
ISSN 0265-2919

fTlASTERinG YOUR HDfTlE COmPUTER IR S4 UJEEKS

An ©RBIS Publication
IR£1 Aus$l95 NZ$2.25 SAR1.9S Sing $4.50 USA & Can $1.95

CONTENTS

ardware

Over The Rainbow Sinclair's Spectrum can

be expanded into a powerful system

MemotechMTX 512A home computer

designed for Basic or machine code use

386

390

Sofftwai^

Play Acting Simulation programs can turn a 0QQ
home computer into an interactive teacher ^

Basic Programming

Time And Motion We add the ability to sort oqo
and modify records and store files 0^0

insiglits

Computer Literate Science fiction writers

have often been surprisingly accurate in their

predictions for the future

Common SenseA home computer can be

used to control domestic appliances

PasswordsTo Computing

Original Author Software is now available

that will generate programs almost

automatically

Purpose Designed We examine the second
generation chip that is dramatically reducing

Sie cost ofhome computers

Pioneers in Computing

381

394

388

i
Vannevar Bush His analyser was able to

solve complex differential equations by
electromechanical means

400

"Sound And Liglit

Sound Spectacular...Light Show We look at OQp
the Oric- 1 's sound capabilities and scrutinise ^^^
the Spectrum's graphics

Next Week
• The Osborne-1 was the first

truly portable data processing

system. We examine this

remarkably compact machine

• Microprocessors are

increasingly being used to

produce exciting toys

• We look at the way in which

optical discs can be used to

provide fast access mass

storage

Editor Richard Pawson; ConsuttantEditorGarethJefferson; Art Director David Whelan; ProductiOiiEiHtorCatherineCardwell; Staff Writer Roger Ford; PictiireEditor Claudia Zeff; Designer Hazel Bennington; ArtAssistantLizOixon; Sob

Editors Robert Pickering, Keith Parish; iteseaiclier Melanie Davis; ContrilNitors Tim Heath, Henry Budgett, Brian Morris, Lisa Kelly, Steven Colwill, Richard King, Geoffrey Nairns; Group Art Director Perry Neville; Managing Director

Stephen England; Consultant David Tebbutt; fHiiilisiied liy Oriiis PuMsliing Ltd: bfitorial Director Brian Innes; Project Deveioimient Peter Brookesmith; Execvtive blitor Chris Cooper; l>rodyctionCoH)rdinatorlan Paton; Ciroulation

Director David Breed; Mariieting Director Michael Joyce; Designed and iirodiicedliyBunciil>artworf(sUd; Editorial Office 85 Charlotte Street, London W1;

Ltd; Printed bi Great Britain by Artisan l*vess Ltd, LeiMSter

HOME COMPUTER COURSE - Price UK 80p IR £1,00 AUS $1.95 NZ $2.25 SA R1.95 SINGAPORE $4.50 USA and CANADA $1.95

How to obtain your copies of MHME COMPUTER COURSE - Copies are obtainable by placing a regular order at your newsagent.

Bade Numbers UK and Eire - Back numbers are obtainable from your newsagent or from HOME COMPUTER COURSE. Back numbers, Orbis Publishing Limited, 20/22 Bedfordbury, LONDON WC2N 4BT at cover price. AUSTRALIA- Back

numbers are obtainable from HOME COMPUTER COURSE. Back numbers. Gordon & Gotch (Aus) Ltd, 114 William Street, PO Box 767G Melbourne, Vic 3001. SOUTH AFRICA, NEW ZEALAND, EUROPE & MALTA: Back numbers are available at

cover price from your newsagent. In case of difficulty write to the address in your country given for binders. South African readers should add sales tax.

How to obtain binders for HOME COMPUTER COURSE - UK and Eire: Please send £3.95 per binder if you do not wish to take advantage of our special offer detailed in Issues 4, 5 and 6. EUROPE: Write with remittance of £5.00 per bmder (incl.

p&p) payable to Orbis Publishing Limited, 20/22 Bedfordbury, LONDON WC2N 4BT. MALTA: Binders are obtainable through your local newsagent price £3.95. In case of difficulty write to HOME COMPUTER COURSE BINDERS, Miller (Malta)

Ltd, M. A. Vassalli Street, Valletta, Malta. AUSTRALIA: For details of how to obtain your binders see inserts in early issues or write to HOME COMPUTER COURSE BINDERS, First Post Pty Ltd, 23 Chandos Street, St. Leonards. NSW 2065. The

binders supplied are those illustrated in the magazine. NEW ZEALAND: Binders are available through your local newsagent or from HOME COMPUTER COURSE BINDERS, Gordon & Gotch (NZ) Ltd, PO Box 1595. Wellington. SOUTH AFRICA:

Binders are available through any branch of Central Newsagency In case of difficulty write to HOME COMPUTER (JOURSE BINDERS, Intermag, PO Box 57394, Springfield 2137.

Mote- Binders and back numbers are obtainable subject to availability of stocks. Whilst every attemptis made to keep the price ofthe issues and binders constant, thepublishersreservethe right to increase the stated prices at any time when

circumstances dictate, Binders depicted in this publication are those produced for the UK market only and may not necessarily be identical to binders produced for sale outside the UK. Binders and issues may be subject to importriuty and/or

local taxes, which are not included in the above prices unless stated.

Computers have featured widely

in science fiction . In many cases
writers have accurately predicted

technologies that we now take

for granted

Many scientific and technical achievements have

occurred to writers of fiction, or film makers, long

before they were actually feasible. Arthur C
Qarke, the author of 2001 — A Space Odyssey,

first put forward the idea ofgeostationary satellites

in an article for the magazine Wireless World in the

early 1950's — almost two decades before they

were developed. Similarly, Robert Heinlein's short

story, WaldOy described remotely^controUed mani-

pulators well before robot hands came into use. In

fact, many inventors and development scientists

have been inspired by the creative ideas of science

fiction writers and film makers.

Fictional computers, however, often bear little

resemblance to reality. In the futuristic film

Rollerball for example, a computer that has

speech-recognising input and voice output takes

the form of a cube-shaped tank of liquid.

Computers resembling the real thing, of course,

tend to be undramatic and less interesting,

although they have often been seen in films as a

part of the furniture. There can be no doubt that in

the 1960's and 1970's, films that featured

computers closely modelled on the actual

machines helped to educate the general public by

showing what these new, near-mythical

'computers' actually looked like.

Creative imaginations began conjuring up ideas

of computers not very long after Charles Babbage
(see page 220) began his pioneering work on an

Analytical Engine, in the middle years of the 19th

century. In 1879, Edward Page Mitchell wrote a

•story called The Ablest Man in the World, which

described how a calculating machine was

implanted into the brain of an idiot, turning him
into a genius. Mitchell's ideas preceded actual

scientific advance on many counts. In the first

instance, he grappled with the idea of

miniaturisation — the computing machine is at

once small enough to fit into the idiot's cranium

and yet powerful enough to endow him with a

superior intellect. Secondly, Mitchell prefigured

the idea of interconnecting a computer with the

human body. Today, almost a century after the

story was written, the techniques to connect

simple controllable electromechanical devices to

the body's central nervous system are beginning to

be perfected.

Generally, few writers have an extensive

knowledge of computer architecture, though

some are accomplished engineers and many use

computers (in the form of word processors) in

their work. Yet most can present a convincing

picture of intergalactic travel, even though they are

not highly qualified astro-physicists or rocketry

experts. Similarly, there is no reason why writers

cannot speculate on the possible attributes of

future generations of computers without

Superman III

Computer fraud is the central

theme of the third Superman

film. Richard Pryorplaysa

villain who makes his fortune by

stealing a half-cent from every

transaction in a bank's

computer. This part of the plot is

based on several real cases of

fraud. The film ends with the

destruction of the largest

computer in the world, which

has been built entirely for

criminal purposes

THE HOME COMPUTER COURSE 381

comprehensive knowledge of the machines

currently in use.

This speculation, however, has led to a standard

science fiction computer that appears to have —
by current computer standards — a range of

facilities that are impossible to achieve. To begin

with, this standard computer has stored in its

memory absolutely every piece of information

and idea ever thought of, and it can retrieve any of

this information instantaneously, by processes

analogous to the workings of the human mind.

The computer HAL in 2001 —A Space Odyssey

is one such super-intelligent machine.

Spaced Oddity

HAL — the Heuristically

programmed Algorithmic

computer in Arthur C Clarke's

'2001 — A Space Odyssey' is a

good example of the

omnipotent computing machine

often seen in science fiction

films. In this case HAL is

entrusted with details of the

mission's objectives while the

human crew members are not,

which leads the machine to

believe the men to be

dispensable. It is widely

believed that Clarke chose the

letters HAL for their proximity to

IBM in the alphabet

The supercomputer generally postulated by

science fiction writers is omnipresent as well,

although it appears to each user that he alone has

access to the machine. Spoken output (with no

hint that it might be a synthetic product of strung

together phonemes) and voice recognition (which

infallibly makes allowance for the characteristics

of individual speech patterns) are both essential

requirements of this supermachine; while visual

object recognition and the ability to synthesise

food (perhaps from its basic elemental

constituents) are other useful attributes.

The supercomputer that we have outlined here

is usually enlivened with human attributes as well,

and this characterisation makes it appear as some
sort of superbeing. However, the character of the

computer can sometimes turn decidedly

malevolent or deranged. In the film Dark Star, for

example, a computer-controlled bomb is given the

unsettling characteristics of a psychopathic killer.

When portrayed in this way, the supercomputer

certainly does belong in the realms of fantasy. But,

on the other hand, we can recognise in modem
computing equipment the possible ancestors of

some of the other attributes we have outlined.

High capacity memory with a very short access

time is already possible. By the early I980's,

gigabyte memories (a thousand million bytes) had

been created, and the fastest commercial

machines were processing information at much
more than ten million instructions per second.

Again, in the field of spoken output, we are very

close to achieving the perfection shown in films

where computers talk to their operators. The
quality of spoken output simply depends on

available memory space, processing speed and

programming time. Voice recognition, however, is

more difficult to achieve because there is such a

wide divergence between individual speech

patterns. Two people may be speaking the same
language, but to the computer they can seem to be

speaking entirely different ones.

Visual object recognition is also in its infancy,

but the technology is advancing rapidly. When we
looked at industrial robots (see page 281), we
noted that a great deal of progress was being made
in object recognition by means of charge-coupled

device television cameras, and that the robot could

pick a specified item out of a mixed bag.

Meaningful visual recognition depends on the size

of the visual vocabulary, which again is a function

of memory size and processor power. As for food

synthesis, it may not be possible to make a meal

look like meat and potatoes or fried fish, but it is

certainly possible to make it taste and smell like

them, even if computers cannot, as yet, create

them from their elements.

