

CASSETTE BLOCK-ZERO-BUG RETRIEVE

by K Penton

Have you lost valuable programs because of the cassette bug on 0S 0.1? K. Penton

tells you how to recover your program from the faulty recording (if you still have
ith.

The aim of this program (T.BUG) is to make it possible to recover program files
which will not LOAD because they have been struck by the 0S 0.1 cassette filing bug.
T.BUG will not work on data files struck by the other 0S5 0.1 tug. The effect of the
bug, is to record &8 instead of &2A as the block start marker on block 00. Hence
the computer ignores the block when you try to read it back.

The program operates directly through the 6850 ACIA with a machine code program.
It reads the spoilt block byte by byte, storing it in memory reserved as BLOCK, then
inserts &2A in place of the faulty byte, and re-records the block.

To use T.BUG, first locate the faulty block using *CAT, and rewind the tape so
it is on or just before the leader tone. Remove the cassette and load T.BUG if it is
not already in memory. Now run T.BUG. In response to the prompt for the program
name, this should be given exactly as for LOAD. On pressing ‘return' the motor relay
will switch on. Insert the cassette with the faulty block, and let the Leader run
for a second or so. It is essential that there be a steady leader tone from the time
you press the space bar to initiate the read, to the time the data begins, as the
ACIA will see any noise or glitch as the beginning of the block. If the file turns
out to have a correct block start marker the program will terminate. Otherwise,
insert a fresh cassette as prompted and record the corrected block. Check it has
recorded properly using *CAT. If all is well, you will now be able to LOAD the
corrected file using the new recording for block 00 and switching to the original

for the remainder.

10 REM == T.BUG ==
20REM for misrecorded 1st block
3¢REM == by K.Penton = 1982 =
4(@MODE 7
5@DIM BLOCK 29¢,CODE 100
60INPUT “NAME OF PROGRAM " ,N$
7@BYTES=LEN (N$)+279
8QREM presuming 256 data bytes
9@START=&72: FINISH=&70
1001 FINISH=BLOCK+BYTES+1
1101 START=BLOCK
12@PROCassembler
13@*MOTOR1
14@PRINT " Insert tape with ";N$;" a
nd run it"
150PRINT"so there is steady leader
tone sounding"
16@PRINT"preceding the failed block ."
170PRINT' "Press space bar as leader
is sounding”
188PROCspace
19@PRINT'" Loading";
200CALL read block
210*MOTORG
2201IF ?BLOCK=&2A PRINT''“T.BUG can'’
t help you with this one!™ : END
230REM == bug records &28 instead o
f &2A as block start marker ==

240?BLOCK=&2A
2501 START=BLOCK
260REM == reset pointer for m/c rou
tine ==
27PPRINT '‘"Now load a blank tape a
nd"""set it up for Record"”
280PRINT' "Press space bar when ready"
290PROCspace
30PPRINT® "Re-recording ";N$;
310PROCleader
320CALL record
330PROCleader-
340*MOTOR@
35@CLS
360PRINT' ' "Now you should be able t
o load first”
370PRINT "block from tape just made
and remainder from original®
380PRINT'"Use *CAT to check if you
don't want to erase T.BUG"
390 END
4(@DEF PROCspace
410*FX 15,1
42¢REPEAT UNTIL GET=32
43@¢PRINT "OK"
44@ENDPROC
45¢DEF PROCleader
460?&FE1 0=&AD

BEEBUG MAG

November 1982

Volume-1

Issue-7

47¢REM switches on motor and tape t

one
480TIME=0
49¢REPEAT UNTIL TIME=500
5@@ENDPROC
519DEFPROCassembler
520FOR PASS=g TO 2 STEP 2
530P%=CODE
54@ [OPT PASS
55@.read block
56@JSR INIT ;set up ACIA
570LDX #0
580 . CONT
59@JSR TAPEBYTE ;get byte from tape
600STA (START,X)
618JSR INCOM :increment pointer
62@BNE CONT
630CLL
640RTS
650 .record
660JSR INIT
670LDX #0
680.MORE
690LDA (START,X)
7O0TAY
7183SR SEND
72BJSR INCOM
730¢BNE MORE
740CLI
750RTS
760.INIT
770SEL
78@LDA #3
790STA &FE@8 reset ACIA
80PLDA #&15 ;for 1200 Baud

810STA &FE@8 ;use &16 for 30¢ Baud

820LDA #&AD
© 830STA &FE1@ ;switches on motor &
tape tone

840RTS

850 . INCOM

860INC START ;increment start poin
ter

'870BNE P%+4 ;and compare with end p
ointer

88PINC START+1

89¢0LDA START

90@CMP FINISH

91¢BNE OUT

920LDA START+1

93pCMP FINISH+1

940 ,0UT

950RTS

960 . TAPEBYTE

970LDA &FE@8 ;input byte from tape
via ACIA

980AND #1 ; test byte-received flag

990BEQ TAPEBYTE

100QLDA &FEQ9 ;data register

1010RTS

1029 .SEND

1030LDA &FE@8 ;output byte via ACIA

1040AND #2 ;test transmit buffer e
mpty flag

1050BEQ SEND

106@STY &FE@9 ;Y contains the data
- 1970RTS

19801

1090NEXT PASS

11 @@ENDPROC)

HINIS HINTS HINTS HINTS

RENUMBER WITH CALCULATED GOTOs

HINTS HINTS HINTS HINIS HINTS

Normally a program with calculated GOTOs cannct be renumbered successfully.
However Heath W. Rees points out that the RENUMBER routine is fairly simple minded
and can be fooled into renumbering calculated GOTOs if they are pesented 1in the

right form. Consider the program:

0 GOTO N%*10+110

110 PROCERROR

120 PROCONE :G0T0190

130 PROCTWO :G0T0190

140 PROCTHREE :G0T0190

150 REM Spaces for expansion

160 REM
170 REM

180 PROCERROR

190 REM Rest of program

As it stands this will not renumber correctly, but if Line 100 is changed to:

100 GOTO 110+N%*10
then the RENUMBER routine doesn't get past the GOTO 110 and the RENUMBER is quite

successful.

=

BEEBUG MAG

November 1982

Volume-1 Issue-7

- , -
10" SOUND AND ENVELOPE DESIGN (PART 1)

?‘o% o8 by David Graham Program by Ian Soutar
o

David Graham describes the use of an Envelope Editor program which allows full
editing of Sound Envelopes, simultaneous screen plots, and instantaneous testing of
all sounds created. The editor is then used to begin an exploration of the SOUND and
ENVELOPE commands on the Beeb.

ENVELOPE EDITOR
The envelope features available on the Beeb are, as you are probably well aware,
pretty complex. A fourteen parameter command (ENVELOPE) is not high on the Llist of
user=friendly notions, and the ENVELOPE command looks as if it was designed for use
by people with a combined honours degree in music and computing. To produce effects
that are not completely random you need ideally to sit down with a calculator and
graph paper.

The program "Envelope Editor" Llisted at the end of the article lets the machine
do all this for you; and permits, with a maximum of ease, the creation and editing
of pitch and amplitude envelopes to produce the ENVELOPE parameters for the effects
that you require. It is based on a program kindly submitted to us by Ian Soutar.

The program displays two alternative screens - one plots the pitch envelope, and
allows editing of the pitch parameters of the ENVELOPE command. The other plots the
amplitude envelope and allows editing of the ENVELOPE command's amplitude
parameters. During the running of the program there are six options available:

C (Change) Allows parameters to be changed
N (Next) Moves on to next parameter
E (End) Switches between Pitch and
Amplitude displays
P (Pitch) Allows editing of Pitch
D (buration) Allows editing of Duration
L (Listen) Plays the sound
Each time a parameter is altered, a new plot is .
made. There 1is full error checking on all | S e B
ENVELOPE parameters, and the sound may be heard : AR ‘@b s AR ALA AULD
at any time by pressing "L". It is also possible Te, 2200 2 lls B0
to alter Pitch and Duration, although these \ L eligl dol i o

parameters are actually found in the SOUND rather
than the ENVELOPE command.

Amplitude Envelope Screen

16k VERSION .
To get the program into a 16k machine, the best thing to do is to prepare two

versions = one which omits the amplitude plot routine and another which omits the
pitch plot routine = both versions retain full editing facilities. For most
applications you will in any case probably only need to edit carefully one of the
two envelopes. The pitch display version is produced by changing line 470 to:

470 DEF PROCA :=ENDPROC
and deleting lines 480 to 650. The amplitude display version is produced by changing
Line 150 to:

150 DEF PROCP :ENDPROC
and by deleting Llines 160 to 280.

32k VERSION

If you have a 32k machine, then there are a number of useful extensions to the
program that you might like to add - for example a printout of envelope parameters
for wuse when editing 1is complete (these are stored in the array E%); secondly it
would be useful to be able to store in an array a number of sets of envelope and

BEEBUG MAG November 1982 Volume-1 Issue-7

6

i S S T T R]
sound parameters that could be transferred into the editor from a menu. It would
also be useful to be able to save such an array on a data tape. Even without these
sophistications however, the program is really extremely useful, and an almost
indispensible aid to understanding and making full use of the SOUND and ENVELOPE
commands . '

CREATING ENVELOPES

The fourteen parameters of the ENVELOPE command are concerned with definition of
two distinct envelopes - the pitch envelope = and the amplitude envelope (page 244
of the New User Guide provides a useful explanation of what an envelope is). As the
names imply, the pitch envelope defines how the pitch of a note will vary with time,
and the amplitude envelope how the volume of the note will vary.

The two parameters taken together offer a considerable number of permutations,
but for the purposes of simplicity we can distinguish two kinds of usage. 1) Notes
of constant, or almost constant pitch, and tailored amplitude, intended to simulate
natural percussive or musical sounds. 2) Sound effects which make considerable use
of pitch variations. I will begin by looking at the latter, and will develop a
number of sound effects using the editor. To make much sense of what follows you
will really need to use the editor yourself so as to be able to see, as well as
hear, the effects at each stage in the editing. '

PITCH EDITING :
1n the following examples we are chiefly concerned with the pitch envelope, so
we will Lleave unchanged the amplitude and duration parameters initialised by the
program - and if you are using 16k, then use the pitch version of the program. The
initial amplitude and duration parameters are preset as follows:
AA AD AS AR ALA ALD
127 0 0 -5 126 126 Duration = 20

pon't worry how this works for now = we will cover this later - but note that it
gives a shape which rises sharply to a level of 126, maintains this for 1 second,
then falls fairly sharply down to zero amplitude. The duration of the whole envelope
is given by the value of D printed with the graph (ie 1.25 secs) = though this will
change if you alter T (on the pitch screen) from the value 1.

Now go to the pitch envelope, and insert the following:
T PI1 PI2 PI3 PN1 PN2 PN3
1 (U 0 0 40 40 40 Pitch = 50

You will see that the pitch envelope is a straight line, and if you press "L"
you will hear a single non-changing note that remains of constant amplitude for 1
second, and then dies rapidly away. The frequency is determined by the value of
pitch. This is part of the SOUND (third parameter) rather than the ENVELOPE command,
and is altered on the editor by pressing "P". The range allowed is 0 to 255 (though
the program performs no error trapping on this parameter). Try entering different
values to see the effect. Note that changing P or D (see later) moves you on to the
next graph due to a program quirk. Just press "E" to get back to the original
screen.

VARYING THE PITCH

As things stand, the note is of constant pitch. To make it vary we need to alter
one or more of the pitch change parameters PI1, PI2 or PI3. Each controls the rate
of change of pitch in one of the three sectors of the pitch envelope. Try changing
PI1 from O (no change) to 3. The pitch envelope plot shows an angled line taking the
pitch up from 50 to 170, where it straightens out. If you press "L" you will hear it
do this. In fact it increases at the rate of 3 units of pitch for each of 40 wunits
of duration (since PN1 defines the duration of the first sector) = it thus increases
by a total of 120 units taking it from 50 to 170.

BEEBUG MAG November 1982 Volume-1 Issue-7

7

The other two sectors can be altered accordingly. If you change PI2 to 1, you
will see that in the second sector the note now continues to increase in pitch, but
at only one third of the rate of the first sector. If you change PI3 to =4 the pitch
will drop down by 4 x 40 units returning it to the starting value of 50. If you want
to hear a number of full cycles of this sound, just 1increase Duration. Taking it
from 20 to 60 should give 3 full cycles etc.

If you require only a two sector pitch envelope, then you can amalgamate two
adjacent sectors. This is done by giving them the same PI factor. Thus if you change
PI1 and PI2 both to the value 2, you will get an asymmetrical two sector inverted
"V" shape envelope. If you want to make it symmetrical, just make PN1 + PN2 = PN3,
and change PI3 to -2. A Llittle experiment will show why. The values PI1 = 2,
PI2 = 2, PI3 = -2, PN1 = 30, PN2 = 30, PN3 = 60 thus produce a symmetrical inverted
"Y' of duration 1.2 secs. If you put this with a Long duration amplitude envelope it
gives a siren effect, You can change the starting pitch by altering Pitch - but note
that 1if the envelope takes the pitch outside the range 0 to 255, then there will be
a wrap—around effect (so that going below zero, causes a jump to 255 etc). The audio
effect can be quite interesting = though note that the screen plot does not take the
wrap—around effect into account.

