£1.00°

SPITFIRE
AEROPLANE
DISPLAYED

BRITAIN'S LARGEST COMPUTER USE GROUP
MEMBERSHIP EXCEEDS 25,000

EDITORIAL

SECOND ANNIVERSARY ISSUE

This issue of BEEBUG marks the second anniversary of the magazine. To mark this
occasion, we are including with this issue a voucher worth £1 against any order to
BEEBUG or BEEBUGSOFT, except for magazine subscriptions and back copies. The
magazine itself contains a number of first-rate articles and programs that we have
been saving just for this issue.

The Spitfire aeroplane display is particularly interesting in that its author, Mr
I.C.Grant, worked for over 20 years in the design office of Supermarine Swift who
built the original plane. It also shows what can be achieved with BEEBUG, your BBC
micro and, of course, a lot of hard work. The magazine contains a listing of the
data to be used with the 3D Rotation program by James Hastings that was first
published in BEEBUG Vol.l No.1@. The complete program together with the data is
included on this month's magazine cassette, and as a special bonus, we are hoping to
arrange for the transmission of this program as part of the BBC's Telesoftware
service for two weeks in early May.

This month also sees the start of two new features. The BEEBUG Workshop is a
practical series for all those interested in programming, and any ideas or
contributions from readers will be very welcome. For those who are new to micros
and computing, we are also starting a special series of articles under the general
heading of 'Beginners Start Here'.

FOURTH SOFTWARE COMPETITION
The results of the Fourth Software Competition, with prizes totalling over £1000,
have now been announced. Full details appear in this month's supplement.
Mike Williams

TICE BOARD NOTICE BOARD NOTICE BOARD NOTICE BOAF

HINT WINNERS
This month's hint winners are M.Robson who wins the £1¢ prize and P.Davies who
wins the £5 prize. Keep sending in those good ideas.

MAGAZINE CASSETTE

This month's magazine cassette contains, in addition to all the programs listed
in the magazine, the complete version of the 3D Rotation program by James Hastings
first published in BEEBUG Vol.1 No.10. This version includes all published updates
and other minor improvements together with the data for the Spitfire.

We have also included as a special bonus, a super-smooth Mode 7 action game,
called SHAPES, by C.J.Fitch. The program is in machine code to provide truly
impressive screen movement, resulting in an addictive and challenging game. Several
of this month's programs require moving down in memory in order to run correctly on
a normal disc machine. To assist with this we have also included on the magazine
cassette a general 'Move-down' routine that will work with both Basic and machine
code programs.

MAGAZINE DISC

In response to a growing number of requests from BEEBUG members, we shall shortly
be launching a magazine disc (both 4@ and 80 track) to complement the magazine
cassette already available. More details on this next month, including arrangements
for existing subscribers.

BEEBUG May 1984 Volume-3 Issue-1

BEEBUG MAGAZINE

GENERAL CONTENTS

Editorial
News
Spitfire Aeroplane Displayed
Beginners Start Here
An Introduction to Using Procedures
11 Screen to Printer Dumps
The Latest ROMs Reviewed
13 Multi-Function Graph Plotter
17 Computer Concepts’ Graphics ROM Reviewed
18 BEEBUG Workshop
An Elegant Data Entry Routine
19 Errata to BEEBUG Vol 2 No 10
20 Function Key Editor
24 Accurate Arithmetic
26 Machine Code Graphics (Part 4)
30 Testing Out Your Micro (Part 3)
Random Access Memory
31 Points Arising
32 VASM - A 6502 Disc-based Assembler Reviewed

LN

34 Dominoes
38 Detonator Dan

HINTS, TIPS & INFO

Page Contents
8 Obtaining Negative Numbers in Hex
8 Preventing the Screen from Scrolling
8 Switching Basics
16 Defining your own Function Keys in VIEW
16 Resetting the Computer during a Program
23 Swapping Filing Systems Utilities
29 Relocating Character Definitions
33 WORDWISE Hints
Extra Function Keys in Wordwise
Inaccurate Word Count
Automatic Deletion of Markers
41 Teletext Downloader Clash
41 Accurately Filling Rectangular Areas
41 Super-condensed Characters on an Epson Printer

PROGRAMS

Page Contents

5 Spitfire Aeroplane Data

9 Procedure Examples
14 Multi-Function Graph Plotter
18 Workshop Data Entry Procedure
24 Accurate Arithmetic — Powers
24 Accurate Arithmetic — Division
26 Machine Code Graphics

Examples 9 and 10

30 Random Access Memory Tester
34 Dominoes Game
38 Detonator Dan Game

BEEBUG May 1984

Volume-3 Issue-1

4
S T S B e S A R e G PP L= T N R P A R

NEWS

20 MEGABYTE DISC SYSTEM FROM TORCH
Torch computers, who were the first
to make a 780 second processor and dual
disc pack for the Beeb, have now
expanded their range with a 16 bit
second processor, called the Unicorn.
The Unicorn is the top of the range
with an 8MHz 68000 processor, 256K RAM,
System III Unix, 20Mbyte hard disc,
400K single floppy disc drive and a Z80
processor to run existing Torch
software. The price of this little lot
is £2900, which 1is the cheapest Unix

NEWS

system in the world! With the full
system, a whole range of software is
supplied including word processor,
spelling checker, spreadsheet and a
database. If you require any further
details of Torch's range, contact them
at Abberley House, Great Shelford,
Cambridge, CB2 5LOQ.

6502 SECOND PROCESSOR FROM ACORN

The most important extension, so
far, for the BBC micro was officially
released by Acorn on the 14th March. It
is the 1long awaited 6502 Second
Processor running at 3MHz with 44K of
memory free for Basic programs, or 60K
for machine code. The complete unit is
supplied with two ROMs, one containing
the new 'Hi-Basic' which is
automatically copied across the Tube
when the Beeb is powered up, and the
second the new Disc and Network filing
systems. Both ROMs are fitted into the
BBC micro's sideways ROM sockets. It is
claimed that this second processor will
increase the Beeb's speed by as much as
50%, but this will depend on the task
being performed. The complete unit
costs £199 (inc.). Delivery of the
Second Processor was confidently quoted
as two months for new orders.

NEWS

CAD SYSTEM FROM ACORN

Acorn are also selling their
comprehensive CAD package called
Bitstik for the BBC micro. The Bitstik
is a high quality triple axis joystick,
which requires a 6502 Second Processor
system with dual 80 track disc drives
to operate. The software for Bitstik
consists of a ROM and a disc# of
utilities. Some of the facilities of
the system include drawing in four
colours, with up to twelve shades,
freehand or computer drawn lines
(circles, arcs, or straight lines),
zoom up to 27120 times larger with the
ability to add details at any level,
pan in all directions to display
details 'off' the screen and manipulate
any point or character on the screen
(e.g. enlarge, shrink, stretch,
reverse). The drawing, once created,
can be saved onto disc, with each disc
being able to store up to 48 drawings.
An index for the pictures is maintained
by the system, consisting of miniature
versions of the drawings for rapid
identification.

This system is the best CAD package
available for any micro at the moment,
and at the price, is much cheaper than
many other professional systems. The
price for the Bitstik and associated
software is £375 (inc.). There should
be no delay for this particular product
if you order one now.

For further details on any of
Acorn's products, contact your local

dealer or Acorn Computers Ltd, ,
Fulbourn Road, Cherry Hinton,
Cambridge, CB1 4JN. All of Acorn's
products can be ordered from Vector
Marketing, Denington Estate,
Wellingborough, Northamptonshire, NN8
2RL. Tel: 0933 79300 %

BEEBUG

May 1984

Volume-3 Issue-1

\}
o B 1*% SPITFIRE AEROPLANE DISPLAYED
; by L. C. Grant

In BEEBUG Vol.l No.1¢ and Vol.2 No.3,
we featured a program called 43D
ROTATION' by J.Hastings and its update.
Since then, Mr.I.C.Grant has developed
a ‘set of data for this program to
display a good representation of a
Supermarine Spitfire which can be drawn
and manipulated by the program.
Although the data is rather
lengthy, we feel sure that you
will be amply rewarded for the
effort of typing it in by the
superb results produced.

At the time of publishing
the first article, we had no
idea of the uses that people
would find for this program.
Since then, it has been
featured on BBCl's
"Tomorrow's
World"

%

(see the editorial in
BEEBUG Vol.2 No.7),
and now we feature a
new and exciting
extension of the
program, showing off
its flexibility and
the power of the BBC

micro. This new
version comes in the
form of multiple

data statements which define the
outline of a Spitfire aeroplane.

The original program allowed the
outline of an object to be displayed
and manipulated on the screen. The
twelve control keys which allow the
display to be rotated about the X, Y
and 7 axes, translated vertically or
horizontally and enlarged or shrunk
from the original position on the
screen, are:

a) Cursor keys LEFT and RIGHT rotate

around the Y axis.

b) Cursor keys UP and DOWN rotate

around the X axis.

c) Return and the ']' key rotate

around the Z axis.

d) Delete and Copy reduce and

increase the size of the object.

e) Keys A and B move the object

right and left.

f) Keys C and D move the object Up

and Down.

BEEBUG

May 1984

Volume-3 Issue-1

The data resides from lines 100 to
570, and to make use of 1it, type the
new lines into the original program and
save it. There are thus no other
modifications necessary to the original
program. If you do not fancy typing in
all the data, you can find a complete
and updated version of the 3D Rotation
program, plus all the Spitfire data, on
this month's magazine cassette. There
is a slight modification to the
original magazine version, in that
whenever a key is pressed the Beeb
emits a ‘'beep'. With the delay in
manipulating the relatively complex
image of the spitfire, this gives a
positive and immediate response to a
key press. This change can easily be
made to the original program by
changing line 1810 to:

1810 key=GET:VDU 7

If you are using discs, you will
need to use a routine which moves the
program down in memory. A suitable
routine can be found elsewhere in this
issue with the DOMINOES game
(alternatively wuse *MOVE E@@ on
Toolkitl).

A compromise on the amount of data
was made, so that the outline formed a
reasonable representation of a Spitfire
without cluttering the design with
every detail and feature of the plane.
Also, the fewer points that are needed,
the shorter will be the calculation
time. Thus the roundels (circular
markings on the wings), for example,
are drawn as twelve sided polygons to
approximate a circle.

The origin of the diagram is set to
approximately the centre of the plane,

just below the cockpit canopy, but
could equally have been set to any
point. The data was obtained by
dividing the plan and elevation
drawings of the plane into several
frames, and marking all the points
where the outline deviated from a
straight line (see diagram 1). The 262
co-ordinates thus calculated form the
start and end positions for the lines
which make up the representation of the
plane's outline.

With the extra data entered, you
will find that the program takes quite
a long time to calculate a new position
compared with simpler shapes. You may
find this annoying if you are rotating
the object by more than a couple of
steps. One way around this is to modify
line 1090 of the program to the
following, giving larger steps between
displays:

1099 anglestep=PI/4

We hope that this article helps to
demonstrate the flexibility of this
program, and induces you to produce
further sets of data for your own
objects or to enhance the diagram here.
Further enhancements of the program
could include redefining the background
and foreground colours to blue and
yellow respectively and setting up
lookup tables for sines and cosines at
the start, allowing the calculations to
be performed much faster.

10 REM Program SPITFIR
20 REM Version B1.0
3¢ REM Author I.C.Grant

4¢ REM BEEBUG May 1984
50 REM Program subject to copyright

BEEBUG

May 1984

Volume-3 Issue-1

70 REM Points data

100 DATA 245,675,50,0,665,120,0,638,1
65,9,598,188,0,57¢,180,0,525,125,0,488,
70,9,468,60,0

110 DATA 468,35,-15,468,0,-25,468,-35
,-15,468,-70,0,468,-35,15,468,0,25,468,
35,15,333,79,0

120 DATA 168,89¢,0,0,89,0,9,86,-15,0,3
9,-50,0,0,-60,0,-30,-62,0,-65,-60,0,-90
,-50,9,-115,@,9,-99,50,0,-65,60,0,-30,6
2,0,0,60,0,30,50,9,86,15

130 DATA -47,95,0,-132,70,0,-262,60,0
,-262,56,-28,-262,35,-46,-262,0,-61,-26
2,-43,263,~262,-115 ,=46,-262,-115;%,-26
2,-115,46,-262,-43,63,-262,0,61,-262,35
,46,-262,56,28,-362,60,0,-502,50,0

140 DATA -552,50,0,-552,43,-25,-552,2
5,-43,-552,0,-50,-552,-25,-43,-552,-43,
-25,-552,-50,0,-552,-43,25,-552,-25,43,
-552,9,50,-552,25,43,-552,43,25

150 DATA -582,35,0,-582,30,-18,-582, 1
8,-30,-582,0,-35,-582,-18,-30,-582,-30,
-18,-582,-35,0,-582,-30,18,-582,-18,30,
-582,0,35,-582,18,30,-582,30,18

160 DATA -612,22,0,-612,19,-11,-612,1
1;~19,-612,9,-22,-612,-11,-19,-612,-19;
“11,2612,-22:0,-612,-19,11,2612,~11,19,
-612,0,22,-612,11,19,-612,19,11,-637,9,
)

17¢ DATA -502,-75,8,-362,-115,8,-132,
-129,0,-47,-115,9,168,-100,0,333,-80,0,
503,-65,0,518,-6%,0

18¢ DATA 538, 58,9,588,-45,0,638,-34,
9,673,0,0

190 DATA 600,0,-15,650,8,-50,645,0,-1
20,630,0,-189,597,0,-220,570,0,-230,539
,0,-210,498,0,-15@,445,0,-30

200 DATA 445,0,30,498,0,15@,539,0,210
,579,9,230,597,0,220,63%,8,180,645,0,12
,650,0,50,600,0,15

210 DATA 85,-110,-60,48,-108,-72,8,-1
15,-100,0,-104,-200,-15,-99,-300,-32,-7
8,-400,-59,-65,-500,-99,-55,-600,-145, -
45,-700,-186,-40,-755

220 DATA -23@,-35,-780,-265,-38,-765,
-300,-45,-700,-325,-55,-600,-340,-65,-5
09,-347,-78,-400,-352,-90,-300,-356,-10
4,-209,-365,-115,-100,-365,-115,-60

230 DATA -365,-115,60,-365,-115,100,-
356,-104,200,-352,-90,300,-347,-78,400,
-34¢,-65,500,-325,-55,600,-300,-45,700,
-265,-38,765,-230,-35,780

240 DATA -186,-40,755,-145,-45,700,-9
9,-55,600,-59,-65,500,-32,-78,400,-15,-
99,300,0,-104,200,0,-115,100,48,-108,72
,85,-110,60

250 DATA 65,40,40,65,82,15,65,85,0,65
,82,-15,65,40,-40,0,40,-40,-70,40,-40,-
132,79,-30,-132,70,30,-70,40,49,0,40,40

260 DATA -84,65,35,-99,89,0,-80,65,-3
5,-112,76,-18,-112,76,18

270 DATA 445,0,-30,245,0,-45,135,0,-5
¢,85,0,-60,-365,0,-60,-502,08,-60,-552,0
,-50,-582,0,-35,-612,0,-22,-637,0,0

28¢ DATA-612,0,22,-582,0,35,-552,0,50
,-502,0,60,-365,9,60,85,0,60,135,0,50,2
45,0,45,445,0,30

290 DATA -362,-100,-40,-440,-80,-40,-
502,-55,-40

3¢9 DATA -502,-55,40,-440,-80,40,-362
,-100,40

319 DATA -225,-45,-630,-275,-49,-617,
-312,-50,-580,-325,-57,-530,-312,-65,-4
80,-275,-69,-443,-225,-79,-430,-175,-69
,-443,-138,-65,-480,-125,-57,-530,-138,
-50,-580,-175,-49,-617

320 DATA -225,-50,-572,-241,-52,-558,
-253,-53,-546,-267,-56,-539,-253,-60,-5
14,-241,-62,-502,-225,-65,-488,-209,-62
,-502,-197,-60,-514,-183,-56,-530,-197,
-53,-546,-209,-52,-558

339 DATA -225,-70,430,-275,-69,443,-3
12,-65,480,-325,-57,530,-312,-50,580,-2
75,-49,617,-225,-45,630,-175,-49,617,-1
38,-50,580,-125,-57,530,-138,-65,480,-1
75,-69,443

34¢ DATA -225,-65,488,-241,-62,502,-2
53,-60,514,-267,-56,530,-253,-53,546,-2
41,-52,558,-225,-50,572,-209,-52,558,-1
97,-53,546,-183,-56,530,-197,-60,514,-2
?9,-62,502

350 DATA 136¢,-90,-35,130,-90,35

360 REM Lines data

37¢ DATA 262,1,2,2,3,3,4,4,5,5,6,6,7,
748:8,9,9,18,10,11,11,12,12,13,13,14,14
12y 15,88

380 DATA. 16,16,17%,17,18,18,19,19,20,2
9,21,21,22,22:23,23:24,24,25,25,26,26,2
Ty 274 28,28,29,29,30,30,31,31 ,18;18

390 DATA 32,32,167,167,33,33,34,34,35
,35,36,36,37,37,38,38,39,39,40,40,41,41
,42,42,43,43,44,44,45,45,34,34 »

BEEBUG

‘May 1984

Volume-3 Issue-1

8

400 DATA 46,46,47,47,48,48,49,4
¢,51,51,52,52,53,53,54,54,55,55,5
7,57,58,58,59,59,48,48

410 DATA 69,60,61,61,62,62,63,63,64,6
4,65,65,66,66,67,67,68,68,69,69,70,70,7
1,71,60,60

420 DATA 72,72,73,73,74,74,75,75,76,7
6,77,77,78,78,79,79,89,89,81,81,82,82,8
3,83,72,72,84,84

430 DATA 78,78,66,66,54,54,85,85,86,8
6,490,49,87,87,88,88,25,25,89,89,94,99,9
1,91,92,92,93,93,94,94,95,95,96,96,1

449 DATA 96,97,97,98,98,99,99,100,100
,101,101,102,102,103,103,104,104,105

450 DATA 106,107,107,108,108,109,109,
119,116,111,111,112,112,113,113,114,114
196

460 DATA 115,116,116,117,117,118,118,
119,119,120,120,121,121,122,122,123,123
»124,124,125,125,126,126,127,127,128,12
8,129,129,130,136¢,131,131,132,132,133,1
33,134

