this data from TESTS to NAM FLDS (1)

.

The next two lines fill up the first elements in the

other five arrays. We now know that we have at

least one complete (database) record, so SIZE is set

to 2. This value must be one greater than the

number of valid records read into the arrays,

otherwise *ADDREC* would write new data into

elements already containing valid data.

Then a loop from 2 to 50 reads the records into

all six arrays, incrementing the index L each time

round. We have already made the decision to

restrict our program to dealing with files of 50

names and addresses, and the DIM statements in

the *CREARR* subroutine allocated space for this.

However, when you first start using the program,

you are unlikely to have a complete file of 50

entries, so we will need a routine in the program

that can detect when this is the case, set the variable

SIZE accordingly, and abort the reading-in loop.

Consequently, we have included line 1510 to

provide a call to a 'SIZE' subroutine, which we will

be developing later in the course. There are three

ways in which this problem could be handled.

First, when we write the data to tape, we could

arrange that the first record to be written is the

variable SIZE. The *RDINFL* subroutine could then

be modified to read in SIZE first and then set up a

loop of the form FOR L=1 TO SIZE to read in the

records. The second, and preferable, method

378 THE HOME COMPUTER COURSE

Basic Programming

(since it doesn't clash with our earlier test for

@FIRST in line 1430) is to set up a procedure to be

executed after all the records have been written, in

which a special flag (of the form @END, perhaps)

can be written at the end. A test can then be

inserted into *RDINFL* to abort the loop when
@END is encountered.

The third method is to make use of the EOF (End
Of File) function offered on some computers,

which is really an automated version of the second

method. These computers have an EOF flag, which

is normally set to 0 that is, FALSE but takes on
another value (typically 1 to represent TRUE) when
the end of file has been reached. Some basics allow

the EOF flag to be tested as a basic variable; in

which case, a construct of the form:

WHILE NOT EOF(N) (N is the file number)

DO
INPUT #N,ciatato read in)

ENDWHILE

will handle the problem. On other machines, the

EOF flag is represented as a single bit that must be

accessed using the PEEK statement. To find out if

your machine has an EOF function, you will need to

consult the instruction manual. Because it differs

so greatly between machines, we will not be using

EOF in our program. But as an exercise, readers

might like to attempt to modify the *RDINFL*

subroutine for all three possible methods of

dealing with files of less than 50 entries.

Generally, it is always a great deal easier to write

programs that deal with files of fixed length, but

tackling the problem of 'dynamic length' files at

this early stage will enable us to modify the

program later to cope with files with more than 50

entries.

4000
4010
4019

4020

4030
4040
4050
4060
4070
4080
4090
4100
4110
4120
4130
4140

REM
REM
IF C

FOOT
REM
SEE
REM
REM
R.EM

REM
REM
REM
REM
REM
REM
REM
REM
RETU

EXECUT SUBROUTINE •

HOI = 6 THEN GOSUB 10000: REM
NOTE
NORMALLY 'ON CHOI GOSUB etc'

FOOTNOTE

SEE

1

2

3

4

5

6

7

8

9

RN

IS *FNDREC-
IS *FNDNMS*
IS -FNDTWN*
IS -FNDINT-
IS -MOD REG*
IS * A DDR EC*
IS *MODREC*
IS *DELREC*
IS ^EXPROC!*

The *EXECUT* routine would not normally have

line 4019 (hence the odd line number), and line

4020 would normally be either:

ON CHOI GOSUB number,number,number etc

or a series of:

IF CHOI = 1 THEN GOSUB number

IF CHOI = 2 THEN GOSUB number etc

Line 4019 is included so that the program willwork
even though the other *EXECUT* subroutines have

not yet been coded .