RAPID PITCH CYCLES
A different kind of sound effect can be achieved by executing a whole series of
much shorter pitch envelopes within a single amplitude envelope. To achieve this,
return Duration to 20, and enter the following values into the pitch envelope
T PI1 PI2 PI3 PN1 PN2 PN3
1 20 =15 =15 6 3 3 Pitch =50

This is quite an interesting effect. Note that the duration of each pitch envelope
is 0.12 secs (the 12 on the RHS of the graph), so there are about 10 full cycles in
every amplitude envelope. The pitch envelope is still, as you see, an interted V;
though not a completely symmetrical one. Changing the pitch to 220 to give a
wrap—-around makes a gquite different sound. Making the envelope more oblique further
changes the effect. Try the following:

T PI1 PI2 PI3 PN1 PN2 PN3

1 =12 =12 ~12 6 4 2 Pitch = 220

There are many different effects that can be produced in this way - either by
changing the overall shape of the envelope, or by using the wrap-around effect, and
this can be Lleft for experiment, though here are 3 more - the first of which
produces a tremelo or warble. Each uses a pitch setting of 220.

T PI1 PI2 P13 PN1 PN2 PN3

1 1 -1 =1 6 3 3
1 127 =1 =1 6 3 3
1 =12 =1 -1 6 3 3

NEXT MONTH :
Next month we will take a closer look at the amplitude envelope and its uses,
and introduce further variations with the aid of the SOUND command.

1¢REM ENVELOPE EDITOR 8@CLS: PROCA: PROCC(8,13)
2¢DIM E%(13),P$(13),1%(13,1) 9¢CLS: PROCP: PROCC(1,7) :GOTO80
30p3=50:d%=20 109END
4pFORI%=1TO13:READPS (1%) :READL (1%, 11@DEFPROCPL
@) :READ1% (I%,1) sNEXT 12¢ENVELOPE 1,E%(1) ,E%(2) ,E3(3) ,E%(4

5@DATA T,@,255,P11,-128,127,P12,-12) +E%(5) ,E%(6) ,E% (7) ,E%(8) ,E%(9) ,E3 (10)
8,127,P13,-128,127,PN1,0,255,PN2,8,255 E%(11) ,E8(12) ,E&(13)

/PN3,0,255,AA,-127,127,AD,-127,127,AS, 13@SOUND1,1,p%,4%
-127,08,AR,-127,0,ALA,0,126,ALD,0,126 140ENDPROC
60MODE4: FORI%=1TO013sREADES (1%) :NEXT 150DEFPROCP:h=1152/(E% (5)+E% (6)+E% (7
T@DATA 1,20,-15,~15,6,3,3,127,8,0,~))
5,126,126 160VDU24,0;420;1279;1023; :CLG . i

BEEBUG MAG November 1982 Volume-1 Hssue-7

170v=p%:V=p%:FOR 1%=2T04
180V=V+ES (I%) *ER (I1%+3) : IF WDv v=V
190NEXT : V=v :v=480/v
2(@MOVE1279,512: DRAW127,512:DRAW127,
1023
210MOVE127, (5124p%*v)
220P%=p%:Q%=0
230FORI%=2TO 4:P%=P%+E%(I1%)*E%(1%+3)
2Q%=0%+E% (I%+3) :DRAW(127+0%%h) , (512+P%
*y) sNEXT '
24@VDU5:MOVE® , 528 : PRINT" g* :MOVE® , 528
+p%*v : PRINT; p% :MOVE®, 51 2+V¥*v: PRINT;V
25@Q%=@ : FORI$=5T07 : P%=0: IFI1%=5 THEN
P%$=32 ELSE IF I%=7 P%=-32
2600%=0%+E% (I1%) :MOVE63+Q%*h+P%,480:P
RINT;Q%*E% (1) :NEXT
27@VDU4:VDU26
280ENDPROC
29@DEFPROCC (5%, F%) :J%=0: FORI$=S3TO F
%:J%=J%+1: PRINTTAB(J%*5,20) ; P$S (1%) ; TAB
(J%*5,22) ;E%(I1%) :NEXT
3P@PRINTTAB(@,26) "C)hange N)ext E)nd
P)itch D)uration" :J%=0
31@PRINT"L) isten"
320J%=J%+1 : PRINTTAB(J%*5,23)" ";
330X$=GETS : IFX$="N"THEN430
34@IFX$="E" ENDPRCC
35@IFX$="L"PROCPL:GOTO330
360IFX$="D" PRINTTAB(@,29)d%:INPUTd%
: ENDPROC
370IFX$="P" PRINTTAB(d,29)p%: INPUTP%
:ENDPROC
28PIFXS<O"CMVDU7:GOTO33¢0
390X%=S%+J%~1:PRINTTAB(%,29) "Range o
£ ";PS(X%) ;" is ";1%(X%,0);" to ";1%(X
%,1) :INPUT"Change to "E%(X%)
APPIFES (X%) <1%(X%,0) OR E%(X%)>1%(X%
» 1) VDU7:GOTO39¢
41¢1FS%=1 PROCP ELSE PROCA
420PRINTTAB (J%*5,22) " Y, TAB(J%*5,
22) ;E%(X%) :VDU28,8,31,39,29:CLS:VDU26

43QIFJ%=F%-5%+1 J%=0

440G0T0320

4501FS%=1 PROCP ELSE PROCA
460GOT0330
47¢DEFPROCA:VDU24,08;420;1279;1023; :C

48¢MOVE1279,512: DRAW127, 512: DRAW127,
1023:MOVE127, 512+4%E2 (12) :DRAW 1279,5]
2+44*E% (12) :MOVE127, 51 244*E% (13) : DRAW1 2
79,512+E% (13) *4:MOVE127,512

A9QTFES (8) <>PA=ABS (E% (12) /E%(8)) *ES(
1)ELSE A=0

S@@IFES (9) <>@D=ABS ((E3(13)-E2(12))/E
$(9)) *E% (1) ELSE D=0

5] @s=d%*5-A-D

5201IFES (10) <>@S=ABS (E% (13) /E2 (10)) *E
%(1)ELSE S=s

53gIFS>s S=s

5401IFS<PS=0

SSGIFES (11) <>PR=E% (1) * (E% (13)-ABS (S*
E$(18)))/BBS(E%(11))ELSE R=0

560IFR<OR=0

576v=1120/ (A+D+S+R) : DRAWI 274v*A, 512+
4*EZ (12) :DRAW127+v* (A+D) , 51 2+4%E% (13)

58@H=ES (10) *S/E% (1) tH=512+4* (E$(13)+
H) s DRAW] 27+ (A+D+5) *v , Hs DRAW] 27+ (A+D+S+
R)*v,512

59GVDUS :MOVE®, 512: PRINT" g°

600MOVED , 496+4*ES (12) : PRINT;ES (12) :M
OVE®, 496+4*ES (13) : PRINT; E%(13)

610MOVE1152, 546+4%E% (12) : PRINTPS (12)
:MOVE1152, 546+4*E% (13) : PRINTPS (13)

620PROCG (A, "A" @) s PROCY (D, "B" ,255) : P
ROCG(S,"C",511) sPROCY (R, "D" , 786) :VDU4:
ENDPROC

630DEFPROCY (X,9%,y) : IFGS="A"H=0:0=0

GAFTFR<> PH=H+x*v 1 0=04x/100:MOVE1 1 1+H
,490: PRINTGS :MOVEy , 450 s PRINTGS" =" ; INT (
0*108) /106

650ENDPROC

HINTS HINIS HINTS HINTS HINTS HINTS

SELF VALIDATING 'GET® ROUTINE

HINTS HINTS HINIS

M. Girling supplied the following useful single line GET routine:
10 ON INSTR(VALID",GET$) GosusB 100,200,300,400,500 ELSE 10
A typical use would be when you are asking a question that requires a single key
response, for 1instance a yes/no response. If you wanted to go to Line 100 if the
response was Y (or y) and 200 if an N (or n) you would use:

10 PRINT"Another game (Y/N)?";

20 ON INSTR("YNyn",GET$) GOTO 100,200,100,200 ELSE 20

You should substitute your own valid characters in the "VALID"

string, and adjust

the GOSUBs or GOTOs accordingly. Note that the use of ELSE corrupts the BASIC stack
and therefore cannot be used inside procedures or functions.
[Ed: See the October issue where we mentioned the new release of BASIC where this

bug has been cured.]

=

BEEBUG MAG

November 1982

Volume-1 Issue-7

9

NEW CHARACTER SET FOR MODES 2 & 5 a6/
by Alan Baker

This program generates a completely new character set of 26 upper
in modes 2 or 5. The styling is different, but more importantly they are

for use

case Lletters

designed to give 26, rather than 20 characters per line.

It is a straightforward routine where the 26

letters of the alphabet are

redefined on a 6 * 5 pixel matrix using VDU 23 commands then printed anywhere on the

screen using the graphics cursor, backspacing two pixels before

letter. '
This

printing the next

technique could be extended to redefine further characters, though this is

more straightforward on operating systems 1.0 and later.

10REM 26 characters per line in modes 2 or 5
15REM by ALAN BAKER August 1982

20CLS

30PROCinitialise

4PINPUTTAB (4,4) "X~COORDINATE (0-1279) "xcoord
5@INPUTTAB (4,6) "Y-COORDINATE (£-1023) "ycoord
60PRINT TAB(4,8)"ENTER WORDS TO BE PRINTED"
7@INPUT TAB(4,10) ,a$

80MCDE 5

9@PROCalpha (xcoord,ycoord,as)
100END :

110DEF PROCinitialise
120vDU23,224,570,588,&88,&4F8,&88,&88,
136vDU23,225,&F0,&50,&78,&48,&48,&F8,
148VDU23,226,&F8,88€,580,880,&88,&F8,
15@VDU23,227,&F8,&48,&48 ,&48,&48,&F8,
168VDU23,228,&F8,&40,870,540,540,&F8,
178VDU23,229,&F8 ,&40,&70,840 ,&40,&E0,
18¢VDU23,230,&F0,&80,&80,&B8,588,&F8,
199vDU23,231,488,&88,&F8,588,&88,&88,
209VDU23,232,8790,820,&20,820,&20,870,
219VDU23,233,&78,&10,&10,&10,&90,&F0,
220VDU23,234,&B0,&A0, &A0,&F8,&88,&88,
23¢VDU23,235,&E0,&40,&40,548 ,&48,&F8
2406VDU23,236,&F8,&A8,&A8,&A8,8&A8,&A8
25¢VDU23,237,&88,&C8,&A8,&98,&88,&88

EEEEEEE R

0o oo 00 o8 0s o8

se os 80 sa

ZREOROUHMIQOEEBOO WO

[
]
2
]
2
]
[}
]
g
7]
]
]
@
]

7
H
H
o
H
:
B
:
:
.
7
7
7
i
7
7

v
4
7

260VDU23,238,&F8,&88,&88,&88,&88,&F8
27DVD023,239,&F8,&48,&48,&78,&4@,&46
28@VDU23,240,&F8,&88,&88,&A8,690,&E8
290VDU23,241,8F8,&48,548,870,548,&48
3060VDU23,242,&F8,&80,&F8,&08,&88,&F8
319VDU23,243,5F8,8A8,&A8 ,&20,&20,870
32¢VDU23;244,588,&88,588,&88,588,&F8
33¢gVDU23,245,&88,&88,&88,&50,&50 ,&20
34@VDU23,246,&88,&88,&A8,&A8,&A8,&5ﬁ,
35¢gVDU23,247,&88,&50,&209,&50,588,&88
360VDU23,248,588,&88,&70,&20,&20,&20
370VDU23,249,&F8,&10,&20,&40,&80,&F8
38PENDPROC

39¢DEF PROCalpha (xcoord,ycoord,as)
400VDU 5

410M%=1

420FOR N%=xcoord TO xcoord+ (LEN(a$) *48-48)
STEP 48

43pm$=MIDS (a$,M%, 1)

44¢0MOVE N%,ycoord

450IF m$<>" " THEN PRINT CHRS (159+ASC(mS$))
460M=M3+1

470NEXT

489VDU 4

49QENDPROC

Py

e o S mo

~ =

13
I3
v
I
12
7
i
4

st

~o e wo

i
14
14

o

=

Jumping out of FOR....NEXT Loops

HINIS HINIS HINTS HINIS HINIS HINIS HINTS HINTS HINIS

The following tip was supplied by Richard Russell:

As you say in issue 4 p11, jumping out
practice. However, 1if you are

technique of

if it dis noted that

of FOR...NEXT
trying to
computer it can be difficult to re-write it using REPEAT Lloops, and the

loops is bad programming
convert a program written for another
alternative

setting the lLoop variable to its final value won't work if its "value
on exit" is used elsewhere in the program. A solution to this problem can be

found

it IS legal to jump out of a nested FOR...NEXT loop into an

outer one. The “illegal" program on the Lleft can be converted to the "legal" program

on the right:

95 FOR dummy=1 T0O 1
100 FOR I=1 TO 100 100 FOR 1=1 710 100
110 IF ACI)=0 THEN 130 110 IF ACI)=0 THEN 125
120 NEXT I 120 NEXT I
130 ...rest of program 125 NEXT dummy
130 .s.rest of program
T
BEEBUG MAG November 1982 Volume-1 Essue-7

10

JOYSTICK REVIEW

by Rob Pickering

In this article Rob Pickering reviews two types of joysticks for the BBC
machine. One ‘'quality' joystick, and one mass production set.