4709 DATA135,136,136,137,137,138,138,1
39,139,140,140,141,141,142,142,143,143,
144,144,145,145,146,146,147,147,148,148
,149,149,150,150,151,151,152,152,153,15
3,154

9,50
6,56

48¢ DATA 155,156,156,157,157,158,158,
159,159,164,160,161,161,162,162,163,163
,164,164,165,165,155

49¢ DATA 164,166,166,167,167,168,168,
161,162,163,163,170,17¢,167,167,169,169
,162

50¢ DATA 171,172,172,173,173,174,174,
175,175,176,176,177,177,178,178,179,179
,189,180,181,181,182,182,183,183,184,18
4,185,185,186,186,187,187,188,188,189

51¢ DATA 39,190,194,191,191,192,192,5
2

520 DATA 56,193,193,194,194,195,195,4
1

53¢ DATA 196,197,197,198,198,199,199,
200,200,201,201,202,202,203,203,204,204
, 205,205,206 ,206,207,207,196

540 DATA 208,209,209,219¢,219,211,211,
212,212,212, 2135214214, 215,215;216,216
,217,217,218,218,219,219,208

55 DATA 220,221,221,222,222,223,223,
224,224,225,225,226,226,227,227,228,228
,229,229,230,230,231,231,220

560 DATA 232,233,233,234,234,235,235,
236,236,237,237,238,238,239,239, 240, 240
,241,241,242,242,243,243,232

57¢ DATA 95,244,244,115,154,245,245,9
5

HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS

OBTAINING NEGATIVE NUMBERS IN HEX - R.Claridge

Sometimes you may need to display a negative hex value. One of the easiest ways
of doing this is to put the value into a spare location in memory using '!', and
recover the required hex number using a '?' to access the first location where the
value is stored. (Numbers in BBC Basic are stored in successive locations with the
least significant byte in the first address.) For example:

10 location=&70

20 variable=-10

30 !(location)=variable

40 PRINT " Normal form

5@ PRINT " Least significant byte
60 END

et

"; variable
"; “?location

The value -10 as a four byte integer is FFFFFFF6, but the single byte returned for

PREVENTING THE SCREEN FROM SCROLLING - P.Davies

The screen will automatically scroll if a character is printed in the bottom
right corner of the screen. This will have the effect of obscuring any text on the
top line. An easy way to prevent this is to type in ?&D@=2. This sets the second bit
of the location &D@, which controls the scrolling of the screen. If this bit is set,
then the scrolling facility is inhibited. After printing a character in this
position, the location must be returned to its former state by entering ?&D@=0. ==

SWITCHING BASICS - S.Williams

If you have both Basic I and Basic II in your machine, because you want to know
if a program will work on both versions of Basic, you can use *FX142,n to select
between them. The version of Basic being used remains active after pressing Break
(but not necessarily after a Control-Break). The value of n to use in the FX command
is the socket number of the required Basic. 55

BEEBUG May 1984 Volume-3 Issue-1

PROCEDURES

BEGINNERS START HERE

The BBC micro continues to remain well placed in the tables of top
selling micros. With so many new users continuing to join BEEBUG we
have decided to promote a regular series of articles that will look
particularly at the needs of the new user, and maybe even old hands
will learn a new trick or two along the way.

Of course, early issues of BEEBUG, published when the BBC micro was
still in its infancy, contained many articles and programs for new
users, as we were all beginners then. Now that is no longer the
case, and although many of the early issues of the magazine remain a
veritable fount of useful information, there is still a need for
articles that will take the 1id off some of the mysteries of the
Beeb and explain all in plain and simple terms.

Peter Lewis starts our series with an introduction to the world of
procedures for those still grappling with the problem of writing
their own programs.

AN INTRODUCTION TO USING PROCEDURES

Most people who buy themselves a

by Peter Lewis

particular task, to which we give a

micro to wuse at home, sooner or later
start wanting to write their own
computer programs. Learning a computer
language like Basic 1is rather like
learning any foreign language - you
obviously need to learn some
vocabulary, and you also need to know
how to join the words together to say
something meaningful.

Basic comes in many different
varieties (probably at least 57) but
BBC Basic 1is generally thought to be
one of the best, certainly on a micro,
and one of the reasons for this is its
use of procedures. Many books, and
indeed the User Guide itself, still
tend to leave procedures till quite
late on, giving the impression that
this is a feature of the language which
is only for the expert. This is not so.
Even if you are just starting to
program, you will find that using
procedures will not only allow you to
produce better programs, but will
actually make the task of writing a
program much easier as well.

Let's look first at the basic
principles of procedures. Put at its
simplest, a procedure is just a group
of instructions, performing some

name. Whenever we want our program to
carry out that task, we just have to
refer to it by the name we have given.

For example, suppose Wwe want a
procedure to display a red filled
square of side 400 centred on the
screen. The procedure could be defined

as follows:

1000 DEF PROCredsquare

1919 GCoL 4,1

1020 MOVE 440,312:MOVE 440,712

193¢ PLOT 85,840,312:PLOT 85,840,712
1040 ENDPROC

Line 1000 defines the procedure with
'DEF PROC' followed by the name we
choose to give the procedure, in this
case ‘'redsquare'. BAll procedures are
defined using the key words 'DEF PROC'

(see page 102 of the User Guide). The
following lines contain the
instructions that make up this
procedure, in this case the GCOL

command to select the colour red for
drawing, and then MOVE and PLOT
instructions to display two triangles
that together form a square (see the
User Guide pages 56 and 162 for more
information on these two instructions).
Every procedure must be terminated, as
in this case, by the instruction
'ENDPROC' .

BEEBUG

May 1984

Volume-3 Issue-1

Q

10

Having 'defined' the procedure, as
the above process is called, it is now
time to use the procedure in a program.
We could write:

109 MODE 2
119 PROCredsquare
120 END

The process of ‘'calling' the
procedure, as in line 110 above,
involves writing the keyword 'PROC'
followed by the name of the procedure
we want. If you enter the program and
procedure definition into your micro,
and run it, you should see a red square
displayed in the centre of the screen.

Procedure definitions are usually
numbered so that they follow the main
program. When a procedure call is first
encountered the computer searches
through the program for that procedure,
which is then carried out. The computer
remembers where that procedure is
located so that if it is called again,
the computer can go directly to it.

Now although this is quite useful in
itself there are some obvious
limitations. The procedure as we have
defined it will only display a red
square, not a blue or a yellow square,
and in only one fixed position on the
screen. We could, of course, write
other procedures to display other
coloured squares and in different
places, although the instructions in
each case would all be very similar.
BBC Basic has a further feature that
helps in writing flexible procedures.

Let's suppose that, in general, we
want to display a square of colour
'colour', and in position 'x' and 'y'
on the screen. 'colour' is a variable
to which we can give a value in the
range 1 to 7 to specify the colour of
the square (we shall assume we are
using Mode 2, other modes allow fewer
colours). The colours and their numbers
are all listed on page 223 of the User
Guide. You will see that we could use
the range @ to 15 if we are prepared to
allow black and flashing colours as
well.

The values that we shall give to 'x'
and 'y' eventually, will mark the

of the square, and will be in the range
of @ to 1279 and @ to 1923. These are
the normal ranges used in drawing in
any graphics mode on the screen, and
again are explained in the User Guide
on page 56. Our revised version of the
procedure would look like this:

1009 DEF PROCsquare (colour,x,y)

1019 GCOL @,colour

1020 MOVE x,y:MOVE x,y+400

1030 PLOT 85,x+400,y:PLOT 85,x+400,y
+400

104@ ENDPROC

This follows exactly the same
pattern as before, except that the
values used then are now replaced by
the variables 'colour', 'x' and 'y'.
These are called the 'parameters' of
this procedure.

Here now is a short program, to use
this procedure, which draws one red,
one yellow, one blue and one green
square on the screen in mode 2:

100 MODE 2

110 PROCsquare(1,240,512)
120 PROCsquare(3,640,512)
130 PROCsquare (4,240,112)
140 PROCsquare(2,640,112)
150 END

In working out the numbers for 'x'
and 'y' remember that x=640 and y=512
represents the centre point on the
screen, and that our square has a side
of length 400.

You might like to try rewriting the
procedure definition for yourself, and
making it even more useful, so that

position of the bottom left hand corner each time a square is displayed it can »

BEEBUG May 1984 Volume-3 Issue-1

11

be any size you choose. To do this you
will need to use a fourth parameter,
called for example 'size', and use this
in defining the procedure instead of
the fixed value of 40@. Once you have
done this, then there are all sorts of
short example programs you can write to
try out your new procedure. Most of
these ideas use either a REPEAT-UNTIL
loop, or a FOR-NEXT loop. One idea is
to use the random number function (RND)
to repeatedly calculate a random
colour, and random position, for a
whole series of squares. You could also
try displaying a small coloured square
in the bottom left hand corner of the
screen, followed by larger and larger
squares as you move towards the top
right hand corner of the screen. If you
know about sines and cosines then you
could draw a sine (or cosine) curve,
displaying a small coloured square in
each position. I am sure you will be
able to think of many other ideas.

One tip that is well worth
remembering when you are developing a
new procedure is that a procedure can
be called in immediate mode as well as
in a program, provided that you select
the correct mode First. i for
example, you rewrite the procedure for
the square to give a variable size as
described above, then test it out by

typing:

MODE 2
PROCsquare (640,6,9,9)

You should see a cyan coloured
square on the screen that is exactly
half the screen width and positioned at
the bottom left hand corner. This does
assume that you have defined your
procedure so that the four parameters
are in the order 'size', 'colour', 'x',
and 'y,

Now that you have seen how a
procedure works, why not have a look at
some of the other programs in the
magazine, and the procedures that they
use. Some of these will be quite
complicated and difficult to
understand, but you should be able to
see how they all follow the same basic
pattern we have described above.
Looking at other peoples programs is a
very good way learning how to write
your own.

Next month, when you have had time
to practise writing and using your own
procedures a little, we will look at
how the use of procedures makes the
task of designing and writing a whole
program so very much easier, for expert
and non-expert alike.

=

SCREEN TO PRINTER DUMPS

The latest ROMs reviewed by Robert Barnes

We are frequently asked at BEEBUG
for advice on a suitable program to
produce a screen dump on a printer.
Until recently the only answer was to
have a screen dump routine incorporated
with your program, or loaded from
cassette or disc when required.
Recently a number of companies have
brought out screen dump programs in
ROM. These provide a comprehensive
range of screen dump facilities which
are immediately available using simple
commands.

Program : DUMPOUT2
Supplier: Watford Electronics
Price : £18.00 (inc.)

BEEBUG

May 1984

Volume-3 Issue-1

12

DUMPOUT2 is yet another ROM to join
Watford's already large range of ROM
based software. This one allows the
user to produce variable size, two tone
or eight tone dumps of the screen in
any of the graphic modes (9,1,2,4,5).
An eight tone screen dump is produced
by using different patterns of dots
giving the effect of grey tones, which
can be used to replace the colours. The
tones provided by this ROM were easy to
distinguish and produced very pleasing
results. The comprehensive manual
supplied with the ROM has obviously had
a lot ‘of “thought put into it. "The
screen dumps are accessed using simple
commands followed by a number of
optional parameters. The parameters can
be used to select colour masking and
the area of the screen to be dumped.
This ROM is designed to work with the
following printers: Seikosha
GP8@/100/250, Star, NEC, EPSON
MX/RX/FX, TANDY LPVII and the
DMP100/120,/200/400.

Program : GDUMP
Supplier: D.A. Computers Ltd.
Price : £20.00 (inc.)

This is a similar product to the
Watford DUMPOUT2 but does cater for a
slightly different range of printers
including Epson FX/MX/RX, Shinwa CP89,
NEC8023, STAR DP51¢ and Seikosha
Gp8@/100/250. GDUMP has only one
command '*GDUMP', but up to nine
parameters may be included. These allow
everything that DUMPOUT2 does, plus the
option to print the dump at an angle of
90 degrees, which is useful in that it
allows large dumps to fit on to a page.
GDUMP has the largest help facility I
have seen to date, being pages rather
than lines long. The manual supplied is
quite well written, although a full
printed manual, and not Jjust a
photocopy would have done more justice
to the product.

Program : PRINTMASTER
Supplier: COMPUTER CONCEPTS
Price ¢ £33.35 linc.)

This ROM is based upon a slightly
different concept from the other two,
in that it is a combination of a
printer dump ROM and a printer toolkit.
At £33.35, Printmaster costs
significantly more than the other two,
but also has a lot more to offer. As
with all of Computer Concepts ROMs, the
manual is well written and easy to
follow containing 32 pages of clearly
printed information.

Printmaster at the moment is
designed solely for use on Epson
printers, although versions for other
printers are being written, and is thus
able to make full use of the features
available. Printmaster allows you to
design your own characters for use on
the printer, spool text out to the
printer (i.e. allows a file to be
printed whilst you use your machine for
another purpose. This is a real time
saver, especially when using WORDWISE) ,
and provides a screen to printer dump
in any mode. It also provides support
for other Epson printer features such
as italic script, indeed any Epson
font, 1line spacing, margins and a host
of others. Not all of the facilities
are available on every Epson of course.
I was most impressed by this piece of
firmware and the facilities it
included.

All of these products can be thoroughly
recommended although it is a great pity
that a Mode 7 screen dump is only
included with Printmaster and not with
the other two ROMs. If you just want a
screen dump in any graphics mode, then
DUMPOUT2 and GDUMP can both be useful.
My personal preference here was
DUMPOUT2 which produced slightly better
results then GDUMP, but this obviously
depends on which printer you are using.
However, if you have an EPSON printer I
feel there is no better choice at
present than Printmaster, which enables
you to make the most of the features
these printers offer.

5 =

ha
1m1usive. Furth

m:mastez ROM at the speclal c:ffer pnc:e of 236
etaﬂs appear in the Software Club pages in the supplement.
_ BEEBUG members with grmtezs other than Epsons, will be

pleased to know that

Cmputex Concepts will be releasing ?rmtmaster for ather popular makes, and we

expect to offer these to members in the same way. ‘ &=
w
BEEBUG May 1984 Volume-3 Issue-1

13

Rt
a“fi}' MULTI-FUNCTION GRAPH PLOTTER

by Roel Grit

Following hot in the footsteps of last month's 'Colourful 3D Bar
Chart' program, we present a program which plots continuous graphs

of mathematical functions.

The bar chart generator provided a
very colourful method of displaying
non-continuous data, for example, daily
rainfall, or monthly sales figures.
However, if you want to plot a
mathematical function (where Y 1is a
function of X) then a quite different
form of display is required and this is
provided by the following program.

The unusual feature of this program
is the inclusion of sound effects as
the graph is being drawn. The Beeb
emits a suitable sound whose pitch
changes according to the rising and
falling path taken by the graph. For
the purists amongst you, there is the
option of switching off the sound.

Initially the program allows you to
set up various parameters, such as the
minimum and maximum values for both the
X and Y axes. Pressing Return without
entering a value will select the
default values of -3, 6, -2 and 5 for
the minimum and maximum values of X and
Y respectively. At this stage you can
also choose to have sound effects, and
whether you want marked lines or not.
If the latter option is selected, then
the graphs are drawn with dots attached

at regular intervals. As you plot more
functions on the same graph, the dot
spacing is increased to distinguish
between the different functions.

The grid is drawn initially and the
scales are marked against the axes. You
are then prompted to enter any function
within the constraints listed below and
the program will then plot the
function. The function may be any valid
Basic arithmetic expression based on
the single variable X and may include
powers, PI, LOG, SIN, COS, TAN, EXP and
SQR. The program automatically handles
difficult situations such as out of
range logs, division by zero, and
negative roots. The functions are
entered in the same manner as would be
expected for Basic, so that values
passed to trigonometric functions will
be assumed to be in radians, unless you
have included the function RAD to
convert from degrees to radians. Once a
function has been plotted, the program
prompts for another function. If
another function is entered, its graph
is plotted on the existing display.
Pressing Return at this point forces
the program to clear the screen, and
re-draw the grid with the

BEEBUG

May 1984

Volume-3 Issue-1

same Ph

14

parameters.

Entering 'S' will call up

your own printer dump to make a hard

copy of the graphs.

(This must be

supplied by the user and located in the
procedure PROCscreendump defined at
11000. See BEEBUG Vol.l No.9 for screen
dumps for Epson and Seikosha printers.)

Pressing

Escape at any time will

re-start the program.

Some

functions which you could try

out on this program are shown below:

min.X max.X min.Y max.Y function

-3 6 =3 8 X2

-3.14 3.14 -2 2 SIN(2*X)

-8 8 -19 10 EXP (0.3*X) *
COS (4*X)

-8 8 -10 19 EXP(@.3*X)

-8 8 -10 10 -EXP (0.3*X)

=3 12 -2 11 10" (SINX)

It is well worth experimenting with any
function that takes your fancy.

PROGRAM
The

NOTES
program is well structured, and

it is easy to follow how the program

operates.

Below is a brief overview of

the procedures and functions used.

1000

2000
3000

PROCminmaxxy - sets up the
minimum and maximum values for
X and Y on the screen.
PROCgrid - draws the grid.
PROCxyaxis ~ draws the
axes.

two

The program could be altered at line
260 to run in Mode 4 for a Model A if

required. In this case the resolution
will be reduced, but screen dumps might
turn out even better with thicker
lines.