Not all authors go to these lengths of attributing

remarkable powers to their fictional machines.

John Brunner, for example, in the science fiction

novel Stand On Zanzibar, published in 1969,

describes the world as it might be in 2010 when the

problems of overcrowding and starvation have

reached crisis level. The computer that he

describes, which he calls Shalmaneser, obviously

has considerable memory capacity and processor

speed (for it is on-hne to every television set on

earth) but its interrogation language is very similar

to something we might use today:

PROGRAMME REJECTED •

Q reason for rejection

ANOMALIES IN GROUND DATA

Q define Q specify

DATA IN FOLLOWING CATEGORIES NOT

ACCEPTABLE. HISTORY COMMERCE SOCIAL

INTERACTION CULTURE

Q accept data as given

QUESTION MEANINGLESS AND INOPERABLE

Brunner has obviously gone to some lengths to use

nearly^normal English within a context that a

computer user would recognise as an operating

system response. His other predictions are equally

convincing, and it is not surprising that the novel

382 THE HOME COMPUTER COURSE
/

won most major science fiction awards.

In more recent films and novels, computers

have become more than part of the fiimiture, or

even characters, and are now often integral parts

of the plot itself. A first-class example is Walt

Disney's Tron. We talked about this exceptional

film (its name is derived from an operating system

mnemonic — TRace ON), as an example of

computerised animation (see page 181). It takes

place both in the real world and inside a computer.

The outside world has characters such as software

engineers, systems programmers and other

computer people; but inside the machine the

individual parts of the program and operating

system become the characters, and the machine

architecture is the scenario against which the

action is played out.

There are also works of fiction that do not

actually mention computers at all, but leave the

reader in no doubt that without extremely

powerful computing machinery, the situation

portrayed could never exist. Foremost among
these are George Orwell's 1984 and Aldous

Huxley's Brave New World. Both of these books

are set in their author's future, in a world totally

overtaken by a small ruling clique who repress the

rest of the population. It is perhaps to these two

books that we should look to glimpse the

possibilities of misuse of computing power.

It is not possible for us to be entirely exhaustive

in this analysis of fictional representations of

computers, but some novels display uniquely

imaginative ideas. John Earth's Giles Goat-Boyis

a good example. This is a considerable novel (812

pages in the paperback edition), which centres on

the premise that it is the work of a supercomputer

called WESCAC, and that it relates an incident

that happened to its 'author'.

Finally, we should also remember that it is not

Time Out Of Mind

Part vehicle, part artificial intelligence, Dr Who's Tardis falls very

firmly into the area of computer as a product of the author's

imagination. Though the interrogation method is via a keyboard

and visual display unit, the intelligence of the machine itself is

assumed to be limitless, as is the contents of its memory

CO

CO

CD
CD

@

only in the realm of fiction that one finds creative

writing about computers. Of all the thousands of

specialist, non-fiction books that have been

written about computers and computing, one

stands out from the rest simply for the quality of its

narrative. Tracy Kidder's SoulOfA New Machine
is the history of the development of Data

General's Eagle, a 32-bit minicomputer. While

the story is ostensibly that of the engineers and

managers involved in the project, one is left in no

doubt that the star is the computer itself.

War Games

Unwittingly a teenage computer

user attempting to

communicate with a friend over

the public telephone network

breaks into the main NATO

defence computer. Believing

what he sees to be a game, he

starts to play, only to discover

that he has started World War

Three...

I—
en
I—

<

Q

THE HOME COMPUTER COURSE 383

PasswordsTo Computing

Original Author
It is possible to write computer programs that will themselves
generate other programs, or correct errors in human coding

'If computers are so smart, how come they need

humans to program them?' Experienced

computer users will tend to shrug off a question

like this from a sceptical newcomer, but it is not as

silly as it seems. Much research is being

undertaken in writing programs that can generate

other programs, and operating systems that can

correct bugs in code written by humans.

Consider the SYNTAX ERROR? message, which is

frequently encountered by home computer users.

This can be inftiriating because the message gives

you so little information. A compiler on a large

mainframe computer will generally give far more

information as to the nature of the error

encountered. For example, the error message

could read:

Paper Money

AWAA/VWAANAA
\AAA/ AA/\AAA AA VSA
MA \AA NAA VAA

O
O
o
o
o
o
o
o
o
o
o
o
o

AGED DEBTORS
NAAAVWAAAA
AAAAN/AAAAANAAA

\AAAA\AA/AA/AA/
AANAAWSAV^A

\AA\AA/VA/\AAAA
\A \A VAAAA/ AA/

NAAANAANA/
V AAA/ VVNAAAAA
/s/ /^AA^vs^//wsA/W AA\AAA \AA/ /VN

AAA

AAA

\AAA

VSAA

m
m
m
m

Business programs are generated by

specifying the contents of each of the files that

must be kept up to date, and the layout for all

the transactions and reports that will be

produced. Then, the user specifies the

relationships between the various items of data.

This chart shows the first stages in specifying

the operation of a simple accounting system

1090 LET A=(C*2+F$) * ((FG-C) *TH+1))

t

ERRORS: 1) MISMATCH - STRING VARIABLE F$

NOT ALLOWED

2) LAST CLOSE BRACKET NOT EXPECTED

There is no fundamental reason why such

techniques cannot be used in an interpreter on a

home computer — the cost of the extra ROM
needed to store the routines would be minimal.

But few home computers employ even cursory

error monitoring procedures: most don't even

check the syntax of the code as it is entered.

However, it is often possible to buy additional

ROM chips or plug-in software cartridges that will

extend the range of basic conmiands available,

particularly those related to the development and

de-bugging of programs. These basic conmiands

include:

HELP — prints out the program line and

highlights the exact character position where

program execution terminated. TTiis will ususdly,

but not always, indicate the source of the syntax

error.

DUMP — prints a list of all variable names and

their contents currently in use by the program.

This is helpful in deducing how far the program

had got in its task before the error occurred.

TRACE— displays (in a window in the comer of

the screen) tiie line number (or numbers)

currently being executed while the program is

running. This helps the user to trace the flow ofthe

program, and ensures, among other things that

subroutines are being executed in the desired

order.

Writing programs that allow a computer to

correct human coding errors is, in general, not a

simple task. But in the case of some errors it is

fairly easy. For example, we know that all program

lines have to start with a basic keyword (though

some machines will allow you to drop the word

LET). Therefore, if a line begins with PRUNT or

PRO NT, it would be easy to work out that it should

say PRINT. In the Basic Programming course we
have discussed the idea of fuzzy matching

(algorithms for choosing the closest match to any

phrase) and this could be applied to program

keywords as well. Alternatively, the interpreter

could simply include a list of conmion typing

errors, and their correct equivalents. For safety, it

would be desirable for the computer to check any

alterations it makes with the operator.

But beyond these basic procedures, automatic

correction becomes a great deal more difficult. In

384 THE HOME COMPUTER COURSE

the example we have given, is F$ a misprint for F or

PS or F4? Or something entirely different? If you

were to show the complete listing to another

competent programmer, he should be able to

identify the faults and make the corrections. He
would use two criteria in making his decisions: the

context in which the program line appeared, and

his own experience.

Strangely enough, this technique has been more

widely applied to correcting English text than to

checking program code. A spelling checker

package, for example, will work through a text and

highli^t any words that don't match tiiie entries in

its dictionary of perhaps 50,000 words, held on

disk. Most of these packages have the facility to

learn new words (such as the spelling of company
or proper names) and add these to their

dictionaries. The more sophisticated will even

suggest the correct spelling if a close match is

detected. Experimental word processors have also

been developed that can apply the same processes

to grammar and writing style — pointing out such

things as incorrect punctuation, repetition of

words within a paragraph, mixed metaphors, and

inapplicable adjectives. Again, these work by

examining the context of any phrase, and by

reference to a library of previously used examples.

More effort, however, has been put into the

development of systems that will createprograms,

rather than correct existing ones. In 1981, a

software product W2is announced that set off one

of the fiercest battles ever waged within the

microcomputer industry. Qeverly named The

Last One, it purported to be a program that could

write any other program you might want, and

hence was the last programyouwould everneed to

buy. This proved to be an unjustified claim, but

The Last One was a very useful aid in the

development of certain types of program —
mainly business applications. There are now
several such products on the market for business

microcomputers, and a few for home computers,

and these are collectively called 'program

generators'.

Lefs now look at the basic concept behind a

program that can write programs. Consider this

trivial example:

10 PRINT "WHAT DO YOU WANT THE PROGRAM TO

DISPLAY ON THE SCREEN?"

20 INPUT AS

30 PRINT "THE PROGRAM IS:"

40 PRINT "10 PRINT ";CHR$(34);A$;CHR$(34)

If you answer HELLO to the question, the program

(which should run on most home computers)

should print out the line:

THE PROGRAM IS

10 PRINT "HELLO"

If you apply the same technique to the input,

calculation and output phases of the application

you have in mind, then you could write yourself a

very simple program generator. If all the questions

that it asks are plmnly worded, it should be

Tools Of The

Trade
'Programmer's Toolkits' can

be purchased for many home

computers, in the form of

ROM chips or plug-in

cartridges. They extend the

range of BASIC commands,

particularly for program

writing and de-bugging

possible for someone with no previous experience

to develop a simple program using your generator.

Commercially produced program generators

use the same techniques. Most business

applications consist of a combination of five

distinct processes: input of data, output to screen

or printer, storage in a data file, retrieval, and

calculation. The generator will have standard and

very flexible subroutines for each of these. By
asking you to specify the exact structure ofthe data

you \^1 be using, the calculations that go with that

data, and the layouts you require on the screen and

printer, the generator will change the values of

certain variables in the subroutines, and string

them together to create the program.

Although program generators are becoming

more sophisticated, they are unlikely to replace

human progranuners in the immediate future

because they suffer from the following limitations.

First, the technique described is all very well for

transaction-based business applications such as

accounting or stock control, but generally these

program generators can't be applied to writing

word processor or games programs. Secondly,

because the program generator has to make use of

these standard flexible subroutines, the resulting

listing won't be nearly as efficient (either in terms

of speed or memory used) as it would have been if

it had been purpose-written by a programmer.

Thirdly, programs produced by generators

generally aren't as user-friendly as the systems

currently being produced by human
programmers. For example, they seldom make
good use of the graphics facilities offered by the

latest machines.

Finally, the program generators that are now
available can only really replace the final stage in

programming — the writing of the code. The user

still has to put the work into thinking out the exact

form of the data, input and output that is needed.

