Vol 2 No 9 MARCH 1984

ARIES MEMORY
BOARD REVIEWED

MULTIPLE
DISC
CATALOGUES

PLUS

*ASTAAD
EXTENDED

*TESTING YOUR
MICRO

* FORTH REVIEWS

* ACORN
DEVELOPMENTS

*COMPACT
FUNCTION KEY
DEFINITIONS

* BACH CANTATA

THE STONEMASON * And much more

BRITAIN'S LARGEST COMPUTER USER GROUP
MEMBERSHIP EXCEEDS 20,000

THIS MONTH'S MAGAZINE

The computer aided design program called ASTAAD that we featured in the December
1983 issue of BEEBUG generated a lot of interest and ideas for further enhancement.
This month we show you how to extend the original version to provide a host of new
features.

We are also starting a new series of DIY articles which are designed to help you
test out your machine when you suspect a fault, and identify the source. This should
help you when you take your machine along for repair.

‘SBECOND PROCESSORS

Acorn have still given no firm date for the release of their long awaited second
processor systems, though this is still expected to be around Easter time. What is
even more disturbing is the report that Acorn already have numerous orders for 6502
second processor systems for use as second level econet systems, and that as a
consequence, any other orders for 6502 second processors may have to wait for up to
12 months before supplies become generally available.

,
L

WHAT TO DO WITH YOUR OLD O.S. 1.0

If you still have one of the old 1.8 operating systems, supplied as 2 EPROMS on a
carrier board, now is the time to exchange it. BEEBUG are currently able to offer in
return either the new 0.S. 1.2 ROM, or a £5 voucher which can be used in part
payment for any item from BEEBUG or BEEBUGSOFT. This offer only applies to the 1.4
version and not to the original version @.1 which was also supplied initially on a
carrier board. If you are unsure which version 0.S. is in your machine, then typing
'*FX@ <return>' will display this information on the screen. Full details of this
offer are at the back of this issue.

HINT WINNERS
This month's hint winners are A.Pemberton who wins the £10 prize and

S.J.Wilkinson who wins the £5 prize. We still need all your good hints and tips for
the magazine.

MAGAZINE CASSETTE

This month's magazine cassette contains the full version of our extended version
of ASTAAD (called ASTAAD2), the very popular computer aided design program first
described in the December 1983 issue of BEEBUG, and the winning program (ROMAN) by
Keith Walker in our Roman Numeral Brainteaser competition, which appeared in the
November supplement. We have also include the four catalogue versions of the two
programs presented in this month's article on Multiple Disc Catalogues, a very
useful facility for all disc users.

BEEBUG March 1984 Volume-2 Issue-9

BEEBUG MIAGAZINE

GENERAL CONTENTS
PAGE CONTENTS
2 Editorial
4 Product News
5 Extending ASTAAD
10 A Report on Acorn’s Latest
Developments
12 Testing Out Your Micro
Part 1 — Sideways ROMS
15 The Stonemason
17 The ARIES-B20 Memory Expansion
Reviewed
19 Bach’s Cantata No.147
20 Machine Code Graphics (Part 2)
24 Printing Your Own Function
Key Labels
26 Multiple Disc Catalogues
29 Which FORTH for the BBC Micro?
32 The Latest Software Reviewed
34 Compact Function Key Definitions
35 Points Arising
36 Manhole Game
39 Football Krazy Game

PROGRAMS

PAGE CONTENTS

ASTAAD 2

Listing your ROMs

Checking your ROMs

The Stonemason (Roman Numerals)
Bach's Cantata No.147
Machine Code Graphics
Examples 6 and 7

Printing Function Key Labels
Initialise Dual Disc Catalogue
Swap Dual Disc Catalogue
Compact Function Key Definer
Manhole Game

Football Krazy Game

HINTS, TIPS & INFO

PAGE CONTENTS

Colour Video

Lower Case Basic

Turning off ROMs

Which Page?

Out-Denting in WORDWISE
Special Symbols from WORDWISE
Disc Location

*Commands

Incrementing Counters
Sheppard Scale

Direct Entry of Basic Tokens
Sound Suppression

*SAVE Extension

Disabling the Escape Key

& Destroying Programs

BEEBUG

March 1984 Volume-2 Issue-9

The Chip Shop

On Saturday at 5pm, BBC Radio 4 is
presenting 'The Chip Shop', a series of
programmes about the world of
computing. The Chip Shop is also
offering a takeaway service of computer
software that will be broadcast over
the air. This will use an Esperanto
version of Basic developed in the
Netherlands and called Basicode.
Details of this are available as
'Factsheet 1' from The Chip Shop, BBC,
London W12 8QT.

Acornsoft Cassette to Disc Exchange

Acornsoft have launched an exchange
service whereby purchasers of their
cassette software can, at a later date,
exchange this for a disc version at a
cost of 50% of the normal price of the
disc version. To use the service,
simply send your cassette with the
correct money to: Disc Replacement
Service, Acornsoft Ltd., c/o Vector
Marketing, Denington Industrial Estate,
Wellingborough, Northants NN8 2RL. The
service 1is available now, though you
should check the current Acornsoft
catalogue for availability (and price)
of 40 or 8@ track disc versions.

‘Acorn User’ changes hands

Addison-Wesley have recently decided
that their British subsidiary should no
longer continue publishing the
successful magazine 'Acorn User'. The
magazine will in future be published by
Redwood Publishing, a company set up by
Acorn.

Interfacing the BBC Micro

A range of fully isolated interfaces
for the BBC micro (from £44.98 to
£112.48 inc.), available from Minor
Miracles, has been designed for home
users. Extra tough versions are
available for school and industry use.
Minor Miracles also sell a digitiser
(£36) and a light pen (£15 inc).
Further information may be obtained
from Minor Miracles, P.0O.Box 48,
Ipswich, IP4 2AB.

The BBC Micro Speaks Out!

The Microtalker is a new low cost
speech synthesiser wusing allophones,
which allows any English word to be
pronounced, but at a slightly lower
quality speech than the LPC system used
by Acorn, 1is available from R.P.S
Electronics called the MICROTALKER, for
£39.95 (+80p post + VAT). It plugs
into the User Port, and contains a
built in amplifier, speaker, and volume
control. The MICROTALKER is available
from:

R.P.S Electronics, Unit C20¢, Saltaire
Workshops, Ashley Lane, Shipley, West
Yorkshire, BD17 7SR.

Business Programs

HCCS have recently produced a range
of Integrated Business Software written
for the BBC disc system. The full
package includes Invoicing and Sales
Ledger, Purchase Ledger, Nominal
Ledger, Payroll, Stock Control and
Order Processing. The cost of each
module is £59.95 each, and is available
froms:
HCCS, 22 Market Square, Biggleswade,
Beds, SG18 8AS.

Owl Perch

This is a sturdy monitor support,
which stands over the BBC micro,
raising the monitor to eye level and
protecting the micro. They are cast in
metal and painted with a cream enamel
paint. The cost is £35 (inclusive) and
a partly finished and unpainted version
which costs £20 (inclusive) is also
available. For more details, contact:
William Broady & Son Ltd., English
Street, Hull, HU3 2DU.

BBC Bridge

ICB Enterprises have recently
introduced a Bridge program which can
produce a random deal, play three hands
and includes many other facilities. It
costs £20.50 inc. Contact: ICB
Enterprises, 33 Burnt Stones Drive,
Sheffield, S1¢ 5TT.

=

BEEBUG

March 1984

Volume-2 Issue-9

EXTENDING ASTAAD (32K)
‘ by David A. Fell

The Computer Aided Design program called ASTAAD that we published in
the December 1983 issue of the magazine provoked quite an
enthusiastic reponse from readers. Many of you suggested ways in
which the original program could be extended and improved. We have

implemented six important new

features in a

modular and

comprehensive update of the original program to produce ASTAAD2.

The sections to be added to ASTAAD
fall into five areas:

1. Facilities to load and save the
current picture to tape/disc, and to
call a user-supplied machine code
printer screen dump program.

2. The ability to include user-defined
characters in 'ASTAAD' text, and the
facility to draw 'filled in'
polygons and circles. Both of these
are 'toggled' (that is to say, they
are controlled by a ‘switch' that is
either on or off).

3. The facility to reverse the plotting
colours. This means that the
'area-clear' facility can fill in a
rectangle, and then text can be made
to appear in the background colour
on this area. This extension applies
to all functions.

4. We have also included a dummy
procedure to illustrate how easy it
is to incorporate your own features.
It shows the correct way to select a
text display, and also how to exit
back to the main part of ASTAAD2.

5. Finally, we have also included some
tidying up of various aspects of the
program, and some small extras to
make it more attractive. These
include the production of a tone
whenever TAB or one the function
keys 1is pressed, the inclusion of a
border around the drawing area (with
extra protection to ensure that text
does not stray into the drawing
area, and vice versa), and better
error handling facilities (see later
for more details).

All the new features are controlled
by means of the Shift key in
combination with one of the red
function keys.

b

BEEBUG

March 1984

Volume-2 Issue-9

KEY ACTION
Shift + f@ § Save Current Screen
shift + £1 |i Load new Screen
Shift + £2}| *RUN a printer dump program
Shift + £3] Toggle the soft characters
shift + f4 lf Toggle the infill switch
Shift + £5}Call to dummy user routine
Shift + £6 || Toggle reversal of colours

The other function keys (and the cursor
keys) will merely bleep if pressed when
shift is held down.

ASTHARAD

Normally, in ASTAAD2, the screen is
kept separated into two windows. The
main drawing window is defined as the
graphics window, and all the drawing is
carried out in this window. When a
prompt is needed, the text and graphics
cursor are separated (with VDU4), and
the text is input in the current text
window (the top two lines on the
screen) .

Error handling has been improved
considerably. When an error occurs, a
check is first made to see if it is an
Escape error. These have been split
into two types: Escape and
Shift-Escape. Escape is the same as the
original ASTAAD, and merely resets a
few paramters and sets the cursor to
the centre of the screen. This can
occasionally leave part of the cursor
on the screen, and so this is not the
best way of centring the cursor.
Holding down Shift whilst pressing
Escape causes a normal Escape error to
be generated. Whenever any normal error
occurs, the error message and line
number are displayed at the top of the
screen. The user 1is then prompted
whether or not they wish to continue.
This allows for the user to exit
without having to press the Break key.
It also means that if an error occurs,
say when trying to find a file on disc,
the picture just created is not lost.
Thus to exit ASTAAD2, press Shift and
Escape, and answer with an 'N'.

PRINTER SCREEN DUMP

The screen dump facility enables the
user to dump the image displayed on the
screen to their printer. The routine
has been tailored so that a machine
code printer dump program will be
loaded and run when required
(equivalent to *RUN). The screen dump
must be assembled and saved on cassette
or disc prior to using it with ASTAAD2
and you will need to decide at what
memory address to do this. Disc users
will normally be able to assemble their
screen dump program at &AGF while
cassette users should use &D@@, though
you will need to make sure that your
assembled screen dump will fit in one
page (256 bytes) of memory. Once
assembled the screen dump program
should be *SAVEd ready for use. The
screen dump is selected in ASTAAD2 by
pressing Shift-f2 and entering the name
of your saved screen dump routine,
which 1is then loaded (from cassette or
disc) and run.

Cassette users, particularly, might
prefer to load the screen dump routine
(use *LOAD) before running ASTAAD2
which will need amending so that the
screen dump routine is CALLed when
required, thus saving the time involved
in loading.

SAVING AND LOADING SCREENS

The screen in Mode @ occupies memory
in one continuous block from &3000 to
&7FFF. To save the screen, all that is
needed is to supply a filename, and
ASTAAD2 will do the rest. To save a
picture, a typical sequence of actions

BEEBUG

March 1984

Volume-2 Issue-9

might be as given below:

1) Construct your desired image.
2) Hold down Shift and press f@.
3) Enter filename and press Return.

If you are using tape, you will now
have to prepare yourself for a fairly
long wait! On exit from the save
routine, the cursor is left where it
was before the save operation was
performed.

Loading of a screen is done in a
similar manner. To load a screen, press
Shift-f1, and enter the filename of the
screen to be loaded. Once the screen
has been loaded, the cursor is set to
the centre of the screen. The previous
contents of the screen will be
completely replaced by the new screen
as it is loaded.

USER DEFINED CHARACTERS

'ASTAAD' is also the name given to
the routine brought into action by
pressing f@. ASTAAD stands for Any Size
Text printed at Any Angle on the
Drawing. This facility, however, was
limited, in the original version, to
the normal keyboard characters. An
extension has been provided to allow
for the soft (or user defined)
characters to be wused instead. This
allows for new characters to be
designed, and then also drawn at any
angle, and at any size.

The choice of characters is
controlled by Shift-f3. With this in
the 'off' state, ASTAAD behaves as it
did before. When in the 'on' state,
user defined characters are selected
from the keyboard with 'A' selecting
character 224, 'B' selecting character
225 and so on. The characters are
displayed at the top of the screen as
selected. This allows for the new
string to be seen as it is being built
up. The user defined characters must be
set up before loading ASTAAD2 with the
VDU 23 statement (see User Guide pages
179 and 384). The Shaper program,
published in BEEBUG Vol.2 No.6, is an
ideal way to design characters that you
would like to use in ASTAAD2.

As an example, try the following.
Enter Basic (pressing Break will do if
you are already in Basic) and type in:

vDbU23,224,0,255,191,159,159,145,17,17
Now load ASTAAD2, and press 'Shift-f3',
(If it now says that the soft
characters are off, press 'Shift-f3' a
secord time.)

Press 'f@' for ASTAAD text

Press 'A' and Return

Enter a size, say 20

Enter an angle, say 10
Now watch a primitive elephant being
displayed. This illustrates that the
soft character is now being read from
the memory definition.

FILLED POLYGONS AND CIRCLES

Another new feature, controlled by
Shift-f4, is the in-filling of polygons
(and thus also circles, as they are
drawn using the polygon routine).
Normally, when a polygon is drawn in
ASTAAD, it appears only as an outline,
but ASTAAD2 allows for either an
outline, or a solid polygon to be
drawn. The selection between the two is
made by pressing Shift-f4. For example,
if pressed once, then 'in-fill' may be
turned off. This means that only the
polygon's outline will be drawn. If
Shift-f4 is pressed again, then the
switch will be altered, and now a solid
polygon will be drawn. If the f3 option
is used to repeat the last polygon
drawn, then whether or not the polygon
is filled in is dependent on the
current state of the in-fill switch,
and not the state of the switch when
the initial polygon was drawn. This
feature also applies to the circle
drawing routine selected by f9.

REVERSING FOREGROUND AND BACKGROUND

When drawing lines, filling _in
polygons, or any other ASTAAD function,
then the foreground colour is normally
black, and the background colour white
(readers may like trying yellow on blue
as opposed to black on white) by
including appropriate VDU 19 at the
start of the program. There is a final
switch in ASTAAD2 that affects the
drawing colours. To alter this switch,
press Shift-f6. In the 'on' state, the
drawing will be drawn normally (black
on a white background). In the ‘off'
state, the drawing will take place in
the reverse colours. This allows for
the 'blank out an area‘ function,
invoked by £8, to fill in a rectangular
area. An example of the use of various
functions, including reverse colour, is
shown in the illustration below.

BEEBUG

March 1984

Volume-2 Issue-9

replace lines from the earlier version.
Alternatively, save each of the new
sections separately using *SPOOL and
then use *EXEC to append each section
as required to the original ASTAAD. The
first section is a common section, and
includes the new error handling
routine, and the graphics and text
window sections. This can be typed in
by itself, and the new version of
ASTAAD produced saved, and then used.
1f, however, either of the two main
parts is to be used, then the common
section MUST be typed in first, then
the appropriate main part. Any lines
that occur in Part 2 should replace any
coincident ones from either Part 1 or
Common, and Part 1 should replace any
lines from Common. If both sections are
required, then Part 2 should be typed

et agaiel

g thk

Saie the bavl o

Petunias

Ereieet

EXTENDING THE ASTAAD PROGRAM

The additions to the program have
been divided into three sections, to
alleviate excessive typing for the user
who only wants, say, the screen
load/save functions. All or each should
be typed into the computer AFTER
loading in the original ASTAAD, which
must not have been renumbered in any
way , since some of the new lines

in after Part 1.