19 REM Program GRAPHS

20 REM Version B1.2

30 REM Author R.Grit

40 REM BEEBUG April 1984

50 REM Program subject to copyright

60 REM:

99 flag=FALSE

100 ON ERROR GOTO 340

110 AMP=@:D=-2:DL=FALSE:C=0

120 VDU 23,240,192,192,90,0,9,9,9,0

130 MODE 7

140 PROCtitle ("MATHEMATICAL GRAPHS")

150 IF flag THEN PRINT TAB(5,10)"DO Y
OU WANT TO STOP ?";:X$S=GETS:PRINT X$:IF

4000 PROCscale - prints the minimum XS="Y" THEN MODE 7:END
and maximum values of the 160 flag=TRUE
scale on the grid. 170 PRINT TAB(5,12)"DO YOU WANT INSTR
50@@ PROCplot - plots the function. UCTIONS ?";:X$=GET$:PRINT X$
6000 PROCinstructions - displays 180 IF X$="Y" THEN PROCinstructions
the instructions for using the 190 CLS:PROCtitle ("MATHEMATICAL GRAPH
program. st)
7090 PROCtitle - sets up the screen 200 PRINT TAB(5,14)"DO YOU WANT SOUND
titles. (Y/N) 2";:X$=GETS$:PRINT X$
8000 FNX - selects the next 219 IF X$="Y" THEN AMP=-10
X value. 220 PRINT TAB(5,16)"DO YOU WANT MARKE
9000 FNY - selects the next D CURVES (Y/N) ?";:XS$=GETS:PRINT X$
Y value. 230 IF X$="Y" THEN DL=TRUE
10000 PROCframe - draws the frame 240 PROCminmaxxy
around the grid. 250 REPEAT
1100@ PROCscreendump - room for the 260 MODE 0
users printer driver screen 27@ PROCgrid
dump. 280 PROCxyaxis
BEEBUG May 1984 Volume-3 Issue-1

T e R

15

290 PROCscale
300 PROCplot
319 UNTIL FALSE
32 END
330 :
340 ON ERROR OFF:IF ERR=17 THEN 100
35@0 REPORT:PRINT" at line ";ERL
360 END
379
1000 DEF PROCminmaxxy
1010 MINX@S="-3":MAXX0S="6" :MINY(@S="-2
" :MAXYG$="5"
1020 PROCtitle("MIN. & MAX. X AND Y VA
LUES")
103@ PRINT'"Now set the minimum and ma
ximum values"
104@ PRINT"for the X and Y axes."
1050 PRINT'"If you only press";CHRS (13
4) ; "<RETURN>";CHRS (135) ;"the computer"
1068 PRINT"chooses the following value
g3
1070 PRINT'"MINIMAL X:";MINX@S,"MINIMA
L Y:";MINYOS
1080 PRINT"MAXIMAL X: ";MAXX0S,"MAXIMA
L Y: ";MAXY@S
1099 PRINT'';CHRS(131);"X VALUES"
110¢ INPUT TAB(5) "MIN. VALUE " MINXS
1119 IF MINXS=""THEN MINXS$=MINX@S:PRIN
T TAB(20,VPOS-1) ;MINXS
1120 INPUT TAB(5) "MAX. VALUE " MAXXS
1130 IF MAXXS=""THEN MAXX$=MAXX@S:PRIN
T TAB(21,VPOS-1) ;MAXXS
1140 MINX=VAL (MINXS) :MAXX=VAL (MAXXS)
1150 IF MAXX<=MINX THEN VDU7:PRINTCHRS
129"Mistake - press SPACE BAR to try ag
ain":REPEAT UNTIL GET=32:GOTO 1010
1160 PRINT;CHRS(131);"Y VALUES"
1170 INPUT TAB(5) "MIN. VALUE " MINYS
1180 IF MINYS=""THEN MINYS$S=MINY@S:PRIN
T TAB(20,VPOS-1) ;MINYS
1190 INPUT TAB(5) "MAX. VALUE " MAXYS
1200 IF MAXY$=""THEN MAXYS=MAXY(S:PRIN
T TAB(21,VPOS-1) ;MAXYS
1210 MINY=VAL (MINYS) :MAXY=VAL (MAXYS)
1220 IF MAXY<=MINY THEN VDU7:PRINTCHRS
129"Mistake - press SPACE BAR to try ag
ain":REPEAT UNTIL GET=32:GOTO 1010
123@ XUNIT=1279/ (MAXX-MINX)
1240 YUNIT=1023/(MAXY-MINY)
1250 PRINT'CHR$134"Press any key":X$=G
ET$
1260 ENDPROC
1270
200@ DEF PROCgrid
2010 STX=1:STY=1
2020 IF MAXX-MINX>25 THEN REPEAT STX=S
TX*5:UNTIL (MAXX-MINX)/STX<25
2030 IF MAXX-MINX<4 THEN REPEAT STX=S
TX/5:UNTIL (MAXX-MINX)/STX>4

2040 IF MAXY-MINY>25 THEN REPEAT STY=S
TY*5:UNTIL (MAXY-MINY)/STY<25

2050 IF MAXY-MINY<4 THEN REPEAT STY=S
TY/5:UNTIL (MAXY-MINY)/STY>4

2060 FOR Z=-MINX*XUNIT TO @ STEP -XUNI
T*STX

2079 MOVE Z,0:PLOT 21,%Z,1023

2083 NEXTZ

2090 FOR Z=-MINX*XUNIT TO 1280 STEP XU
NIT*STX

2109 MOVE Z,@:PLOT 21,Z,1023

2110 NEXTZ

2120 FOR Z=-MINY*YUNIT TO @ STEP -YUNI
T*STY

2130 MOVE @,%:PLOT 21,1279,%

2140 NEXTZ

2150 FOR Z=-MINY*YUNIT TO 1024 STEP YU
NIT*STY

2160 MOVE @,Z:PLOT 21,1279,%

2173 NEXT 2

2180 PROCframe

219@ ENDPROC

2200 :

3000 DEF PROCxyaxis

30190 MOVE -MINX*XUNIT,@:PLOT 5,-MINX*X
UNIT,1023

3020 MOVE @,-MINY*YUNIT:PLOT 5, 1279,-
MINY*YUNIT

3030 ENDPROC

3040 :

4000 DEF PROCscale

4010 VDU 5

4020 MOVE 1240-LEN (MINYS)*32,32:PRINT;
MINY

4030 MOVE 1240-LEN (MAXYS)*32,992:PRINT
;MAXY

4040 MOVE 10,-MINY*YUNIT-2@:PRINT;MINX
4050 MOVE 1240@-LEN (MAXXS) *32,-MINY*YUN
IT-20:PRINT ; MAXX

4060 MOVE -MINX*XUNIT-45,-MINY*YUNIT-2
@:PRINT; 0 »

BEEBUG

May 1984

Volume-3 Issue-1

16

4079 VDU 4

4080 ENDPROC

4090 :

5000 DEF PROCplot

501¢ PRINT:B=1

502¢ VDU4:INPUTTAB(1,B) "F(X)=" FS$:PRO
Cframe

5030 IF F$="" THEN ENDPROC

5040 IF F$="S" THEN PROCscreendump:GOT
0 5020

5050 VDU 5:X=MINX:D=D+2

5060 ON ERROR X=X+ (MAXX-MINX)/320:0N E
RROR OFF:GOTO 5060

5079 MOVE FNX (X) ,FNY (X)

5080 ON ERROR IF ERR=18 OR ERR=21 OR E
RR=22 OR ERR=23 OR ERR=24 THEN GOTO 513
¢ ELSE IF ERR=17 THEN 110 ELSE IF ERR=1
3 THEN 250

5090 P=FNX (X) :Q=FNY (X)

5100 *FX21,5

5110 IF Q<=0 OR Q>=1023 THEN MOVE P,Q:
ELSE SOUND 1,AMP,Q/5,5:DRAW P,Q

5120 C=C+1:IF C>D AND DL=TRUE THEN C=0
:PRINT CHRS (240) :MOVE P,Q

5130 X=X+ (MAXX-MINX) /320

5140 IF X<=MAXX THEN 5090

515¢ B=B+1:*FX21,5

5160 GOTO 5020

517@ ENDPROC

5180 :

6000 DEF PROCinstructions

6010 PROCtitle ("INSTRUCTIONS")

602¢ PRINT'"This program allows you to

plot graphs"

6930 PRINT"of any mathematical functio
n.ll

6040 PRINT'"You can select the minimum

and maximum"

6050 PRINT"values for the two axes."

6060 PRINT'"You can mark the diferent
curves in the"

6070 PRINT"diagram with the special dr
awing option"

6080 PRINT"which places dots at regula
r intervals"

6090 PRINT"along the curve, depending
on which"

6100 PRINT"curve is drawn."

6110 PRINT'"Pressing ESCAPE at any tim
e will start"

6120 PRINT"the program again. Pressing
RETURN in"

6130 PRINT"plot mode clears the screen
"

6140 PRINT'"Entering S will start the
screen dump"

615@ PRINT"procedure, however you must

insert your"

6160 PRINT"own procedure relating to y
our printer."

6170 PRINT'CHRS134"Press any key":X=GE
T

6180 ENDPROC

6190 :

700@ DEF PROCtitle(TITLES)

7010 CLS:SP=INT ((40-LEN(TITLES))/2)

702¢ VDU 157,132,141:PRINT TAB(SP-4);T
ITLES

703¢0 VDU 157,132,141 :PRINT TAB(SP-4);T
ITLES

7040 ENDPROC

7050 :

8000 DEF FNX(X)=(X-MINX)*XUNIT

8010 :

900@ DEF FNY (X)=(EVAL(FS$)-MINY) *YUNIT
9010 :

10009 DEF PROCframe

10019 MOVE @,@:DRAW 1279,0:DRAW 1279,10
23:DRAW @,1023:DRAW @,0

1002@ ENDPROC

10030 :

11900 DEF PROCscreendump

g]G] @ REM dkkkkkkkkkhhkkhkkhkkkkkhkkhkk

11020 REM PLACE YOUR PRINTER DUMP

11030 REM ROUTINE IN HERE

]]g4g REM khkkkkkkhkkkkkkhkkhkkhkkkkkk

11050 ENDPROC =25

HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS

DEFINING YOUR OWN FUNCTION KEYS IN VIEW - J.Wellings

The function key buffer is preserved while View is in use, although the
definitions associated with them cannot normally be recalled by pressing the keys as
they are used to perform special functions. The command *KEY still functions in
View's command mode. The functions can be recalled by pressing Control and Shift in
conjunction with the required function key, providing *FX228,1 is entered in

command mode first.

RESETTING THE COMPUTER DURING A PROGRAM - A.Crowhurst
The reset vector can be directly called from within a program using CALL !&FFFC.
This has exactly the same effect as pressing the Break key during the running of the

program.

=

BEEBUG

May 1984

Volume-3 Issue-1

17

COMPUTER CONCEPTS GRAPHICS ROM
Reviewed by Mike Siggins

Product :Graphics Extension ROM.

Price :£33.35 (inc.)

Supplier:Computer Concepts, 16 Wayside,
Chipperfield, Herts WD4 9JJ.

The Graphics Extension ROM is a
welcome addition to the growing range
of graphics software and add-ons now
available for the BBC micro. The ROM

provides many features, including
sprites and turtle graphics, to
supplement the already extensive

routines available on the Beeb. There
are, in addition to this, some general
purpose commands which provide useful
additions to the graphics capability of
the Beeb. All the commands are
accessible from Basic, in the manner of
standard 'star' commands.

The ROM is packaged to the normal
professional standards associated with
previous products from Computer
Concepts. Installation is simply a
matter of inserting the ROM into a
socket, preferably one of high priority
for speed. The documentation supplied
is of a good standard, providing
detailed and clear explanations of all
the commands and parameters.

The sprite commands are very
comprehensive and provide the basis for
animation techniques. Commands are
provided to create, edit and display up
to 32 multi-coloured sprites which can
be up to 24 pixels square. They can
then be combined to produce animated
sequences using the powerful *FILM
command. The only problem here is the
knowledge of the memory map required to
derive the best results, especially
considering the limited memory
available. The speed with which the
sprites can be moved about is
impressive, and can be extremely
smooth. The worst results are
experienced when the sprites are moved
diagonally.

The Turtle graphics commands emulate
those available in the Logo language.
The range covered gives all the
primitives for some very interesting
graphics. The speed is again
impressive, and would probably benefit

BEEBUG

May 1984

from some delay routines if the
commands were used in the context of a
Logo interpreter. As one would expect,
all the colours are available making
for some very spectacular displays.

There are many other commands which
all go to provide a utility worthy of
extended experimentation. They include
a versatile plot command which can use
the existing Basic parameters and
combine them with 3-D co-ordinates.
These routines can provide some amazing
effects. There is also a print command
which can display text at any angle,
size “or colour, The output is
unfortunately somewhat untidy as it
seems to merely magnify the existing
character set. This causes unsightly
'steps' as the characters grow in size.

Other commands enable one to scale
and rotate the screen, compose spiral
patterns, rapidly draw arcs and
circles. An extremely useful item is a
system of 'GFX' commands which provide
a suite of utilities for the chip
itself, including a powerful sine and
cosine look-up facility.

Overall, this product is good value
for money and will provide anyone
interested in graphics with a whole new
field of possibilities. It is worth
remembering that any programs developed
using these features will only run on a
machine in which the Graphics ROM is

'all-in' price of £30. See elsewhere in
this issue - Ed.]

Volume-3 Issue-1

‘- 1

Priogjraimimielrs
Werlishe®

This month we start a series of workshops in which we will pass on all the best
tricks and techniques for improving your programs, particularly in Basic. We will
regularly be presenting helpful routines, functions and procedures that will build
up to form a useful and comprehensive library, of interest to both beginners and
experienced users.

by SURAC

For each routine given, we will explain clearly how it works, and include notes on
how you could use it within your own programs, and how it could be tailored to your
own needs. By the nature of the routines given, some of them will be more complex
than others, but don't let this worry you!

If you have any comments, ideas or small routines that you would like to be included

in the BEEBUG Workshop, then send them to SURAC, at the BEEBUG editorial address.
Any of your contributions published will be paid for at the normal magazine rates.

0 TRy ‘
m\e;‘g‘g%‘.w AN ELEGANT DATA ENTRY ROUTINE

To start this series of workshops,
we will look at a very useful function
that replaces the Basic INPUT statement
and then provides a number of helpful
and user friendly facilities. When
using INPUT, you are not restricted in
the number of characters that you may
enter. For example, when using INPUT to
input a single number, you could easily
hold down a single key, and the Beeb's
auto repeat facility would then result
in up to 254 extra characters being
entered. This can have disastrous
results during data entry in a program
that relies upon tidy presentation of
data. We now present a function that
enables you to easily overcome these
limitations. The facilities that the
new input function provides are:

1. Text or data entry at any screen
position.

2. Display of a guiding line of full
stops to indicate the number of
characters required.

3. Limits to the specified number of
characters to be entered.

4. Program controllable conversion of
lower case characters to upper case.

5. Program controllable deletion of the
guide line once input has finished.

In order to use the function, you
need to supply four parameters. The
four parameters are:

Horizontal screen position of start.
Vertical screen position of start.
Maximum string length allowed.
Switchable options.

B> W

For example, if you wanted to input a
string from the screen at the position
10,20 (i.e. 10 places from the left, on
line 20Y, with a maximum of 13
characters, you could use:

replyS$=FNinput (16¢,20,13,3)

(See the section later on for an
explanation of the last parameter.)
This example would produce the
following prompt at the screen position
10,29:

[s5esieiosisisinniel)

The user enters all of his text within
the bounds of the surrounding brackets,
with the number of full stops
indicating how many characters are to
be entered (at a maximum). The two
enclosing square brackets could be
omitted by leaving them out of line

»

BEEBUG May 1984 Volume-3 Issue-1

e i T A ek i et Bl = = o, R

19

116@0. Using a ready-made function of
this kind, makes the acquisition of
text and 'data =@ from the screen
considerably easier than having to
write your own routines and tests.

The method of inputting text is very
similar to normal entry via Basic's
INPUT statement. Pressing a key results
in the character being added to the
string (see later), and the cursor
moved one place to the right. The
Return key terminates the string, as it
would normally. Delete can be used to
delete a single character and CTRL-U
removes the entire 1line. When a
character is deleted, it is replaced by
a full stop, to signify that there is
no character there.

If you attempt to delete a character
when there is nothing to delete, or add
a character when the maximum number has
already been entered, a beep will be
sounded. If this is not required, then
all occurrences of 'VDU 7' in the
program should be deleted.

Two switchable options, which are
controlled by the fourth parameter, are
provided. These are the automatic
conversion of lower case to upper case
and the removal of the prompt line
after entry of the text or data. In the
example, all lower case letters entered
will be converted to their upper case
equivalents, and the prompt will be
erased on exit from the function. To
select the wvalue of the fourth
parameter that is applicable to your
particular requirements, just match up
the values given in the table below
with the options that you require.

Fourth Case . Prompt
Parameter i Conversion || Deletion
= z

s Yes i¥es

The function should be appended to
your program, with care being taken to
ensure that the line numbers do not

100¢ DEF FNinput (X%,Y%,L%,F%)

1019 IF F% AND 1 M%=&DF ELSE M3%=&FF
1020 IF F%$ AND 2 F%=-1 ELSE F%=0
193¢ PROCinit

1040 REPEAT

1050 K%=GET

1060 IF K%>96 AND K%<123 K%=K% AND M3
1070 IF K%=13 UNTIL-1:PROCend:=RS$
1080 IF K%=127 PROCdel :K%=0

1090 IF K%=21 PROCinit:K%=0

1100 IF K%<32 K%=0

1110 IF K% PROCadd

1120 UNTIL®

1130 :

1140 DEF PROCinit

1150 C%=@:R$=""

1160 PRINTTAB (X%-1,Y%)" ["STRINGS (L%,".
u) ll] "TAB (X%,Y%) 3

1170 ENDPROC

1180 :

1190 DEF PROCend

1200 IF F% PRINTTAB (X%-1,Y%)SPC(L%+2);
121@ ENDPROC

1220 :

123@ DEF PROCdel

124¢ IF C%=0 VDU7:ENDPROC

1250 C%=C%-1

1260 R$S=LEFTS (R$,C%)

127¢ vDU8,ASC".",8

128¢ ENDPROC

1290 :

1300 DEF PROCadd

1310 IF C%=L% VDU7:ENDPROC

1320 C%=C%+1

1330 R$=RS+CHRSK%

1340 VDUK%

1350 ENDPROC

overlap. Note that all of the extra
procedures should also be added, as
these are essential.

The function could easily be
extended by allowing the routine to
exit only if a string's length is
between an upper and a lower limit. You
could also extend it further by
allowing the cursor keys to move along
the current string on the screen, to
allow insertion and deletion of
characters in the string. If you think
they are unnecessary, then you could
alter the program so that the square
brackets are not displayed.

=

22 T
ERRATA TO BEEBUG VOL.2 NO.18 (HOME ACCOUNTS - ANNUAL BUDGETS)

‘Line 1410 Qf this program on page 13 was regrettably omitted while the magazine was at the
printers. The line, which is essential to the correct running of the program should read:
1410 PROCshowcell (NUM% (Y%,X%)) :*FX15

Most of you will probably have noticed the break in the printed listing at this point. We
apologise for any inconvenience caused.