The former - called the BEEBSTICK is produced by Clare's. The latter appears to
be a complete Look-alike for the ‘official® Acorn joysticks” It carries the word
"Acorn! moulded on the plug, and the box is coded ANHO1 (the code number for Acorn's
joysticks). Microage maintain that it is produced by the same manufacturer as that
of the ‘'official® units, and they are selling it at the same price. Both are
designed to work on the BBC micro with an analogue interface. This would primarily
be a model B, though we will be giving full instructions on how to fit the Analogue
input to a Model A in a forthcoming issue.

Although the BEEBSTICK has been made software compatible with the ANHO1
joysticks, it will probably not be in direct competition with them. This is because
the BEEBSTICK has been designed primarily as a high quality precision unit, the
consequence is that it costs more. The ANHO1 joysticks are quite obviously aimed at
the budget end of the market - most probably for games, where a high degree of
accuracy is hardly a major priority. Thus, the ANHO1 joysticks are much cheaper.
ANHO1 JOYSTICK
Supplier: Microage, 135 Hale Lane, Edgware Middx HA8 9@P. Tel: 01-959 7119
Price: £13 Date of supply: ex stock
Place of origin: Hong Kong

They are supplied as a PAIR. The case is moulded in a strong plastic; but would be
better if it were half the size. As it s, the handle which contains precisely
nothing, is much too big for even an average sized hand to hold comfortably. In
addition to this, the finger grips cause interesting debate; the point is that no
one seems to know which way round to hold the joysticks... holding them behind one's
back gives the most comfortable result, though I can't seriously believe this to be
'the officially approved grip'! The nice Llarge fire button is well designed to
withstand violent pressing, the force being taken by a plastic barrier rather than
the button itself. There is no facility to return the joystick to a central position
when released. It has a nice light action, but perhaps just a little too Llight at
times.

BEEBSTICK

Supplier: Clares, Providence House, 222 Townfields Road, Winsford, Cheshire
Price: £27.95 to BEEBUG members, non-members £29.95 Date of supply: ex stock
Place of origin: Britain ‘

This 1is supplied as a SINGLE UNIT only. The case for this unit is an off-the-shelf
box, not designed with finger grips or anything special. But, it js designed with
thought! The whole box is easy for an adult to hold in one hand and operate with the
other hand, while a child simply rests the box down and finds it very easy to use. I
don't Like the fire button. The actual button pressed is very small in diameter and
although there is no trouble in finding it by touch, my complaint 4is that it's
stighﬁty painful to use over long periods. The fire button is quite well positioned
though.

When released the joystick lever will return to 1its central position. The basic
component is fitted with springs working in all directions, so that there is always
a slight resistance on the movement away from the centre, this causes the return to
the centre when released. This can be helpful during use, though I'm not sure if it
is an overall advantage, since there may be times when you wish to retain a current

position while you release the joystick.
GENERAL
Both types of joystick are supplied fitted with approximately one metre of

€ [Acorn have confirmed that the products are indeed identical - Ed]
REFRITG MAGR Naovembor 1089

Waltnmme 1 Heomoa

11

: :]
cable. Whereas this may cut down cost, it does make game-playing rather intimate

when using a pair of them. The cable on the BEEBSTICK is 15-way ribbon cable and
although very easy to replace with a longer piece, it is rather expensive cable to
use... a strange choice in my opinion. The cable on the ANHO1 joysticks however is
nice and standard - though the plug on the end has a sealed moulding. Replacing the
cable on the ANHO1 joystick will mean replacing the 15-way 'D'-type connector too,
and they're not cheap.

Getting inside the case is simple on both units, both are secured by four corner
screws alone. Looking dnside will allow you to see just what you actually get for
your money. The contents of each is a switch for the fire button and a unit
comprising two potentiometers operated by one free-movement lever. Both are fully
proportional; that is, a small movement in any direction will give a change in
reading by a corresponding amount. This is different to some other joysticks used in
video games which are fitted with pressure switches; such a system can only detect a
full movement or no movement in any one of a few directions.

PERSONAL PREFERENCE

My own preference is for the BEEBSTICK, though I should point out that I say
this with disregard for the cost. The difference in cost is quite enormous, though
worth it if you can afford that difference. One obvious target for the BEEBSTICK is
EDUCATION or just simply the business world. I don't intend to test each unit to the
point of destruction, but from the quality of both design and components used I
would strongly suspect that a BEEBSTICK would outlast one of the ANHO1 joysticks,
but then it ought to at that price. Notwithstanding, the ANHO1 is good value at £13
a pair.
HELP FOR THE DISABLED

Clares have also developed a heavy duty version of the BEEBSTICK fitted with a
socket for an additional switch, e.g. a blow-operated switch or foot switch, both
for use by the disabled. This was developed at the request of special schools in his
area. To those interested, the heavy duty joystick costs £32.95.

MICROWARE (LONDON) LTD PRESENT THE vZL" r
RANGE OF DISK DRIVE SUBSYSTEMS
FOR - THE BBC MICRO.

BARE DRIVES FROM ONLY £ 125.00
IN PLASTIC ENCLOSURES £ i35.00
DUAL UNITS WITH OWN P.S.U. £ 295,00

INCLUDES 12 MONTHS WARRANTY ON CASED SUBSYSTEMS
EP3SON PRINTERS

MK 80T/3ccccocccccococcncooosk 276,00
WK BOFT/3coccccccacsscoscoscocd 325,00
MR 100/ Bccooccccoscoccosnocoed 425,00
PRINTER CABLE...ccocooccccoce® 15,00

Full range of printers carried in stock. Come and see
us for a free demonstration.

Microware
ILMOIDTI

PRICES DO NOT INCLUDE POSTAGE AND PACKING OR VAT,

MICROWARE (LONDON) LTD. 637 HOLLOWAY RD. LONDON N19.

PHONE 01 272 6398 FOR FURTHER DETAILS.

BEEBUG MAG November 1982 Volume-1 Issue-7

12

HARMONOGRAPH e

by David C. Nichols

The Harmonograph is a simple mechanical device which can draw a wide variety
of complex and intricate patterns. It consists of two rigid pendula that are free to
swing in any direction, with the pivot point some way down from the top; a table is
attatched to the top of one pendulum and a lever with a pen is attatched to the top
of the other. A drawing is made by fixing a piece of paper to the table, resting the
pen on the paper, and setting the two pendula swinging. Their motion causes the pen
to move and the table to 'wobble'. The combination of these two movements produces
the patterns. By varying the heights of the pendulum bobs, and the amount and
direction of the pendulum swings, different types of pattern can be produced.

The BASIC program shown below, "Harmony", simulates the operation of a perfect
Harmonograph (friction is ignored); drawing the patterns in mode 4 on the TV
screen.

To increase the execution speed of the main program loop ¢ Lines 290 to 340),
the 'SIN' calculation is done by a Look-up table rather than by calling the built in
SIN function. The generation of this is what causes the short delay when the program
is first run (lines 90 to 120). The limited size of the table is the cause of the
raggedness of some of the curves drawn.

Once the program is running the drawing of the pattern can be stopped at any
time by pressing the ESCAPE key, pressing the ESCAPE key again will cause the
program to start drawing a new pattern. The parameters for the pattern are chosen at
random (Llines 170 to 210), as a consequence you may have to start several patterns
off before you get an 'interesting' one.

Harmeonograph Displays

BEEBUG MAG November 1982 Volume-1 Issue-7

13

The program simulates the Harmonograph by considering the motion of .each
pendulum to be composed of two sinusoidal components at right angles. Each component
of each penduium has an amplitude (al,a2,a3,a4 in lines 190 and 200) and an angle
of oscillation relative to some reference (r1,r2,r3,r4 in lines 170 and 180). In
addition each pendulum has a frequency of oscillation ¢ f1,f2 in Lline 210). The
simulation consists of calculating the displacements for each motion component;
adding them all together; and drawing a line to the new position (line 320). The
passage of time is represented by the variable 1% in the FOR-NEXT loop of Llines 290
to 340.

10 REM A Harmonograph Simulator ' 220 x1=sin(rl)*al:x2=sin(r2)*a2

20 REM (C) David C. Nichols 1982 230 x3=sin(r3)*a3:x4=sin(r4)*ad

4@ REM Version 3.1/1 Aug 1982 240 yl1=sin((Q%+r1)MOD C%)*al

5¢ REM Runs on BBC Model A or B 250 y2=sin((Q%+r2)MOD C%)*a2

60 CLS 260 y3=sin((Q%+r3)MOD C%)*a3

7¢ PRINT''‘'"Please wait" 270 y4=sin((Q%+r4)MOD C%)*a4

80 C%=255:0%=C%/4:X%=640:Y%=512:A=400 280 My=4

9@ DIM sin(C%) 299 FOR I%=0 TO 200000

100 FOR I%=0 TO C% 300 t1%=f£1*I2ANDCS%:t2%=b+£2*I3ANDCY
119 sin(I%)=SIN(I%*2*PI/C%) 310 t3%=0%+t1%ANDCS: t 4%=0%+t 2%ANDCS
120 NEXT I% 320 PLOTM%,x1*sin(t1%)+x2*sin(t3%)
13% ON ERROR GOTO 360 +x3*sin (t2%)+x4*sin (t4%)+X3%,

140 MODE 4 yl*sin(t1%)+y2*sin(t3%)+y3*

15@ VDU 23;8202;0;0;0; sin(t2%)+y4*sin(t4%)+Y%

168 VDU 19,0,0;0;19,1,6;0; 330 M3=5

178 r1=RND(C%) :r2=(r14+Q%)MOD C% 340 NEXT

180 r3=RND(C%) :rd=(r3+0%)MOD C% 350 GOTO 350

198 al=RND(A) :a2=RND(A) 360 ON ERROR GOTO 130
200 a3=RND(A) :a4=RND(A) 3760 GOTO 370 .
210 £1=RND(1) *7:£2=RND(1) *9 :b%=RND(C%) ! =3

| Official BBC Programmers Kit
foraliBBC Mlcq;gpcgfmputer users!
‘ consisting of:

%% 100 sheet flowchart pad with %100 sheet screen layout pad
de-luxe BBC grip binder with de-luxe BBC grip binder
%100 sheet symbol design pad with de-luxe BBC grip binder

PLUS super quality BBC ringbinder to store
your programes and notes
Al items finished in Official BBC Livery

CN“Y{!!T':E;im:VRT
plus £1.00 p & p each kit
also available
BBC Computer Print-out Binders intwo sizes
132 column size 80 column size
Price £6.99 (inc VAT) for TWO Price £4.99 (inc VAT)for TWO
binders plus 90plp & p. binders plus 90p p & p.
 BBC Programmers Grip Binder
Takes two pads side by side, or, computer print-out paper.
Price £2.99 (inc VAT) plus50p p & p.
‘Available from your local BBC Microcomputer dealer or direct from:

Intastor Micro Aids, FREEPOST, Stroud, Glos., GL6 1BR

BEERBUG MAG November 1982 Volume-1 HIssue-7

14

BBC BASICS

. 'b‘yDa‘vid“G aham .

This month's column for the less experienced user looks at address maps, screen
maps, and peeking and poking.

Memory

Microcomputer systems make use of two different kinds of memory: alterable
memory (or RAM — meaning Random Access Memory), which can be both read from and
written to; and non-alterable memory (either ROM meaning Read Only Memory — or EPROM
meaning Electrically Programmable Read Only Memory). ROMs are totally unalterable,
whereas EPROMs can be reprogrammed using ultraviolet 1light to erase them, and
special set-ups to reprogram them.

In a fully fledged BBC machine there is 32k of RAM and 32k of ROM (or EPROM). 1k
is not 106@ (as you would expect of the metric system) but 1024. Put in another way,
there are 32x1024 or 32768 RAM locations into which data may be placed and
subsequently retrieved; and a similar number (less the 1k set aside for other
purposes) that can only be read, and not altered. This latter 31k is taken up with a
15k operating system and a 16k Basic interpreter.

Address

Each one of these 64 thousand odd locations is given an individual number by
means of which the microprocessor, or central processing unit (CPU for short)
identifies it. The numbers range quite simply from zero to 65535. Each number is the
unique ADDRESS of one memory location.

During the day to day running of programs in Basic, you do not need to be aware
of the existence of addresses or individual memory locations; the machine's
Basic Interpreter handles it all for you. For example, if you want to store a
piece of data, you do not have to keep a check on what memory locations are
available for data storage - you just put x=75 say, and rely on the operating system
to place your 75 somewhere sensible, and equally importantly, to be able to retrieve
it intact when required.

There are occasions when it is useful to understand a little of what happens at
the operating system level. This is essential if you are programming not in Basic
but in 'Assembler’ or 'Machine code', when you need to perform all data management
yourself; so to store the value 75, you need to find a free memory location,
instruct the machine to store 75 at that location, and you yourself need to keep
tabs on where you stored it, though the Beeb's resident assembler much simplifies
this task.

Memory Map]Gk{operatinq
—————— . System ROM

Fig 1 gives a brief MEMORY MAP of the model B. As Paged ROM
you can see, the bottom 32k (locations @ to 32767) are {1 h.zic
taken up with RAM, while the next 16k (locations 32768 j=--------= 32768
to 49151) are used for the Basic ROM (or other orory
so-called 'paged' ROMs), and of the last 16k (making ,
64k in all), the first 15k are used for the operating J """"" T Movable (=THINEN')
system ROM (or EPROM), and the last 1k for input and 32kq User's Basic
output devices such as the disc interface, the printer T yses (='aGE")
interface, the user port, the video controller chip .
etc. The old and new user guides give more detailed et
memory maps, and you may like to refer to these.

fig1®) ?