440 VDU4:@%=131082:PRINTTAB (6@, 1)B%+1
-k ;:VDU5:j=J%

480 VDU4:INPUT''"Text? "TS$''"Size? (2
to 125): "S%''"Angle(deg.)?"T%:CLS:VDU5

650 VDU4:INPUT''"Angle of arrow? "W3

LISTING OF COMMON
19 REM Program ASTAAD2
20 REM Version B1.5
3¢ REM Author Jim Tonge/David Fell
7% MODE @

:CLS:VDU5
71 VDU24,4;4;1275;948;18,0,129,16 670 2L0ny, -5, -:ELOTG, 3 b e
72 VDU24,8;8;1268;940;18,0,128,16 ooy A 0r2/BIPLOTY =¢s

73 vDU28,0,1,79,9

75 DIM 0S% 40

77 ON ERROR PROCerror

120 IF key=9 THEN V=5:X1%=X%:Y1%=Y%:k
=1¢:2=4:SOUND17,-19,125,1

130 IF key<129 PRINT CHRS (key) :X%=X3%+
20% (X%<1250) * (key<>9) :GOTO11¢ ELSE IF k
ey<14¢ OR key>144 SOUND17,-18,125,1

avi VDU4 INPUT''"Length'> "L%"'"Angle?
(deg.) "N%:CLS:VDU5

72@ LX=L%*COS (RAD(N%)) :LY=L23*SIN (RAD(
N%)) 1 X2%=X3+LX:Y2%=Y%+LY: PLOTY,X2%,Y2%:
X%=X2%:Y%=Y2%

76@ VDU4:INPUT''"Horizontal Axis?"H%'
'"Vertical Axis?"V%''"No.of sides(38=ci
rcle or ellipse)?"G%:CLS:VDUS

150 ON J% GOTO 180,160,200,220,230,23
9,179,230,190,210,11¢,260,250,259,250,2
5¢ ELSE 155

155 ON J%-16 GOTO 221,222,223,224,225
;226,227 ELSE GOTO 250

221 REM PROCsave:PROCcursor

222 REM PROCload:PROCcursor

223 REM PROCdump:PROCcursor

224 REM PROCtoggle:PROCcursor

225 REM PROCfill:PROCcursor

226 REM PROCAummy:PROCcursor

227 REM PROCcolour :PROCcursor

250 X%=X%—10*(J%=13)*(X%>19)+1G*(J%=1
4) % (X%<1268) 1 Y$=Y%-10* (J%=15) * (Y2>10) +1
0* (J%=16) * (Y3 <94®) PLOTZ,X%,¥%

365 *FX226,145

366 *FX227

99 VDU4 INPUT' '"Radius of circle? "R
%:CLS:VDU

960 VDUZ4 X1%;Y1%;
8;940;

2260 DEF PROCerror
227¢ IF ERR=17 AND NOT INKEY-1 VDU4,12
» 5S¢ ENDPROC

228¢ vDU4,31,6,0

2299 REPORT:PRINT" at line ";ERL;" has
occurred;"'"Continue? (Y/N)";

230¢ IF (GET AND &DF)=ASC"Y" VDU12,5:E
NDPROC

2319 *FX4

2320 *FX225 1

2330 VvDU22,7:HIMEM=&7C00

2340 REPORT:PRINT" at line “;ERL'"That
's all folks!t"

%;Y%;16,24,8;8;126

367 *FX228 235¢ END o
T T T i
BEEBUG March 1984 Volume-2 Issue-9

LISTING OF PART 1

221 PROCsave:PROCcursor

222 PROCload:PROCcursor

223 PROCdump:PROCcursor

491 IF J%=17 ENDPROC

402 IF J%=18 k=0:LOCALk:k=10
2000 DEF PROCsave
2019 IF J%<>17 ENDPROC ELSE VDU4
2020 INPUTTAB(6,0)"Name of file to sav

e to: "$0S%

2030 CLS
2040 $OS%="SAVE "+$0S%+" 3000, 7FFF"
2050 LOCAL X%,Y%
2060 X%=0S%:Y%=X3DIV256:CALL&FFEF7
2¢7@ VDUS5: ENDPROC
2080 DEF PROCload
2090 IF J%<>18 ENDPROC ELSE VDU4

2100 INPUTTAB(6,0) "Name of file to loa
d from: "S0S%

2119 $0S%="LOAD "+$0S%+" 3000"

2120 X%=0S%:Y%=X3DIV256 :CALL&FFF7

2130 CLS

2140 PROCsetup:k=10:J%=18:PROCruler
215¢ VDU5:ENDPROC

2160 DEF PROCAump

2178 IF J%<>19 ENDPROC

2180 vDU4

2190 INPUTTAB(6,0) "Name of screen-dump
to RUN: "$0S%

2200 vpU12,26,28,0,1,79,0

2210 $08%="/"+50S%

2220 LOCAL X%,Y%

2230 X%=0S%:Y%=X%DIV256 :CALL&FFF7
2240 VDU24,8;8;1268;940;

225¢ VDUS: ENDPROC

LISTING OF PART 2

224 PROCtoggle:PROCcursor

225 PROCfill:PROCcursor

226 PROCdummy : PROCcursor

227 PROCcolour : PROCcursor

480 VDU4:TS$=FNread:INPUT''"Size? (2 t
0 125): "S%'""Angle(deg.) ?"T%:CLS:VDUS

510 IF E% PROCread ELSE A%=&BFJJ+ASC(
MIDS (TS$,C%,1)) *8

819 LOCAL I%,K%,M%,N,C,S,B,D,R,T,Y

815 IF F% Y=85 ELSE ¥=5

860 IF I%>1 THEN PLOTY,K%,M% ELSE MOV
EX%,Y%:MOVE K%,M%

865 IF I%>1 AND F% PLOT85,X%,Y%

875 IF F% PLOT85,X%,Y%

2360 DEF PROCtoggle

237@¢ IF J%<>2¢ ENDPROC ELSE VDU4

2380 PRINT''"Toggling characters to ";
239¢ IF E% E%=0:PRINT"off."; ELSE E%=1
60 :PRINT"on.";

2400 LOCALE%

2410 PROCdelay

242¢ VDU12,5:ENDPROC

2439 DEF PROCfill

2449 IF J%<>21 ENDPROC ELSE VDU4

245¢ PRINT''"Toggling infill to ";

2460 IF F% F%=FALSE:PRINT"off."; ELSE
F%=TRUE: PRINT"on.";

247¢ LOCALF%

2480 PROCdelay

249¢ VDU12,5:ENDPROC

25¢¢ DEF PROCAummy

251¢ IF J%<>22 ENDPROC ELSE VDU4

2520 REM THIS IS WHERE YOU COULD INSERT
2530 REM YOUR OWN ROUTINE.

2540 REM THE FIRST LINE EXITS IF THE CALL

255¢0 REM IS NOT FOR YOU, OR SETS UP THE
2560 REM TEXT WINDOW IF IT IS.

2570 REM ON EXIT, USE VDU12,5

2580 REM AND THEN ENDPROC.

259¢ VDU12,5:ENDPROC

260¢ DEF PROCread

2610 LOCAL X%,Y%

2620 X%=0S%

2630 Y%=X% DIV 256

2640 20S%=ASCMIDS (T$,C%,1)+E%

2650 A%=10

2669 CALL &FFF1

2670 A%=0S%+1

2680 ENDPROC

2690 DEF FNread

2709 PRINT''"Text? ";

2719 TS=""

2720 LOCAL I%

273¢ REPEAT

2740 1%=GET

275¢ IF I%=21 PRINTSTRINGS (LENTS,CHRS1
27) ;2 TS="":1%=0

2760 IF I%=127 AND LENTS VDUI%:I%=0:T$
=LEFTS (T$,LENTS-1) ELSE IF 1%=127 VDU7:1%=0
277¢ IF I% AND I%<>13 TS=TS$+CHRSI%:VDU 7
IS+E%

278@ UNTIL I%=13

2790 CLS

2800 =TS
2810 DEF PROCcolour

2820 IF J%<>23 ENDPROC ELSE VDU4

2830 PRINT''"Toggling Colours to ";
2840 IF U% PRINT"off.";:U%=FALSE:PROCoO
ff ELSE PRINT"on.";:U%=TRUE:PROCon

2850 PROCdelay

2860 VDU12,5:ENDPROC

2878 DEF PROCoff

288¢ GCOLZ,129

2890 GCOL@,0

290¢ ENDPROC
291¢ DEF PROCon

2920 GCOL@,128

293¢ GCOL®,1

2949 ENDPROC

2950 DEF PROCdelay

2960 LOCAL T%

2979 T%=TIME

2980 REPEAT UNTIL TIME>T%+150 OR ADVAL -1
2999 ENDPROC 5=

BEEBUG

March 1984

Volume-2 Issue-9

10

A REPORT ON ACORN’S LATEST DEVELOPMENTS

by David A. Fell

Following various rumours, announcements and exhibitions, David Fell
now reports on Acorn's latest products and future plans.

ELECTRON LATEST

Following the immediate success of
the Electron, Acorn are finding it hard
to ensure adequate deliveries of the
assorted components required for the
assembly of this micro, and as a
result, Electrons are in short supply
(indeed, we understand Acorn have
issued 'Out of stock' posters for use
by branches of W.H. Smith).

On the plus side, Acorn are
currently working on producing a
variety of add-ons for the Electron.
These are to be comnected to the
Electron via an expansion box which
will 1link to the Electron using the
rear edge connector. With this box
connected to an Electron, the user will
then be able to use a printer,
joysticks and a ROM expansion board
(which should allow for Basic and two
other sideways ROMs). The expansion box
is now expected to be available about
Easter.

A cartridge ROM socket is also
planned, in principle similar to those
available for machines like the Atari
VCS. Acorn believe that many Electron
owners will not want to fiddle about
too much fitting ROMs, as is the case
with the BBC Micro, so they hope that a
large amount of software will be
released in a format suitable for use
with the cartridge ROM system. A disc
interface may also be prepared for
release at a later date.

ECONET

Acorn have- recently been
encountering a number of problems in
their Econet local area network, and
this has even caused unfounded rumours
that Acorn were going to drop Econet.
Acorn report that they have discovered
the cause of these problems, and are
now going ahead full speed with their
Econet system.

IEEE-488 FULL SPECIFICATIONS INTERFACE
This product has now been released,

and we hope to report on it in the next
issue of BEEBUG.

CAMBRIDGE RING

Under current development, but
probably not available for a while, is
an interface to link up BBC micros to
the advanced local area network (LAN)
called the Cambridge Ring. This
communications system is based around a
'ring' that links all stations on the
network together. Information is
transmitted in 'packets' which are sent
around the ring at extremely fast
speeds. The Cambridge Ring was
co-invented at the University of
Cambridge by Dr. Andy Hopper who is a
non-executive Research Director at
aAcorn and who provides, on a part-time

basis, help with some of Acorn's
advanced = projects and development
programues.

WINCHESTER DISC DRIVES

Not ready for release, but certainly
coming on in development, is Acorn's
Winchester disc system (Winchesters
are sealed high capacity disc drives
using hard rather than floppy discs).
This will be in the form of a 16K ROM
(containing the Winchester Filing
System, known as WFS), that would be
inserted into one of the 'sideways' ROM
sockets in the Beeb, and the Winchester
disc drive(s) which will be attached to
the Beeb via the 1MHz bus. The storage
capacity is likely to be of the order
of 10M bytes, and the system will cost
approximately £1500.

SECOND PROCESSORS

When originally planned, it was
envisaged that the BBC Micro would have
the ability to wuse 2nd processors.
After lengthy delays, the projected 2nd
processors are now appearing on the
Acorn stands at exhibitions, and some
have been available for testing
purposes. Much has been said
(particularly by Acorn) on making
programs 'Tube' compatible, but this
has, until now, seemed a somewhat

BEEBUG

March 1984

Volume-2 Issue-9

11

theoretical requirement. Acorn have
delayed the release of the 2nd
processors (of which there are three
planned at present; a 6502, a 780 and a
16032) to ensure that, when available,
there will (hopefully) be no problems
with them. The term Acorn are using is
'extensive in-house testing'. However,
several other second processor systems,
such as that from Torch, have been
available for wuse with the BBC Micro
for many months now.

Basically, a Beeb with a 2nd
processor is a complex system in which
the 'number crunching' (or the language
processing) is done by the 2nd
processor, and the input and output
functions are carried out by the
original "host' Processor. The
advantage in having two processors is
simple; a two processor system can
process data significantly faster than
a one processor system. Because of the
high speeds involved for data transfer
via the Tube (in the order of one
megabit per second transfer rates), it
is essential that the two processors
communicate with each other correctly.
In designing the Tube, Acorn have
encountered a number of problems with
regards to the timing of the inter
. processor communications, but these, it
is reported, have now been resolved.
Readers may like to read David Graham's
article on the implications of the Tube
in BEEBUG Vol.1 No.6.

6502 2ND PROCESSOR

The 6502 2nd processor is now
virtually ready for release, and its
price tag is expected to be about £195
inclusive of VAT. With the 2nd
processor fitted, the user should get
42k of memory available from Basic for
his (her) program. There is no need for
16k to be set aside for the operating
system, as this still resides in the
'host' processor's memory map. However,
there is still a need for some extra
operating system code to be present
because the Tube needs something to
control the communications in each
processor. Only about 4k of code is
needed for this however, and so there
is a further 12k of memory available
between where Basic normally resides

(48000 onwards), and where it could
reside (&B@0% onwards) .

The Tube version of Acorn's Basic II
has been assembled to reside at &B@OO,
allowing the user to take advantage of
the 12K of RAM that would otherwise not
be accessible. If not already
installed, a DFS (disc filing system)
ROM will also be supplied, as this
contains some code necessary to control
data transfers across the Tube. This
code resides in the 'host' processor.

7-80 2ND PROCESSOR

The Z88 2nd processor is also nearly
ready for release. As this will be
supplied with the CP/M 2.2 Operating
System, it opens the door to a
tremendous number of proven CP/M
applications packages. Because much of
a user's existing software will not
work on a Beeb with the %8¢ 2nd
processor, with the exception of Tube
compatible Basic programs that do not
use machine code, Acorn are supplying a
large quantity of software bundled in
with the package. This is also designed
to make the purchase of a 280 2nd
processor offer the user significant
gains over the purchase of other
alternatives, and thus provide a very
attractive package to the first time
small business computer user, at whom
this system is particularly aimed.

The Acorn 288 2nd processor system
is, 1like the 6502 2nd processor,
expected to be available in the Spring
of this year. The price is likely to be
between £35¢ and £40@. Major software
supplied with the 280 2nd processor
will include a sophisticated word
processing system, a database package
and a spreadsheet calculator. The user
will also receive a 780 version of BBC
Basic, and another version, Microsoft
Basic, that is normally used with CP/M
based systems. To complement these, the
user is also provided with a systems
generator which allows the user to
design an applications package by
simply specifying it in functional
terms. Finally, the user gets a full
version of Focus CIS COBOL, the
established computer language for
business applications.

BEEBUG

March 1984

Volume-2 Issue-9

12

TESTING OUT YOUR MICRO (PART 1) - SIDEWAYS ROMS

by Hugh D. B. Smith

With an increasing nuwber of BBC micros in use, it is almost
inevitable that a number of users will experience problems with their
machine's hardware or firmware. To help you carry out initial testing

of a suspected faulty system, we

will be publishing a series of

articles and short test programs. We start the series by looking at

sideways ROMs.

In this series we aim to guide you
through a set of simple test routines
to help isolate some of the problems
that might arise with your BBC micro.
It is important to note that the
utilities offered here, and in later
articles, are only a guide and can
never replace the sophisticated
equipment needed to fully test such a
complex machine. As a result, you may
well be able to isolate and identify a
potentially faulty part of your machine
before contemplating further action.

In this first article, we present
two programs to test sideways ROMs. For
convenience both are not prone to
failure but like any type of memory are
not infallible. There are two main ways
in which a ROM can fail, by failure of
the chip itself, or by corruption of
one or more bits in the ROM. The latter
is more likely in EPROMs (to which this
article also applies) and could be
caused for a variety of different
reasons.

It 1is the second case that we shall
deal with here, since if a ROM breaks
down completely, then it is most likely
that the machine will not function at
all. The usual symptoms of memory bits
changing state are errors or bugs in
the use of the ROM software, where
previously the ROM performed correctly.

To be able to test a ROM, it is
necessary to know where it resides
inside the machine. In the BBC micro's
sideways ROM system, up to 16 ROMs can
be used (by using a suitable expansion
board) . These are numbered from @ to I
(in hexadecimal) .

LISTING ROMS

The first program, called simply
ROM, will print a list of ROMs present
in the machine, and their positions.

For a machine with a ROM board these
numbers are often printed next to each
socket. The four sideways ROM sockets
below the keyboard are numbered from 12
to 15 (& to &F) looking from the
keyboard and reading from left to
right.

SIDEWAYS ROM INDEX

ROM/NUMBER . ROM TITLE

BASIC
BCPL

EXMON
TOOUKIT.
%ro- Form

WORDWISE

GRAPHICS EXTENSION

OWNWAND OO

Two points should be noted with
this. First, if a ROM board is not
present the machine employs a system of
redundant addressing which means that
each ROM will appear in the index up to
four times, though only the last four
sockets (12 to 15) should be noted.
Secondly, the program will only work
with ROMs that follow Acorn's
specification on initial configuration.
If the program appears to crash at a
certain ROM title, as happens for
example when an Amcom DFS is fitted, it
is likely the ROM does not conform and
it should be removed from the machine
so that ROMs of lower priority may be
read.

10 REM Program ROM
2¢) REM Author Hugh D.Brown-Smith
3¢ REM Version B1.0 ’

BEEBUG

March 1984

Volume-2 Issue-9

40 REM BEEBUG March 1984
5@ REM Program subject to copyright
60 :
73 ON ERROR GOTO 260
80 PROCassemble
99 MODE7
198 2&71=(PAGE+&700) MOD 256
119 ?&72=(PAGE+&700) DIV 256
120 FORT%=0TO15
130 ? (PAGE+&700+20*T%) =13
14¢ NEXT
150 CALL index
160 $((15-?7&75) *20+PACGE+&730) ="BASIC"
17@ PRINT''CHRS141CHRS134SPC5"SIDEWAY
S ROM INDEX"
180 PRINTCHRS141CHRS134SPC5"SIDEWAYS
ROM INDEX"
190 PRINT''CHRS129"ROM NUMBER "CHRS1
33"ROM TITLE"'
200 R%=0
21¢ FORT%=15 TO ¢ STEP-1
220 PRINTCHRS130T%;CHRS131" ";S(R%*2
0+PAGE+&700)
230 R%=R%+1
240 NEXT
250 END
26@ ON ERROR OFF :MODE7:PRINT'':REPORT
:PRINT" at line ";ERL:END
1009 DEFPRCCassemble
1010 FORopt=0TO2STEP2
1020 P%=PAGE+&600
1030 [OPTopt
1040 .index
1050 LDX #15
1060 STX &70
1970 .mainloop
1080 JSR empty
1090 BMI nextrom
1106 JSR readtitle
1119 .nextrom
1120 CLC
1130 LDA &71
1140 ADC #20
1150 STA &71
1160 LDA &72
1170 ADC #900
1180 STA &72
1190 DEC &70
1209 BNE mainloop
1219 JMP findbasic
1220 .empty
1230 LDY &70
1240 LDA #&80
1250 STA &F7
1260 LDA #00
1279 STA &F6
1280 JSR &FFB9
1299 STA &73
1309 RTS
1319 .readtitle

1320 LDA #&80 1509 STA (&71),Y
1330 STA &77 1510 INC &76
1340 LDA #&09 152¢ INC &74
1350 STA &76 1530 CMP #20
1360 LDY #0 1540 BNE title@
1370 STY &74 155@ .lastletter
1380 .titled 1560 LDA #&@D
1390 LDX &77 157¢ LDY &74
1400 STX &F7 1580 STA (&71),Y
1410 LDX &76 1590 RTS

1420 STX &F6 1600 .findbasic
1430 LDY &70 1610 LDA #&BB
1440 JSR &FFB9 1620 JSR &FFF4
1450 STA &73 1630 STX &75
1460 BEQ lastletter 164¢ RTS

147 CMP #&0D 1650]

1480 BEQ lastletter 1660 NEXT

1490 LDY &74 167@ ENDPROC
ROM_TESTER

There are a number of ways to test a
ROM, the most common being by a
'Checksum' method. This is simply a
case of adding up every byte in a ROM,
and comparing the sum with a value
which 1is known to be correct. The
problem with such a system is that
multiple errors can cancel each other
out so producing a correct checksum. A
more reliable way is to perform what is
known as Cyclic Redundancy Check (CRC).
This works through the polynomial shown
below for every byte in the ROM,
producing a unique value which is
almost infallible even for multiple
errors.