BEEBUG May 1984 Volume-3 Issue-1

|

A
(B FUNCTION KEY EDITOR
qeste® 405 p
! by David Fell and Alan Webster

The Beeb allows you to define up to 16 different finction keys with

any characters in them but it does not, however,

method

ovide any easy

of editing them. We now present a very lielpful utility that

allows editing of any function key, and the display of some other
very useful information about the current function keys settings.

The function key editor listed below
allows you to 1list the current key
definitions in their 'source' form, to
edit them, to compact and expand from
text to Basic tokens and back, and to
display the amount of spare memory left
in the key buffer. It is very easy to
use, with a menu guiding the user
through the various stages. When
dealing with the tokens, the program
automatically decides which version of
Basic (I or 1II) is installed, and
adapts to this. Because the program
directly accesses I/0 memory, it cannot
be used with the program working in the
second processor. To rectify this, just
turn off your second processor, and
then restart the loading process.

LIST THE KEYS

When run, the program pauses for a
moment whilst it constructs a table of
Basic keywords and tokens, and the
current key definitions in their
'source' form. Once this is done, you
are presented with a menu offering you
eight possible options. From this list,
the option most often chosen initially
is the first one, i.e. list the key
definitions. This allows you to check
what the current definitions are. You
might find it useful to use the editor
to enter your function key definitions
as well.

THE EDIT OPTION

The 'edit' option first asks for the
key number that you wish to change, and
then displays the current 'source'
definition of this key. You are then
prompted to enter your new definition.
The normal cursor key operations are
enabled, and the same basic principles
for editing a line of Basic apply: i.e.
copy down those portions of the
original line that you want, skip the
ones that you do not want, and type in
any new text. The string is entered

BEERUG Functi

1> List keys

2> Edit key

3 Delete keyls)

4> Compact to tokens

S Print key buffer space left

6> Expand keys
7 Update definitions
8> Exit

Option?

when you press the Return key. Note
that Jjust pressing Return will not
blank out a key definition in order to
guard against accidental deletion. To
delete a key, use the delete option
described below.

THE DELETE OPTION

The 'delete' option asks you for a
range, and this allows you to delete a
single key (enter both the start and
finish values as those of the single
key which you wish to delete), or to
delete a continuous group of keys (e.g.
keys 4 to 8). Note that the actual key
definitions are retained until the
'update' option is called. This may be
called directly (option 7), or via the
two token options (options 4 and 6),
and by the memory display option
(option 5).

COMPACTING THE KEYWORDS

The 'compact-to-tokens' option
allows you to enter a string containing

Basic keywords, and have these
automatically changed into the
corresponding single byte tokens that

Basic uses to store them. When held in
the key buffer, these take

BEEBUG

G May 1984
f
B o e S S S S e s B TURO =

Volume-3 issue-1

»

21

BEEBUG Functio

1
Llls!J SIH LISTOZ7EM L.ANEM LISTOORM
“um

CHAIN" "IN
$.0AD"" BOCONM
FCATEMN

SMOTORONM

M0.60M VDU19,0,4,0,0,01M CLSEM
P.TOP-PAGENN

DIM PX-10M P.HIMEM-PXAM

CS="LIST"+STRSERL+CHRS13: Ax=138:X
F L=1TOLENCS: YX=ASCCMIDS(CS,L)>> :CA.&
. "

x
L]
C

IEY
IKEY
IKEY
IKEY
IKEY
XKEY
FKEY
KEY
IKEY
IKEY

Z_OONOUIWUN=O

N

é‘éééﬁﬁ,

1S
Press SPACE to Continue

significantly less space than the ASCII
equivalent (see BEEBUG V.2 No.9 page
34). Note that this routine has been
made as effective as is easily possible
in so short a space, but it may
occasionally not operate in the way
expected. The keywords should Dbe
entered in full, although it is not
absolutely essential for there to be
spaces between the words. If not
entered in full, the program will not
compact them, and will leave them
untouched; unless what you typed in
contains sufficient to make another
keyword (e.g. ENDP. for ENDPROC will be
detected as END and P.).

ANY SPACE LEFT?

The operating system does not
provide any easy method of discovering
how much free space is left for key
definitions. The message 'Bad key' can
occur when an attempt to define past
the available space 1is made, but no
warning is given that this may happen.
This option displays the amount of free
space in the current definitions, and
then displays the contents of the
function key buffer (part of memory) in
a 'hex dump' format.

EXPANDING A TOKEN

If you have previously saved some
compacted key definitions, and then
forgotten what the original keywords
were, then this option is very helpful;
for it reverses the effect of the
compact option. Any values that might
appear to correspond to a token, but in
fact do not, (e.g. the OSCLI and OPENIN
tokens when attempting to expand on

UPDATING THE KEY DEFINITIONS

The program works with a copy of the
key definitions, and it is necessary to
use the update option to make the new
versions active before leaving the
program if you require these new
definitions. This guards against
accidental deletion of any definitions,
and any mistakes that you may make
whilst defining the keys. (Note though
that the program does occasionally
update the keys itself to aid in
processing.)

THIS WAY OUT!

The eighth menu option allows you to
exit from the program. Note the
comments made in the above paragraph
though, regarding the updating of key
definitions.

10 REM PROGRAM FUNCTION KEY EDITOR
20 REM AUTHORS D.A. FELL /
A.R. WEBSTER
30 REM BASED UPON A PROGRAM FROM
M.A. SHELLEY

40 REM BEEBUG MAY 1984

50 REM VERSION 1.5

60 REM PROGRAM SUBJECT TO COPYRIGHT.

70 ¢

100 DIM KS$(16)

110 MODE7:PROCtidy (1,CHRS157+CHRS131+
"BEEBUG Function Key Editor. "+CHR$156,
2):VDU28,0,24,39,3,14:PRINT' ' ' : PROCtidy
(2,"Please wait",2)

120 PROCreadkeys : PROCsourcekeys

130 PROCinit

140 REPEATCLS

150 ON ERROR GOTO 280

160 PRINT'TAB(7)"1) - List keys"

170 PRINT'TAB(7)"2) - Edit key"

180 PRINT'TAB(7)"3) - Delete key(s)"

190 PRINT'TAB(7)"4) - Compact to toke
nsll

20@ PRINT'TAB(7)"5) - Print key buffe
r space left"

219 PRINT'TAB(7)"6) - Expand keys"

220 PRINT'TAB(7)"7) - Update definiti
ons"

23¢ PRINT'TAB(7)"8) - Exit"'''

240 PROCtidy(6,"Option? ",1) :REPEAT S
=VAL (GET$S) :UNTILS>@ AND S<9

250 CLS:IFS=1 PROClk:PROCspace ELSEIF
S=2 PROCed ELSEIF S=3 PROCdel ELSE IFS
=4 PROCco ELSE IFS=5 PROCkeyspare ELSE
IFS=6 PROCexpand ELSE IF S=7 PROCupdate
ELSE IF S=8 THEN PROClk:END

Basic I) will be left in the format 263 UNTILFALSE
encountered. 278 ¢
BEEBUG May 1984 Volume-3 Issue-1

22

280 CLS:ON ERROR OFF:IF ERR<>17 REPOR
T:PRINT" at line ";ERL

290 IF ERR=251 THEN PRINT S&AQQ

300 END

310

1000 DEF PROClk :LOCALT%,S:PRINTCHRS13
@"Key List.":FORT%=0 TO15:PRINT"*KEY .
T%;" ";KS(T%) :NEXT: ENDPROC

1019 :

1020 DEF PROCed :PROCtidy(3,"Use curso
r keys to copy",1) :PROCtidy(3,"Use dele
te key to delete",1) :PROCtidy(3,"Use re
turn to enter definition",1):PROCtidy (3
,"and return to menu.",1)

1030 REPEAT INPUT'"Edit which function

key ",K:UNTIL K>-1 AND K<16

1040 PRINT"KEY ";K":-"KS$(K)'"KEY ";K;"
:"; tINPUTLINE""DS: IF DS<>"" THEN KS$ (K)=
D$

1050 ENDPROC

1060 :

1070 DEF PROCdel :REPEAT PROCtidy (2,"K
ey Deletion.",1) : INPUTTAB(1,5) "Which ke
ys to delete (from, to) ",f%,t%:UNTIL f
%$>~1 AND t%<16 AND NOT (f%>t%) :FORL%=f%T
Ot%:PRINT"*KEY ";L%;" ";K$(L%) :NEXT:PRI
NT"Delete ? (Y/N)";:S=GET:S=S OR96

1080 IF S<>121 ENDPROC ELSE FORD%=f% T
O t%:K$(D%)="":NEXT:ENDPROC

1090 :

110¢ DEF PROCcl :LOCALA%:A%=18:CALL&FF
F4: ENDPROC

T

1120 DEF PROCco :LOCAL D$,F%,T%,Z%:PRO
Ctidy(2,"Key Compaction.",1) :PRINT'"Whi
ch key(s) to compact "'"(from,to) ";:RE
PEATINPUT,F%,T%:UNTIL F%>-1 AND T%<16 A
ND NOT (F%>T%)

1130 PROCupdate :PROCreadkeys

1140 FOR Z%=F% TO T%:KS$(2%)=FNstring (K
$(2%)) :NEXT: PROCsourcekeys : ENDPROC

1150 :

1160 DEF PROCL(S,N) :LOCAL 1,J,B$,R:PRI
NT'"' ' signifies a control character."

1170 FORI=S TOS+N STEP8:@%=4:PRINT™I;:
B$=" ":FORJ=@TO7:R=I12J:PRINT"R;:@%=3:R
=R+ (R<32 ORR>126) * (R-95) :B$=BS+CHRSR:NE
XT:PRINTB$:NEXT:@%=1G:PROCSpace:ENDPROC

1180 :

1199 DEF PROCkeyspare :LOCAL T%,H%:PRO
Ccl:PROCupdate:PROCtidy (2, "Memory Displ
ay.",1) :PRINT'

1200 T%=&B@0:H%=0:REPEATT%=T%+1:IF ?T%
>H% H%=?T%

1210 UNTILT%=&B10

1220 IF H%>=&FE THEN PRINT"No key spac
e left":VDU7,7 ELSE PRINT"There are ";S
TRS (&FF-H%) ;" bytes left"

123¢ vDU28,0,24,39,7:PROCL (&B0@ ,&FF) :V
pu28,9,24,39,3

1249

12502

1260
1279
1280
1290
1300
1310
1320
1330
F3%
1340
%)
1350
1360
))
1370
1380
1390

1400 :

1410
1420
nue:"
1430
1449
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
4)
1580

RS (X%)

15990
1600
1619

ENDPROC

DEF PROCexpand

PROCupdate: PROCreadkeys

LOCAL I%,S%,F%

CLS

PROCtidy (2, "Keyword Expansion.",1)
PRINT'''

REPEAT

INPUT"Start and Finish keys :"S%,

UNTIL S>-1 AND F%<16 AND NOT (S%>F

FORI$=S$TOF%
IF KS$(I%)<>"" K$(I3%)=FNexpl (K$ (1%

NEXT
PROCsourcekeys
ENDPROC

DEF PROCspace
PRINTCHRS$130"Press SPACE to Conti

*FX15,1
REPEAT UNTIL GET=32
ENDPROC

DEF FNexpl (AS)

LOCAL I%,BS:BS=""

IF A$=" " =II "

FORI%=1TOLENAS
BS=BS$+FNexp2 (ASC (MIDS (AS,1%,1)))
NEXT

=B$

DEF FNchar (X%)
LOCAL AS
IF X%<32 THEN A$=A$+"|"+CHR$(X%+6

IF X%>31 AND X%<&7F THEN A$=AS+CH
IF X%=&7F A$=AS+"|2"

IF X%=&7C THEN A$=AS+"|"
IF X%>&7F THEN AS=AS$+"|!":X%=X%AN

D127:GOTO 1570

1620
1630
1640
1650
1664

=AS

DEF FNreadkey (K%)
LOCAL I%,A$
IF &BOO+? (K$+&BO1) < &BO1+? (K¥+&B

@¢@) THEN =""

1670

FORI%=&B@1+? (K$+&B@J) TO &BOO+? (K

%+&B0O1)

1680
1690
1700
1719
1720
1730
1740

AS=AS+FNchar (?1%)
NEXT
=A$

DEF PROCupdate
LOCAL I%,X%,Y%:Y%=10
FORI%=0TO15 »

BEEBUG

May 1984

N A P - S S U o SO

Volume-3 Issue-1

23

1750 S&A@Q="KEY"+STRSI%+" "+KS(I%)

1760 CALL&FFF7

1770 NEXT

1780 ENDPROC

1799 :

1800 DEF PROCreadkeys

1810 LOCAL T%,S%,F%,A%,AS

1820 FORT%=&B0@ TO &B1Q:A$="":FL%=
=10:5S%=2T%:F$=FNRV:FORA%=S%+1 TO F%
AS+CHRS (A%?&B00)

1830 NEXT:IF F%=S% THEN A$=""

1840 KS$ (T%-&B0J) =AS:NEXT

185@ ENDPROC

1860 :

1870 DEF FNRV :LOCAL H%,L%,R%

1880 H%=255:FORL%=&BOJTO&BOF : R¥=?L%: IF

%>S% AND R%<H% AND R%<>S% THEN H%=R%
1890 NEXT:IF H%=255 THEN H%=S%

1900 =H%

1919

1920 DEF PROCsourcekeys

1930 LOCAL I%,J%

1940 FORI%=QTO15

1950 IF LENKS(I%) BS$="":FORJ%=1TOLENKS
(I%) :B$=B$+FNchar (ASC (MIDS (K$ (I%) ,J%,1)
)) :NEXT:KS (1%)=BS

1960 NEXT

197@¢ ENDPROC

1980 :

1990 DEF PROCinit

2000 DIM KWS(128)

2019 PROCbasic

2020 PROCkeyword:PROCblank

2030 ENDPROC

2040 :

2050 DEF PROCbasic

2060 REM CHECK TO SEE WHICH VERSION OF

2

%

:@
AS

2070 REM BASIC IS IN THE MACHINE.
2080 IF ?&8015=50 B%=2:5%=&8071 ELSE B
%=1:5%=&806D

2090 ENDPROC

2100 :

2110 DEF PROCkeyword

2120 G%=S%

2130 REPEAT:WS$S="":REPEAT

2140 WS=WS+CHRS (2G3)

2150 G%=G%+1:UNTIL 2G%>127

2160 T%=?G%

2170 KWS$ (T%-127)=W$

2180 G%=G%+2

2190 UNTIL G%>&836D

220@ ENDPROC

22109 =

2220 DEF PROCsearch (KS)

2230 PRINTKS

2240 found=FALSE

225¢ FOR A%=1 TO 128

2260 IF KWS (A%)=KS$ found=TRUE:T$%=A%:A%
=128

2270 NEXT

2280 IF found PRINTCHRS$129;KWS$S (T%) ;CHR
$130;TAB(20) ; T3+127

2290 ENDPROC

2300 :

2310 DEF FNexp2 (N%)

2320 LOCAL N$

2330 IF N%<128 NS$=CHRS$ (N%) ELSE NS$=KWS$
(N%-127)

2340 IF NS$="" NS=CHRS$ (N%)

2350 =N$

2360 :

2370 DEF PROCblank

2380 KWS (14)="":KW$ (79)=""

2390 IF B%=2 KWS(65)=""

2400 IF B%=1 KW$(10)="":KWS (15)="":KWS
(53)=""":KWS (69) ="": KWS (112) =" :KWS (128)
=nn

2410 ENDPROC

2420 :

2430 DEF FNstring(S$)

2440 IF SS=ur. =t

2450 FORT$=128 TO 1 STEP -1

2460 IF INSTR(SS,KWS (T3))<1 OR KWS (T3)
="" GOTO 2500

2470 IF SS=KWS (T%) SS$=CHRS (T%+127):T%=
9:GOTO 2500

2480 SS$=LEFTS (S$, INSTR (S$, KWS (T%))-1)+
CHRS (T%+127) +RTGHTS (S$, LEN (S$) - (INSTR (S
$,KWS (T%)) +LEN (KWS (T%))) +1)

2490 GOTO 2460

2500 NEXT

2510 =S$

2520 :

2530 DEF PROCtidy (C%,AS,HS)

2540 LOCAL I%

2550 A$=CHRS (128+C%)+AS

2560 IF H3=2 A$=CHRS141+AS

2570 IF H$=2 FOR C3=1 TO 2

2580 PRINTTAB(19-LENASDIV2)AS

2590 IF H3=2 NEXT

2600 ENDPROC =

HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS

SWAPPING FILING SYSTEM UTILITIES - 'A.Still
Some of the normal DFS utilities, such as *TYPE and *DUMP,
and not just the DFS. In fact some, if not all, of the

cassette filing system,

will work with the

commands work with other filing systems such as the ROM and Teletext filing systems.

Note, the DFS must be fitted since the utilities reside in this ROM.

&

BEEBUG

May 1984

Volume-3 Issue-1

@

24

A\
\&
q,a;‘\q, ACCURATE ARITHMETIC
% 60 by J. B. Miller-Smith
Unassisted, a BBC micro will give its answers correct to 9
significant figures; but for some applications greater accuracy is
required. The routines below permit ultra-high precision arithmetic
with answers to 1000 significant figures if you choose - the degree
of precision may be selected by the user.
Computers and, for that matter, 10 REM Program ARITH

pocket calculators are very good at
providing fast and accurate results to
almost all arithmetic problems, and any
limitations on their accuracy are
generally ignored by most users as
being insignificant and affecting
perhaps only the last decimal place in
a given answer. However there are
occasions (such as solving computer
magazine puzzles!) for which it is
necessary to evaluate very big numbers
absolutely accurately (what, for
example, are the middle three digits of
7 to the power 50?) - there is also a
certain aesthetic satisfaction in
having your computer display such large
numbers perfectly, and avoiding such
dead end messages as 'Too big'.

