
HOmE

ISSN 0265-2919

D80p

nriASTERinB ydur HomE compurm in e4 uukks

Computerised Toys

Spelling And Grammar Checkers

Application Generators

Sound And Light

Osborne-1

Sorting

Microwriter

Basic Programming

Pioneers In Cpmputing

CONTENTS

Hardware Focu

Osborne-1 The computer that triggered off

the trend towards portability and reduced
the price of the business micro

410

Software

Magic Spell In order to store 30,000 words
on a disk, spelling checker programs must
compress the data

Application Form Application generators

can reduce the work of writing a program by
at least 90 per cent

Basic Programming

Search Warrant Adding a subroutine for

record searching means that our database is

nearly complete

406

insights

Kids Stuff Today's toys contain similar

components to your home computer

Single Handed The Microwriter can create

the entire alphabet usingjust five keys

Passwords To Computing

Sorting Code We look at why the Shell Sort

can be an efficient way to sort an array

401

414

Ma Bell Many of the developments in the

modem computer can be traced back to a
single research laboratory

420

I
Sound And Light M

., - m

Sounds Incredible...Light ReliefWe take a
further look at the sopWsticated features of
the BBC's sound and the Commodore 64's

graphics

408

Next Week
•We revf0w tlie Commoiiore

PET, coRSiilereil liy many to be

the first personai computer

•Computer Aided Design

requires very sophisticated

hardware. Many of the softmraie

techniques used, however, are

now appearing hi home
computer packages

•Optical disc technology is now
used hi both viiteo and audio

players. Thoo^ it is currently a

read-onlyMce, It wiR soon be

appearing as a computer

peripheral

Hgor Richard Pawson; Coiwiftairt Edlto^ Art BrBCtor David Whelan; PiwIiictioiiMltor Catherine Cardweil; SlaffWriter Roger Ford; WctawEiiltorClaudiaZeff: OartiiierHazel Bennington; ArtAMWant Liz Dixon; Sob
Kitors Robert Pickering Keith Parish; Reseaiclier Melanie Davis; ContittatOfS Tim Heath. Henry Budgett, Brian Morris, Lisa Kelly, Steven Coiwill, Richard King, Geoffrey Nairns; town Art iXractor Perry Neville- Managina DIractor

2!ES!I!n"^'fS^'
C^^yfartOavjtlTebbutt; l>aliliM Iqr Ortiis hiMisMM EditwM Diractor Brian Innes; ProlactDawloiwwrt Peter Brookesmith; Exwitlw Editor Chris Cooper; ProdiC«0iiCiHii«ii8tor1an Paton; tt^

SJ2!L2i^lf
Breed; ItaitottM^^ Charlotte Street, London W1

; €)1983iiy0fWslhiMisiiiii9Uii:Typ«88tbylM^
ud; Piwiu HI wntn mtom oymwmi Press Ltd, LnGnter

HOflffi COMPUTER COURSE - Price UK 80p iR £1.00 AUS $1.95 NZ $2.25 SA R1.95 SINGAPORE $4.50 USA and CANADA $1.95
How to obtain your copios of HOME COMPUTER COURSE - Copies are obtainable by placing a regular order at your newsagent.
Back HulnlHifS UK ami Eire -Back numbers are obtainable froni your newsagent or froni HOME COMPUT^^ Back numbers, Orbis Publishing Limited, 20/22 Bedfordbury, LONDON WC2N 4BT at cover price AUSTRALIA' Back
numbers are obtainable from HOME COMPUTER COURSE. Back numbers, Gordon & Gotch (Aus) Ltd, 114 William Street, PO Box 767G Melbourne. Vic 3001. SOUTH AFRICA, NEWZEAUND, EUROPE & MALTA- Back numbers are available at
cover price from your newsagent. In case of difficulty write to the address in your country given for binders. South African readers should add sales tax
HwtoobtelnhlndptorHOMECOMPUTERCOURSE-UKandEireiPt^^^^ £3. 95 per binder if you do not wish to take advantage of our special offer detailed in Issues 4, 5 and 6. EUROPE: Writewithremittanceof £5.00 per binder (inci.

p&p) payable to Orbis Publishing Limited, 20/22 Bedfordbury, LONDON WC2N 4BT. MALTA: Binders are obtainable through your local newsagent price £3.95. In case of difficulty write to HOME COMPUTER COURSE BINDERS, Miller (Malta)
Ltd M. A. Vassalli Street, Valletta, Malta. AUSTRALIA: For details of how to obtain your binders see inserts in early issues or write to HOME COMPUTER COURSE BINDERS, First Post Pty Ltd, 23 Chandos Street, St. Leonards, NSW 2065 The
binders supplied are those illustrated in the magazine. NEW ZEALAND: Binders are available through your local newsagent or from HOME COMPUTER COURSE BINDERS, Gordon & Gotch (NZ) Ltd, POBox 1595, Wellington. SOUTH AFRICA-
Binders are available through any branch of Central Newsagency. In case of difficulty write to HOME COMPUTER COURSE BINDERS, Intermag, PO Box 57394, Springfield 2137.
Note - Binders and back numbers are obtainable subject to availability of stocks. Whilst every attempt is made to keep the price of the issues and binders constant, the publishers reserve the right to increase the stated prices at any time when
circumstances dictate. Binders depicted in this publication are those produced for the UK market only and may not necessarily be identical to binders produced for sale outside the UK. Binders and issues may be subject to import duty and/or
local taxes, which are not included in the above prices unless stated.

r j

COVER PHOTOGRAPHY BY CHRIS STEVENS

Insights

Young Minds

Children, it seems, are more

receptive to the new technology

than many adults, who react

against the idea of having to

learn new ideas. The versatility

of the microprocessor means

that there is virtually no lower

age limit for electronic toys and

educational devices

1

Kids' Stuff
The latest educational 'toys'

contain as much processing
power as your home computer
and use similar programming
techniques

In addition to forming the heart of all

microcomputers, microprocessors have become a

standard feature of many domestic appliances,

such as sewing machines, washing machines, and

e^en door locks. Toy manufacturers have

experimented with microprocessors as well,

especially in the control ofmodel cars and railway

trains. However, at least one computer

manufacturer — Texas Instruments — has found

the production of microprocessor-based teaching

toys to be very rewarding. TI's first venture into

this market was a calculator-like unit that posed

problems in simple arithmetic. The Little

Professor proved to be consistently popular, and

even when superseded by Speak & Maths, still

sold in significant quantities.

Speak & Maths was the second Texas

Instruments educational toy to make use of the TI

speech synthesis chip. This was also used in the

T199/4Ahome computer, which was taken offthe

market in late 1983 when Texas Instruments

decided to withdraw from low-cost domestic

computing. Speak & Spell, launched in 1978, has

a vocabulary of a few hundred words. The unit has

a full alphabetic keyboard (as well as some
additional keys) made up of a multi-layer

membrane siniilar to Sinclair's ZX81. On pressing

the Enquiry key, the user is audibly prompted to

spell a word. Each key depression is displayed by

means of Light Emitting Diodes until the word is

complete. Speak & Spell then tells the user

(aucUbly) whether or not the spelling is correct.

SpeaJc & Maths works in a similar way, but

poses arithmetic problems. These two highly

innovative products have succeeded in gaining a

large share of the market for educational toys, and

have taken Texas Instruments into a field quite

different fi*om the standard consumer electronics

in which it started.

A third TI speaking toy. Touch & Tell, is

perhaps more recreational tiian educational. It

makes use of a number of plastic overlays, each

printed with a pattern or picture and uniquely

identified by a magnetic encoding. When the child

touches an area of the picture. Touch & TeU

identifies the selected object audibly.

While synthesised speech is by far the most

sophisticated computing technique used by toy

and games makers, the most popular application is

for small versions of some of the most popular

arcade games. There are perhaps asmany varieties

of this sort of game as there are arcade games
proper. Another area where the microcomputer

has made an impact on the toy market is in self-

guided cars and trucks. Perhaps the best known is

the Big Trak, which is programmed by entering

instructions on a keypad mounted on its upper

surface. The toy resembles a turtle (see page 176),

and can also be controlled from a microcomputer,

by way of its parallel port.

Other microprocessor-based toys include:

Simon, which asks the child to repeat a random
sequence of musical notes and flashing lights;

Playskool's Maximus, an arithmetic trainer similar

to Littie Professor; and a variety of robots. Toys

for older children (and adults) include: Electroni-

Kit, Mykit Systems and Radionics which, as their

names suggest, are electronic construction kits

that use encapsulated components that can be

plugged into a baseboard to make up a variety of

simple devices.

Electroni-Kit

As its name implies, Electroni-

kit is a construction kit that is

used to create a variety of

electronic devices, such as

transistor radios, amplifiers and

so on. Its components are

encapsulated in clear plastic,

and are plugged into a

baseboard (following schematic

diagrams supplied with the kit)

to build up the desired result.

The most sophisticated kit in

the range includes the

components for a rudimentary

microcomputer, which is

designed to teach very simple

machine code operations. But

with only 96 bytes of memory it

can hardly be called a home

computer

cco

oo

o
CO
cc

o
>-
CO

oo

THE HOME C OMPUTER COURSE 401

Maxknin

This is a more advanced product available

from MB Electronics. While it resembles a

calculator, it is in fact another 'matching up'

game, like Simon. Maximus, however, has the

facility for operating in variou.*? modes, which
enable the matching of musical notes,

Pictures, rhyming, spelling, and shapes

Texas Instninieirts

Tt entered the educational market in the mid-

seventies with The Little Professor, a

calculator-like device that posed problems in

arithmetic. Before the end of the decade Texas

had begun to market a spelling tutor that

made use of its speech synthesis chip.