BEEBUG MAG November 1982 Volume-1 Issue-7

15

Peeking and Poking

I said earlier that in the normal running of Basic programs you do not need to
know anything about actual memory locations within the machine. There are
nevertheless a set of commands in BBC Basic which enable you to access these
locations directly. In standard Microsoft Basics the two most commonly used commands
are PEEK and POKE. PEEK allows you to 1look at (or read) the contents of any
location, while POKE allows you to alter its contents (provided it's RAM). In BBC
Basic the two words are replaced by expressions using the '?' symbol. The expression
PRINT ?n will print the contents of memory location n (where n is any integer from @
to 65535). Try typing PRINT 232768, the result should be 76. The address 32768 is
the very first location in the operating system ROM. If you want to look at the
contents of a number of locations, then the simple program below will achieve this:

10 REM Examine memory locations

20 PRINT TAB(5)"ADDRESS";

3¢9 INPUT address

4@ PRINT TAB(20); ?address

50 GOTO 20
It prompts for an address, then prints the data that it finds there. If you take a
look around, you will see that the contents of all the locations are integers (whole
numbers) between § and 255. The memory locations within the Beeb can each hold a
maximum figure of 255, or put it another way, the data may take a total of 256
different values (ie 1 to 255 plus the value zero).

The capacity of each memory location is thus relatively limited. The technical
term for this size of memory location is a ‘byte'. This is why a 16k RAM chip is
more fully termed a 16k byte RAM, since it has 16k locations, each of one byte of
memory. In another issue I will look more closely at bits and bytes, and try to show
why 255 (and indeed 65535) appears to be a magical number in computing - and also
try to show the relevance of the so-called hexadecimal notation. For now we move on
to a BBC POKE.

POKE

To alter the contents of a location, the following expession may be used
=X

where n is again the address of the memory location concerned, and x is the new
value of data to be placed in it. This is the equivalent of POKE n,x in Microsoft
Basic. Try the following sequence:

160 PRINT 25000

20 25000=200

3¢ PRINT 25000
The first number printed out will be the original contents of location 5¢08, and its
value will depend on what you have been doing with your machine. The second printout
should read 200, which means that you have successfully altered the contents of
location 50@@9 to the value required.

Before you POKE wildly all over the machine's memory, there are a few points to
note. Firstly you cannot put data into ROM or EPROM (though it will not do the
machine any harm if you try). Thus you can only alter the first 32k of locations.
Secondly if you put data into these at random you will eventually crash the machine
(still without causing any harm, though - just do a cold restart by pressing 'break’
several times in rapid succession on a machine with OS #.1, or by pressing ‘control’
and ‘'break' together on 0S 1.0 or later. You could always switch off the machine
instead) . To see more precisely where you are poking, you need a more accurate
memory map of the machine, and again the two user guides provide useful material.
But briefly the first 3584 bytes (ie the first 3584 locations) are used in one way
or another for systems purposes. At 3584 Basic program storage begins, then above
this, program variables are stored (helping to explain why you lose all variables
whenever you enter new program lines). From this you can guess that an address of
say 5000 will be free unless a Basic program of some length has been entered.

BEEBUG MAG November 1982 Volume-1 Issue-7

16

Screen Addressing

There is one use of RAM memory that has not been touched on so far. The visual
display needs memory just to keep things on the screen (since a TV has no memory of
its own unlike a visual display unit used on some computers). This so-called "screen
memory"” is provided by the top part of the RAM - that is to say from 32767
downwards. On the model A, the RAM only goes up to 16383, but due to a simple
hardware trick, it behaves for the purposes of screen memory as if it also stretches
from 32k downwards.

As you may know, the different graphics modes on the Beeb take up different
amounts of RAM - the Teletext mode being by far the most economical using only 1k.
Modes 4 and 5 take a fairly hefty 1¢k. In all screen modes there is a particular
relationship between memory location (ie machine address) and the position on the
screen that a particular memory location controls. This relationship is described by
the so called "screen memory mapping” for the various modes. Unfortunately the
mapping in modes @ to 6 is fairly complex, but in mode 7 it is relatively simple. To
find the address of the top left hand corner of the screen in mode 7 do the
following:

MODE 7: PRINT HIMEM
The result should be 31744. HIMEM is one of the four pseudo-variables (see user
guide or BEEBUG number 2, pl15) that allows the user to discover (and sometimes
alter) the way in which the Basic Interpreter has apportioned the available memory.
HIMEM gives the lowest address used as screen memory. If you now type:
?231744=49

a figure 1 will appear at the top left hand corner of the screen. Location 31744
thus corresponds to the top left hand corner, and the number 49 is the ASCII code
for the figure one. You can get an idea of this coding from page 486 of the user
guide.

If you now execute ?31745=51, a figure 3 will now appear to the right of the
figure one, and so on. There are 40 characters to one line, and each character
position is defined by a single memory location, so that address 31784 corresponds
to the leftmost character of the second line, and so on. Note however, that if you
cause the screen to scroll, the screen mapping is altered somewhat.

There is plenty to experiment with here, though if you are thinking of writing
programs incorporating the Beeb's equivalent of PEEK and POKE described above, it is
worth noting that this will mean that they cannot be used with the second processor
option, when it becomes available. Why this is so was discussed in the article "It's
quicker by Tube" in BEEBUG no 6. It is therefore advisable to use the PRINT TAB()
command for moving graphics rather than to POKE to the screen, though some loss of
speed will usually result. If you are interested in examining the Beeb's memory
locations in greater detail, then the article "Memory Display Utility" also in
BEEBUG no 6 may be found useful.

HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS

ON ERROR CRASH
You may like to try this program:

10 ON ERROR CRASH

20 ERROR
On our 0S 1.1 it makes a horrendous buzzing sound. On our 0S 0.1 all is quiet. In
both operating systems the system crashes and you must perform a ‘'break® or power
off to reset. Note that it will also crash if the word CRASH is replaced by a Lline

number. So BEWARE. Sometimes it just erases the line that it should have gone to;
sometimes it just gives "Bad program”.

Thanks to Adrian Calcraft forf this one. :@

REERUG MAG Naovemher 1029 Waolinmeo 1 Tocema 5

17

_PROCEDURE/FUNCTION LIBRARY

SORT PROCEDURES

This month we provide a most useful addition to the library in the shape of two
SORT procedures.

The sorting of numerical and string data is an important function in data
management programs of all kinds (Imagine an unsorted telephone book!). We present
here two alternative sorts - the 'Bubble' sort and the °'Quicksort®.

The bubble sort is the easiest to follow, and many people believe it is also the
shortest to program. However, the Quicksort is also a very short program provided it
uses the technique of 'recursion'. (More on recursion in a future magazine).

The bubble sort suffers from the dreadful fact that in order to sort double the ,
number of items, it takes quadruple the length of time. Eg if it takes 8 seconds to
sort 5¢ items it will take 32 seconds to sort 180 items. (2 minutes for 208, and a
staggering 2 hours to sort 1600 items!).

The quicksort on the other hand takes only double the time to sort double the
items (as you would expect), and hence keeps sorting times reasonable.

The same relationship will still apply in machine code, however the program will
run about 20 times faster. (Note that in BASIC using the capital letter variables A%
to Z% in the quicksort it runs 15% faster than by using lower case letters).

[We will offer a prize of £50 to the fastest and most useful machine code sort
(whether quicksort or not). All entries should be on cassette, and the envelope
marked "Sort Routine". The closing date is 1@th January 1983. Please enclose a
suitable SAE if you wish for its return.]

You will find more on sorting in many books. My source for the quicksort was:
“"Algorithms + Data Structures = Programs"” by N. Wirth published by Prentice Hall
approx hardback price is £20. It is available from Mine of Information (address in
our Discounts pages).

Using the procedures

The Quicksort procedure is listed from lines 1068 to 1168, and the Bubble sort
from 3000 to 3080. The test program (lines 10 to 34¢ calls both procedures and makes
comparative timings for the two methods. In actual usage, of course, only one of the
two procedures would be used. In either case the data to be sorted must first be
placed in the array called 'file()'. However, you may sort any part of that array by
placing the range of elements to be sorted as parameters for the procedure. For
example — to sort elements 15 to 35 you would use PROCquicksort(15,35) You can test
this in the program supplied by altering the 1 in line 40 to some other value.

The sorts given here sort in ascending order, but it is fairly simple to sort in
descending order by changing the inequalities in lines 104@,1050,3040.

STRING SORTS

The above sorts can easily be modified to sort strings, just make the following
replacements in the proceduress i
anywhere you see file(substitute file$(
for w substitute wS
for X substitute x$
You will, of course have to write a new testing program (ie lines 60-340) . S.W. 2
TIEED

BEEBUG MAG) November 1982 Volume-1 Issue-7

18

v

B AR,

10REM Demonstration of sorts

2¢REM by Sheridan Williams

30REM

4pfrom$=1: REM Sort starting place

5@VDU15: REM Turn off page mode

60INPUT' ' {How many numbers to be so
rted” ,to%

65IF to%<=@ END

7@0DIM file(to%)

9@PRINT

13@dummy=RND (-1)

140FOR item%=1 TO to%

15@0file (item$)=RND(100)

16@0PRINT ;file(items)" ";

170NEXT item$

180REPEAT

19@PRINT® "Bubble or Quick sort (B/Q)
V.
L

20@sort$=CHRS (GET AND 223) :PRINT sor
t$

21QUNTIL sort$="B" OR sort$="Q"

22@PRINT'"Sorting starts now....."

230TIME=0

2401IF sort$="B" PROCbubblesort (from%
,to%)

2601IF sort$="Q" PROCquicksort(from$,
to%)

270time=TIME/100

280PRINT"Sorting completed. It took
“"e:time;" seconds.”

290PRINT"Printout (Y/N)?";

295pr intout=CHRS (GET AND 223)="Y"

SRR RSRDIDRS
300IF NOT printout RUN
395PRINT
310FOR item%=1 TO to%
320PRINT ;file(item%)" ";
33@NEXT item$
340RUN
999REM:
1090DEF PROCquicksort (P%,R%)
1910LOCAL x,w,I1%,J%
10201%=P%:J%=R%:x=file ((P%+R%) DIV 2)
1030REPEAT
10401IF file(I%)<x I%=I%+1:GOTO 1040
10501IF x<file(J%) J%=J%~1:GOTO 1050
10601F I%<=J% w=file(I%):file(I%)=fil
e(J%) :file (J%)=w:I$=I%+1:J%=J%~1
1970UNTIL I%>J%
1080IF P%<J% PROCquicksort(P%,J%)
10991IF I%<R%$ PROCquicksort(I%,R%)
11@0ENDPROC
1999REM
3090DEF PROCbubblesort (P%,R%)
3019LOCAL w,swapped,I%
3012IF R%=P% ENDPROC
301 5REPEAT
3@20@swapped=FALSE
3@30FOR I%=P% TO R%-1
3040IF file(I%)<=file(I%+1) THEN 3060
3050w=file(1%) :file(I%)=Ffile(I%+]1):fi
le (I%+1)=w:swapped=TRUE
3060NEXT
3@70UNTIL NOT swapped
3@80ENDPROC

=

[Timeshare your Colour Monitor with the Family

COLOUR TV

" RGB
Pl
PAL VIDEO

BBC Micro lead included

Partafal LUXOR 14 Colour Monitor
Model No, RGB3711 TV Receiver

Excellent resolution, geometry

WEI conversions limitea
television and electronic engineers

25, sunbury cross centre, staines road west,
sunbury-on-thames, middlesex. tw16 7bb

telephone: sunbury-on-thames 88972

J

BEEBUG MAG

November 1982

Volume-1 Issue-7

19

DEBUGGING PART 3
(Tracking down subscript errors)
by Rob Pickering

This month Rob Pickering reveals some of the principles 1involved in tracking
down subtle but quite fatal errors in Basic programs. The examples that he
investigates centre on "array subscript” error messages, but the techniques used are
readily applied to other kinds of error. He begins by explaining what an array is.

AN ARRAY DEFINED

I shall start by explaining briefly what an array subscript is. An array is a
collection (or list) of variables with the same name, only a subscript distinguishes
between each item in the list. What is a subscript you may well ask? Well it's a
number used to distinguish between elements of arrays - we call each item in the
array an ‘element® of that array. To use examples to explain: Let's assume that we
have the array A() and that it has eleven elements 0 to 10 inclusive. That gives us
the variables:

ACD) ,AC1) ,AC2) ,A(3) ,ALL) ,AC5) ,AC6) ,A(7) ,A(8) ,A(9) ,ACTDD

These variables are collectively referred to as elements of the array A(). The
number in the brackets is the subscript. Before you can use an array, you have to
tell the computer how many elements are in the array, or rather, what the maximum
subscript is. (Above, the number of elements is eleven, but the maximum subscript
is 10). The DIMENSION or DIM statement exists primarily for this purpose, you simply
enter a Line such as: DIM AC10) in order to set up an array with maximum subscript
of 10, before you use 1it. What this does is to allow the computer to set aside
memory for these elements. Then, even if you only actually use the first 5 elements,
memory is reserved for the remainder.

Once the computer has set aside the memory required for the elements up to 10,
you cannot then try to use a subscript Llarger than 10. That is, the Llargest
subscript you can use is the one given in your DIM statement. But if you do try to
use, say, element number 11, the computer will tell you that you can’t in the only
way it knows how, with an error message: "Subscript at line" with an apropriate
Lline number of course. If arrays and anything so far is new to you then I suggest
you try the following program, in which an array called fred() is defined, and the
value of its elements (each zero) printed out. There is a deliberate mistake in the
program though.