X 16+X712+4X75+1

The second program presented here
can be used to calculate the CRC of any
sideways ROM in the machine. Do note,
though that different versions of ROMs
will produce different figures and even
the smallest modification made by a
manufacturer to ROMs of the same
version number will result in different
values. For this reason it is suggested
that on receipt of a new ROM the
program is run and the CRC noted. If at
a later stage the ROM is suspected of
failure, then the =~ ROM should be
re-tested and the values compared.
Standard Acorn ROM software normally
gives values as shown:

Basic I 67FF

Basic II EC@8

DFS 9.90 8C4B

As well as the position of the ROM
to be tested, it is also necessary to b

BEEBUG

March 1984

Volume-2 Issue-9

14

know its size, either 8k or 16k. This
is important since if the wrong value
is used then the CRC produced will be
incorrect. The size of a ROM is often
given in the advertising blurb, but may
also be determined by the type number
on the chip. In general if the last two
digits are 64 then the ROM is 8k, and
if the last 3 digits are 128 it is 16k.
For example, 2764 and 27128 which are
the most common EPROMS used are 8k and
16k respectively. ROMs like BASIC and
VIEW are both 16k.

When running this program, the value
of PAGE should be set to &196¢ or lower
if the program is to work correctly.
Finally, do note that a CRC which
differs from someone else's value does
not necessarily mean a faulty
component .

1¢ REM PROGRAM CRC
20 REM AUTHOR Hugh D.Brown-Smith
3¢ REM Version B1.0
4¢ REM BEEBUG March 1984
5¢ REM Program subject to copyright
60 =
7% ON ERROR GOTO0348

8¢ MODE7

9¢ PRINT''CHRS$141;CHRS134SPC5"SIDEWA
YS ROM CRC TEST"

190 PRINTCHRS141;CHRS$134SPC5"SIDEWAYS
ROM CRC TEST"

11¢ PRINT'''''CHRS131"Enter ROM numbe
r (g-E)";

120 *FX15,1

130 REPEAT

140 A=GET

150 UNTIL (A>47 AND A<58)OR(A>64 AND
ALT1)

160 IF A<58 romnumber%=A-48 ELSE romn
uber$=A-55

17¢ PRINTCHRS130"@"; ~romnumber?

189 PRINT''CHRS131"Enter ROM size (A=
8k B=16k)";

19¢ *FX15,1

20@ REPEAT

219 B=GET

220 UNTIL B>64 AND B<67

230 IFB=65PRINTCHRS$130"8k" ELSE PRINT
CHRS$13@"16k"
240 size=(B-64)*32
250 PROCassemble
260 CALL readrom
27@ PRINT''CHRS$134SPC7"CRC value"CHRS
1307 (2&71%&100+2&70)
280 PRINT''CHRS$134SPC5"Test another R
oM (Y/N)"; '
29¢ *FX15,1
30@ REPEAT AS=GETS
319 UNTILAS="Y"OR AS="y"OR A$="N"OR A
$'—'"D"
320 IFA$="Y"OR A$="y" THENS§ ELSE PRI
NT: END
330 END
340 ON ERROR OFF :MODE7:PRINT'':REPORT
:PRINT" at line ";ERL:END
100@ DEFPROCassemble
1910 FORQ%=0TO2STEP2
1020 P%=&1F00@
193¢ [OPTQ%
1040 .readrom
1050 LDA #romnumber$
1960 STA &FE30
1070 STA &F4
1080 LDX #size
1090 STX &72
1199 .calccrc

1110 LDY #0

1120 STY &79

1130 STY &71 1319 ROL &71
1140 .cxcl 1320 DEX

115¢ LDA &71 1330 BNE crc2
1160 EOR &8000,Y 1340 INY

1170 STA &71 1350 CPY #&00
1180 LDX #8 1360 BNE crcl
1190 .crc2 137 INC crcl+4
1200 LDA &71 1380 DEC &72
1210 ROL A 1399 BNE crcl
1220 BCC crc3 1400 LDA #&BB
1230 LDA &71 1410 LDY #&FF
1249 EOR #8 1420 JSR &FFF4
1250 STA &71 1430 STX &FE30
1260 LDA &70 1440 STX &F4
1279 EOR #&10 1450 RTS

1280 STA &70 1460]

1299 .crc3 1479 NEXT

1300 ROL &70¢ 1480 ENDPROC =25

HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS

COLOUR VIDEO - G.C.Jones

In BEEBUG Vol.1 No.2, we explained how to obtain colour on the composite video
output, by soldering a 470pF capacitor in position C58 and joining link S39. On
later models of BBC micros, this capacitor is supplied, but 1link 839 is
un-connected. Mr.G.Jones suggests using conductive paint to short the link if you do

not feel like soldering in a small space.

Acorn decided not to connect the capacitor (or link), since the picture quality
when in colour, is definitely degraded compared with the RGB output.

BEEBUG

March 1984

Volume-2 Issue-9

15

THE STONEMASON (32K)

by Brian Knott

The supplement sent out with the
November issue of BEEBUG contained a
Brainteaser competition which asked
entrants to write a program which would
convert any given number (in the range
1-2000) into Roman numerals and then
list a table of conversions for all the
numbers in the specified range. Brian
Knott's program won second prize in
this competition (see this month's
supplement for details of the results),
but the graphics and sound that he
added to the program were S0
impressive, that we are printing the
program in full. The program is very
well written and displays any necessary
user instructions on the screen. We
think you will appreciate running this
program. We certainly did!

e

O D U N BT
20X RN K A
e A s b

6
I3
6
§
4
4
2
7
7

=]

RN E R AR R R RRRRN
S

R 35 56 2 6 ok

PN LR SotedeTotetes
]~ e T e S

PRSI aaivi e siiel
=

BOODOOVVDMNEDD
ittt tety st ket

19 REM Program MASON

200 REM Author B.L.Knott

3¢ REM Version B1.4

40 REM BEEBUG March 1984

50 REM Program subject to copyright

198 ON ERROR GOTO 199¢

110 MODE7:PROCtitle:MODE1

120 VDU23;8202;0;0;0;

130 PROCinit

140 PROCtemple

15@ VDU5:TIME=0:C=0:c%=1:step%=20:DS=
mnu :d$="M[X:LXVI "W

160 FOR F%=0 TO 960STEPstep3%

176 FOR I%=1 TO 11:IF I3MOD3=0 d%=3
ELSEd%=4 *

180 PROCwalk (F3-X% (x%(I%)),Y2(x3(I%))
) ¢NEXT,

190 *FX15,1

200 vDU4,28,0,4,39,0:REPEAT:COLOURG:C
OLOUR129:INPUT'" ENTER THE NUMBER YOU W
ANT CONVERTED TO ROMAN NUMERALS (1-20
00) - "NUM:UNTILNUM>@ AND NUM<2001

21@ PROCroman (NUM)

220 VDU24,0;0;1279;896;5

230 PROCshow

240 vDU4,28,0,4,39,3:COLOURY: PRINT'"

Press any key to continue.";:VDU7:Q=GE
T:VDU19,2,6;0;19,1,4;0;

250 PROClist:VDU3Q

260 END

270 :

1000 DEF PROCtitle

1010 VDU23;8202;0;3;0;

1920 *FX15,1

1930 PRINTTAB (3,5)CHRS134CHRS1 57CHRS$13
2CHRST41T"R OMAN NUMERATLS "
CHRS156TAB (3, 6) CHRS134CHRS1 57CHRS 1 32CHR
ST4T"ROMAN NUMERALS “CHRS
156

1047 PRINTTAB (1,19)CHRS130"This progra
m will convert any number"TAB(@,12)CHRS
130"between 1 and 2000 to its Roman Num
eral"TAB(2,14)CHR$130"equivalent, and w
ill then list all"™

1050 PRINTTAB (4,16)CHRS130"Roman Numer
als from 1 to 2000."TAB(13,20)CHRS131"B
rian L.Knott"TAB(6,23)CHRS134"Press any
key to continue."

1960 A=GET:ENDPROC

1979 :

1080 DEF PROCinit

1099 vDU19,3,2;0;19,1,6;0;

1100 ENVELOPET,0,0,0,9,0,0,0,126,-29,0
,—20,126,0

1170 DIM X%(11),Y%(11) ,x3(11)

1120 FOR I%=1 TO 11:READx%(I%),X%(I%),
Y% (I%) :NEXT

BEEBUG

March 1984

Volume-2 Issue-9

16

1130 DATA1,32,100,10,128,160,6,160,180
,8,224,80,4,256,160,11,358,174¢,2,416,14
%,5,608,18¢,3,640,105,9,800,174,7,832,9
4]

1140 vDU23,225,24,24,%,60,126,255,255,
189

1150 VvDU23,226,189,189,60,60,60,36,36,
192
1169 VDU23,227,24,24,0,60,60,126,127,2
53
117¢ vDU23,228,152,6%,60,60,60,54,98,6
7
1189 VvDU23,229,24,24,0,60,60,60,60,60
1199 vDU23,231,24,24,0,60,126,126,126,
60
1200 vDU23,232,60,60,60,60,60,36,36,10
2
1219 VvDU23,230,24,60,60,60,60,24,24,28
1220 vDU23,255, 255 255,255,255,255,255
;255,255
1230 ENDPROC
1240 :
125¢ DEF PROCtemple

1260 VDU24,0;200;1279;1023; :GCOLA, 129:
CLG:VDU24,2;0;1279;199; :GCOLY, 131:CLG:V
DU24,100;200;1169;219; :GCOLY, 130:CLG
1270 VDU24,128;22@;1149;239; :CLG:VDU24
,140;240;1129;259; :CLG:VDU26:GCOLY, 3
1280 MOVE @,200:DRAW12849,200:MOVE100, 2
G0 :DRAWT0Q, 220 :DRAW1170, 220 :DRAW1170, 20
@:MOVE120, 220 :DRAW120, 240 : DRAW1 150, 240
DRAW115¢, 220 :MOVE140, 240 : DRAW144, 260 : DR
AW1130,260:DRAW1139,240
1299 VDU24,165;264;1104;639; :GCOLA, 130
:CLG:VDU26

1300 FOR I%=0 TO 9:X%=165+(I%*100) :MOV
EX%-10,260:DRAWX%,275: DRAWX%+40,275:DRA
WX%+55, 260 :MOVEX% , 275 : DRAWXS , 600
1319 FOR J%=1 TO 4:MOVEX%+(J%*10),275:
DRAWX%+ (J%*10) , 600 : NEXT
1320 MOVEX%,600:DRAWX%-10, 5640 : DRAWX$+5
@,640:DRAWX% +40 600 : DRAWXS , 600
1330 NEXT
1340 VDU24,145;640;1124;719; :GCOL@, 130
:CLG:VDU26

1350 MOVE145,640:DRAW1125,64@:DRAW1125
, 720 :DRAW145, 720 : DRAW145,640:VDU24,130;
72%;1139;734; : GCOL@, 130:CLG:VDU26

1360 MOVE13¢,720:DRAW114%,720:DRAW1140
,735:DRAW130,735:DRAW130,720:MOVE130,73
5:DRAW30@, 780 : DRAWI70, 780 : DRAW1 140, 735:
GCOL@,129:GCOLG, 2:FOR Y%=736 TO 779STEP
4:PLOT&4D, 500, Y% : NEXT

137@ ENDPROC

1389 :

1390 DEF PROCwalk (a%,b%)

1400 GCOLA%,c%:MOVEa%,b%:VDU227+C :MOVE
a%,b%~-32:VDU228+C :C= (C+2)MOD4 :MOVEa%+st
ep%,b%:VDU227+C:MOVEa%+step? ,b%-32:VDU2
28+4C

141¢ IF F%=960 GCOL#, (d%-1)MOD3:VDUS,2
26,8,11,225

142¢ ENDPROC

1430 =

1449 DEF PROCroman (N%
1450 IF W>1M@S%

$>=100 S%=3:T7%=100

=5:T%=10 ELSES%=7: Tg‘
1460 REPEATPROCdo (N% DIV T%)

1470 N%=N% MOD T%:S%=5%+2:T%=T%DIV1d
148¢ UNTILS%=9 OR N%=0

1499 ENDPROC

1500 :

1519 DEF PROCdo(n%)

1520 IF n%=0 ENDPROC

1530 IF n%=4 OR n%=9 D$=DS$+MIDS (d$,S%
, 1) +MIDS (d$,S%-1+(n%=9) , 1) :ENDPROC

1540 IF n%>=5 D$=DSHMIDS(d$,S%-1,1):n
%=n%-5:IF n%=0 ENDPROC

1550 FOR I%=1 TO n%:DS$=DS$+MIDS (A$,5%,1
) :NEXT

1560 ENDPROC

1578 :

1580 DEF PROCshow

1590 c%=2:d%=3:start%=252:step%=32
1600 IF LEN(DS)MOD2=1 start%=start%-1
5

1610 MOVEstart%,708:GCOLY, #:VDU255,8,1
3,255

1620 FOR I=1 TO 14@¢:NEXT:VDU23¢,8,11,
229

1630 FOR I=1 TO 1400:NEXT:GCOL@, 2:VDU8
,8,255,8,10,255

1640 FOR I=1 TO 140@:NEXT

165¢ FOR F%=@ TO 32* ((21-LEN(DS$))DIV2)
STEPstep%:PROCwalk (start®+32+F%,708) :FO
R H%=1 TO 1200:NEXT,

1668 FOR H=1 TO 1200:NEXT

167¢ GCOL@,2:VDU8,255,8,11,255,8:GCOLY
,9:vDU231,8,10,232,8,11

1680 PROCspell

1690 GCOL®,2:VDU255,8,10,255,8:GCOLM, 3
:VDU228,8,11,227

1709 C=0

1710 2%=start3+64+(32* (((21-LEN(DS$))DI
V2)+LEN(DS)))

1720 FOR G%=Z% TO 956STEPstep%:PROCW
alk (G%,708) :FOR H%=1 TO 1203:NEXT,

1739 GCOL@,@:vDU11,255,8,10,255

1740 FOR H%=1 TO 1200 :NEXT:GCOL@,2:VDU
8,8,255,8,11,255

1759 FOR H%=1 TO 1400:NEXT:VDU255,8,10
+255

1760 ENDPROC

1779

1780 DEF PROCspell

1796 GCoLg,@:vbu231,8,19,232,8,11

1809 FOR G%=@ TO (LEN(DS)-1):FOR H=1 T
O RND(5)+18:SOUND&13@,1,6,RND (4) +1:SOUN
D&191,1,255,1:NEXT »

00¢ ELSE IF

)
1:73=1
ELSEIF N%>=10 S%

BEEBUG

March 1984

Volume-2 Issue-9

17

1810 FOR H=1 TO 200@:NEXT

1820 GCOL@,2:VDU255,8,10,255:GCOLY,0:V
DU232,8,11,231:PLOTY,~64,~12: PRINTMIDS (
D$,G%+1,1); :PLOTD, 0,12

1839 FOR H=1 TO 1400:NEXT,

184@ ENDPROC

1850

1860 DEF PROClist

1870 @%=4:VDU26:COLOUR1 :COLOUR13@:CLS

1880 PRINTTAB(5,6) "ALL THE NUMBERS FRO
M 1 TO 2000"TAB(10,8) "WILL NOW BE PRINT
ED"TAB(11,10)"AS ROMAN NUMERALS"

1890 GCOL®@,1:MOVE16Q,300:DRAW1 100, 300:
DRAW1100,544:DRAW1 60, 544: DRAW1 60, 300

190¢ PRINTTAB(14,16)"TO STOP THE DISPL
AY"TAB(13,18) "PRESS ANY KEY"TAB(7,20)"T
O CONTINUE PRESS ANY KEY"
B e D

1910 PRINTTAB(4,28)"Press SPACE BAR to
start display.":Q=GET

1920 vDU28,%,30,39,1:CLS

193¢ COLOUR®

1940 FOR J%=1 TO 2000:DS="":PRINTJI%;"
.. ";:PROCroman (J%) : PRINTDS; : IF POS<20
PRINTSPC (20-POS); ELSEPRINT

1950 IF INKEY(@)<>-1 A=GET

1960 NEXT:VDU15

1979 ENDPROC

1980 :

1990 ON ERROR OFF

2000 MODE 7:IF ERR=17 END

201¢ REPORT:PRINT" at line ";ERL

2029 END

THE ARIES-B20 MEMORY EXPANSION

Reviewed by Philip Le Grand

Although the BBC micro is noted for its excellent graphics, as much

as 20K of user memory can be used

in supporting the graphics,

leaving little room for programs and data. Now Computer Consultants
Ltd. have produced a 20K memory expansion board for the Beeb. Is

this the answer?