Pressing a key results in Speak & Spell asking

for a word to be spelled. More recently these

techniques have been applied to simple

arithmetic games, and very basic storytelling

devices for the younger child

Sfinoii

MB Electronics' Simon Is a microprocessor-

based version of the playground game 'Simon

Says'. The unit generates a sequence of

musical notes, each one accompanied by a

flashing light. The four coloured quadrants on

the top surface act as switches for both the

tones and the lights. The object of the game is

to duplicate the sequence exactly

402 THE HOME COMPUTER COURSE

Insights

Robo-1

Tomy's Robo-1 is a robot arm of conventional

design controlled by means of two joysticks. It

is not capable of operating under program

control. The startling thing about it is the cost

— less than ten per cent of the price of the

least expensive teaching robot arm (see page

314). Of course, the construction is much less

robust, as injection-moulded plastic is used

instead of sheet metal. The arm relies on

visual feedback and control by the user, rather

than using precise stepper motors. Again,

with ingenuity, the Robo-1 could be interfaced

to a home computer

0^

0^

While it may resemble a Tonka Toy, or one of

the other robust toy vehicles for the younger

child, Big Trak is in fact a floor robot in

disguise. Completely self-contained, it is

programmed by entering direction and

distance codes on a keypad mounted on its

top surface. With a little ingenuity, a

conventional home microcomputer can be

interfaced with Big Trak via a parallel or serial

port. The vehicle could then be guided under

program control, which would introduce the

possibility of branching into a different sub-

program should a particular set of conditions

be encountered

THE HOME COMPUTER COURSE 403

Magic Spell
Spelling checker programs are
available for many word
processors, and style and
grammar checkers are also
starting to appear

Computer designers are still a long way off

creating machines with the ability to generate and
manipulate natural languages, such as English.

One of the intended applications for the fifth

generation of computers, which should appear in

5ie 1990's, is machine translation between, say,

English and Japanese. Machine translation

faculties already exist for relatively simple prose

such as government reports and proceedings,

though the draft produced by the mainframe
computer invariably has to be corrected and
polished by hand. Stories of errors abound: the

quotation 'The spirit is willing but the flesh is

weak' is said to have been translated from English

to Russian and back again by two different

programs, with the final result of 'The wine is

agreeable, but the meat is spoiled'!

Such apocryphal stories illustrate a very

important point — the difficulties encountered

when a computer is processing data without

understanding what it means. A problem often

posed to students of computer science is to

consider how a computer could distinguish

between the meanings of the following two
sentences:

TIME FLIES LIKE AN ARROW
FRUIT FLIES LIKE A BANANA

The construction of both sentences appears
identical, but in the first instance FLIES is a verb,

whilst in the second it forms part of a noun phrase.

The only reason why we can tell them apart is

through experience. It is possible to simulate

experience on a computer, given enough memory,
but this comes under the field of artificial

intelligence, and research in this area is not very

advanced. What we are really talking about here is

the difference between 'syntax' and 'semantics'.

Syntax, meaning the rules concerning the

construction processes used in a language, is a
fairly easy subject for computers to get to grips

with (as all home programmers who have
encountered SYNTAX ERROR? messages know).
Semantics, however, concerns the meaning which
those phrases and constructs convey.

In the 1950's, Noam Chomsky developed the

basis for contemporary theory about human
languages and the rules of grammar, and although

he was not directly involved with the computing
sciences, his theories are directly pertinent, both to

machine translation and to the writing of

interpreters and compilers for programming
languages.

One of the by-products of his research has been
the creation of various software tools to assist in

the writing of text. In addition to word processing

packages, which assist in the creation, editing and
printing of text, there are programs to proof-read

documents for spelling and typing mistakes, and
even to check on the grammar and style of writing.

Though none of tihe contemporary products

contain anything outstanding in the way of

artificial intelligence, it is instructive to look at

their operation— botii in terms ofthe way they are

presented to the user and how they are internally

programmed.

All spelling checker programs make use of a

dictionary held on disk, which typically stores

between 25,000 and 50,000 words. If you intend

buying such a product, incidentally, check that the

dictionary has been compiled for English use —
many originate in the USA and use American
spelling. Most packages will allow you to add
items to the dictionary, such as unusual jargon

terms that you may use, or the names of

companies and products that you wish to have
checked.

A problem arises, however, in finding adequate

memory space for a full dictionary. You will

remember that one eight-bit byte can hold a single

alphanumeric character using the ASCII code. So,

even allowing an optimistic average of just five

characters per word, a 30,000 word^dictionary

would require 150 Kbytes of storage, which is very

much larger than most single disk drives for home
computers. Fortunately, tiiis kind of data can be
quite easily compressed, by using two techniques.

First, ifwe assume that our dictionary need only

contain lower case letters (a routine in the spelling

program will handle tiie conversions), and
numeric digits and some punctuation symbols will

not be needed, then these can be removed by the

program. Subsequently, we could construct our

entire dictionary using a maximum of 32 different

characters, instead of the full ASCII range of 128

(or 256 if you include graphics symbols). We
could therefore reduce the storage requirement of

each character from eight to five bits. The word
'computer', for example, could be stored in a total

of40 bits, or five bytes. The first five bits ofthe first

byte would specify the letter 'c', and the next three

bits, plus the first two of the second byte, would
specify 'o', and so on.

The second technique employed within spelling

checkers is called 'tokenising'. This works on the

premise that certain combinations of characters

appear so frequently that they could be
represented as, perhaps, a single byte. This would
be 'flagged' in some way to indicate that it was a

token for a group of characters and not a single

character. Your home computer almost certainly

uses tokenising in basic — each keyword, like

PRINT or NEXT, is stored inRAM as a single byte to

save space.

404 THE HOME COMPUTER COURSE

In a spelling checker dictionary, tokenising is

used at the front of words. Consider, for example,

the large collection ofwords that begin with auto-,

non-, dis- or con-. The MzaSpell package, which

runs with the MzaWrite word processor on the

Commodore 64, makes use of both compression

and tokenising to squeeze a 30,000 word
dictionary into a mere 65 Kbytes on disk.

The most dificult task of a spelling checker,

however, is to look up all the words from a

document in its dictionary. A binary search could

be used (see page 416), but for a thousand word
document this could take hours. Ideally, the word
processor should check each word as it is typed,

but this is impractical in programming terms and
therefore a document will usually be checked as a

whole, either on disk or (on larger machines) in

RAM. The program works through the document
and compiles a list of the words it contains in

alphabetical order. It is not unusual for more than

50 per cent of a large report to be made up from

just 100 different words.

Most spelling checkers use this process to

provide a useful additional report on the usage of

words in your document— which may help you to

spot unnecessary repetition. A simple algorithm

many grammatical inaccuracies that won't be
picked up. Style checkers are still in their infancy,

and most of the packages currently available

simply make use of a large dictionary of examples

in order to identify bad syntax and expressions.

Generally, these packages will suggest better ways
of phrasing the clumsy constructions that they

find, by referring to their dictionaries. They will

also usually pick up an excessive use of a word
phrase within a paragraph, or the use of long and
inelegant sentences.

then works its way through this list and the

dictionary list simultaneously, looking for

matches. In this way, the time taken to complete

the search will be greatly reduced and constant —
four minutes in the case of VizaSpell, irrespective

of the document's length.

Words that are not found in the dictionary will

either be printed out as a list, or highlighted within

the original document. For each highlighted word,

the user is presented with three options:

1) The word has been mis-spelled or mis-typed

and should be corrected;

2) The word is correct and should be added to

the program's dictionary;

3) ITieword is correct, but is unlikely to be used

again (e.g. it is part of an address), so it should

be left alone, and not added to the dictionary.

Grammar and style checkers work in a similar

manner. The former work on a limited number of

rules (such as looking for a capital letter at the start

of every sentence) and, consequently, there are

i|o be » oi^ not . to . b© : ^
I b<»t in . XhQ qti^ot ion : 4
He thor t i «> nob I or . I n the . h i n<l

4

. to Hiiffor^
The ?; I i nfj;i i»n<l at^rouH of. outr.i<iou-»

. . fortijne^
Or . to take arH«> . <3«jain;>t . a . jse^i-^l

. . of . triJoble?>4
ftn«i b«/ . oppofiintj, . en<i . thew?^
. To .«Jie, .to.;»leop;4
Mo More -an*! b»j . a sleeei> . to say

4

. v/e en<l<l
The - hear take . an<l . the . thoii<isan«l'i

. natural . shocks^
That f I ofJh i s . h i or to , tin . a^
. <:ons*>iiMat ion 4
Oevont ley . to . be . wished

.

4

<Kn«J of Pa<je>

Writing a simple form of spelling, grammar or

style checker in basic can be a very interesting

exercise even for an inexperienced programmer-
though you will need a fairly good knowledge of

the string-handUng functions on your machine. As
software sophistication increases, it would seem
reasonable to expect word processing packages to

come with such functions built-in, and more as

well. Ah yes, what every writer would adore:

'COMMAND > GENERATE ARTICLE. LENGTH 1200

WORDS, BEGIN'

To Be Or Not To Be

Think how much easier English

Literature would be if spelling

checker programs were allowed

into the exam room! We can use

Hamlet's soliloquy to illustrate

how one such program

(VizaSpell) works. First, the text

is typed into the computer using

a word processor. Then the

spelling checker is invoked with

a couple of simple commands,

and this creates an alphabetic

list of all the words used, also

indicating their frequency of

use. This list is checked against

the dictionary on disk, and

unrecognised words are

highlighted. When first used,

the program may highlight

some seemingly common
words, but these can be added

to the dictionary for later use

THE HOME COMPUTER COURSE 405

So

1

Software

Application Form
Application generators are similar to automatic program generators,
but they have games as well as business applications

o

Pinball Construction Set

This package is a kind of

application generator for

games. The user designs the

layout and logic for a pinball

game using a menu of objects,

and various graphically

represented tools to fix them on

the board

In the last instalment of The Home Computer
Course, we looked at a type of computer
program that would, given a set of specifications

by the user, produce a program capable of

performing the intended application. Such
program generators can be purchased for most
business micros, and a few packages are available

for home computers, though the type of

applications to which they are suited mean that at

least one disk drive is mandatory.
A far more common way of generating

programs to perform specific requirements

involves using packages called 'applications

generators'. Unlike program generators, these

produce programs that are not free standing, but

require the original applications generator

package in order to run. Let's consider the

creation of a program to handle invoicing using

both of these types of generator, in order to

highlight their differences.