10 DIM fred(12)

20 FOR var=1 T0 13

30 PRINT"value of element ";var;" is.... ";fred(var)

40 NEXT var
The array consists of 12 elements, so that when it comes to printing the value of
the 13th element it produces a "Subscript At Line 30" error message. The message
correctly tells us that it was in line 30 that an attempt was made to reference a
non-existent element

SUBSCRIPTS IN 3D NOUGHTS & CROSSES

The (correctly Listed) 3D Noughts and Crosses program in the April issue gave
similar messages to a good few members. This was obviously caused by typing errors
on the part of individual members. But how to find them? The main trouble was
undoubtably the error message "Subscript at line 890", or at least that's how the
trouble showed itself. The real cause of the error lies elsewhere, and this is what
we have to track down.

To begin this process we must first Look at the Line on which the error message
is occurring, Line 890 below:
890 D=Q(N(MCA,CI)) :T=T+W(N+D)+P(E(M(A,C) DIV 4))*B(G+C)
You can see that the problem is not quite so straigthforward as the one given in the
simple example earlier, in fact it is virtually incomprehensible in this state. What

BEEBUG MAG November 1982 Volume-1 Issue-7

20

Wwe must do is break the line down into managable steps. The Line first of all
divides nicely into two parts split at the colon. Let's deal with the first part,
given below:
D =@C NCMGBAC)D))
But this is still rather too much to put into the tiny human mind for debugging to
take place. Let's split it further. The variable D is being assigned a value from
one of the elements of the array Q¢). That's as simple as we can get it. But which
element is being assigned to it? You may at first think that the subscript is too
large for the size of the array Q(), but in this Line there are several arrays, and
the subscript could be wrong in any one of them, and the message would be just the
same. S0, wWe must now start to expand upon our simplification. So far we
have D = Q(subscript). Taking it a step further the subscript is derived from an
element of the array N(). This now makes our expansion as below:
D = @(N(subscript))
and the subscript to the N() array is further derived from the two-dimensional
array M(). The element of array M() 1is thus defined by two subscripts. A
simplification now is:
D = Q(C N(M(subscriptl,subscript2)))

all in all a rather complicated line, hardly suprising that so many people had
trouble finding errors.)

You must first determine whether the error is occurring in this part of the
Line or the next part. You can do this very easily. The section of the Lline
described 1is assigning a value to D, so if an error is occurring here, the value
cannot have been found. Simply print the value as it would be assigned to D. Use:

PRINT Q(N(M(A,C))) followed by return.

If this gives the error message similar to the original= "Array", then obviously
the error is occurring in this part of the line. If a value is printed then you know
that this part of the line is correct and you can go on to find the error in the
other part of the tine.

Let us assume that the error DOES occur when you try to print the value being
assigned to D. You now know where the error is being detected, and should try to
narrow it down further. The first stage in the process is to print the values of
each array until you find the one causing the problem. Either you can work inward
from the highest to the lowest level, or work outward from the lowest to the highest
level. I prefer the latter, since it will probably require the least typing !

The lowest level is the two-dimensional array M(). Try printing the value of
the element being accessed by the variables A and C as follows:
PRINT M(A,C)
This will either give a value or an error message. If it gives a value then the
values of A and C are in range, in which case you should then try printing the value

of the next Llevel:
PRINT NC(MCA,C))

eesssss=and so on until you find which subscript is out of range.

Let wus further assume that the error HAS occurred when trying to find the
value of the N() array as above. This, in fact, turned out to be the most frequent
cause of error. In any case the values of A and C are very unlikely to be wrong
because they are simply the values of the two Lloops around the statement.

Now that we have found where the error is occurring, (i.e. when an attempt is
made to access the element of the N() array with a subscript of M(A,C)), we can go
back to the previous check using: PRINT MCA,C) to give the number of the element
that the machine refused to read. Let us assume that the value printed was 76.
(Again, this was the most common error). Now look at the Line which defines the
dimension of the NC) array, Lline 290 in the program listing. Sure enough, the
NC) array is only dimensioned to have 75 elements. Therefore trying to access the
76th element will not be possible, which is why the error message is produced.

) This. now shows that the error is a wrong value in the array element M(A,C)- but
which? Find out with PRINT A,C followed by return. Let us assume that this gives

BEEBUG MAG November 1982 Volume-1 Issue-7

21

the values A=43 and C=3. Next we must track down the place in the program where this
value is being assigned to the array. This is fairly easy in this case because the
whole M() array is set up in Llines 410 to 450 as follows:

410 FOR A%=0 70 6

420 FOR B%=0 TO 63

430 READ M(B%,A%)

440 NEXT

450 NEXT

ALL the elements of the M() array are read from DATA statements, so the wrong
value must be in the data. The data statements for the M() array are conveniently
arranged to hold sixteen data values on each of the lines 1230 to 1500. Some simple
maths will show why this is convenient. The data is read by two Lloops = one inside
the other (nested). The inner loop cycles from 0-63, which is 64 cycles. The outer
Lloop cycles from 0-6, which is 7 cycles. Therefore, if there are 16 data values per
line, 1t will take four lines of data for every 64 values read. The number of Lines
required=7*(64/16)=28. The point is, that if you know the values of the array
subscripts where a wrong value has been read then you can easily find the place in
the lines of data from which that number has been read. Assuming that we found A=49
and (=3 when the error was found, this corresponds to the 16th line of data:-
Line 1380 in the program.

By working out that the error is somewhere in the data still leaves a Llot of
work checking every line of data. By finding the line of data where the error occurs
narrows down the field considerably. The first program I examined for these articles
produced the error as described so far, and the cause was easy to spot in that case:
the previous line, number 1370 started with the word "DARA" instead of the correct
word 'DATA". No syntax error is produced because this section of the program is not
actually executed, but because the word "DATA" was not there, ALL the data values on
the rest of the Line were completely ignored! So the value being read was the first
value from the following line, number 1390. It was here where the value 76 occurred
in the data.

However to take another case, assume that the erroneous value had occurred at a
point in a line where the following value is 76, but the one which should have been
read was in range. In that case it should be fairly clear that the cause is simply
that one data value has been omitted during typing one of the previous Lines of
data.

Clearly, the opposite holds true as well:~ if the previous to the correct one
had been read, then an extra value (or comma) has been mistakenly entered previous
to that Lline. This shows that although we may not have found the actual Lline of data
that is wrong, we have at least narrowed down the number of Llines to check by a
considerable number.

To Summarise:

(1) When an error occurs in a Line and you don't know exactly what is causing the
error, split the line at a convenient point, and narrow down the field where the
error could Llie, until you find the exact cause.

(2) Although you may find what is generating the error, you may not have actually
found the root cause. In the above, we found that the error was occurring in
line 890, but we had to check lines 410-450, then a series of lines of data
before finding the true cause.

(3) Arranging data logically in some way related to the way in which it is read can
be an enormous advantage when it comes to debugging. (It happens also to be
useful when it is necessary to extend or reduce the amount of data.)

In a lLater issue I shall be looking at the subject of program testing as well as
subsequent debugging. This will be aimed towards those people starting to write
their own software, and will be pointing out some of the ways to achieve a
user—-friendly, or foolproof program.
R

BEEBUG MAG November 1982 Volume-1 ssue-7

22

e
o H N _

e¥0> MUSIC WITH MEMORY (16k32k)
?“‘.0‘ w& by A.Calcraft

This is a simple way of adding an amusing feature to the music program on the
WELCOME cassette, supplied with your machine. The following instructions will add an
array to the program, which can be filled with the "notes" as you key them in. Then
the data 4in the array can be sent to the sound routines, to "replay” the notes as
originally keyed in. The larger the array, the more notes that can be stored. The
variable BUFF is used to allow individual selection of array size depending on your
machine size. Lines 600 and 1500 disable the mode 5 screen display, to free extra
space, thus allowing a Larger array. These lines are essential for 16k machines, but
are only needed for 32k machines if you want to save a long tune. (If you don't use
them Leave the lLines as they are in the original program).

Without these additional Lines try ..line 5 ..BUFF=3000 on 32k.

With them in trycccscscssscsscascascaline 5 .BUFF=6000 on 32k.

With them in tryecccesccscsesassssnaaline 5 ..BUFF=2000 on 16k.
A further simple expansion to the program would be to add procedures to save and
reload the array on tape. This would enable tunes to be kept and reloaded with the
program itself. The New User Guide describes how to do this starting on page 394.
(Though you wWill need our cassette bugs fix = see July BEEBUG). When running the
program, Line 20 will take you to the MENU if ESCAPE is hit at any time. When keying
in the program ensure a cold start is used..ie do not run the old music program just
before amending it, as this may cause corruption problems.

10000 MODE7 :PRINT TAB(5,10) "AS ORI

5 BUFF=2000 GINAL PROG.coooocsl”
5@ AB=g :TYPES$="" :DIM NTES$ (BUFF) 10618 PRINT TAB(5,11)"TO PLAY AND SA
600 P3=@:PROCPAL VE MUSIC..2"
1300 IF TYPE$="REPLAY" N$=NTE$(AB) 10020 PRINT TAB(5,12)"TO REPLAY MUSI
ELSE N$=INKEY$(#) :IF TYPES="SAVE" Cevsosooool®
NTES$ (AB) =N$ 10930 AB=¢ :TYPES=GETS
1509 IF N$>@ AND N$<"" PROCNOTE (N%) 10040 IF TYPE$S="1" TYPES="" :GOTO 600
ELSE PROCNOTE (@) 10050 IF TYPES="2" TYPES="SAVE" :
1750 IF TYPES<>"" AB=AB+1 GOTO 609
1800 UNTIL AB>BUFF-1 10060 IF TYPE$="3" TYPES="REPLAY" :
1820 PROCNOTE (@) GOTO 680
1850 GOTO 10000 18070 GOTO 10030 =
HINIS HINTS HINTS HINTS HINTS HINTS HINTS HINIS HINIS

USER DEFINABLE CHARACTERS (0S 1.0) - BUG IN USER GUIDE

Peter Taylor writes:

"Because I have not yet obtained a monchrome monitor I have to strain to see
80 characters across my TV screen. 0 (slashed zero) tends to look Llike 8, and Y
Looks like V, so I set about redefining these two characters. I found I could do one
or other but not both without rubbish appearing. I queried this with Acorn and soon
afterwards they telephoned to say that they had sorted out the problem (This applies
to 1.0 0S ONLY).

On page 427 of the User Guide the description of the =*FX 20 command is
incomplete. The second argument should be 1 to 6 depending on how much memory 1is set
aside, which in turn depends on the highest character code to be re-defined. Thus to
redefine Y, code &59, PAGE must be set to OSHWM+&500, and the appropriate command is
*FX 20,5. If memory is not short it is safest to command *FX 20,6 and set PAGE to
OSHWM+&600; then any character can be re-defined without worry. On a normal system
OSHWM is usually &0EOO and on a disc system &1900, but use OSBYTE &83 to check.)

BEEBUG MAG November 1982 Volume-1 Issue-7

23

pe e
o° TRANSPARENT LOADER
‘0‘:3‘ FOR USER KEYS, NEW CHARACTER AND BUGS FIX
$° by Gwyneth Pettit

Gwyneth Pettit describes a useful method of loading the cassette bugs fix, user
defined keys, and user defined characters all from one tape, which can be loaded
without disturbing Basic programs already in the machine.

The cassette bug in 0S #.1, reported in the July BEEBUG Newsletter, can be
remedied without using a BASIC program. This method of patching is exceptionally
useful in cases where you have already written a valuable BASIC program and
realised, too late, that you haven't loaded the cassette patch yet!

You will, of course, need a BASIC program for the patch in the first instance
and this is listed below. Type the program in (you can run it to place the patch
before saving the machine code it is going to produce for you). Insert your own
versions of the user-defined function keys, if you don't 1like the 1look of the
accompanying ones. Insert also any soft character definitions you want, either
instead of, or in addition to, the ones given here (which are the four playing card
symbols, for those who find BBC graphics short on ‘games®' facilities).

Now run the program and it will load the function keys, the soft characters and

the machine code patch in the memory area from &0B@@ to just above &@D@@. Type
*SAVE "PATCH" @B@@ D42 0DO@
and it will save perfectly because the patch is in place. When you want to reload
the patch from cassette, either before starting your next programming session or at
any time during it, place your cassette in the recorder and type
*RUN "PATCH"

Because you are loading directly into workspace memory and not affecting the BASIC
area, any program you may have written will be unaffected. You can also use this
method to reload your function keys if another program has reset them, or to preload
your own favourite soft characters for a graphics program.

Note that key 18 (the BREAK key) is set up to replace the pointers in the 0S
workspace — if for any reason key 10 is reprogrammed by your BASIC, it would be
safest to repeat the PATCH run in case you need to BREAK your next program. NB If
you run PATCH before running any BASIC, remember that you effectively have no
program in memory and if you press BREAK at this stage, you will crash the BASIC
interpreter. There is no way round this problem except to switch the machine off and
on again, run PATCH and DON'T PRESS BREAK.

Note also that all the keys to be reprogrammed are first cleared in lines 50 to
19%. This seems tedious but is necessary in case the keys already hold long strings
- you may get the message BAD KEY in that case. Key 4 has been loaded with the best
method of verifying saved programs, as published in September BEEBUG Newsletter
(page 5) .

