

(%
o903 0% IDEAS ON ANIMATION
?;“f’ b by Colin Opie

This article describes how to produce remarkably smooth animation with BBC
graphics, and is based on a clever technique used in a rotating cube program written
by Roger Wilson and Laurence Hardwick of Acorn.

The first part of the article introduces the concept of logical plotting using
GCOL and VDU19. The technique is then used to produce an animation sequence; and
finally a listing of the rotating cube program is given. Note that if you are using
a 16K machine, you should change Line 108 in fig.3 and Line 12¢ in fig 5 to MODE 5.
Even if you have trouble in completely following the theory, the programs are well
worth a look, and the procedures employed can be adapted for other uses.

LOGICAL AND PHYSICAL COLOURS

A concept which is inherent in the use of GCOL and VDU19 is that of the
difference between a physical colour on the screen (e.g. red, yellow) and a logical
colour (ie. the number code which the computer uses internally and is willing to
associate with a physical colour). If you look in the New User Guide (p223-on
COLOUR) you will see that the maximum number of physical colours available in the
graphics modes is sixteen, which includes 'flashing' combinations. Different
internal logical colour codes are used for foreground and background colours
enabllng us to determine precisely what w111 happen when a character (graphics or
text) is printed.

By way of example we will look at the options open to us when using screen mode
5. In this mode we are only allowed

a maximum of four different colours Foreground Background Physical Colour
on the screen at the same time. If [/} 128 black

we don't do anything to change the 1 129 red
'status quo® of this mode we will get 2 130 yellow
the options given in fig 1. Note that 3 131 white

the values ¢-3 and 128-131 are the fig. 1 logical colour values for mode 5.

internal logical colour values used
by the computer. Now lets take a look at GCOL and VDU19 to see how we can
manipulate these facts to our advantage.

GCOL AND VDU19

The basis for this article lies in these two commands, so it is worth taking a
good look at these. GCOL enables us to say how we want all future graphics to be
plotted and which colour to use. It has two arguments and has the general form:
GCOL P,C ; where P is the plotting method (in the range ¢-4)
which is to be wused, and C is the -
value of the logical colour to wuse Plotting Method

plot the colour

for all futu i ke .

Clearly in mo:ile geanygg?phtgi v‘:;ﬁes OR the colour with current screen value
iven in fig. 1 (above uld be AND the colour w@th current screen value

g g (above) wo EOR the colour with current screen value

valid. e parameter 'B’ can as invert the colour currently on the screen
iven in fi and the position of
grv 92 po on o J. 2 methods of graphic plotting

the plotting operation will be 3
determined by the PLOT and TAB
commands. This latest table produces at least three new operations which we need to
know about, those of OR, AND, and EOR plotting. We will take each of these in turn
and concern ourselves, for the sake of simplicity, with just foreground colours.

P=g: In this mode we will simply plot the colour specified by GCOL. If the command
GCOL®,1 is used then the future foreground colour will be in red. If we use GCOL®,2
then it will be yellow. It does not matter what colour was present on the screen at

some position prior to another plot in the same position. The new colour will take
over.

A W N — Y

[

BEEBUG MAG ‘ February 1983 Volume-1 Issue-9

4

P=1: Here it is the logical OR of the new colour and the previous colour which will
be used in the plotting operation. Type in the following program:

16 MODE 5: GCOL@,1

20 PLOT 5, 300,300

3¢ GCOL 1,2: DUMMY=INKEY (100)

4¢ PLOT 5,0,0

50 END
First of all you will see a red line -i.e. COLOUR 1- (because of the GCOL#,1 in line
18), and then one second later you will get a white line, though one might at first
sight expect a yellow line (ie. colour 2). Initially each point on the line was at
logical colour 1 (RED). We then set the logical colour to 2 (YELLOW), but with OR
plotting; and "1 OR 2" has the logic value 3, (you can verify this by typing "PRINT
1 OR 2" in Basic). This is why we get a white line (logical colour 3) instead of a
yellow one. (If this logical binary operation is new to you then see the articles on
LOGIC in BEEBUG vol. 1 nos.5,6 (Sept & Oct)).

P=2: This will use the logical AND of the colours. If we change line 30 (above) to
read: 3% GCOL2,2: DUMMY=INKEY (100)

we can see the effect of this. Colour 1 (RED) AND Colour 2 (YELLOW) gives Colour @
(BLACK) because "1 AND 2" has the logic value zero, (again see BEEBUG nos. 5 and 6
if this is unclear). Thus after one second is up the line disappears even though our
specified foreground colour is yellow.

P=3: Using EOR plotting (and therefore a value of GCOL3,2) we will get the same
result as with P=] because "1 EOR 2" has the logical value 3. (To test this type
"PRINT 1 EOR 2" in Basic).

P=4: This ignores the current colour setting and merely inverts the colour
presently set. The inverse (or logical NOT) of colour 1(RED) is colour 2, hence we
get a yellow line.

Now lets take a look at the VDU19 command. This has the general form of:
VDU19,L,A;0;
where L is the logical colour we are referring to, and A is the code for the actual
colour we wish to assign to it. Fig.1 shows the values set for screen mode 5 if we
don't do anything to change it. Even though we are only allowed four different
colours at any one time, .we can, via the VDU19 command, say which of the full range
of 16 physical colours we wish to use for each permitted logical colour.
For example: 12 VDU19,1,4;0; will set colour 1 to BLUE
14 VDU19,3,13;0; will set colour 3 to flashing MAGENTA/GREEN.

If you insert these two lines into your test program and reset GCOL in line 30 to
GCOL@,2 you will see the effect of this. The interesting thing about the VDU19 call
to alter physical screen colours is that it does so instantly. We can take advantage
of this in a number of ways. In particular we can draw a new image in physical
colour black, and then make it suddenly appear all at once, just by using an
appropriate call to VDU19.

ANIMATION TECHNIQUES APPLIED
As an example of how these two commands can be used effectively we will take a
look at a couple of programs for producing animation, and compare their effects.
Type in the program in fig. 3 using the line numbers given. The animation is done
by merely drawing the boat in a colour and then drawing it again in black to erase

it,‘ and so on. If you run this program you will notice that the picture flickers
furiously and does not look very nice at all.

PROCSAIL is the procedure which effectively does all the work. If we change this
procedure to use GCOL more effectively, we can get a smoother display. Change the
PROCSAIL procedure and add in the PROCSHOW procedure as given in fig 4. To try and
see what is happening consider the following.

The way this new technique works is to draw the new ship each time in physical

BEEBUG MAG February 1983 Volume-1 Issue-9

5

colour black, so that the jerky drawing process is invisible. We then suddenly make
it appear by using the appropriate VDU19 call. You may have used the same idea when
drawing a graphics screen for a game etc. — to prevent the user from seemg the
drawing process. In broad terms the same technique applies here, but there is a
complication - each of the new ships overlaps the previous one, so we actually use
three different logical colours. Colour 1 is used for the first display and colour 2
for the second. On the third display we want to erase the display drawn in colour 1
but not the one in colour 2. This can be achieved by an EOR operation using the
value we want to erase, ie. colour 1. Notice that this will give us (1 EOR 1) for
the first display (ie. # = black) which is what we want. In the second display on
the overlapped bits we get (3 EOR 1) which gives us colour 2, which is also what we
want. Moreover the whole of the second display is now in colour 2. By ‘'showing’
the relevant colour at each stage the shape can be made to move, hence our extra
procedure PROCSHOW.

#*Note* To use two colours for two ‘displays’ we actually require three logical
colours, hence we lose the ability to have so many different colours on the screen
at the same time. So in using the technique we gain in appearance but lose a little
in multi-colour capability. Obviously this poses far fewer problems in MODE 2 which
can display up to 16 physical colours all at the same time.

ROTATING CUBES

We are most grateful to Roger Wilson and Laurence Hardwick of Acorn for
permission to publish the program which appears as fig 5. This uses exactly the same
technique to generate a rotating cube. It is the main loop in lines 36¢-510 which
is doing the actual work, and notice how it too needs to access a PROCSHOW procedure
in order to highlight only the logical colours that are pertinent at any one time.
We will be looking further at 3-D graphics and rotation next month. Meanwhile you
can type in the program and sit back and watch. 1In case you want to experiment,
here is a list of the main procedures and variables:

PROCEDURES (CUBE)
D,DRAW Draws the 3-D shape. This uses GCOL to set appropriate logical operations
in order to create and erase each view.

MOVE Calculates the 2-D mapping coordinates for each new position, from the
stored 3-D coordinates.
SHOW Enables given colours to be displayed, hence showing a particular view.

VARIABLES (CUBE)

TX,TY,TZ Linear transformations in the three planes. If they are all zero then
the cube remains in the same position, though rotating.

L,M,N,F Affect the displayed 'shape' of the cub01d The values given
display (would you believe) a cube.

NN, TIME These enable a display to be given in the top left hand corner of
the time (1/100 sec) for each move. Notice that this is about a second.

COLOU$ Defines the colour of the rotating cuboid. .

CX,CY,CZ These are the rotation factors in the three planes. If they were
made to be all zero then the cuboid would not rotate.

“Fig 3 “sHIPI" 180 FOR X= TO 1279 STEP 4

190 PROCDRAW(X,105,5)
16¢ MODE 1 200 PROCDRAW(X,185,7)

116 VDU19,3,6;0;
126 GCOLg@, 33 PROCSEA
130 PROCSAIL

140 VDU19,3,7;0;
1590 END

160 DEF PROCSAIL
176 GCOL @,2

210 NEXT X

22¢ ENDPROC

340 DEF PROCDRAW(X%;Y%,C%)

350 PLOT 4,X%,Y%

360 PLOT 4,X%+80,Y%

379 PLOT 80+C%,X%+80,Y%+80

380 PLOT 4,X%+88,Y% B

BEEBUG MAG February 1983 Volume-1 Issue-9

399
400
419
420
430
449
450
460
470
480
490
500
510
520

PLOT 4,X%+88,Y%+80
PLOT 80+C%,X%+128,Y%
PLOT 4,X%,Y%-8

PLOT 4,X%+128,Y%-8
PLOT 80+C%,X%+20,Y%~48
PLOT 4,X%+24,Y%-48
PLOT 4,X%+132,Y%-8
PLOT 80+C%,X%+108,Y%-48
ENDPROC

DEF PROCSEA

FOR X=@ TO 1279 STEP 4
Y=50+5*SIN (X/10)

PLOT 69,X,Y

Fig 4 Additions for "SHIP2"

a5 273@ DATA 39,30,30,-38,30,30,-30,~30, 30,
=30,
358&33ATAﬂ3ﬂ,—3ﬂ,—36 ,30,30,-30,-30,38,-30,

79§ REM**SET UP PROCMOVE CONSTANTS
300 F=4
310 L=130:M=140:N=80
320 S=L*LAM*M
330 R=S
348 R=R/2
350 T=S+N*N:Q=SORT*3
360 REM**MAIN LOOP

370 REPEAT
388 GCOL1,2

390 PROCDRAW (@)
4¢@ PROCSHOW(2)
419 GCOL2,2

42(PROCDRAW(1)
430 PROCMOVE (g, 1)

160 DEF PROCSAIL

176 VvDU19,3,3;0;

180 FOR X=@ TO 1279 STEP 16
190 GCOLi,1

200 PROCDRAW(X,105,5)
210 PROCSHOW(1)

22@ GCOL1,2

230 PROCDRAW (X+8,105,5)
240 PROCSHOW(2)

250 GCOL3,1

260 PROCDRAW(X,105,5)
270 GCOL1,1

280 PROCDRAW(X+16,1085,5)
29¢ PROCSHOW(1)

300 GCOL3,2

310 PROCDRAW (X+8,105,5)
320 NEXT X

330 ENDPROC

549 DEF PROCSHOW (S%)
550 P%=3:REM YELLOW
560 VDU19,5%,P%;0;

578 VDU19,3-5%,09;0;

583 ENDPROC

5 "ROTATING CUBE

440 GCOL1,1

45@¢ PROCDRAW(1)
460 PROCSHOW (1)
47¢ GCOL2,1

480 PROCDRAW (@)
49¢ PROCMOVE (1,0)

50@ UNTIL INKEY @<>-1
51¢ END

52¢ REM**PROCEDURE DECLARATIONS
538 DEF PROCD (P%,N%,A%)
54¢ PLOTA%,B% (P%,0,N%) ,B%(P%, 'l,N%) ENDPROC
550 DEF PROCDRAW (N%)
56@ PROCD(@,N%,4)
570 FOR P%=1 TO 7:PROCD(P%,N%,5) :NEXT
59¢ PROCD(2,N%,5)
60@ PROCD(3,N%,4)
610 PROCD(0,N%,5)
620 PROCD(5,N%,5)
630 PROCD(6,N%,4)
64¢ PROCD(1,N%,5)
65¢ PROCD(7,N%,4)
660 PROCD(4,N%,21)
67@ ENDPROC
680 DEF PROCMOVE (A%,B%)
690 LOCAL P%:FOR P%=¢ TO 7
700 B(P ,ﬂ B%)—B(P% 0,A%)+CZ*B(P%, 1,A%)
+CY*B(P%,2, A

REM**INIT SCREEN AND VARIABLES

710 B(P%,1 B%)-—B(P% 1,A%)+CX*B(P%,2,A%)

11 =TTM -CZ*B(P%, 0 B%)+TY
]2” NN=TIME 720 B(PS,?2 (B%) =B (P%,2,A%) ~CX¥B (P, 1,B%)
 MODE1 ~CY*B(P$, 0, B%) +T
130 vngz?,efﬂiS]E; 736 U=B(P%,0 B%) :V=B(P%,1,B%) :W=B(P%,2,B%)
:4@ TX:@-TY—E-TZ—” 740 t=R* (T-U*L-V*M-W*N)
]gg g:;ggg 750 B% (P%,0,B%)=T* (V*L-U*M) *E/t :B% (P%, 1,
=0. =0k (WKS —N* (UXL+V*M)) /t
170 CZ=p.925 B?SgQNg; (N/
180 REM**SET STORAGE ARRAYS
190 DIM B(7,2,1) ;;g %Sgécpamr TIME-NN: NN=TIME
208 DIM B%(7,1,1)
210 REM**READ IN START POSITION ggg ggfoggogsmﬂ(l"%)
220 FOR P3=g TO 7 =
230 FOR C%=@ TO 2 81¢ vDU19,N%,COLOU%; 0;
24¢ READ B(P%,C%,0) 820 VDU19,3-N%,0;0;
250 NEXT 83@ VDU19, 3,COLOUS; 7;
260 NEXT 840 ENDPROC =
e
BEEBUG MAG February 1983 Volume-1 Issue-9

SOME NOTES ON PROGRAM SAVING

by Andrew Donald

The programs on the Welcome tape are all copyable, using the SAVE command, with
the single exception of PHOTO. Investigation of why this should be has led to some
useful insights.

What happens is this. When loaded the program shows a length of @9F4 bytes. If

this program is now SAVEed the length will be shown to be @39C bytes, 0558 bytes are
missing.

The missing bytes are additional code required for the image plotting in the

program. The BASIC itself does end at ¢39C, and the SAVE command will only operate
on the BASIC portion.

In order to save this program it is necessary to dump the BASIC and extra code
as a unit and set the BASIC portion into operation when run. Looking at the memory
map shows BASIC starts at ¢E@@ and we need to save @9F4 bytes from here. This may be
done with the command *SAVE "PHOTO" (QE@@ +09F4 The default starting address for this
code will be @E@@. That puts the total code onto the tape but how do we operate it?

The User Guide says to load a block of machine code and run it we should use the
*LOAD or *RUN commands. However, since the bottom of this code is BASIC and since
the tape format for both types of dump 1is acceptable to the BASIC loader, the
command CHAIN"PHOTO" will load the entire block and then execute the bottom end
BASIC. This is how the program operates on the Welcome tape.

The consequence of this facility is that BASIC and machine code, and/or data may
be mixed in a more compact form than is possible with the usual mnemonic assembler
allowed for in the interpreter. USR routines may be written above the BASIC: but

take care to set LOMEM to prevent corruption of machine code when BASIC variables
are assigned.

Also a machine code program may be kept in standard BASIC format by including a
single BASIC line 1 CALL <address> and dumping with *SAVE from @E@@ to the end of
the code.

[We suspect that the extra code that needs to be saved is not actually a machine
code PROGRAM but DATA. However the same still applies for saving. Ed.]

QUICK QUIZ

QUICK 00tz

What numbers between zero and 999 have the special property that they are the sum
of the cubes of their digits?