10
20
30
40
50
60
70
80
90
100

REM
REM
GOSUB
REM
GOSUB
REM
GOSUB
REM
GOSUB
END

'MAINPG'
INITIL
1000

^GREETS*
3000

CH00SE
3500

EXECUT
4000

1000 REM *INITIL* SUBROUTINE
1010
1020
1030
1040
1050
1060
1070
1080
1090

1100
1110
1120
1130
1140
1150
1160
1 170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300

GOSUB
GOSUB
GOSUB
REM
REM
REM
REM
REM
RETURN

1100: REM *CREARR* (CREATE ARRAYS) SUBROUTINE
1400: REM *RDINFL'^ (READ IN FILE) SUBROUTINE
1600: REM *SETFLG* (SET FLAGS) SUBROUTINE

REM
DIM
DIM
DIM
DIM
DIM
DIM
REM
REM
REM
REM
LET
LET
LET
LET
REM
REM
REM
REM
REM
RETURN

CREARR (CREATE
NAMFLD$(50)
M0DFLD$(50)
TWNFLD$(50)
CNTFLD$(50)
TELFLD$(50)
NDXFLD$(50)

ARRAYS) SUBROUTINE

SIZE
RMOD
SVED
CURR

0

0

0
0

10000
10010
10020
10030
10040
10050
10060
10070
10080
10090
10100
10110
10120
10130
10140
10150

REM *ADDREC* SUBROUTINE
PRINT CHR$(12): REM CLEAR SCREEN

"ENTER NAME" ;NAMFLD$(SIZE)
STREET" ; STRFLD$ (SIZE)
TOWN" ;TWNFLD$(SIZE)
COUNTY" ;CNTFLD$(SIZE)
TELEPHONE NUMBER" ; TELFLD$ (SIZE)

INPUT
INPUT
INPUT
INPUT
INPUT
LET
LET
LET
LET
REM
REM
REM
REM
RETURN

"ENTER
"ENTER
"ENTER
"ENTER

RMOD = 1: REM
NDXFLD$(SIZE) =

SIZE = SIZE + 1

TEST$ = ""

INSERT CALL TO

RECORD MODIFIED'
STR$(SIZE)

MODNAM HERE

FLAG SET

Basic Flavours

OPEN
CLOSE

Because the Spectrum has the facility for

saving or loading whole arrays using the

command SAVE-DATA, as explained on page

318, the *RDINFL* subroutine will be

completely different — reading in each of the

arrays (NAMFLDS, MODFLDS etc.) in

succession. When we begin writing the data

in the next instalment, we will publish a

complete version of the relevant subroutines

for this machine. In the meantime, as an

exercise, Spectrum owners can tackle the

problem of how to create the dummy file

containing ©FIRST, as well as determining

how many valid entries there are in the array,

when reading the file in.

Sinclair machines do not accept program line

numbers above 9999. In the full Spectrum

listing that will appear in Issue 23 the

ADDREC subroutine begins at line 4200 and

line numbers increase in steps of 10

See 'Basic Flavours' page 319.

THE HOME COMPUTER COURSE 379

Pioneers In Computing

James Powers

Powers' machines were purely

mechanical and dedicated to a

single application. He

nevertheless provided fierce

competition for Hollerith

Herman Hollerith

Hollerith invented the

electromechanical card reader,

which was later developed into

the tabulator

Double Shuffle
Herman Hollerith and James
Powers both developed
tabulating machines. Their

rivalry dominated the world of

computing for six decades

The machines that Herman Hollerith (see page

240) invented to process the results of the 1890

United States census developed into a range of

general purpose data processing equipment

known as 'tabulators'. UntU the introduction of the

first commercial computers in the 1950's,

tabulators were essential to the growth of industry

and business. In Pittsburgh in the 1930's, for

example, a leading department store

experimented with a system of customer accounts

in which 250 terminals throughout the store were

connected by telephone lines to a central bank of

tabulators. Goods were priced with punched tags

and the information was automatically sent to the

tabulators, which then recorded the sale and

prepared an invoice for the customer. When the

customer's credit rating had been checked,

authorisation for the sale was sent to the terminal

through an 'on-line' typewriter.

Business competition, in fact, provided the

initial stimulus for the development of tabulators.