1PREM PATCH TO FIX CASSETTE BUGS 12@*KEY1LISTOf | MW. 8| M|NL. |M]O|M
20REM LOADING USER AND SOFT KEYS TOO 13@*KEY2LISTO7 | MN. 70| M| O| BL. | M| CW. | ML
3¢0REM by Gwyneth Pettit, based on ISTOG M
40REM R.T.Russell, July BEEBUG 140*KEY3DIMP%~1: P. HIMEM-P% | M
S@*KEY@ 15@*KEY4*LOAD" " 8000 | M
60*REY1 ~ 166 VDU 23,224,&6C,&FE,&FE,&FE,&7C,&38
T0*KEY2 +&10,0:REM heart
80*KEY3 170 VDU 23,225,&38,&38,&10,&D6,&FE,&D6
9@*KEY4 +&10,&10:REM club
190*KEY10 180 VDU 23,226,&10,&38,&7C,&FE,&FE,&FE
119*KEY@ | ORUN | M ,&54,&10:REM spade

g

BEEBUG MAG November 1982 : Volume-1 Issue-7

24

199 VDU 23,227,&10,&38,&7C
,&1%,0:REM diamond

20@FORpass=@TO1 : P¥=&D@0 : PROCpatch : NEXT

219 CALL &@DO@

220*KEY102&218=513:78219=6D:2&20A=5&19:

?820B=&D]MO, |M

239 PRINT "Save by *SAVE ""PATCH"" 0BO

@ @D42 gDPP"
24@END
25@DEFPROCpatch
260 [OPTpass*2
279LDA #&13:STA &218

,&FE,&?C,&38

280LDA #&D:STA &219:STA &20B

290LDA #&19:STA &20A

300RTS

310.FIX1 PHA:JSR &F521:PLA:RTS

320.FIX2 CMP #&91:BNE GO:CPX #@:BNE GO

330TSX:LDA &102,X:CMP #&F7:BEQ TRAP

340LDX #0:.TX LDA #&91:STA &FE@9:RTS

350.GO JMP (&DB60)
360.TRAP PLA:PLA

376 JSR &F9D8:JSR &FB7B
380JSR TX:JMP &F7FB

390] ENDPROC

The program below is Brian Carroll's combined keyset and bug§ gix program. You
may wish to incorporate some of his key functions in Gwyneth's invisible loader.

109REM** FILENAME: KEYSET (Improved Ve
rsion) #** B. Carroll. (C)1982 ##*

11¢MODE7 : PROCassemble (&DDg)

1202&218=£ix1:?2&219=£ix]1 DIV 256:2&20A]
=£ix2:2&20B=fix2 DIV 256

13gvDU28,12,5,33,0 .

14PPRINTCHRS134" ";:REPEAT PRINT"#";:U
NTIL COUNT=12:PRINTCHRS]56

15@FORZ%=pTO1: PRINTCHRS 141CHRS 1 34" *"CH|
R$129"KEYSET"CHR$134"#" :NEXT

T6PPRINTCHR$134" 3 :REPEAT PRINT"*";:U

© NTIL COUNT=12:PRINTCHR$156

170*K.0 RUN|M

180*K.1 AUTO

199*K.2 |LIM

200*K.3 *TV@,1|MVDU19,128,2,8,0,0,19,1
+0,0,8,8[V3|LIM

21¢*K.4 LISTO7|M|BLIST|M|CLISTOZ|M

220%K.5 L.|1M

230*K.6 *C.|M

240 *K.7 MO.71M

250*K.8 INiM
260*K.9 |L:@%=0:DIMP%-1:P.H.-P3" bytes
free, starting at &"~P%"."'|L|M
270*K. 18 28218=8D@:?&219=&D: 2&20A=6D6:
2&20@B=&D|MP. " >BREAK" | L|MOLD{M
280VDU28,1,24,36,6
290PRINT CHR$131"The User Defined Keys
Are Now Set" -
30@PRINT CHR$131"As Follows, & COS Bug
S Are Fixed:"''
31¢vDU28,3,24,36,10
32¢PRINT" @ - RUN"'" 1 — AUTO (Add lin
e No; RETURN)"'" 2 - CLS"
33@PRINT" 3 - MODE 3 (Black on green)"
'™ 4 - print listing"'" 5 - LIST" .
34¢PRINT" 6 - Catalogue Tape (*CAT)"'"
7 - MODE 7 (White on black)"
35@PRINT" 8 ~ Paged Mode"'" 9 - Memory
“free"
36QPRINT" 14 — BREAK; Set COS patch; OL
prit

37¢VDU28,1,24,39,22

38PPRINT'CHR$131"Type NEW & Press KEY
2 To Clear."

39¢VDU26: END

400REM** Fixes for COS bugs - R.T.Russ
ell. (4.1 OS only) ** 4

41@DEFPROCassemble (addresss)

420FOR pass=@ TO 1:P%=address%

43@[OPT pass*2

44@.fix1 PHA:JSR&F521:PLA:RTS

450.£ix2 CMP#&91:BNEgo :CPX#0

460BNEgo : TSX: LDA% 182, X: CMP#&F7

470BEQtrap: LDX#0

480.tx LDA#&91:STASFEQI:RTS

498.go JMP(&DB6J)

50@.trap PLA:PLA:JSR&FID8:JSR&FB7B

518JSRtx : JIMP&F7FB:]

52(NEXT

53@ENDPROC

S4QREM**% 1516 Bytes *w¥%

=

Happy Memories

4816 100ns memorw uparade IC%s

i off

2.45

25-99

2.10

100 we

1.925

1 off price less 10% Ffor Beecbus members

Pleose add VAT. No Postose on sets of &

Hoppw

Memor iess
Herefordshire.

Gladestbruge

Kinastons

HRI 3INY

Telez (0S4 422) &£18/628

frorss

and YVisa token over bthe *phone.

BRREFRBIIG RMAM

Rlnwvorbhor 1089

W nlucsean 1

25

&

SERIAL PRINTER PORT (RS423) AND RGB UPGRADE
by Rob Pickering

A standard model '"A' has no printer interface of any kind. April BEEBUG included
instructions for fitting a parallel interface, we now give details of how to fit the
serial interface plus the RGB output, both are part of the same upgrade kit. The
serial interface 1is called an "RS423" and is compatible with the "RS$232" fitted to
most of the popular printers currently on the market. The serial interface 1is also
necessary for sending data along telephone lines.

The RGB 1is a colour signal output that is capable of producing a far more stable

colour picture than the UHF output - though you do need a colour set that has an RGB

input.

IDENTIFYING THE COMPONENTS
The serial upgrade kit consists of two Integrated Circuits and two sockets.

These are labelled on the circuit board as 1.C.74, I.C.75, SK3, and SK&. You should

identify which component 1is referred to by which label. The socket for the serial

interface (SK3) is known as a ‘'Domino-socket® because it accepts pins in a Llayout
the same as the five on a domino. The other socket is therefore the RGB socket

(SK&), this too has five pins but in a completely different layout. The I.C.s are as

follows:

1.C.74 marked as: DS88LS120N I.C.75 marked as: DS3691N

Below we give instructions in easy steps showing how to remove everything, but
also telling you how to put it back together. Before you start though, I'LL offer a
strong warning: ACORN have implied, if not stated outright, that ‘user-upgrades’
will terminate the guarantee, so beware of this fact! In addition, it is necessary
to solder the two sockets on to the main printed circuit board. Any soldering on the
'motherboard® as it is known, is a serious matter requiring a fine-tipped sotdering
iron, some fine solder AND some precision soldering experience. Please do not
attempt this upgrade unless you are an experienced solderer.

TAKING IT APART

(1) Unplug the computer from the mains power supply.

(2) Remove the Lid from the computer by unscrewing the four screws marked 'Fix® and
located two on the back and two underneath, then Lift the lid carefully away.

(3) Removing the keyboard comes next: locate and remove the bolt at each end of the
keyboard. Some machines will have three fixing bolts holding the keyboard, so if
it “isn't Loose after unscrewing two bolts, find the other and unscrew that,
putting the bolts somewhere safe.

(4) On the rear of the keyboard toward the left there is a wide cable connector
(normally grey), Lift this slowly away vertically, being careful not to bend any
of the pins.

(5) Starting at the left of the keyboard on the Lloudspeaker, trace the wires holding
the Lloudspeaker to the main circuit board under the keyboard. Pull the plug
firmly away from the main board.

(6) The keyboard should now be completely free. Lift it away and place it somewhere
safe away from any source of static electricity.

FITTING THE ICs

(7) Looking at the rear of the motherboard in front of the two holes awaiting the

RS423 and RGB sockets you will see two empty I.C. sockets lying in an East-West
orientation (different to the North-South convention on the rest of the board).
The sockets are labelled "I.C.74" and "I.C.75". You must push each I.C. into the
CORRECT socket. To do this you should locate one row of pins into the socket
without actually putting them in, then gently push the second row of pins into
the socket, pushing the whole I.C. firmly home as the pins become Located. Be
very careful not to bend any pins out of place:- don't push the whole I.C. in
until ALL the pins are located. Avoid touching the pins themselves.

REMOVING THE MOTHERBOARD

- (8) Now that the I.C.s are in place, you can proceed to fit the sockets. The sockets
have to be soldered from the underside of the board so you must first remove the

BEEBUG MAG November 1982 Volume-1 Issue-7

26

motherboard. Start by Llocating and removing the securing screws, one in each
corner of the motherboard. Be careful not to lose the screws or the washers.
bon't Lift the board yet ! o

(9) The BNC connector located on the back panel (which gives the combined-video
feed) is attached to the motherboard by two push-on plugs [soldered in some
cases -Edl. The wires on these are too short to allow the motherboard to be
Lifted, so you must remove these two plugs. The plug toward the Left has a black
wire attatched and the one toward the right has a white wire. Pull the plugs
firmly, they may be quite tight, but DON'T pull the wires = only the plugs
themselves.

(10) Leaving the power Lleads connected to the Left of the board, you may now Lift
the motherboard out from the computer. To remove the board, push it fully to
the back of the case, Lift the rear edge of the motherboard, raise the board
tilting it on to the left hand edge, finally twist it back to front so that it
is upside down. If you didn't follow that... the idea 1is to turn the
motherboard upside down. Take this opportunity to blow all the dust out from
your computer.

FITTING THE SOCKETS

(11) Insert SK3 (The domino socket) into the Left set of holes (this will be on the
Lleft when the board is the correct way up). Note the flange on the edge of the
existing socket which complements the flange on the domino socket. Insert it by
sliding it directly from above such that the flanges are together. It should
just drop into place. If it does not then the pins must be out of
alignment - bend each until they match up with the holes in the board, and slot
them 1into place. Solder the socket on to the board making sure that the socket
is pressed firmly against the board, and being careful not to apply too much
solder so that it runs. Avoid holding the soldering iron on the contacts for
any longer than necessary, since excess heat will damage the surrounding
components.

(12) Fit the RGB socket (SK4) into the other set of adjacent holes and solder it in
a similar manner.

REASSEMBLY

(13) Now that all the components are in place you can reassemble everything. Start
by twisting the motherboard back so that it is once again the correct way up-
that is with the components uppermost.

(14) Lower the front edge of the motherboard back 4into the case, sliding the
-motherboard right forward until the rear edge can fit into the case, then slide
it back a Little so that the fixing holes in the corners are aligned.

(15) Fit the connectors for the combined output (i.e. from the metal BNC connector)
back on to the board, remembering that the plug with the white Lead fits onto

- the board slightly to the right of the black.

(16) Replace the four screws securing the corners of the motherboard, making sure
that each 1is accompanied by its washer. Do not over tighten them because they
only fasten into the plastic case, and the thread would easily strip if forced.

(17> Rest the keyboard 1in place and fit the Loudspeaker plug back onto the
motherboard on the two pins from which you removed it in step (5), again be
careful not to bend the pins be pressing at an angle or using too much force.

(18) Replace the broad ‘ribbon-cable' Llead on to the row of pins situated on the
rear of the keyboard.

(19) Replace the two (or three) bolts which secure the keyboard to the case, making
sure that they are tight enough not to work Loose.

(20) Replace the four screws remaining into the holes marked "Fix' on the case. The
case should now be completely fastened together with no pieces remaining, if
this is not the case... you did something wrong...!

See the User Guide page 499 for connections to the RGB socket. The User Guide also

gives the connections for the serial interface at the computer end, but you will

have to refer to your printer manual for the necessary connections particular to
your printer. If it is possible to set the receive rate on your printer, set it to
the maximum so that it will run as quickly as possible.

You will havE. to set the computer's transmission rate by using the command

BEEBUG MAG November 1982 Volume-1 lIssue-7

27

*FX8,n where 'n' is the code for the baud-rate appropriate to your printer. ?F:.
codes for the baud-rates are given on page 424 of the User Guide. You will also need
to execute *FX5,2 to set the computer to serial output. To test the printer, simply
enter a VDU2 command or press CTRL-B, and all subsequent output will go to both the
screen and the printer.
SUPPLIERS

A number of suppliers stock the parts for this upgrade. See the advertisements
in this magazine, but telephone them to check availability.

HINTS H[\’TS HINIS HINIS HINTS HINIS I-'ll;\'TS‘ HINTS HINTS
"ELSE" WARNING

A. Williams points out that nesting of IF THEN ELSE statements can give
unexpected results. Consider:
IF TRUE=FALSE THEN
IF TRUE=TRUE THEN PRINT"1"
ELSE PRINT"2"
ELSE PRINT"3"
You would expect the result to be "3" = but the BBC Micro prints "2". The reason for
this is that BASIC searches the line for an ELSE token or return character, ignoring
any intermediate IF's. This simple approach is inadequate for nested IF statements.
The first ELSE 1is executed, regardless of nesting level. For those interested the
Locations in the BASIC ROM to Look at are &98C2 to &98D5.