Product : ARIES-B20 memory board.

Price : £99.95 (inc. VAT & post)

Supplier: Cambridge Computer
Consultants Ltd., FREEPOST,
Cambridge, CB1 1BR.

The ' problem with the BBC micro, is
that it shares its memory with the
video circuitry, and by the time the
operating system, Basic, DFS and any
other ROM software has taken its own
workspace from the available RAM, there
is very little remaining for the user's
programs. At first glance, there seems
to be no immediate cure for the
situation. However, the latest offering
from Cambridge Computer Consultants
Ltd. seems to answer the problem.

The RAM board arrives ready to be
installed in the cpu socket, the cpu
(6502 central processing unit) being
placed in an equivalent socket on the
ARIES board. An EPROM is also supplied,
for fitting in a sideways ROM socket
which automatically selects the extra
RAM. As soon as the computer is
switched on, the board becomes active,
as it does if you perform a hard break,
displaying the message "BBC computer
52K".,

The double-sided pcb of the
Aries-B20 is very sturdy and its size
has been kept to a minimum. The ICs are
evenly distributed around the mounting
pillar so that there is virtually no
strain imposed: on the cpu socket.
Although the board is simple to fit,
you need to be careful about removing
the cpu from the Beeb, and lining up
the pins in the vacant socket. Once
pushed home, the board is very stable.
The pins on the mounting pillar are of
the type which will not enlarge the
holes of the cpu socket, useful if you
ever want to use your machine without

BEEBUG

March 1984

Volume-2 Issue-9

18

the board. With the ARIES-B20
installed, it is possible to use one of
the double density disc controllers
reviewed in BEEBUG Vol.2 No.8 issue as
well, but none of the ROM extension
boards reviewed in BEEBUG Vol.2 No.6.
The manual supplied with the package is
very clear with plenty of diagrams
explaining the installation and use of
the board in adequate detail.

The 20K of extra RAM operates in
parallel with screen memory from &3000
to &7FFF enabling much larger programs
to run, including those which are too
long to be used with conventional
disc-based systems. Thus in any screen
mode, a minimum of 25k of memory (28k
with a cassette system) is always free
for programs and data. The system
automatically switches Dbetween the
screen memory and the new user memory,
in a way that is completely hidden from
the user.

It is possible to turn the ARIES
board off by issuing the command *XOFF.
This facility enables you to use EPROM
software which cannot make use of the
extra RAM, (e.g. WORDWISE, TOOLKIT),
though software such as VIEW, BCPL and
EXMON can take advantage of this extra
memory. The board can be switched on

again using *XON.

The switching between the two RAM
areas does slow the BBC micro down by
about 1%, but it is very unlikely to be
noticed by the user, and only affects
the screen accesses (e.g. PRINTing and
PLOTting) . The controlling software
requires a page of workspace, and PAGE
is automatically set to &F00 (cassette)
or &l1AQ® (disc). This is obviously a
very small loss compared to the 20K
gained.

Another way of using the extra
memory is for data storage. Cambridge
Computer Consultants. have been given
the exclusive right by Acorn to use
*FX111 to switch between the two RAM
areas. This may be used from Basic or
assembler to store and access two large
areas of data in parallel.

The ARIES-B20 board certainly
provides an attractive solution to the
lack of sufficient memory on the Beeb.
The user will need to judge whether he
(she) 1is likely to make sufficient use
of the extra memory to Jjustify the
cost. On the other hand, it will almost
certainly be a cheaper way of gaining
extra memory than with any 2nd
processor system.

=

TURNING OFF ROMS - A.Pemberton

HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINT

Any sideways ROM socket can be turned off by software control, to prevent it
interfering with the running of a particular program. A table at &@2A1 - &02BO

holds information about each ROM socket.

If no ROM 1is present, the corresponding

location holds the value zero. Thus typing ?&2B@=¢ will ignore the ROM in socket 15.
*HELP will show which ROMs are still recognised by the operating system. This can be
extremely useful when ROMs conflict with each other, as in the case of filenames for
example. Note also that !&2AD=¢ will 'empty' all four sockets.

=

LOWER CASE BASIC - A.Armstrong

If you redefine the two characters @ and } by running the following program, you
will find all upper case letters will now be printed in lower case, yet they still

work as upper case.

1¢ MODE4
20 VDU 23,64,60,60,60,60,60,60,60,,60
3¢ VDU 23,125,0,0,255,255,255,255,9,0

=

BEEBUG

March 1984

Volume-2 Issue-9

19

BACH’S CANTATA NO. 147
Programmed by Derek Hufton

The following program provides an
interesting implementation of the well
known piece of music "Jesu Joy of Man's
Desiring” from cantata No.147 by
J.S.Bach. The program itself is very
short, and will repeatedly cycle
through the composition using one of
four envelopes, which is selected at
random each time the music restarts.
While the music is playing, pressing
any key will cause the program to
terminate and the music to stop.

You will need to take care typing
the program in if your micro is to

reproduce this music accurately, but
indeed,

the results are, well worth

while in this case.

10 REM Program BACHJ

20 REM Author D.Hufton

30 REM Version Bl.1

40 REM BEEBUG March 1984

50 REM Program subject to copyright
60 =

109 MODE 7

118 ON ERROR GOTO 320

120 ENVELOPE1,1,1,-1,6,1,1,-1,127,-2,
-1,-15,90,50

13¢ ENVELOPE2,1,0,0,0,0,0,0,60,0,0,-6
9,909,990

14¢ ENVELOPE3,3,1,-1,1,1,2,1,75,0,0,~
75,99,90

150 ENVELOPE4,1,%,0,0,0,0,0,127,-1,-1
~1,90,0

160 :

170 FORA=3TO4:PRINTTAB(6,A)CHR$141;CH
R$129;CHR$157;CHRS131; "Cantata No.147
";CHRS$156 : NEXT

180 PRINTTAB (2,12)CHRS$133; """Jesu Joy

of Man's Desiring"""

190 PRINTTAB(15,6)CHR$129;"by"

200 PRINTTAB(12,8)CHRS$138;"J. S, BACH"

219 PRINTTAB(1@,20)CHR$13@;“Programme
d by"

220 PRINTTAB (10, 22)CHRS134; "Derek Hu
fton"

23¢ VDU23;11,0;0;0;0

249 :

250 RESTORE100@:X%=0:2=RND (4)

260 REPEAT:I%=INKEY (%)

279 READC,n,d:SOUNDc,e,n,d: X$=X%+1

280 IFX%=93e=RND (4) :X%=0:RESTORE100g

290 UNTILI%>®

309 END

319 ¢

320 ON ERROR OFF

330 MODE 7:IF ERR=17 END

340 REPORT:PRINT" at line ", ERL

35¢ END

360 :

1000 DATA&1@1,81,4,&1@2,81,12,1,129,4,
],137,4,&1@1,145,4,&1@2,129,12,1,157,4,
1,149,4

1019 DATA&101,149,4,&1@2,117,12,1,165,
4,1,157,4,&101,157,4,&1@2,97,12,],177,4
s 1,173,4

1020 DATA&101,T77,4,&1ﬂ2,117,12,1,157,
4,1,145,4,8101,129,4,8102,69,12,1,137, 4
,1,145,4

1939 DATA&]Ql,149,4,&1@2,89,12,1,157,4
,1,165,4,&101,157,4,&102,97,12,1,149,4,
1,145,4

1940 DATA&101,137,4,&1%2,1@1,12,1,165,
4,1,157,4,8101,125,4,5102,89,12,1,129, 4
,1,137,4

1050 DATA&101,109,4,8102,77,12,1,125,4
,1,137,4,&1@1,149,4,&1@2,1@9,12,1,]45,4
,1,137,4

1060 DATA&]@],145,4,&102,81,12,1,129,4
,1,137,4,&10],145,4,&102,117,12,1,157,4
,1,149,4

1078 DATA&101,149,4,5102,101,12,1,165,
4,1,157,4,&1@1,157,4,&1@2,97,12,1,177,4
,1,173,4

1080 DATA&1G1,177,4,&1@2,117,12,1,157,
4,1,145,4,&1@1,129,4,&1@2,1@9,12,1,137,
4,1,145,4

1090 DATA&101,117,4,&162,1@1,12,],157,
4,1,149,4,&101,145,4,&1@2,105,12,1,137,
4,1,129,4,&1@1,1@9,4,&1@2,1@9,12,1,129,
4,1,125,4

1100 DATA&1@1,129,4,&1@2,81,24,1,145,4
1,157,4,1,177,4,1,157,4,1,145,4,5101,1
29,24,81082,109,24

=

BEEBUG

March 1984

Volume-2 Issue-9

20

MACHINE CODE GRAPHICS (Part 2)

by Peter Clease

We continue our series on machine code graphics by looking at the
definitions of multi-coloured characters in Mode 5, which is one of
the modes used most frequently in commercially produced games.

MODE 5

Mode 5 is a popular mode for
graphics games because it offers a nice
balance between the amount of memory
used, and the number of colours
available. It offers the programmer
four colours, but uses only 10k of
memory.

In Mode 5 each byte of memory is
used to code four pixels. This is
because with four colours possible,
each pixel requires two bits to specify
the colour of that pixel, and thus with
8 bits to a byte, each byte can
represent the colours of four pixels.
The = table below 1illustrates the
relation between the 1logical colours,
and the two Dbits allocated to each
pixel. (A logical «colour may be
redefined to a different physical
colour by use of the VDU 19 statement.)

Binary | Decimal | Logical Colour
00 [] Black
1] 1 Red
19 2 Yellow
11 3 White

Table 1. Binary codes for Mode 5
colours.

Since a screen character consists of a
matrix of 8 by 8 pixels, one byte in
Mode 5 represents half a character
line, and two Dbytes a full character
width line.

Below is the byte map of the top

left character block on the screen for
Mode 5:

&5800 &5808
&5801 &5809
&5802 &580A
&5803 &580B
&5804 &580C
&5805 &58@D
&5806 &580E
&5807 &580F

Figure 1. Screen memory addresses
for the first character in Mode 5.

To illustrate how to form a four
pixel byte to poke into screen memory,
we will 1look at a simple example.
Suppose we want to make the first four
pixels of the screen black, red, yellow
and white respectively, to give a
'striped' appearance.

Using table 1 above, we can see that
the four pixel's codes are 96, 91, 14,
11 respectively for black, red, yellow
and white. The way that these 8 bits
are combined to form the correct
pattern is not quite the way that might
initially be expected. Figure 2
illustrates the interleaving process
that is required.

1st pixel

g
(Black)
g 1 2nd pixel
(Red)
1 pe—I1 0] 3rd pixel
(Yellow)
l 11 11 1] 4th pixel

(White)

olelihilelr]ol1] eo110107=(53)

® Final Byte

Figure 2. Coding of pixel colours
in Mode 5.

B

BEEBUG

March 1984

Volume-2 Issue-9

21

The basic method of interleaving the
bits for each pixel to form the
required byte for Mode 5 (and for the
other graphical modes) is as follows:

Take the first (or highest) bit of
each pixel, and arrange these from left
to right at the start of the byte. If
the mode is one which uses more than
one bit per pixel, then repeat the
process for each bit in turn, working
from left to right. ’

Although this may seem strange at
first, it is really quite logical, and
once understood, it is usually easy to
follow through the process of
interleaving bits when designing
characters. If it helps, until you have
acquired the knack of building uwp a
byte easily, it may be quickest to use
the method illustrated in figures 2 and
4.

We will now take the interleaving
technique further, and produce a four
colourad picture of a man and place it
at the top of the screen. Figure 3
shows the man that we are going to
build (the letters indicate the colours
of each pixel, and the numbers
alongside are the coded values to be
calculated, ready for poking to the
screen) .

Byte Pixel Byte
colours

Values

Figure 3. Designing and coding a
four colour character in Mode 5.

Having designed the man, we need to
convert each set of four horizontal

The first byte representing the man
will contain two black pixels followed
by two red pixels. Figure 4 illustrates
these four pixels being arranged into a
single byte:

st pixel

o | se—Tia] snapier
%} 1 éféa;}i{;el
1 e Zoixel

l (Red)

| o]ofofo]ofo]1]]

20000011=(3)
- Final Byte

Figure 4. Coding the first
byte of the 'man' character.

The remaining fifteen bytes have been
coded for you, but it would be a good
exercise to code these yourself, and
then to check them against the correct
data in figure 3.

Now that we have produced the data
for poking to the screen, we need a
machine code program that will actually
do this for wus. Program 5, listed
below, will accomplish this. Type it
in, and try it. The DATA statements at
lines 170 and 180 are the parts of the
program that actually determines the
shape and colour of the character
displayed on the screen. Thus, just
changing these lines to a different set
of 16 bytes will give a different
shape.

190 REM PROGRAM 5

20 REM VERSION B1.1

30 REM AUTHOR PETER CLEASE
40 REM BEEBUG MARCH 1984
50 REM PROGRAM SUBJECT TO COPYRIGHT.
60 :

190 PROCassemble

110 FOR I=0 TO 15

120 READ I?data

130 NEXT

140 DELAY=INKEY 200

150 MODE 5

160 VDU 23;11,0;0;0;0

170 CALL CODE

pixels into one byte's-worth of data to 180 PRINT''!'

insert into screen memory. This is done 190 END

in the same way that we converted the 200)

earlier example. 21¢ DATA 3,3,17,120,16,48,96,204 ,’
BEEBUG March 1984 Volume-2 Issue-9

22

220

230
1000
1019
1020
1030
1040
1950
1069
1979
1080
1099
1100
1119
1120
1130
1140
1150
1160
1179

DATA 12,12,136,225,128,192,96,51

DEF PROCassemble
DIM CODE 100

DIM data 15

FOR PASS =@ TO 3 STEP 3
P%=CODE

[

OPT PASS

LDY #@

.loop

LDA data,Y

STA &5800,Y

INY

CPY #16

BNE loop

RTS

]

NEXT

ENDPROC

consisting of a block of 4 characters,
which will thus be a matrix of 16 by 16
pixels. As a result, there will be a
total of 64 bytes to be coded and
placed in appropriate Data statements.
The task is virtually the same as
before, but obviously rather more
lengthy to carry out. The following
program (Program 6) is similar to
Program 5, but places a four character
shape on the screen. Again, there are
two procedures, PROCassemble, to
assemble the machine code, and
PROCAraw, to place the shape on the
screen. The data in our program will
produce a figure that is similar to a
space invader, but you should be able
to design your own shapes as well. The
main program section also includes a
loop which will display this colourful

Program 5 is very similar to the one
last month that plotted the
space-invader in Mode 4. This time
sixteen, instead of eight, numbers must
be stored in screen memory to produce
the character, because twice as many
bits are needed per pixel.

It is a fairly simple matter to
design your own characters by working
out the byte values to be poked, using
the method given above. Remember that
program 5 works its way down each
colunn and so the data must be in that
order. If you have decided to work out
your own data, replace the data at
lines 2190 and 228, and then run the
program. Programs, such as SPRITES from
BEEBUGSOFT, are also available which
will allow you to design your own
characters more easily and which also

shape in a

series

positions on the screen.

of different

xie riv.

SR B BB G

19
20

REM PROGRAM 6
REM VERSION B1.1

includes routines to display and move 3¢ REM BEEBUG MARCH 1984
characters on the screen. By way of 40 REM AUTHOR DAVID FELL
example, here are some further sets of 5¢ REM PROGRAM SUBJECT TO COPYRIGHT.
data that you can try at lines 218 and 60 :
220 in place of the original 'man’. 19@ PROCassemble

110 FOR I=g TO 63
Space Invader. 120 READ data?l
210 DATA 12,2,7,45,7,3,6,12 130 NEXT
220 DATA 3,4,14,75,14,12,6,3 140 DELAY=INKEY 150

. 150 MODE 5

Strange Fruit. 160 FOR I=&5800 TO &7CO¢ STEP 1280
21¢ DATA 16,0,18,7,15,15,15,6 178 PROCAraw (I) : PROCIraw (I+80)
220 DATA 32,112,132,14,111,111,15,6 180 PROCAraw (I+160) : PROCAraw (I+240)

190 NEXT

Once you can define single 200 PRINTTAB(@,31);

characters, you can build up larger 210 END
shapes on the screen by combining 220 :
several characters together. As an 230 DATA 14,11,9,1,3,7,15,3
example, we will build up a shape 24¢ DATA ©,1,11,15,207,139,15,15 o
BEEBUG March 1984 Volume-2 Issue-9

23

250 DATA 9,8,13,15,63,46,15,15
260 DATA 7,13,9,8,12,14,15,12
270 DATA 15,120,60,7,3,8,15,15
280 DATA 13,13,135,244,15,15,12,12
29¢ DATA 11,11,30,240,15,15,3,3
300 DATA 15,225,195,14,12,1,15,15
310 :

1000 DEF PROCassemble

1010 DIM CODE 200

102¢ DIM data 63

1430 FOR PASS= @ TO 3 STEP 3
1040 P%=CODE

1950 |

1060 OPT PASS

1070 LDY #9

1089 .loopl

1090 LDA data,Y

110¢ STA (&80),Y

1119 INY

1120 CPY #32

113¢ BNE loopl

1140 CLC

1150 LDA &80

1160 ADC #&20

1179 STA &80

1180 LDA &81

1199 ADC #1

1200 STA &81

121@ .loop2

122¢ LDA data,Y

1230 STA (&80),Y

1249 INY

125¢ CPY #64

1260 BNE loop2

1270 RTS

1280]

1290 NEXT

130@ ENDPROC

1310

1320 DEF PROCdraw(P%)

1330 1&80=P%

1340 CALL CODE

1359 ENDPROC

Note that the two programs that
accompany this month's article store
their machine code in areas of memory
allocated from Basic via the DIM
statement. This is the normal method of
designating an area of memory in which
to store large pieces of machine code
when generated from Basic. The data for
the characters is also stored in an
area DIMmed from Basic for ease. The
amount of memory required for the
character data is known precisely at
the time of program entry, so only that
amount of memory is requested. With the
machine code section, however, it is
not practical to quickly calculate how

many bytes of memory will be required,
and so a figure that is generous is
used. Note also the use of the READ
statement. This is a little known and
flexible way of reading data directly
into memory.