For example 234 is NOT a solution because 2 cubed + 3 cubed + 4 cubed does not
equal 234.

The object of the quiz is to produce the fastest BASIC program to achieve this
(checking all the way from zero to 999).

Please do not send in your results, we will publish our program and best times
next month. ‘ ==

HINTS H[NTS‘:HINTS HINTS HINTS HINTS HINTS HINTS HINTS

SYSTEM CALLS

Did you know that all commands preceded by "*' (eg. system calls such as

*FX, *KEY, *CAT etc.) can be in lower case? Andrew Crawhurst. Note also the
abbreviation "*," for "*CAT".

BEEBUG MAG February 1983 Volume-1 Issue-9

MACHINE CODE SCREEN DUMPS FOR THE EPSON & SEIKOSHA

Here at last are the promised machine code screen dumps for the Seikosha and
Epson printers. They are many times faster than the Basic dumps published earlier.
Remember to take great care in entering the code, because machine code is much much
harder to debug than Basic. Note that the Seikosha dump will not, as far as we know,

work on a Seikosha 250.

SEIKOSHA SCREEN DUMP (GP80A and GP100A)
by Terry Bromilow

The program to be described is a machine code
dump for the Seikosha GP8PA and GP1@@A which will
print in any graphics mode of the BBC machine. The
program is most welcome as it enables you to print
any horizontal strip of the screen, and takes only
about 2.5 minutes to print a full screen. An
additional feature is that if the screen to be drawn
consists of several colours, it 1is possible to
specify that only items of a certain colour should
be printed. (Obviously the printer will pring
everything the same colour). When using mode @, with
its 640 dots horizontally, a compromise has had to
be reached, as the Seikosha will print only 48¢. The
solution adopted is to print every other dot.

ABOUT THE PROGRAM

The program consists mainly of data statements,
which are converted into machine code and cunningly
stored in line 2948¢. That is why line 29480
consists, as it is typed in, of only X s. It is
therefore essential that this 1line is typed in
carefully as 1listed. Do not type in too few X s,
there should be 168, although extras are okay.

Included in the program is a demonstration print
of the exponential decay of a sine wave. It is by
running this demo program that the machine code is
generated, so do copy all of the listing, not just
part of it. Once the code has been generated, the
rest of the program can be deleted, leaving a very
small and efficient machine code screen dump, which
is activated as a procedure.

Storing the code in line 29480 makes it very easy
to append to other programs, but results in
restrictions onthe 6502 instruction codes used. The
codes §1 and @6 could not appear in it and there
could be no internal absolute addresses, to enable
it to work from any location. Also the appending
process shown below must be used, since *SPOOL will
not work with this program. The advantages in
implementing the machine code this way are that no
dedicated RAM is used, and a fully relocatable

program results which may be further edited after
the appending process. The procedure uses zero page
locations &84 and &8F but these are saved and
restored by lines 29120 and 29460 which may be
omitted if not required.

TO SET UP THE PROGRAM
The following needs only to be performed the
first time that the program is used.

1) Type in the program as listed with great
attention to the data statements, and save a
listing of the full program to tape or disc.

2) Ensure that your printer is connected to the
computer .

3) Now run the program. It should immediately
prompt you for a mode. Select any mode (6,1,2,4
or 5) and enter the apropriate number followed
by <return>.

4) The demonstration display should now
commence. An exponential decay graph will be
drawn on the screen, and then on the printer.

5) Wwhen the printer has finished, delete the
following lines from the program;
Delete lines 29008 to 29098 inclusive
Delete lines 2913¢ to 29418 inclusive

6) Now save the resultant machine code, which is
stored in the procedure called PROCGPR. So use
SAVE “GPR" (not *SAVE) .

HOW TO USE THE NEW PROGRAM Riid

The screen dump is now in the form of a
procedure, so to activate it we need to simply call
it from the program that has produced the screen
that is to be printed. This is done as follows;

1) Load in the program that will create the
screen to be printed. This is accomplished in
the normal way, using LOAD"progname®.

2) Check that all the line numbers of this
program are below 29098. If they are not just
issue the RENUMBER keyword.

3) Now type in PRINT ~ TOP-2 <returnd>.

This will print a three or four character number
on the screen. I will for the moment call this
number XXXX.

Printout from RACER (Issue 7)

Fo
(£

bed

1isen}

£y

s

4) Now reload the procedure created earlier K:w’!

using the following;
*LOAD"GPR” XXXX <return>
vhere XXX is the above mentioned number.

If you now list the program, you will find that
PROCGPR is 1lcocated at the end of your original
program, ready for use. It is ok to add new lines to
the program or alter it in the normal way, without

5) Now type END <return> .’l"lé't
HON TO CALL PROCGER HiZH

BEEBUG MAG

February 1983

Volume-1 Issue-9

9

fear of damaging the machine code. It is totally
relocatable. All that remains is to call PROCGPR
from your program at whatever stage you want the
screen image to be dumped to the printer.

It is possible that you may wish to decide while
your program is actually running, at what stage you
want the screen printed. This is very simple and
below is listed one way of achieving this.

Insert at an early stage in your program;

Say line 5 5 ON ERROR GOTO 28900

And then also 28900 PROCGPR(1823,0,15) : END
Using these two lines, you could allow the screen to
develop and then hit escape at an appropriate stage,
vwhereupon the screen would immediately be printed.
You can now Save a copy of your program, including
the PROCGPR within it. This may be done in the
normal way.

SCORE 33 SERUEG LEFT 1

Empt==
8 T P e

i.ss oSeigiang

Printout from BREAKOUT (issue 8)

PARAMETERS OF PROCGPR
The procedure must be called with 3 parameters.

These are;

1. The upper Y coordinate of the strip to be
printed,

2. The lower Y coordinate of the strip to be
printed,

3. The colours to be printed.

The first two parameters are self explanatory,
being the upper and lower limits of the strip to be
printed. The coordinates must be given from the
GRAPHICS origin, hence to print the whole screen the
parameters would be 1023 and @ respectively, and to
print a. narrow strip at the bottom of the screen
would be 3066 and @. (see New User Guide for graphics
details) .

The third parameter determines which of the colours
are to be printed. This number must be between 1 and
15. It will be ANDed with the logical colour of each
point, and that point will only be printed if the
result is non zero. To understand this very useful
function, you must have an understanding of how AND
is used as a bit operator. See New User Guide page
205 and previous BEEBUG articles. Also see NUG page
223 for details of logical colours. As an example
consider a screen containing ALL of the following
colours;

RED Logical colour 1
GREEN Logical colour 2
YELLOW Logical colour 3
BLUE Logical colour 4

Using a parameter 3 of 1 would draw only Red and
Yellow points.
Using a parameter 3 of 2 would draw only Green and

Yellow points.

Using a parameter 3 of 3 would draw only Red, Green
and Yellow points.

Using a parameter 3 of 4 would draw only Blue
points.

The most normal requirement of this third parameter
will be to print all points on the screen, in this
case use a value of 15. So to print all points on
the whole screen use PROCGPR(1023,8,15).

29000 CLS:INPUT®''“MODE (4,1,2,4,5) "M

29010 MODE M: IF M=g M=2 ELSE M=4

29020 VDU29,05;896;

29030 FOR X=¢ TO 1276 STEP M

29040 S=SIN(X/20)*128*EXP (-X/300)

2905@ DRAWX,S

290608 NEXT

29970 PRINTTAB(3,2)"EXPONENTIAL DECAYY

29080 PROCGPR(1023,768,15)

29¢9¢ PRINT TAB(#,16) ; :END

29109 DEF PROCGPR (YTOP, YBOTTOM,COLR)

29110 LOCAL A%,P%,Y%

29120 LOCAL B%,C%,D%: B%=1&84: C%=1&88: D%=!&8C:
REM Save z-page &84-&8F

29130 REM Delete from here after first use

29140 DATA 3,&15

29150 DATA £84,584,&85,&85,&A2,80,886,&88

29160 DATA &86,&89,&86,&8E,486,&8F,&E8,84D0

29170 DATA &24,&8A,&20,&EE,&FF,&A5,886,&20

29180 DATA &EE,&FF,&A5,&88,&18,&69,&4,&85

29190 DATA &88,&D0,&12,&E6,&89,&A5,889,&C9

29200 DATA &5,&D0,&A,&8A,&20,&EE,&FF,&A9

29219 DATA &D,&20,&EE,&FF,860,&A5,5&84,&85

29220 DATA &8A,&A5,&85,&85,&8B,&486,5486,&A9

29230 DATA &7,&85,&8D,&R9,&9,&A2,888,8A0

29240 DATA &0,&20,&F1,&FF,&A5,88C,&18,&30

2925@¢ DATA &7,&25,&87,&F0,&3,&EA,&EA, 438

29260 DATA &26,&86,&A5,88A,869,&4,&85,&8A

29270 DATA &90,&2,&E6,&8B,&C6,&8D,&D0,&DB

29280 DATA &A2,&0,&E8,&A0,8480,8C4,586,&F0

29299 DATA &7,&AS5,&8E,&F0,&9C,&D0,89,&FA

29308 DATA &E6,&8E,&D8,&9E,&E6,&8F,&D8,&9A

29319 DATA &8A,&20,&EE,&FF,&A9,&1C,&20,&EE

2932¢ DATA &FF,&8A,&20,&EE,&FF,&A5,88E,&20

29330 DATA &EE,&FF,&8A,&20,&EE,&FF,898,820

29340 DATA &EE,&FF,&A9,&0,&85,&8E,&C6,&8F

29350 DATA &10,&DE,&E6,&8F,&F@,&CD,6

29360 RESTORE

29379 FOR P%=TOP-176 TO TOP-8

29380 READ A%

29390 ?P%=A%

29400 NEXT P%

29410 REM Delete down to here #%*

29429 P%=TOP-174

29439 VDU26,2,1,8,1,13: REM restore gphc orig, pr g

phcs, newline

29440 ?2&87=COLR AND &F

29450 FOR Y3=YTOP-24 TO YBOTTOM-24 STEP-28: A%=(Y%$+2

56) DIV256-1: CALL P%: NEXT

29460 !1884=B%: 1&88=C%: 1&8C=D%: REM Restore Z-page

bytes used

29478 VDU1,15,3: ENDPROC: REM prtr back to chars &

off

29483 MACHINE XXXXXXXXXXXXXXXXXXXKXXXKXXXKXXXKXXKKXXXK

DRSSO OO G OEI000.00.0.0.00.00.000.00.00.00.00.086.06.006.000.6680.00064
KXXXXKKXXKXKKXXXXKKXKXKXXKKX CODE

EPSON M X80 Iil MACHINE CODE SCREEN DUMP

by Timothy Powys-Lybbe

'fhe. following program was designed after
reviewing a number of screen dumps kindly = submitted
by members. It combines the best features of these
(I hope). It will print all graphics screens (i.e.
modes 6,1,2,4 and 5) taking two minutes in MODE
and eighty seconds in other modes: The program
automatically senses what mode is in use. The
listing also includes a simple demonstration which

BEEBUG MAG

Februafy 1983

Volume-1 Issue-9

10

illustrates how to use the assembler program from
within a Basic program. Alter 1line 28 for other
medes.

There are two versions of the program -~ one for
cassette (tested on 0.S @.1 and 1.0), and one for
disc (tested on 0.S 1.8). In both cases the machine
code routine is stored in an area of memory below
PAGE, and therefore requires no adjustments of PAGE
or HIMEM. The cassette version is stored in the
user area at &D@@, and the disc version is stored at
sA00. The user area at £D@@ is corrupted by disc
use, so we have used the cassette buffer and RS423
input buffer (at &A@g) for storage. This means that
the program cannot be used when RS423 input is in

progress, but this is not likely to be a problem to
most users. -

Both versions <can be saved and loaded
transparently in a similar manner to the technique

described by Gwyneth Pettit in BEEBUG No.7; and the
cassette version is just short enough so that the
@.1 Operating System Bug Fix program can be included
in the same area of memory, as long as the Bug Fix
starts at the address hex &DD@. The program by
Brian Carroll in BEEBUG No.7. works in the same way.
Finally the dump should work with all operating
systems and should also work across the Tube to a
6502 second processor.

Snacks Ltd Sales History

@
)
ot

Sales per annum — £m
[EN 1]
Q S [®
i i i i

[
=)
L

?5 76 77 ¥8 79 8@ 81 82

ENTERING THE PROGRAM ear

Obviously entering an assembler program is
difficult for those who are not familiar with
assembler. The listing below uses the BBC Micro
long variable name facility to make it easier to
recognise any errors. Spaces are one problem; in
the assembler program from lines 10048 to 16250
spaces are only needed after the names that start
with a full stop, "LineGap" for example.

Note that for machines with a disc

alter line 19036 to:

10030 P$ = &A0Q: [OPT PASS
Do not RUN the program unless you have first listed
it to your printer and saved it on tape (or disc for
the lucky few). This will save hours of re-entering
if you have made fatal errors.

When you run the program, you should get a random
picture drawn on the screen, and then this should be
automatically copied onto the printer.

Once a successful printout has been obtained, you
can destroy the Basic program and assembler code
(though it would be prudent to keep a copy) and Just
use the assembler code stored at &D@@ or &AG@.

interface,

To save the machine code only, use the command

*SAVE" ScreenDump” D@@ DD@ (cassette version)
or *SAVE"ScreenDump" A@@ B@d (disc version)

To load the machine code back into memory at any
time (transparently), use this command
*LOAD"ScreenDump” (cassette or disc version)

To print the screen from Basic after loading the
machine code use the command CALL &D@¢ (or CALL &AGQ
for a disc system); see line 1958 for the listing.
Remember though that on series one operating systems
(ie 1.6, 1.2 etc) you must turn on the printer with
a CIRL B (or VDU 2) before calling &D@@ (or &AGf),
and turn off the printer at the end with a CTRL C
{(or VDU -3). Thus the command:

VDU 2: CALL &D@8 (or &A@@ for discs) : VDU 3

will be needed to print a screen. If you are
using cassette and #.1 operating system, you can
save and load all of the function keys, the user
characters, this screen dump program and Brian
Carroll's bug fix. Execute:

*SAVE"Utilities" B@@ EgG DDJ <retd>
You can then load this back in, and run the screen
dump with:

*RUN"Utilities" <ret>

Thanks to Andrew Burke for the idea of putting
all graphics modes on one short program, to J.H.
Williams for his neat demonstration designs, to K.E.
Hussey for his idea of fitting the program into page
D hex for cassette use, and to all those others who
have written to us on this topic.

18 PROCScreenDumpAssemble
2¢° MODE@

38 PROCDraw

49 END

1009 DEF PROCDraw:REPEAT

1919 CLS

1629 FOR I=1 TO 10

1038 PLOT 86,RND(1280) ,RND(1824)

1049 NEXTI

1056 VDU2:CALL ScreenDump:VDU3:REM Use CALL &@D@@ (
&PA08 for disc) after assembler deleted

1068 CLS

1078 PRINTTAB(@,2)"Press SPACE to exit."

1080 PRINTTAB(0,6) "Press any other key to repeat."

1890 A=GET

1190 UNTIL A=32

1110 ENDPROC

1120 :

10000 DEF PROCScreenDumpAssemble
10019 xpointlo=&70:xpointhi=&71:ypointlo=§72:ypoint
hi=g73:pixelvalue=&74:printerbyte=&75:bitcount=g76:m
odef=§77 :step=&78 : OSWRCH=&FFEE : OSWORD=&FFF | ; 0SBYTE=&
FFF4
10028 FOR PASS=¢TO3 STEP3 ,’

BEEBUG MAG

February 1983

Volume-1 Issue-9

11

10039 P%=&D@0: [OPT PASS

10040 .ScreenDump LDA#&FF:STAypointlo:LDA#&3:STAypol
nthi

10050 LDA#@:STAmoded: LDA#4: STAstep: LDA#135:JSROSBYT
E:TYA:BNELineGap: INCnode: LSRstep

1996¢ .LineGap LDA#27:JSRPrinter :LDA#65:JSRPrinter:L
DA#8:JSRPrinter

16076 .NewLine LDA##:STAxpointlo:STAxpointhi

10080 LDA#27:JSRPrinter : LDAmodef :BEQModeAboved: LDA$7
6:JSRPrinter : LDA#128:JSRPrinter : LDA$2:JSRPr inter :BNE
NewColumn

1009¢ .ModeAboved LDA#75:JSRPrinter :LDA#64:JSRPrinte
r:LDA#1:JSRPrinter

19100 .NewColumn LDA#8:STAbitcount

16118 .ReadPixel LDX#xpointlo:LDY#0:LDA#9:JISROSWORD
19120 CLC:LDApixelvalue:BEQSetPrinterByte:SEC

10146 LDAypointlo:SEC:SBC#4:STAypointlo:BCSCheckColu
mnEnd:DECypointhi

19158 .CheckColumnEnd DECbitcount:LDAbitcount :BNERea
dpixel

19168 .Print LDAprinterbyte:JSRPrinter

19190 .NextColumn CLC:LDAstep:ADCxpointlo:STAxpointl
03:BCCCheckLineEnd : INCxpointhi

10200 .CheckLineEnd LDAxpointhi:CMP#5:BEQEndLine
10219 .ColumnTop LDA#32:CLC:ADCypointlo:STAypointlos
BCCNewColumn: INCypointhi :BCSNewColumn

19220 .EndLine LDA#1@:JSRPrinter

19239 .CheckEnd LDAypointhi:BMIEnd:JMPNewLine

10246 .End LDA#12:JSRPrinter :LDA#27:JSRPrinter :LDA#6
4:JSRPrinter :RTS

16250 .Printer PHA:LDA#):JSR&FFEE:PLA:JSR&FFEE:RTS
10260 JNEXT PASS

19130 .SetPrinterByte ROLprinterbyte 16270 ENDPROC =5
=)
N
ot 0° SPIROPLOT
?“,\ .3‘\6 by R.Sterry

This is a beautiful 1little program which generates pictures similar to those
produced by a 'Spirograph’. You define the size of the 'disc' that you want to use
and the position of a 'pen' within that disc (known as the 'locus' position). Many
an hour can be spent playing with this program in trying to produce the magnus opus
of computer generated spiroplots.

