£1.00°

Vol 3 No 2 JUNE 1984

SOON
NO=ITVPIO

}if' O Trufﬂa hunt game
- o Grand prix car race

Efo Music whﬂe you work .

ij ;‘_O Basmoda mvestlgated

o I‘ntraductlon o
~ spreadsheets L

O And much more .

BRITAIN'S LARGEST COMPUTER USER GROUP
K@EMBERSH!P EXCEEDS 25,000

EDITORIAL

SECOND PROCESSORS

Last month we were able to report on the launch of Acorn's 6502 Second Processor,
claimed by Acorn to be the most important event since the launch of the BBC micro
itself. You may wonder, in looking at the contents of this issue, why we are not
reviewing this major enhancement. The reason is quite simple: in common with most of
the other computing magazines, our review system arrived nearly eight weeks after
the launch date, not quite in keeping with Acorn's claim at the launch that Second
Processors were in stock in the warehouse. Despite this, we are very excited by the
6502 Second Processor and the Bitstik graphics system. Our review will appear next
month, and we shall be telling you of the problems as well as the advantages of
using the 6502 Second Processor.

May also sees the launch of the Acorn 7Z8¢ Second Processor, clearly aimed at the
business market with the extensive applications software that 1is bundled in as part
of the package. We shall be reviewing this as well, as soon as we receive one!

THIS MONTH'S MAGAZINE

Amongst the many interesting articles and programs in this month's issue, I would
particularly draw your attention to two. The first is another graphics program,
allowing you to 2zoom in on any drawing you create at a tremendous magnification. We
found this so fascinating that we have also created a competition (the Zoom
Treasure Hunt) to go with this article, though, for technical reasons this is only
feasible on the magazine cassette, and not printable in the magazine itself.

The other program is a major utility, primarily for disc users, that allows you
to create Basic programs whose length is not at all limited by the physical memory
available in the Beeb. This 'Virtual Memory' system will be a real boon to disc
users, who have less memory to work with than cassette users. Mike Williams

TICE BOARD NOTICE BOARD NOTICE BOARD NOTICE BOAK

BEEBUG'S ROM RULE

We have published a number of hints and tips in recent issues arising from
clashes between the command sets used by different pieces of ROM software. BEEBUG
has proposed a standard to resolve this problem. This allocates a unique letter (A
to Z) to each software house, and this letter in turn can be used to optionally
precede any command and give it a unique identity. BEEBUG has allocated 'B' for its
own use, and in all future issues of ROM software, such as Toolkit, any command can
be preceded by this letter to avoid confusion with any other ROM installed at the
same time. So far the letter 'C' has been agreed with Computer Concepts, who have
also adopted this standard, 'A' has been reserved for Acorn Computers, and 'W' for
Watford Electronics.

HINT WINNERS
This month the hint winners are G.Middleton who wins the £1¢ prize and
R.M.Blackall who wins the £5 prize. Keep sending those hints in please.

MAGAZINE CASSETTE

This month's magazine cassette contains, in addition to all the programs printed
in the magazine, the data file for our Zoom Treasure Hunt competition and the
winning entry by Bill Wilkinson in our 'Niagara Falls' Brainteaser Competition. The
results of this, and a new Brainteaser, appear in this month's supplement.

MAGAZINE DISC

We have been unable to finalise the arrangements for producing the magazine
'cassette' on disc. We expect to conclude the details in time for inclusion in next
month's issue.

BEEBUG JUNE 1984 Volume-3 Issue 2

—r——

BEEBUG MAGAZINE

GENERAL CONTENTS

2 Editorial
3 Zoom
8 A Look Back at Basicode
O Music While You Work
4 Beginners Start Here —
Designing Programs Using Procedures
17 Points Arising
18 Dynamic Loading of Functions and Procedures
23 Six New Games Reviewed
26 Beebug Workshop — String Handling Techniques
28 An Introduction to Spreadsheets
31 Machine Code Graphics (Part 5)
34 Testing Out Your Micro (Part 4)
The Cassette Interface
36 Truffle Hunt
38 Grand Prix Car Race

HINTS, TIPS AND INFO PROGRAMS
7 Which Disc Drive? 3 Zoom Graphics
7 More Permanent *TV Effect 10 Event Driven Music (two programs)
7 ASCII Value at the Cursor 14 Example of Program Design
7 The Shortest Game? 18 Overlay Utility and Examples
13 Integers and Integers 26 Three Workshop Examples
13 Fifth Way to Use the Function Keys 31 Machine Code Graphics Example 11
25 Torchnet Problem 36 Truffle Hunt Game
30 Break from Within Basic 38 Grand Prix Car Race Game
35 Single Key Bad Program Recover
41 USR Hint

41 Implementing WHILE
41 Faster Trig Functions

BEEBUG JUNE 1984 Volume-3 Issue 2

L
e

h\
Baéc‘&

sesed Fo5 17 ZOOM (32K)

by Pete and Derek Chown

For such a short program this one is remarkably entertaining. It
allows you to zoom in and out of any picture you create with

magnifications of up to 10 million!