Users of Basic II may be interested
to know of a new group of commands that
allow data to be stored in memory more
easily than the method used here,
especially when developing machine code
programs. These are EQUB, EQUW, EQUD,
and EQUS (see also BEEBUG Vol.2 No.4).
The command of particular interest is
EQUB, as this takes a list of single
byte values, much as VDU normally does,
and inserts them into memory at the
current ‘'program counter'. This allows
both the data and machine code to be
allocated memory together. It is
recommended that the data resides after
the machine code.

That is all we have space for this
month. In the next article we will look
at how to cope with the choice of 16
colours available in Mode 2, and the
other graphics modes. =5

BEEBUG

March 1984

Volume-2 Issue-9

24

PRINTING YOUR OWN FUNCTION KEY LABELS (16K)
by Tim Powys-Lybbe

The ten user-defined function keys are one of the most useful

features of the BBC micro. The short program that we describe here
enables you to print your own function key labels on an Epson or

similar printer.

This program uses the facilities on
the Epson to print function key labels
using condensed and emphasized (darker)
characters. The program should also
work with the Shinwa CP8@ printer, and
any other printer which is compatible
with the Epson. It should be possible
to adapt the program to work with many
other dot matrix printers. The program
as listed will print the key labels for
the extended version of ASTAAD and the
labels for Colin Lindsay's keyset
program (both in this issue). Now those
readers with an Epson printer needn't
cut up their copies of BEEBUG for the
titles.

The program prints nine lines of
text. You can put whatever you want in
those nine: lines by means of the Data
statements in lines 4000 onwards. Each
Data line corresponds to a line of
print and wmust consist of 11 data
items, or else the titles will be
printed wrongly. Each line has an
initial title of up to 7 characters,
which can be used to label the keystrip
as a whole, followed by the 10 keys
making 11 items in all.

The titles may be any length you
want, but will be printed alternately
12 and 13 characters in length. Titles
shorter than 12 characters will be
centralised above their key, so for
clarity you will get better results
with short descriptions on multiple
lines rather than long titles on a
single line. Note that you do not need
quotation marks around your titles in
the Data statements, while completely
blank sections require nothing at all
between the commas as in lines 4050 and
4060.

The rows of numbers in the
'Initialise' procedure send control
codes to the printer for narrow,

'Reset' procedure reset the printer
back to normal. If you have a different
type of printer you may well be able to
change these values so that the program
will work for your own printer. If you
do get the printer tied up in knots
then either turn it off and on again or
type (for an Epson):

vou 2,1,27,1,64,3
which will reset the printer.

It is possible to have more than 9
lines of print, though only 9 will fit
under the perspex strip. To print more,
alter line 2010 to:

FOR J=@ TO lines: FOR I=0 to 19
where the value 'lines' is the number
you want. Then add in the additional
data statements after line 4086.

The lines printed are 132 characters
long, which forces a carriage return
and line feed on the Epson printer.
This 1is why it is vital to include the
semi-colon in line 208@, to prevent
another line feed from the micro.

10 REM Program FNKEY
20 REM Version Bl1.1
3¢ REM Author T.F.Powys-Lybbe
49 REM BEEBUG March 1984
53 REM Program subject to Copyright
60 :
7@ MODE7
80 ON ERROR GOTO 1000
9¢ PROCInitialise
100 PROCTitles
119 PROCReset
129 END
139 :
14 ON ERROR OFF:MODE 7:REPORT:PRINT"
at line ";ERL:END
150 :
1000 DEF PROCInitialise
1610 VDU2:C$=STRINGS (7,CHRS$32)
192¢ PRINT"Put this guide under the pe
rspex screen above the function keys."
193¢ vDU13,13,13,13,1,27,1,51,1,24,1,1

enhanced printing and to make the lines 5{;&é7é167;03
closer together. The numbers in the 1050 .N P B
BEEBUG March 1984 Volume-2 Issue-9

25

2009 DEF PROCTitles

201@ FOR J=0 TO 8:FOR I=0 TO 1§

202¢ READ AS

2033 IF I=0 BS=LEFTS(AS+CS,7) :GOTO 208
]

2040 IF I1/2=INT(I/2) AS=LEFTS(AS,13) E
LSE AS=LEFTS (AS,12)

2050 AS=STRINGS (6-INT (LEN (AS)/2) ,CHRS3
2) +ASHCS

2060 IF 1/2=INT(1/2) AS=LEFTS$(AS$,13) E
LSE AS=LEFTS (AS,12)

2070 BS=BS+AS:

2080 NEXT I:PRINTBS;

2090 NEXT J

210@ ENDPROC

2119

3000 DEF PROCReset

3¢19 vbut,18,1,27,1,72,1,27,1,50,13,13
,13,13,13,13,3

302¢ ENDPROC

3030 :

4000 DATA, SCREEN, SCREEN, SCREEN, SOFT CH
ARS, INFILL,DUMMY,REVERSE, ,,

4010 DATA, SAVE,LOAD,DUMP, ON/OFF , ON/OFF
, ROUTINE,COLOURS, , ,

4020 DATAASTAAD+, ,rsvrrres

4030 DATA,ASTAAD,DRAW, DRAW, REPEAT ,MOVE
»DRAW, LINE , DELETE , DELETE , DRAW

4040 DATA, TEXT,ARROW, POLYGON, POLYGON, ,
; + LINE,AREA ,CIRCLE

4050 DATA, s rrvrrees

4060 DATA,,,,rr004s

4070 DATAREDKEY,CLEAR TEXT,FREE, ERROR v
CAT,CHAIN"", INSPECT, PAGED, PRINTER, PRINT
ER,BIN TO HEX

4080 DATA,BLUE RUN,MEMORY,LINE,, ,MEMOR
Y,LIST,ON,OFF,DEC TO HEX

=

HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS

DISC LOCATION - K.Simpson

After accessing a disc, either read or write, location &F@5 DIV 8 contains the

~ number of files on the disc.

INCREMENTING COUNTERS - R.Rottier
In BEEBUG Vol.2 No.7, we

the following single command:
INC &1E

included
accompanying machine code program, as pointed out by R.Rottier, could be replaced by

-

=

a hint about COUNT errors. However, the

*COMMANDS ~ A.Pemberton
When using the structure IF.

THEN *<command>, the THEN is not optional.

=

WHICH PAGE? - J.Brayshaw
When in terminal mode, using the Teletext adapter, pressing the Copy key shows

=

which page is currently being dlsplayed

OUT-DENTING IN WORDWISE - S.J.Wilkinson

The text indenting command in WORDWISE (TI) can accept negative values, giving a

=

piece of text jutting out from the main body of text.

SPECIAL SYMBOLS FROM WORDWISE - R.W.Lyne & M.A.Batey
Here are a couple of helpful symbols you can print out in your documents on an

EPSON FX type printer. This method sets up a user defined character
for a

The first comes from Mr.R.W.Lyne,
following codes:

oc27,75,8,9,198,179,108,40,16,40,68,130.

in each case.

‘cut here' scissors symbol, use the

A A - A - - -

The second symbol is a telephone, from Mr.M.A.Batey, using the following codes:
0C27,75,9,8,112,243,231,255,255,255,231,243,112

TETTEEZTTTT =

BEEBUG

March 1984

Volume-2 Issue-9

26

MULTIPLE DISC CATALOGUES
by C. C. Chan

We present an extremely useful disc utility that enables you to
double, or even quadruple, the number of files that can be stored on
a disc using the Acorn DFS. This utility, which can be adapted to
both 49 and 80 track units, is simple to use, and will allow much
more efficient use of your disc storage.

One of the main snags with the Acorn
DFS, as those using it quickly find
out, is the 31 files limit on the disc
catalogue. This often means that
programs and data have to be moved onto
another disc and copied back and forth
all the time. This can be especially
frustrating 1if you are trying to keep
track of a series of documents,
different generations of data files,
programs, etc. Worst of all, there is a
severe wastage of disc space. For an 8%
track disc, most of the files would
have to be at least 6K in size to be
space-efficient. Many files will fall
below this size, and most 80 track
discs rarely get much above half-full.
Similar problems are also likely to
arise with 100k discs, though less disc
storage will be wasted.

One way around this problem is to
create another catalogue on each disc,
thereby immediately enabling each disc
to hold up to 61 files (one file is
required for system purposes). This is
done by modifying the existing
catalogue to point to only half of the
disc, and then creating another
catalogue for the other half. This
second catalogue is tucked away
securely at the end of the disc,
inaccessible in normal disc usage,
except by addressing the relevant
sectors directly. The files and areas
held by the first catalogue will be
included in the second catalogue as a
system file called '*.%sysfl%' which
cannot be deleted by the '*DELETE'
command. As both catalogues are in the
normal DFS format, all the DFS commands
can still be used, regardless of which
catalogue is currently active.

Two programs are needed, one to set
up and initialise the dual catalogues
(CAT2), and one to swap between
catalogues (SWAP2). The program CAT2 is
used just once to create the second
catalogue on disc, and will ask you

which drive (9, 1, 2 or 3) is to be
used. In general, you should do this on
a blank disc, although it is possible
to create a dual catalogue on a disc
already in use, provided it is not more
than half full. Check carefully before
running CAT2 and make certain that a
*COMPACT is done just before the run.
The program CAT2 can be saved on any
convenient disc, for use when required.

After creating the second catalogue,
which divides the disc into two parts,
you can switch between the two
sections, by running the SWAP2 program.
For convenience, you could save a copy
of this program in each catalogue that
is to be swapped, though this isn't
essential. The program will ask for the
number of the drive on which the two
catalogues are to be swapped, and after
swapping over the two catalogues, the
files in the new catalogue are
compacted to update and tidy up the DFS
buffers held in wmemory. It may be
useful to define a function key to swap
over catalogues, for example:

*KEY@CH."SWAP2"|M1|M
This sets up function key f@ to swap
catalogues.

The programs listed here are
intended for use with a 4@-track disc
unit, and some minor but very important
changes will be necessary if they are
to be used with 8@-track units. These
changes are listed at the end of this
article.

PROGRAM NOTES

A quick word about how the programs
work. As you will see from the
listings, they hinge around the
procedure 'sectoraccess'. The purpose
of this procedure is to read or write a
specified disc sector to or from a
specified memory address. An error
check 1is incorporated to ensure that
any disc errors are brought to the

attention of the user. You might like B9

BEEBUG

March 1984

Volume-2 Issue-9

27

to use this procedure in other disc
programs of your own.

The ‘'sectoraccess' procedure takes
10 bytes from address & CC@ onwards as
the parameter block for a call to
OSWORD with A set to &7F (this call is
handled by the DFS sideways ROM). The
initialiser program (CAT2) reads in the
original catalogue, modifies it to
point to only half the disc, and then
writes it back to its original location
on the disc. It then modifies the copy
of the disc catalogue in memory to skip
past the file areas used by the first
catalogue, reduces the total number of
disc sectors available by 2 to
safeguard 2 sectors at the middle of
the disc, and then writes the second
catalogue to the last 2 sectors of the
disc.

EXTENDED USE

Experienced users may be interested
to note that the procedure
'sectoraccess' has several other
possible uses. For example, you may
'mark' a disc with certain passwords
and attributes 1in particular sectors
which other programs can then check
each time they run. This would make it
more difficult to copy programs to
other discs and making it virtually
impossible to dump a program onto tape,
thereby adding some measure of software
protection. It may also be used to
interrogate specific sectors on disc
and dump the catalogues for viewing or
for security purposes, etc.

By modifying the initialiser
program, it is also possible to create
catalogues of unequal sizes on a disc,
if you wish to keep all the large files
in one catalogue and the smaller ones
in the other.

These split catalogues have been in
use for some time now and no problems
have been experienced whatsoever. While
it is not a comparable alternative to
getting another disc drive, it does
provide a true upgrade option for users
frustrated by the 1limited number of
files allowed by the Acorn DFS. One of
the main points you should bear in mind
however, is that each catalogue is
effectively the whole disc when you use

each disc with a split catalogup one
for each catalogue.

It is in fact possible to create as
many extra catalogues as required on a
disc; the initialiser can be modified
to create more catalogues at the end of
disc storage space, and the swapper
modified to select whichever catalogue
is required. Two programs that
initialise and swap 4 catalogues on an
83 track disc are included on this
month's magazine cassette. Note that
the 4-catalogue swapper requires a
spare byte held in the 2nd header
sector which means that you must NOT
re-title the disc after creating the 4
catalogues. This problem does not arise
when using the 2 catalogue swap
program.

10 REM PROGRAM CAT2 (40 TRACK)
20 REM VERSION B1.2
30 REM BEEBUG MARCH 1984
40 REM AUTHOR C.C. CHAN
5@ REM PROGRAM SUBJECT TO COPYRIGHT.
60 :
100 ON ERROR GOTO 2000
119 @%=19:MODE7
120 PRINTCHRS$131;"Dual Catalogue Disc
Utility."
130 PRINTCHRS$131;STRINGS (28,"=")
140 PRINT'CHR$130"40 track version.”
150 DIM buffer% 512
160 PRINT'CHRS$134;: INPUT"Create dual
catalogues on drive? "drive$
178 PROCsectoraccess (drive$%,0,d,buffe
r%,"read")
180 PROCsectoraccess(drive%,d,1,buffe
r3¥+256,"read")
190 W%=? (buffer%+262)AND&FJ:? (buffers
+262) =W%:? (buffer+263) =&C8
200 PROCsectoraccess(drive%,d,1,buffe
r%+256,"write)
210 W=7 (buffer%+262) AND&F@:? (buffers
+262)=W% OR 1:?(buffer%+263)=&8E
220 $(buffer%+8)="%sysf1%":? (buffers+
15)=&2A:? (buffer%+271)=2:? (buffer%+279)
=@:? (buffer3+268) =&FF:? (buffer%+269)=&C
:? (buffer%+261) =8
230 PROCsectoraccess (drive%,79,8,buff
ers,"write™)
240 PROCsectoraccess (drive$,79,9,buff
er3+256,"write")
25¢ PRINT'CHR$133;"Dual Catalogues Cr
eated 0.K."''CHRS$131;
260 $&AQGO="COM."+STRS (drive%) :X3=0:Y%
=&A :CALL&FFF7

the '*BACKUP' DFS command. Therefore, 276 END
you will need to do two backups for 280 : BH
BEEBUG March 1984 Volume-2 Issue-9

28

1000 DEFPROCsectoraccess (unit%,track%,
sector%,address%,actionS)

1010 LOCALresult%

1920 2&CCO=unit%:?2&CC5=3:2&CCI=&21

1030 1&CCl=address%:?2&CC7=track%:?&CC8
=sector$

1040 IFaction$="write"THEN?&CC6=&4B:EL
SE?&CC6=&53

1050 X%=&CO:Y%=&C:A%=&7F :resul t3=USR (&
FFF1)

1060 IF?&CCA THENPRINTCHRS13@;">> Fail
ed:sectoraccess;code="; "?&CCA;" ,results
=";result%:STOP

197¢ ENDPROC

1089 :

200% ON ERROR OFF:MODE 7

201¢ IF ERR<>17 REPORT:PRINTERL

2029 END

10 REM PROGRAM SWAP2 (40 TRACK)
20 REM VERSION B1.2
3¢ REM BEEBUG MARCH 1984
4¢ REM AUTHOR C.C. CHAN
52 REM PROGRAM SUBJECT TO COPYRIGHT.
60
109 ON ERROR GOTO 2000
119 MODE7:@%=10
120 DIM area% 512, buffer% 512
130 number%=39
140 PRINTCHR$131"Dual Catalogue Swap
Utility."
15¢ PRINTCHRS131;STRINGS (28,"=")
160 PRINT'CHRS130;number%+1;" track v
ersion,”
170 PRINT'CHRS134;: INPUT"Swap catalog
ues on drive? "drive%
188 PROCsectoraccess(drive%,d,0,area%
,"read")
199 PROCsectoraccess (drive%,d,1,area%
+256,"read")
200 PROCsectoraccess (drive%,number?,8
,buffers,"read")
219 PROCsectoraccess (drive$,number%,9
Jouffers+256,"read")
220 PROCsectoraccess (drive%,nunber%, 8
,area%,"write")
230 PROCsectoraccess (drive$,number%, 9
,area%+256,"write™)
240 PROCsectoraccess (drive%,@,0,buffe
r%,"write")
25@ PROCsectoraccess(drive%,d,1,buffe
r%+256,"write")
260 PRINT'CHRS$133;"Catalogues swapped
0.K."' 'CHR$130;
270 $&AGP="COM."+STRSdrive%:X%=0:Y%=&
A:CALL&FFF7
280 END
299 :
1009 DEFPROCsectoraccess (unit%,track%,
sector%,address% ,action$)
1010 LOCALresult®

1020 2&CCO=unit%:?2&CC5=3:2&CCI=&21

1030 1&CCl=address%:?&CC7=track%:?&CC8
=sector%

1040 IFaction$="write"THEN?&CC6=84B:EL
SE?&CC6=&53

1050 X%=&C@:Y%=&C:A%=&7F sresul t3=USR (&
FFF1)

1960 IF?&CCA THENPRINTCHRS13d;">> Fail
ed:sectoraccess;code="; "?&CCA; " ,results
=":result%:STOP

1@7¢ ENDPROC

1089 :

2009 ON ERROR OFF:MODE 7

2019 IF ERR<>17 REPORT:PRINTERL

202¢ END
MODIFICATIONS FOR AN 8¢ TRACK UNIT

The following changes are required
to convert the listed utilities to work
on an 8@-track unit.

SWAP2

Change the 39 at line 130 to a 79.
This is the number of tracks that SWAP2
recognises.