If we were to use a program generator, the

software would first be loaded from disk into the

computer. When the user had answered all the

questions relating to the files, records, fields,

mathematical relationships, screen layouts and
printed reports required (i.e. had specified the

required applications program), the generator

would ask for a blank cUsk to be inserted into the

disk drive. It would then save the new program it

had generated on this second disk. This process

could be repeated, and a copy of the invoicing

program made for each branch of the company.
By contrast, an applications generator initially

seems less satisfactory. When you have
completed the specification stage, the necessary

routines will be recorded on the same disk as the

generator. Alternatively, it could record the

program on a separate disk, but it would do this

in such a way that the original generator disk will

still be needed in order to run the application.

Although a single copy of the original package
could be used to produce an unlimited number of
different applications, it follows that theymust all

be used in the same physical location as the

generator disk. If you want to make your
application available to others, they will need to

purchase a copy of the generator, as well. Of
course, such generators employ several methods
of program protection, in order to make
unauthorised copying very difficult.

An application generator is really just a

sophisticated general purpose program. When
you specify your application, you are simply

assigning values to a number of important
variables within the generator, called

'parameters'. These control the flow of the

program, the structure of the data, and layouts

for screen and printer. When the application is

saved on disk, what is actually being stored is a

list of these variables or parameters. This list
—

sometimes referred to as an 'application module'
— is therefore just like a set of instructions that

tell the application generator how to perform a

particular application.

Some packages take this a stage further, and
allow you to specify your application in a form of

very high level language (similar to the pseudo-
language that we first use when developing a new
routine in the Basic Programming course). This
listing will be interpreted by the generator; and
this may in turn be interpreted by the basic

interpreter if the generating program is written in

BASIC, which creates an interesting case of

software hierarchy (see page 66).

It is not uncommon for applications modules
to be created and marketed by companies other

than the authors of the original generator. For
example, dBase II (the most popular of the

sophisticated database packages available for

microcomputers) can really be regarded as an
applications generator, containing modules

r

406 THE HOME COMPUTER COURSE

consisting of strings of high level database

commands. Modules for slightly esoteric

applications (such as an accounting system

dedicated to stockbrokers) can be constructed

without having to write the program from
scratch. In view of the limited size of the market,

a stockbroker package that runs under dBase II

may well be better than one written in basic,

because the program's author will havebeen able

to concentrate all his efforts on the operation of

the program, rather than the writingof the code.

The parts of the program most susceptible to

bugs (for example, the file handling) will have

been written by the generator's authors and

tested in different applications by thousands of

users.

But the main difference between a program
generator and an application generator is in their

user-friendliness. The final program created by
the former type ofpackage will consist entirely of

artificially-written code, which will probably be

in a language such as basic. Such code will be

inferior, both in efficiency and style, to code
generated by humans. With the application

generator, however, perhaps as much as 99 per

cent of the final program will consist of code

written by the software house, and this will

probably be in machine code as well. This is the

case with Silicon Office, one of the most

sophisticated and easy to use application

generators available for business

microcomputers. The resulting program will be

faster and more efficient, incorporate checking

procedures to detect operator errors, and
produce clearly laid-out menu-driven screen

displays.

Furthermore, application generators are not

restricted to business programs. Perhaps the best

example ofa non-business package is the Pinball

Construction Set (see page 241), in which the

application module is effectively specified by
laying out the elements of the required pinball

table.

There is, in fact, a great deal of overlap

between this subject and object oriented

programming, which we have discussed before

(see page 242), but which may be broadly

sunmiarised as: encouraging the programmer to

implement his applications purely by specifying

the objectives required of the program. Even
simple spreadsheet programs, available forhome
computers such as the Sinclair Spectrum, can be
regarded as application generators— you simply

specify the relationship between the various

fields, and the package does all the routine work
for you.

Magpie — produced by Audiogenic for the

Commodore 64 with one disk dnve — is an

application generator that is geared towards

business or other serious applications. This is

another package that makes good use of visual

object oriented programming: relationships

between items of data in different records are

specified when designing the layout of those

records.

Although they are not strictly regarded as

application generators, an increasing number of

packages are now incorporating some of these

principles. When first run, such 'parameter-

driven' programs will ask the user a whole series

of questions and record the answers on disk

alongside the program. This information will

determine some of the details of the program's

operation. An invoicing program, for example,

would ask questions relating to the information

that the company likes to have included in each

invoice, and the standard credit periods that it

allows. An arcade game might ask how many
aliens, bases and rockets the user would like to

start with, or even give him the opportunity to

design the invaders.

Increasingly, software is being designed to

protect the user fi*om having to learn

programming, while at the same time providing a

high degree of flexibility in operation.A situation

where the software adjusts itself to fit the user's

requirements (rather than the user adjusting to

the software) is a highly desirable goal.

Magpie On The Commodore 64
The first stage in creating an application is to specify the

layout of all forms, transactions and reports, such as

this price list. By filling the columns with letters (A.D.P)

the user specifies which fields from the database are to

be used

Next, ail the calculations and processing are specified in

the form of a list of instructions in a high level

programming language, to be interpreted by Magpie.

Shown here are the routines to amend the prices and to

recall (GET) thiem from disk

Magpie is menu-driven. As any option is selected (e.g.

CREATE), another will appear beside it, showing all the

CREATE options. This screen displays the result of

selecting CREATE, then DISK, then DELETE, then the file

to be deleted, in this case PRICE LIST

THE HOME COMPUTER COURSE 407

Sounds Incredible
The BBC Model B's ENVELOPE
command gives almost unlimited

control

required, the auto-repeat ofthe pitch envelope will

be suppressed, so that T set to 5 + 128 = 133 gives a

step duration of five hundredths of a second in a

pitch envelope that occurs once within the note.

Pitch Envelope

In an earlier part of the course, the format of the

BBC Micro's SOUND command was discussed.

However, it is only when it is used in conjunction

with the versatile ENVELOPE conmiand that the

sound capabilities of the BBC are fully explored.

ENVELOPE enables the user to shape up to four

sounds to the extent that quite passable

emulations of conventional instruments can be

programmed. In addition, sound effects for games

can be refined to sound much more like the

explosions or gunfire that they represent.

ENVELOPE is constructed as follows:

ENVELOPE N,T,PS1,PS2.PS3.NS1,NS2,NS3,

AR,DR,SR,RR,FAL,FDL

The first parameter, N, sets the envelope number
and serves to identify the envelope to the related

SOUND or SOUND & conmiands. One of up to four

envelopes can be substituted for the fixed volume

(V) set with a negative number (0 to - 15, see page

388) by SOUND.

T (0 to 127) & (128 to 255)

This is the master timing control for the command.
It sets the duration of each *step' in the

construction of the envelope in hundredths of a

second. Therefore, T=5 means that each envelope

step lasts for five hundredths of a second (0.05

seconds). By adding 128 to the step duration

PITCH

160 H

140

120

100

80

60

40

20 H

1

PS1

PS2

PS3

10 15 20 25 30

TIME IN

1/100 SECOND

The use of the term 'pitch envelope' may seem a

little confusing as envelope has previously been

used in terms ofvolume, but in this case it refers to

the variation of pitch over the duration of a note.

This facility has little value in musical terms unless

a 'vibrato' is required, but it can be useful to give

sound effects interesting 'warbles'. As shown in the

diagram, the pitch envelope is divided into three

sections. The response of each section can be set

by the associated PS and NS number as follows:

LigM Relief
Using sprites on the

Commodore 64

One of the most exciting features of the

Commodore 64 is its ability to use sprites. Sprites

are built up in the same way as a user-dej5ned

graphic character, but are much larger, consisting

of 21 rows of 24 pixels. Sprites are not displayed in

the normal character screen matrix and this allows

them to be moved a single pixel at a time, rather

than requiring eight pixels to move a character

from one cell to the next. Up to eight sprites can be

displayed at any one time on the screen and each

sprite has the following individually

programmable characteristics:

Shape And Colour
A spnte is defined in much the same way as an

eight by eight pixel character, but 63 bytes are

needed to hold the patterns encoded in binary

form. Once the shape has been defined in this way,

it is held in a block of 63 consecutive locations.

Each sprite has a data pointer that points to the

area from which the sprite derives its shape. This

means that more than one sprite can 'look' at the

same area ofmemory; i.e. sprites can be identical.

Also, a sprite can change its shape by switching its

pointer to look at a different area of memory.
Each sprite may be coloured in any one of the

16 colours given. Sprites can also be multi-

coloured with the usual penalty of halving

horizontal resolution.

Size And Movement
Sprites can be expanded horizontally or vertically,

or in both directions, to double the original size.A
fullyexpanded sprite is48 X 42 pixels. Again there

408 THE HOME COMPUTER COURSE

Sound And Light

PS1, PS2 & PS3 (-128 to 127)

PS refers to Pitch Step. At the start of the

associated note, pitch is set by the SOUND

command. PS1 sets the positive or negative change

of pitch per step in the first section, PS2 for the

second section, and PS3 for the third section. In a

similar manner to SOUND, PS is set in quarter

semitones.

NS1, NS2 & NS3 (0 to 255)

NS refers to Number of Steps per section; and in

conjunction with PS selects the rate at which pitch

changes in a section and also the duration of the

whole pitch envelope. The PS and NS values for the

above example are as follows:

T = 1 PS1=-10 NS1=15
PS2 = +10 NS2 = 10

PS3 = -10 NS3 = 5

In this case, pitch is set by SOUND = 160. This results

in:

ENVELOPE 1.1 -10,10 -10,15,10,5,0,0,0,0,0,0

is a price to be paid, in that resolution is halved in

the direction of expansion.