Generally, the earlier stages of programming are

the most difficult, and require specific skills

distinct from those of programming. Most large

companies employ specialists called 'systems

analysts' to specify the programs they need, and

these specifications are then turned into code by

programmers. Program generators have yet to

acquire all the skills required to create a computer

program.

THE HOME COMPUTER COURSE 385

-,1. S*"***- .

Rainbow
Some home computers can be
expanded into sophisticated

machines with a variety of add-
ons. We take a Spectrum to its

limits
Acoustic Coupler

The Micro-Myte 60, shown

here, enables one computer to

)mmunicate with another

Microdrive

The Microdrive uses

cartridges containing an

endless loop of tape, any given

point of which passes the read/

write head every seven seconds.

Information transfer takes place

at 6 Kbytes per second (four

times the speed of normal

cassette players), and up to

eight Microdrives can be

connected together, as shown,

to give a total capacity of 700

Kbytes or more

When it was introduc^l^ early 1982, the Sinclair

Spectrum was h|gefl as a real price and
performance hMKuirough. In 1983, its first full

year of prawiction. Spectrum sales (600,000
units) a^j^nted for more than half the number of

hon^g^^mputers sold in the United Kingdom,

wWfii surprised even the manufacturers. The
lectrum was certainly a vast improvement on

Sinclair's earlier ZX81 model, with 16 or 48
Kbytes of RAM as standard; eight colours for

border, background and text, and a limited high-

resolution graphics capability; an improved~ but

still ungainly — keyboard; and the ability to

generate simple sounds. But all these dii

facilities did not jjm^00i^^^SSS^naBn\
manufacturers from^^Suang a wide range of

accessories. Sinclaiwitself has also been active,

fge, in the form of the

[terfaces for plug-in ROM
:ks.

adding mass stoi

Microdrive, and
cartridges and joysi

Keyboard

Fuller's FDS keyboard, shown

here, provides function keys and

full-sized space bar

Joysticks

Using Sinclair's Interface 2, any

joystick that uses the Atari

interface can be accommodated,

no matter what its operating

principles are. Interface 2 has

provision for two joysticks

coupled at any time

RAM Pack

The smaller 16 Kbyte Spectrum

can be upgraded by the addition

of a 32 Kbyte add-on RAM
cartridge

386 THE HOME COMPIMER COURSE

Hardware

TV Monitor

As the Spectrum has no facility

to output to a monitor, it is

difficult to obtain high quality

graphics. Shown here is Sony's

Profeel, a modular television

system that has its receiver

eparate from the monitor

Serial Printer

In addition to the ZX printer, it is

possible to attach a

conventional dot matrix or daisy

wheel printer to the Spectrum

using an RS232 or Centronics

interface card. Sinclair's own

Interface 1 supports serial

devices

Cassette Player

Even with the Microdrive fitted,

the Spectrum can still write to

and read from a domestic

cassette recorder, so

commercial software issued on

cassette can still be used

Music Synthesis

Petron's Trichord is a good

example of a type of music

synthesiser available for the

Spectrum. Trichord, as its name

suggests, is a three voice unit

that offers up to 6,134 three-note

chords when used with a 48

Kbyte Spectrum
Speech Synthesis

The Cheetah Sweet Talker is a

synthesiser that uses the

simplified allophonic system to

produce speech by building up

words with their component

syllables. Sixty-three

allophones and four space

intervals of varying lengths are

provided

KeyboanI

Though Spectrum's standard

keyboard is a vast improvement

over those fitted to the ZX80 and

ZX81, it is still not suitable for

touch-typing

Interface 1

Specifically designed to serve

the Microdrive, Interface 1 also

contains circuitry to allow

several devices like printers,

plotters or modems to be used,

and in addition allows a number

of Spectrumsto be linked

together into a local area

network

Interface 2

A number o1 independent

companies have produced

programmable joystick

controller interfaces, but

Sinclair's own model

incorporates a ROM socket, so

•that games and alternative

languages are easier to install

and use

ZX Printer

In order to produce a low-cost

printer, sufficient for the needs

of the home user whose primary

requirement is to list program!!***^

Sinclair produced a unifffiat

uses a form of spfSrk erosion tj

make marks on aluminised

fraper''

THE HOME COMPUTER COURSE 387

PasswordsTo Computing

Higher Plane

All semiconductor chips are

built up from layers of

semiconductor deposits, which

are individually etched to create

the circuit elements. The final

layer determines the connection

between elements. A ULA

consists of an array of logic

elements that can be combined

to form a complex logic circuit

Purpose Designed
Uncommitted Logic Arrays

(ULAs) can handle all the

functions of a home computer,
apart from the CPU, ROM and
RAM
Of the many advances in electronic design that

have resulted from the microcomputer boom, one

of the most significant has been the development

of a type of chip called an Unconmiitted Logic

Array (ULA). Though largely unrecognised by

the general public, this quiet revolution has been

going on for some years now, to the point where it

recently became possible to build very

sophisticated computers and other devices with no

more than four major components: a CPU, some

RAM, some ROM and — to tie these all together

- a ULA.
So what is a ULA? As the name suggests, it is a

large number (an array) of logic gates, which are

initially uncommitted but can be modified to carry

out almost any operation that the designer needs.

The ULA can be considered as a development of

the ROM, since the contents of both of these

components can only be specified by the chip

manufacturer, not by the user.

Before a ROM or ULA is 'progranmied' it

consists of no more than a large number of simple

electronic circuits or cells, which are not connected

and therefore cannot perform any action. All

chips are constructed by building up layers of

semi-conductor materials (see page 122). The

COo
o

final layer is usually made of conducting material,

and forms the connections between the various

cells. It is the wide variety of possible

interconnections that gives the ULA its flexibility;

and though each cell is quite simple, consisting

perhaps of a couple of transistors or a single

resistor, they can be connected to each other by the

final layer to build fairly complex circuits such as

flip/flops (see page 305).

Such circuits, called 'modules', can usually be

built from less than half a dozen cells, and since a

large ULA may have several thousand cells, the

modules themselves can be interconnected to

build complex circuits, such as registers, counters,

and timing circuits. The functions performed by

these circuits are normally carried out in a home
computer by a collection of general purpose logic

chips.

A ULA can be progranmied to perform an

extremely diverse range of activities. Any given

ULA could be made to synthesise sound, or

control the exposure, focus and motor in a camera,

or do most of the work in a digital thermometer.

And besides the ULA, almost no external

circuitry is needed — except for a battery, a switch

and some sensors or control buttons.

As might be expected, computers are

extensively used in the process of designing the

layer that interconnects the cells of a ULA. A
mini-computer, such as a DEC PCPll/23,

running a Computer Aided Design system, first

builds up an encoded diagram of the desired logic.

The system then draws, and similarly encodes, a

map of the planned layout. This is done on a

graphics terminal, and a hard copy of the design

can be produced on a plotter.

Once the design is complete it is transmitted to a

larger computer, which checks that the plan is

acceptable, compares it with the original logic

design, and ensures that it doesn't contain any

serious errors. It is then submitted to another

program that simulates the circuit which would

result, using a test program provided by the

customer. When the design is finalised, the

computer can produce the artwork for the optical

mask used in making the final layer.

How far canULAs go? The idea of putting a lot

of simple circuits in silicon and allowing the user to

decide how they should interact is so appealing

that it might become the recognised method of

implementing most circuitry. However, at the

present level of technology, ULAs are economic

only when at least a couple of thousand identical

circuits are needed. The PROM (Progranmiable

Read Only Memory), EPROM (Erasable

PROM), EEPROM (Electrically Erasable

PROM), and EAROM (Electrically Alterable

ROM) are all alternatives to theROM that can be

programmed by a user with suitable equipment. It

may not be too long before user-programmable

equivalents to the ULA appear, too.

388 THE HOME COMPUTER COURSE

Play Acting
Simulation is one of the best educational applications for home
computers. We take a further look at some of the programs available

Winds
This simulation program, available from

Longmans for the BBC Micro, puts you in the

position of master ofan old sailing ship. On the

screen is a map of the world, with your ship

represented by a small dot, and this is steered

using compass bearings — N, E, SW, etc. You
choose your starting and finishing ports and the

date you first set sail. The ship's speed depends

on the prevailing wind's direction and strength,

and this is shown at the bottom of the screen.

Also shown are: the ship's position expressed in

longitude and latitude; the wind zone

('westerlies' for example); the date; the

distance already covered; and the total length

of the voyage.

Let us take the most direct route from

London to Rio de Janeiro, and let's set sail on

January L Heading south, we make good

progress using the Atlantic westerlies until we
reach the Equator. Here we are becalmed for

three days in the 'doldrums'. Eventually, the

south-west trade wind blows up, but this poses

a problem — how do we sail south-west into a

south-westerly wind? The solution is to zigzag

(or 'tack') first south and then west, until we
reach Rio, 15,480 km (9,620 miles) and 207

days later.

Other voyages are more fraught with danger:

hurricanes, polar ice and being shipwrecked are

just some of the hazards you could face. This

simulation program can be used in a variety of

ways. At its simplest it can be used as a game to

teach young children the points of the compass.

In a school geography lesson, students could

investigate the various wind zones and the idea

of route optimisation.

Flight Simulation
Flight Simulation is a home computer version

ofthe arcade game, in which you are the pilot of

a small aeroplane. The screen displays your

view from the cockpit, with the instrument

panel below. This contains several dials, gauges

and lights, 2ill ofwhich must be closely watched

in order to fly the plane successfully. TTie plane's

control column is represented by the four arrow

keys, and the other controls (power, landing

gear, etc.) are operated by other keys.

Unlike the arcade game, however, you are

given the chance to familiarise yourselfwith the

controls by starting with the plane already in the

air. To see where the plane is, you can display a

map showing the plane's position, navigation

beacons and runways. The best way to navigate

is to 'lock on' to a certain navigation beacon,

and then bank the plane round until it is directly

in line with the beacon. This is shown by the

flashing dot on the 'RDF Qock', which moves
round until it is at the top of the dial. You then

fly straight ahead until the beacon is reached.

Using this method, it is easy to fly to an airport,

where you can attempt to land.

Landing is the most difficult manoeuvre.

You need to be directly in line with the runway

and approaching at the right speed, height and

angle. Even if all these factors are correct, you

can still make the simple — but fatal — mistake

of forgetting to lower the undercarriage!

Physiological Simulation
In this program you act as the human brain and
your task is to keep the body alive for just 50

minutes! The program simulates the various

physiological changes (body temperature,

water loss, etc.) that occur when the body
performs some activity. The first thing to do is

to enter the person's age and sex, and the

activity you wish to perform. Sleeping is the

easiest activity to simulate, as the body uses

little energy, Others include walking, rock-

climbing and — most strenuous of all —
running.