PAGE CHANGE FOR DISC SYSTEMS

When using a disc system for cassette purposes, type *TAPE. Also type PAGE=&EQQ
to get the maximum amount of free memory before loading a new program. w

MODELS “A", “B” in stock
UPGRADE KITS

COLOUR MONITORS, PRINTERS, ETC.
CASSETTE DECKS & LEADS.

SOFTWARE from
ACORNSOFT/BUGBYTE/COMPUTER CONCEPTS/
PROGRAM POWER/RABBIT/POM

47, QUEENS ROAD, WATFORD. Telephone: WATFORD 33927

k% sk ok %

BEEBUG MAG November 1982 Volume-1 Issue-7

28

_ ‘
oS RACER (16k)

o>
?gg%aﬂb by Simon Wilkinson

This is an very economically written program, the graphics are good, it is
fairly fast moving, and is good fun to play. It must rate 5 stars especially as it
only needs 16k; though it will not work
across the Tube.

The object of the game is to guide a
racing car along a winding track, overtaking
cars in the same race, but avoiding the odd
wheels that have come off the other cars, at
the same time avoiding the crash barriers.
To steer the car use "Z" for left, and "X"
for right.

The visual effect produced by the
program is very good, and the other cars,
obstacles, and race track continually scroll
downwards giving the impression that the
racing car is moving upwards. The game gradually gets more difficult, with the track
getting narrower, and your racing car creeping up the visual field (giving Lless
notice of on-coming obstacles).

The sound effects are good too, especially if you use a larger speaker. The
engine note changes as you go faster, and when you hit an object the explosion will
literally blow you out of your seat - the car disintegrates nicely too. Incidently,
you can make the car crash by pressing ‘"escape’ just at the vital moment.

As it stands the game just squeezes into a 16k machine (140 bytes to spare!). To
achieve this in mode 4, the program is less than 2k long, and almost all movement on
the screen is achieved by downward scrolling (if you want to do this manually, you
move the cursor to the top line, and execute VDU 11:VDU 11, or try the following
programs
10 CLS:FOR %=1 TO 1000
20 PRINT TAB(0,0);:X;:VDU11
30 NEXT X

which will print numbers scrolling down the screen.

Here is a breakdown of the variables used: X%,Y% Tabulated position of the first
. character of the car

A,B,C,C%,D,E,F,G,H: Used in initial X Tabulated position of the first
character definition. character of the road

NL$ Newline (Cursor Left 3 x%,y% Old X% and Y% for moving the car
times + cursor down) Y Loop variable

NC$ No car - to erase the car Q%,i%,VY Dummy variables
completely before the screen is TI Time at which the road was last
scrolled : made narrower

CF$ Car steered forwards «“7 TIME Gives final score. (Saved in TI
characters long) while crashing.)

CL$ Car steered Lleft (17 characters D% Deviation of new X% from old X%
Long) MR$ Next piece of road as returned by

CR$ Car steered right (17 characters procedure PROCMR ('more road’
Llong) procedure)

Wi Width of the road (Decremented R% ~ Random number: 1 or 2, if 1 then
from 20 to 6) road will go straight, otherwise a

h% Necessary because each time the turn left or right.
screen is scrolled the screen €C,c X=coordinates of bits of car
mapping changes. 3 '

R

BEEBUG MAG November 1982 Volume-1 Issue-7

29

10REM "Simon Wilkinson's Racer "
2@ENVELOPE1,130,80,-4,~2,2,40,50,1,
~1,1,1,1,0
30ENVELOPE2,2,0,0,8,0,0,0,60,-1,-10
01,126,680
4A@ENVELOPE3,2,4,08,-4,2,1,2,35,8,8,1
+35,34
S@MODE4 : FORC%=224T0240 :READ A,B,C,D
,E,F,G,H:vDU23,C%,A,B,C,D,E,F,G,H:NEXT
6@DATA12,12,12,15,15,12,12,12,60,36
:66,129,129,129,153,165,48,48,48,240,2
40,48,48,48,1,1,2,2,2,2,2,1,60,102,90,
189,189,153,66,60,128,128,64,64,64,64,
64,128,13,13,13,15,15,13,12,12,8,36,8,
36,0,36,139,126,176,176,176,2408,240,17
6,48,48
7@DATA24,24,28,15,15,14,6,6,96,96,1
12,240,248,56,24,24,6,6,14,15,15,28,24
;24,24,24,56,240,240,112,96,96,128,128
,128,128,128,128,128,128,1,2,4,8,16,32
,64,128,128,64,32,16,8,4,2,1,60,126,25
5,231,231,255,126,68
8QVDU23;11,0;0;0;0: TTME—@ ONERRORPR
OCCRASH:RUN
9PNLS=STRINGS (3, CHR$8)+CHR$1E NCS$=S
TRINGS (3," "+NLS)
100CF$=CHR$224+CHR$225+CHR$226+NLS+C
HR$227+CHR$228+CHR$229+NL$+CHR$23@+CHR
$231+CHRS232
110CL$=CHR$233+CHR$225+CHRS234+RIGHT
$(CFS,14)
1 20CR$=CHRS235+CHR$225+CHR$236+RIGHT
$(CF$,14)
130We=20:h%=0:CLS: X%=16:Y%=25:X=9:X%
=X%:Y%=Y%
140FORY=0T028 : PRINTTAB (X~1) ; CHR$237;
SPC(W%) ;CHR$237 : NEXT
15@PRINT"""Z"%to go left and ""X"" t
o go right."
16@0PRINTTAB (X%,Y%+1) ;CF$
170INPUTTAB(5,31) "Press ""RETURN"" t
o start "i$:V=RND(-TIME) :SOUND&13,3,1,
255: TIME=0:TI=TIME
18@PROCMR
19@IFINKEY (~98) CARS=CL$: D%=-1: SOUND&
12,-6,40-X%,3:GOT0220

2@0IFINKEY (—67) CAR$=CRS : D%=1 : SOUND& |
2,-7,X%,3:G0T0220

210CARS$=CF$:D%=0

2201F? ((X%+1+40% (Y%—h%)) #8+HHIMEM) <>@
PROCCRASH:RUN

2301IFY%=1THEN250

24@1FTIME-TI>20000/YSTHENYS=
ND&13, 3, (25-Y%) #4,255: TI=TIME

250X%=X%+D%— (X%<2) +(X%>37)

26@PRINTTAB(x%,y%) NC$: PRINTTAB (4,0} C
HRS$11TAB (X) MRSTAB (X%, Y%) CARS :x2=X%: Y%=
Y3

~1:S0U

27@IFRND(1)}<0. 01 We=W%—1~(Wy<7) :PRIN
TTAB (RND(39) , 0) CHRS240

280h%=h%+1: IFh¥>=Y¥%+1 hg=¥%-31

29@IFRND (1) <.97THEN31@

3@@PRINTTAB (X+RND (w%) -3,8)CF$

316GOTO180

32@¢DEFPROCMR : R%=RND(2)

33¢IFR%=1 MRS=CHR$237+STRINGS (W3," *
) +CHR$237 : ENDPROC

34@IFRND (40-W3) >X MR$=CHRS8+CHRS$238+
STRINGS (W$," ™)+CHR$238:X=X+12ENDPROC

35@1FX=1THENR%=1:GOT033@

360%=X~1:MR$=CHRS$239+STRINGS (Wg," ®)
+CHR$239 : ENDPROC

37@DEFPROCCRASH

38@¢S0UND&13,0,10,255:S0UND&118,2,7,2
55:SOUND&111,1,RND(28) ,255: TI=TIME:c=X
% PRINTTAB(X%,Y%)" T :C=X%-1
. 390REPEATC=C+1 : PRINTTAB (c, Y%-C+X%) CH
R$224TAB(C, ¥Y%—C+X%) CHR$225TAB (C+1,Y3+C
—X%)CHRS$226 .

4@BFORT=1TO50 : NEXT

419PRINTTAB (c~2,Y%~-C+X%) SPCATAB (C-2,
Y%-C+X%) SPC3TAB(C~1,Y¥%+C-X%) SPC3:c=c~1
-(c<1)

420UNTILC=39 ORY%-C+%X%<1 ORY%+C-X%$>3
7:*FX15,0

430%FX12,0

44pT=INKEY (200)

45@gVDU22,7 :FORI%=15T016¢ PRINTTAB (5,1
%) ;CHR$141;"YOUR SCORE - ";TI:NEXT

46@0PRINT"Do you wish to play again?"
; : IFGET$="Y" ENDPROC

HINTS HINES HINTS

HIVTS HINTIS HINES HINTS HINIS

HIN IS

SOUND EQUIVALENCE

A.J.Vincent has found a function to convert thefrequeweyof a note into the
required value for the SOUND command. The function dis:

DEF FNfregq(F)=INT(((LOG(F)~L0G(33))*48/L0G(2)-42)+.5)
You can use this as follows:

10 INPUT'"What frequency",freguency
20 PRINT"Use ";FNfreg(frequency);'" in the SOUND command."”

=

BEEBUG MAG November 1982 Volume-1 Issue-7

30

TV/MONITOR REVIEW UPDATE
by David Graham

. In the June issue we reviewed a number of TV sets and monitors suitable for use
with the BBC machine. We appended to that a 'stop press’ notice of a Grundig colour
monitor available from Kingsley TV Services. We have since been testing one of these
machines over a period of months, and present here a brief review.

Supplier: Kingsley TV Services, 40 Shields Road, Newcastle upon Tyne
(Tel:0632 650653)
Model: 16" Grundig colour TV/monitor with RGB (BBC pin compatible) and video
input and output, with full remote control.
Price: £263 + VAT (£10 discount before VAT to BEEBUG members).

This set is a Grundig TV that Kingsley modify themselves. It has full remote
control, and for an extra £75 can be fitted with an internal Teletext adaptor (also
remotely controlled). The picture quality when working as an ordinary TV is good,
and certainly comparable to the SONY Trinitron in clarity. A switch at the back of
the 'set changes it to an REB monitor, and the stability and picture quality are also
good in this mode. It even gives a quite creditable display in the 80 column mode ~
though not as good as is possible with some black and white monitors. Additionally
there is an audio input socket which some people have wired up to the Beeb we are
told.

The review machine has been in constant use at BEEBUG for three months now, and
we are very pleased with it. There are really only two negative features to report.
There is a video pick-up buzz on the audio of our set in monitor mode, but the audio
may be switched off, and in any case Kingsley reports that they now incorporate as
standard a modification to remove this. The second is that the set is on the bulky
side = but it is not more bulky than comparable 16" sets. If you want a more compact
unit then you could try their 14" version.

There 1is 1in fact a range of models from 14" without remote control at £212+VAT
to 20" or 26" models. They also stock a Sanyo 12" black and white monitor at
£90 + VAT. They offer £10 discount before VAT on all models to BEEBUG members. %

MIDWICH COMPUTER COMPANY LIMITED

FASTEX STOCKDELIVERY.OF MICROCOMPUTER COMPONENTS AT UNBEATABLE PRI?ES

MIDWICH NOW APPOINTED OFFICIAL ACORN BBC MICRO DEALER
BBC MICRO COMPONENTS *Printer cable inc Amphenol plug Algebraic manipulation pk (AC124) 865
2114 Low Power 200ns 080 | (not assembled) (BBC21) 13.00 Forth on BBC Micro (AC125) 785
4516/4816 100ns 2.6 | "Userportconnector& cable(BBC22) 2.60 Forth pack (AC126) 14.65
6522 299 | "Analogueinput plug& cover(BBC44) 2.25 Lisp on BBC Micro (AC127) 750
7418244 059 | "5pinDINplugforserialint(BBC111) 0.60 Lisp pack (AC128) 1465
7415245 069 | ‘6pinDINplugforRGBint(BBC109) 0.60 Games-Philosophers quest (AC129) 8.65
811897 0808 | ‘7pinDINplugforcassette(BBC141) 0.60 Games-Defender (AC130) 8.65
DP8304 450 | *Connector for bus & cable (BBC66) 3.50 Games-Monster (AC131) 8.65
DS3691N 45p | *Single disc drive (100K) (BBC31) 225.00* Games-Snapper (AC132) 8.85
DS88LS120N 4508 | *Dual disc drives (BBC32) 345.00°
20 way Right Angle IDC Header 246 Teletext Receiver (200K) (BBC71) 144.34%*
26 way Right Angle IDC Header 324 Prestel receiver (BBC72) 80.00* " EPRORM PROGRAMMER FOR BBC
34 way Right Angle IDC Header 380 | *Games Paddies (per pair) (BBC45) 11.30 MICROCOMPUTER
15 way Right Angle D. SKT 350 | -prices on these items are likely to change please cor- + Programs 2516, 2716, 2532,2732 Industry
tact sales office before ordering. Standard EPROMS
Pﬁgmr;?p?&:%c?r grades 2150 | Assome L‘e"f are f;;b??“ﬁﬂded delivery from Acom # No external power supply required
*Printer & User 10 kit (BBC2) 7pp | ease check avalabity before ordering fens | g Plgs sraght nlo exgansion socke
*F Disc interfce inc DOS (BBC3) ~ 70.00 * i asy 1o “?Ies oftwa ired
* Analogue input kit (BBCA) 7.60 ACORN FOR THE BBC MICROCOMPUTER s Includes al re requi
*Serial /0 & RGB kit (BBCS5) 1025 Graphs & charts on the BBC Micro(AC122) 7.60 | EPROM Programmer (Kit) 40,95
' *Expansion bus & tube kit (BBC6) 585 Graphs & Charts Cassette (AC123) 7.50 EPROM PROGRAMMER (Assembled) 57.85
24 Hour Telephone order service for credit card holders. All brices exclude VAT and carriage
VIS, {0.75 0n prders under £10 nett). Official orders from educational and government establishments,
A and public companies accepted. Credit accounts available to others (subject to status). All orders
despatched on day of receipt. Out of stock items will follow on automatically at our discretion ora

refund will be given if requested. NO SURCHARGE FOR CREDIT CARD ORDERS.