Some examples for you to try
in order to get the idea of things are:

Disc Size Locus
50 1.4
89 1.0
202 g.5
212 1.5
298 1.5

These examples should be enough to trigger youi' imagination. Happy designing!

10 REM* SPIROPLOT BY R. STERRY * g TO 1.5) *,M
20 ON ERROR OFF 98 IF M>1.5 OR M<@.81 GOTO 80
30 MODE?7 160 MODE4:VDU29,639;511;5
49 PRINT TAB(1¢)"S PIROPLO 11¢ vDU19,1,0,0,0,0,19,0,7,0,0,0
T*TAB (16) STRINGS (17,"=") 120 A=-360:C=A+B:0=0:REPEAT
50 INPUTTAB(@,12)"DISC SIZE (130 X=C*COSQ-M*B*COS (C*Q/B)
g TO 360) ",B . 148 Y=C*SINQ-M*B*SIN (C*Q/B)
60 IF B>360 OR B<#.B1 GOTO 50 15¢ IF 0=p MOVE X,Y ELSE DRAW X,Y
76 ON ERROR GOTO 20 160 Q=0+B/8P0:UNTIL FALSE
80 INPUTTAB(8,14) "LOCUS POSITION (=]

HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINT

*FX254 CALL
M.E.Horton sent in this hint.
computer into a 16k computer.
Try: *FX 254,&40
Then press CONTROL and BREAK together.

It provides a simple way to turn your 32k

After this, you should get 'BBC Computer
16k'. It provides an easy way of making sure that your programs will run on both
models. The call seems to work on a series 1 operating systems and is reset by
*FX254, &80.

[Ed: It seems that any value between @ and 127 will have the same effect as using
&40, and any value between 128 and 255 will do instead of &8@. For example you
could just use ¢ and 255]. ==
BEEBUG MAG February 1983 Volume-1 Issue-9

12

USING FILES
by Sheridan Williams

Sheridan Williams begins a series of articles on the use of files on the BBC
machine. It is hoped that this will be of interest to all those whose programs
involve data handling, both on cassette and disc. The article begins at an
introductory level.

All programs that perform data processing functions require some form of file
storage, otherwise we cannot continue to process data from one day to the next.
There are TWO main reasons why files are used:

1. To hold data over long periods.
2. To hold more data than can be held in the computer's main store.

There are three ways in which files can be held and these are:
1. In DATA statement.. 2, On cassette 3. On disc

Choice number one (DATA statements) unfortunately does not rid us of the problem
of limited memory space inside the computer. Choice number two (cassette) gets over
that problem but introduces the problem of long and tedious reading and writing of
the data to and from the file. Cassettes only read/write at about 10¢ characters
per second, so to process a 25k file (not particularly large in realistic data
processing terms) it would take 4 minutes. Also cassettes are severely limited
because they have no capabilities for positioning the tape accurately anywhere in
the file.

Thus if you wanted to change one field in just one record on a 25k file, it would
take 8 minutes to do - 4 minutes to read the whole file and 4 minutes to rewrite it.
You would also need a 32k machine for the file to fit.

Discs provide the best solution, however they are expensive compared to
cassettes. There is no avoiding the fact that many data processing applications
require the use of a disc, in this case the costs must be borne in mind. (See the
December issue for a brief comparison of 5 disc drives) .

FILES, RECORDS, FIELDS
Before we look at the statements in BASIC and some routines for file processing,
we must understand some of the jargon.

File - A collection of related records. An ordinary metal filing cabinet may
contain several files, or just one file, or even none! Similarly a
cassette or disc may hold several files. Examples of files would be:
Payroll file, Library book file, Criminal file, Stock file, Customer
accounts file, '

Record - A set of information relating to an individual item in the file. A card
index file contains individual cards, each card being a record. Examples
are: Criminal record, Library book record, stock record.

Field - A subdivision of a record. For example, a library book record would
probably contain some (or all) of the following fields: Book Title, Author,
Publisher, ISBN.

For the purpose of demonstrating files we will work with the following file
throughout this series of articles:

-~

Filename: PEOPLE RECORD DESCRIPTION
FIELD CONTENTS
1 Surname
2 Title
3 Sex (M or F)
4 Date of Birth

b

BEEBUG MAG February 1983 Volume-1 Issue-9

13

Suppose that we wish to write a program to find all the males in the file that is
stored in DATA statements. The following program will do this:

10 PRINT"List of all males in the file" 5¢ UNTIL surname$="#"

20 REPEAT 6@ DATA Bloggs,Mrs,F,240472
3¢ READ surname$,title$,sex$,dob$ 70 DATA Jones, Mr, M,171066
40 IF sex$="M" then PRINT title$;" 8¢ DATA Smith, Mr, M,020155
. surnames$ 90 DATA *, Kk, *, *

It is rather tedious, and a severe limitation to hold a file in DATA statements.
For example to add, delete, or amend a record held in DATA statements you need some
knowledge of programming, or at least be familiar with the BBC machine because you
are altering the program itself when you are changing the data statements.

So we turn to cassette and disc files. Commands associated with files are:
OPENIN, OPENOUT, PRINT#, INPUT#, BPUT#, BGET#, CLOSE#, PTR#, EOF#.

For the rest of this article, all programs given will work on a disc system or a
cassette system. [Beware if you have 0.S. 0.1 because you will have to run the "Bug
Fix" program (given in July 1982 BEEBUG) to cure the cassette filing bug]l. The term
for the type of file that we will be using in this article is a SERIAL or in some
cases a SEQUENTIAL file.

A file must be opened before data can be written to it, and similarly it must be
closed when you have finished.

On a disc system several files may be in use at once, for example a sophisticated
Payroll package may require all these files to be open at once:-—
Employee tax file
Tax table reference file
Employee name & address file
Tax authority payments file
For this reason, when a file is opened it is allocated a channel number.

For example, you open a file for output (ie to be written to) as follows:~
channel=0PENOUT" PEOPLE"
if you then PRINT channel you will find out what channel the computer has allocated
when this file was opened (probably 17). You needn't ever know the channel number
because you will always use a variable to represent it. Note that the same channel
number isn't always associated with the same file, in another program you may find
that the computer has allocated a different channel number.

If you try this in immediate mode you will hear the cassette relay click on, or
the disc drive start. It is writing the 'header' containing the file name to the
cassette or disc. If you now type CLOSE#channel then the cassette/disc would switch
off, and you will have created a file, albeit an empty one. This is analogous to a
filing cabinet with a label saying °‘Employee file’ on the drawer, but with nothing
inside.

To write data to a file is quite simple - you use the PRINT§ statement. (Make
sure you have a cassette or disc in situ). Proceed as follows:—

18 ch=OPENOUT" FRUIT" 20 PRINT#ch,"Apple","Pear" ,"Orange" 30 CLOSE#ch

If you want to prove that the data really has been put on the file then we must
establish how to read the data back from the file. To do this you must open the
file for input rather than output as we did before. We use the statement OPENIN,
We are now going to input data from the file, but stop for a minute; how will we
know when there is no more data on the file to read? The function EOF# is provided

for just this purpose. EOF# returns either true (-1) or false (@) depending on
whether the End-Of-File has been detected.

So we can use OPENIN and then a REPEAT UNTIL EOF# loop to control our input from

BEEBUG MAG February 1983 Volume-1 Issue-9

14

thc_e file. This ;s d9ne @n the program below (lines 5¢-19@). It reads back the data
written to the file in lines 10¢-3¢ above. (You can join both of these programs to
make one before you run them).

47 INPUT"Press 'return’ when ready 7% INPUT#chan,fruit$
to read back file",0$ 80 PRINT fruit$

5@ chan=OPENIN*FRUIT" 90 UNTIL EOF#chan

60 REPEAT 100 CLOSE#chan

[If you are using cassette, rewind the cassette before you read back the file].

Once the file is open you can write (print) as many items of data as you want to
the file, obviously at some point the cassette/disc will £fill up so this is the
upper limit to the size of the file. Files cannot realistically be extended across
to different discs or cassettes. It is wrong to open and close a file between each
write operation.

Each time a file is open for writing, the data is written to the BEGINNING of the
file, so that any data previously there is overwritten. For example this program
will only read back 'Apple’ even though you have written two fruits to the file.
Lines 1¢-3¢ write "Tangerine” to the file, then lines 4¢-60 write "Apple" to the
same file, However, lines 7¢-11¢ read (input) the data from the file, and yet you
will see that there is only one fruit (Apple) on the file.

10 c=OPENOUT"FRUIT" 65

2g PRINT#c,"Tangerine" 7% c=OPENIN"FRUIT"

3¢ CLOSE#c 80 REPEAT

35 9g INPUT#c, fruit$: PRINT fruit$
4 c=OPENOUT"FRUIT" 160 UNTIL EOFc)
50 PRINT#c,"Apple” 110 CLOSE§c

60 CLOSE#c

If you think about it, you will probably say that this is ridiculous because you
can never add anything to the end of the file, let alone modify one record in the
middle of the file. Each time the file is opened for reading or writing the record
pointer associated with that particular channel is set to the first record. There
are theoretically three solutions:

1. Load the whole file into memory, make the modifications, then write them all back
to the file. This is only feasible with a small file that will fit into MEMmory.

2. Use two tape recorders, read one record at a time from the file on one recorder y
if it doesn't need modifying then write it to the file on the second recorder, if
it does need modifying then modify it before writing to the second recorder.
Continue this process until the whole file is updated. However, the BBC micro
doesn't readily support 2 cassette decks.

3. As in 2 above, but using two disc files, one for input and one for output., (Note
that a disc can hold and process more than one file at once) .

4. Use a "random access" disc file. (We will cover this topic in a later part in
this series).

Next mont] ve, taking examples
from the cassette-based version of Masterfile.

NTS HINTS HINIS HINTS HINIS HINIS HINTS

SIDEWAYS SCROLLING

The Beeb has a ready-made command to perform a sideways scroll:
VDU23;13,A;0;03;0; where A represents the new position on the screen. See review of
Creative Graphics in this issue for further details but try:

19 FORA=1TO200 ! 30 VDU23;13,4;0;0;0;
20 TIME=0:REPEAT UNTIL TIME=100¢ 40 NEXT
For the reverse direction, alter line 1g to: FOR A=20@ TO 1 STEP -] =

BEEBUG MAG February 1983 Volume-1 Issue-9

15

BOOK REVIEWS

Creative Graphics on the BBC Microcomputer
Acornsoft 110 pages
By John Cownie price £7.50

Reviewer David Graham

Order from Acornsoft Ltd., Vector Marketing,
Denington Industrial Estate, Wellingborough,
Northants NN8 2RL

There have been a number of rather mediocre books
published about the BBC micro. This one stands head
and shoulders above the crowd, and reinforces
Acornsoft’s reputation for excellence.

Its relatively small number of pages are packed
with a wealth of ideas on the use of graphics on the
BBC micro., The book is logically laid out with the
following chapter headings:

1. Graphics Commands

2. Functions and Symmetry
3. The Third Dimension

4. Animation

5. Recursion

6. Pictures

It takes the reader who has a grounding in BASIC
from an introduction to the graphics commands on the
BBC machine, right through to the generation of a
number of animated sequences which make use of the
techniques developed during the course of the book.

The whole is skilfully managed, and the book
contains fully documented listings of 36
illustrative programs, many of which produce very
nice visual displays of their own, and most of which
will run with slight modifications on a model A.

Key to star ratings:
*%%%% Highly recommended.
Tk A useful book.
* Lowest rating.

Moreover full use has been made of the advanced
features of the BBC micro, including procedures,
which play an important part in the structuring of
the final animation sequences.

The one area of screen graphics that is excluded
from the book is the user defined characters. The
book concentrates on the kind of graphics that can
be produced wusing the PLOT command. This
intentionally omitted area might well provide the
material for a sequal: but in the meantime
Acornsoft are not giving away ALL the secrets of
games such as Planetoid !

‘There is an accompanying cassette (£10.00
extra) containing the 36 programs, but since most

BEEBUG MAG

February 1983

Volume-1 Issue-9

16

are very efficiently written - and therefore short -
it is not too much trouble to enter them by hand.

¢ REM Windy field

10 REM Copyright (C) Acornsoft 1982

20 MODE1

39 vDU23;18,32;0;0;0;

40 VDU19,0,4;0;19,2,2;0;

50 WIND%=0

60 FORY$=860 TO 780 STEP -40

79 PROCCLOUD (20@+RND (879) , Y%, 190+RND (140) ,80+RND
(29) ,TRUE, 3,0)

8@ NEXT

9¢ REPEAT

1090 WIND%=WIND%-1

119 VDU23;13,WINDS;0;0;0;

120 A=INKEY(12)

130 UNTIL WIND$=0

149 PROCGROUND(16)

154 vDu28,9,9,39,8

160 COLOUR128

178 A=INKEY (304d)

180 PROCDOWN (1@,80)

19¢ vDU28,4,31,39,10

200 PROCDOWN (22, 0)

21¢ VvDU19,2,3;90;19,3,7;0;

220 PROCSUN (609,700,1008, TRUE, 3)

23¢ PROCSUN (608,700, 209, FALSE, 1)

24¢ PROCCLOUD (40@,600,300,200,FALSE,2,3)

250 A=INKEY (300)

260 REPEATVDU19,RND(4)-1,RND(8)~1;0; :A=INKEY (200)
:UNTIL FALSE

27¢ END

280 DEFPROCDOWN (N%,D%)

29¢ FORI%=1 TO N%

309 vDU11

3190 A=INKEY(D%)

320 NEXT

33@ ENDPROC

349 DEF PROCGROUND(S%)

35¢ vbu28,0,31,39,10

360 COLOUR129

379 C1S

380 VDU26

Titl 30 Hour Basic
By: Clive Prigmore
Reviewer: David Graham

254 pages
price £5.95

This book bears the BBC owl logo, and is promoted
in connection with the Computer Literacy Project.
With the word "BBC" on both the spine and the front
page, would-be purchasers are likely to conclude
that this is a course for users of the BBC micro.
In this they would in my view be mistaken. The
programs in this book were written for, and tested

We publish below with permission from Acornsoft
the listing of one of the final animated sequences,
together with screen photos, to illustrate some of
the techniques used, and the quality of the programs
listed. This program - Windy Field - firstly
generates a series of billowy clouds which float
across a blue sky. A furrowed field is then rapidly
generated. The clouds then sink below the horizon,
and the horizon itself scrolls down. A new picture
is then generated with a sun partly obscured by
cloud. This picture then ripples through a series
of colour sequences (which may be speeded up by
pressing any key). As you will gather from the
length of the program, this is all achieved very
efficiently.

One of the most interesting points to note is the
use of the command VDU 23;13,X;0;0;8; to scroll the
screen sideways. X is simply the degree of scroll
leftwards. To scroll right, set this high, then
reduce it by stages. This beautifully simple
undocumented command is typical of the kind of

things that may be learned from this book.