A sprite can move one pixel at a time and the

old position is automatically erased. Sprites can

also move in and out of the normal viewing area of

the screen.

Priority And Collision
When two sprites cross each other's path, one

appears to pass in fi*ont of the other. If there are

any holes in the sprite that is passing in front, the

sprite behind will show through. Priority can be

used to achieve some interesting three-

dimensional effects. Each sprite is given a number

fi-om 0 to 7 and the simple rule governing priority

is that lower-numbered sprites appear to move in

front of higher-numbered ones. Usually, sprites

appear to move in front of any normal characters

on the screen, but they can be programmed to

move behind as well. Again this feature can be

used to give the impression ofdepth on the screen.

When two sprites cross each other this is

signaDed in a collision register. PEEKing this

register can give the programmer details of which

sprites have been involved. There is another

similar register that signals when a sprite has been

in collision with any background characters.

As a consequence of ti[ie availability of these

features, writing programs to control fast-moving

games in basic is now possible. Unfortunately,

tiiere are no special basic commands to control

sprite features; everything has to be done by a

succession of POKEs into the Commodore 64's

memory. An alternative and easier method of

creating sprites is to invest in a Simon's basic

cartridge.

The duration of the envelope is given as

(NS1+NS2+NS3)xT, which in this case is

(15-hlO-l-5)X 1 = 0.3 seconds. Normally, the pitch

envelope will automatically repeat 'over the

duration of a note unless disabled by the timing

parameter, T.

In the next instahnent of the Sound And Light

course we will return to the sound features of the

BBC Micro and explain the operation of the

volume envelope.

Simon's Basic

For approximately £50, it is

possible to purchase a plug-in

cartridge to extend the high

resolution and sprite handling

capabilities available to the

BASIC programmer. The

cartridge comes complete

with a weighty manual

detailing the 114 extra

commands. These include

commands to turn on high

resolution mode, select

background and foreground

colours, and to draw circles,

ellipses, rectangles and

straight lines. Sprite handling

instructions include:

assistance with sprite design

and creation, commands to

switch sprites on and off, and

ways of positioning them on

the screen

SteplWo

These lines may be added to the

Supermarket program listing

given on page 359. This section

of the program uses two

expanded, multi-coloured

sprites to make up the human

figure and a further expanded

sprite to make up the shopping

trolley. The sprite data pointers

are manipulated so that the

woman changes shape. This

gives the effect of the figure

dancing as it crosses the

screen. To use the supermarket

program, as a subroutine in this

program, change line 3270 to

read: 3270 RETURN

90 REN ** SPRITES 64 **
im PR I HTM"
lie V=53243
120 REM REfiH SPRITE DRTFl

1 30 FOR I = 1 2288Ta 1 2350 RERDfl POKE I . H ^ NEIKT

1 40 FOR I = 1 2352T0 1 24 1 4 ^ RERDR : POKE I . R ^ NEIKT

1 50 FOR I =832T0894 : RERDR : POKE I . R :
\\E>iT

160 F0RI=896T0958 RERDR : POKE I .
R

: NEXT
1 70 FOR I = 1 24 1 6T0 1 2478 • RERDR POKE I .. R NEXT
130 REM EXPRND SPRITES
1 90 POKEV+23 ,. 7 : POKEV+29 . 7

200 REM COLOR SPRITES
2 1 0 POKEV+39 .10: POKEV+40 .. 1

0

220 POKEV+41.. 1

230 REM—MULT I COLOR—
240 P0KEV+2S .. 3 : POKEV+37 ,. 7 POKEV+38 9

300 REM MEMORV POINTERS
3 1 0 POKE2040 . 1 92 : POKE204 1.193: P0KE2642 .. 1 94

320 REM SET V COORDS
V0= 1 50 : V 1 =V0+42 : V2=V0+34

340 POKEV+ 1 . V0 : POKEV+3 ,. V 1 : POKEV+5 .. V2
400 REM TURN ON SPRITES
410 POKEV+2 1/7
500 GOSUB3000 : REM OMIT IF NO SUBROUTINE
1000 X0=20
1010 POKE2040 .13: POKE204 1 .. 1

4

lti20 POKEV.. X0 : POKEV+2.. XO : POKEV+4.. X0+4S
1 030 FOR I = 1 TO500 : NEXT
1040 POKE2040.. 192 : POKE2041 .. 193
1050 X0=X0+5
1 06fi POKEV .. X0 : POKEV+2 .. XO : POKEV+4 X0+48
1 070 FOR I = 1 TO500 : NEXT
1080 X0=X0+5
1 090 I FX0;>200THEN 1110
1100 GOTO1010
1110 FORJ=1TO10
1 120 POKE2040.. 13 : POKE2041 . 14

1130 FORI=1TO50:NEXT
1 1 40 POKE2040 .. 1 92 : POKE204 1 .. 1 93
1150 FORI=1TO50:NEXT
1160 NEXT
1170 GOTO 1170
9000 REM DRTR WOMRN TOP
90 1 0 DRTflO . 0 .. 0 .' 0 .• 2 1 . 0 .• 0 .. 2 1 . 0 0 . 22 ..0.0 ,. 36 . O

9020 DRTRO . 86 . 0 .. 0 . 86 O .. 0 . 40 .0.0. 252 . 0

9030 DRTR 1 5 . 255 . 0 . 255 .. 255 . 0 . 255 . 255 . O

9040 DRTR 1 95 . 255 .0.1 95 . 255 . 0 . 1 95 . 243 . 254
9050 DRTR207.243.254
9060 DRTR 1 43 . 240 . 0 . 1 43 . 252 .0.1 5 . 252 .. O

9070 DRTR 1 5 . 252 ,. 0 .15. 252 . O

9100 REM DRTR WOMRN BOTTOM
9110 DRTfll5. 252.0. 15.252.0. 15.252.0
9 1 20 DRTR 1 5 . 252 .0.5.84. 0 . 5.84 . O . 5 . 84 /

O

9 1 30 DRTR5 . 84.0.10. 40 . 0 . 234 . 40 . 0 . 234 . 40 .

0

9 1 40 DRTR234 . 40 . 0 . 1 92 . 40 . 0 .192 . 40 . 0 . O . 40 .

O

9 1 50 DRTR0 . 40 . 0 . 0 . 63 . 0 . 0 . 63 . O . 0 . 0 . 0 . 0 . 0 .

0

9160 DflTR0.0.0
9200 REM DRTR WOMRN TOP #2

9210 DRTR0. 0. 0. 0. 20. 32. 32. 85. 32. 32. 105. 48. 43.. 105. 48

9220 DRTR48 . 1 05 . 48 . 48 . 1 05 . 48 . 43 . 40 . 48 . 48 . 252 48
=•230 DflTfi63. 255. 240. 63. 255. 240. 63. 255. 0

9240 DRTR3 . 255 . O . 3 . 255 . 0 . 3 . 240 .

0

9250 DRTR 15. 240.0
'^260 DRTR 1 5 . 240 . 0 . 1 5 . 252 . 0 . 1 5 . 252 . O
9270 DRTR 1 5 .. 252 . 0.15 . 252 . 0

9300 REM DRTH WOMRN BOTTOM #2

9310 DRTH15. 252.0. 15.252.0. 15.252.0
9320 DRTR 1 5 . 252 . 0 . 5 . 84 . 0 . 5 . 34 .. 0 . 5 . 84 . O

9330 DRTR5 . 84 . 0 . 1 0 . 40 . 0 . 58 . 1 68 . 0 . 58 . 1 68 . 0

9340 DRTR58 . 0 . 0 . 58 . 0 . 0 . 1 0 . 0 . 0 .10. 0 0
9:350 DRTR 1 0 .. O .. 0 . 15.1 92 . 0 . 15.1 92 . O . O .. 0 . 0 . 0 .• 0 . 0

9360 DRTR0.0.0
9400 REM TROLLEY DRTR
9410 DHTH192. 0. 0. 224. 0. 0. 1 13.

0

9420 DRTR0 . 55 . 1 92 O . 32 . 60 . 0 . 53
9430 DRTR87. 240. 32.0. 15.53.85.35
9440 DHTH32. 0. 3. 53. 35. 35. O. 0.

3

9450 DRTH21 . 35. 85. 31 . 255. 255. 24.0
9460 DRTR0 ..12. 0 . 0 .12.0.0. 3 1 . 255
9470 DRTH240. 31.255.255. 1.0.2.7
9480 DRTR0. 14.7.0. 14

THE HOME COMPUTER COURSE 409

ardware Focu

Osborne-I
This is the first microcomputer
designed to be portable, and the

first to be supplied with software

included in the price

Although it is not strictly classed as a home
computer, the Osborne- 1 is a particularly

interesting machine because it was the first

completely self-contained portable micro-

computer. With its two built-in disk drives and

small monitor, the Osborne offers its user the

ability to carry his own data processing capability

with him, wherever hemay go. The only thing that

the machine lacks is an internal battery pack, but

the manufacturer reasoned that tiiis would
increase the overall weight of the machine beyond
reasonable bounds — it already weighs 10.5kg

(23.51bs). There is, however, a DC socket on the

front panel, along with the other interface

connections. The machine needs both 12v and 5v

inputs: the former for the disk drives, the latter for

the logic.

, The Osborne's high price— about £1,000— also

makes it hard to class as ahome computer— though

this does include approximately £600 worth of

some of the best established business software

available. This includes: Microsoft's cbasic, a

compiled version of the basic language, which

allows much faster operation of programs;

Supercalc, widely acknowledged as the best of the

first generation spreadsheet programs; Wordstar

and Mailmerge, the best selling of the

transportable (not limited to any one type of

macWne) word processing packages; and, perhaps

best of all, the Digital Research CP/M (Control

Program/Monitor) operating system, which

allows a vast range of software packages to be run

on any machine that uses it.