CAT?2

Change all the PROCsectoraccess
calls with the second parameter of 39
to 79.

Line 19¢ determines the number of
sectors to be managed by the catalogue.
Change the whole line to read:

190 W2=? (buffer3+262)AND&F@:? (buffers+2
62)=W% OR 1:? (buffer%+263)=&90

Line 218 specifies the total space to
be held on the new catalogue. Change it
to read:

210 W%=2 (buffer%$+262)AND&F?:? (bufferd+2
62)=W% OR 3:?(buffer%+263)=&1E

Line 220 of the initialiser assigns
the area to be covered by '*.%sysfl%’
which should be enough to cover all the
file areas of the first catalogue.
Change it to read:

220 $(buffer%+8)="%sysfl%":? (buffer%+15
)=&2A:? (buffer3+271)=2:? (buffer’+279) =&
1@:? (buffer%+268)=FF:? (buffer%+269) =48
D:? (buffer’+261) =8

OF INTEREST

There are several errors in the disc
manual: OSFIND (&FFCE) returns the
channel in A, not Y; the format of the
2nd sector of the disc catalogue is
incorrect and has the middle order and
low order bits of the file's load
address, exec address and length
transposed.

BEEBUG

March 1984

Volume-2 Issue-9

29

WHICH FORTH FOR THE BBC MICRO?

A comparative review by John Yale

In last month's issue of BEEBUG, John Yale gave a short introduction

to the computer language FORTH.

This month, John provides a

comparative review of the three implementations of FORTH now readily

available for the BBC micro.

FORTH is a comparatively new
computer language that has rapidly
achieved a cult following among many
programming enthusiasts. It differs
from languages 1like Basic in that
writing FORTH programs involves
extending the language itself to meet
the application, rather than using the
language as provided to describe a
solution (as happens with Basic). A
measure of the interest in FORTH is the
availability of at least one popular
micro that offers FORTH as its standard
language. Versions of FORTH are also
available for many other micros and
there are now three implementations of
FORTH available for the BBC micro.

Acornsoft FORTH and r g FORTH
(supplied by Level 9 Computing) are
cassette or disc FORTHs based on the
Fig (FORTH Interest Group) FORTH model
modified to meet the FORTH-79 standard.

JWB FORTH supplied by HCCS
Associates differs from the other two
in that it is supplied in an 8k byte
"EPROM for fitting in the computer. JWB
FORTH is based on the Fig FORTH model
but without the FORTH-79 modifications.
HCCS explain that as the majority of
applications are supplied by Fig this
should make things easier for new
users. However, this will only be the
case if you already have a quantity of
Fig software, as priority is now given
to publishing FORTH-79 programs.

Full details of prices, suppliers
- and recommended books are given at the
end of this review.

EDITOR

FORTH source code is normally stored
in 1k byte blocks or screens. Acornsoft
FORTH and JWB FORTH both provide the
standard Fig line and string editor for
editing these screens. Although this is
a powerful editor when mastered, it is
difficult for the beginner to use. Use
of the cursor and Copy keys does
however allow editing in a similar
manner to Basic.

Acornsoft FORTH allows two screens
in memory at one time and JWB FORTH
allows one. As each screen is typed in,
compiled and tested it must be saved to
tape before the next screen can be
entered. This does cause problems when
a screen in the middle of an
application needs changing.

In contrast r g FORTH adopts a
different approach to block storage and
editing. Firstly a selectable number of
blocks is kept in memory for instant
recall at any time, saving to tape only
being required at the end of a session
(or more frequently for security). The
only disadvantage to this scheme is
that it uses a large amount of memory
which might be required for graphics.
However, as the number of blocks stored
is configurable, the wuser may reduce
this to say two blocks and revert to
the scheme used by the other systems
under review. Secondly r g FORTH uses a
screen size of 512 bytes organised as
16 lines of 32 characters instead of 64
characters as used by the other
systems. This allows a complete screen
to fit onto a Mode 7 display but
unfortunately it does not comply with
the FORTH-79 standard which requires
1024 Dbyte blocks. Editing is performed
by moving the cursor to the required
place on the screen and typing away. A
set of control keys is also provided to
delete text or move it around the
screen via a holding buffer. This
editor is much easier to use than the
Fig one, and will be found to be more
powerful than the Basic editor supplied
as part of the BBC computer.

BENCHMARKS

The December 1982 issue of Personal
Computer World has a set of Benchmarks
for FORTH implementations. In general
JWB FORTH is slightly slower in
execution, though the differences
between the three systems are not
significant.,

CASSETTE SYSTEM
All three systems can save blocks on

BEEBUG

March 1984

Volume-2 Issue-9

30

cassette. As mentioned above, Acornsoft
FORTH allows two screens in memory at
one time and JWB FORTH allows only one.
Thus as each screen is entered and
debugged, it must be saved to tape
using the built in block save facility.
r q FORTH uses the standard MOS *SAVE
command (accessed from within FORTH) to
save all the block buffers in one
cassette file. In practice this system
is much easier to use.

DISC SYSTEM

When FORTH is used with discs all
the screens are kept on the disc, only
being brought into memory as required
for editing or compiling. This system
which is known as ‘virtual memory' is
transparent to the user, it seeming as
if all the blocks are continuously
available (except for the disc activity
as blocks are swapped in and out).

Acornsoft disc FORTH is supplied on
a protected disc, but this has little
effect and it is possible to produce a
backup copy of your FORTH system as it
is easily transferred from memory to a
new disc by *SAVEing from PAGE to HERE
(this also works with the cassette
version). I found the disc access time
of 3 - 4.5 seconds per block rather
long but this does depend on the DFS in
use. Blocks are stored nine to a file
which allows 99 blocks on a 180k disc.

A disc version of r g FORTH is
supplied on the back of the cassette.
Block reading and writing is much
faster than with Acornsoft FORTH as the
disc filing system is not used. Instead
sectors are accessed directly via
OSWORD calls, giving block read times
in the range 8.7 to 1.6 seconds.

The JWB FORTH EPROM will also work
with the BBC disc filing system but as
each block is stored as a separate file
this means a maximum of 31 blocks on a
disc due to the DFS file limit. Thus
two thirds of the disc is wasted. This
system also does not support the
important FORTH word BLOCK.

ROM SYSTEM

JWB FORTH is the only one of the
three packages currently being supplied
as a ROM system (actually in EPROM).
Fitting instructions are supplied with
the EPROM which is selected by *FORTH.

Acornsoft FORTH should be available
in ROM later this year.

Level 9 Computing have no plans at
present for a ROM version of r g FORTH.

DOCUMENTATION

Acornsoft FORTH is not supplied with
any documentation and requires separate
purchase of the book 'FORTH on the BBC
Microcomputer'. This is suitable for
beginners and advanced users alike and
is highly recommended.

r g FORTH is supplied with a 72 page
A5 manual containing a complete
glossary ©of all the words in the
system, configuration details, source
code of the editor etc. This manual
contains all the information the
experienced FORTH user requires to use
the system, but it is not a good
introduction for the beginner. Also
supplied by Level 9 is an A4 summary
card giving brief details of all the
words in the system, configuration,
editing, saving etc.

JWB FORTH is supplied with a 37 page
A4 manual containing a glossary,
sections on Graphics and Sound, System
description and some demonstration
programs. The review copy glossary was
rather difficult to read as the first
few letters of each line were lost in
the binding. This manual is again not
an introductory text and HCCS will be
introducing a separate book 'Welcome
FORTH' in the near future.

A new book 'The Complete FORTH' by
Alan Winfield will provide a suitable
introduction to any of the FORTH
systems reviewed here, particularly the
FORTH-79 standard, as this is the
dialect used throughout the book. All
the basic FORTH techniques are covered
in the book's 130 pages, including the
definition of new defining words with
DOES>. Some of the chapters = have
exercises, and answers are given at the
back of the book. Two complete FORTH
programs are also given as examples.

'Starting FORTH', the standard work
on FORTH covers more ground with more
detail and is highly recommended, but
at less than half the price 'The
Complete FORTH' is very good value.

ASSEMBLER

Acornsoft FORTH provides an
assembler package in source code form
on tape or disc which may be added to
the system by compiling it and saving a
copy of the extended system. 2

BEEBUG

March 1984

Volume-2 Issue-9

31

The other two systems do not provide
an assembler as part of the standard
system, but allow access to the machine
operating system via CALL (r g FORTH)
or *FX and OSWORD (JWB FORTH). Of
these, CALL is the more powerful,
allowing access not only to OSBYTE and
OSWORD but also to file routines such
as OSFILE etc. Level 9 Computing also
provide a separate r g FORTH Toolkit
which includes an assembler.

COMPATIBILITY

Whilst the standard FORTH words are
the same in both systems designed to
the FORTH-79 standard, the situation is
not so good where new words have been
defined to use some special feature of
the BBC micro. An example is the word
used to send the rest of the command
line to the Operating System,
equivalent to the Basic use of '*',
Thus we have O0S' (Acorn), *MOS (r Q)
and MONITOR (JWB). This doesn't need
too much conversion but consider a word
with three parameters to provide the
equivalent of, say, PLOT. This could be
KXY PLOT, XY KPLOT or even Y X K
PLOT and there are good reasons for all
three choices. I would suggest that in
such cases as this, all authors should
keep to the same order as in the
equivalent Basic command, i.e. K X Y
PLOT. This is not always the most
convenient for FORTH, but at least it
would be standard.

None of the different cassette or
disc systems reviewed are compatible
with each other. However, all three can
compile Wordwise files from disc if
Return is used at the end of each line.

ERROR MESSAGES

Acornsoft and JWB FORTH use error
numbers whereas r g FORTH uses English
messages for all errors (eg. 'no such
block' rather than '# Msg no 6').

When an error occurs in the loading
of a source block it 1is not always
apparent at what point in the block the
error, has occurred. Typing ‘WHERE' in
Acornsoft FORTH displays the screen
number and the line in error with an
arrow pointing at the point in the line
where the error was detected. Typing
'WHERE' in r g FORTH enters the screen

UPGRADES

Level 9 are also now supplying a
FORTH toolkit containing an assembler,
turtle graphics package, decompiler
(allows you to see the definition of
any word in the dictionary), double
precision extension and various other
extras.

CONCLUS IONS

Of the systems reviewed, r g FORTH
stands out as the best system for
cassette-based use, and the r g FORTH
Toolkit is very good value at £10.

For a disc-based system the choice
is between Acorn and r g FORTH which
both give good performance.

A ROM-based FORTH has obvious
advantages, particularly for cassette
use. The HCCS ROM is available now but
has several drawbacks, not being to the
FORTH-79 standard, having a poor
cassette system and with only
restricted disc use.

SUPPLIERS AND PRICES
(all prices include VAT)

Acornsoft Ltd, c/o Vector Marketing
Ltd, Denington Industrial Estate,
Wellingborough.

FORTH cassette £16.85

FORTH on the BBC Microcomputer £7.50

Level 9 Computing, 229 Hughenden Road,
High Wycombe, Bucks. HP13 5PG.

r q FORTH £15.00

r g FORTH Toolkit £10

Starting FORTH (book) £14.35

HCCS Associates, 533 Durham Road, Low
Fell, Gateshead, Tyne and Wear NE9 5EY.
JWB FORTH EPROM £34.72

Welcome FORTH (book) £6.75

John Wiley & Sons Ltd. (Publisher)
The Complete FORTH, A.J.Winfield £6.95
ISBN (-905104-22-6

The above may also be available from
computer shops, specialist book shops
and major chain stores such as

editor with the cursor at the point in W.H.Smith.
the block where the error occurred. =]
BEEBUG March 1984 Volume-2 Issue-9

32

THE LATEST SOFTWARE REVIEWED

Title : Daredevil Dennis
Supplier: Visions Software
Price : £7.95

Reviewer: Alan R. Webster
Rating @ ***

Dennis is a rather active stuntman,
whose aim in 1life is to make as much
money from the movies as possible. Each
stunt he performs earns him big money,
but there are several risks that have
to be taken.

There are three different scenes.
The first requires Dennis to ride a
motorbike, leaping over houses and
engaging in other dangerous pursuits.
Among the stunts in the second scene,
he has to jump a light-house with a
wetbike, and in the third, his stunts
are all performed on skis.

The game has smooth, fast graphics
and uses over thirty multicoloured
'sprite' characters. It has an
interrupt driven sound routine, so that
you have constant music while loading.
There are also six skill levels to
choose from, and each level has six
intermediate levels, making thirty-six
in all.

The only reason that this game gets
three stars instead of four is that a
few minor programming bugs still
remain, occasionaly spoiling your
enjoyment of the game.

Title : Slalom
Supplier: R H Software
Price 2 £7.95

Reviewer: Mike Williams
Rating = **#**

Maybe your imagination has been
fired recently by watching the skiing
in the winter Olympics on television.
Perhaps you would like to have a go
yourself, Well now you can, by playing
Slalom, one of the best new games on
the: market. From the starting point,
you weave your way through the gates
and down the course to the finish. The
conditions are often icy and the
occasional large snowball provides an
additional hazard that will often be
your undoing. And your reward for
completing the course? You start from
the top again, but this time the gates
are closer together, the twists and
turns tighter, and the course is now
really difficult.

Crashes are quite spectacular as the
skier tumbles down the slope all arms
and legs. This game offers superbly
smooth and fast graphics, with a high
score table, but maybe there is just
one little niggle - even at its
easiest, Slalom is perhaps Jjust a
little too hard.

»
RN R0

BEEBUG March 1984 Volume-2 Issue-9

33

Titles : The Pen and the Dark
My Secret file
Supplier: Mosaic Publishing
Distributed by John Wiley
Prices : £9.95 each
Reviewer: Mike Williams
Ratings : *** and **%

Both of the titles reviewed here are
described by the publisher as
'Bookware' in that they both combine
together as a single package a book and
a computer program (supplied on
cassette). The Pen and the Dark is an
adventure game based upon a science
fiction short story which 1is part of
the package, while 'My secret file'
provides the means of storing lots of
personal data on a computer, and is
based upon the Puffin book of the same
name, again included as part of the
package.

THE PEN AND THE DARK

As a science fiction short story
this is indeed very short, and although
it is based on an intriguing idea, the
story lacks substance. The adventure
game, which is broadly based on the
book, seemed much more interesting once
you accept the role playing that it
entails. In the computer game you act
out the part of the book's main
character. The edition of the book
included in the package has clearly
been specially produced for use with
the adventure game, and contains full
instructions for loading and running
the game, including the facility of
saving the game at any stage for
reloading later. In general, I suspect
that this package will appeal far more
to teenagers than to adults, and this
is particularly true of the story. The
adventure game is quite extensive, and
being written in Basic, you can search
through the coding for addituonal clues
if you get really desperate.

MY SECRET FILE

My Secret File was originally
published as a Puffin Book. The book is
written for = young teenagers and
provides the space, and lots of ideas,
for the youngster to build up an
extensive personal data-base about
himself, his family and friends. In
this respect the book is admirable,
provided that it is treated in the
light hearted way intended.

I was less happy about the computer
version provided. The book is the
original Puffin and thus the additional
instructions for wusing the program
cassette are supplied as a separate
leaflet. In some cases the information
supplied is inaccurate or incomplete,
and the section on saving and reloading
your data file was particularly poor
(as was the program's screen display at
this point). Regrettably, the program
more or less mirrors the book,
providing the means to store and
subsequently redisplay the information
recorded, but there is no attempt to
exploit the computer's capacity for
information retrieval or for reordering
of the information stored. Although any
data stored in the computer is easily
changed I wonder how many children
would continue to do this after the
initial novelty has worn off.

With more thought and development
this particular package could have
provided a really exciting bridge
between home, education and the serious
world of computing. Unfortunately, the
opportunity has been lost by tying
everything to the limitations of the
original book format. None the less,
this is a good combination, apart from
the 1less than adequate program
instructions provided.

=

SHEPPARD SCALE - Andrew Civil

HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINT

The following program plays a succession of chords on the Sheppard tone scale.
This appears to rise endlessly and is prone to drive you insane!

10 REPEAT FOR P=Q TO 11
2¢ SOUND 1,-P,P*4,8
3@ SOUND 2,-11,P*4+48,8

40 SOUND 3,P-11,P*4+96,8
50 NEXT:UNTIL FALSE

=

BEEBUG

March 1984

Volume-2 Issue-9

34

COMPACT FUNCTION KEY DEFINITIONS (16K)
by Colin Lindsay

Only a limited amount of memory is available for storing function
key definitions. In many applications the use of this space is at a

premium. In this article,

space.

When defining any of the function
keys, there are in fact three ways in
which Basic keywords can be
represented; as the full keyword, in
its abbreviated form or as a token.
Following the '*' command, Basic does
not automatically tokenise Basic
keywords, which are therefore stored as
strings of ASCII characters.

Substantial savings, however, can be
made by using Basic tokens rather than
keywords in "red key" definitions, and
it is possible to do this if the
correct format is used. The appropriate
token value for certain keywords can be
built up from a few symbols whose total
value is taken by the computer to be
the value for the keyword itself. This
accumulated value is stored in memory
using only a single byte for most
keywords. This process allows function
key definitions to be compacted even
further, maximising the use of the
limited amount of memory allocated for
this purpose.

As an example, the keyword
'RENUMBER'® (token value &CC in hex) can
be built up from ' |!' (ASCII value &8¢)
and ‘L' (ASCII value &4C). The computer
adds these values and interprets the
symbols as having an ASCII value of
&CC. Hence, a key definition of

10 *KEYQ ’!LlM
is equivalent to

10 *KEY® RENUMBER|M
or
19 *KEY@ REN. |M

and occupies only 2 bytes in the first
case compared to 9 bytes and 5 bytes
for the second and third examples
(because 'RENUMBER' and "REN.2'
following a * command are not tokenised
but stored as ASCII character strings).

Colin Lindsay shows you how to compact
your function key definitions and hence maximise the

use of this

Using this technique, programming many
or all of the function keys will save
valuable space in the 256 byte buffer,
though at the expense of rendering much
of the code unintelligible!