The BBC computer holds integer
variables (those whose names end with a
% sign) in 4 bytes, giving a range of
whole numbers from -2,147,483,648 to
+2,147,483,647. Real variables are held
in a floating-point format which
increases the range significantly to
cover plus or minus values from 2 x 14
to the power -39 to 2 x 10 to the power
+38, but the accuracy is limited to 9
significant digits (8 decimal places).
To avoid these limitations the
following program deals with integer
numbers, up to several hundred digits
long if necessary, by holding the
digits in arrays: the numbers are then
multiplied digit by digit very much as
in 'long multiplication'. The
multiplication routine used in this
program to evaluate large powers can
obviously be used in other applications

20
30
49

REM Version B#.2
REM Author Ben Miller-Smith
REM BEEBUG May 1984

50 REM Program subject to copyrlght
60 :
109 MODE 7
119 ON ERROR VDU 26:END
120 vDU 15
130 head$=CHRS$ (131)+"Powers of N list"
140 PRINTTAB ((40-LEN (head$)) DIV 2,1)
;head$
150 =
160 REM Set reasonable array sizes
17¢0 REM and max number of digits in N
180
190 asize%=1500
200 max%=20
210 DIM A% (asize%) ,N% (max%)
220 PRINT
230 PROCinputN: REM Get N and nsize%
240 psize%=asize¥+nsize+l
25¢ DIM P%(psize%)
260 ndigits%=nsize%
27¢ VDU 28,0,24,39,5
280 :
290 REM Initialise all arrays to zero
300 =
310 FOR I%=0 TO asize%:A%(I1%)=0:NEXT
320 FOR J%=0 TO nsize%:P%(J%)=0:NEXT
330 P%(@)=1: REM Initial product=1
34¢ E%=1: REM Power count
350 :
360 REM Copy last product to array A%
370 REM and reset product P% to zero
380 :
390 REM *** Main Loop ***
400 :
410 REPEAT
420 FORI%=@ TO ndigits%:A%(I%)=P%(I%)

:P% (I%)=0:NEXT

- but note that it is not easy to make 430 :
it a stand-alone procedure because of 440 REM Multipliction Routine
the difficulty of passing arrays as 459 :
parameters on the BBC micro. 460 FORJ%=0 TO nsize%

470 carry%=0

480 FORI%=0 TO ndigits%+1

»

BEEBUG May 1984 Volume-3 Issue-1

R T ek e L e T T e e

25

490 prodij%=N% (J%) *A% (I%)+carry$

500 psum%=P% (I1%+J%)+prodij% MOD 10
510 P%(I%+J%)=psum% MOD 10

520 P%(I1%+J%+1)=P% (I1%+J%+1)+psum3 DIV
10

530 carry%=prodij% DIV 10

540 NEXT 1%,J%

550 :

560 REM Skip leading zero's and print
57¢ REM product array

580 :

590 I%=psize%

600 REPEAT

610 1%=1%-1

620 UNTIL P%(I%)<>0

63¢ PRINT"N TO THE POWER ";

640 IF E%<10 PRINT " ";E%;" = "; ELSE
PRINT;E%;" = ";

650 E%=E%+]

660 :

670 FORJ%=I% TO @ STEP -1

680 PRINT;P% (J%);

690 NEXT

700 :

710 ndigits%=1%

72@ PRINT

73@¢ UNTIL ndigits$%>asize%-nsize%

748 PRINT "Increase array size to rea
ch higher"

750 PRINT "powers (i.e. change value
of 'asize%'"

760 PRINT "near the start of the prog
ram) ."

77@ VDU 26:END

780 :

100@ DEFPROCinputN

1010 REM Get N digit by checked digit

1020 REM until Return (&@D) entered.

1030 REM Shift N left on each new entry.

1940 REM Exit on more than ‘max%' digi
1050 :

106@ PRINT "N = ";

1070 nsize%=0

108¢ REPEAT

1090 REPEAT

1100 X%=GET-48

1110 IF X%=&0D-48 PRINT:ENDPROC
1120 UNTIL (X%>-1 AND X%<1@)
1130 PRINT;X%;

1140 nsize%=nsize%+1

1150 FORI%=max% TO 1 STEP -1
1160 N%(I%)=N%(I%-1)

1170 NEXT

1180 N% (0)=X%

1190 UNTIL nsize%=max$%

1200 ENDPROC

When RUN this program will await
your entry of a value for N, and then
list the power of N in ascending order,

until you either Escape, or it runs out
of array space. You may wish to remove
line 80 while debugging the program
after typing it in so that any errors
are reported directly: when the program
is running you should be able to answer
the question about 7 to the power 50,
easily.

Powers of N list

POWER

2318785835536
2861381721051424
3530945043777457216
43571861840213822045

S3767677510823856404
66349314048356638802

N
N
N
N
N
N
N
ol
N TO
07296
N

O © NOURBWN=

DIVISION.

In contrast to the long
multiplication used above it is quite
easy to improve the accuracy of
division operations to any number of
decimal places, at least when integers
are involved (and decimal numbers can
always be converted to integers by
multiplying by the appropriate power of
190 if necessary). The following short
program demonstrates the use of the DIV
and MOD operators to provide an
accurate answer for any integer
division sum (except division by zero,
of course).

10 MODE 7
20 PRINTTAB(3,1) ;CHRS$131;"Exact valu
e of X% devided by Y%"

30 INPUT "What is X% ? "X%
40 INPUT "What is Y% ? "Y%
5@ PRINT

60 Q%=X% DIV Y%

70 PRINT O%;".":

80 REPEAT

90 X%=(X% MOD Y%)*10

100 Q%=X% DIV Y%
110 PRINT;Q%;
120 UNTIL FALSE

Given some initial values for X% and
Y% (whose values are subject to the
integer range restrictions mentioned in
the introduction) this program will
output the quotient X%/Y% to any number
of decimal places, until halted by
Escape or Break. You might 1like to
evaluate some reciprocals (e.g. 1/7),
and compare them with the computer's
answer (PRINT 1/7). Incidentally, the
fraction 355/113 gives a good
approximation to PI (better than 22/7) .=

BEEBUG

May 1984

Volume-3 Issue-1

26

n
s**" MACHINE CODE GRAPHICS (Part 4)
0\ (%2

ed © .
et a“dos by Peter Clease

This month we will look at how to produce simple animation by means
of machine code graphics, with particular reference to Mode 2.

If you have seen a cartoon, and then 10 REM PROGRAM 9
tried to make one yourself, you will 20 REM VERSION B1.1
know that the simulation of movement is 3¢ REM BEEBUG APRIL 1984
produced by drawing a shape, leaving it 40 REM AUTHOR PETER CLEASE
on the screen for a while, then rubbing 50 REM PROGRAM SUBJECT TO COPYRIGHT.
it out and drawing it in a slightly 60 :
different position. If this is done 100 PROCread
many times, and fast enough, the eye 119 PROCassemble
accepts the series of pictures as a 120 MODE 2
moving image. A similar method can be 139 VDU 23,1,0;0;0;9; -
used on the micro to show, for example, 140 CALL start w
a 'galaxian' moving across the screen. 15¢ END - -
First, the 'galaxion' is plotted in an 169 :
initial position, then left there for a 1000 DEF PROCassemble
short length of time, and then 1010 DIM code 300
replotted in a slightly different 1020 FOR PASS=@g TO 3 STEP 3
position on the screen, after deleting 1030 P%=code
the first image. 1040 [

105@ OPT PASS =

If you look at the earlier programs 1060 .start
in this series you will see that they 1070 LDA #0 e
only plot characters at actual screen 1080 STA &79 & =
character positions, and not at places 1099 STA &72
in between these. The positioning that 1100 LDA #&30
this gives is far too coarse to be of 1110 STA &71 1380 LDA basel,Y
much use for games, or most other 1120 .loop 1399 STA (&70),Y
applications. Moving a character across 113¢ BIT &FF 1400 INY
the screen is, however, relatively 1140 BMI end 1410 CPY #32
simple: assuming that &70 and &71 hold 115¢ JSR actionl 142¢ BNE loopl
the address of a screen location (as in 1160 JSR actionl 1430 RTS
our earlier examples), then all we need 1170 JSR action2 1440 .plot2
to do is plot the required shape, wait, 1180 JSR action2 1450 LDY #0
delete the shape, add 8 to the contents 1190 LDA &72 1460 .loop2
of &70 and &71, and plot the shape 1200 CMP #1 1470 LDA base2,Y
again. The reason for adding 8, which 1210 BNE loop 1480 STA (&70),Y
is equivalent to moving one byte of 1220 RTS 1490 INY
screen memory, is explained below. 123¢ .actionl 1500 CPY #32

1240 JSR plotl 1510 BNE loop2

The following program (Program 9) 1250 JSR wait 1520 RTS
will move a space-invader across the 1260 JSR unplot 1530 .unplot
screen. Notice that it plots the 127¢ JSR inc 1540 LDY #0
invader with its arms up, deletes it, 1280 RTS 1550 TYA
plots the same space-invader slightly 1290 .action2 1560 .loop3
to the right, deletes, it and then 1300 JSR plot2 157@ STA (&79),Y
plots the invader with its arms down 1310 JSR wait 1580 INY
twice. This gives a much smoother 1320 JSR unplot 1590 CPY #32
movement than by plotting the two 1330 JSR inc 1600 BNE loop3
characters alternately, because the two 1340 RTS 1610 RTS
different forms of the space invader 1350 .plotl 1620 .wait
stay on the screen for longer, and are 1360 LDY #0 1630 LDX #100
thus easier for the eye to follow. 137¢ .loop] 1640 .loopd »

BEEBUG May 1984 Volume-3 Issue-1

27

1650 LDY #255 1820 .end

1660 .loop5 1830 INC &72

1670 DEY 1840 RTS

1680 BNE loop5 1850]

1690 DEX 1860 NEXT

1700 BNE loop4d 187@ ENDPROC

1710 RTS 1880 :

1720 .inc 2000 DEF PROCread
1730 CLC 2010 DIM basel 31
1740 LDA &70 2020 DIM base2 31
1750 ADC #8 2030@ FOR I%=0 TO 31
1760 STA &70 2040 READ I%?basel
1770 LDA &71 2050 NEXT

1780 ADC #0 2060 FOR 1%=0 TO 31
1790 STA &71 2070 READ I%?base2
1800 BMI end 2080 NEXT

1819 RTS 2099 ENDPROC

2100 DATA ©,9,10,15,0,9,5,10,0,5,10,15
,15,19,9,9,9,19,5,15,15,5,9,9,9,0,5,15,
0,0,19,5

211¢ DATA 0,9,0,15,10,9,5,0,0,5,19,15,
15,19,9,19,0,10,5,15,15,5,9,5,9,9,0,15,
5,0,19,9

ap

TECHNICAL NOTES ON PROGRAM 9
Again, the structure of this example
program is based around two main
procedures. The first one (PROCread)
allocates space for the two sets of
data, and reads them into the area
given. The second one (PROCassemble)
assembles the machine code into another
area.
the machine code sect:zon of Program 9.

LINES
1060-1110 , ‘
These lines set up the screen
pointer, and the exit flag.
1130-1140
Tests the Escape flag directly,
and branches to the exit routine
if the top bit is set. (The top
bit will be set if there is an
'Escape' condition.)
this flag, we can exit early if
the user presses ‘Escape’.
1150-1180

MAIN FUNCTION

These lines call the routines to

display the invader in the two
different positions. Note the way
that each routine is called
twice; this causes the invader to
be displayed on the screen for
long enough in each position for
the eye to register the two
different shapes.

1190-1220 <
These few lines test for the end
of the run, and exit if it has
occurred.

1230-1280

The first level of the 'plot

vaues st s s

Listed below are some details on

By testing

L] L]
|| L] L !
space invader' routine in one
position.
1290-1340

The other space first
level routine.
1350-1430
The first routine that actually
takes the data, and puts it into
| SCreen memory.
1440-1520
The second routine to put data
into screen memory. ‘
15361610
This routine puts a zero into
each byte of the appropriate
screen memory to unplot the
character. (By altering the value
in the accumulator, you can alter
the 'background' colour that the |
invader leaves.)
1620-1710
This section of code causes a
delay by doing a lot of counting.
Altering the value in the LDX #
statement at line 1630 will alter
the timing of the delay loop.
(You could also alter the IDY
statement, but this will not have
such a notable effect.)

invader

- 1720-1810
This subroutine updates the
pointer in screen memory by
eight.

1820-1840

The exit routine.

BEEBUG

May 1984

Volume-3 Issue-1

»

28

As was mentioned in last month's
article, each byte in Mode 2 holds two
horizontal pixels. This means that if
you define a character and move it one
byte to the 1left or right, then the
resulting change will be a movement of
two pixels either left or right. While
this may not be too inconvenient on
small all-action arcade games with
hordes of nasties circling around, for
smooth movement it is necessary to move
characters only one pixel at a time.
The easiest way to do this is by
defining two separate images for each
character, with the second one the same
as the first but shifted by one pixel
to one side. By plotting these two
characters at the same position, the
shape will appear to move very slightly
(by one pixel, actually) left or right.
Below is a one-pixel movement program
(Program 1¢) that sends an arrow across
the screen in a similar way to the
previous space 'invader program'.

10 REM PROGRAM 10
20 REM VERSION B1.0
3@ REM AUTHOR PETER CLEASE
40 REM BEEBUG APRIL 1984
5@ REM PROGRAM SUBJECT TO COPYRIGHT.
60 :

100 PROCread

110 PROCassemble

120 MODE 2

130 VDU 23,1,0;0;9;0;

140 CALL start

150 END

160 :

1000 DEF PROCread

1010 DIM base 79

1020 FOR I1%=0 TO 79

1030 READ I%?base

1040 NEXT

105¢ ENDPROC

1060 :

1070 DEF PROCassemble

1080 DIM code 300

1090 FOR PASS=@ TO 3 STEP 3

1100 P%=code

1110 [1220 STA (&79),Y
1120 OPT PASS 1239 INY

1130 .start 1240 CPY #40
1140 LDA #0 1250 BNE loop2
1150 STA &79 1260 JSR wait
1160 LDA #&30 1270 LDY #0

117¢ STA &71 1280 .loop3

1180 .loopl 1290 LDA base+&28,Y
1190 LDY #0 1300 STA (&79),Y
1200 .loop2 1310 INY

1330 BNE loop3 1470 .wait
1340 JSR wait 1480 LDX #20
1350 CLC 1490 .loop4
1360 LDA &70 1500 LDY #255
1370 ADC #8 1510 .loop5
1380 STA &79 1520 DEY

1390 LDA &71 1530 BNE loop5
1400 ADC #0 1540 DEX

1410 STA &71 155¢0 BNE loop4
1429 BMI end 1560 RTS

1430 BIT &FF 1570]

1440 BPL loopl 1580 NEXT

1450 .end 1599 ENDPROC
1460 RTS 1600 :

2000 DATA 0,9,9,4,4,90,0,9,9,9,0,12,12,
0,0,0,4,4,4,12,12,4,4,4,0,8,12,12,12,12
.8,9,90,9,9,8,8,9,9,0

2019 DATA 0,9,0,9,9,9,9,0,0,9,0,12,12,
2,0,9,9,9,0,12,12,9,9,90,8,12,12,12,12,1
2,12,8,9,9,8,12,12,8,9,0

To produce the data necessary for
the arrow in the two alternate
positions is very simple.

The coding of the pixels into bytes,
suitable for direct insertion into

screen memory, is done in the same way
as the examples were last month. If you
want, you can try coding them yourself,
but we will list them here so that you
can see clearly the correct coding.

For the arrow in the left of the two
positions, the data is as follows:

For the arrow in the right of the two
positions, the following data applies:

Incidentally, by careful design of

the two characters, there is no need
for any ‘'blanking' routine, as each

character plotted includes a strip of

1219 LDA base,Y 1320 CPY #40 background to the left of it, and this »

Volume-3 Issue-1

BEEBUG May 1984

29

will progressively erase the previously
plotted character, provided the
movement is always to the right. The
operation of Program 10, apart from the
different method of erasing the shape,
is very similar to that of Program 9,
with a number of the routines being
virtually identical.

MOVEMENT IN OTHER MODES:

Moving our characters horizontally
in Mode 2 was easy because each byte
only held the data for two pixels. This
allowed us to store two different
images of the character, and to place
these onto the screen to give the
impression of movement for each pixel
within a byte's width. However, all the
other graphics modes store the data for
either four or eight pixels in each
byte. To use the method above then, we
would need to store either four or
eight separate images of each
character. This is extremely wasteful
of memory even for small characters,
and large characters could require more
memory than there was available! If
this has not put you off using one of
the other modes (say because you need
the extra resolution of Mode 1, or the
memory economy of Mode 5), then you
will need to use some other technique.

The method that I suggest requires
more programming than for the 'Mode 2'
method, and is slower in operation;
however, it will still be quicker than

using any operating system routines, so
there are still some advantages.
Although slower, you should find that
if you write your game fully in machine
code, and structure it well, then you
may need delay loops, even for some of
the 'slower' modes! What we have to do
is to go back to basics. The technique
that I am suggesting is this. If you
want to move a given screen character
to the left, for example, then you will
need to go through each byte of
corresponding screen memory (from right
to left), and move each pixel one place
to the left. This requires careful
extraction of the appropriate bits via
usage of the 6502's rotate
instructions. Because of the way in
which the bits for each pixel are
interleaved (see article 2 & 3 in this
series), rather than just following in
sequence, this technique is much more
complex than the rest of the
techniques, and goes beyond the scope
of this introductory series.

Next month, in the final article in
this series, we will deal with how to
move a character vertically, and

| present a general routine that will

place a character at any point on the
screen. We then will use this to
produce a simple animation.

=

HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS

RELOCATING CHARACTER DEFINITIONS - S.Smith

Redefining characters using *FX20,n to explode the soft character RAM allocation
(see the User Guide p.427) can leave very little room for programs on a disc-based
machine. It can also present problems if you try to relocate the program to reclaim
some of the disc operating space.

One answer is to persuade the 0.S. to put the definitions in a different place.
Memory locations &368 to 36E contain the high-byte addresses of the pages used for
the soft character explosion. It is possible to use pages &9 (sound and speech
buffer) and &A (cassette or RS423 buffer) in which to store definitions, and even
in page &B if the soft-keys are not required. For example, to redefine up to 64
characters (sufficient for an alternative character set) in the range &80 to &BF,
try the following header program (with your own character definitions set up in the
Basic program called 'chars':)

10 *FX20,1
20 2&36C=&9

This will place your 64 definitions in the locations &C@@ to &CFF (as
does) and &900 to &9FF (instead of &1900 to &19FF).

30 to &E@Q@ if you are using cassettes.