The parameters that you have to control are:

the breath volume, the rate ofbreathing and the

rate of sweating. You then choose some initial

values — for example, a breath volume of 2.5

litres, a rate of breathing of 15 breaths per

minute, and a sweat rate of three grams per

minute — and the simulation begins.

On the screen you see five graphs of the

various bodily functions, and a clock. As time

progresses, the graphs display how well the

body is performing the chosen activity, and you

have to prevent any of the graphs from

exceeding the danger level. If, for example, the

body temperature is getting too high, you can

briefly suspend the activity and increase the

rate of sweating to try and lower it. If you are

unsuccessful and a graph does cross a warning

line, you may get the curt diagnosis: 'PERSON IS

DEAD'. Heinemann Educational Software

produce this program for the BBC Model B.

Flight Simulation

4 \

Physiological Simulation

THE HOME COMPUTER COURSE 389

Memotech MffTX S12
A high standard of construction,

and some interesting standard
software for handling machine
code, are the distinguishing

features of this machine

The MemotechMTX 512 comes remarkably close

to fulfiUing the requirements specified for an

'MSX standard' computer (see page 252); and

were it not for the use ofTexas Instruments' 76489

sound chip (MSX specifies a General Instruments

AY-3-8910), the MTX 512 could claim to be one

of these 'standard' machines. It does conform to

the MSX specifications, however, in having a Z80
CPU, a Texas Instruments TMS9918/9928 Video

Display Processor, and a dialect of basic that is

acceptably close to the Microsoft version.

The Memotech MTX 512 is such a

comprehensive and elegantly designed machine

that it is sure to win many admirers. Its external

appearance is a great improvement on many other

computers, which often cram sophisticated

electronics into a cheap and flimsy casing. The
MTX 512, on the other hand, is housed in a black,

well-sized and smartly designed casing,

constructed from aluminium in a wedge-shaped

slab.

The machine is designed to allow easy access to

the inside (simply by unscrewing two Allen-key

bolts and swinging the bottom casing away) to

reveal the circuit board. Compared to other

machines, the MTX 512 has a relatively large

number of chips. The machine's designers

evidently preferred, or found it more economical,

to avoid using a few big ULAs. By using a more
traditional layout, consisting of many tightly

packed chips, the machine facilitates quicker and

easier diagnosis of faults. In ULAs, however,

faults are very difficult to locate and impossible to

repair.

The user manual is not as good as those of other

companies and, apart from the covers, it has

neither colour nor tints, which would highlight

headings and make reference easier. Another

drawback is its lack of an index, which makes it

difficult to use. However, it is a relatively

comprehensive manual. Memotech have decided

to make their machine 'open', meaning that they

aren't holding any secrets from the purchaser.

Information about the machine is presented in

great detail: full memory maps, tables of useful

locations, input/output addressing, the circuit

diagram, and a good introduction to the basic

language are featured. And specialised chapters

on NODDY (see panel), the assembler/disassembler

and graphics are also included.

The Memotech MTX 512 is particularly

unusual in having an assembler/disassembler that

can give, along with the 'Front Panel' software

Keyboard————

—

The keyboard is among the best

ever put on a home computer. It

has 79 professional typewriter

keys, which are backed by a

steel sheet. This makes it very

rigid, and combined with the

aluminium casing gives a good

solid weight to the machine

Cassette Interface

Joystick Connectors

Two ports are provided, which

will work with any joysticks

using the Atari standard

Expansion

The Memotech MTX 512 is

obviously intended for

considerable expansion. The

first serious addition should be

a memory expansion board and

a dual serial interface board,

providing two RS232 ports.

These can be used for normal

serial communications or, with

appropriate software, as a

distributed network, which will

make the machine a contender

in the educational market

Clocic Timer Chip—

—

TheZ80 CTC provides all the

timing functions used by the

microprocessor

CPU

The Z80 microprocessor is

used, at a clock speed of 4MHz

package provided, a machine code programming

facility. The assembler package, however, cannot

handle symbolic addresses and labels; but

provided careful notes are kept while

programming, it is quite adequate for moderately

sized programs. We will be looking at assembler

packages and machine code in more detail later in

the course.

The Front Panel is a novel addition to a machine

at this level, and is capable of most impressive

machine code de-bugging. Unfortunately, this is

Parallel Interface

This port corresponds to the

Centronics standard for parallel

interfaces and, together with the

RS232 interfaces, allows the

MTX 512 to address virtually

any printer

1

390 THE HOME COMPUTER COURSE

Hardware FocuSI

Power Connector

Monitor Socket

MEMOTECH
MTX512
PRICE

£310.00

SIZE

488x202x56mm

Z80

CLOCK SPEED

4MHz

MEMORY
ROM: 24K

RAM:64K user RAM, plus 16K

video RAM
Expandable to 512K

VIDEO DISPLAY

24 lines of 40 characters, 16

colours with background and

foreground independently

settable. 127 pre-defined

characters and 127 user-definable

characters

INTERFACES

Cassette, TV, composite video

monitor

LANGUAGE SUPPLIED

BASIC, NODDY, Assembler

To be announced

COMES WITH

Installation and BASIC manuals,

TV lead

KEYBOARD

79 high-quality keys

DOCUMENTATION

Thorough and reasonably

complete, but not very interesting

to lookal It holds enough

information about the internal

working of the machine to enable

most competent programmers to

achieve full control

Hi-Fi Connector

This interface, seldom found on

a home computer, enables

output to a hi-fi speaker, which

facilitates sound of a higher

quality

one aspect of the machine that is thinly

documented, and though the various commands
are listed, little information is given about their

functions, and few examples of their use.

The Memotech MTX 512 can be considerably

expanded, and with the various extensions that are

planned it should become a very capable machine.

It will no doubt win many satisfied users and
stimulate the development of plenty of supporting

software.

NODDY
A subset of the NODDY language is included in the system

software and adds a unique dimension to the machine. Being

designed as a first-time language for untutored users, NODDY
appears to be a very simple language, but on closer inspection it

is clear that some of the commands are very sophisticated. It is

limited by having only 11 commands, as well as no ability to

handle arithmetic. This is because the language is designed

principally to handle textual information. Beginners often find it

easier to use text rather than numbers as basic data

Graphics Chip

This is a Texas Instruments

TMS 9928, which controls all

aspects of video generation and

gives the MTX similar graphics

features totheTI99/4Aand

Sord M5 computers. However,

the operating system of the MTX
has some useful graphics

facilities as well, such as the

ability to divide the screen up

into several windows

THE HOME COMPUTER COURSE 391

Sound And Light

MUSIC And RAY
The following program uses

the MUSIC and PLAY

commands to play the chord

of C major (C.G, & E) using

each envelope in turn:

10 REM

20REM*CHORD*
30 REM

40 MUSIC 1,4.1.0:REM

C

50 MUSIC 2,3,8,0:REM

G

60 MUSIC 3,3,5,0:REM

70 F0RE-1T07:REM
SELECTENV

80 PLAY7,0,E,750:REM

PLAY CHORD

90 PLAYO,0,0,0:REM

STOP CHORD

100 WAIT 50:REM

PAUSE

110 NEXT E:REM*NEXT

ENV*

Sound Spectacular
1 permits sophisticated

sound control on a budget

The Oric-1 is supplied with an extensive range of

facilities, and among the more impressive of these

are its sound capabilities. It has a range of seven

octaves and standard features include three

oscillators, a noise generator and seven preset

envelopes (see page 276) that can be selected to

shape the sounds produced. Sound out is via the

built-in speaker.

The Oric-l's basic defines a set of sound

commands - ZAP, PING, SHOOT and EXPLODE -
that describe themselves very well. The following

program shows how they are used, as well as

demonstrating the useful WAIT command, which

causes the computer to pause for the time stated in

hundredths of a second (in this case two seconds):

The SOUND command is best used for your own
special effects, and is constructed like this:

where C=Channel or oscillator number (1-6);

P=Pitch (10-5000); and V==Volume (0-15).

Channel, set at 1, 2 or 3, selects any one of the

three osciDators (4, 5 or 6 are equivalent but select

noise as well). Pitch is a little inaccurate, but 10 is

the highest note (at approximately lOKHz), and

5000 the lowest (at lOOHz). Volume is highest at

Light Show
The Spectrum's graphics,

though limited, are easy to use

The Spectrum makes an excellent starting point

for those who are interested m high resolution

graphics and colour. The simplicity of use makes

graphics design easily accessible, even for those

with limited programming experience.

The normal upper and lower case character sets

are available, together with several of Sinclair's

15, but 6 is a comfortable level. If V is set at 0,

control is taken by a volume envelope selected by

the PLAY command.
The biggest drawback to the SOUND command

is that there is no way to set a note duration. This

also means that SOUND cannot turn itself off! The

only way to stop a note sounding is by using the

PLAY command and then stopping PLAY by

specifying aU zeros.

The MUSIC command is ideal for specifying

notes accurately. Its simple construction makes it

easy to understand a quite complex music

program. The format is as foUows:

where C= Channel (1, 2 or 3); 0= Octave (0-6);

N- Note (M2); and V= Volume (0-15). This

command works in a similar way to SOUND.

Channel selects oscillators 1, 2 or 3 (although

noise cannot be set in MUSIC) and Volume ranges

from 0 (where control is taken by the PLAY

command) to 15. Octave allows the selection of a

specific octave in which the note (N) will be part of

the commands, played. Octave set at 0 gives the

lowest notes starting at 32.7Hz. Octave 6 extends

to 3951.07KHZ. For the note (N) part of the

command, the numbers 1 to 12 correspond to the

standard musical notes in this way:

1 2 3 4 5 6

c C# D D# E F

7 8 9 10 11 12

F# G G# A A# B

own characters. These may be PRINTed in any one

of eight colours. Colours for the character, screen

and border are set by the appropriatelynamed INK,

PAPER and BORDER commands. In addition to die

standard character set, up to 21 graphics

characters can be defined by the user.

The screen display consists of 24 rows of 32

character spaces. The bottom two rows are,

however, reserved for messages fi-om the

computer or for keyboard entries. This means that

the useable screen is 22 X 32 characters. In high

resolution, this converts to 176 X 256 pbcels. One
extremely useful feature of the Spectrum is that it

has the ability to mix high resolution displays with

text on the screen, allowing the creation oflabelled

diagrams, bar charts and so on. Once a screen

display has been designed it is then possible to

SAVE the display onto tape to be reloaded when

required. The SCREENS command is responsible

for this and can also be used to transfer the

contents of the screen to a printer.