The following list includes all the
keywords that can be "shortened" to a
single byte in key definitions. To use
this method type |! followed by the
character shown after the keyword, in
the key definition. Remember that the
character "|" is produced by the key

next to the cursor left key.

BEEBUG

March 1984

Volume-2 Issue-9

b

¢ 35

Note that the characters given for
HIMEM, LOMEM and PAGE apply only when
assigning values TO these system
variables (contrary to the information
in the User Guide page 483 which gives
the tokens for these variables
reversed) .

The following program fills the
red-key buffer using the token method
and shows Jjust how powerful the
user-defined keys can become. It has
been used for program editing (in mode
6) and is included mainly to
demonstrate the packing technique.

In the above form the keys can be
loaded in 256 bytes (just!). Using
abbreviated keywords the same
definitions would occupy almost 25%
more space and using full-length
keywords would take up 4% more space
and, of course, wouldn't fit!

You will need to take care when
typing in the program. No error
trapping has been included, as errors
in function key definitions will only
be revealed when a key is first pressed
after running this program. Do not be
tempted to add any extra spaces in the
key definitions or the buffer area will
overflow and the error mesage 'Bad key'
will be displayed. The key functions
are identified by REM statements
preceding each definition. For those
with a suitable printer, a key strip
for this program is included as one of
the examples in the article on
printing function key labels elsewhere
in this issue.

16 REM Program REDKEY
20 REM Version B1.1
30 REM Author Colin Lindsay
4¢ REM BEEBUG March 1984
50 REM Program subject to copyright
60 :
100 REM Flush red-key buffer
110 *FX18
120 REM MODE6/BLUE BACKGROUND/RUN
130 *K.ﬂ|!k6:|!ol9;4;ﬂ;:|!y|M
140 REM MEMORY LEFT
150 *K.1| z“P%—1:;1qH.—P%|M
16¢ REM AUTO LIST OF LINE IN ERROR
170 *K.2C$="L."+ !CERL+‘!=]3:A%=138:X
%zﬂ:I!cL=1!!8[!)C$:Y%=ASC(|!AC$,L,1)):|
IV&FFF4: | Im|M
180 REM CATALOGUE
190 *K.3*, |M
200 REM CHAIN""
210 *K.4|1W""|M
220 REM INSPECT MEMORY
230 *K.51!h“From“,M$:M= ! M$:|!cX=M|!
8 M+99:|1g X" "[=2X: | Im|M
240 REM PAGED LIST
250 *K.GIL !I'NlM
260 REM PRINTER ON
270 *K.7|102|M
280 REM PRINTER OFF
296 *K.8|103[M
300 REM CONVERT BINARY TO HEX, THEN
DECIMAL TO HEX
310 *K.9T=0: | th"No=",A$:L=| 1) AS: | IcX=
L !81S.—1:T=T+(2A(L—X))*|!;(1AAS,X,1))
: !m:[!q~T:|!h,Z:[!q“ZlM
320 REM OLD/MODE6/RED/PAGED LIST
330 *K.10| IK|M| tk6|M| 1019;1; 6 |M|N| 1T |M
340 PRINT'"Function keys now defined."
35¢ END

=

POINTS ARISING

MACHINE CODE GRAPHICS

Unfortunately a number of minor inaccuracies occured in the first article in this
series, which appeared in the Jan/Feb issue of BEEBUG. The byte map for mode 2 on
page 15 showed the first character block on line two as 'block 41°'. Mode 2 is a 20
character mode and this should have been marked 'block 21'., The two line example on
page 16 specified Mode @ when Mode 4 should have been used. Lastly, the value in
line 50 of the program on page 17 should have been &580¢ and not &5820 as printed.
We are sorry for these errors and have double checked this month to ensure there are

no inaccuracies in this month's article.

=

BEEBUG

March 1984

Volume-2 Issue-9

36

THE MANHOLE GAME (32K)
by E. Christie

The Manhole Game combines very good
graphics and sound in a fast moving
game to test your reactions. You are
the guardian of the Catacombs below the
streets of Cheltenham. Armed with only
a single manhole cover it is your job
to prevent the populace from dropping
through four holes in the road. To do
this you need to keep your fingers
delicately poised above the E, D, I and
J keys, and press the right one at the
right time. Before the game starts you
may also select a degree of difficulty.
Level 3 is not for the feint of heart.

PROGRAM NOTES

When you play the game you may be
surprised at the speed with which the
screen responds to your key press. This
is achieved through a particularly
useful technique. The underground man
is in fact drawn four times at the
start of the game 1in four different
logical. colours. But these are all set
to physical colour black. You therefore
cannot see them. The PROCKEY procedure

then sets one of these to colour green
according to whichever key has been
pressed. Because the object has already
been drawn it appears almost
instantaneously. Pressing another key
extinguishes that position and lights
another. This is all performed using

© the VDU19 call. See the User Guide page

382 for further details.

1¢ REM Program MANHOLE
20 REM Version B1.6

3¢ REM Author E.Christie
40 REM BEEBUG March 1984

5¢ REM Program subject to Copyright

60

109 vDU23,224,24,24,255,189,189,36,36
;102:C$=CHR$255:D$=CHR$130

119 ON ERROR GOTO 2380

129 :

130 REPEAT

140 MODE 7

150 PROCstart

16 MODE2:VDU23,1,0;9;0;09; : PROCfour

170 T=INKEY (100)

180 PROCrandom

190 REPEAT

20@ PROCtwo

219 PROCkey

22¢ IF D>=@ THEN D=D-@.2

23¢ UNTIL miss>9

240 PROCend

25¢ UNTIL FALSE

260 END

270

1909 DEF PROCkey

19019 BS=INKEYS (2)

1920 IF BS<O>"" THEN AS=BS ELSE 1100

1930 IF BS<O"E" AND BS<O"IM AND BS<>"D
" AND BS<>"J" THEN 1100

1040 FORI=2T05:VDU19,1

1950 IF BS="E" VDU19,2

1960 IF B$="I" VDU19,3

197¢ IF BS$S="D" VDU19,4

198¢ IF BS="J" VDU19,5

1099 *FX 15,0

1199 ENDPROC

1119

1120 DEF PROCtwo

1130 GCOL@, 6:VDUS:MOVE X,Y+5

1140 PRINTCHRS$224

1150 FORK=1TOD:NEXT

1160 IF Y=79¢ AND X>300 AND X<42¢ AND
AS<O"E" THEN 1320

1179 IF Y=790 AND X>30@ AND X<42¢ AND
AS="E" THEN 1260
-118¢ IF Y=790 AND X>70@ AND X<82¢ AND
AS<>YI" THEN 1320

1199 IF Y=790 AND X>700 AND X<82¢ AND
AS="I" THEN 1260

1200 IF Y=43@ AND X>300 AND X<420 AND
AS<OUDY THEN 1320

1210 IF Y=430 AND X>30¢ AND X<429 AND
AS="D" THEN 1260

’ »

< w8 = o=
NN
S 0w s s N
SESESESES]
S s s s s
SRR
~ S = oS N
[SESESERSS]

BEEBUG

March 1984

Volume-2 Issue-9

37

1220 IF Y=430 AND X>700 AND X<82¢ AND
AS<>"J" THEN 1320

1230 IF Y=43@ AND X>70@ AND X<820 AND
AS="J" THEN 1260

1240 SOUND@,-~15,3@,1:S0UNDg,~15,70,1
125¢ GOTO1280

1260 score=score+l

1279 SOUND1,-15,50,3

1280 GCOLG,d:MOVE X,Y+5 :PRINTCHRS224
129¢ IF DI=1 THEN X=X+60 ELSE X=X-60
1308 IF X>1150 OR X<5¢ THEN PROCrandom
1319 GOTO1419

1320 SOUND1,-15,10¢,1:SOUND1,-15,150,1
1339 SOUND1,-15,8@,1:SOUND1,-15,50,1
1349 SOUND1,-15,100,1

1350 miss=miss+1:IF miss>9 THEN 1410
1360 GCOL®@, @:MOVEX, Y+5: PRINTCHRS224
1370 GCOL@, 6:MOVEX,Y:PRINT"*"

1380 FORI=1TO300:NEXT

1390 GCOL@,#:MOVEX,Y: PRINT"*"

1409 PROCrandom

141¢ ENDPROC

1420 :

1439 DEF PROCrandom

1440 X=150:Y=430:DI=1

145¢ R%=RND (4)

1460 IF R%¥=1 X=150:Y=790:DI=1:GOTO 149
g

1478 IF R%=2 X=1050:Y=790:D1=0:GOTO 14
99

1480 IF R%=3 X=1050:Y=430:DI=0

149@ ENDPROC

1500 :

1519 DEF PROCend

1520 GCOL@,12:MOVE39(, 550 : PRINT"GAME E
NDS"

1530 GCOL@,11:MOVE399,13@: PRINT"Score:
";score

1540 FOR I=1 TO 8

155¢ SOUND1,-15,190,2:SOUND3,-15,11@,2
:SOUND1,-15,150,2

1560 SOUND3,-15,130,2:SOUND1,-15,50,2:
SOUND3,~15,60,2

157¢ SOUND1,-15,88,2:SOUND3,-15,90,2:5
OUND1,-15,50,2

1580 SOUND3,-15,74,2

1590 NEXT I

160@ TIME=@:REPEAT UNTIL TIME=500

1619 CLG

1620 ENDPROC

1630 :

1640 DEF PROCfour

165¢ CLS:GCOL@, 1:H=0

1660 VvDU19,1,0,0,0,0

167¢ FOR J=610 TO 730 STEP 30

1680 IF J<660 THEN 1740

1699 FOR I=1 TO 5

1709 READ X, X1

171¢ PROCbox

1720 PROCbox2

1730 NEXT 1

174% FOR K=1 TO 4

1750 READ X2

1769 PROCbox1

177¢ NEXT K

1780 NEXT J

1799 IF H=0 RESTORE:H=-360:G0OTO1670
1800 GCOLG,2:W=350:2=750:X1=0:Y1=0:RES
TORE222¢

181¢ vDU19,2,0,9,0,0

182¢ MOVE W,Z

183@ FORJ=1TO30:READX,Y:DRAWX+X1,Y+Y1:
NEXT

1840 DRAW49O+X1,750+Y1:DRAW4AIG+X1, 760+
Y1:DRAW310+X1,760+Y1:DRAW310+X1,758+Y1:
DRAWAQG+X1, 758+Y1

1850 MOVE465+X1,715+Y1:DRAW46G+X1,735+
Y1:DRAWA45+X1, 740+Y 1 : DRAWA3Q+X1,736+Y1:
DRAW420+X1,720+Y1

1860 MOVE430@+X1,725+Y1:DRAW4A30+X1, 722+
Y1

1870 MOVE445+X1,717+Y1:DRAW445+X1, 713+
Y1 .

1880 IF X1=0 AND Y1=0 PROCseta:GOTO182
g

1899 IFX1=40@AND Y1=@ PROCsetb:GOTO182
)

1900 IFX1=0AND Y1=-360 PROCsetc:GOTO18
20

1919 vDU19,1,1,4,08,0:VDU19,5,2,0,0,0
192¢ ENDPROC

1930 :

1940 DEF PROCseta

1950 W=750:2=750:X1=400:Y1=0:GCOLJ,3:V
pu19,3,9,9,0,0

1960 RESTORE222%

197@ ENDPROC

1980 :

1990 DEF PR(Csetb

2000 W=350:2=390:X1=0:Y1=-360:GCOLJ, 4:
vDU19,4,0,0,0,0

201@ RESTORE2220

202¢ ENDPROC

2030 :

204@ DEF PROCsetc

2050 W=750:Z2=390:X1=400:Y1=-360: GCOLJ,
5:vDU19,5,9,9,0,0

2060 RESTORE2220

207@ ENDPROC

2080 :

2099 DEF PROCbox

2100 MOVEX, (J+H) :DRAWX+58, (J+H) : DRAWX+
50, J+H+3%: DRAWX , J+H+30

2119 ENDPROC

2129 =

213@ DEF PROCbox1

2140 MOVEX2,J+H:DRAWX2+5@ , J+H: DRAWX2+5
@, J+H+30:DRAWX 2 , J+H+30: DRAWK 2, J+H

215¢ ENDPROC

2160 :
B

BEEBUG

March 1984

Volume-2 Issue-9

38

2170 DEF PROCbox2

218¢ MOVEX1,J+H:DRAWX1-50,J+H:DRAWX1-5
@,J+H+30:DRAWX 1, J+H+30

219¢ ENDPROC

2209 DATAS(0,550,600,659,530,580,630,6
30

221¢ DATAS3,95¢,100,1000,150,1050,200,
1109,250,1158,500,550,600,650,20,980,79
,1@3@,12@,108@,17@,113@,22@,118@,53@,58
@,630,639,50,950,100,1000,150,1050,200,
11909,250,1150,500,550, 600, 650

2220 DATA 350,745,380,740,400,795,410,
675,390,635,395,595,379,599,379,585,410
,585,415,625,435,650,455,655,500,645,52
5,645,525,655,509,660,479,679,460,695,5
G@,7@5,525,7¢5,525,713,465,715,455,7@5,
435,690,425,690,420,709,420,720,405,725
2230 DATA 395,749,400,750

224¢

225@ DEF PROCstart

2260 CLS:RESTORE

SOUND_SUPPRESSION

2279 miss=@:score=@:M1=¢:A$="J"

228@ vDU23,1,9;0;0;3;

229¢ FOR I=@ TO 1:PRINTTAB (9, I+5)CHRS1
41CHR$134"THE MANHOLE GAME":NEXT I

230@ PRINTTAB(2,19)CHRS130"Range of di
fficulty? (1,2 or 3)"

2319 *FX15,0

2320 REPEAT:D=GET:UNTIL INSTR("123",CH
RSD)

233¢ D=1¢¢*(51-D) : IF D=@ THEN D=1

2340@ CLS:PRINTTAB (13,10) "GENTLY el
ey

235¢ TIME=@:REPEAT UNTIL TIME=200

236@ ENDPROC

2379 :

238¢ REM ERROR EXIT

2399 ON ERROR OFF

2409 MODE7:IF ERR<>17 THEN REPORT: PRIN
™ at line ";ERL

2419 END

=

HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS

Sound output can be prevented by the command *FX210,n where n is any non 2zero
value. If n equals zero, then the sound channel is reinstated.

=

*SAVE EXTENSION - M.Sykes

When using *SAVE to save a file, the usual method is to type:
*SAVE <filename> <start address> <+length> <execution address>
This can be expanded to include the load address of the file when loaded back into

the computer.

The load address is normally taken to be the start address of the

file, but it can be appended to the end of the normal set of numbers. i.e. *SAVE
<filename> <start address> <length> <execution address> <reload address>.

If the load address is typed in as FFFF then the computer cannot load the file
back into memory unless the *LOAD <filename> <load address> command is used,
offering an easy method of software protection, but do make a list of the necessary
load addresses. ==

DIRECT ENTRY OF BASIC TOKENS (0.S. 1.2) - L.A.Leetham, Sheila Snowden, Peter Potter

When typing in program or in immediate mode it is possible to enter some keywords
with the shift or control function keys e.g. PRINT ~(Ctrl-f@). Ctrl-f@ generates the
ASCII code &9 which is entered into Basic input buffer and is interpreted as a
token, the token for PAGE being &9¢. This technique is particularly useful in saving
space when defining user keys. Examination of the list of keywords and tokens (see
BEEBUG reference card) will show all the keywords that can be generated in this way.
Some of the more useful ones are:-
Shift f5 - ERROR Ctrl f1 - TIME
Shift £8 - STEP Ctrl f£2 - LOMEM
Ctrl f£0 - PAGE Ctrl £3 - HIMEM
Note that some of the characters generated by these keys are also teletext control
codes and that these will be generated when the program is typed in. However they
are turned into keywords when the program is listed.

=

BEEBUG March 1984 Volume-2 Issue-9

39

FOOTBALL KRAZY (32K)

by Alan Dickinson

At the height of the football

season we present here, for your

entertainment, the best game of football in town! In each game, you
get 99 seconds of fast moving, high scoring action, where you pit
your wits and skill against those of the computer.

Although this comparatively short
program is written in Basic, the game
is fast and furious as a result of the
good structuring technigues that have
been used. This also enables you to
modify the program quite easily, and
change, for example, the playing time
and the names of the teams.

In the game presented here, you are
designated as the 'United' team with
the yellow chequered shirts, playing
against the computer, which controls
the 'City' team in the pale blue
striped shirts.

FODTRALL KRAZY

| The tuo teams playing in this game are
Unitediand City Youlare playing for
- ‘ed’ The kegs poti Use are: -

BT
® RIGHT
i THROUGH

De sBalL

A through balll means that Uou can allow
the ball to travel throughiyour plager.

. Attack position 7-26/GThis s the
positaoniof gourn forward plajer
onithe ‘Screend =7

When the program runs, it initially
asks you to enter the position in which
you want your forward man to play (the
goalie always stays on the bottom row) .
If you enter a value outside of the
range asked for, then your man will be
assigned to position 7. Position 26 is
in the row next to your goalie, and 7
is in the row next to the computer's
goalie. You are then asked for a value
for the computer's defence tactic; this
governs how the computer will respond
in the game. The greater the number
entered, the harder the game played.
Tey, for example, entering 26 in
response to the position request, and
109 to the defence tactic. In this
arrangement, you will find it virtually

impossible to beat the computer as it
will dribble, tackle, pass and score
with unnerving accuracy, and run rings
around your players (Nobody in the
office won, or even scored in this
mode!). If you try entering negative
nunbers to 'defence tactic', you will
find that you can rapidly bring your
opponents players to a standstill!