30 PAGE=&1900¢

40 CHAIN "chars"

it wusually
Change the value of PAGE in line

BEEBUG

May 1984

Volume-3 Issue-1

o

30

firstly that each bit of memory can be
set (to 1), and secondly that each bit
can be cleared (to @). Writing
program to test memory is not as easy
as it sounds, since the program must
occupy part of the memory to be tested,
and that part of the memory at least
must be working correctly for the
program to run. Additionally, the O.S.
makes continual use of memory page
zero, adding a further complication.
This can be overcome by dispensing with
the 0.S. and keeping the test program
as short as possible. In this program,
therefore, all interrupts have been
turned off and a suitable routine to
detect a key press included since the
normal keyboard interrupt is no longer
effective.

1)

Before trying the program, it is
important to save it to cassette or
disc after you have first typed it in,
as running the program leaves it in a
corrupted state and the micro partially
disabled. This is because the program
tests the whole of memory, including
zero page and the machine work space.
For this reason, after the program has
been run, the computer will need to be
turned off in order to reset it.

In the test program, memory is
tested in two sections, each of 20K in
size. This value was chosen so that the
memory being checked could be displayed
as a complete Mode 2 screen. Rather
than checking and reporting on every
bit of memory, the program represents
memory visually on the screen in a way
which you can then check for yourself.
Because of this, program length can be
kept to a minimum. The Mode 2 screen
has the lowest resolution of the 20K
modes, and therefore the displays are
easy to see, even on a very low
resolution television or monitor.

When
you want to check the upper or

run the program asks whether
lower

\§
A TESTING OUT YOUR MICRO (Part 3)
éoag’%_\-i —RANDOM ACCESS MEMORY
3 o
e .at\6 by Hugh D. Brown-Smith
Does your micro suffer from Amnesia? This month's article on testing
out your micro concentrates on checking the Beeb's Random Access
Memory (RAM) to see if there is any loss of memory.
In order to test the micro's memory sections of RAM. On selecting one of
(RAM), two checks must be performed, these, the Beeb should display

|

vertical black and white
show locations

|

parallel,
lines. The white lines
set to 1, the black lines those set to

@, while pressing any key will reverse
the colours of the black and white
stripes, thus ensuring that each memory
bit can be tested for both 'set' and
'clear'. To test the other half of
memory, perform a cold start, re-run
the program and select the other
section of memory.

The pattern of bit setting and
clearing has been chosen to give the
simple black and white striped display
referred to above. This has the
advantage that any bit that is
incorrectly set will appear either as a
ridge in one of the lines, or as a spot
of a different colour. Checking memory
in this way ensures that every bit is
tested for both 'set' and 'clear' (set
to a '1' state, clear to a '@' state),
and that the screen display provides a
ready check of memory status.

Because of the quite complex way in
which the Beeb's memory is related to
the physical memory chips, it 1is not
possible with this program to identify
specific memory chips in the event of
some error being apparent, only to
identify memory, as a whole, as being
at fault.

BEEBUG

May 1984

N T ST R S

Volume-3 Issue-1

31

10 REM Program RAM TEST 100 REPEAT A$=GETS:UNTIL AS="H" OR A$

20 REM Version B1.4 =MLY

3¢ REM Author Hugh D.Brown-Smith 110 MODE2

40 REM BEEBUG May 1984 12¢ vDU19,15,7,0;0

50 REM Program subject to Copyright 130 FORZ=1TO14

60 : 14¢ VvDU19,Z,0;0;

70 MODE7 150 NEXT

80 PRINT"HI OR LO MEMORY BLOCK (H OR 160 IFAS="H":M%=&2E00:MEM%=&3000:GOTO
Ly" 180

9¢ *FX15,1 170 IFAS="L":M%=&7E@0:MEM%=0:VDU23;12

-G. @- G'

,0;0;0;0; 35¢ .crosshatch 510 STX &FE4D 680 BNE swapl

’

190 FORX=0TO1 360 LDA #&55 520 LDX #9 690 .keyscan2

200 P%=M% 370 LDX #&50 530 STX &FE41 700 LDX #15

210 [OPTQ 380 .crsh@ 540 LDA #1 710 STX &FE41

220 SEI 39¢ LDY #&00 55¢ BIT &FE4D 720 LDA #1

230 LDA #&00 400 .crshl 560 BEQ keyscan 730 STX &FE4D

240 .clearmemd 419 STA MEM%,Y 570 .swaplines 740 LDX #15

25@ LDX #&50 420 DEY 580 LDA #&AA 750 STX &FE41

260 .clearmeml 430 BNE crshl 590 LDX #&50 760 LDA #1

270 LDY #&00 44@ INC crshl+2 600 .swapl 770 BIT &FE4D

280 .clearmem?2 450 DEX 610 LDY #&00 780 BEQ keyscan2

290 STA MEM%,Y 460 BNE crsh@ 620 .swap2 790 LDA #MEM% DIV 256

300 DEY 479 .keyscan 630 STA MEM%,Y 800 STA crshl+2

310 BNE clearmem2 480 LDX #15 640 DEY 810 STA swap2+2

320 INC clearmem2+2 490 STX &FE41 650 BNE swap2 820 JMP crosshatch

330 DEX 500 LDX #1 660 INC swap2+2 830]

340 BNE clearmeml 670 DEX 840 NEXT =)
850 CALL M%

POINTS ARISING

TESTING OUT YOUR MICRO - SIDEWAYS ROMS

The program called 'ROM' listed in BEEBUG Vol.2 No.9 fails to read socket zero.
The program can be easily amended to do this by changing line 1200 to read:

120@ BPL mainloop
instead of the BNE instruction listed at this line number.

BACH'S CANTATA NO.147

A program which played part of this music was also included in BEEBUG Vol.2 No.9.
Laurie Crawford has sugested that a slight musical improvement can be achieved by
changing line 1040 to read as follows:

1040 DATA &101,137,4,&102,101,12,1,145,4,1,129,4,&101,125,4,&102,89,12,1,129,4,1,
137,4
You may like to try this variation and see what you think.

MULTIPLE DISC CATALOGUES

Despite extensive testing, two errors occurred in the program CAT2 printed in
BEEBUG Vol.2 No.9. This version is intended for use with 40 track drives and the
number 79 in lines 230 and 240 should be changed to 39 in each case. This is a
fairly obvious change, but it is also an important one.

SPECIAL SYMBOLS FROM WORDWISE

This Wordwise hint for a 'scissors' symbol, in BEEBUG Vol.2 No.9, was inaccurate
as given. The correct sequence of control codes should read:
oc27,75,8,9,108,179,108,40,16,40,68,130
and not as printed.

=

BEEBUG May 1984 Volume-3 Issue-1

32

VASM - A 6502 DISC-BASED ASSEMBLER
Reviewed by David A. Fell

VASM 1is a powerful 6502 assembler in EPROM now available from Vida
Rebus. David Fell looks at this new product and explains how it

works in this in-depth review.

When you purchase the BBC micro, you
receive a 6502 assembler built into the
Basic language ROM. This can cope with
the assembly requirements of most
beginners, but when developing lengthy
and complex machine code programs, the
Basic assembler can often prove to be a
limiting factor. Vida Rebus have now
produced an assembler in EPROM that
resides in one of the sideways ROM
sockets, and assembles directly from
disc, to provide a powerful development
system for any disc-based BBC micro.

The Vida Rebus VASM assembler comes
in the form of an 8K EPROM, and it is
specially designed for use with a disc
system. It is accompanied by an
attractive A5-sized manual that details
the syntax and usage of all of the
features of VASM. The provision of a
number of very powerful features makes
this assembler an essential tool for
the serious machine code programmer on
the BBC micro.

One of the most striking features of
VASM (which is common to most powerful
assemblers), is the fact that it takes
its source code directly from a text
file on disc, and not from memory. The
BBC Basic assembler takes its source
code directly from memory, embedded
within a Basic program. It is very
difficult to assemble large amounts of
source code with the BBC assembler as
memory must be shared by the source and
assembled code. Because VASM takes its
source code from disc, and sends its
output directly back to disc, VASM is
limited only by the size of your disc
drives, and not by the size of memory.
This is a major advantage over the
Basic assembler.

Because VASM needs its source code
in the form of a text file, you will
also need to have your own text editor
to create and edit source code files.
VASM ignores any control characters
(e.g. Tab) that it does not recognise,

and so any standard text editor may be
used. Both View and Wordwise have been
found to work, but you could also write
your own simple editor if you wanted
to.

Once you have created your source
code, as a text file on disc, you can
use VASM to assemble the source code,
producing an intermediate text file in

so called 'INTEL hex' format. This
consists of a series of ASCII
characters which represent the

hexadecimal equivalent of the machine
code assembled, plus some other
information. 'INTEL hex' is one of the
common ways in which assemblers produce
their output, and is widely recognised
as being an industry standard.

Once the intermediate file has been
generated, it can be loaded into any
memory area using the *LOCATE command
provided by VASM. The resulting machine
code program in memory can be saved
(using *SAVE) on disc, and run at any
time as a machine code program. This
method also allows programs to be
assembled in one area of memory, but
eventually run in another. This
facility is very useful when developing
sideways ROMs, or other machine code
programs that reside in 'dangerous'
areas of memory.

Intermediate code files in 'INTEL
hex' format also incorporate automatic
error detection through the use of
checksums, to provide an additional
level of security. A further advantage
of this standard is that it opens up
the possibility of using the Beeb as a
development system for any 6502 based
micro, with the 'INTEL hex' file being
transmitted through the RS423 port to
the target machine.

Although there are some superficial
differences between VASM and the Beeb's
Basic assembler, these are few and in
many cases VASM will accept the

" BEEBUG May 1984 Volume-3 Issue-1

33

conventions of both the Basic assembler
and those of the more common industry
standards. Indeed, anyone who has used
such a 'standard' 6502 assembler, and
moved to the Beeb, may find VASM more
familiar than the built in assembler.
All the requirements of assembly are
controlled through VASM, and there is
no need to embed the source code in a
Basic program or use any of the other
conventions of Basic imposed by the
Beeb's built-in assembler.

One of the major criticisms of the
Beeb's assembler is the difficulty
which is encountered when attempting to
introduce data into the program. To
this end, VASM provides a comprehensive
set of directives that allow most data
types to be readily incorporated into
the final machine code program.

Large programs can be divided into
several modules to be combined at the
time of assembly, and the provision of
local labels is useful here. VASM does
not, however, support full macro
assembly features. Conditional assembly
of parts of a program is also possible.

prompts given at assembly time.

To conclude, VASM is a very
comprehensive assembler, and has few
missing features (perhaps the only one
is the inability to specify a binary
constant). I would thus recommend it to
anyone considering serious machine code
development on the Beeb, along with one
of the numerous machine code monitors
available on the market (for example,
BEEBUGSOFT's EXMON) .

Vida Rebus (which-means 'The shape
of things to come') is a software house
specialising in systems control
software, and they are currently
preparing cross assemblers for 6809,
Z-80 and 68000 processors, all to the
same common format, with the output
being presented in an intermediate form
of INTEL hex files. For the duration of
May, a special offer available only to
members of BEEBUG, you can obtain a
copy of VASM at the discounted price of
£35.00 (inc.) by writing to Vida Rebus,
and quoting your membership number. The
normal price is £40.25 (inc.) Vida
Rebus are at:

By careful use of these features it is VIDA REBU?

possible to write a large source file, P.0. BOX 256

containing all possible routines for a WATFORD

given application, but to assemble only HE$T3-Y

specific portions in response to WD1 8H ==

HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS

SOME WORDWISE HINTS

We have put together several short hints concerned with Wordwise from various
contributors. The first comes from Mr T.Baker who has told us that it is possible to
have 15 function keys available with Wordwise by using the five cursor keys (up,
down, left, right and Copy). They are programmed in exactly the same manner using
the command *KEYxx where xx is a number from 11 to 15, and accessed by pressing them
in conjunction with Control and Shift. The function key numbers associated with the
cursor keys are as follows:

11 Copy 14 Down
12 Left 15 Up
13 Right

Secondly, Mr.J.Brett has pointed out an inaccuracy with the word counter, in that
it fails to update the word count at the top of the screen if the word is followed
by a Return. If an accurate value of the number of words in a piece of text is
required, then the solution it to put a space in after the word, and before the
Return.

Finally, Mr.M.Robson has sent in the following very useful key definition which
finds and removes markers in a piece of text. It is accessed by holding the Control
and Shift keys down together, and pressing function key 0.

*KEYQ™| ! |O”|éc!0[!S[!#]AI L|O]1$| t#|A|t |2$A| 1$7|A

r

It can be ente in lmmedlate mode or us in a program which initialises the

function keys. 5=
NN
BEEBUG May 1984 Volume-3 Issue-1

DOMINOES (32K)
by C. C. Radcliffe

The program DOMINO provides

an excellent computer version of the

popular table game of dominoes for you to play against your BBC
micro. The graphics used in this program are a real delight and show

how well
screen.

This is a game of dominoes
in which you pit your wits
against the ice cool steely
resolve of your BBC micro. The
object of dominoes is very
simple - you must try to lay
all your dominoes down on the
'table' before the computer.

You and the computer

traditional games like dominoes can be represented on the

than 9 dominoes in your hand at any one

time. At the end of the game, the
overall score is displayed on the
screen, together with any dominoes

each select a domino at
the start of the game to
see who goes first. You
will then see your

remaining in either hand.

This is a very nicely presented
game using Mode 1 graphics which is

initial set of seven
dominoes displayed at the
bottom right of the screen.
When it is your turn to go,
choose which domino you want
to play by pressing the
appropriate number key, and
then press either 1 or 2 to
indicate at which end you wish
to play. This may often be
obvious to you, but not to the
computer which cannot ‘'see'
your hand. If you are unable
to play a domino from your
hand, when it is your turn,
then you must 'knock' by
pressing 'K', and you will be
given another domino from the
unused pile. The computer's
dominoes are not displayed on
the screen; that would be
cheating, but it plays to
exactly the same rules and
will also 'knock' when unable
to go.

Note that because of the
limitations of the screen
display, you cannot have more

really pleasing to play.

NOTES FOR DISC USERS

Because this program runs in Mode 1,
there is insufficient room on a normal
disc system (with PAGE set to &1900)
for both program and data. Either set
PAGE to &1200 before loading the
program or use a suitable move-down
routine such as the following:

10MODE7

20*L.DOMINO 2000

30*T.

40*K.0 F.A%=0T0&2000S.4:A%!&E00=A%!&
2000:N. |M PAGE=&E@@|MOLD MRUN]M

50*FX138,0,128

60END

This can be saved as B.DOMINO. To
run the Domino program type
CHAIN "B.DOMINO"
which will automatically load and run
the Domino program provided this is
SAVEd as 'DOMINO'.
10 REM PROGRAM DOMINOES
20 REM AUTHOR C.C.Radcliffe
30 REM VERSION B@.1
40 REM BEEBUG MAY 1984
50 REM PROGRAM SUBJECT TO COPYRIGHT
60 :
100 ON ERROR GOTO 430
119 :
120 CLEAR
130 *FX11,0
140 MODE1 »

BEEBUG

May 1984

Volume-3 Issue-1

35

150 vDU23,1,0;0;0;0;

160 PROCinit

170 PROCshuffle

180 PROCstart

190 REPEAT

200 WT=FALSE

219 PROCshuffle:S%=0

22¢ GCOL@,129:CLG

23¢ vpu28,9,31,14,26,12,18,0,0,25,4,48
#:188;25,5,1279;188;

240 FOR I%=1 TO 9

25¢ MOVE29,1023-1%*80:PLOT25,1221,0

260 IF (I%MOD2 AND I%<9) PLOT25,@,-80
ELSE IF 1%<9 PLOT@,-1221,0:PLOT25,@,-80

270¢ NEXT

280 FORI%=0TO]1
290 PROCpick(I%,7):end% (I1%)=-1:endl% (I

30@ NEXT

310 WT=TRUE

320 REPEAT

330 IFBEEB%PROCBEEB ELSEPROCAisphand (1
,@) :PROCplayer

340 UNTILtot%(@)=0 ORtot%(1)=0 OR(bk%A
NDpk%ANDS%>27)

350 1%=0:W%=0:REPEAT

360 IFtot%(I%)=0 PROCwin(I%) :W%=1

370 I%=I%+1

380 UNTIL W% OR I%=2

390 IFW%=0 W%=FNwin:PROCwin (W%)

400 UNTILFALSE

410 END

420 :

430 ON ERROR OFF :MODE 7

440 *FX12

45@ IF ERR<>17 REPORT:PRINT" at line "

460 END

100@ DEFPROCinit

1919 DIMdomS$ (27) ,hand$(1,9) ,tot% (1) ,end
%(1) ,end1% (1) ,endx% (1) ,win% (2) ,th% (1)

1020 A%=RND (TIME)

1030 FORI%=QTOl

1040 tot% (1%)=0

1050 FORK%=@TO9

1060 hand$ (1%,K%)=" "

1070 NEXT:NEXT

1080 FOR I%=0 TO2:w

1090 vDU23,255

1109 vDU19,1,2

1110 bk%=0:pk%=

112¢ ENDPROC

1130 :

1140 DEFPROCshuffle

1150 RESTORE1280

1160 LOCALN%,I%

1170 FORN%=@TO027

1180 dom$ (N%)=" "

1190 NEXT

1200 FORN%=0T027

1210 REPEAT

1220 1%=RND(28)-1

1239 UNTILdomS (I%)=" "

124¢ READdomS (I1%)

125@¢ NEXT

1260 ENDPROC

1270, =

128¢ DATA0®,01,02,03,04,05,06,11,12,13
+14,15,16,22,23,24,25;26,33,34,35,36,44
+45,46,55,56,66

1290 :

1300 DEFPROCstart

131¢ LOCALB$%,bd%,P%,N%,pd%,sS,tS

1320 CLS

1330 PRINTTAB(16,1) "DOMINOES"

1340 PRINT''"Welcome to BEEBDOM."''"P1l
ease type in your name:"'

1350 REPEAT:INPUTTAB (@,8)n$:L%=LEN (n$)
: IFL3>10PRINTTAB (@, 8) SPC (L%)

1360 UNTILL%<11

1370 PRINT''"Hello ";nS$;"."'

1380 PRINT"Please enter a number (1-28
) to select"''"a domino, the BEEB will
also choose -"''"the highest number of
dots starts!"