Low resolution output may be positioned on

the screen using the PRINT AT command, which

392 THE HOME COMPUTER COURSE

To play noteA at 440Hzon channel 1 at avolume

of 6, the command would be:

However, to achieve the full range of the Oric-l's

capabilities, it is best to use MUSIC in conjunction

with PLAY. The PLAY command is made up like this:

where C=Channel (0-7); N«Noise (0-7); E=
Envelope (1-7); and P=Envelope Period (0-

32767). Channel and Noise select more complex

options than the previous conmiands, in the

following ways:

Number Channel Noise

0 All Oscs. off off

1 Osc. 1 -h Osc. 1

2 Osc.2 + OSC.2
3 Oscs. 1 & 2 4- Oscs. 1 or 2

4 Osc. 3 + Osc. 3

5 Oscs. 1 & 3 + Oscs. 1 or 3

6 Oscs. 2& 3 + Oscs. 2 or 3

7 Oscs. 1, 2& 3 4- Oscs. 1, 2 or 3

Previously defined MUSIC (or SOUND) commands
with volume set at 0 can be PLAYed together,

according to the channel number selected, to

produce chords of up to three notes. The Noise

allows vertical as well as horizontal character

positioning. There are a number of special effects

available also. As well as the usual inverse display,

characters can be FLASHing or BRIGHT. A further

useful low resolution facility is the OVER
command, which allows a second character to be
merged with the original in any one character

position. This is particularly effective when
merging text and a high resolution display, as it is

possible to write over diagrams without rubbing

them out. This effect must, however, be used with

some caution because whenever the INK colour is

reset in a particular square the original display also

changes to the new colour.

The screen display is governed by two areas of

memory: one that displays the characters, and
another that holds information about the

attributes ofany particular character position. The
list of attributes includes such information as: the

INK and PAPER colours, whether the character is

FLASHing, and so on. These attributes are

represented by a single byte and the state of any
screen position can be interrogated from a basic

program using the ATTR conunand.

High resolution displays are easily achieved on

the Spectrum using basic commands. This is

largely due to the fact that there is no separate high

resolution screen, making it simple to mix graphics

and text into a single display.

part of the command selects which oscillators, if

any, are to have noise mixed with them. Envelope
selects one of seven preset volume envelopes for

the specified note or notes. These options are

given in the Oric User Manual.
The only variable control over the Envelope is

given by the Envelope Period part of the

command. This allows the programmer to specify

the full duration ofan envelope (fix)m 0 to 32767).
This varies with each envelope, but as a guide an
envelope of 5000 lasts approximately 2 seconds.

The Oric-l's sound commands are easy to use,

and show that much thought has gone into

providing sensible built-in facilities. The only

otherhome computer that offers helpful basic and
control over envelope is the BBC Micro, which
goes a lot further in the ways it can create a sound.
Even so, the low cost of the Oric-1 makes it

marvellous value for anyone who wants to make
computer music on a small budget.

Basic commands include:

PL0Tx,y

This sets the pixel with co-ordinates (x,y) to the

current INK colour.

DRAWx,y,p

As the name suggests, DRAW creates a line

between the current cursor position and a point x

units to the right and y units up. Ifa thirdnumber is

added then the line changes to a circular arc. This

third number is normally a fi-action of PI

(3.14159...). Making the third number PI would
cause a semicircle to be drawn; PI/2 would cause a

shallower arc to be drawn. Arcs can be made to

bend to either side of the straight line between the

points by making the third number either positive

or negative.

CIRCLEx.y,r

The CIRCLE command causes a circle, with centre

(x,y) and radius r, to be drawn. With most CIRCLE

commands in basic it is possible to squash the

circular shape to form ellipses, but unfortunately

the Spectrum does not provide this facility.

There is one main drawback to using colour in

high resolution displays. As a consequence of

being able to mix text and graphics, only one INK

colour may be specified within any one square of

eight by eight pixels. Thus, if two Imes of cUfferent

colours cross then, inside the character square

where they meet, all set pixels will take on the last

INK colour.

SOUND

This little program uses

SOUND to make a noise like a

landing space ship:

10 REM **********

20 REM*LANDING*
30 REM **********

40 FOR P-10T03000
STEP 10

50 SOUND 2,P,6

60 PLAY 2,0,1.1

70 NEXT P

80 WAIT 75

90 PLAY 0,0,0,0

100 END

Smile Please

This program demonstrates

the use of the high resolution

commands PLOT CIRCLE,

and DRAW to create a

'smiley' face.

10 REM* SMILEY FACE
*

20CLS
30 BORDER 6

40 PAPER 6

50 INK 2

60 CIRCLE 122,88,50

70 CIRCLE 97.108,5

80 CIRCLE 147,108,5

90 PLOT 92,68

100 DRAW 60,0.PI/3

110 STOP

THE HOME COMPUTER CX)URSE 393

Common Sense
Sensors for light, temperature and other effects can all be interfaced

to a home computer. The information can be used to control a

heating system or burglar alarm

Microprocessors are increasingly used in a variety

ofdomestic appliances, such as washing machines,

toasters, video recorders, and central heating

units. It is not surprising, therefore, that we can

interlink these controlling chips so that devices

around the home can share information with one

another, or report to a central control system. It is

perfectly possible to design and build centralised

controlling systems that can regulate domestic

appliances. Such systems break down into three

categories: dedicated systems, interrupt systems

and networked controllers.

Dedicated systems are commercially available,

although it is possible for you to design your own

devices. These couple to a conventional home

computer and use specific interfaces to link

directly with, and regulate, electrical or electro-

mechanical units such as lights or a thermostat.

However, in order to assemble such a system, you

will need to have extensive knowledge of

computer and electrical hardware and be able to

write your own control programs. Dedicated

systems also have a fundamental limitation in that

the program must run continuously. Any

interruption to the power supply will leave the

device, at best, locked in a steady state and unable

to carry out the adjustments and procedures of the

control program.

The second category of control systems use

'interrupts' — electronic signals generated by the

regulating devices attached to your central

heating, burglar alarm, or fire and smoke

detectors. When one of these devices has

something out of the ordinary to report to the

computer, it sends a priority signal that causes the

program in use to be interrupted. Although an

interrupt system must run continuously, it is more

capable of coping with a breakdown in the power

supply because the devices it controls are partially

self-regulating anyway.

The computer holds several programs in its

memory: one for each of the devices connected to

it, as well as the program you are using. Let's say

that you are playing an adventure game when the

smoke detector triggers an interrupt message. In

response to this signal, the computer stops playing

the game (preserving all the necessary information

about the state of play), and starts running the

smoke detector program. A message might

appear on the screen saying that a potential fire

had been detected; or, if the computer was not

being used, an alarm might be sounded. Once the

source of the smoke had been detected and dealt

with, you could return to the precise point in your

game at which you were interrupted. If the signal

had come, however, from the central heating

timer, the computer would check the time and

internal and external temperature sensors, and fire

up the boiler accordingly — accomplishing all this

so quickly that there would appear to be no

interruption to your game!

An example of the third category (networked

controllers) is a system called the BSR Home
Controller. This ingenious device uses the mains

wiring in a house to control electrical units plugged

into any socket on a particular circuit. Each

controller is given a code number (effectively an

address), which enables it to be switched on or off

by a high frequency signal sent through the mains

wiring. However, interfaces of this type are

extremely dangerous to install. Only a qualified

electrician should attempt to connect outputs

from a home computer to the mains.

Once a control system has been installed, the

next step is to provide some form of remote

operation — so that getting to the office and then

remembering that the heating is on or the alarm

system is disabled is no longer a problem. Any

standard communications device, such as a

modem, can be fitted to all of these systems,

enabling control to be exercised at a remote

terminal. Some form of password to gain access

becomes a necessity if this facility is provided.

All the systems we have described are

commercially available. Sensors can be anything

from simple microswitches of the sort used in

burglar alarms to the most complex digital

tiiermometer chips. There are several home

computers that are capable ofsupporting this level

of expansion, such as the Apple II, Commodore

64, and the BBC Model B; but other machines

would require considerable modification to

achieve similar results.

i hemam cost of setting up computer control ot

your home is incurred in buying the hardware to

connect the computer to tiie mains power —
numerous isolators, relays and solid state switches

are required to do this safely and effectively. But it

is probable tiiat the most demanding task for the

home computer user in setting up such a system

would be writing the software. Because these

systems rely on speed of response (it's no use

raising die fire alarm after tiie house has burnt

down), tiie control programs must be written in |

machine code. Off-the-shelf programs are not yet 2

on the market, but may be available in the future. ^

394 THE HOME COMPUTER COURSE

Control Centre

A schematic representation of your house displayed on the

screen of your computer is not beyond the bounds of possibility.

Industrial plant control and computerised security systems use

such methods. Of course, if the computer operates under the

'interrupt' method, then there would not necessarily be any need

for a screen display, since the software would perform all aspects

of control in the background, usually with no noticeable delay to

your game of space invaders, or whatever. It may not be many

years before fiouses are designed with built-in internal

networks, as commonly as the electrical ring main

THERMOSTAT BOILER

SOUND DETECTOR

PHOTOCELL

DATA BUS

GARAGE DOOR

PORCH UMP

Domestic Address

This diagram illustrates two of

the techniques by which a home

computer can address a number

of domestic appliances. When

any of the three sensors on the

left has something to report, it

will send an electronic pulse

down the common interrupt

line. This leads directly to the

microprocessor, which will

temporarily suspend any

program it is running and jump

to a special routine that will read

whatever data the sensor now

places on the data bus.

The devices on the right are

linked into a network so the

computer can activate any of

them simply by sending a

package of data consisting of,

say, the device number of the

garage door and the instruction

for it to open

THE HOME COMPUTER COURSE 395

Basic Programming

Time And Motion
Sorting an array in Basic can be a time-consuming operation, but

will ultimately speed up our searches for specific records

So farwe have developed most of the code needed

to create entries in the address book 'database', but

have not yet tackled the necessary programming

for saving the entries on tape or disk. The only

major omission has been a suitable routine for the

creation of the MODFLDS field, as specified earlier

in the course.

The complete program to do this is given in this

instahnent of the course. First, all characters are

converted to upper case (capital letters) in lines

10250 to 10330. Lines 10350 to 10370 then count

through the characters in the string and check each

one to see whether it is a space. The last space

encountered leaves the variable S set to the value

corresponding to its position in the string.