39¢ GCOLg,2

400 VvDU29,640;0;

410 MOVE-640,70@:DRANG4E, 708
420 FORX%=-640 TO 640 STEP S%
430 MOVEX%,70@:DRAWA*XS,0

440 NEXT

45@ ENDPROC

460 DEFPROCCLOUD(X%,Y$,SX%,SY%,SCROLY,C1%,C23)

478 VDU29,X%;Y%;

480 L%=6+RND(8)

49¢ MOVEQ, 0 :MOVESX%+5X%/L%,0

508 X1%=SX%+5X%/10:Y1%=0

51¢ IF WIND$>120 THEN S%=-1 ELSE S%=1

520 FORI=@TO 6.3 STEP 4.1

53¢ IF SCROL% THEN VDU23;13,WIND%,0;d;0; :WIND$=WL
ND%+5%

548 X%=SX%*COS (I)+5X%/L%*COS(I*L%)

550 Y$=SY$*SIN(I)+SY%/LE*SIN(I*LY)

560 GCOLZ,C1%

57¢ MOVE32,12:PLOT85,X%,Y%

580 MOVEX1%,Y1%

596 GCOL@,C2%:DRAWXS, Y%

600 X1%=X%:Y1%=Y%

610 NEXT

620 VDU29,8;0;

630¢ ENDPROC

640 DEF PROCSUN (X%,Y%,S%,RAYS%,C%)

650 VDU29,X%;Y%;

660 GCOLZ,C%

678 MOVE4,12

680 T$=TRUE

69¢ FORA=g TO 6.3 STEP #.1

700 MOVEQ,

710 X%=S$*SIN(A)

720 Y%=S%*COS(A)

73¢ IF RAYS% AND T% THEN MOVE X%,Y% ELSE PLOT 85,
X%,Y%

740 T$=NOT T%

756 NEXT

760 ENDPROC

on a PET - since BBC micros were not available when
the course was designed; and this text book ignores
all the innovatory features of BBC Basic. For these
reasons BBC micro users would I believe generally do
well to steer clear of it.,

Before backing up these allegations let me
present - the plus side of this book. It is quite
well produced, gives you a lot of pages for your
money, it has a spiral spine so that it will lie
flat while you are keying in programs; and above

BEEBUG MAG

February 1983

Volume-1 Issue-9

17

all it is a structured text (though unfortunately
one that does not teach structured programming), and
it has self assessment questions at the end of each
unit.

But let us see just what a BBC Micro user would
miss if he followed the course.

There is nothing on procedures.

There are no REPEAT,.UNTIL loops.

There are no IF..THEN..ELSE statements.

There is almost no use of long variable names.

There is nothing on integer variables.

There is nothing on sound or graphics.

All modes but Mode 7 appear to be ignored.

The TAB function has no Y dimension.

There is nothing on error trapping.

The RND function is not properly used.

There is nothing on *FX calls, the function keys,
or the use of TIME, PAGE, HIMEM etc.

This is a quite unbelievable list of omissions,
but the BBC micro user has more to contend with.
The listed programs are of a general nature, and
contain many additional notes with advice for the
BBC micro owner. For example in the dice throwing
program listed on p. 17¢ it says "BBC: 6@ omit line
". Line 6@ is the RANDOMIZE command available on a
number of extended Microsoft BASICs, but not on BBC
Basic. Its function is to shuffle the random number
generator called by the command RND. Deleting the

line will remove the randomness of the results. BBC

owners should have been told to replace line 68 with
60 A% = RND(-TIME), which has the same effect as
RANDQMIZE.

There are two points to be made here. Firstly
the BBC owner should not have to follow a number of
corrections in order to make a program run on his
machine, and secondly the corrections are not always
correct, and in some cases are left out altogether.
For example the program on p. 174 will not run
because the RANDOMIZE has been left in.

If you are a relative beginner to BASIC, and are
using a more primitive computer than the BBC
micro, then this book could certainly be of use,
though its lack of machine-specific treatment and
absence of graphics will limit this use. But if you
are using a BBC micro then you should not buy this
book. I say this partly because of what the book
lacks; and the 1list above makes very depressing
reading; but perhaps even more so for a second
reason: the relatively unstructured programming
that this book fosters.

If you were learning to fly a jumbo jet, you
would get only relatively little use from a Gipsy
Moth manual - and you might even learn some bad
habits. This is presumably why the NEC and BBC are
getting together to bring out a real jumbo Jjet
version in the near future - we will keep you

Titl The BBC Micro Revealed
By: Jeremy Ruston
Reviewer: David Graham

144 pages
price £7.95

This book bears the same form of title wording as
the first rate book on the PET ~ "The PET Revealed"
by Nick Hampshire - and the companion volume - "The
Vic Revealed" by the same author. But Jeremy Ruston
has not in my view produced the same calibre of
magnium opus.

In the first case the Ruston book carries no
index OR contents page, so that it is difficult to
find your way to its various sections without
reading from start to finish, and even then
subsequent reference will not be easy.

In fact the book contains four sections
Section One (pS5): The 6845 CRIC

Section Two (p36): Memory Locations

Section Three (p1@2): Basic Program Storage
Section Four (pl1¢9): Basic Variables Storage

Section one looks, as its title suggests, at the
video controller chip, and its registers, and shows
a number of tricks that can be achieved by
addressing them directly.

Section two is by far the longest section of the
book, and is the most problematic. Essentially it
gives the functions of a whole series of locations
in RAM that are used by the operating system to
store such things as cursor coordinates, or current

palette, and also buffer areas. Generally speaking
the BBC machinés FX and OSBYTE calls make such
details somewhat redundant for normal programming
purposes, added to which, if you do PEEK the
locations given by Ruston in a program of your own,
then it will not work across the Tube. Having said
that, there is a more serious problem. Ruston has
done his detective work on a machine fitted with a
@.1 operating system; and when I tested a sample of
the locations specified, none of them worked with
the series one (1.0) operating system that I was
using.

The largest section of the book is therefore
unfortunately rendered out of date with the advent
of the new operating system; and although a note at
the start of the section makes this clear, there is
no warning on the cover to alert the reader to this
fact before he purchases the book.

Section three usefully explains the way in which
BASIC programs are stored in memory and contains a
neat program for listing all of BASICs reserved
words with their tokens, direct from the machines®
look-up table. Section four discusses the storage of
variables, and 1like sections one and three makes
interesting reading; but even without the 0.S. @.1
problem the book can never be “destined to become
the bible of the BBC user” as Personal . Computing
Today is reported to have claimed: the ground that
the book covers is far too limited. The BBC micro
is a very complex machine, and the Bible is a very
LARGE book.

Title: Assembly Language Programming for the BBC
Microcomputer 365 pages

By: Ian Birnbaum price £8.95
Reviewer: Colin Opie

Published by Macmillan Press, this book helps
enormously to f£ill a gap in readily available
publications concerning different aspects of home
computers. It is also a pleasure to see such a book
printed and published in England, rather than yet
another import from across the water, though one

would expect this as the book is concerned with the
BBC computer.

In essence I believe the author has done a first
rate job. Many books exist on 6502 Assembly
Language programming but there is a definite need to

‘apply low-level techniques to a particular machine.

The operating system and general environment of
different machines means that varying facilities are
available to individual users. The author has
exploited and discussed well the art of 6582

BEEBUG MAG

February 1983

Volume-1 Issue-9

18

pregramming on the BBC microcomputer. He has useful.. Despite the sometimes poor layout as
resisted the temptation to spend too much space on mentioned = above, the author has produced -an
detailed explanations of each machine instruction, extremely useful aid to anyone with a BBC
and has supplied vast quantities of examples 1inked microcomputer wishing to learn or improve
to adequate instruction descriptions. programming at assembly level. I would heartily
recommend the book as a self teaching text and would

The book is split into 10 chapters and 9 not hesitate to use it as a text book with students.

appendices. All but one of the chapters relates to
programming, the remaining chapter (18) being

devoted to some utility programs. Appendices cover Globe Book Services are offering a
the 6502 instruction set, useful information about 10% discount on this book to BEEBUG
using the BBC computer, and a few odd discussions on members. See the-advert on page 50 of

‘floating point representation’ and ‘indexed
indirect® addressing. One exceptionally useful
facet is the number of exercises supplied, with a
full solution to each one given at the end of the
book.

the supplement.

STOP PRESS
In terms of layout I think it a pity that so many
different type faces are used, and that their use is

not consistent throughout the book. The appendix on Last minute addition to book

the 6502 instruction set is hand-written although discounts. The following shop stocks
very readable. More spaces could have been used in computer books and -~ will offer free
the majority of program listings to make them more embe: 1ease
readable. As it is there are often pages which have postage to BEEBUG m rs. P

a listing squashed up on the left hand side with the telephone to check stocks.

rest of the page completely blank. Appleby, Myers & Clarke: 60 Market

St., WATFORD. Tel:31960.

Two tapes can accompany the book if desired and
cost £9.0¢ each or £16.60 if bought together.
The book does not require the tapes to make it

=

BEEBUG SOFTWARE COMPETITION RESULTS

We had twice as many entries for our second software competition as for our
first; and were pleased to see some quite novel ideas amongst the entries., We have
used the same judging criteria as for the last competition, and these were outlined
in BEEBUG no 5. This time we have given a total of over £80¢ worth of prizes.

PRIZE-WINNERS

332333333333V TSN

£200 M Tilley Debugger * £20 A Baker Tune *

* . * £20 D T Blyth Compacter ‘k

* £50 J Banks Space City £20 E D Carter Ohms-Law *

¥ £56 J Hardie Life 4 £26 N Mallinson Dive Bomber
£50 R R Hull Beebmaze * £20 K Penton T.Bug. *

* £50 B J Kilby Five Dice £20 G Pomfret Subsearch 4&

3 £50 S Wilkinson Racer £20 Mrs J E Sey Elements

N T T T T TS ST TN ETY .

V2232333333333 33T ITET T

* £15 Prizes: L P Baxter, G K Blackwell, B Carroll, M Case, S J Curtis, P Giblett,‘k
* C J Hall, Lynton Jones-Ng, I Pomeroy, D Seaton, T Segall, K Stephenson, C Walton, *
J Webb.,
£1¢ Prizes: M Harman, M Humphries, R Moseley, A Paskins, A Schild, Mrs. E Shone. 'k
Once again, we would like to thank all those who entered, and encourage entries *
* for our next competition., Full details appear in this issue.

«
P 33 3333333333333 3333FT 3T THTETEY

BEEBUG MAG February 1983 Volume-1 Issue-9

19

DISC ROUNDUP

MEMORY SHIFT ROUTINE

Object: To run large cassette programs from disc.
Method: ILoad software from disc and then shift it
down.

Many existing cassette programs are too large to
run on a disc machine. The reason for this is that a
cassette machine is able to start storing BASIC
programs from location &E@@. In a disc system this
start location is &1900, the area between these two
locations being used for various disc operations - a
loss of about 2.5K of program memory.

When the need arises it would be wuseful to
retrieve this space so that a large cassette program
can then run on a disc system. To do this
automatically we need to load the program from the
discs into the normal program area at &19¢@, shift
it down to &E@@, set up a few variables and then run
it.

Given below is a one line program which will
define one of the function keys to perform this

'shift+run’., Type the program in and save it on disc
with the name "SHIFT®. Each time you need to set up
the function key type:
CHAIN "SHIFT® <return>.

Assuming the function key is set, to shift a program
simply LOAD it into memory and press function key 9.
This will automatically run the program. If you
ESCAPE from the program you need only type RUN to
restart it. Pressing BREAK will re~instate the disc
system but the program will now be lost from memory.

Program:
19*KEYOFORI$=0TOTOP-PAGE STEP4:I%!&E00=1%!&1900:
NEXT| MPAGE=&E®@ | MEND | MLOMEM=TOP | MRUN | M

Note that the SPACE between the words PAGE and STEP
is important.

In 'Practical Computing' (FEB'83 p.71 =
listing 2) there is a machine code program which you
can append to the beginning of your programs to
perform this shift operation - though we have not
tested it).

CNO/RP

AUTO START

Object: To run a program automatically when shift
and Break are pressed simultaneously.
Method:Use *OPT 4,3, *BUILD and 1BOOT.

When using a BBC micro with discs, an option is
available to automatically perform a *RUN or CHAIN
or *EXEC function just by pressing the shift and
break keys simultaneously. The following shows the
steps necessary to define the user keys
automatically in this way.

The file of key definitions is created with the
*BUILD utility. The special file MUST be named !BOOT
(the reasons for which are of no consequence) .
Execute the following:

*BUILD !BOOT <return>
1 *KEYG |ORUN|M <return>
2 *KEY1 [N{LLISTIM|O <return>

9 *KEY8 |0|BJLLIST|M|O|C <return>
19 *KEY9 DIMP%-1|MP.HIMEM-P%, TOP-PAGE|M <return>
11 <press ESCAPE>

Follow this with: *OQPT 4,3 <return>

Line numbers are given automatically by the
*BUILD command and are always in steps of one. At
the end of each line press the RETURN key, and at
the end press the ESCAPE key (just as the AUTO
command is used in BASIC).)

The command at the end of the above sequence,
#*OPT 4,3 sets a marker on the current disc to
indicate that the file should be brought into memory
with the #*EXEC command. This takes place when you
hold down the shift key, press and release break,
wait a second or two and release the shift key. If
you release the shift key too soon then an ordinary
BREAK will occur. Different values of n for *OPT 4,n
will indicate:

(n=@) :NO ACTION;

(n=1) :CHAIN THE FILE;

(n=2) :*RUN THE FILE.

In all cases the file must be named !BOOT.

In some respects you: can achieve greater
flexibility by using !BOOT to chain in another
program. This simply involves making line one of

1BOOT take the following form: CHAIN "D.name", where
name is the name of the program that you want to
auto-boot, and D is the directory that it is in. The
program could be a keyset routine, as above, or it
could be a disc menu, or just a favourite program.

TEXT FROM DISC

Object: To read in text directly from disc during
the running of a program. This is extremely useful
for providing program instructions etc, without
taking up valuable memory.

Method: Use *TYPE (fsp) and *BUILD (fsp).

THE COMMAND *TYPE (fsp) in a program will cause a
text file with numbered lines to be sent directly to
to the screen from disc. If the file contains more
than a screenful of text, VDU14 (Control N) may be
used for paging purposes. The text file can be
easily generated using the *BUILD command.

For example, suppose you wish to provide the

instructions for a game in this way. You could begin
by typing *BUILD $.TEXT1

then type in the text (the 1line numbers appear
aut- omatically), and the text is automatically
saved to disc under the title $.TEXT1. To escape
from #BUILD, press ESCAPE,

In the games program, the following can be used:
80 PRINT" INSTRUCTIONS?®
. 90 ON INSTR("YyNn",GETS) GOTO
106,100,130,130 ELSE 9¢
188 VDU14
118 *TYPE $.TEXT]
126 VDU15

136 REM ** MAIN PROGRAM **
DEG

BEEBUG MAG

February 1983

Volume-1 Issue-9

20

MERGE

CObject: To merge 2 programs.
Method: Use *SPOOL and *EXEC.

To add program A to program B, where A could be a
procedure or second program.

1. load program A into the machine.

2. Renumber program A so that the two sets of
program lines do not clash. It is usual to make the
line numbers of A greater than those of B.

3, *SPOOL "name" <return> where name is any name
to be applied to program A.

4. LIST <return>

ACCIDENTAL PROGRAM LOSS

Object: To avoid accidental program loss.
Method: By keeping backup copies, and ‘'locking’
files on disc. ’

To cover yourself against accidental program loss
always keep & backup copy. These can be
conveniently saved in directory B. Thus use:

‘ SAVE "TEST1"
and also
SAVE "B.TEST1®

To be doubly sure, you can use *ACCESS (fsp) L to
“"Lock®” a file, and prevent it from accidental
erasure. Also it is best to keep the backups on a
different disc in case of disc failure.

BEWARE OF *COMPACT

When you use *COMPACT to compact a disc it will
wipe out programs in memory. This creates an easy
trap for the unwary. Suppose you have just finished
developing a program, and decide to save it to disc.
You try, but are informed that the disc is full. You
are sure there is plenty of room on the disc so you
*#COMPACT. You may have been right, but you will not
need the space now, since *COMPACT will have
destroyed the program that you were about to s-avel.)‘j;G

- commands in BEEBUG no.8 E.Q).