Hollerith's monopoly over the provision of census

equipment was broken in 1910 when the Census

Bureau invited James Powers to provide

alternative machines. Powers offered a system of

tabulators that were totally mechanical and

therefore did not infringe the patents of Hollerith's

electromechanical devices. The rivalry between

the two men, and the two companies they later

formed, spurred on the growth of data processing

machines.

In 1902, Hollerith designed a plug board (rather

like a telephone cord switchboard), which could

select the columns ofthe punched card that were to

be added up and then output. In this way,

Hollerith's machine had a programming capability

that his rival's machines lacked; Powers always

produced machines dedicated to specific

applications. In 1924, Powers patented a way of

representing alphanumeric data on punched cards

by using a single hole in each column for a nimiber,

and a combination of holes to represent a letter.

Hollerith quickly responded with his own system:

the now standard 80-column card. Each column

of this card contained 12 rows of holes that were

'read' by wire brushes completing an electrical

circuit with a metal contact beneath the card. Some
advanced systems used a light detector for this

purpose.

The first tabulators could only count or

accumulate totals, but later more advanced

mathematical functions were provided for

manipulating data. Unlike computers, which were

invented by scientists for mathematical purposes,

the tabulator was created to be an information

processor. People were quickly inspired to work

out applications for the new machines. Special

tabulators were adapted for use in computing

tables, in wave analysis, and in astronomy —
tabulators identified the planet Pluto in 1930.

Tabulators eventually became sophisticated

enough to deal interactively with large amounts of

data — IBM patented one that could keep records

on the transactions of 10,000 bank accounts. But

their greatest impact was in collating data on a

scale never seen before.

Tabulator Machines
The tabulator in its heyday in the early 1950's consisted of eight

separate units. Data was put onto each card by a 'card punch',

which could process 200 cards an hour. A separate 'verifier'

checked the accuracy of the punch operator, and when the cards

became worn a 'reproducing punch' created new copies. An

'interpreter' printed an explanation of the data above each

column for easy reference.

The 'tabulator' itself accumulated totals of data in the

columns, and output the results at a rate of 9,000 cards per hour.

This tabulator was often connected to a 'multiplying punch' that

provided more sophisticated mathematical functions. The

'collator' could compare the data in two stacks of cards or merge

two stacks together. Finally, the 'sorter' could take a stack of

cards and sort them into 13 piles — one for each of the 12 holes,

and onefor a blank column.

The operation of the tabulator could be changed with control

codes (in the 11th and 12th positions), and control cards were

brightly coloured to mark them out in a stack. When a control

card was encountered, the tabulator would begin a new

operation — such as counting a different field. In census work,

an example of a field would be the data relating to a house, or a

street, or a city. At each change of field the tabulator would print

out a subtotal — in our example this would provide the

population of each house, street or city. Some of the techniques

of data processing were carried over from tabulators into the

early computer languages

380 THE HOME COMPUTER COURSE

TllEHOME
COMPUTES COIinSE

BINDER

Now that your collection oi Home
Computer Course is growing, it makes sound
sense to take advantage of this opportunity to

order the two specially designed Home
Computer Course binders.

The bindershavebeen commissioned
to store all the issues in this 24 part series.

At the end ol the course the two
volume binder set will prove invaluable in

convertingyour copies of thisunique series into

a permanentwork of reference

.

Buytwotogetherand save£ 1 .00

* Buyvolumes 1 and 2 together for

£6.90 (including P&P). Simply fill in the order
formand these willbe forwarded toyou with
our invoice.

* Ifyou prefer tobuy the binders
separatelyplease send usyourcheque/postal
order for£3 .95 (including P&P).We will send
youvolume 1 only. Thenyoumayordervolume
2 in thesameway-when it suitsyou

!

Overseas readers: This binder oifer applies to readers in the

UK, Eire andAustralia only. Readers inAustralia should
complete the special loose insert in Issue 1 and see additional
binder information on the inside front cover, Readers in New
Zealand and South Africa and some other countries can obtain
their bindersnow. For details please see inside the front cover.

Bindersmay be subject to import duty and/or local tax.

THE LASTWORDIN LOGIC