Lines 10400 to 10420 transfer characters, one

at a time, from the string of upper case characters

to CNAMS. Characters are transferred, until we get

to the last space, if they have an ASCII value of

more than 64. Any characters that fail this test are

ignored, so this process eliminates full stops

(ASCII 46), apostrophes (ASCII 39), spaces

(ASCII 32) and all other punctuation marks.

Lines 10450 to 10470 do the same for the

characters after the final space, transferring them

toSNAMS.
If N$ contains only a single word, TREVANIAN,

for example, variable S will be 0 and all the

characters will be transferred to SNAM$. The

variable used for the forename has been called

CNAMS rather than FNAMS. CNAMS is used to

remind us of 'Christian name', as variables starting

with the letters 'FN' will confuse many basics into

thinking that a call to a user-defined function has

been made.

Lines 10490 and 10500 are needed to set the

string variables used in this routine to nulls before

they are used again. This is a point to watch out for

whenever structures ofthe type LET XS = XS +YS are

used. Failure to 'clear' the variables will result in

more and more unwanted characters

accumulating in them each time they are used.

Notice that CHOI is set to 0 in the ADDREC routine,

since we only want to make sure that the user adds

a record if there are none in the file (that is, the first

time the program is used).

Now that we have a way of adding as many new

records to the file as we want, we need a way of

saving the file on tape or disk. The simplest way

would be to write all the records to the data file

(ADBK.DAT in this version of the program) in the

order they happen to be in. The chiefdisadvantage

of this approach is seenwhenwe need to search the

file for a particular record. If we cannot be sure

that all the records in the file are sorted in some

way, the only way to search for a record would be

to start at the beginning and examine each record

in turn to see if it matches the 'key' of the search. If

the record you were searching for happened to be

the last one entered, every record in the database

would need to be examined before the one you

wanted was located. If the last record entered was

for a WilUam Brown (i.e. MODFLDS(SIZE-

1)="BR0WN WILLIAM"), a search routine should

anticipate the record to be somewhere near the

beginning of the file — if the records had been

sorted. Unfortunately, both sorting and searching

are very time-consuming activities; so it is a

question of determining your priority. We have

adopted the principle that an address book is

consulted far more often than it is added to (or

modified in some other way). This being so, it is

better to assume that searches will be far more

frequent than sorts, so we will always ensure that

the records are sorted before they are stored in the

data file after the program has been used.

With this in mind, a variable called RMOD is

created to use as a flag. It can have one of two

values: 0 or 1. It is initiaUy set to 0 to indicate that

no record has been modified during the current

execution of the program. Any operation that

does modify the file in any way— such as adding a

new record — sets RMOD to 1. Operations that

'need to know' if the file has been modified will

check the value of RMOD before proceeding. For

example, EXPROG, the routine that saves the file

and exits from the program, checks RMOD in line

11050. If RMOD=0, no sorting and saving is needed

as the data file on tape or disk is assumed to be in a

fully sorted and unmodified form. Other routines,

such as those that search through the file for a

particular record, will also need to check RMOD. If

' RMOD is 0, the search (or other operation) can.

proceed. If RMOD is 1, the routine will first have to

call the sort routine. After the whole file has been

sorted, the sort routine will then reset RMOD to 0.

Our sorting routine, called *SRTREC* in the

program listing, resets RMOD to 0 in line 11320

after all the records have been sorted. Before going

on to look at * EXPROG* (the routine that saves the

file on tape or disk and tiien ENDs), a few words

about *SRTREC* arecaUedfor. *SRTREC* is a form

of a simple sorting technique called a 'bubble sort'

(see page 286). There are many ways of sorting

data and the bubble sort is one of the simplest and

slowest. A good case could be made for a more

396 THE HOME COMPUTER COURSE

Basic Programming

efficient sorting routine, but more sophisticated

sorts are much harder to understand than the one

we have used. Whether or not you should consider

a better sort routine depends on the number of

items to be sorted. The 'time complexity' of a

bubble sort such as ours is n^. In other words, the

time taken for the data to be sorted increases as the

square of the number of items being sorted. If two

items took four milliseconds to sort, four items

would take 16 milliseconds, 50 items would take

two and a halfseconds and 1,000 items would take

more than 16 minutes. A wait of two or three

seconds might be perfectly acceptable during the

use of a program like ours, but a wait of a quarter

of an hour certainly wouldn't be.

The way this program has been written allows a

maximum of only 50 records, so unacceptable

delays during sorts should not be a problem. Later

in the course, however, we shall outline some of

the techniques that can be used to create dynamic

files that can grow to almost any size. If you do
attempt such a modification to the program, a

more advanced sort routine would be one of the

first problems to be tackled.

The data items being sorted are the character

strings in MODFLD$(L) and M0DFLD$(L+1). Records

are swapped only if MODFLD$(L) is greater than

M0DFLD$(L+1), and the index field (which is not

being used at present) is updated in lines 11490

and 11570. Every time two records have been

swapped, the variable S (to indicate that a swap
has taken place) is set to 1. When the sorting

routine reaches line 11290 it checks the value of S

and branches back to compare all the records

again. When 2ill the records are in order, the value

of S will be left at 0 and the routine will be

terminated after the value of RMOD has been reset

toO.

The EXPROG routine (referred to as * EXPROG * in

the program listing) begins at line 11000. It starts

by checking to see if any record has been modified

during the current execution of the program (line

11050: IFRMOD=0THEN RETURN). If there has been

no modification of the file, there will be no need to

save again, so the routine RETURNS to the main

program. This will take us back to line 100, which

checks the value of CHOI. If CHOI has a value of 9 (as

it would if * EXPROG* is being executed) the main

program simply goes on to the END statement in

line 110.

If the program finds that RMOD is 1 in line 11050

it means that one or more records have been

modified in some way and that there is a chance

that they are no longer in order. This being so, the

* EXPROG* routine calls the sort routine (line

11070) and then, after all the records have been

sorted, saves them onto tape or disk.

The save routine (*SAVREC*) is called in line

11090 and the routine starts at line 12000.

SAVREC, in the main listing, is written in

Microsoft BASIC, so it is important to bear in mind

that the details of file-handling vary from one

version of basic to another (see 'Basic Flavours').

Line 12030 opens the ADBK.DAT data fiile and

assigns the channel number #1 for the operation.

Line 12050 sets the limits for the loop that counts

through all the records in the file. The upper limit is

SIZE-1, not SIZE, because the SIZE variable always

has a value one greater than the number of valid

records in the file (so that if a new record is added,

it will not be written over an existing record).

The format of lines 12060 and 12070 is

particularly noteworthy. Each field is separated by

a which is also sent to the file. This comma is

required by most versions of basic because INPUT#
and PRINT# work in the same way as the ordinary

INPUT and PRINT statements. Consider the

statement INPUT X,Y,Z. This would expect an input

from the keyboard such as 10,12,15<CR>, wWch
would assign 10, 12 and 15 to X, Y and Z respectively.

Without the commas, the INPUT statement would

not be able to tell where each data item ended and

would assign all the data to the first variable.

Similarly, the INPUT* statement (in most basics)

would not be able to tell where each data file

record ended and would try to fiU each string

variable with as much data as could be fitted in.

Since in most basics string variables can hold up to

255 characters, the data in the data file would soon

all be assigned long before the FOR L = 1 TO SIZE-1

loop had terminated. This would result in an INPUT

PAST END error message (which indicates that an

INPUT statement was issued after all the data has

been exhausted) and the string variables (such as

NAMFLD$(x)) containing far more data than they

should.

Once all the records have been stored in the

data file, &'omL=1 TOSIZE-1, *SAVREC* RETURNsto

line 90 in the main program. Line 100 checks the

value of CHOI to see if the last operation was
* EXPROG* or not. If it was 9 (save and exit), the

program goes on to the END statement in line 110.

If CHOI has any other value, the program jumps

back to *CH00SE* and aUows the user to select

another option again.

As a final footnote, we should mention the

FLSIZE routine that starts at line 12500. This is

offered as a possible alternative to the statement in

line 1510. As presented, the program depends on

the presence of an end-of-file function: IF E0F(1)
=

-1 THEN LET L = 50. All basics have some way of

indicating that the end of a file has been reached,

either with a special function such as EOF(x) or a

PEEK to a special memory location. The *FLSIZE*

routine at line 12500 is offered as a suggestion ifan

EOF function is not available, in which case line

1510 would need to be replaced by GOSUB 12500.

Basic Flavours
Before running the address book program you

must create on tape the name-field file. The

following program will achieve this.

10 REM PROGRAM TO CREATE NFLD FILE ON

TAPE

20 DIMZ$(1,30)

30 LETZ${1)=''@FIRSr

40 SAVE "NFLD" DATA Z$()

50 STOP

Q

S

THE HOME COMPUTER COURSE 397

Basic Programming

SPECTRUM

When the program stops, rewind the tape and

type VERIFY "NFLD" DATA Z$() to check the

SAVE.

The following are the Spectrum versions

of lines in the main listing. Note that line

numbers above 9999, though retained here to

relate the changes to the main listing, are not

accepted by the Spectrum. Renumber all

program lines below this, remembering to

modify GOSUBs accordingly.

1100 REM *CREARR*

1110 DIM N${^,30)

1120 DIM M$(50,30)

1130 DIM S$(50,30)

1140 DIM T$(50,15)

1150 DIM C$(50,15)

1160 DIM R$(50,15)

1170 DIM X$(50,30)

1180 DIM B$(30)

1190 DIM Z$(30)

1250 LET Z$=" ©FIRST"

1400 REM *RDINFL*SR

1410 LOAD "NFLD" DATAN$()

1420 IF N$(1)=Z$ THEN LET Q$=Z$:RETURN

1430 LOAD "MFLD" DATAM$()

1440 LOAD "SFLD" DATAS$()

1450 LOAD "TFLD" DATAT$()

1460 LOAD "CFLD" DATAC$()

1470 LOAD "TELFLD" DATA R$(

)

1480 LOAD "NDXFLD" DATAX$()

1490 REM *FLSIZE*

1500 GOSUB 12500

1540 RETURN

1640 IF Q$=Z$ THEN LETSIZE=1

3520 IF Q$=Z$THEN GOSUB 3860:RETURN

3810 LET CH0l=C0DEA$-48

10090 LET Q$="

"

10200 REM*MODNAM*SR

10250 LET D$=N$(SIZE):LET P$="

"

10260 FOR L=1 TO LEN (D$)

10270 LET A$=D$(L)

10280 LETT=CODEA$

10290 I F T> =97 TH EN LET T=T-32

10300 LETA$=CHR$T
10310 LET P$=P$+A$

10320 NEXT L

10330 LET D$=P$:LET P$="":LET A$="":LET

T=LEN(D$)

10340 REM LOCATE LAST SPACE

10350 F0RL=1 TOT
10360 IF D$(L)=" " THEN LET S=L:LET L=T

10370 NEXT L

10380 REM REMOVE RUBBISH

10390 REM STORE FORENAME IN P$

10400 FOR L=1 TO S-1

10410 IF CODE (D$(L))>64 THEN LET

P$=P$+D$(L)

10420 NEXT L

10430 REM REMOVE RUBBISH

10440 REM STORE SURNAME IN A$

10450 FOR L=S+1 TO LEN (D$)

10460 IF C0DE(D$(L))>64 THEN LET

A$=A$+D$(L)

10470 NEXT L

10480 LET M$(SIZE)=A$+" "+P$

10490 LET P$="":LETA$=""

10510 RETURN

N.B. Because of the way that the Spectrum

handles strings, the routine above splits the

name at the first, not the last, space.