5. *SPOOL <return>
This process creates an ASCII file of program A on
disc - i.e. it is not stored using tokens for Basic
commands. To append this to program B, continue as
follows:

6. Load program B

7. *EXEC "name" <return>
This completes the operation. The *EXEC command
reads in data from disc as if it came from the
keyboard (hence the need to de-tokenise the Basic
with *SPOOL) .
Note that where line numbers clash, those of A will
obliterate . those of B.
DEG

MICROWARE DISCS

We reported in the Disc System Review in our last
issue that we had a drive fault on one of

Microware's 18¢k drive units. We have since tested
two similar units of theirs for a period of several
weeks, without the recurrence of the fault. This
suggests that the reported fault was not typical of
the batch. At BEEBUG we have purchased one of
Microware's larger drives, and have had no problems
with this one either.

DEG

NO DOS MANUAL & NO UTILITIES DISC

If you order a disc interface from Acorn, you
will not receive an operating manual for the system.
Acorn's policy has been to supply these, and a
utilities disc (essential for formatting discs
before use) only when you buy an Acorn drive. As we
said in our last issue, it was not acceptable in our
view to sell a product (i.e. a disc interface and
operating system) and then refuse to provide a
manual for its use. We have been in discussion with
Acorn about this, and they have decided to sell the
utilities disc and manual together at a price of
around £3¢, obtainable from Vector Marketing. This is
clearly pretty expensive, but it does provide one
way out for those stranded with non-Acorn drives and
no way to use them.

In the next issue, if all goes well, we shall be
publishing a disc formatting program together with
details of the DFS (Disc Filing System) commands.
(We have already given brief notes on these DFS

B

JINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS

*FX18 CALL
Those of you lucky enough to be running an 0S from 1.0 onwards may like to

be reminded (or informed!) of the

Hoffman for this one.

*FX18
defined keys so that they no longer contain character

instruction., This will reset the user
strings. Thanks to David

DEFINING KEYS

Roger Wilson has noted that under certain circumstances a colon can not be

used in place of IM when defining strings for keys through the use of

*KEY. The

important point is that colons can only replace the newline code when the resulting

string might be interpreted as a sensible BASIC line.

For example, OLD can be

followed by the newline character and other text, but it may not be followed by a
colon because it cannot be part of a BASIC program.

LAST LINE

Douglas Nunn has found a way of quickly determining the last line number in

your program. Press the (CTRL) and (SHIFT) keys down and then hit the

twice. On

(ESCAPE) key

releasing the Keys the message "Escape at line XXXX" will appear, where
XXXX is the last line number used. This is especially handy after

renumbering, or

when appending programs to each other. The operation works on any 0S.

BEEBUG MAG

February 1983

Volume-1 Issue-9

21

BBC BASICS — PROCEDURES —
by Rob Pickering '

This month our column for the less experienced user covers procedures and their
use in structured programs.

WHAT IS A PROCEDURE ?

Although it is perfectly feasible to write programs for the BBC Micro without any
knowledge of procedures, there is no doubt that their correct usage leads to a far
superior program. But beware; using procedures wrongly can be much worse than not
using them at all!

Think of a short part of a whole program, which carries out one minor task within
the program. A few lines which, say, wait for the user to press a key before
continuing. Assume that this minor task will be performed several times within the
program, which is fairly typical. We could enter the same lines at each stage of the
program where it is required, but this is tedious and takes up a lot of memory. What
we do is make the relevant group of lines into a collective unit called a procedure.
So you can think of a procedure as being a section of program which performs a given
task as many times as required. It is similar in some ways to a subroutine (ie.
using GOSUB...RETURN) but has certain advantages over the subroutine.

Each procedure is given a name to distinguish it from other procedures. A
procedure name is very similar to a variable name, but with two real differences:

(a) they must always start with the keyword "PROC" in order to distinguish them
from variable names,)

(b) they may not end with a "$" or "%" symbol.

Choosing an appropriate name for a procedure is very important, not only to make
the program understandable to other people, but also to help yourself to. remember
what all the procedures do. Since the purpose of our example procedure is to wait
for the user to press a key, it seems sensible to call it "PROCwait". Note also that
using lower case letters for the name helps to make it clearer to read. Here then is
our example procedure in full:

10¢ DEF PROCwait 120 key=GET
118 *FX15,1 138 ENDPROC

As you can see this is only a simple short example and as such it is not typical
of the usual length of procedures. You will notice that line 190 starts with the
letters "DEF", short for DEFINITION. It simply informs the computer that this is the
start of a procedure that we are 'defining’. We only have to define a procedure once
within a program, then to use it we simply state its unique name. For instance, here
is an example of how we might use PROCwait within a program. Try it out and see what
happens. Line 4@ is particularly important here since it stops the computer trying
to execute the procedure an extra time.

14 PRINT"Press any key to continue..."

20 PROCwait

3¢ PRINT"Thankyou."

40 END

Notice that we do not need to know at what program line the procedure starts in

order to use it. The BBC Basic holds a list of where the procedures are in the
program, each location being stored when the procedure is defined. This means that
when you use a procedure the Basic does not have to search all the way through the
program in order to find the right one, hence obtaining fast operation. You should
also realise that there is nothing declaring which instruction to go to at the end .
of a procedure. BASIC takes care of this for us as soon as it reaches the ENDPROC
statement, passing execution back to the instruction following the one which called
the procedure.

BEEBUG MAG February 1983 Volume-1 Issue-9

22

PARAMETERS

You will inevitably have heard of parameters, but may not know what they are, or
what their purpose is. To explain how they are used in the context of procedures, we
will consider a variation upon our previous example of a procedure, in which we
would like to wait for a number of seconds before continuing, rather than waiting
for the user to press a key. We will initially assume that the delay time is Ffixed
at five seconds. This time the procedure is to cause a delay rather than waiting, so
a sensible name would be "PROCdelay”, as given below:

100 DEF PROCdelay 130 REM Do nothing
116 TIME=0 140 UNTIL TIME>100%5
126 REPEAT 150 ENDPROC

Now to cause a five second delay we need only to use the statement "PROCdelay”.
But uses for a fixed delay are comparatively few. It would be far more useful to
have a procedure that would wait for a specified length of time, but be able to
specify that time when we use the procedure. One way to do this is to replace the
number 5 with a wvariable in 1line 140 of the definition, then we just store the
required number of seconds in that variable before using the procedure. However,
this is a very bad way to use a procedure (which will be explained in due course).
What we should do is use a PARAMETER. Look at the procedure below:

100 DEF PROCdelay(secs) 13¢ REM Do nothing
116 TIME=0 140 UNTIL TIME>10@0*secs
120 REPEAT 158 ENDPROC
A parameter is simply a value which will be used by the procedure in order to
carry out its task. We use the expression “parameter passing” for the way in which
values are passed from the main program into the procedure. Here, the procedure
~definition includes a Parameter, (a variable named "secs") which will determine the
number of seconds delay. The variable name "secs" in the definition applies to a
variable which will exist in the locality of the procedure only. This concept of
"LOCAL' and 'GLOBAL' variables requires careful consideration.

LOCAL AND GLOBAL VARIABLES

Something which exists inside a procedure definition is said to be "LOCAL" to the
procedure, A reference to something outside the procedure is said to be a "GLOBAL"
reference. When a variable name is given as a parameter in the procedure definition
it does not then use a variable of the same name from the main program. What happens
is that when we use the procedure we must give a parameter there too. The value
given in the call to the procedure is automatically copied into the procedure's own
local variable. An example will help to make this clear,

10 secs=100 7% END
20 FOR s=1 TO 4 108 DEF PROCdelay(secs)
3¢ PRINT"Value of 118 TIME=g
secs in main=";secs 115 PRINT"Value of secs in PROC=";secs
4¢ PRINT"waiting ";s;" 120 REPEAT
seconds." 136 REM Do nothing
50 PROCdelay(s) 140 UNTIL TIME>1@@*secs
60 NEXT s 15¢ ENDPROC

Enter and Run the complete program above which demonstrates that the variable
called "secs" in the procedure is actually a different one from the variable "secs"
in the main program. In the main program "secs" is simply set to the value 190 and
not used, but the fact that the variable of the same name within the procedure
varies demonstrates that they are separate. Also notice that the value of "s" in the
main program is copied (passed) into the procedure parameter "secs" automatically as
the procedure is called with "PROCdelay(s)".

It is not necessary to give a variable name in the procedure call, e.g. the
command "PROCdelay(5)" would be perfectly acceptable, causing a five second delay.
The early user guides stated that it was not possible to pass strings to procedures.
This is not true, you may pass strings to procedures, but remember that the type of
parameter MUST match the type of variable in the definition. A fact which limits the

BEEBUG MAG February 1983 Volume-1 Issue-9

23

usefulness of procedures in BBC Basic is the anomaly that parameter passing

techniques - cannot be applied so as to pass a value back to the main program through

the use of local variables, (see article in BEEBUG vol.l no.3, p26).

Local variables are not limited to those which we use as parameters, in fact we
can make all the variables within a procedure local to itself. To achieve this we
are provided with the BASIC command " * which is followed by a list of all the
local variables. The effect of doing this may not seem very important, but it is.
Using all procedure variables as local means that you are not relying upon a
specific variable existing within a program, and consequently the procedures become
of common value to more than one program. It means that you can take a procedure
from someone else and need only know what task it performs, its name, and what
parameters it needs. You don’t have to worry about it upsetting any variables in
your own main program. The whole idea of having a collection or library of common
procedures is very important, preventing unnecessary duplication of effort and
allowing programs to be written much more quickly. Looking back through past issues
of BEEBUG you should come across some useful procedures in our "Procedure/Function
library” column - BEEBUG vol.l no.5 p.28 carries an index.

STRUCTURED PROGRAMS

An important topic related to the use of procedures is that of structured
programming. To explain what this is to newcomers who may not have encountered it
before, we could say that it is a way of writing programs so we can actually see
what they do. The first section of the program is called the MAIN section and
contains generally very ‘'readable® code, calling upon each procedure to carry out
its task when it is needed. The other main section of the program is merely a
collection of all the procedure definitions. This 'standard® layout is exemplified
by the following typical program. See if you can tell what it does without having
any idea of the actual programming involved in the definition.

PROCtidy up
END

REM *%%% MAIN PROGRAM #*#%*
PROCtitles ‘ i
PROCinitialise
REPEAT
PROCoption menu
choice=FNoption
IF choice="C" PROCcreate file
IF choice="E" PROCedit file
IF choice="U" PROCupdate file
UNTIL choice="STOP" -

REM #**%* DEFINE ALL PROCEDURES
DEF PROCXXXKKXXX

ENDPROC
DEF PROCXXXXXXXX

coo

ENDPROC
DEF PROCKXXXXXXX

000

P

Without much difficulty we can see what this program might do. This is shamefully
un-typical of most programs we see in magazines, even BEEBUG. It is a reflection of
the way in which few people ever sit down to write a program knowing what they want
it to do. Just as they get started they suddenly think of something else it could do
and squeeze it in where it shouldn't be. Then there are the other problems that they
find something doesn't work and decide to remove it. Of course, they can't find all
the little bits concerned, and confusing pieces are left where they shouldn't be.
The GOTO statement is another "nasty' leading to over complex programs. The ideal is
to avoid GOTO statements as far as possible because they tend to foster bad program
structure.

§o if you are just starting out in programming, beware of the messy badly
designed programs that your forerunners have written. None the least of which is
mel !

BEEBUG MAG February 1983 Volume-1 Issue-9

24

SOETWARE UPDATE

In this column we will be bringing you updates ‘and ideas for use with programs in
the software library - this will include the word processor package Wordwise.

DISC CONFIGURATIONS

At present all BEEBUGSOFT programs are cassette-based. To load them on a disc
machine execute TAB/BREAK (or *TAPE) before loading. Note however that some
programs {eg. 'MAGIC EEL') will run out of memory unless you also type PAGE =&E@0
<return> before loading. This is necessary because machines with a disc interface
fitted use an extra 3K of memory for the disc work-space, unless you reset PAGE in
this way.

MASTERFILE

Instructions are given in the documentation of Masterfile to configure it for
printer output. As the documentation says, the lines to look for (2008-2999) are in
the FIRST program (ie. the header) - A number of members could not find them because
they were looking in the main program.

MOON LANDER
Keyboard responses on MOONLANDER can be improved by employing the negative INKEY
function. To do this make the following alterations:

45¢ IFINKEY(-82)GOTO61¢ 47¢ IFINKEY(-103) YS=YS—-0.@4:FUEL=FUEL~]
460 IFINKEY(-184) YS=YS+0.04:FUEL=FUEL~1 48@¢ IFINKEY(-68) K=K-@.@1:FUEL=FUEL-2

WORDWISE IDEAS 1 - (More next month)

When editing text, try using option 5 - Search and Replace (Selective). This
will accept very long strings, and spaces are permitted, allowing whole phrases to
be corrected. ‘This is much quicker than working through the text with the cursor,
and performing manual corrections. You can also press Return on an empty replace
string, and then press Escape when Wordwise asks whether to replace it or not. This
will 1leave the cursor at the point required, ready for manual editing. Note that
for all operations under option 5, the search is only carried out from the current

cursor position. This enables you to work your way through a text very efficiently.==5]
S i

INFO INFO INFO INFO INFO INFEO INEO INFO INEO INEO INEO
ON ERROR BUG

Thanks to Eddie Atherton for highlighting this one. There appears to be a small
bug associated with the ON ERROR GOTO statement. Try typing in the following mini
program exactly as listed, including the REM and comments. Then run it, hit escape
to exit and relist it. The result is a corrupted program.

This only happens when the REM and comments immediately follow the GOTO, and
actually include a keyword. The computer has attempted to tokenise the keyword ON
ERROR, even though it is only a comment.

10 ON ERROR GOTO 4@: REM ON ERROR EXIT 3¢ PRINT"this routine"
20 PPRINT"Testing” 40 END

MORE JOYSTICKS

We received a review model of another joystick from CompUtopia Ltd of Leighton
Buzzard. They are 'T' shaped joysticks with a 2 dimensional paddle at the top and a
small push-button on the stem. Their size and shape make them easy to hold and
there 1is no doubt as to which way round you should use them. The push-button is in
a convenient position for ‘thumb®’ operation, though its small size could give rise
to a slight "imprint' on your thumb if you play for an hour or so. Value for money:
they are as good as others in the same price bracket, and certainly as sturdy.

Sold as a pair for £14.5¢ (inc. VAT) plus. p & p, they are available from
CompUtopia Ltd., 3@ Lake St., Leighton Buzzard, Beds. LU7 8RX. Tel: (@525) 376600.55

BEEBUG MAG February 1983 Volume-1 Issue-9

25

D03 ' .
%@‘oxf‘ 0% PROGRAM COMPACTER (Revisited) (16k)
?e‘% o0d Text by Colin Opie Program by David Tall
In the DECEMBER (BEEBUG vol.l,no.8) issue we had £@ PAGED MODE 6 £f4 *RUN
an article on compacting Basic programs. The concept £1 LIST £5 RUN
of being able to squeeze large programs into a small £2 COMPACT £16 OLD

space seems to have stirred the imagination of a
number of members. Perhaps a craze has been started
which will be second only to space invader programs?

David Tall wrote to us a number of times with
suggestions on how to improve the initial program.
The problem with the published one was that because
of the way in which destination 1line numbers are
stored for GOTO, GOSUB, and RESTORE, the program
will occasionally corrupt the program to be
compacted, because it mistakes a destination line
number code for a REM token; though this never
happened in our tests. The problem with modifying
the compacter was that it would become too long for
the area of memory allocated to it.

The ‘'super-compacter' presented here, written by
David Tall, gets around all these problems. As it is
in machine code it is fast, will fit below the
cassette PAGE boundary, and work regardless of
whether or not a disc system is fitted. It will also
remove comments from assembler listings. All in all
we think that you will like this update on what is
an extremely useful utility.

OPERATION
The program copes with three independent choices.
When used it offers the choices as follows:

SPACES? To remove spaces
REMs? To remove Basic REMs
CMs? To remove Assembler comments.

If you don't have any assembler code then it will
not matter what reply you give to the third choice.
Note also that whereas REM deletions will remove the
whole REM, deleting assembler comments only affects
a comment from the \ symbol up to, but net
including, the next separator (ie. a colon).
Therefore: .