The Osborne- 1, in conmion with the Apple II

(see page 349), requires its operating system to be

loaded from disk. In addition to overseeing the

internal operation of the computer, the CP/M
system allows most housekeeping routines —
making back-up copies of files and whole disks,

initialisation of new disks, cataloguing disk

contents, and so on— to be accomplished directly.

But the CP/M system has other strengths as weU.

First of all, software can be written for the

operating system, independently of themachines

on which it operates. To the software house thi&

means a much Isirger potential market, hence a

great deal more money can be spent on
production, which in turn ensures a higher quality

package. Secondly, to a skilled CP/M user, the

machine type is almost irrelevant, and this allows

hardware to be upgraded and enhanced without

the onerous task of re-entering data files and

converting programs. For a short period, Osborne

Dual Density Disk Drives

Each drive has a nominal

capacity of 200 Kbytes, but this

is reduced to 184 Kbytes after

formatting

Microprocessor——
The Osborne-1 uses Zilog's

Z80A microprocessor, running

at4MHz

Motorola 6850—
These chips control the

operation of the RS232

standard serial port

Motoroia6821

This integrated circuit is used to

support the IEEE488 parallel

input/output port

RS232 Serial Port

IEEE488 Parallel Port'

Modem Port

KeyboanI Connector

410 THE HOME COMPUTER COURSE

I

Monitor

Character GenerationMM

DislcControiierBoanI

Technically known as a

'Daughter Board' (the nnain

printed circuit board is called

the Mother Board), the disk

drive operation is controlled

from here

64iaiyteRAM

Monitor Brigiitness Control

Monitor Contrast Control

External Power Supply

Reset Button

Numeric Keypad

1
PRICE

£945 (£1145 for 80-col version)

510x325x225mnfi

10.5kg

CPU

Z80A

CLOCK SPEED

4 MHz
MEMORY

64 Kbytes RAM
4 Kbytes ROM
VIDEO DISPLAY

24 rows of 52 characters visible

out of an actual 128x32 display

INTERFACES

RS232, IEEE, Modem

LANGUAGE SUPPLIED

BASIC, Z80 Assembler

OTHER LANGUAGES AVAILABLE

Any that will run under CP/M

COMES WITH

CP/M, Wordstar, CBASIC,

MBASIC, Mailmerge,

Supercalc, Manuals

KEYBOARD

Typewriter-style, 69 keys

including numeric keypad

DOCUMENTATION

Adam Osborne sold his publishing

company to McGraw-Hill in order

to finance the production of

Osborne computers, so it's not

surprising that the quality of the

manual is very high indeed. The

only falling is the lack of a

comprehensive index

Control Program/Monitor
Mainframe and mini-computers have benefited from the

existence of machine-independent operating systems ever since

the second generation of machines was introduced in the mid-

sixties, but it was to be a dozen years before such control

systems were available for microcomputers. Digital Research's

CP/M (Control Program/Monitor) was the first of these systems.

Designed for Intel's 8080 and the Zilog Z80 series of

microprocessors, it has a range of utility and housekeeping

programs, and also defines the ways in which running

programs may be interrupted and continued.

Another major advantage lies in the definition of file

structures and layouts, which the CP/M also handles. Using an

interchange program such as BSTAM, which reduces files of any

sort to their most basic form, it is possible to transfer programs

written for CP/M between machines, irrespective of their type or

specification. This means that a huge amount of software is

available to the CP/M user

THE HOME COMPUTER COURSE 411

\

Hardware Focus

even included in the purchase price Ashton-Tate's

dBase II — the most powerful of all the

microcomputer-based database management
programs, which normally sells for £350.

Unfortunately for Osborne, most of the US
business community concentrated its attention on
the IBM Personal Computer, a 16-bit machine

based on Intel's 8088 microprocessor. Intended as

an interim solution — it boasts 16 bit addressing,

but only eight bit data transfer— the 8088 became
a de facto industry standard simply by virtue of

IBM choosing it to power its first entry into the

microcomputer market.

The IBM PC uses a specially devised operating

system called PC-DOS. In an effort to compete.

Digital Research launched two new versions ofthe

CP/M operating system: Concurrent CP/M,
which allows true multi-user multi-progr2imming;

and CP/M86, designed for Intel's 8086 chip,

which incorporated 16-bit addressing and 16-bit

data transfer.

Unfortunately, all these developments came
too late to prevent the Osborne- 1 from being

swamped by market forces, and in 1983 the

Osborne Computer Corporation — the parent

company in the United States — went into

voluntary liquidation. With its 64 Kbyte memory

(60 Kbytes available to the user) and twin 183

Kbyte disk drives, the Osborne- 1 is still a

reasonably powerful computing machine. Add to

that its built-in RS232 and IEEE ports, the

modem port and its ability to run from a battery

pack, and it's easy to see why the computer was an

instant best seller, and why it is still popular with

users even after the demise of its manufacturer.

One very interesting feature of the Osborne- 1,

which is shared to some degree by Epson's HX-20
(see page 169), is the provision of a 'virtual screen'

more than three times as large as the 52 column by

24 row display provided. The use of the control

key (a standard CP/M requirement) and the

cursor keys allows the display to move around the

actual screen memory. To a great extent this

removes most ofthe disadvantages imposed by the

small physical size (8.75 X 6.6 centimetres, 3.5 X
2.6 inches) of the screen, although non-users often

express surprise that a display whose characters

are a mere two millimetres (1/10 inch) high should

be legible, let alone comfortable to use.

In fact, few users are unable to come to terms

with this miniaturisation, although Osborne did

provide an external monitor connector that

duplicates the contents of the small screen on a

larger additional unit. Indeed, far from

considering the character size to be too small,

there was an appreciable demand from users for

the entire four Kbyte virtual screen (128 columns

by 32 rows) to be displayed at all times, and

Osborne manufactured a modification to just that

specification. This allows users to choose one of

three screen 'widths': 52 characters, 96 characters

or the full 128, and even at the highest density the

characters are still well-defined and readable.

The Osborne- I's keyboard, which clips on to

the computer's front panel as a 'lid', rendering it

weatherproof, is a 69 key unit. It has normal

typewriter-style keys, with the addition of Control

and Escape keys, plus a 12-key numeric pad on
the right-hand side that I includes extra fuD stop

and enter keys. Using a CP/M program called

SETUP, the functions of the numeric keys (when

used in conjunction with the Control key) can be

user-defined to a maximum of 96 characters. This

feature is particularly useful if a word, phrase or

command string is to be used frequently. The
results of the SETUP program are written on each

disk, rather than being stored in memory, so the

functions can be pre-programmed separately for

each different software package. The computer

automatically sets its functions each time the

operating system is loaded.

In addition to the standard 96 upper and lower

case characters, there are 32 pre-defined graphics

characters available, though these can only be

accessed through an applications program.

Because the Osborne- 1 uses 6800 series

support chips, rather thsn their counterparts from

the 8080 family (as one would expect of a CP/M
machine), the keyboard polling method is slightly

different. There is a portion ofmemory set aside to

interpret key depressions, and the system ROM
continually checks to see if a key has been

depressed. There is no decoding logic in the

keyboard itself. It is this implementation which

allows easy programming of the function keys,

and because these functions are stored in die

Random Access Memory, they can be accessed

and changed from within a program.

Though the Osborne Computer Corporation

went into voluntary liquidation, the British

division set up as a separate company and

continued to trade. Whatever the future holds for

this machine, its quality is undeniable.

Carried Away

In addition to its excellent price/performance ratio, the Osborne-1

has the added advantage of portability. At 10.5kg it is no

lightweight, but it is completely self-contained and well

balanced, so carrying it about is not too much of a problem.

One constraint on its physical dimensions was that it should

fit under the seat of an aeroplane

412 THE HOME COMPUTER COURSE

asswordsTo Computing

Sorting Code
.awmWWMIIIHaMM^^ lllllllllMIBimiMilllllMIIWPIIIillllllMMIIW^^

The Shell Sort Is more efficient than either the Bubble or Insertion

Sorts for long arrays. It works by dividing the data Into a series of

'chains'

On page 286 we looked at two methods of sorting

an array into order — the Bubble and Insertion

Sorts. Generally, the Bubble Sort is easier to carry

out, but the Insertion Sort is faster. Experience of

these two methods shows that what takes the time

is swapping cairds around over short distances: it's

usually far better to swap once over a long dist2ince

than several times over short distances.

7999 REM*****-*-*****-^--^-********

8000 REM* SHELL *
8001 REM*****-^-******-)^********
8025 PRINT "SHELL SORT - GO ! ! 1 1 !

"

8050 LET LK=LT
8100 FOR 2=0 TO I STEP 0
8150 LET LK=INT (LK/ I I

)

8200 FOR LB=I TO LK ;.

8250 LET LL=LB+LK
8300 FOR P=LL TO LT STEP LK
8350 LET D=R(P)
8400 FOR 0=P TO LL STEP-LK
8450 LET R(Q)=R(Q-LK)
8500 IF D<=R(Q) THEN LET R(Q)=D:LET Q=LL
8550 NEXT Q J i;

8600 IF D>R(LB) THEN LET R<LB)=D
8650 NEXT P
8700 NEXT LB
8750 IF LK=I THEN LET Z=I
8800 NEXT Z

8850 PRINT "SHELL SORT - STOP I!!!!"
8900 RETURN

To add this routine to the sorting demonstration program on page

287, change line 350 to:

350 LETM :LET O=0:LET lh+:LET TH=3
and change line 900 to:

900 ON SR GOSUB 6000,7000.8000

A better method than either of these two is

called the 'Shell Sort' (named after its creator, D
Shell). This method ensures that the disorder in

the array is reduced early in the sort (so that items

are not a long way from their true positions), and

enables swaps to operate over relatively long

distances. Here is a method for this sort:

1) Lay out all the cards of one suit in any order.