12000 REM *SAVREC* SR

12030 SAVE "NFLD" DATA N$()

12040 SAVE "MFLD" DATAM$()

12050 SAVE "SFLD" DATAS$()

12060 SAVE "TFLD" DATAT$()

12070 SAVE "CFLD" DATAC$()

12080 SAVE "TELFLD" DATA R$(

)

12090 SAVE "NDXFLD" DATA XS(

)

12150 RETURN
12500 REM *FLSIZE*SR

12510 LET SIZE=50

12520 FOR L=1 TO 50

12530 IF N$(L)=B$ THEN LET SIZE=L:LET

L=50

12540 NEXT L

12560 RETURN

Incorporate the Spectrum changes with the

following differences (again, line numbers

must be reduced below 9999). Add 1255 LET

N$(1) = Z$. Delete lines 1410-1540 and

12030-12140 and insert 1410 RETURN and

12010 PRINT "INSERT TAPE. PRESS PLAY

AND RECORD, AND HIT NEWLINE"

12020 INPUT W$
12030 SAVE "ADDBK"

Once the program has been saved,

execute it thereafter by typing GOTO 40,

never by RUN.

On the Commodore 64 and Vic-20 replace line

1520 by:

1520 IF ST AND 64 THEN LET L=50

On the Dragon 32 delete line 1520 and replace

it by:

1485 IF EOF(-I) THEN GOTO 1510

On the BBC Micro replace it by:

1520 IF EOF#X THEN LET L=50

where X is the numerical variable used in the

OPENOUT statement (see page 319).

10 REM 'MAINPG'
20 REM *INITIL*
30 GOSUB 1000
40 REM ^GREETS*
50 GOSUB 3000
60 REM *CH00SE*
70 GOSUB 3300
80 REM *EXECUT*
90 GOSUB 4000
100 IF CHOI <> 9 THEN 60
110 END
1000 REM *INITIL* SUBROUTINE
1010 GOSUB 1100: REM -CREARR- (CREATE ARRAYS)

SUBPOUTI NE

1020
1030
1040
1050
1060
1070
1080
1090
1100
1 110
1120
1 130
1140
1 150
1160
1 170
1 180
1 190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1400
1410
1420
1430

1440

1400;
1600:

REM
REM

GOSUB
GOSUB
REM
REM
REM
REM
REM
RETURN
REM *CREARR* (CREATE ARRAYS)

NAMFLD$(50)
M0DFLD$(50)
STRFLD$(50)
TWNFLD$(50)
CNTFLD$(50)
TELFLD$(50)
NDXFLD$(50)

.^RDTNFL* (READ IN FILE) SUBROUTINF-

^SETFLG- (SET FLAGS) SUBROUTINE

SUBROUTINE
DIM
DIM
DIM
DIM
DIM
DIM
DIM
REM
REM
REM
LET SIZE = 0

LET RMOD = 0

LET SVED = 0

LET CURR = 0

REM
REM
REM
REM
REM
RETURN
REM -RDJNFL- SUBROUTINE
OPEN "I",#l ."ADBK.DAT"
INPUT #1 , TESTS
IF TESTS = "@FIRST" THEN

RETURN
LET NAMFLD$(1) = TEST$

GOTO 1540: REM CLOSE AND

1450 INPUT #1,M0DFLD$(1),STRFLD$(1),TWNFLD$(1),CNTFLD$

(1) ,TELFLD$(1

)

1460 INPUT #1,NDXFLD$(1)
1470 LET SIZE = 2

398 THE HOME COMPUTER COURSE

Basic Programming

U80 FOR L = 2 TO 50
1490 INPUT #1 ,NAMFLD$(L) ,MODFLD$(L) ,STRFLD$(L) .TWNFLD$

(L) ,CNTFLD$(L)
1500 INPUT #1 ,TELFLD$(L) ,NDXFLD$(L)
1510 LET SIZE = SIZE + 1

1520 IF EOF(l) = -1 THEN LET L = 50
1530 NEXT L

1540 CLOSE #1

1550 RETURN
1600 REM -SETFLG* SUBROUTINE
1610 REM SETS FLAGS AFTER *RDINFL*
1620 REM
16 30 REM
1640 IF TEST$ = "@FIRST" THEN LET SIZE = 1

1650 REM
1660 REM
1670 REM
1680 REM
1690 RETURN
3000 REM *GREETS* SUBROUTINE
3010 PRINT CHR$(12):REM CLEAR SCREEN
3020 PRINT
3030 PRINT
3040 PRINT
'3050 PRINT
3060 PRINT TAB(12)

; "^WELCOME TO THE*"
3070 PRINT TAB(9) ;"*H0ME COMPUTER COURSE*"
3080 PRINT TAB(6) ;"*COMPUTERISED ADDRESS BOOK*"
3090 PRINT
3100 PRINT TAB(5) -."(PRESS SPACE-BAR TO CONTINUE)"
3110 FOR L = 1 TO 1

3120 IF INKEY$ <> " " THEN L = 0

3130 NEXT L

3140 PRINT CHR$(12)
3150 RETURN
3500 REM *CH00SE* SUBROUTINE
3510 REM
3520 IF TEST$ = "@FIRST" THEN GOSUB 3860: REM

SUBROUTINE
3530 IF TESTS = "@FIRST" THEN RETURN
3540 REM 'CHMENU'
3550 PRINT CHR$(12)
3560 PRINT "SELECT ONE OF THE FOLLOWING"
3570 PRINT
3580 PRINT
3590 PRINT
3600 PRINT
3610 PRINT
3620 PRINT
3630 PRINT
3640 PRINT
3650 PRINT
3660 PRINT
3670 PRINT
3680 PRINT
3690 PRINT
3700 PRINT
3710 REM '

3720 REM
3730 LET

FIRSTM

•1
,

•2,

'3,

•4,

•5,

'6,

'7,

•8,

'9,

FIND RECORD (FROM NAME)"
FIND NAMES (FROM INCOMPLETE NAME)"
FIND RECORDS (FROM TOWN)"
FIND RECORD (FROM INITIAL)"
LIST ALL RECORDS"
ADD NEW RECORD"
CHANGE RECORD"
DELETE RECORD"
EXIT & SAVE"

INCHOI

'

L = 0

9)"

3740 LET I = 0
3750 FOR L = 1 TO 1

3760 PRINT "ENTER CHOICE (1

3770 FOR I = 1 TO 1

3780 LET A$ = INKEY$
3790 I/F A$ = "" THEN 1 = 0

3800 NEXT I

3810 LET CHOI = VAL(A$)
3820 IF CHOI <1 THEN L = 0

3830 IF CHOI >9 THEN L = 0

3840 NEXT L

3850 RETURN
3860 REM *FIRSTM* SUBROUTINE (DISPLAY MESSAGE)
3870 LET CHOI = 6

3880 PRINT CHR$(12): REM CLEAR SCREEN
3890 PRINT
3900 PRINT TAB(8) ; "THERE ARE NO RECORDS IN"
3910 PRINT TAB(8);"THE FILE. YOU WILL HAVE"
3920 PRINT TAB(6);"T0 START BY ADDING A RECORD"
3930 PRINT
3940 PRINT TAB(5)

; "(PRESS SPACE-BAR TO CONTINUE)"
3950 FOR B = 1 TO 1

3960 IF INKEY$ <> " " THEN B = 0

3970 NEXT B

3980 PRINT CHR$(12): REM CLEAR SCREEN
3990 RETURN
4000 REM *EXECUT* SUBROUTINE
4010 REM
4020 IF CHOI = 6 THEN GOSUB 10000
4030 REM

1 IS *FNDREC*
IS *FNDNMS*
IS *FNDTWN*
IS *FNDINT*
IS *LSTREC*

4090 IF CHOI = 6 THEN GOSUB 10000
4100 REM 7 IS *M0DREC*
4110 REM 8 IS *DELREC*
4120 IF CHOI = 9 THEN GOSUB 11000
4130 REM
4140 RETURN
10000 REM *ADDREC* SUBROUTINE
10010 PRINT CHR$(12): REM CLEAR SCREEN
10020 INPUT "ENTER NAME" ; NAMFLD$(SIZE)
10030 INPUT "ENTER STREET" ; STRFLD$ (S IZE

)

10040 INPUT "ENTER TOWN " ; TWN FLD$ (S I ZE

)

10050 INPUT "ENTER COUNTY" ; CNTFLD$ (SIZE

)

10060 INPUT "ENTER TELEPHONE NUMBER" ; TELFLD$ (SIZE)
10070 LET RMOD = 1: REM 'RECORD MODIFIED' FLAG SET
10080 LET NDXFLD$(SIZE) = STR$(SIZE)
10090 LET TESTS = ""

10100 GOSUB 10200: REM *MODNAM*
10110 LET CHOI = 0

10120 LET SIZE = SIZE + 1

10130 REM

4040 REM
4050. REM
4060 REM
4070 REM
4080 REM

2

3

4

5

10140
10150
10200
10210
10220
10230
10240
10250
10260
10270
10280
10290
10300
10310
10320
10330
10340
10350
10360
10370
10380
10390
10400
10410

10420
10430
10440
10450
10460

10470
10480
10490

10500

10510
11000
11010
11020
11030
11040
11050
II060
11070
1 1080
11090
11100
11200
11210
11220
11230
11240
1 1250
11260
1 1270
11280
11290
1 1300
11310
11320
1 1330
11340
1 1350
11360
11370
11380
11390
1 1400
11410
11420
11430
1 1440
11450
1 1460
11470
11480
1 1490
1 1500
11510
1 1520
11530
1 1540
11550
1 1560
11570
I 1580
I I 590
1 1600
12000
12010
12020
12030
1 2040
12050
12060