12¢ A=B:REM this is a remark:X=Y
reduces to:
12¢0A=B
but.:
20¢ [LDAs7@\this is a comment:STA&72]
reduces to:
209 [LDA&70 : STA&72]

The program is located from &BSF to &CFF, using
all of the user defined character space (though this
is of no consequence since there is no need to RUN
the program to be compacted), and part of the
user-key huffer space. There is still room to define
same keys however, and to make use of this fact the
version listed in this article uses 7 of these keys
for a purpose

10 REM PACK2 (c) David Tall 1982
20 REM version 1.20

30 REM (inspired by Graham Taylor's PACK)
40 REM Machine code version

50 REM to reside in pages &B@d, &C@O

60 REM RUN the program & then

70 REM *SAVE -"PACK2" B@S D@@ B73

80 REM The *SAVEQ program may be *RUN

96 REM to compact BASIC programs.

100 REM Reply Y to SPACES? to remove

116 REM redundant spaces. <Necessary .

120 REM ones such as the one in

130 REM IFA=B C=D will be kept.>

140 REM Reply Y to REMs? to remove REMS.

£3 FREE SPACE

SETTING UP PACK2

The procedure for setting up this version is
simpler than the previous one and is identical for
disc or cassette use.

1) Type in the Basic program and SAVE a copy for
the sake of safety. A lot of the program is machine
code so be very careful as you type it in. Anything
after (and including) the '\' character in a line of
machine code, up to the end of that 1line, may be
discarded as this is a comment only. It is vitally
important that you do type it in correctly because
if you do not the program will not run, and no
sensible error messages will be displayed.

2) RUN the program.
3) Perform a *SAVE "PACK2" B@@ D@@ B73

After the above operations you should have two
things on tape. One is the assembler listing (or
source code), the second is the actual machine code
which you will execute each time you want to perform
& compaction. It is this second copy which will now
be referred to as 'PACK2'.

USING PACK2

There are two ways of running this version. First
Load in the program to be compacted. Then you can
perform a *LOAD "PACK2® in order to load the
compacter into memory, and then use key- £2 to
compact your program. Alternatively after loading
the program to be compacted you could simply do a
*RUN "PACK2" which will automatically load (from
tape or disc) the machine code, and then run it from
the execution address &B73. Incidentally with a disc
system (and therefore 0.S 1.8) you can in fact just
type *PACK2 and the disc operating system will
search for PACK2, load it and run it automatically,
providing that it is in the designated library area
and is not a reserved word (eg. we cannot use the
title 'COMPACT'). In this way one can create a
series of new commands that can even be used within
a Basic program (though PACK2 should NOT be called
in this way, for obvious reasons) .

Note that the vrogram automatically uses the
current value of PAGE to find your program, in order
to compact it.

We are most grateful to David Tall for the work
which he has done on this program.

ply o 2 ele
169 REM comments in assembler coding.
170 *KEY@

186 *KEY1

19¢ *KEY2

200 *KEY3

219 *KEY4

220 *KEYS

230 *KEY6

249 *REY7

250 *KEY8

260 *KEY9

270 *KEY10

288 *KEYQ|ML.OB|MMO.6:V.19;4;8; |MIN

BEEBUG MAG

February 1983

Volume-1 Issue-9

26

290
300
310
328
33¢
340

*KEY1|M|M|MIML. |M
*KEY2|MCA.&B73{LIM
*KEY3|MP. ;H.~!2A . &FFFF" free"|L|M
*KEY4| MARUN[M
*KEYSRUN|M
*KEY100LD| M

35¢ $&BSF="SPACES?REMS?COMs?"

360 FORN$=@TO1:P%=&B73

370 [OPT3*N%:CLD: LDA#&5E: STAL70 : LDA#&B:STA&71 : LDX#
2:LDY$6)

380 .a LDA(&78),Y:JSR&FFE3:INY:CMP#&3F:BNEa\print
options

390 .x JSR&FFEQ:AND#223:CMP#89:BEQy :CMP#78:BNEx\in
put response Y or N

460 .y STA&74,X:JSR&FFE3:JSR&FFE7:DEX:BPLa\store r
esponse (& print it)

a1a INX:STX&70: STX&72:STX&7C: STX&7D: STX&80 : LDX&
18:STX&71:STX&73\ store line-start pointers & set
ASSEMBLER flag = ¢

42¢ .b CLC:LDA&72:ADC&7D:STA&72:BCCc:INC&73\start
of next input line

43¢ .c CLC:LDA&7@:ADC&7C:STA&79:BCCd:INC&71\start
of next output line

449 .d LDA#0:LDY#4

450 .e STA&77,Y:DEY:BPLe\set all flags to zero (ex
cept ASSEMBLER)

460 .f INY:LDA(&70) ,Y:STA(&72) ,Y:CPY#3:BEQg:CPY#1:
BNEf :CMP#&FF :BNEf :RTS\transfer initial bytes & check
if last line

478 .g STA&7C:STA&7D:INY:STY&7E\store line lengths
& output pointer

480 .h STY&81:LDA(&70) ,Y:STA&7F\ (START TRANSFER LO
OP) store input pointer & current byte

499 LDX&7B:BNEt :CMP#&8D:BNEt : LDX#4\check for co
ded numbers (outside quotes)

500 .G INC&81:JSRP:DEX:BPLG:BMIh\if coded, transfe
r

519 .t LDX&8@:BEQI\if outside ASSEMBLER, go to i

52¢ LDX&74 : CPX#&59 : BNEu : CMP§&5C : BNEU: STX& 79\ (in
ASSEMBLER) check \ & set COMMENT flag accordingly

530 .u CMP$58:BNEv:LDX##:STX&79\ (in ASSEMBLER) see
k colon and turn off COMMENT flag if found

540 .v LDX&79:BNEj :CMP#93:BNE] : LDX#0:STX&80\ (in AS
SEMBLER) 1if outside COMMENT, seek] and turn off AS
SEMBLER flag as appropriate; in all cases go to j

550 .1 LDX&77:BNEo\ (outside ASSEMBLER) if in REM d
elete, move on

560 CMP#&22:BNE] : LDA& 7B : EOR#1 : STA& 7B : LDAS 7TF\ loo
k for ", change QUOTE flag as necessary

570 .j LDX&7B:BNEp\if inside QUOTES move on to tra
nsfer

580 CMP#91:BNEK : LDX#1 : STX&80\ (outside QUOTES fr
om here on) if [, set ASSEMBLER flag

596 .k QMP#&DC:BEQn\DATA?

600 .m (MP#&F4:BNEo : LDX&75:CPX#&59: BNEN : LDX#1: STX&
77\REM? - if found & deletion required, set REM flag

610 .n LDX#1:STXs7A\set DATA flag (for DATA or REM)

620 .o LDA&77:0RA&79:BNEq\if REM or COMMENT don't
transfer

630 LDA&7A: ORA&80 : BNEp: LDA& 7F : CMP#32:BNEp\if DA
TA or ASSEMBLER or not a SPACE, do transfer

640 LDX&76 :CPX#&59 : BNEp: LDX#0: STX&82: INY: LDA(&7
@) ,¥:JSRsearch :BEQq:DEX: TXA:EOR#1:STA&82\if SPACES a
re to be deleted, consider following byte

650 LDY&7E:DEY:LDA(&72) ,Y:JSRsearch:BEQq:LDX#1:
INY\look at previous byte transferred

668 .A DEX:TXA:ORA&82:S5TA&82:DEY:LDA(&72) ,Y:JSRsea
rch:BNEA: LDX&82:CPX#0:BEQd\search earlier bytes

67¢ .p LDY&81:JSRP:BNEz\transfer byte

680 .q LDY&81:DEC&7D\don't transfer

690 .z CPY&7C:BCCs\check for end of line and repea
t as necessary

799 LDA&79:BEQw: INC&7D\adjust for COMMENT (1 de
letion too many!)

710 .w LDA&7D:CMP#5:BCCr\if line length less than
5, abort current line transfer

720 LDY#3:STA(&72) ,Y:IJMPb\else transfer adjuste
d line length & move to next line

736 .r JMPc\ (abort)

740 .s INY:JMPh\ (next byte)

750 .search LDX#0:CPY#5:BCCF:CMP#&30:BCCF:CMP#&3A:
BCCN: CMP# &40 s BCCF : (MP#&5B s BCCL : CMP#& 5F : BCCF : QMPH& 7B
BCSF

768 .L INX

778 N INX

786 .F LDA#&20:CPX#@:RTS\consider byte, X = 1 (num
ber), = 2 (letter), = # (otherwise)

790 .P LDA(&70) ,Y:LDY&7E:STA(&72) ,Y: INC&7E: LDY&8]:

RTS\ (transfer) :]
809 NEXT:END

SIMPLE MUSICAL KEYBOARD
J C Fenton writes

INTS HINTS HINIS HINTS HINIS HINIS HINT

in with a novel single line program which turns your

keyboard into a piano style keyboard. The program line supplied makes the QWNERTY and
ZXCVBN rows into the white keys, and the respective row above these into the black
keys:

CLS:REPEAT:GS$=GETS$: PRINTGS : SOUND&11,~15, 21+4*INSTR (" Q2W3ERST6Y 7UI 90@PZ SXDCFVBHNIM, L.
:/" +G8) ,10:UNTIL G$="1":SOUND&11,0,0,9

MORE CASSETTE LOAD PROBLEMS

David Coups, like many other members has had problems with the Ferguson
3T@7 recorder. He wrote to Ferguson who carried out the following modification to
his recorder.

Disconnect C105 (.02.uF)
with the instruments input circuit.
lead going into the tape recorder.

Many cassette loading problems are caused by tape oxide deposited on the
heads. This problem will be particularly bad when poor quality tapes are used. The
solution is simple; use good quality tapes and clean your heads and tape path
regularly with a cassette head cleaning kit available from any Hi-Fi shop. Heading
cleaning cassettes are NOT recommended.

If you still have problems after this then this tip from Mr. C.C. Evans may
be .what you need. He found that use of a 'Tape head demagnetiser' solved his
loading problems. Those members who have reported their Welcome tape seeming to
‘erase' after a few plays may find this to be the answer.

and add a 100k ohm 1/4 watt resistor in series
This resistor is best added in the connecting

BEEBUG MAG

February 1983 Volume-1 Issue-9

Program tested on

0-1 and 1-1 O.S.

27

ot
‘w\ﬁ‘:ao-‘:’ ’ SINGLE KEY MEMORY DISPLAY (16k)
Ygf’w“ by Alan Cocker

Thanks to Alan Cocker for sending in this well written program. This is a very
small program which will quickly and clearly display in hex and character (ASCII)
format any desired area of memory. The program is so small that Alan has strung it
together as a single line program which can be entered within a function key. This
makes it extremely handy as it can be loaded and stored totally independently of any
other program.

INSTRUCTIONS FOR USE
" 1) Type the program in exactly as listed below, and run it.

2) To save a copy of the program, which is now stored within the
function key buffer, use *SAVE "DISPLAY" B@¢ CO@

3) To reload the program at any time use *LOAD "DISPLAY". This
will reload the program into the function key buffer again,
without disturbing any other program you may have in the
computer . .

4) To run the program hit the red function key 8. The screen
will clear and you will be prompted for a "Start" address. This
may be entered in decimal, hex or as any valid expression. (To
enter a hex number, precede it with &). Then hit return and a ?
will appear on the screen. This is the prompt for the number of
bytes that you want displayed. Once again this may be decimal,
hex or an expression.

The display will then commence. Each line is preceded with the address in hex, of
the first byte on the line. This is followed by 8 bytes displayed in hex, and then
in ASCII. If the ASCII display is an unprintable character, it is displayed as a
full stop. This default unprintable character may be altered by inserting the value
of the required character in place of the "46" in the program. The program does not
use paged mode, so if more than a full screenfull of display is created, use CITRL
and SHIFT keys, held down together to allow scrolling through the display. If you
require a printout of the display, simply activate the printer in the normal way
before hitting function key 8.

#%*NOTE** A tip for typing the program in. The character string in the last line is
(R<32 OR R> etc ..ie the character after 32 is not zero.

Program listing:

10*KEY8 MO.7:I."START, >"SS$,N$:S=EV.S$:N=EV.N$:F.I=S TOS+N S.8:@%=4:P.7I;:BS=" "
+F.J=gTO7:R=I2J:P. R; :@%=3:R=R+(R<32 ORR>126)* (R-46) :B$=BS+CHRSR:N. :P.B$:N., :@%=10|M

PROGRAM EXPLANATION

Mo.7: Set Mode for display

Input "Start, >" S$,N$ Get Start Address and Number

S=Eval (SS$): Evaluate Start (in case hex)

N=Eval (N$): Evaluate Start (in case hex)

For I=S To S+N Step 8: Loop round memory requested

@%=4: Set for correct printing

Print “I;: Print address of 1st byte hex

BS$="": Initialise ASCII store

For J=@ To 7: Loop round each byte on line :

R=I?J: Get contents of byte)]

BEEBUG MAG Febriary 1983 Volume-1 Issue-9

28

Print “R;: Print contents in hex

@g=3: Set for correct printing
R=R+(R<32 OR R>126) * (R-46) : Use "." (46) if out of range
B$=B$+Chr$ (R) ¢ Add into ASCII store

Next J:

Print BS: Print ASCII at end of line
next I%

@3=1g Reset printing to normal

IM

Example output:s

The output shown below is a display of the start of the function key buffer. As
the program in this article was the first function key program to run after a cold
start, you can see it stored at the beginning of the buffer:

START, >&BOO B3¢ 4E 3D 45 56 2E 4E 24 3A N=EV.NS$:
2100 B38 46 2E 49 3D 53 20 54 4F F.I=S TO
By AB AB AB AB AB AB AB AB .c0ccces B4g 53 2B 4E 20 53 2E 38 3A SN S.8:
BP8 10 AB AB AB AB AB AB AB .ccccooe B48 40 25 3D 34 3A 50 2E 7E @%=4:P.”
B1g AB 4D 4F 2E 37 3A 49 2E .MO.7:1. B5@ 49 3B 3A 42 24 3D 22 2¢ I;:B$="
Bi18 22 53 54 41 52 54 2C 20 "START, B58 20 22 3A'46 2E 4A 3D 3¢ ":F.J=0
B2¢0 3E 22 53 24 2C 4E 24 3A >"S$,NS: B6@ 54 4F 37 3A 52 3D 49 3F TO7:R=I?
B28 53 3D 45 56 2E 53 24 3A S=EV.SS: =

perfectly and presents the page of
instructions. However, when the
SPACE bar is pressed the machine
reverts to command mode. Any
suggestions ?

R.A. Walker.

[Ed: The loading of 'MAGIC EEL' using
*TAPE on a disc system does NOT
affect it adversely. However, the
program requires graphics MODE 1 to
run, and the above effect occurs
because you have not reset PAGE to
&EQ@@. Please see BEEBUG vol.l no.7
p.27 (PAGE change hint) and BEEBUG
vol.1 no.8 p.38 (Points Arising)].

= s e

resMAGIC EEL
Dear Sirs,

I recently bought a copy of GAMES
4 'MAGIC EEL'. It does not run on my
machine. I have a Model B which
appears to be fitted with the 1.0
0.S., and the switch-on message
includes the message ‘'DFS'. After
some days of worry and
experimentation I can now load
cassettes by using the *TAPE command.
Could this affect the 'MAGIC EEL®
program? The program appears to load

BEEBUG MAG February 1983 Volume-1 Issue-9

29

xe%‘&o

3 O
s°‘§ od ¥
Ql\

FIVE-DICE (16k)
by Brian Kilby

This program simulates the dice game "YAHTZEE"
(r), in which five dice are thrown and a score is
given for their value, depending on the category in
which the player puts it. The game requires a fair
amount of skill and judgement, although luck does
play its part. The program uses coloured teletext
graphics in an exemplary way.

You are allowed a maximum of three re-throws on
any number of dice, and then you must place the
result in one of the categories listed.

Full instructions can be listed when the program
is first run (the instructions appear in a novel
way), and a high score is kept. If you are
unfamiliar with the game, do not be daunted by the
rules, these are soon picked up. We found this game
good fun to play.

[NOTE: when playing, if you get 5 numbers of the
same value eg 66666 this CANNOT be put down as a
full house.]

dicexl

dicex2

dicex3

dxce:;

dice

dicex6: SIKES

I 60 toval over 62 thm %NU

d

=5 aiss & 30FAxno
S FULL HOUSE
o 4] STRATGHT
5 STRATGHT

S50, 3 IVE DICE
addidice ToTAL
e ROLL CYAD?

Sl e)
361 31

PROCEDURES
Initialises variables, clears screen.

init
screen Prints the title and categories.
roll Throws dice and allows two more goes,

calls FNchoice,
and awards points.