To move your players, use the '2'
key to go to the left, 'X' to move
right while at any time, pressing /'
will allow an oncoming ball to pass
through your player. A word of warning
though, when a goal is scored, the
computer moves its men back to the
centre of the pitch, but leaves your
men where they were when the goal was
scored. You should, therefore, move
your men back quickly, or the computer
will instantly score another goal!

If you do wish to change the playing
time, alter the value of 7% in line
400, and if you'd prefer different team
names, then they should be changed in
lines 620, 630, 1070, 1089, and 1210 to
1250. (Don't forget to alter the
relevant TAB values to take into
account any change in length of the
names you use.)

Now you can sit back and enjoy the
skill of the cup final every night of
the week!

BEEBUG

March 1984

Volume-2 Issue-9

40

10 REM Program: FOOTER
20 REM Version: B1.5
39 REM Author A.DICKINSON
40 REM BEEBUG March 1984
5@ REM Program subject to Copyright
69 =
70 ON ERROR IF ERR<>17 THEN ON ERROR
OFF :MODE 7:REPORT:PRINT" at line ";ERL
¢END
80 REPEAT
9¢ MODE 7
100 PROCinit
119 PROCtitle
12¢ MODE 1
130 VvDU23,1,0;0;0;0;0
149 PROCstart
15¢ PROCtune
160 PROCplay
170 PROCfinalscore
180 REPEAT
190 AS$=GET$
20¢ UNTIL AS="Y"™ OR AS$="N"
21¢ UNTIL AS="N"
22@ *FX15,1
230 MODE 7
24¢ END
259
260 DEF PROCinit
270 VDU23,224,0,9,9,24,24,0,9,0
280 VDU23,225,0,24,60,60,24,126,173,1
81
29¢ vDU23,226,173,181,60,36,36,36,36,
192
309 vDU23,227,0,24,60,60,24,126,129,1
89
310 vDU23,228,129,189,60,36,36,36,36,
102

320 VDU23,229,9,9,0,0,9,8,8,255

330 VDU23,239,255,8,0,0,0,8,0,0

349 vDU23,231,1,1,1,1,1,1,1,1

350 VvDU23,232,128,128,128,128,128,128
,128,128

360 VDU23,233,255,1,1,1,1,1,1,1

370 VDU23,234,255,128,128,128,128,128

,128,128

380 VDU23,235,1,1,1,1,1,1,1,255

399 VDU23,236,128,128,128,128,128,128
,128,255

400 7%=900¢:REM GAME LENGTH

41¢ BS=CHRS17+CHRS7+CHRS224

420 PS=CHRS32+CHRS$226+CHRS32+CHRS11+4C
HRS8-+CHRS8+CHRSS+CHRS 32-+CHRS225+CHRS 32

430 QS$=CHRS32+CHRS228+CHRS32+CHRS114C
HRS8-+CHRS8+CHRS8+CHRS 32 +CHRS 22 7+CHRS32

440 ENDPROC

450

460 DEF PROCtitle

479 CLS:FORP=2TO3:PRINTTAB (8,P)CHRS13
];CHRS157;CHR$141;CHR$129"FOOTBALL KRAZ
Y ";CHRS156:NEXT

”g,z

475 PRINTTAB(J,5)"The two teams playi
ng in this game are United and City. Y
ou are playing for United. The keys
you use are:-"

480 PRINTTAB(1¢,10)CHRS129"7

499 PRINTTAB(10,11)CHRS139"X

LEFT";
RIGHT"

7

5@ PRINTTAB(10,12)CHR$131"/ = THROUG
H-BALL";

5@1 PRINTTAB(@,14)"A through-ball mea
ns that you can allow the ball to trave
1 through your player."

510 PRINTTAB(@,18)CHRS133"Attack posi
tion 7-26 (This is the";TAB(@,19)CHRS13
3;"position of your forward player"TAB(
0,20)CHRS133; "on the screen)-";

529 INPUT A%

53¢ IF A%<7 OR A%>26 A%=13

540 PRINTTAB (@,22)CHRS134"Defence tac
tic ";

550 INPUT T%

560 ENDPROC

579 :

580 DEF PROCstart

59¢ vDU19,9,4,0,9,0:VDU19,1,6,0,0,0

600 SS=STRINGS (3,CHRS$S32)

619 CLS:SP%=0:SQ%=0

620 PRINTTAB(1,1)"UNITED @";

630 PRINTTAB(28,1)"CITY @";

640 PRINTTAB (1,3)STRINGS (38,CHRS$229) ;

65@ PRINTTAB(1,30)STRINGS (38,CHRS230)

~e

660 PRINTTAB(14,3)SPC11

670 PRINTTAB(14,30)SPC11

680 PRINTTAB (13,3)CHRS235;TAB (25,3)CH
RS$236;TAB(13,30)CHRS233; TAB (25,30) CHRS2
34

690 FOR Y%=4 TO 29

700 PRINTTAB (0,Y%)CHRS231

710 PRINTTAB (39,Y%)CHRS232

720 NEXT

730 P%=18

743 COLOUR2

75¢ PRINTTAB (P%,A%)PS; TAB (P%,28)PS;

760 Q%=18:B%=18+RND (4)

77¢ COLOUR1

780 PRINTTAB (Q%,5)QS$; TAB(Q%,B%)QS;

790 ENDPROC

809 :

81¢ DEF PROCtune

820 RESTORE

830 REPEAT

84¢ READ V%,D%:SOUND 1,-15%V%,72,D%

850 UNTIL D%=0

86¢ DATA 1,3,9,3,1,3,0,3

87¢ DATA 1,2,0,1,1,2,0,1

88@ DATA 1,2,8,1,1,2,0,1

89¢ DATA 1,2,0,1,1,4,0,0

90% ENDPROC B

BEEBUG

March 1984

Volume-2 Issue-9

41

9y =

920 DEF PRCCplay

93¢ TIME=0

94() REPEAT

950 X%=20:D%=1-RND(2) :Y%=16

960 IF RND(10)>5 E%=1 ELSE E%=-1

970 PRINTTAB (Q%,5)SS$; TAB(Q%,B%)S$; TAB
(Q%,4)S$; TAB (Q%,B%-1)58;

980 Q%=18:PRINTTAB(X%,Y%)BS;

99¢ PROCutd:PROCcity

1000 REPEAT

1019 PRINTTAB(19,1);TIME DIV 199;

1929 PROCutd:PROCcity:PROCball

1030@ UNTIL Y%<2 OR Y%>30 OR TIME>Z%+99
1040 IF Y%<2 SP%=SP%+]

1050 IF Y%$>30 SQ%=SQ%+1

1060 PRINTTAB(X%,Y%)" ";

1079 PRINTTAB(1,1)"UNITED ";SP%

1080 PRINTTAB(28,1)"CITY ";SQ%;

1090 FOR I%=0 TO 10@ STEP 7

1199 IF Y%<2 SOUND 1,-15,1I%,2 ELSE SOU
ND 1,-15,110-1%,2

1119 NEXT

1120 UNTIL TIME>Z%+99

1130 ENDPROC

1140 :

1150 DEF PROCfinalscore

116 PRINTTAB(15,16)" FULL TIME “;
117¢ PROCtune

118¢ REPEAT UNTIL TIME>Z%+500

1190 CLS

1200 PRINTTAB(2,4)"Result:"

1210 PRINTTAB(4,6)"United ";SP%;

1220 PRINTTAB(4,8)"City ";SQ%;

123¢ IF SP%>SQ% PRINTTAB(4,11)"UNITED
WIN THE MATCH";

1240 IF SP%=SQ% PRINTTAB(4,11)"IT'S A
DRAW ! ! 1I"; .

125¢ IF SP%<SQ% PRINTTAB(4,11)"CITY WI
N THE MATCH !!!";

1260 PRINTTAB(2,14)"Again ?";

1279 *FX15,1

1289 ENDPROC

1299 :

1300 DEF PROCutd

1319 COLOUR2

132¢ IF INKEY (-98) AND P%>1 P%=P%-1:PR
INTTAB (P%,A%) PS;SPC1; TAB (P%,28) PS;SPCT;
: ENDPROC

1330 IF INKEY(—67) AND P%<36 PRINTTAB(
P%,A%)SPC1;PS; TAB (P%,28) SEC1;PS; : PY=DP%+
1: ENDPROC

1340 PRINTTAB (P%,A%)PS; TAB (P%, 28) PS;

1350 ENDPROC

1360 :

1370 DEF PROCcity

1389 COLOUR1

1390 IF X3<Q%+1 AND Q2>3 AND Y3<13+T%
0%=0%-1:PRINTTAB (Q%, 5) Q$; SPC1; TAB (0%, B%
Y Q$;SPC1; s ENDPROC

1400 IF X%>Q%+1 AND Q%<34 AND Y%<13+T%

PRINTTAB (Q%,5) SPC1;0QS; TAB (Q%,B%) SEC1;0
$; :0%=0%+1 : ENDPROC

1419 PRINTTAB (Q%,5)Q$;TAB (Q%,B%)QS;

1420 ENDPROC

1439 :

1449 DEF PROCball

1450 N%=X%+D%

1460 M2=Y%+E%

1470 IF N%<1 OR N%>38 N%=X%:D%=-D%:S0U
ND 1,-15,100,1

148¢ IF M%=30 OR M%=3 IF N%<14 OR N%>2
3 M%=Y%:E%=-E3:SOUND 1,-15,120,1

1499 IF M%=5 OR M%=B% PROCQman

1500 IF M%=A% OR M%=28 PROCPman

1519 PRINTTAB (X%,Y%)SPC1;TAB (N%,M%)BS;

1520 X%=N%:Y%=M%

1539 ENDPROC
1540 :

1550 DEF PROCPman)

1560 IF N%<P% OR N%>P%+2 ENDPROC

1578 SOUND 1,-15,64,1
1580 IF INKEY(-67) D%=-

159¢ IF INKEY(-98) D%=1
1600 IF NOT INKEY (-105) E$=-E$

1610 ENDPROC

1620 :
163¢ DEF PROCQman
1640 IF N%<Q% OR N3>Q%+2 ENDPROC
165¢ SOUND 1,-15,52,1
1660 IF RND(10+T%)>3 E%=1 ELSE E%=-E%
1670 D%=0
1689 R%=RND (19)

1690 IF R%>7 D%=-1
1700 IF R%<4 D%=1
1710 IF T%<3 OR R%<4 ENDPROC
1720 IF X%>25 D%=-1
1730 IF X%<15 D%=
1740 ENDPROC =

HINTS HINTS HINTS HINTS HINTS HINTS HINTS‘HI‘NT HINTS

DISABLING THE ESCAPE KEY & DESTROYING PROGRAMS

*FX 200,09 Re-enables the escape key.

*FX 200,1 Will disable the escape key.

*FX 200,2 enables the escape key,

but pressing Break will clear the memory,

preventing the program being retrieved with OLD.,

*FX 200,3 disables the escape key, and clear the memory on Break.

=

BEEBUG

March 1984

Volume-2 Issue-9

IF YOU WRITE TO US

BACK ISSUES (Members only)

All back issues are kept in print (from
April 1982). Send 90p per issue PLUS an
A5 SAE to the subscriptions address.
This offer is for members only, so it
is ESSENTIAL to quote your membership
number with your order. Please note

that the BEEBUG Reference Card and

BEEBUG supplements are not supplied
with back issues.

SUBSCRIPTIONS

Send all applications for membership,
subscription renewals, and subscription
queries to the subscriptions address.

MEMBERSHIP COSTS:
U.K.
£5.40 for 6 months (5 issues)
£9.99 for 1 year (10 issues)

Eire and Europe
Membership £16 for 1 year.
Middle East £19

Americas and Africa £21
Elsewhere £23
Payments in Sterling preferred.

PROGRAMS AND ARTICLES

All programs and articles used are paid
for at around £25 per page, but please
give us warning of anything substantial

HINTS ; |
There are prizes of £5 and £10 for the ||
best hints each month. i

Please send all editorial material to
the editorial address opposite. If you f|
require a reply it 1is essential to}
quote your membership number and
enclose an SAE.

that you intend to write. In the case

' of material longer than a page, we
would prefer this to be submitted on
in machine readable
form using “"Wordwise", "Minitext
Editor™ or other means. If you use
cassette, please include a backup copy
at 300 baud.

| cassette or disc

BEEBUG MAGAZINE is produced by BEEBUG Publications Ltd.

Bditor: Mike Williams.

Technical Editor: Philip Le Grand. Production Editor: Phyllida Vanstone.

Technical Assistants: Alan Webster and David Fell.

Managing Editor: Lee Calcraft.

Thanks are due to Sheridan Williams, Adrian Calcraft, John Yale, Robert Barnes,
Michael Beasley, Colin Lindsay, Hugh Brown-Smith and Tim Powys-Lybbe for assistance
with this issue.

Bll rights reserved. No part of this publication may be reproduced without prior
written permission of the Publisher. The Publisher cannot accept any responsibility,
whatsoever for errors in articles, programs, or advertisements published. The
opinions expressed on the pages of this journal are those of the authors and do not
necessarily represent those of the Publisher, BEEBUG Publications Limited.

BEEBUG Publications Ltd (c) March 1984.

BEEBUG NEW ROM OFFER

1.2 OPERATING SYSTEM

A special arrangement has been agreed between Acorn and BEEBUG whereby BEEBUG
members may obtain the 1.2 operating system in ROM at the price of £5.85
including VAT and post and packing.
The ROM will be supplied with fitting instructions to enable members to install
it in their machine,
1f the computer does not subsequently operate correctly, members may take their
machine to an Acorn dealer for the upgrade to be tested, which will be done at
a charge of £6.00 plus VAT. This charge will be waived if the ROM is found to
have been defective. If the computer has been damaged during the installation
process, the dealer will make a repair charge.

NEW ROMS FOR OLD
EXCHANGE YOUR 1.4 FOR THE 1.2

We can now exchange your old 1.0 operating system for the new 1.2, free of
charge. To take advantage of this offer, please send your 1.¢ (supplied on
eprom with a carrier board), in good condition to the address below.

£5 FOR YOUR OLD L§

If you have the 1.0 operating system and have already bought a 1.2, we will
exchange t?'xe 1.0 (supplied on eprom with a carrier board) for a5
voucher. This voucher may be used against any purchase from BEEBUGSOFT.

R

ADDRESS FOR 1.2 0S:-
ROM Offer, BEEBUG, PO Box 109, High Wycombe, Bucks, HP11 2TD.

* Simply plugs into the BBC Micro

* No soldering necessary

* Increases the sideways ROM capacity
to 16

* Fully buffered - allows all sockets
to be used

* Complete with full and detailed
instruction booklet.

* Accepts 16K RAM in special sockets

*

Battery back up facility for RAM
* As used at BEEBUG

* Reviewed in BEEBUG vol.2 number 6

1073

ROM 8

ROM 12 ROM 13

s

ROM ¢ ROM 5

§ [

RAM /
ROMTSAP"

RAM /

ROM 14 ROM158)

lm [Dsz

1
R by

SIDEWAYS ROM/RAM EX PANSION
O e

oL

:gi”;m | e

Gidewise =

0.S.ROM

o e
&= & &

400

é

CIR6

00

)

HOW_TO_ORDER

Please send your order with a cheque / postal order made payable to BEEBUG, and
enclose your membership number. We are unable to supply the board to overseas

menbers .

The address for SIDEWAYS is:

BEEBUGSOFT, PO Box 109, High Wycombe, Bucks. HP11 2TD.

BEEBUG

March 1984

Volume-2 Issue-9

To save wear and tear on fingers and
brain, we offer, each month, a
cassette of the programs featured in
the latest edition of BEEBUG. The
first program on each tape is a menu
program, detailing the tape's
contents, and allowing the selection
of individual programs. The tapes are
produced to a high technical standard
by the process used for the
BEEBUGSOFT range of titles. Ordering
information, and details of currently
available cassettes are given below.

All previous magazine cassettes (from
Vol.1l No.10@) are available.

This month's cassette (Vol.2 No.9)
includes: the Manhole game, Machine
Code Graphics example programs,
ASTAAD2, the full new version,
Stonemason, Football game, Multiple
Disc Catalogues (4 programs in all),
program to print function key labels,

compact function key definer,
programs to test your sideways ROMs,
program version of Bach's Cantata
No.147, plus the winning program from
the Brainteaser Roman Numeral
competition.

All magazine cassettes cost £3.00
each. For ordering information see
BEEBUGSOFT advertisement at the back
of this month's magazine supplement.

%

We are able to offer
subscription to our magazine
cassettes. Subscriptions will be for
a period of one year and are for ten
consecutive issues.of the cassette.
If required, subsriptions may be
backdated as far as Vol.l No.1d,
which was the first issue available
on cassette. This offer is available
to members only, so when applying for
subscription please write to the
address below, quoting your
membership number and the issue from
which you would like your
subscription to sta‘%;.

members

CASSETTE SUBSCRIPTION ADDRESS:

Please send a sterling cheque with
order, together with your menbership
number and the date from which the
subscription is to run, to:

PO Box 109, High Wycombe, Bucks,

CASSETTE SUBSCRIPTION PRICE:

UK £33 inc VAT and p&p

OVERSEAS (inc Eire) £39 inc psap
(no VAT payable) .

BEEBUG MAGAZINE BINDER OFFER

A hard-backed binder for BEEBUG
magazine 1is available. These binders
are dark blue in colour with 'BEEBUG'
in gold lettering on the spine. They
allow you to store the whole of one
volume of the magazine as a single
reference book. Individual issues may
be easily added or removed, thus
providing 1ideal storage for the
current volume as well.

BINDER PRICE
U.K. £3.9¢ inc p&p, and VAT.
Europe £4.9¢ inc p&p

(no VAT payable).
Elsewhere £5.90 inc ps&p

(no VAT payable) .

Make cheques payable to BEEBUG.

Send to Binder Offer, BEEBUG, PO Box
149, High Wycombe, Bucks.

Please allow 28 days for delivery on
U.K. orders.

Printed in England by Staples Printers St Albans Limited at The Priory Press,

ISSN 0263 ~7561