1390 REPEAT:INPUTTAB (@,19)P%:P%=P%-1:U
NTILP%<28ANDP%>=0

1400 pd%=FNtotdot (P%)

1410 REPEAT

1420 B%=RND(28) -1

1430 bd%=FNtotdot (B%) :s$="BEEB"

1440 UNTILC%<>B%ANDpd%<>bd%

1450 PROCdomino (32@,320,TRUE,FN1ldot (do
E§(P%)),FNrdot(domS(P%))):PROCdomino(96

+ 320, TRUE,FN1dot (dom$ (B%)) ,FNrdot (dom$
(B%)))

1460 PRINTTAB (@,26)SPC(10-LEN (n$)DIV2)
;0$;SPC (17-LEN (n$)DIV2) ;s$

1470 I1Fbd%>pd¥BEEB%=TRUEELSEBEEB%=FALS
E:s$=n$

1480 PRINT'sS;" starts!"''"Press any k
ey to continue."
1490 P%=GET »

BEEBUG

May 1984

Volume-3 Issue-1

le

36

1500 ENDPROC

1518 ¢

1520 DEFFNtotdot (N%)=FNldot (dom$ (N%))+
FNrdot (dom$ (N%))

1530 =

1540 DEFFNldot (DS$)=VAL (LEFTS$ (D$,1))

1550

1560 DEFFNrdot (D$)=VAL (RIGHTS (DS,1))

1570 :

158¢ DEFPROCdomino (X%,Y%,0%,L%,R%)

1590 LOCALN%,D%

1600 GCOL@,2: IFO$MOVEX%-30@,Y%-6:PLOT@,
¢,12:PLOT81,60,-12:PLOT81,@, 1 2ELSEMOVEX
%-6,Y%-30:PLOT@,12,0:PLOT81,-12,60:PLOT
81,12,0

1619 FORN%=-1TO1STEP2

1620 GCOL@, 3: IFOSMOVEX%+N%*30,Y3+N%*66
ELSEMOVEX%+N%*66 , Y$+N%*30

1630 PLOT@,-60*N%,@:PLOT81,6@*N%,-60*N
%:PLOT81,-60*N%, 0

1640 NEXT

1650 0%=ABS (0%)

1660 FORN%=-1TO1STEP2

1670 H%=0%* (X%-8) - (0%-1) * ((X%-8) +N%*36)

1680 V3=0%* ((Y%+18)+N%*36) - (0%-1) * (Y%+
18)

1690 IFN%=-1D%=L3%ELSED%=R%

1700 VDUS5:PROCdot (H%,V%,D%)

1710 NEXT

1720 vDU4

173¢ ENDPROC

1740 :

175@¢ DEFPROCdot (X%,Y%,T%)

1760 LOCALN%,M%,D%,A%,H%,V%

1770 M%=T%MOD2:D%=T%DIV2

1780 GCOL4,@:MOVEX%,Y%

1790 IFM3PRINTCHRS$255;

1800 IFD%=@ENDPROC

181¢ IFO%RESTORE1940@ELSERESTORE1950

1820 N%=0

1830 REPEAT

1840 READA%:N%=N%+1

1850 UNTILN%=D%

1860 RESTORE1960

1870 FORN%=1TO8

1880 READH%,V%,Q%

1890 MOVEX%,Y%:PLOT@,H%,V%

1900 IFQ%ANDAYPRINTCHRS255

1910 NEXT

1920 ENDPROC

1930 :

1940 DATA&44,&55,&DD

1950 DATA &11,&55,&77

1960 DATA -20,20,1,90,20,2,20,20,4,20,0
,8,20,-20,810,0,-20,820,-20,-20,&40,-20
19,880

1979 :

1980 DEFPROCpick (P%,D%)

1990 LOCALN%

2000 FORN%=1TOD%

Press number
for domin

1sh to
Ck=Knook)

201@ IFS%>27D%=N%ELSEhand$ (P%,tot% (P%)
) =dom$ (S%) : S%=S%+1: PROCsound

2020 NEXT

2030 ENDPROC

2040 :

2050 DEFPROCdisphand (P%,T%)

2060 VDU24,500; 0+T%*184;1279;184+T%*18
4;16

2070 LOCALN%,X%

2080 IF tot% (P%)=0 VDU26:ENDPROC

2090 FORN%=0 TOtot$% (P%)-1

2100 X%=532+(N%)*72

2119 PROCdomino (X%,80+T%*184,TRUE,FN1d
ot (hand$ (P%,N%)) ,FNrdot (hand$ (P%,N%)))
2120 MOVEX%-10,180+T%*184

2130 VDUS

2140 IF T%=0 PRINT;N%

2150 NEXT:IF T%=0 VDU4,24,0;196;1279;1
@23; ELSE VDU4,26

2160 ENDPROC

21701

2180 DEFPROCBEEB

2190 LOCALE%,N%,D%,0%,L%,R%,P%:BEEB%=F
ALSE:bk%=0

2200 IFend% (0)=-1X%=640:Y%=623:D%=FNls
t:L%=FNldot (hand$ (@,D%)) :R¥=FNrdot (hand
$(@,D%)) :end% (@) =L%:end% (1) =R%:0%= (L%=R
%) :P%=1:FORE%=0 TO1:endx% (E%)=640+FNcen
tre:PROCendno (E%) :NEXTELSEPROCplay : PROC
endno (E%)

2210 IFP%PROCdomino (X%,Y%,0%,L%,R%) : PR
OCsort (8,D%) ELSEPROCpick (@,1) :bk%=1
2220 ENDPROC

2230 3

2240 DEFFNvert (DS$)

2250 IFFNldot (DS)=FNrdot (DS)=TRUEELSE=
FALSE

2260 :

227¢ DEFPROCplayer

2280 LOCALE%,B%,F%,N%,P%,D%,X%,Y%,0%,1
%,J%,L%,R%:BEEB%=TRUE :pk%=0

2290 PRINT'"Press number"'"for domino"
""you wish to"'"play. (k=Knock)"

2300 REPEAT:D%=GET-48:UNTIL (D%>=0 ANDD
%<tot% (1))ORD%=59 ORD%=27:IFD%>tot%(1)P
ROCpick(1,1) :pk%=1:ENDPROC

BEEBUG

May 1984

Volume-3 Issue-1

e B S S M N S

37

2310 1%=FNldot (hand$ (1,D%)) :J%=FNrdot (
hand$ (1,D%)) :0%=FNvert (hand$ (1,D%))
2320 IFend% (0)=-1X%=640:Y%=623:L%=1%:R
%=J%:end% (9) =L%:end% (1) =R%: P$=TRUE:FORE
%=0 TO1:endx% (E%)=640+FNcentre: PROCendn
o (E%) :NEXT:GOT02370
2330 IFend% (0)<>-1CLS:PRINT'"Press num
ber"'"for end"'"you wish to"'"play.":RE
PEAT: E%$=GET-49:UNTILE%=0ORE%=1
2340 IFI%=end% (E%)B%=0:F%=1
235@ IFJ%=end% (E%)B%=1:F%=1
2360 IFF%PROCendno (E%) : PROCarrange (B%)
: PROCsetup (E%) : PROCendno (E%)

2370 IFP%PROCdomino (X%,Y%,0%,L%,R%) : PR
OCsort (1,D%) ELSEPROCpick (1,1) :pk%=1

2380 IF WT SOUND@,-15,100,6
2390 IF WT G=INKEY (100)

2400 ENDPROC
2410 :

2420 DEFPROCplay

2430 LOCALI%,i1%,J%,7,K%,B%,T%,M%:E%=-1
244¢ FORM%=0@TOtot% (@) -1
245@ i%=FNldot (hand$ (9,M%)) : j%=FNrdot (
hands (9,M%))

2460 FORK%=0TO1

2470 IFi%=end% (K%)ANDT%<=i%+j%$PROCsave
:B%=0

2480 IFj%=end$ (K%)ANDT%<=1i%+j%PROCsave
:B%=1

2490 NEXT:NEXT

2500 0%=FNvert (hand$ (@,D%))

2510 IFE%>-1 PROCendno (E%) : PROCarrange
(B%) : PROCsetup (E%)

25203 ENDPROC

2530 2

2540 DEFPROCsave:D%=M%:T%=i%+j%:I1%=1i%:
J%=9%:E%=K%: ENDPROC

2550 :

2560 DEFPROCsetup (E%)

2573 LOCALC%,W%

2580 P%=1:C%=FNcentre:X%=endx% (E%)+C%:
W%=endx$% (E%) +2*C%+8*SGN (C%)

2590 IFW3<70RW%>1271endl% (E%)=endl% (E%
) +SGN (C%) :X%=C%-1279* (E%=0) :endx% (E%) =W
%-endx% (E%)-1279* (E%=0) ELSEendx% (E%) =W%

2600 Y%=1103-endl% (E%) *160

2610 ENDPROC

2620 :

2630 DEFFNcentre=-((0%=0) *70+ (0%=TRUE)
*34) * ((E%=0) - (E%=1))

2640 :

2650 DEFPROCsort (P%,D%)

2660 LOCALN%,T%

2670 IFtot% (P%)<10T%=tot% (P%)-1ELSET%=
8:hand$ (P%,9)=" "

2680 FORN%=D%TOT%

2698 hand$ (P%,N%) =hand$ (P%,N%+1)

2700 NEXT

2710 tot% (P%)=tot% (P%)-1

2720 ENDPROC

2730

2740 DEFPROCarrange (F%)
2750 IFF%=0end$% (E%)=J%ELSEend% (E%)=1%
2760 IFF%=E%R%=I1%:L%=J%ELSEL%=1%:R%=J%
277@ ENDPROC
2780 :

2790 DEFFNl1st
2800 LOCALN%,T%,H%,I%

2810 FORN%=1TO7

2820 T%=FNtotdot (N%-1) : IFT$>H%H%=T%:1%
N%-1

2830 NEXT:=I%

2840 :
2850 DEF PROCendno (E%)
2860 IFE%=-1 ENDPROC ELSE VDU5:GCOL4,0
:MOVEendx% (E%) +30* (E%=0) ,1115-end1% (E%)
*160:PRINT;E%+1:VDU4

2870 ENDPROC

2880 :

2890 DEF FNwin

2900 LOCAL N%,I%

2910 FOR N%=0 TO 1

2920 th% (N%)=0

293¢ FOR I%=0 TO tot% (N%)-1

2940 th$% (N%)=th% (N%) +FN1dot (hand$ (N%, I
%)) +FNrdot (hand$ (N%,1%))

2950 NEXT:NEXT

2960 IF th%(9)>th% (1) =1

2970 IF th%(1)>th% (@) =@ ELSE =2

2980 :

2990 DEF PROCwin (W%)

3000 VDU26,12

3010 LOCALN%

3020 IF W%=0:BEEB%=TRUE:WS$S="BEEB"

3030 IF W%=1:BEEB%=FALSE:WS$=n$

3040 IF W%<2 PRINT'"The WINNER is ";WS
ELSEPRINT' "Game Drawn!"

305@ PRINT''"State of play:"

3060 win% (W%)=win% (W%)+1

307@ PRINT''SPC(6) ;"BEEB";SPC (10-LEN (n
$)DIV2+LEN (n$)MOD2) ;n$; SPC (10-LEN (n$) DI
V2);"Drawn"''SPC(2);

3080 FOR N%=0 TO 2

3090 PRINT;SPC(7);win% (N%);

3100 NEXT

31190 PRINT''"Unplayed hands: "''''n$''
L) '“BEEB“' L}

3120 PRINT''"Press any key to continue
"

1]

313@ FOR N%=1 TO2:PROCdisphand (N%-1,N%
) :tot% (N%-1) =0 :NEXT
3140 k=GET
3150 ENDPROC
3160 :
317¢ DEFPROCsound
318¢ IF WT SOUND1,-15,100,4:SOUND1,-15
,10,6
3190 IF WT G=INKEY (100)
3200 IF tot%(P%)<9 tot% (P%)=tot% (P%)+1
3219 ENDPROC
=

BEEBUG

May 1984

Volume-3 Issue-1

2 DETONATOR DAN
by K.Miles

Detonator Dan is a superb fast moving action game that we have been
saving just for this second anniversary issue of BEEBUG. The program
is written in Basic and runs in Mode 2 to provide a very colourful
display, and with excellent sound effects.

The games starts by displaying a
number of unexploded mines on the
screen, together with a number of
flags. The object of the game is to
defuse each of the mines before they
explode. Once a mine becomes live it
starts counting from 10 and 'ticks'
down to @. When it reaches @, it
explodes and you lose a life. You must
try to reach the mine and defuse it (by
moving into it) before this happens.

You must also watch out for the big
army boots which will come marching
after you, and will squash you if they
can. As the game progresses the mines
tick faster and there are more boots on
the screen to avoid. With all this high
speed action you certainly need a cool
head and quick thinking.

You score points by defusing mines
as quickly as possible, by luring the
boots into defused mines to destroy
them and by picking up flags. You also
lose points every time you run onto a
blue background square, so you need to
work out your routes carefully to
minimise the loss. The boots also fill
in any missing 'blue' squares as they
move, making life even more difficult.

et
b
et
e

You control your own movement on the
screen (your position is indicated by
the display of a small 'man') by the
use of 'CAPS LOCK' and 'CTRL' for left
and right, and ']' and 'SHIFT' for up
and down. Keep an eye on your score as
you play the game for if your score
drops to zero you have no energy to
continue and the game is lost. This is
why choosing an economic path is so
important. A good score, by the way, is
one in excess of 50,000.

Full instructions are included in
the program and there is a high score
table as well. Good luck!

Users with disc systems will either
need to compact the program before use
(removing unnecessary spaces, REM
statements etc), change the value of
PAGE (to &1200) or use a move down
routine (see the Dominoes game
elsewhere in this issue).

10 REM PROGRAM Detonator Dan

20 REM AUTHOR K.Miles

30 REM VERSION B@.5

40 REM BEEBUG MAY 1984

50 REM PROGRAM SUBJECT TO COPYRIGHT

»

BEEBUG

May 1984

Volume-3 Issue-1

B e e R R R Y= IOy naes.

39

60 :

100 ON ERROR GOTO 490

110 MODE2

120 ENVELOPE3,129,2,4,6,28,14,7,0,0,0
,—80,80,80

130 ENVELOPE2,1,4,-4,4,10,20,10,127,0
,9,-5,126,126

140 ENVELOPE1,1,0,0,9,0,9,0,9,9,0,-1,
126,0

150 vDU23,1,0;0;0;0;

160 DIMX%(19),Y%(19),S1%(5),S2%(5) ,AS
(19,1)

17@0 PROCcharacters

180 PROCinit

190 PROCtitles

200 CLS:LV%=3:C0%=10:sc%=15:sp%=8

210 SC%=1009:LVL%=1

220 RA%=1:AL%=4:SP%=sp%

230 IFAL%>18 AL%=18

240 IFRA%>4 RA%=4

250 IFSP%<2 SP%=2

260 IFCO0%<2 CO0%=2

270 R%=0:C%=0:E%=
SX%:YS%=SY%:FL%=-1:

280 PROCboard

290 PROCmine

300 PROCboot

310 PROCflag

320 REPEAT:PROCtrigger : PROCman : PROCbo
ot2

330 IFSC%<=0 SC%=0@:PROCdead

340 COLOUR3:PRINTTAB(14,1);SC%;" ";:U
NTIL C%=AL%+1 OR E%=1 OR SC%<=0

350 IFE%=10R SC%<=@ THEN390

360 LVL%=LVL%+1

370 IFC%=AL%+1AND AL%=18:C0%=C0%-2:sc

%=sC%+5:8p%=sp%-2:LV%=LV%+1:G0T0220

380 RA%=RA%+1:AL%=AL%+5:SP%=5P%-2:GOT
0230

390 IFLV%>@THEN250

400 PROCexplode

410 FOR wait=1T05000:NEXT

420 PROChiscore

430 COLOUR8:PRINTTAB (4,28) "DETONATOR
DAN" : COLOUR3: PRINTTAB (@,30) "ANOTHER GAM

£
449 *FXx21,1
450 AS=GETS:IFAS="Y"OR AS="y" GOTO190
460 IFAS="N"OR AS$="n" MODE7:GOTO 520

470 GOTO450

480 :

490 ON ERROR OFF

500 MODE 7:IF ERR=17 GOTO 520

510 REPORT:PRINT" at line ";ERL

520 ?602=&2@: REM RETURN TO UP/CASE
53¢ END

549 :

1009 DEFPROCboard

1019 COLOUR3:PRINTTAB (@, d) "LEVEL"TAB (7
+9) "LIVES"TAB(14,0) "SCORE"

1020 PRINTTAB(2,1);LVL%;TAB(9,1);LV%;T
AB(14,1);SC%

1030 COLOUR4:FORI%=1T028:PRINTSTRINGS (
20,CHRS224) ; :NEXT

1049 ENDPROC

1050 :

1060 DEFPROCcharacters

1070 vDU23,224,0,126,126,126,126,126,1
26,0,23,225,15,10,;15; 11,255;255; 255,171
1980 vDU23,226,129,90,60,90,126,60,99,
129,23,221,28,28,28,62,;28,28, 20,54

1990 vDU23,228,0,8,24,56,24,8,8,28,23,
229,255,129,165,153,153,165,129,255,23,
230;146,84;198;84,146

1100 ENDPROC

LUl e

112¢ DEFPROCinit

1130 FORI=1TO1@:AS$(I,d)=STRS (I1*1000) :A
$(I,1)="BEEBUG" :NEXT

1140 ENDPROC

1150 :

1160 DEFPROCmine

117¢ COLOUR6:FORI%=@TO AL%:X%(I%)=1+RN
D(18):Y%(I%)=1+RND(27) :VDU31,X%(1%) ,Y%(
1%),226:NEXT

1180 ENDPROC

11902

120 DEFPROCflag

1219 FORI%=QTO AL%

1220 X1%=RND (20)-1:Y1%=RND(28) +1
1230 fg%=FNPT (X1%,Y1%)

1240 IFfg%=4 COLOUR3:VDU31,X1%,Y1%,
ELSE GOTO1220

1250 NEXT

1260 ENDPROC

1270 :

128¢ DEFPROCboot
1290 FORI%=1TORA%
1300 S1%(I1%)=RND(20)
+1

1310 bt%=FNPT(S1%(I1%),S2%(1%))

1320 IFbt%=4 COLOUR1:VDU31,S1%(I%),S2%
(I%),225 ELSE GOTO1300

1330 NEXT

1340 ENDPROC

1350 :

1360 DEFPROCtrigger

1370 IFFL$>-1 PROCmine2:GOTO1420

1380 IFRND(1)<.95THEN1420

228

-1:52%(1%)=RND(28)