12070
12080
12090
121.00
12110
12120
12130
12140
12150
12500
12510
12520
12530
12540
12550
12560

REM
RETURN
REM *MODNAM* ROUTINE
REM CONVERTS CONTENTS OF NAMFLD$ TO UPPER CASE,
REM REMOVERS RUBBISH, AND STORES IN THE ORDER:
REM SURNA^IE+SPACE + FORENAME IN MODFLD$
REM I

LET N$ = NAMFLD$(SIZE)
FOR L = 1 TO LEN(N$)
LET TEMP$ = MID$(N$,L,1)
LET T = ASC(TEMP$)
IF T >= 97 THEN T = T - 32
LET TEMP$ = CHR$(T)
LET P$ = P$ + TEMP$
NEXT L

LET N$ - P$
REM LOCATE LAST SPACE
FOR L = 1 TO LEN(N$)
IF MID$(N$,L,1) = " " THEN S = L

NEXT L

REM REMOVE RUBBISH AND STORE FORENAME
REM IN CNAM$
FOR L = I TO S - 1

IF ASC(MID$(N$,L, 1)) > 64 THEN CNAM$ = CNAM$ +

MID$(N$,L, 1

)

NEXT L

REM REMOVE RUBBISH AND STORE SURNAME
REM IN SNAM$
FOR L = S + 1 TO LEN(N$)
IF ASC(MID$(N$,L,1)) > 64 THEN SNAM$ = SNAM$ +

MID$(N$,L, 1

)

NEXT L

LET MODFLD$(SIZE) = SNAM$ + " " + CNAM$
LET P$ = "": LET N$ = "": LET SNAM$ = ""

CNAM$ = ""

LET P$ = "": LET N$ = "": LET SNAM$ = "": LET
CNAMS = ""

RETURN
REM *EXPROG* SUBROUTINE
REM SORTS AND SAVES FILE
REM IF ANY RECORD HAS BEEN
REM MODIFIED (RMOD = 1)
REM
IF RMOD = 0 THEN RETURN
REM
GOSUB 11200: REM *SRTREC*
REM
GOSUB 12000: REM *SAVREC*
RETURN
REM *SRTREC* SUBROUTINE

SORTS ALL RECORDS BY MODFLD$ INTO
ALPHABETICAL ORDER AND UPDATES NDXFLD

LET

REM
REM
REM
REM
LET S = 0
FOR L = 1 TO SIZE - 2

IF MODFLD$(L)
NEXT L

IF S = 1 THEN
REM
REM
LET RMOD = 0:

REM
RETURN
REM

> MODFLD$(L + 1) THEN GOSUB 11350

11250

REM CLEARS 'RECORD MODIFIED' FLAG

REM

REM

SWPREC SUBROUTINE
TNAMFD$ = NAMFLD$(L)
TMODFD$ = MODFLD$(L)
TSTRFD$ = STRFLD$(L)
TTWNFD$ = TWNFLD$(L)
TCNTFD$ = CNTFLD$(L)
TTELFD$ = TELFLD$(L)

NAMFLD$(L) NAMFLD$(L + 1

)

MODFLD$(L) : MODFLD$(L + 1)

STRFLD$(L) STRFLD$(L + 1)

TWNFLD$(L) = TWNFLD$(L + 1

)

CNTFLD$(L) CNTFLD$(L + 1

)

TELFLD$(L) = TELFLD$(L + 1

)

NDXFLD$(L) STR$(L)

NAMFLD$(

L

+ 1) = TNAMFD$
MODFLD$(L + 1) = TMODFD$
STRFLD$(L + 1) = TSTRFD$
TWNFLD$(

L

+ 1) = TTWNFD$
CNTFLD$(L + 1) = TCNTFD$
TELFLD$(

L

+ 1) = TTELFD$
NDXFLD$(L + 1) = STR$(L + 1)

S = 1LET
REM
RETURN
REM *SAVREC* SUBROUTINE
REM
REM
OPEN "0"

, #1 ,"ADBK .DA,T"

REM
FOR L = 1 TO SIZE - 1

PRINT #1 ,NAMFLD$(L)
(L);","TWNFLD$(L)
PRINT #1 ,CNTFLD$(L)
NEXT L

REM
REM
REM
REM
CLOSE #1

REM
RETURN
REM *FLSIZE* SUBROUTINE
IF NAMFLD$(L)
IF NAMFLD$(L)
LET SIZE = SIZE + 1

REM
REM
RETURN

;MODFLD$(L) ;",";STRFLD$

;TELFLD$(L) ;","NDXFLD$(L)

"" THEN LET L = 50
"" THEN RETURN

THE HOME COMPUTER COURSE 399

Vannevar Bush
The Differential Analyser

This machine was designed to

solve an important class of

mathematical functions that

occur in many areas of

science and engineering,

known as second order

differential equations. The

method had first been

suggested by Lord Kelvin and

involved feeding the output of

one 'integrator' (a device that

effectively calculates the area

under a curve) into the input

of another. However, the

strength of the output was

generally too weak to act as

an input and it was not until

amplifiers were invented that

the method could be applied.

Bush's 1931 machine was

entirely mechanical and was a

complex structure of gears,

axles and electric motors.

Input and output were in the

form of shaft rotations and the

feedback problem was solved

by using a 'torque' amplifer.

In the 1940's, amore

advanced differential analyser

was built using electrical

components, but the machine

weighed over a hundred tons.

The output from the five

registers was in a digital

printout form and was

accurate to one part in

10,000. The initial conditions

and control parameters were

supplied on punched paper

tape. The machine was used

throughout the Second World

War for cryptography and

ballistic work

The differential analyser,

designed by Vannevar Bush, was
an electromechanical calculator

that solved differential equations

Many people argue that Vannevar Bush is the

father of the computer. His most important

contribution to the development of computer

science came in 1931 when he created a

mechanical differential analyser, which stimulated

research that eventually led to the development of

the digital computer
Bush was bom near Boston, Massachusetts, on

11 March 1890 and, following in his father's

footsteps, studied engineering at college. After

graduating in 1913, he worked briefly for the

General Electric Company before taking up a

junior lectureship at his old college. This was

followed by postgraduate studies at Harvard

University and the Massachusetts Institute of

Technology (MIT). During the First World War,

Bush was involved in the development of

submarine detectors for the US military.

Bush developed his first invention, a device for

surveying land, while he was still a student. The
mechanism, which was suspended between two

bicycle wheels, calculated the height of the ground

over which it travelled and displayed the output as

a profile of the land in graph form. It also

incorporated a device known as an integrator,

since the determination of the height at any

position required a knowledge of all the previous

values on its journey.

At MIT, Bush became professor of electrical

power transmission, and set out to investigate one

of the major problems involved in the supply of

electricity— how to avoid blackouts that occur as a

result of sudden unpredicted surges in demand.

The mathematical equations that govern such a

situation had been discovered at the end of the

19th century by the Scottish scientist James Qerk
Maxwell (1831 - 1879). But there were so many
simultaneous equations involved that the problem

could not be solved by hand, and so Bush set about

inventing a machine for this purpose. Bush was

also inspired by the work of Lx)rd Kelvin (1824 -

1907), a British scientist who had proposed a

general purpose machine for solving the

mathematical equations involved in predicting

tides.

In the early 1920's, Bush built his first machine,

which he called the 'product telegraph'. This

machine enabled human operators to trace the

paths of waves drawn on a graph (using a

potentiometer — a device that turns a position

measurement into a voltage). They then fed these

electrical signals into a specially adapted watt

meter — the spinning disc found in any power

meter, which records the amount of power

consumed by integrating the fluctuating values of

current and voltage to give the 'product'.

The success of this machine in solving a set of

simultaneous equations suggested that it might be

possible to build a device that could solve even

more difficult second order differential equations.

Further research by Bush led to the completion of

the first differential analyser in 1931. The machine

proved extremely successful, and copies were built

in Britain and Europe. In America, the Moore

School of Electrical Engineering at the University

of Pennsylvania — which was later to build the

ENIAC computer (see page 88) — commissioned

one. Where Bush's product telegraph had been

accurate to only two per cent, the differential

analyser gave results accurate to 0.05 per cent.

However, the cost of improving the accuracy of

this type of mechanical device increased by a

factor of ten for every extra decimal place. With

the development ofthe digital computer, however,

the cost of a machine only doubled if its accuracy

were similarly increased.

Bush became dean of the engineering school

and vice president of the Carnegie Institute in

1939, and his able work in administering the

millionaire's estate for scientific research resulted

in his appointment as chairman of the National

Defense Research Conmiittee in the following

year. In this office he was responsible for wartime

US military research and, in particular, was

influential in authorising the Manhattan project,

which led to the creation ofthe atomicbomb. Bush

retired in 1955 to devote time to his personal

hobbies. These included boating and turkey

farming, as well as inventing. He died in 1974.

400 THE HOME COMPUTER COURSE

HOME
COMPUTER COURSE

BINDER

ana

fiesew
^lyfillintheOiQe

dedtoyouwit

Ifyou prefer tobuythe binders
separatelyplease sendusyoureheque/posioi
order for£3 ,95 (including P&P).We will send
youvolume 1 only Thenyoumayordervolume
2 in thesameway - when it suitsyou

!

Overseas readers : This
binder offer applies to readers in the
UK, Eire and Australia only Readers inAustralia should
complete the special loose insert in Issue 1 and see additional
binder information on the inside front cover. Readers in New-
Zealandand SouthAfrica andsome other countries can obtain
their binders now. For details please see inside the front cover.

Bindersmaybe subject to import dutyand/or local tax.

NEXT TOYOUR COMPUTER...YOURCOURSE MANUALS

Home computers. Do they send your brain to

sleep - or keep your mind on its toes?

At Sinclair, we're in no doubt To us. a

home computer is a mental gym, as

important an aid to mental fitness as a set of

weights to a body-builder.

Provided, of course, it offers a whole

battery of genuine mental challenges.

The Spectrum does just that

Its education programs turn boring

chores into absorbing contests - not learning

to spell 'acquiescent, but rescuing a princess

from a sorcerer in colour, sound, and

movement!

The arcade games would test an

all-night arcade freak - they're very fast, very

complex, very stimulating.

And the mind -stretchers are truly

fiendish. Adventure games that very few

people in the world have cracked. Chess to

grand master standards. Flight simulation

with a cockpit full of instruments operating

independently Genuine 3D computer design

No other home computer in the world

can match the Spectrum challenge - because

no other computer has so much software of

such outstanding quality to run.

For the AAentathletes of today and

tomorrow, the Sinclair Spectrum is gym,

apparatus and training schedule, in one neat

package. And you can buy one for under

£100.