FNtest1 (number%) Checks if dice (1-5)=number% and
returns value of quantity*number3%, tests
for categories 1-6.

FNtest1l Sorts dice into numerical order and
checks if either 12345 or 23456 exist.

FNtest1@ Checks if dice equal 1234, 2345 or 3456,
other dice can be any value.

FNtest9 Checks for a 'Full House® (doesn't allow
five of a kind).

FNtest7 (number%) Tests for 3,4, or 5 of a kind.

calls test subroutine,

FNadd Returns the total value of the dice.
sort ‘Bubble' sorts the dice into numerical
order.

throw(dice$) Assigns new value to dice chosen.

clear Clears the screen.

bonus If categories 1-6 add up to more than
62, then a bonus of 3¢ is added to the
scoresheet.

choice Main part. Asks if another roll is
required, which category to score, and
returns value of category.

dice Prints dice in double height characters.

end Prints total score and best score.
wait Waits for the 'space' bar to be pressed.
read(N) Reads N lots of data, and prints it at

slow sged for the instructions.

14 REM"FIVE DICE by Brian Kilby
20 MODE7
3¢ ON ERROR GOTO 1700
40 B%=RND(-TIME) :B%=0
50 IF FNyes("DO YOU WANT THE RULES ?",152,5,12)TH
EN PROCread (5) :PROCread (18)
60 PROCinit
78 PROCscreen
8¢ REPEAT
96 PROCroll
108 UNTIL cat%=13
116 PROCend
120 IF Fiyes("New game ?",130,27,22) THEN CLEAR:GO
TO 68
130 CLS:END
140 REM" INITIALISE
150 DEF PROCinit
168 DIM dice% (5) ,cat%(13)
170 VDU23;8202;0;0:0;
18 VDU15,12
190 cat%=f:call¥=0:bonus¥=0
209 ENDPROC
210 REM"SCREEN
220 DEF PROCscreen
238 VDU12,130,157,19,13,136,157,131,141,16,13,138,
157,131,141,19,13,130,157,132,31,38,0,156,8,16,156,8
+10,156,8,18,156
24p FORI%=1TO2:PRINTTAB(15,1%)"FIVE DICE®:NEXT
250 IF B$>@ THEN PRINTTAB(15,3);"Best ";Bg
260 PRINTTAB(4,4) CHRS134; "VALUE"TAB(15) "CATEGORY"T
AB(32) "POINTS"*
27¢ FORI%=1T06:PRINT"dice*";I%;CHR$133;TAB(15);1%;
CHR$135:NEXT
280 PRINTTAB(18,6) "ONES"
290 PRINTTAB(18,7) "TWOS"
308 PRINTTAB(18,8) "THREES"
310 PRINTTAB(18,9) “FOURS®
320 PRINTTAB(18,10)"FIVES"
330 PRINTTAB(18,11) “SIXES"
340 PRINTCHR$134;"If 1-6 total over 62 then"CHR$12
9; "BONUS"
35@¢ FORI%=3TO4:PRINT"add dice®TAB(18);I%;" OF A KI
ND" : NEXT
360 PRINT;25TAB(18) “FULL HOUSE"
370 PRINT; 3¢0TAB(18) "4 STRAIGHT"
380 PRINT;40TAB(18)"5 STRAIGHT"
390 PRINT; 50TAB(18) "FIVE DICE"
490 PRINT"add dice"TAB(18)"CHANCE"
410 PRINTTAB(26) ;CHR$129; " TOTAL"
420 FORI%$=13TO19:PRINTTAB(14,I%)CHRS133;I%~6;CHRS]
35:NEXT
430 PRINTTAB(#,21);"No. ";CHRS1364;"1

448 FORI$=5T020:VDU31,32,I%,131 :NEXT
450 FORI$=23T024:VDU31,0, I1%,1471:NEXT

460 ENDPROC

47¢ REM"MAIN SECTION

480 DEF PROCroll

499 go¥=0

508 PROCthrow("12345")

518 Q=FNchoice

520 ON Q GOSUB 560,560,560 ,560,569,568,600,600,610
+620,630,648,650

530 gt¥=gt3+pointss

540 PRINTTAB(35,5+Q DIV7+Q) ;points

55@ ENDPROC

560 points¥=FNtest1(Q):callg=calls+]

570 bonus$=bonus$+pointsg

580 IF call3=6 THEN PROCbonus

590 RETURN

660 points$=ABS (FNtest7(Q-4) *FNadd) : RETURN

610 points%=FNtest9:RETURN

620 points$=FNtest10:RETURN
' 630 points%=FNtest11:RETURN ”

2 3 4 5%

BEEBUG MAG

February 1983

Volume-1 Issue-9

30

640 points%=ABS(FNtest7(Q-7) *50) :RETURN

656 points$=FNadd :RETURN

660 REM"CAT. TESTS

670 REM"ONES to SIXES

680 DEF FNtest] (number%)

690 LOCAL total%,I%

700 totaly=g

76 FORI%:]TOS:total%=§ctal%+(dice% (I%)=numbers) :N
EXT

720 =ABS(total$)*number%

73@¢ REM"S5 STRAIGHT

740 DEF FNtest11

756 LOCAL test$,I%

769 PROCsort

770 test$=""

786 FORI%=1TOS:test$=test$+STRS (dices (1%)) :NEXT

790 IF test$="12345"0R test$="23456"THEN =40 ELSE
=0

80@ REM"4 STRAIGHT

810 DEF FNtestl10

820 IF (FNtest](3)>=3 AND FNtest](4)>=4)AND((FNtes
t1(2)>=2 AND(FNtest1(1)>=1 OR FNtest] (5)>=5))OR(FNte
st1(5)>=5 AND FNtest1(6)>=6)) THEN =3¢ ELSE =0

839 REM"FULL HOUSE

84¢ DEF FNtest9

850 PROCsort

860 LOCAL flag%

87¢ flagd=((dices (1)=dices(2))AND(dices (2)=dices (3
)))AND(dices (4) =dice% (5)) OR((dice% (1)=dice% (2))AND(d
ices (3)=dice% (4))AND(dices (4)=dice%(5)))

88¢ IF flag3%<>FNtest7(5) THEN =25 ELSE =0

890 REM"3-4-5 OF A KIND

96@ DEF FNtest7(number%)

91¢ LOCAL I%,X%,total$

92¢ FORI%=1TO6 .

93¢ totals=0

949 FORX%=1T05

95¢ IF dice%(X3)=I% THEN totalg=totals+l

960 NEXT

97¢ IF total%>=number$ THEN I%=7:=TRUE

980 NEXT:=FALSE

99¢ REM"ADD DICE

1000 DEF FNadd

191@ LOCAL I%,totals

1920 FORI%=1TO5:total%=totalg+dice% (I%) :NEXT:=total %

1039 REM"SORT

1040 DEF PROCsort

1950 LOCAL Y%,2%,T%

1060 FORY$=1T04

1879 FORZ%=Y%+1TO5

1980 IF dice% (Y%)<=dice%(Z%)THEN 1090 ELSE T%=dice%
(¥3%) :dices (Y¥)=dices (2%) :diced (2%)=T%

199¢ NEXT:NEXT: ENDPROC

1109 REM"RE-THRON DICE

1119 DEF PROCthrow(dice$)

1120 LOCAL I%

1139 FORI%=1TO LEN(dice$)

1140 £lag%=VAL(MIDS (dice$,I%,1)) :IF £lags>5 THEN £l
ag%=9¢:I%=6: ENDPROC

1158 dice$ (£lag®)=RND(6)

1160 NEXT

1179 PROCdice :ENDPROC

118¢ REM"CLEAR MESSAGE

119¢ DEF PROCclear

12¢@ PRINTTAB(27,22) ;CHR$133;SPC(11)

1219 PRINTTAB(28,23)SPC(10)

122¢ ENDPROC

123¢ REM"BONUS

1240 DEF PROCbonus

125¢ IF bonus$>62 THEN bonus$=3@:gt%=gt%+30 ELSE bo
nus$=9g

12680 PRINTTAB(35,12) ;bonusg

127¢ ENDPROC

1280 REM"YES OR NO

1290 DEF FNyes(Q$,col%,X$,¥%)

1308 LOCAL reply$,col%

1319 PRINTTAB(X%,Y%)CHRS (col%) ;08;

1320 REPEAT:reply$=CHRS (GET AND &DF) :UNTIL reply$="
¥" OR rePly$="N" .

133¢ PROCclear

1340 =(reply$="Y")

135¢ REM"CHOICES

1360 DEF FNchoice

1378 REPEAT:go%=go%+1

138¢ SOUND1,-12,208,5

139¢ IF NOT FNyes("ROLL (Y/N)?2",135,27,22) THEN go%

=2:GOTO 1490

1408 REPEAT

1419 REPEAT

142¢ SOUND1,-18,158,5

143¢ PRINTTAB(27,22)CHR$130; "WHICH DICE"

1449 INPUTTAB(28,23)0$

1450 PROCclear

1460 UNTIL Q$>CHR$47 AND Q$<CHR$54

147¢ PROCthrow(Q$)

1480 UNTIL flag$

1490 UNTIL gog=2

1500 REPEAT

1510 REPEAT

152¢ SOUND1,-10,166,5

153¢ PRINTTAB(27,22)CHRS$133; "CATEGORY?"

1549 INPUTTAB(28,23)""Q

155¢ PROCclear

1568 UNTIL Q> AND Q<14

1578 UNTIL cat$(Q)=0

1580 cat$(Q)=1:cat¥=cat$+1:=Q

1598 REM"PRINT DICE

1600 DEF PROCdice

161¢ FORflash$=152T0135STEP-17

162@ FORI%$=1TO2:PRINTTAB(4,22+I%) ;CHRS (flashg) ; :FOR
N%=1T05: PRINT ;dice% (N$) SPC2; :NEXT: PRINTCHR$ 140; : NEXT

163¢ IF flash%=152 THEN TIME=0:REPEATUNTIL TIME>S5@

164@ NEXT:ENDPROC

165¢ REM"END RESULT

1660 DEF PROCend

167¢ PRINTTAB(34,20);CHRS136;9t%;

1680 IF gt$>B% THEN B¥=gt%:PRINTTAB(15,3);"Best ";
B

1698 ENDPROC

1700 REM"ERROR TRAP

1718 CLS

1726 IF ERR<>17 THEN REPORT:PRINT" in line ";ERL

1730 REM"CURSOR ON { SIZE

1740 VDU23,0,10,112,0;0;0;

175@ END

1760 REM"RULES

177¢ REM"implanted control chr.'s

1780 DATA"In the following game the object is to s
core as high as possible,by skillfully placing the r
esults obtained from the dice, into the various ca
tegories.”

179¢ DATA"There areFIVE DICE."

1800 DATA"You are allowed a maximum of three goes £
or each category (although you can stopafter the fir
st or second roll)"

1810 DATA"You may re-throw ANY or ALL the dice as y
ou see fit,by typing out the relevant dice numbers
(1 to 5 in any order)"”

1820 DATA"When you are satisfied with the results (
or after the third throw which ever is first) you MU
ST place them in one of thel3 categories."

183¢ DATA"CATEGORIES:"

1840 DATA"ONES to SIXES :every dice that has thes
ame value as the cat. chosen is added together eg.l
1223=4(2+2) in TWOS"

1850 DATA"3 OF A KIND
core value of all 5 dice"

1860 DATA"4 OF A KIND
core value of all 5 dice"

1870 DATA"FULL HOUSE :3 of one number AND 2 o
£ another scores 25 points"

1880 DATA"4 STRAIGHT :either 1234 or 2345 or 3
456 score 3¢ points (any order)"

189¢ DATA"S5 STRAIGHT seither 12345 or 23456 s
cores 4¢ points (any order)"

1909 DATA"FIVE DICE :all the same ? score 5¢p
oints"

1919 DATA"CHANCE

:any 3 dice the same s

:any 4 dice the same s

:anything goes here so s »

BEEBUG MAG

February 1983

Volume-1 Issue-9

31

core total value of dice.”

1920 DATA"When asked'CATEGORY?'enter the NUMBER o
£ the category (colour coded magenta)"

193¢ REM"WAIT

194¢ DEF PROCwait

2080 TIME=0:REPEAT UNTIL TIME>25@
209@ PRINT:NEXT
2190 PROCwait %

w "
;ggg ;g;:TAT ﬁ,‘ﬁi Z;;:;zbar‘ **NOTE —AIn the game of FIVE-DICE some .of the
1979 CLS:ENDPROC instructions (held in DATA statements) are in !.Eact
1988 REM"SLOW PRINTOUT colour coded teletext characters. ‘The lines
199¢ DEF PROCread (N) concerned are 1790, and 1838-1920. In the original
2008 LOCAL T,letter,word,word$ program they are mostly GREEN with the odd one in
2010 VDU12,10 MAL}ENTA (see listing). Ig you would 1like to keep
202¢ FORword=1 TO N this feature or use different colz?ured teletext
203¢ READ word$ characters, then do one 95 tht? followings If you
2040 FORletter=1 TO LEN(word$) have @.1 0OS see the article in BEEBUG x_n nog p7; }f
265@ PRINTMIDS (word$,letter,1); you have a series 1 0S then see the hint in this
2060 TIME=@:REPEAT UNTIL TIME>8 issue.

2070 NEXT

POINIS ARISING

PACK article (BEEBUG V.1 no.8 p.12)
There is a problem with the Compacter Program published in the last issue. See
the article 'Compacter revisited' in this issue, for an update on this program.

OSBYTE hint (BEEBUG v.1 no.8 p.41)
In the last issue we gave details of the useful OSBYTE 135 to find out what
screen mode you were in. Contrary to what we said, this DOES work on 0.S #.1.

BAD PROGRAM article (BEEBUG v.l no.8 p.4)
Under the heading 'THE PROGRAM' all references to line numbers in the SECOND
paragraph must be incremented by 10, (ie. 'line 119" should read ‘'line 120').

BREAKOUT

For improved colour sequences on Breakout change line 20 to 2¢ VDU 19,1,1,0,08,08
When using the 16k version of the game do NOT delete line 1338 (contrary to
instructions). Note this only affects error handling.

HINIS HINIS HINIS HINTS HINIS HINTS HINTS HINTS HINTS

COLOURED LISTINGS (TELETEXT) .

In issue 4 of BEEBUG (p.7) there is an article on teletext characters for
the (then) ©.1 0S. On a 1.0 0S coloured or flashing characters can be obtained in
mode 7 merely by using the SHIFT key in conjunction with the red user keys (ie. by
pressing SHIFT and a user key simultaneously). This can be used to good effect in
the documenting of programs. V

MOVING THE GRAPHICS ORIGIN

There is a built in command to shift the graphics origin on the Beeb. After
executing VDU 29,X;Y; all PLOTs and DRAWs will be shifted by the amount X,Y¥. This
can be extremely useful, and we are grateful to Paul Livingstone for this one.
[We used this command in the very first issue of BEEBUG in the "3-D Noughts &
Crosses" program in line 1770, but never included it as a 'hint & tip'. Ed.]

DISC-CASSETTE BREAK

If you have a disc filing system (DFS) ROM fitted, then it is well known
that pressing CTRL/BREAK (ie. pressing CTRL and BREAK simultaneously) will cause a
cold system restart to the DFS. Did you know that pressing T/BREAK or TAB/BREAK will
;:lause a restart to the cassette filing system (CFS)? Thanks to K.Simpson for this
int.

It is true that pressing TAB/BREAK has the same effect as a CFS restart,
but the value of PAGE remains set for the DFS, ie. at &1900. ‘

=

BEEBUG MAG February 1983 Volume-1 Issue-9

BEEBMAZE (32k)

by R R Huli

It makes a change to have a program that doesn't
involve death and destruction. This game retains
some of the excitement of arcade type games, but
gives you time for thought between each move, and
can be quite addictive.

The program creates a random maze, and you have
to find your way through to the exit. You are
awarded a score depending on several factors. The
interest comes because the screen displays the view
that you would see if you were actually within the
maze itself. The graphics are good, but you need
hoth a good memory and sense of direction to get
throuwgh the maze in record time.

REAMDV T CV>

when you get hopelessly lost, which you will to
begin with, you can ask for a plan view of the maze
(you lose points though) so that you can find out
precisely where you are.

You simply control your movements with LR F A M
which are turn left, right, move forwards, about
turn, and request map.