1390 R%=RND (AL%+1) -

1400 IFY%(R%)=-32THEN1390
1410 FL%=10

1420 ENDPROC

1430 :

1440 DEFPROCmine2

1450 IFFL%=0 PROCexplode:E%=1:LV%=LV%-
1:GOTO1500

1460 DL%=DL%+1 : IFDL%=C0%
01500

1470 FL%=FL%-1

DL%=@ ELSEGOT

»

BEEBUG

May 1984

Volume-3 Issue-1

®

40

1480 COLOUR5:COLOUR135:VDU31,X% (R%) ,Y%
(R%) ,48+4FL%

1490 COLOUR128

1500 ENDPROC

1519 :

1520 DEFPROCman

153¢ vDU31,S5X%,SY%,32

1540 XS%=SX%:YS%=SY%

1550 *FX21,0

1560 *FX21,5

1570 IFINKEY (-2)AND SX%<19 SX%=SX%+1:G
0T01620

1580 IFINKEY (-65)AND SX%>@ SX%=SX%-1:G
0T01620

1590 IFINKEY (-89)AND SY%>2 SY%=SY%-1:G
0T01620

1600 IFINKEY (-1)AND SY%<29 SY%=SY%+1:G
0T01620

1610 GOTO1690

1620 SOUND&11,2,50,1

1630 mn?¥=FNPT (5X%,SY%) :mno%=FNpt (SX%,S
Y%)

1640 IFmn%=4 SC%=SC%-sc%:GOTO1690

1650 IFmn%=14 SX%=XS%:SY%=YS%:GOTO1690

1660 IFmno%=5 PROCdefuse:SX%=XS%:SY%=Y
S%:GOTO1690

1670 IFmN%=10R mn%=6 PROCdead:GOTO170@
1680 IFmn%=3 PROCbonus

1690 COLOUR2:VDU31,SX%,SY%,227

170@ ENDPROC

1710 :

172¢ DEFPROCbonus

1730 SOUND&13,3,50,10

1740 SC%=SC%+100

175@ ENDPROC

1760 :

177¢ DEFPROCdefuse

1784 SOuND@,1,5,1

1790 FORJ%=0TO AL%

1800 IFSX%<>X%(J%)ORSY%<>Y% (J%) THEN1830
1810 SC%=SC%+ (10@*LVL%) :C%=C%+1

1820 Y% (J%)=-32

1830 NEXT

1840 COLOUR14:VDU31,SX%,SY%,229

1850 FL%=-1

1860 ENDPROC

1870 :

1880 DEFPROCdead

1890 SOUND@,1,5,1

1900 E%=1:LV%=LV%-1

1910 vDU31,5X%,SY%,230

1920 FORL=1TO50@ : NEXT

1933 ENDPROC

1940 :

1950 DEFPROCexplode

1960 FORI=1TO5:SOUND@,-15,6,15:FORJ=1T
01@:VDU19,@,RND (6) ;@; :FOR J2=1TO10@:NEX
T :NEXT :NEXT

1970 vDU20@

1980 ENDPROC

1990 :

200@¢ DEFPROCtitles

2010 CLS:COLOUR4:FORI%=0 TO3@:PRINTSTR
INGS (20,CHRS224) ; :NEXT

202@ COLOURI1 :PRINTTAB (4, @) "DETONATOR D
ANII

2030 COLOUR3:PRINTTAB(1,2)" Run from m
ine to "TAB(1,3)"mine defusing them"TAB
(1,4)SPC(4)"as you go.";SPC(4)

2040 PRINTTAB(9,6)SPC(2)"They can only

be"SPC(2) ; TAB(@,7) "defused once active

"TAB(@,8) "otherwise avoid them"

2050 PRINTTAB(@,10)SPC(2)"You score fo
r"SPC(5)TAB(d,11) "defusing mines.Bonus"
TAB(0,12)" points are awarded "TAB(@,13
)SPC(2)"for securing the"SPC(2)

2055 PRINTTAB(@,14)"flags and luring t
he "TAB(@,15) "pursuing boots onto "TAB (
9,16) SPC(3) "defused mines."SPC(3)

2060 COLOUR6:PRINTTAB (2,18)CHRS226SPC (
2) "MINE"SPC (8)

2070 COLOUR5:COLOUR135:PRINTTAB(2,19)"
1" :COLOUR128:PRINTTAB (3,19)" ACTIVE MI
NE "

2080 COLOUR14:PRINTTAB (2,20) CHRS229"
DEFUSED MINE"

2099 COLOURI1:PRINTTAB (2,21)CHRS225" B
OOT"SPC (8)

2100 COLOUR3:PRINTTAB(2,22)CHRS228" F
LAG"SPC (8)

2110 COLOUR2:PRINTTAB (2,23)CHRS227" Y
OUR MAN B

2120 COLOUR3:PRINTTAB (2, 25) "CAPS-LOCK
LEFT "TAB(2,26)"CTRL RIGHT"TAB (2,2
ik UP "TAB (2,28) "SHIFT
DWN "

213@ COLOUR1:PRINTTAB(3,30) "PRESS <SPA
CE>%:

2140 I=0:REPEATI=I+1:SOUND@,~-15,1,10:U
NTILI=5

215@ IFINKEYS (100)=" "THEN2160ELSE2140

216@ ENDPROC

2170 :

2180 DEFPROCboot2

2190 IFBT%=RA%XTHEN2370

2200 GO%=GO%+1:IFGO%<>SP% THEN237¢

2210 A%=A%+1

2220 IFA%>RA% A%=1

2230 IFS1%(A%)=-32AND BT%<>RATHEN2210Q

2240 *FX21,6

2250 *FX21,7

2260 COLOUR4:VDU31,S1%(A%),S2% (A%) ,224

2270 Q1%=S1%(A%) :02%=52% (A%)

2280 S1%(A%)=S1%(A%)+(S1%(A%)>SX%)-(S1
% (A%) <SX%) :52% (A%) =52% (A%) + (S2% (A%) >SY2
)-(S2% (A%)<SY%)

2290 mv%=FNPT (S1% (A%) ,S2% (A%)) :mvo%=FN
pt(S1%(A%) ,S2%(A%))

»

BEEBUG

May 1984

Volume-3 Issue-1

41

23009 IFmv%=14 SOUND@,1,5,1:BT%=BT%+1:S
C%=SC%+1@0@:COLOUR4:VDU31,Q1%,02%,224,31
1S1%(A%) ,S2% (A%) ,224:51% (A%)=-32:G0OT023
60

2310 IFmv%=2 PROCdead

2320 IFmv%=3 SC%=SC%-50

2330 IFmv%=60R mvo%=5 S1% (A%)=Q1%:
A%)=Q2%

52%(

2470 AS(1,0)=SC$:X%=&80:Y%=&A:A%=0:!&A
80=5A00:?&A82=10:2&A83=32:2&A84=122
2480 CALL&FFF1:AS$(1,1)=$&A00

2490 REPEAT:SWAP=0

2500 1%=0:REPEAT:I%=I%+1

2510 IFVAL(AS(I1%,0))>VAL(AS(I%+1,0)) B
$=AS(I1%+1,0) :AS(1%+1,0)=AS$(1%,0) :AS(I%,
() =B$:BS=AS$ (I%+1,1) :AS(1%+1,1)=A$(1%,1)

2340 SOUND&12,2,58,10:SOUND3,3,5d,1
2350 COLOUR1:VDU31,51%(A%) ,S2% (A%) ,225

:AS(I%,1)=BS$:SWAP=1
2520 UNTILI%=9

2360 GO%=0 2530 UNTILSWAP=0
237@ ENDPROC 2540 CLS:COLOUR1:PRINTTAB(3) "HALL OF F
2380 : AME."

2390 DEFPROChiscore
2400 CLS:*FX15

255@ COLOUR3:FORI%=10TO1STEP-1:A%=LEN (
AS$(I%,0)) :PRINT'TAB(6-A%) ;AS(I%,0);"...

2410 IFSC%<=VAL(AS(1,0))G0OT02540 ";AS(1%,1) :NEXT

2420 COLOUR1:PRINT''TAB(2) "Congratulat 2560 ENDPROC

ions!" 2579 3

2430 COLOUR3:PRINT''TAB(3)"You are in 2580 DEFFNPT (d%,e%)
the" 2590 =POINT((d%*64)+32,1008-(e%*32))

2440 PRINTTAB (2)"HIGH SCORE table"
245@ SC$=STRS (SC%) : PRINT' '"Your Score.

2600 :
2610 DEFFNpt (£%,9%)

.."; :COLOUR2: PRINTSCS : COLOUR3 2620 =POINT((£%*64)+32,1023-(g%*32))
2460 PRINT''"Enter Your Name...."'':CO
LOUR2 E]

HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS

TELETEXT DOWNLOADER CLASH

The Teletext Filing System (TFS) makes available to the user several new commands
which are accessible using the '*' format. For example, *PAGE selects the specified
teletext page you want to look at. All of the new commands have an equivalent
shortened version (*PAGE becomes *P.). However, some of the abbreviations clash with
other ROMs on the market such as Toolkit. This ROM will interpret *P. as *PACK. It
is advisable, therefore, to use the unshortened versions of all commands to prevent
this sort of clash as far as possible. The BBC Telesoftware down-loader program has
been amended in this way.

ACCURATELY FILLING RECTANGULAR AREAS - M.Mertens

Filling a rectangular area on the screen using triangle plot options 80 to 87,
can lead to the problem of unwanted lines when using the GCOL statement with first
parameters greater than zero. This 1is caused by the desired plotting effect
occurring twice at the same place. One method of filling a rectangular area which
overcomes this problem is to define the area as a graphics window using VDU 24,
setting the background colour and plot option to the required values and perform a
CLG to fill the window. A second method involves plotting the two triangles as
before, and drawing a line in the required colour and plot option where the

triangles meet.(See 'Moving Chequer Board' in BEEBUG Vol.2 No.7 lines 210 to 270.)Gﬁﬂ

SUPER-CONDENSED CHARACTERS ON AN EPSON PRINTER - M.Nixon

According to Epson who make the FX and RX printers, the smallest print possible
is that produced when either ‘'cubscript' or ‘'superscript' modes are selected.
However, these are not very legible, in fact the most legible small print is
'condensed’ .

If condensed mode is combined with superscript, a new supercondensed mode is
formed, which is very legible. This mode is accessible from Wordwise simply by using
the following embedded commands to switch this effect on:

0C27+33,20. and 0C27,83,1
In immediate mode, the following command may be used:

VDO 2,0,27,1,38,1,20,7,27,1,83,1,1,3 =

BEEBUG May 1984 Volume-3 Issue-1

IF _YOU WRITE TO US

BACK ISSUES (Members only)

All back issues are kept in print (from
April 1982). Send 90p per issue PLUS an
A5 SAE to the subscriptions address.
This offer is for members only, so it
is ESSENTIAL to quote your membership
number with your order. Please note
that the BEEBUG Reference Card and
BEEBUG supplements are not supplied
with back issues.

SUBSCRIPTIONS

Send all applications for membership,
subscription renewals, and subscription
queries to the subscriptions address.

MEMBERSHIP COSTS:

PROGRAMS AND ARTICLES

All programs and articles used are paid
for at around £25 per page, but please
give us warning of anything substantial
that you intend to write. In the case
of material longer than a page, we
would prefer this to be submitted on
cassette or disc in machine readable
form using "Wordwise", "Minitext
Editor" or other means. If you use
cassette, please include a backup copy
at 300 baud.

HINTS

There are prizes of £5 and £10 for the
best hints each month.

U.K.
£5.40 for 6 months (5 issues)
£9.90 for 1 year (10 issues)
Eire and Europe

Please send all editorial material to
the editorial address below. If you
require a reply it is essential to

Membership £16 for 1 year. quote your membership number and
Middle East £19 enclose an SAE.
Americas and Africa £21
Elsewhere £23
Payments in Sterling preferred. BEEBUG
Subscriptions & Subscriptions and Editorial Address PO Box 50
Software Address Software Help Line ' St Albans
BEEBUG St.Albans Herts
PO BOX 109 (0727) 60263
High Wycombe Manned Mon-Fri
Bucks 1pm-4pm

R
All rights reserved. No part of this publication may be reproduced without prior written permission of
the Publisher. The Publisher cannot accept any responsibility, whatsoever, for errors in articles,
programs, or advertisements published. The opinions expressed on the pages of this journal are those of
the authors and do not necessarily represent those of the Publisher, BEEBUG Publications Limited.

BEEBUG Publications Ltd (c) 1984.
BEEBUG MAGAZINE is produced by BEEBUG Publications Ltd.
Editor: Mike Williams.
Technical Editor: Philip Le Grand. Production Editor: Phyllida Vanstone.
Technical Assistants: Alan Webster and David Fell.
Managing Editor: Lee Calcraft.
Thanks are due to Sheridan Williams, Adrian Calcraft, John Yale, Robert Barnes, Michael Beasley, Hugh
Brown-Smith and Tim Powys-Lybbe for assistance with this issue.

BEEBUG NEW ROM OFFER

=3

1.2 OPERATING SYSTEM

A special arrangement has been agreed between Acorn and BEEBUG whereby BEEBUG members may obtain the 1.2 operating system
in ROM at the price of £5.85 including VAT and post and packing.

The ROM will be supplied with fitting instructions to enable members to install it in their machine.

If the computer does not subsequently operate correctly, members may take their machine to an Acorn dealer for the upgrade to be
tested, which will be done at a charge of £6.00 plus VAT. This charge will be waived if the ROM is found to have been defective. If the
computer has been damaged during the installation process, the dealer will make a repair charge.

& NEW ROMS FOR OLD
& EXCHANGE YOUR 1.0 FOR THE 1.2
We can now exchange your old 1.0 operating system for the new 1.2, free of charge. To take advantage of this offer, please send your 1.0
(supplied on eprom with a carrier board), in good condition to the address below.
£5 FOR YOUR OLD 1.0
If you have the 1.0 operating system and have already bought a 1.2, we will exchange the 1.0 (supplied on eprom with a carrier board) for
a £5 voucher. This voucher may be used against any purchase from BEEBUGSOFT.

ADDRESS FOR 1.2 OS:-
ROM Offer, BEEBUG, PO Box 109, High Wycombe, Bucks, HP11 2TD.

BEEBUGSOFT

ATPL’S SIDEWAYS ROM EXPRANSION BOARD

SPECIAL PRICE TO0 MEMBERS £39.88 inc.
Save £5.780 on normal price of £44.78

* Simply plugs into the BBC Micro s o [ot | S Lo
* No soldering necessary []
* Increases the sideways ROM capacity ® ® e ®
to 16
* Fully buffered - allows all sockets R (S5 om 0% ROR YA | [RORAD] 5 [fOR 1
to be used
* Complete with full and detailed ﬁ @ @ O —Qj
instruction booklet.
RAM / RAM /
* Accepts 16K RAM in special sockets ROM12| [ROMI3 | |ROMYL| |ROMISAT |ROMSE|
* Battery back up facility for RAM FoiT AT L \— —q
(parts available directly from ISldEWiS Bl ® | o5 rom
ATPL at extra cost) S’U:]“ SIDEWAYS ROM/RAM EX PANSION SDNT_\
©" ga
AT
* As used at BEEBUG — O
oannv Bty
* Reviewed in BEEBUG vol.2 number 6 :%1
n ”:,n:]” CRERE 151
“f[] EE
1111

HOW TO ORDER

Please send your order with a cheque / postal order made payable to BEEBUG, and
enclose your membership number. We are unable to supply the board to overseas
members .

The address for SIDEWAYS is:
BEEBUGSOFT, PO Box 109, High Wycombe, Bucks.

BEEBUG May 1984 Volume-3 Issue-1

MAGAZINE CRSSETTE OFFER

To save wear and tear on fingers and
brain, we offer, each month, a
cassette of the programs featured in
the latest edition of BEEBUG. The
first program on each tape is a menu
program, detailing the tape's
contents, and allowing the selection
of individual programs. The tapes are
produced to a high technical standard
by the process wused for the
BEEBUGSOFT range of titles. Ordering
information, and details of currently
available cassettes are given below.

All previous magazine cassettes (from
Vol.1 No.1@) are available.

This month's cassette (Vol.3 No.l)
includes: Detonator Dan game,
Dominoes game, complete 3D Rotation
program plus Spitfire data,
Multi-Function Graph Plotter, BEEBUG
Workshop Data Entry Routine, program
to test Random Access Memory,

Mag Cassette

o [Nl o
BEEBUGSOFT

Function Key Editior, Accurate
Arithmetic (two programs), general
Move-down Routine for disc users, and
our new and super-fast Shapes game.

All magazine cassettes cost £3.00
each. For ordering information see
BEEBUGSOFT advertisement at the back
of this month's magazine supplement.

MAGRZINE CASSETTE SUBSCRIPTION

We are able to offer members
subscription to our magazine
cassettes. Subscriptions will be for
a period of one year and are for ten
consecutive issues of the cassette.
If required, subsriptions may be
backdated as far as Vol.1 No.14,
which was the first issue available
on cassette. This offer is available
to members only, so when applying for
subscription please write to the
address below, quoting your
membership number and the issue from
which you would like your
subscription to start.

CASSETTE SUBSCRIPTION ADDRESS:

Please send a sterling cheque with
order, together with your membership
number and the date from which the
subscription is to run, to:

PO Box 109, High Wycombe, Bucks,

CASSETTE SUBSCRIPTION PRICE:

UK £33 inc VAT and p&p

OVERSEAS (inc Eire) £39 inc p&p
(no VAT payable) .

BEEBUG MAGAZINE BINDER OFFER

A hard-backed binder for BEEBUG
magazine is available. These binders
are dark blue in colour with 'BEEBUG'
in gold lettering on the spine. They
allow you to store the whole of one
volume of the magazine as a single
reference book. Individual issues may
be easily added or removed, thus
providing ideal storage for the
current volume as well.

BEEBUG BINDER OFFER

BINDER PRICE
U.K. £3.90 inc p&p, and VAT.
Europe £4.90 inc p&p

(no VAT payable) .
Elsewhere £5.90 inc p&p

(no VAT payable) .

Make cheques payable to BEEBUG.

Send to Binder Offer, BEEBUG, PO Box
109, High Wycombe, Bucks,

Please allow 28 days for delivery on
U.K. orders.

Printed in England by Staples Printers St Albans Limited at The Priory Press.

ISSN 0263 -7561