MIDWICH COMPUTER CO LTD

: R‘iékinghall House, Rickinghall, Suffolk IP22 1HH Telephone (0379) DISS 898751

BEEBUG MAG November 1982 Volume-1 Issue-7

o

31

0> MINI TEXT EDITOR VERSION I (16k/32K)

PP eed by David Graham

In response to numerous requests, here is the full text and program for the
MKII Mini Text Editor. The main enhancement over that published in the June issue,
is the inclusion of a numberless printout routine.

This program requires 32k. But some minor modifications would enable it to work in
mode 7 in a 16k machine. In fact just change mode 3 in lines 25@90 and 31610 to
mode 7 to get it working.

This is a minute wordprocessor substitute. It uses the Beeb's own Basic text
editing facilities to create and edit files of text. These are entered as lines of
Basic using the AUTO command, and may be easily saved, loaded, edited and printed
out. The program does not allow right-justification or closing up of text, so
inserting words could cause a line to overflow — in which case the neatest thing to
do may be to retype the paragraph.

If you have been using the MkI version, you will find that lines 950 to 27050
remain essentially the same. Be sure to enter lines 1 to 10 exactly as they appear:
this is important for the correct functioning of the numberless printout routine.
Lines 10 to 990 each contain a few 'space’ characters.

The function keys are used extensively in this editor, and a key strip plan,
which may be photocopied, accompanies this article. It should be slid under the
perspex strip above the keyboard. Type CHAIN"" to load the program, followed by key
£1 or £f2. Either key will initiate the AUTO mode for text entry, but £2 will give
your address as a letter head (you must replace BEEBUG's address with your own here

- alter 1lines 1010,1020 etc). Alternatively, pressing £1 will erase the address
from the machine.

Then simply type in the text that you require, using 'return®’ when you reach the
end of a line. If you go over the end of a line, use the ‘delete' key to reduce the
line length. As the keys stand, £6 will tab along 6 spaces, and £8 will tab across
to the right side for entering addresses. £9 should be used if you wish to ipsert a
blank line (the 'return' key will not achieve this). f9 leaves the cursor indented 6
spaces to make a paragraph indentation. Key £3 1is unprogrammed, and may be
programmed with a word or short sentence that you use often.

When you have finished entering text, press the 'escape' key, and then use the
LIST command, and editing keys. Pressing £7 will return mode 7 for better
visibility. You can get back into mode 3 with £@, which just executes RUN. To return
to entering text after you have escaped from the line numbering mode, you must type
AUTO x where x is greater than the number of the 1last Basic 1line that holds
previously entered text. For this reason it is easier to correct mistakes at the end
rather than as you go along.

To save the text created, use the SAVE"name" command, and save and load as a
normal program. This means that each text file saved, conveniently has a copy of the
editor with it.

Two modes of printout are available. £5 gives a printout with Basic line
numbers, for ease of subsequent editing; while f£4 calls a routine which ignores the
line numbers. A number of possible options are available with this form of printout,
and those chosen will depend on the paper feed mechanism on your printer, and the
number of lines per page required. As the program stands it will send a form feed
character (check your printer manual to see whether your printer responds to this)
every 31 lines of text. This may be useful if you are printing double spaced text

BEEBUG MAG November 1982 Volume-1 Issue-7

32

(achieved by typing #FX 6,0 - assuming that this command has not
already been wused). If you require a different number of Llines
printed before a form feed, then alter line 31052 of the program,
changing the value 31 to the number required. If you do not want a
form feed at all, then erase Line 31052 completely. If you want the
program to stop after say 50 lines of text have been printed so that
you can insert another piece of paper, alter Lline 31052 to read
IF L%Z>50 THEN wait=GET:L%=0. Pressing any key will cause another page
to be printed. To increase the spacing between Llines, insert
31044 IF ?K%=13 VvoU 1,10 This may be extended to VDU 1,10,1,10 or
vou 1,16,1,10,1,10 etc to increase the spacing further. Each "1,10"
in the VDU command adds an extra Line feed after each line of text.
Incidentally when you select printout without numbers using key f4,
you are asked to enter a continuation line number. This is just to
allow you to start printout at any line of a page. Thus as things are
presently configured, 1if you enter 29 here, the program will print
out 2 Llines of text before doing its first form feed. For the benefit
of printers using a continuous roll of paper (and for spacing down
the letter head), printout is prefaced with a number of blank Llines.
These may be removed by deleting Lines 950 to 990. At the end of the
printout the screen will display a word count (inflated by the effect
of double spaces) and a Llines in last page count.

NNY

ou
0NV

OLNv

UM

ssaippe ssaippe

If you are using the serial interface (RS423) for your printer,
you will need to customise your program in the following way. First
of all change line 2 to read serial=TRUE. This sets the program for
serial output at 1200 baud. If your printer requires a different baud
rate, then replace Line 5 with the appropriate command:

*FX 8,1 75 baud *FX 8,5 2400 baud
*FX 8,2 150 baud *FX 8,6 4800 baud
*FX 8,3 300 baud *FX 8,7 9600 baud
*FX 8,4 1200 baud *FX 8,8 19200 baud

ou
LNTHG

ALl printers behave in different ways, and word processors
costing £50 upwards are (or can easily) be customised for a given
printer. This 1is obviously not possible in this case. Although we
have tried to provide options for a number of different printer
configurations, we cannot cover them all, and would urge you to
experiment with the program to achieve the results that you require.
Note however, 1if you are modifying the program, Leave lines 1-10
exactly intact in order to retain the correct functioning of the
printout routine.

U3ITM
INTHd

sisqunu SJIaqunu

9 dvlL

Because of the way in which text is stored, it is necessary to
avoid Basic reserved words in capitals, and the abbreviations for
them. Thus P.0.Box would be printed as PRINTOLDBOX on the printout,
and as something indecipherable on the numberless printout (since
Basic words are stored as tokens).

Note that to keep the program compatible with earlier versions, we
decided not to renumber it before publication.

IMPROVED MINI-TEXT EDITOR

A non-member! wrote saying that you can <improve the mini-text
editor that we gave 1in BEEBUG no 3, by starting each Line with an
asterisk. The BASIC tokenising routine then considers this to be a
M0S command Line and switches off the tokenising routine. Thus you
can quite happily enter 'P.0.BOX' without fear of it being changed.
He suggests setting up *KEY1 |M* and using f1 instead of "RETURN®
when entering text.

A minor modification would allow the "Printout without numbers®
routine to ignore the asterisk. Bh

=LA

LHOTY L JAOW

LNIANT
3
NAINLEY

BEEBUG MAG November 1982 Volume-1 Issue-7

33

- TREM MINI TEXT EDITOR
2serial=FALSE =
'3 IF NOT serial THEN 9
4 *FX 5,2
5 *FX 8,4
9GOT025000
10

950

960

970

980

999

1019

1020

1030

1040

250@PREM KEY SET ROUTINE

25@90MODE3

25100*KEY ¢ "RUN |M"®

25110*KEY 1 "DELETE1008,110¢ |M AUTO]
006,19 |M")
25120*KEY 2
g,10 [M°
25140*KEY 4
25150*KEY 5
VvDU3 |M"
25160%KEY 6 * "
25179*KEY 7 "MODE7 |[M"
25180*KEY 8 "

"LIST1906,1099 |M AUTO119

"GOTO31000 |M*
"VDU2 |M LIST100,10000 |M

2519¢*KEY 9 "|M "
253@@PROCWINDOW

26999END)

2709@DEF PROCWINDOW

270198$="1 "

27030PRINTTAB (8,23) SSSSSSSS I
27050vDU28,0,22,79,0

27052 PRINTTAB(#,18);"BEE B UG

Mini Text Editor"

27054 PRINT" (printout routine by Ian
Sinclair)”

27060PRINTTAB(0,22) ;

27079PRINT"PRESS KEY F1 OR F2 TO STAR

T (F2 PRINTS ADDRESS)"

27@8@PRINT'"OR F4 OR F5 FOR PRINTOUT"
27090PRINT® * ¢

272@@ENDPROC

31009REM PRINTOUT WITHOUT NUMBERS

31912MODE3: PRINT' ' !

biv)

BEEBUG,
P O Box 50,
St Albans,
Herts.

31020PRINTTAB (2) "Please choose contin
uation or new print- type line number
or zero.";:INPUT AS:L=VAL(AS) :We=0
31022N%=3585

31923VDU 2

31024REPEAT

31026N%=N%+? (N3+2)

31928UNTIL? (N3+1) =10

310297%=N%+2

31030REPEAT

31032L%=L%+1

31@34FORM%=1T06

31@35PRINTCHRS (1) " *;

31836NEXT

31037FORKS= J%+1 TO N%+2J%-1
31@4QPRINTCHRS (1) CHRS (?K%) ;

31042IF ?K%=32 THEN Wg=Wg+]1

31044IF ?K%=13 VDU 1,10

31050NEXT

3104@PRINTCHRS (1) CHRS (?K%) ;

31042IF ?K%=32 THEN W$=W%+]

310441IF ?K$=13 VDU 1,10

31050NEXT '

310952IF L$>=31 THEN PRINTCHRS (1) CHRS (
12) :Lg=0

3106@PRINTCHRS (1) CHRS (13)
31070N=N3+2J% : I =N2+2

3108QUNTIL ?(N%+3)=244

31985VDU 3)

31P99PRINT" Lines of last page- ";Lg'
""Word total- "Wg

31100 END

=

‘ ‘ . = ‘ 5 ‘
HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS

A/D CONVERTER UPGRADE

If vyou
then Alan Mothersole has the answer.
NAND) .

a 74Ls00

have tried to do this upgrade by fitting IC73 a ubP7002 without success

You must also fit 1IC77 (Quad 2-ip

=

e

BEEBUG MAG

November 1982

Volume-1 Issue-7

34

POINTS ARISING

STARFIRE JOYSTICKS
by John Yale

If you own the BEEBUGSOFT program STARFIRE, you may like to modify it for
joystick control as in the following listing. This achieves proportiogal control,
and allows you to follow the alien ship much more accurately; it even brings warp 3
operation within grasp. The joystick will act like an aircraft control column.
Therefore if the enemy ship is at the top of the screen, the joystick must be pulled
back. This can be confusing at first. Removing the negative signs in front of the
expression for dx% and dy% in lines 1040 and 1070 will change this. If you want to
experiment with the response speed of the joysticks, then try altering the value
&600 in line 104¢, and the &8¢¢ in line 1070.

1020 DEFPROCmove 1090 IF SGN(dy%)=SGN(yy%) yys=-yv$
193¢ LOCAL dx%,dy% 117¢ ENDPROC

10409 dx%=—(ADVAL(2) DIV &600-16)*velocity® 141¢ REM *** LASER PROCEDURE #%*
1050 x%=x$+dx% 1420 REM

1060 IF SGN(dx%)=SGN(xXX%) XX%=—XX% 1430 DEFPROClaser

1070 dy%=-(ADVAL(1) DIV &8@0-8)*velocity% 144¢ IF (ADVAL(P) AND 1)=@ THEN 1760
1080 y3=ys+dys 1450 IF next$>TIME THEN 1760

BUG_FIX PROVISOS

Mr Nunan points out that when using the bugs fix given 4in the July dissue a
problem 1is encountered when using the command *TAPE. The pointer to the patch at
8218 and &219 gets reset to its original value so that although you think that the
patch is 1in operation the computer doesn’t. I had left a stray *TAPE12 in my
program, otherwise would not have encountered the problem. Many thanks for your
disassembler program which enabled me to track this down.

Frank Huruid also informs us that the bugs fix does NOT work with the *SPOOL
command. If you intend to use spooling then the fix must be disabled first.

SOUNDS EXPLAINED

On page 22 of issue 4 we said listen to the amazing sound obtained when you try:
*KEY O SOUND 2,-15,100,1:SOUND 3,103,100,1|M and press key fO0 to hear it.

This is explained by A. Williams as follows:

The SOUND statement appears to use MOD 32 for the envelope number, so SOUND
3,103,100,1 refers to envelope 7. If this could be defined, the parameters would be
stored at locations &860 to &86C, which seem to be part of the sound function
workspace. In this case the following values normally result (Mine are different, so
perhaps we are all hearing something different - JY):
1,1,128,100,1,128,100,1,128,100,1,128,100
Although some of these parameters are out of range, the envelope still functions.
Each envelope uses three extra bytes for future expansion - location &86E contains
128, giving a continuous sound even with a duration value of 1.

WRONG AUTHOR

In BEEBUG No 6 we wrongly attributed the Memory Display Utility to Chris
Bingley: our apologies to Doug Blyth who actually wrote it.

=

BEEBUG MAG November 1982 Volume-1 Issue-7