They are to be sorted into descending order so that

the King will be the leftmost card, and the Ace the

rightmost. Count the cards, divide that number (in

this case, 13) by two, ignoring any remainder, and

write the residt (i.e. six) on a piece of paper

labeUed 'The Link'.

2) Place a fivepence piece imder the leftmost

card (call this Position One), and a tenpence piece

in the Link position (i.e. Position Six in the first

instance). All of the cards fix)m the First to the

Link position are each to be the leftmost end cards

in a series of 'chains' of cards. The number of

chains will equal the current value of the Link.

Each chain is formed by starting with its end card,

adding the Link to the end card's position number

to get the position ofthe next card, adding the Link
to get the position of the next card, and so on until

the end ofthe array has been reached or exceeded.
The first chain, therefore, comprises the cards in

positions One, Seven, and Thirteen; the second

chain is the cards in positions Two and Eight; the

third is the cards in positions Three and Nine. The
last chain is the cards in positions Six (the present

value of the Link) and Twelve.

3) Now, having marked the boundaries with the

five- and tenpence pieces, push the cards that

comprise the first chain out ofthe array so that you
can see them in isolation, and sort them into order

using either the Bubble or Insertion Sort as

described on page 286 (the listing with this article

uses the Insertion method).

4) Push the ordered chain back into the gaps in

the array, and repeat the above with the next chain,

and the next, and so on, until all the chains whose
leftmost cards lie between the five- and ten-pence

pieces have been sorted.

5) When all the chains have been sorted, divide

the Link by two, ignoring any remainder. If the

Link is now less than one then the array will be
sorted. Otherwise, repeat from Step Two above
with the new value of the Link.

Shell Sort Panel

Position No. Link Value Comments

123456789
2893T5K67 (9/2)=>4

* + @$ * + @$ *

T 7 2

8 5

K 9

6 3

T8K675932
T8K675932 (4/2)->2

Begin Pass

Form chains

Sort Chain 1

Sort Chain 2

Sort Chain 3

Sort Chain 4

Begin Pass

End of Pass

* + * + * + * + * Fornfi Chains

K T 9 7 2 Sort Chain 1

8 6 5 3 Sort Chain 2

K8T695732 End of Pass

K8T695732 (2/2)->1 Begin Pass

********* Form Chain 1

KT9876532 End of Pass

KEY

* Member of Chain 1

+ Member of Chain 2

@ Member of Chain 3

$ Member of Chain 4

SlieilSort

The example of the Shell Sort for

a reduced hand that we show in

the panel demonstrates its

unique method of dividing the

array into a series of chains

(with spacings based on the

current Link number). These

chains are separately sorted, in

this case using the Insertion

method, before a pass is

completed.

The program listing for a

Shell Sort given here must be

used in conjunction with the

testbed program on page 287.

When we tested it, there was a

significant improvement over

the other sorting methods once

the number of items to be sorted

exceeded 40

THE HOME COMPUTER COURSE 413

Single Handed
The lyiicrowriter is a portable

word processor that can be
operated with only one hand.
The six-button keyboard may
soon be used on computers

Having a word processor at the office, or a home
computer with a word processing program, can be

an excellent idea. Apart from taking Sie drudgery

out of producing routine paperwork and letters,

they can help with program documentation,

quickly produce copies of notices, or handle the

contents of an address book. Indeed, they can

become so useful that whenever anything needs to

be written down, your fingers will tend to drift

toward the keyboard rather than pen and paper.A
problem arises, however, when you want to take

notes away fiom the home or office in a form that a

computer can understand.

There is a growing market in portable computer

systems like Tandy's Model 100 and the Epson
HX-20. While these have the advantage of being

able to act as portable word processors, or remote

terminals for bigger systems, they are hardly as

handy as a notepad or dictaphone. What about a

word processing system that is small enough to

carry in your pocket? A system so compact tiliat it

is battery powered and only needs one hand to

use, yet can be connected to a printer or even

another computer.

Such a device, called a Microwriter, has been

available for nearly four years. Originally

conceived by Cy Endfield, an expatriate

American, it shuns the QWERTY keyboard in

favour of a unique system of multiple key presses

using only six push-button keys. The concept first

arose out of a desire to create a hand-held game
based on words, for which even a miniature

keyboard would be both too big and too

expensive. The obvious answer was to create a

special kind of keyboard that used just a few keys

with enough combinations to specify all the

alphanumeric symbols. The breakthrough came
with the invention ofa symbolic code system that's

unique to the Microwriter.

At first sight it seems impossible that the letters

of the alphabet, not to mention numeric and

punctuation symbols, can be created by

combinations ofjust six keys, but these are indeed

sufficient. And a few hours is all it takes to learn

the common combinations. Indeed, the makers

Cassette Interface—

—

This works with a domestic

recorder

Output Port

This port provides an RS232

interface to a printer, computer,

or acoustic coupler. With an

external adaptor, it can also

display on a TV or monitor

UquidCiystal Display

Though featuring only 16

character positions, the

characters are formed on a large

matrix for legibility

MHcrosnfitches

These devices

minimise the pressure needed

to activate the buttons

claim, with some justification, that it is a lot easier

to learn than a QWERTY keyboard. The
combination of keys required for each of the

letters is based on the physical shape ofthe letter, a

code that is often found easier to learn by non-

typists. Because only one hand is needed, the

Microwriter also opens the way to word

processing for those disabled people who can't

handle the multiple key presses often needed on a

conventional keyboard to generate commands.

RAM^

The machine comes with 8K as

standard, but larger chips can

be fitted into the same sockets

to increase this capacity

abcdef°ghrqkrm
414 THE HOME COMPUTER COURSE

Ohi/Offf Switch

Switching off and on will not

lose data, and you can

immediately resume writing the

same document

Clock Crystal

Internally, the Microwriter is designed to be as

portable as possible. Both the internal

microprocessor and its memory are CMOS
(Complementary Metal Oxide Silicon) devices,

which help reduce the power consumption.

Enough power for 30 hours ofuse is provided by a
rechargeable Ni-Cad pack. To display tiie

characters, a 14-character LCD display (which

scrolls horizontally as text is entered) is built into

the unit, but a television set can be connected

through an optional interface. This allows on-

screen editing of the stored text to be achieved

once the user has returned to the home or office.

Ni-Cad Batteries

These cells are recharged by

means of an external

transformer

As well as an RS232 serial interface for

connection to a printer, the Microwriter is

equipped with a cassette interface, which allows

the text stored in its memory to be permanently

saved or loaded back. The serial interface also

enables the Microwriter to be used as a single-

handed terminal to an ordinary computer or word
processor. Documents keyed in whUe away from

the home or office can be loaded into a full-sized

system for more complete editing or

manipulation.

Text within the Microwriter can be partitioned

into separate documents, and this enables several

blocks of unrelated text to be entered and dealt

with separately. Simple editing facilities are

provided: text can be added or deleted and it is

possible to move large blocks around by using the

cassette interface as a temporary buffer.

The designer's intention was that the six-key

Microwriter keyboard would be incorporated into

other electronic devices. For all its good qualities,

however, the Microwriter has had only limited

appeal, and it remains to be seen whether home
computer manufacturers will take up the idea.

CPU

Both CPU and RAM are CMOS
(Complementary Metal Oxide

Silicon) devices to reduce

power consumption

Power Sodcet

For recharging or mains

operation with an external

transformer

Expansion Interface

For future expansion, this port

includes the microprocessor's

address and data lines

EPROM
The word processing program

and sophisticated

communications software is

ncorporated into a single

EPROM, which is cheaper to

produce in small quantities than

ROM

A Buncli Of Fives

Microwriter's documentation

includes mnemonics and

illustrations to help the user

learn the different combinations

of keys necessary to create the

alphabet. The sixth key is used

in combination with the others

to provide further punctuation

and editing commands

nopqr
THE HOME COMPUTER COURSE 415

asic Programming

Search Warrant
The time taken to locate a particular record can be greatly reduced
using the 'binary search' — provided that the file has already been
sorted into an appropriate order

The three most important activities in the address

book program — adding new records, saving the

file on tape or disk, and reading in the file fi*om

mass storage when the program is first run— have

now been developed. But an address book is no
use if you can only add information and cannot

extract any. What is needed next is a routine to find

a record.

Finding a complete record from a name is likely

to be the most fi'equent activity, and that's why the

first option on the choice menu (*CHOOSE*)isFIND

RECORD (FROM NAME). Searching is a highly

important activity in many computer programs,

especially in database programs where specific

items of data often need to be retrieved from a file.

Broadly speaking, there are two search methods—
linear and binary. A linear search looks at each

element in an array, starting at the begiiming, and
carries on until the particular item is located. If the

data items in the array are in an unsorted state, a

linear search is the only type that can be
guaranteed to work. The time to locate the item

using a linear search in an array ofN items has an
average value proportional to N/2. Ifthere are few
items to be searched through, N/2 may be
perfectly acceptable, but as the number of items

increases, the time taken to perform the search

may become excessive.

If the data in the file is known to be in a sorted

state, however, there's a far more efficient

searching method, known as the 'binary search',

which works in the following way. Suppose you
want to find the definition of the word
'leptodactylous' in a dictionary. You don't start at

the first page and see if it's there, and go on to the

second page if it's not, working your way through

the dictionary until you find it. Instead, you put

your thumb roughly in the middle of the book,

open the page and see what's there. If the page you
open happens to start with 'metatarsal', you know
you've gone too far, so the second half of the book
is irrelevant and the word you want will be
somewhere in the first half of the book. You then

repeat the process, treating the page you originally

opened as though it were tihe end of llie dictionary.