There are two versions of the game, one timed and
the other untimed. In the timed version you start

with a certain amount of points, and lose them as
follows:~

1 point per elapsed second

2 points per move

19 points for hitting a wall

REM*%* BEEBMAZE k%
REM#%*%* BY R.R. HULL *%%*
REM***]/9/82 Fekk
MODE 7:?&FE@0=10:2&FE@1=32
PROCtitle

REM¥ %k INSTRUCTIONS*%*
70 D$=CHR$134:PRINT'DS"

D maze of"

8¢ PRINTDS"random size. You start just inside it"
99 PRINTD$"with the entrance directly behind you."
10¢ PRINTDS" Your objective is to find your way"
119 PRINTDS$"through the maze and out via the exit."”
120 PRINTDS" You move in the direction in which"
130 PRINTD$"you are facing. You have a choice of"
140 PRINTDS"two games, timed(TI) with a score(sSC)"
15¢ PRINTDS"and, untimed & unscored. In the timed"
160 PRINTDS"version you start with a number of"
178 PRINTDS"points, which depend on the maze size."
18¢ PRINTDS"Points are lost or won as shown:-"

19¢ D$=CHR$131

209 PRINTDS$"-1 point per elapsed second"

The computer draws a 3

. 50 points for leaving via the entrance
199 points for requesting a map .
You GAIN 20@ points for passing through the exit.

Finally 1if you want to change the range of sizes
of the generated mazes study line:-

1099 line=20:width=RND(4)+4:height=RND(%)+7
You need to alter 'width' and 'height'. For example
as it stands it will generate random widths from 5
to 8. Alter it to width=RND(2)+8 and it will
generate widths from 9 to 1¢ only. The same applies
to height. (Keep the number in brackets between 2
and 8). You can, of course, remove the random
function altogether.

Please note that while this program works very
well, and 1is good graphically, it does employ some
rather unusual techniques - such as the 'pokes' and
use of HIMEM at line 1140 etc. We would not
normally advise the use of these in such a program
because they obscure understanding of the program
operation, and prevent it from working across the
Tube .

Please note, if you are using a disc system that

you will sometimes run out of memory. You could
either remove the instruction lines, or use the
'Move down' routine published elsewhere in this
issue,

219 PRINTD$"-2 points per move (or turn)”
22¢ PRINTDS"-19 points for hitting a wall"

23¢ PRINTDS"-50 for trying to leave via the way in"
24¢ PRINTDS$"-10@ for asking for a map."

25¢ PRINTCHR$129"+290 for escaping via the exit.”
260 PRINT®CHR$132CHR$136"DO YOU WANT TIMED(T) OR UN

TIMED(U)?"

AS

270 A$=GET$:IF ASO"T" AND AS$<O"t" AND A$<>"U" AND
<>"u" THEN 270

28@ CLS:IF AS="T" THEN time%=1 ELSE time%=0

290 PROCtitle

309 PRINT''CHR$134" You move around the maze using
"

319 PRINT''TAB(7)"Key —~ F to move forward"

32¢ PRINTTAB(7)" ~ A to turn about"

330 PRINTTAB(7)" -~ L to turn left"

34¢ PRINTTAB(7)" - R to turn right"

35¢ PRINT‘TAB(3)CHR$129"In emergencies only"CHR$135

M for map."
360 PRINT'TAB(6)CHRS133CHR$136"PRESS SPACE BAR TO S

TART"

BEEBUG MAG

February 1983

Volume-1 Issue-9

33

376 A$S=GETS$:IF AS<" " THEN 37¢

38¢ REM*MODE CHANGE/MAP GRAPHICS

390 MODE 5:?&FE@@=10:?&FE@1=32

499 VDU 23,224,0,24,60,126,24,24,24,0

41¢ VDU 23,225,0,8,12,126,126,12,8,0

429 VDU 23,226,0,24,24,24,126,60,24,0

43¢ VDU 23,227,0,16,48,126,126,48,16,0

44p VDU 23,228,255,255,255,255,255,255,255,255

450 VDU 19,1,6;8;19,3,2;8;

46¢ ON ERROR GOTO 225¢

479 COLOUR 1:PRINTTAB(4,14)"PLEASE WAIT"

48@ PROCinit

490 REM*MAIN PROG/MOVE/TURN*

5@@ DEF PROCkey

510 *FX11,0

520 *FX15,0

53¢ PRINTTAB(d,8)" "

54¢ COLOUR 1:PRINTTAB(4,0) "ACTION?"

550 A$=INKEYS (@) :PROCtime:IF AS$=""THEN 550

560 N3=P$:0%=7(P%):IF AS$="F" OR A$="f" THEN N$=P%+d
ir (My)

576 COLOUR 3:AD%=AD%+2

580 IF N$=P% THEN 630

599 IF Pg=out$ AND M%$=3 PRINTTAB(J,0)"HURRAH - YOU
ESCAPE! " :AD%=AD%~-200: PROCtime : PROCtune : PROClongdelay:
PROCagain

600 IF P$=in% AND M3%=1 PRINTTAB(@,Q)"WAY IN - NO EX
IT" :AD$=AD%+50 : SOUND1,-15, 20, 26:GOTO 630

610 IF Q%-D¥*INT(Q%/D%)<>0 THEN P%=N%:PRINTTAB(d,0)
"YOU MOVE" :GOTO 71¢

620 PRINTTAB(@,0)"YOU HIT A WALL" :AD%=AD%+10:SOUND]
+~15,200,3

630 R¥=M3

640 IF A$="R" OR A$="r" THEN R®=M%+1:C$="RIGHT"

650 IF A$="A" OR A$="a" THEN R=M$+2:C$="ABOUT"

660 IF A$="L" OR A$="1" THEN R¥=M$+3:C$="LEFT"

670 IF A$="M" OR AS="m" THEN AD%=AD%+100:PROCnap

680 IF R%=M% THEN 710

690 IF R$>3 THEN R%=R$-4*INT(R%/4)

708 M%=R%:PRINTTAB(8,0) "YOU TURN “C$

710 D%=wall (M%) :Q%=2 (P%) : ¥%=P%:left3=M3~1:right3=M%
+1

720 IF left3<@ THEN lefty=3

73¢ IF right$>3 THEN right%=0

748 PROCcell

758 PROCdelay

760 PROCthree d

778 PROCkey

780 ENDPROC

799 REM#*#*INSPECT CELL WALLS**#*

808 DEF PROCcell

81@¢ LOCAL L,R

820 L=wall(left$):R=wall(rightsg)

830 1lwall=Q%-L*INT(Q%/L)

840 rwall=Q%-R*INT (Q%/R)

850 ewall=Q%-D*INT(Q%/D3%)

860 ENDPROC

870 REM**MOVE/LOOK AT NEXT CELL

880 DEF PROCnextcell

890 Ys=Y3+dir (M%) :Q%=7(¥%)

909 ENDPROC

910 REM**PLAN MAZE-IN & OUT##*¥

92¢ DEF PROCmakemaze

93¢ LOCAL A,C,D,E,I,M,J,R,T,V

940 C=0

95¢ P%=P%+1:IF P$>E$ THEN P%=5%

960 A=RND(4)-1:D=0

970 A=A+1:D=D+1:IF D>3 THEN 950

980 IF A>3 THEN A=¢

990 M%=P%+dir (A) :IF M%<S% OR M®>E% THEN 970

1000 V=2 (P%) :M=2 (M%) : IF C>@ AND V=21¢ THEN P%=M%:GOT
QO 960

1010 T=M%-S%:IF(V=M OR M<210)AND C>@ THEN 970

1020 E=T-width*INT(T/width) :IF(E=¢ AND dir (A)=1)OR(E
=G% AND dir (A)=-1) :GOTO 97¢

1030 R=INT(15/wall(A)):V=V/wall (3)

1040 P%=M%:C=C+1:IF C<H¥ THEN 960

1050 J=2?(outg) :J=J/wall(3) :?out%=J:I=?(in%) : I=I/wall
(1) :2in%=1:M%=in%:P3=M% :M3=3:N$=P%: TIME=0:GOTO- 710

:?2P%=V:M=M/R:?M%=M

1960 ENDPROC

1070 REM*VARIABLES/MAZE SIZE**

1080 DEF PROCinit

1090 line=2@:width=RND(4)+4: helqht—RND(6l+7

1190 DIM wall(3),dir(3),X(19),Y

1116 wall(@)=5:wall(1)=7:wall (2) 3.wa11(3)=2

1126 dir(@)=1:dir (1)=width:dir(2)=-1:dir (3)=-width
1138 Hg=width*height-1:G¥=width-1

1140 HIMEM=22420:S$=HIMEM:E3=S%+H3:FOR A=S% TO E%:?A
=210 :NEXT: P$=5%+RND (H3+1)

1150 out%=S%+ (RND(width)-1) :in$=E%~ (RND(width)-1) :AD
=0

1160 PROCmakemaze

1178 ENDPROC

1180 REM***MAP ROUTINE##*#%#%

119¢ DEF PROCmap

12¢@ CLS:LOCAL A,B,C,D,F,G,H,I,L,M,S,map,cell

1219 A=31864:B=A:5=5%:F=5%+G%

1228 FOR map=S TO F:FOR cell=g TO 3:C=?(map) :C=C-wal
1(cell) *INT(C/wall (cell))

1230 L=1:IF cell=]1 OR cell=3 THEN L=line

1240 IF cell>l THEN L=-L

125¢ M=line/L:H=A+L:G=H+M: I=H-M

1260 IF map=P% PROCarrow(A)

1278 IF C=@ PROCwall (G):G=H:PROCwall (G) :G=I:PROCwall
(G)

1280 NEXT:A=A+2:NEXT:S=S+width:F=F+width:A=B+(2*1lin2
) :B=A

1296 IF F<=E% THEN 1220

1399 PROCdelay

1310 COLOUR 1:PRINTTAB(0,8)"READY?(Y)":
PROCtime:IF A$<>"Y"™ AND A$<>"y" THEN 1319

1320 ENDPROC

1330 REM***DRAW MAP WALLS###*#*

1340 DEF PROCwall(G)

1350 COLOUR 2

1360 LOCAL X,Y

1370 Y=INT((G-31800)/1line)

1380 X=G-31802-line*Y

1396 PRINTTAB(X,Y);CHR$228

1490 SOUND1,-14,X*Y,1

1419 PROCtime

1420 ENDPROC

143¢ REM*CHOOSE & DRAW ARROW*

144¢ DEF PROCarrow(A)

145¢ COLOUR 3

1460 LOCAL D,X,Y

147¢ IF R$=0 D=225

1488 IF R%=1 D=226

1499 IF R¥=2 D=227

1500 IF R¥=3 D=224

1519 Y=INT((A-31800)/line)

1520 X=A-31802-1line*y

1530 PRINTTAB(X,Y) ;CHRSD

1549 ENDPROC

1550 REM***CHANGE CELL DEPTH*

156¢ DEF PROCthree d

1570 CLS

1580 X=180:XX=1120:Y=1000:YY=10

1590 CW=1.4:CH=1.4:X1=158:Y1=158

1600 depth=0

1618 depth=depth+1

1620 X=X+X1 : XX=XX-X1:Y=Y~Y1: YY=YY+Y¥1

1630 X1=X1/CW:Y1=Y1/CH

164¢ PROCdraw maze

1650 IF Y%=in% AND M%=] OR ¥%=out$ AND M%=3 PROCkey

1660 IF ewall=g PROCkey

1670 PROCnextcell

1680 PROCcell

169¢ IF depth<5 GOTO 1618

1760 PROCkey
- 1718 ENDPROC

1720 REM***DRAW 3-D MAZE*#*##:

173¢ DEF PROCdraw maze

1740 PROCtime

1750 GCOLg,2

1760 REM***DRAW VERTICALS#%*##

1778 MOVE X,Y:DRAW X,YY:MOVE XX,Y:DRAW XX, YY

1780 REM*CHANGE X,Y FOR CELL*

1798 X2=X~X1*CN:X3=XX+X1*CW

AS=INKEYS (0) :

BEEBUG MAG

February 1983

Volume-1 Issue-9

34

1800 Y2=Y+Y1*CH:Y3=YY-Y1*CH
1818 REM***DRAW HORIZONTALS**
182ﬂ IF ewall=g MOVE X,Y:DRAW XX,Y:MOVE X,YY¥:DRAW XX

183@ REM*DRAW LEFT WALL/WING*
184@ MOVE X,Y:IF lwall<>@ DRAW X2,Y ELSE DRAW X2,Y2
3]856 MOVE X,YY:IF lwall<>@ DRAW X2,YY ELSE DRAW X2,Y
1860 REM*DRAW RIGHT WALL/WING
1876 MOVE XX,Y:IF rwall<>@ DRAW X3,Y ELSE DRAW X3,Y2
1880 MOVE XX,YY:IF rwall<>@ DRAW X3,YY ELSE DRAW X3,
Y3
1899 ENDPROC
1900 REM¥**%*%%%ANOTHER GAME*#*
1919 DEF PROCagain
')'1'920 CLS:COLOUR 3:PRINTTAB(@,13)"LIKE TO SEE MAP NOW
1938 AS$=GETS:IF ASO"Y" AND ASO"y" AND ASON® AND
AS$<>"n" THEN 193¢
1940 IF A$="Y" OR AS$="y" time%=0:PROCmap
. 1954 CLS:COLOUR 1: PRINTTAB('! 13) "WOULD YOU LIKE TO"T
AB(1,15)"TRY ANOTHER MAZE?":A$=GET$:IF ASO"Y" ASO"Y
" AND A$<O"N® AND A$<>"n® THEN 1950
1960 IF A$="Y" OR AS="y" THEN RUN
1970 GOTO 2250
198¢ ENDPROC
1990 REM¥#¥kkik&END TUNE##%#4%
2009 DEF PROCtune ’
2019 FOR I=@ TO 1:SOUND1,-15,97,18:SOUND1,~15,105,10
$SOUND1,-15,89,18:SO0UND1,~15,41,18:SOUND1,~15,69,20:N

EXT
2020 ENDPROC

2030 REM###*#*%%*GHORT DELAY**¥*

2049 DEF PROCdelay

205@ FOR I=1 TO 1000 :NEXT

2060 ENDPROC

2070 REM¥F*#*%%k*[ONG DELAY####*

2080 DEF PROClongdelay

2099 FOR I=1 TO 20000 :NEXT

2198 ENDPROC

2110 REMA*% %%k 2 TIME~SCORE#* % %%

2120 DEF PROCtime

2130 IF time%=¢ ENDPROC

2146 LOCAL TI,SC

215@ TI=TIME:TI=INT(T1/100)~(200+H%) : TI=ABS(TI)

2160 SC=INT (200+(1.5%H%)-AD$+TI)

2178 COLOUR 1:IF TIK=@ COLOUR 3:PRINTTAB(6,15)"TIME
UP" : SOUND@,-15, 185, 3¢: SOUND1,~15, 185, 30: PROClongdela
y:PROCagain

2180 PRDITTAB(ﬂ 31)"'!‘1—" ;TI=1;"
;o

219¢ ENDPROC

22@” Rm********TITLE*t******
2219 DEF PROCtitle

222¢ PRINT:FOR I=@ TO 1:PRINTTAB(8)CHRS$141CHR$157CHR
$132"BEEBMA ZE "CHR$156:NEXT

2230 ENDPROC

224¢ REM**MODE CHANGE/ENDING*

2250 *FX11,70

2263 MODE 7

2278 PROCtitle

228¢ FOR I=@ TO 1:PRINTTAB(7,11+I)CHR$141CHR$157CHRS
136CHRS$129"GOODBYE FOR NOW "CHR$156:NEXT:END %

";TAB(11,31)"SC=";8S

WORDWISE Word Processor

BEEBUG Discount 13% SAVE £5

This 1is a highly

sophisticated word processing package for the BBC Micro, and

compares very favourably with those currently available on other microcomputers. It

makes

full use of the BBC micro's advanced facilities, and text is typed and edited

in the 40 column Teletext mode, saving memory, thus allowing it to be used with more
or less any TV. See the software review in this issue for further details.

Wordwise is supplied in EPROM with simple fitting instructions, a
cassette. Wordwise must be used in conjunction with a series 1

and a sample data
. operating system.

full manual,

The normal price of Wordwise is £39+VAT=£44.85(plus p&p)
To BEEBUG members it is £34+VAT=£39.10 plus 90p post & packing=£40.

Wordwise Offer, PO Box 50,

Make cheques payable to BEEBUG and send to:
St Albans, Herts, AL1 2AR.

BEEBUG MAG

February 1983

Volume-1 Issue-9