Again you split the first part of the dictionary in

two and open the page to find 'dolabriform'. This

time you know that the page selected is too low'

and (for the purposes of our search for

'leptodactylous') can be considered as though it

were the first page— all earlier pages are irrelevant

as they are known to be too low' in the sense that

1' is 'higher' than 'd'. The 'first' and 'last' pages of

the dictionary can now be considered as the ones

starting with 'dolabriform' and 'metatarsal'

respectively. AgEiin you put your thumb in the

middle of the 'relevant' section and open up at

'ketogenesis'. Again this is too 'low' so thewordwe
are looking for must lie between this page and the

'metatarsal' page. Repeating this process often

enough is guaranteed to locate the word we are

looking for — as long as it is in the dictionary!

In the example we have just considered,

'leptodactylous' was the 'search key'. The search

key is the entry we are trying to find. Each time we
examine a record, we will compare the search key

against the 'record key' to locate the 'target' or

'victim'. Together with the record key we can

expect to find what is called 'additional

information', logically enough. The additional

information for the record key 'leptodactylous'

would be the dictionary definition of the word —
in this case, slender-toed.

The analogy with searching through a file in a

database for a target record is a close one,

provided that the records have been previously

sorted as the entries in a dictionary have. Think

how difficult a dictionary would be to use if the

entries were in the order the lexicographer first

thought of them!

The search routine required for our address

book will need to be more complicated than we
might first appreciate for reasons that will become
apparent. The first thing the search routine - let's

call it *SCHREC* for the time being - wiU do is

request the name to be searched for. This is called

the search key. Suppose that somewhere in the file

there is a record for a person called Peter Jones.

The record for this person will have a field (with

the name in standardised form) containing JONES
PETER. The search routine might prompt us with a

message such as WHO ARE YOU LOOKING FOR?, and
we would respond with PETER JONES, or perhaps P.

JONES or Pete Jones. Before this gets too

complicated, lefs assume that we respond with the

full name, Peter Jones. The first thing the search

routine will do will be to convert this response to

the standardised form, JONES PETER. Next, it will

compare our input, the search key, with the various

contents of the MODNAMS fields. If the program

were using a linear search, the search key would be

compared with each MODNAMS field in sequence

until a match was found or until it was discovered

that an exact match did not exist.

I

416 THE HOME COMPUTER COURSE

Basic Programming

As we have already noted, however, a linear

search is not efficient compared with a binary

search if the data is already sorted. The search

routine can ensure that the records are sorted by
starting with an IF RMOD = 1 THEN GOSUB *SRTREC\
The program knows that the lowest element in the

array to be searched will be M0DFLD$(1) and the

highest will be MODFLD$(SIZE - 1). To conduct the

search, we will need three variables: BTM for the

bottom of the array (M0DFLD$(1) at the

beginning); TOP for the top of the array

(MODFLD$(SIZE -
1) at the beginning); and MID for

the value corresponding to the middle element.

Using the dictionary analogy, we can assume
that BTM = ARRAY(1) and TOP = ARRAY(SIZE -

1). In

other words, the array we have to consider for the

search starts with the 'smallesf element and ends

with the 'largesf element. We can therefore LET

BTM = 1 and LET TOP - SIZE " 1 (remember that SIZE

is always one larger than the number of records

currently in the address book).

Suppose that there are 21 valid entries in the

address book. SIZE will have a value of 22. BTJVI will

have a value of 1. TOP will have a value of 21. The
value of MID, the position of the middle element,

can be derived in basic from INT((BTM + T0P)/2). If

the BTM value is 1, and the TOP value is 21, the MID
value will be 11.

To conduct a binary search, we first assume that

the whole file is valid and find the mid point

INT((BTM+T0P)/2) inside a loop that is terminated

either if the target is found or if there is no match.
Then we check to see if the search key (SCHKEYS)
happens to be equal to the M I D value ofthe array. If

the MID value of the array is too small, we know
that ARRAY(MID) is the lowest part of the array we

THE HOME COMPUTER COURSE 417

Basic Programming

'I

need to consider, so BTM could be set to MID.

Slightly more efficient, however, is to set BTM to

MID + 1, since we already know that ARRAY(MID) is

not equal to the search key. Similarly, IF

ARRAY(MID)>SCHKEY$,T0PmaybesettoMID-1.
As an interim step towards developing a fully

working routine, the program shown can take a

dummy input (which needs to be in exactly the

same format as the MODFLDS fields) and will either

print RECORD NOT FOUND if there is no match, or

RECORD IS NO (MID) if there is a match. As the

routine starts with line number 13000, it can be

added on to the end of the program as presented

on page 399, and will work as long as line 4040 is

changed to IF CHOI = 1 THEN GOSUB 13000.

Line 13240 contains the STOP statement. This

will stop the program temporarily as soon as the

RECORD NOT FOUND or RECORD IS NO (MID)

messages are displayed. The program can be re-

started at the same line number, without losing

data, by typing CO NT. Without STOP, the program

would rush on to the RETURN statement in line

13250 and the message would appear too briefly

to be legible.

Let's consider this program fragment in more

detail. Line 13100 sets BTM to 1 , the position ofthe

lowest element in the MODFLDS array. TOP is set to

SIZE-1 in line 13110. This is the position in the

MODFLDS arrays where the highest element is

located. Line 13120 initialises a loop that will only

be terminated when either a match is found or no

match is known to exist.

Line 13130 finds the mid point of the array by

halving the sum of the bottom and top index ofthe

array (INT is used to round off the division, so that

MID cannot assume a value such as 1.5). There's a

chance that the contents of MODFLDS(MID) will be

the same as the search key (SCHKEYS), but if they

are not the same, as is likely, L will be set to 0,

ensuring that the loop will be repeated. Ifthe test in

line 13140 fails, MODFLDS(MID) will either be lower

or higher in value than SCH KEYS. The value of BTM

will then be set to one more than the old value of

MID (line 13150), or the value of TOP will be set to

one less than the old value of MID. The reason the

value of MID itself is not used is that the failure of

the test in line 13140 has already demonstrated

that MODFLDS(MID) is not the target we are

searching for and there is no point in looking at

that element of the array next time round the loop.

If no match is found, the value of BTM will

eventually exceed the value of TOP. The loop can

be terminated (line 13170) and a RECORD NOT

FOUND message printed (line 13200).

This program fragment is presented for

demonstration purposes and to enable the search

routine to be tested. As it stands, its use is rather

limited. Without the STOP in line 13240 we
wouldn't even have time to see the message

flashed on the screen. What is required is a display

of the full record, as it was originally typed in.

Once the record number is known, it is a simple

matter to retrieve any of the additional

information required - NAMFLDS, STRFLDS etc.

Below the display of the record, we would

probably want a message such as PRESS SPACE BAR

TO CO NTINU E (back to themainmenu) and perhaps

ftirther options such as PRESS "P" TO PRINT.

Not so easy, unfortunately, is deciding how to

handle the input of * FNDR EC*. In the program

fragment, the input expected (in line 13020) must

be in the standardised form — JONES PETER, for

example. This is clearly not good enough. People

don't think of names in inverse order, and it's an

unreasonable burden on the user to have to enter

the name in upper case letters. Additionally, the

slightest deviation between the name input

originally would result in a RECORD NOT FOUND.

The first two problems could, one would expect,

be handled by *MODNAM*. The third problem of

how to cope with an approximate match is far

more interesting, but very much harder to solve.

Before considering this problem, let us see why
*MODNAM * will not solve the first two problems. If

you go back and look at * MODNAM*, which starts

at line 10200, you will discover a good illustration

of one of the commonest traps into which

programmers fall — lack of generality. This

subroutine ought to be able to handle conversions

from 'normal' names to 'standardised' names

whenever this operation was needed. Even

though it was written as a separate subroutine, it

was clearly written with *ADDREC* in mind. It

assumes that the name to be converted will always

reside in NAMFLDS(SIZE) and that after conversion

the modified name will always be stored in

MODFLDS(SIZE). Faced with this situation, the

programmer has three choices: either completely

rewrite *MODNAM* to make it general, which

would in turn involve further changes in other

parts of the program. Or write an almost identical

routine just to handle the input for *FNDREC*,

which represents wasted effort and takes up more

space in memory. Or resort to some bad

progranmiing technique to allow the unmodified
*M0DNAM * routine to be used. This last alternative

is in some ways the least attractive. It will solve the

problem, but the actual working of the part of the

program that has been modified is likely to be

unclear, even to the writer of the program, and a

nightmare to anyone else trying to use the

program.

'nie moral of the story is: make subroutines as

general as possible, so that they can be called by

any part of the program.

To illustrate bad programming technique, or

'dirty' progranmiing as it is often called, and to

show how unclear it can make the program,

consider line 13020 of the program fragment,

INPUT "INPUT KEY ";SCHKEYS and then look at the

modification or 'fix' that would allow *MODNAM*

to be used:

13020 INPUT "INPUT KEY";NAMFLDS(SIZE)

13030 GOSUB 10200: REM *MODNAM*

SUBROUTINE

13040 LET SCHKEYS = MODFLDS(SIZE)

13050...

418 THE HOME COMPUTER COURSE

Luckily, SIZE is always one bigger in value than the

highest valid record. In other words, there is no
record at position SIZE in the arrays, so this fix will

not modify any existing record. But without some
extensive REMs explaining what's going on, think

how confusing these thJee lines would be to

someone who had not been involved in the

development of the program!

Back to the more interesting problem of dealing

with 'near misses'. Suppose we had entered

someone's name as Pete Jones during an *ADDREC*
operation, but as Peter Jones during *FNDREC*.

ITiese would be converted to the standardised

forms JONES PETE and JONES PETER respectively,

and no match would be found during the search,

even though the record we wanted was there. We
will not attempt to solve this problem, because a

satisfactory solution would represent a major

programming task. For readers interested in

experimenting, however, here are some pointers:

BEGIN {search array for exact match}

IF exact match found

THEN PRINT full record

ELSE search array for close-match .

IF close-match found

THEN PRINT record for close-match

ELSE PRINT "NO RECORD FOUND"

ENDIF

ENDIF

END

The procedure for close-match could be something
along the lines of:

BEGIN {close-match}

Search array for exact surname match

IF exact surname match

THEN search forenames for max-match

PRINT record for max-match

ELSE search surnames for max-match

IF surname max-match found

THEN PRINT record for max-match

ENDIF

ENDIF

END

The procedure for max-match could be roughly

defined as finding the target string with the

maximum number of characters in conunon with

those in the key string. Or it could accept a

situation in which the key string was wholly

contained within the target string, or vice versa.

There are no simple solutions, but plenty of scope

for enterprising programming.

There is one *side effect' of the program

fragment presented. Suppose the following

sequence of events takes place. There are ten

records in the data file. You run the program and

then use *ADDREC* to add a new record, followed

by *FNDREC* to locate a record. When *EXPROG* is

finally run, to save the file and terminate the

program, the record you added will not be saved

(although all the other records will be). This is a

direct result of something that happened in the

execution of * FNDREG*. Can you see why the

record added will not be saved?

In the next instalment of the course we will

explainhow to prevent this loss ofdata; showwhat
the CURR variable is used for, and describe how to

delete or modify a record. Other options on the

main menu (*FNDTWN* etc.) are closely similar to

routineswe have alreadyworked out. Readers will

be left to implement them for themselves if they

are required.

Finally, consider what would happen if there

were exactly 50 records in the data file and the

modified *FNDREC* routine (that calls *MODNAM*)
were used. (Hint: SIZE will have the value 51.)

Basic Flavours—

1

For Sinclair machines, the following

modifications are required:

13000 REM *FNDREC* TEST VERSION

13010 IF RMOD - 1 THEN GOSUB 11200
13020 PRINT "INPUT KEY"

13030 INPUT S$
13100 LET BTM -

1

13110 LET TOP- SIZE -1

13120 FOR L-1 T0

1

13130 LET MID - INT((BTM+T0P)/2)

13140 IF M$(MID) <> 8$ THEN LET L-0

13150 IF M$(MID) < S$ THEN LET BTM -

MID + 1

13160 IF M$(MID) > S$ THEN LET TOP - MID
-1

13170 IF BTM > TOP THEN LET L -

1

13180 NEXT L

13200 IF BTM > TOP THEN PRINT "RECORD
NOT FOUND"

13210 IF BTM <- TOP THEN PRINT "RECORD

ISNO";MID

13240 STOP

13250 RETURN

Notice once again the problem of single-letter

string variable names: here 8$ and M$ have

been substituted for SCHKEYS, MODFLDS

Erratum

In the ZX81 and Spectrum

Basic Flavours on page 257,

lines 9990 to 9992 should not

have been included in Step 3

13000
13010
13020
13030
13040
13050
13060
13070
13080
13090
13100
13110
13120
13130
13140
13150
13160
13170
13180
13190
13200
13210
13220
13230
13240
13250

REM VERSION OF *FNDREC- FOR TESTING
IF RMOD = 1 THEN GOSUB 11200
INPUT "INPUT KEY ";SCHKEY$
REM
REM
REM
REM
REM
REM
REM
LET
LET
FOR
LET
IF MODFLD$(MID)
IF MODFLD$(MID)

BTM =

TOP =

L = 1

MID =

1

IF
IF BTM
NEXT L

REM
IF BTM
IF BTM
REM
REM
STOP
RETURN

1

SIZE -

TO 1

INT((BTM
<>
<

MODFLD$(MID) >

> TOP THEN

+ T0P)/2)
SCHKEY$ THEN L = 0

SCHKEY$ THEN BTM = MID
SCHKEY$ THEN TOP =

L = 1

MID
+ 1

- 1

> TOP THEN PRINT "RECORD NOT FOUND"
<= TOP THEN PRINT "RECORD IS NO ";MID

CDOO
—J
>-

o

THE HOME COMPUTER COURSE 419

Pioneers In Computing

Ma Bell
Bell Laboratories has been
responsible for numerous
developments in the history of

the computer— both in hardware
and software

A hundred years ago, Queen Victoria was greatly

amused by a new invention that allowed her to

speak with her ministers in London from the Isle of

Wight. The telephone has been greatly improved

since those days of the hand-cranked set through

research and development, and one of the spin-

offs from this work has been the computer. In the

early stages of the telephone's development, the

American Telephone and Telegraph Company
decided to set up an organisation that would

research ways of improving the telephone system.

Thus, in 1925, Bell Laboratories (known as *Ma

Bell') was bom at Murray Hill, New Jersey.

Bell Labs is an unusual institution since it is

solely devoted to doing research, and yet is owned

by a corporation whose only purpose is to make

profit. The scientists are deliberately kept away

from the day to day engineering problems

encountered in running such a business because

Bell consider research to be a long term

speculative investment. Gifted scientists are

allowed to pursue those aspects of research that

they think are important because, the corporation

The Bells Are Ringing

Bell Laboratories takes its name

from Alexander Graham Bell

(1847-1922), who is generally

credited with the invention of the

telephone in 1876. It is generally

believed that the first words ever

transmitted over wires by

electrical means were from Bell

to his assistant, situated in the

next room; they were 'Come

here, Mr Watson, I want you!'

believes, a few of their ideas will be worth the

investment. Over the years, Bell Labs has

collected two Nobel prizes'and made discoveries

in quite diverse areas of scientific research. Here,

we consider some aspects of their research that

were particularly relevant to the development of

the computer.

By the 1930's, telephone systems were

becoming increasingly automatic and

sophisticated. Messages were sent in analogue

form over the telephone cables and the calls were

connected using information contained in a digital

dialling code. The number dialled was first

converted at the exchange from an analogue signal

into a sequence of digital pulses. This was

temporarily stored in a memory made out of relay

switches until the connection was completed by a

bank of crossbar switches. These counted the

pulses in the dialling code and convertedthem into

co-ordinates on an electromechanical

switchboard. All the ingredients of a computer

were included — they were just waiting for the

right person to come along.

George Stibitz was a mathematician employed

by Bell who noticed the similarity between

'counting' pulses and adding them together.

Working at home on his kitchen table with some

old crossbar switches and electromechanical

relays, he made the first relay computer circuits.

Stibitz then began working with an experienced

switching engineer, Samuel B Williams, who had

been building switching circuits for 25 years, and

the two men created a Complex Number
Calculator (complex numbers involve the so-

called 'imaginary' numbers — the square roots of

negative numbers — and are needed to obtain

complete solutions to polynomial equations).

Work was begun in 1937, and the device

consumed 450 relays and 10 crossbar switches. It

operated in binary notation and was able to divide

two eight-digit numbers in 30 seconds. The

Complex Number Calculator became operational

on 8 January 1940, and in September of the same

year it was demonstrated to the American

Mathematical Society at Dartmouth College

(where basic was later formulated). The calculator

had the facility of remote and multiple access

through typewriter keyboards connected by

telephone wires to the calculating mechanism in

New York. People were particularly impressed by

its 'human' form of operation: after the calculator

was asked a question it would seem to pause for

some seconds before giving the answer!

Many minor hardware devices also originated

at Bell, such as the floating air-cushions used in

magnetic tape heads, and negative feedback

amplifiers. But the most famous invention was the

transistor, created in 1947 by Bardeen, Brattain

and Shockley (see page 47). It was the transistor

that made possible the second generation of

computers.

420 THE HOME COMPUTER COURSE

I

Mentathlet

Home computers. Do they send your brain to

sleep - or keep your mind on its toes?

At Sinclair, we're in no doubt To us, a

home computer is a mental gym, as

important an aid to mental fitness as a set of

weights to a body-builder.

Provided, of course, it offers a whole

battery of genuine mental challenges.

The Spectrum does just that

Its education programs turn boring

chores into absorbing contests - not learning

to spell 'acquiescent, but rescuing a princess

from a sorcerer in colour, sound, and

movement!

The arcade games would test an

all-night arcade freak - they're very fast, very

complex, very stimulating.

And the mind-stretchers are truly

fiendish. Adventure games that very few

people in the world have cracked. Chess to

grand master standards. Flight simulation

with a cockpit full of instruments operating

independently. Genuine 3D computer design

No other home computer in the world

can match the Spectrum challenge -because

no other computer has so much software of

such outstanding quality to run.

For the Mentathletes of today and

tomorrow, the Sinclair Spectrum is gym,

apparatus and training schedule, in one neat

package. And you can buy one for under

£100.

[EHOME
FTER COURSE
tIMDEP

Buytwotogetherandsave£l .00

Buyvolumes I and 2 together for

£6.90 (including P&P). Simply lill in the order
formand these willbe forwarded toyou with
our invoice.

Now that your collection of Home
Computer Course is growing, it makes sound
sense to take advantage of this opportunity to

order the two specially designed Home
Computer Course binders.

The binders havebeen commissioned
to store all the issues in this 24 part series.

At the end of the course the two
volume binder set will prove invaluable in

convertingyour copies of this unique series into

a permanentwork of reference

.

* Ifyou prefer tobuy the binders
separatelyplease send usyour cheque/postal
order for£3.95 (including P&P).We will send
youvolume 1 only Thenyoumayordervolume
2 in thesameway-when it suitsyou

!

Overseas readers : This binder offer applies to readers in the
UK, Eire andAustralia only. Readers inAustralia should
complete the special loose insert in Issue 1 and see additional
binder intormation on the inside front cover. Readers inNew \

Zealand and South Africa and some other countries can obtain
their binders now. For details please see inside the front cover.

Bindersmaybe subject to import duty and/or local tax.

THE LASTWORDINLOGIC
J