It is based on a perfectly

serious application in Computer-Aided Design (CAD), but can be used
to construct 1line drawings of high precision, or light-hearted
sketches containing microscopic detail for a game of "Hide and

Seek".

INTRODUCTION

You will remember from the BBC TV
series, "The Computer Programme", the
demonstration in which a house was
shown with a globe in the window. The
picture was magnified to show the
British Isles on the globe. On the map
was a house. In the window of the house
was a globe... All that is possible on
the BBC Microcomputer and with this
little program. If you have a printer
with graphics capability, you can add
your own routine to print the results.

The 'ZOOM' program allows you to
produce line drawings, and at any
stage, enlarge or reduce the size of
the picture. This allows details to be
drawn much larger than their final size
for accurate results, and also allows
part of a picture to be. hidden, by
reducing it so small that it is no
longer visible on the screen. The
program is entirely in Basic, and
should be quite straightforward to type
in and save on cassette or disc.

USING THE ZOOM PROGRAM

Only six commands plus the four
cursor-control (arrow) keys and the
Shift key are used to achieve the
pictures accompanying this article.
When you run the program a small dot
will appear in the centre of the
screen. This is the position of the
cursor. Hold down one of the cursor

keys and a line will be drawn (holding
down Shift at the same time moves the
cursor much faster). Use different
cursor keys and the line can be moved
as if connected to the starting point
by a piece of elastic.

When the line is where you want it,
press D for "draw" and the line becomes
fixed. If you merely wish to move the
starting point of the 1line without
drawing it, press M for "move". So the
procedure is: stretch the elastic to a
new position, and then press either D
or M. This is vastly superior to the
"Sketch" method on the BBC "Welcome"
cassette.

ZOOM Key Functions

M - Move
D - Draw f0 - Save screen
R - Remove £l - Load screen
S - Scale
P -~ Print

Cursor keys move cursor

The third command, R, is for
"remove". This will delete the last
line that was drawn. If you hold down
the key 'R', the program will keep

BEEBUG

JUNE 1984

Volume-3 Issue 2

5

deleting lines, until all the lines
have been removed. If removal of a line
leaves a 'hole' in any remaining line,
then the drawing can be 'repaired' by
re-drawing with a scale of 1 (see
later) .

The fourth command is S for "scale".
Type S and the word "Scale:" appears in
the top left corner of the screen. Then
type in a positive number for the
magnification you require,
e.g. 2 = twice as big, 0.5 = half as
big, 1 = same size. When Return is
pressed the picture is re-drawn centred
on the latest position of the cursor.

The command, P for "print", is only
useful if you have a graphics dump
routine and a printer. Press 'P' at any
time to print the current screen
display. The program listing shows

where a printer dump routine (or
command to one of the new printer dump
ROMs 1like Printmaster) should be
inserted.

We have also incorporated a simple
facility to save and load screen
displays, using the two function keys
f@ for save and f1 for load. In each
case the program will ask you for the
filename to save or load. Be careful
when saving and loading (especially on
disc), as pressing fl1 instead of f0
will delete the current picture in
memory, and pressing f@ instead of f1
will wipe out a file on disc (but not
cassette) .

ZOOM IN PRACTICE

Some useful features of this program
are the ability to create precise
drawings, by building your picture up
on a large scale, and then shrinking it
down to size. You can also translate
your shape in any of four directions.
For example, if you have a square in
the middle of the screen, then move the
cursor to the top right-hand corner of
this square. The press 'S' and choose a
scale of 1 (same size). The square will
now be re-drawn with the top right-hand
corner in the middle of the screen.

LIMITATIONS

The program at present will allow
drawings to be created with up to 600
points, set in the program at line 110.
This could be increased and the
ultimate limit is like to be determined
R S N 1 . D SN QP RSN A N 757

by the amount of memory available for
storing the lengthy arrays declared at
line 300.

Using the scaling feature actually
changes the stored data values. If you
magnify any part of your drawing by
more than about 1¢ million, you will be
exceeding the accuracy of the micro and
the results may be unrecogniseable. You
may also find that because the stored
data has been changed, you cannot
reduce the picture correctly back to
the original version. A screen will
always be saved at the current
magnification.

ZOOM FOR FUN

The program really is great fun to
use, and you can puzzle your friends by
hiding some minute detail somewhere in
a picture and challenging them to find
what it is. If you try this, we have
found that it is better to start at the
highest 1level and gradually magnify
parts of the picture as you get more
and more detailed. If you start with
the smallest details and gradually
reduce these to hide them, you are like
to find a very obvious 'blob' being
drawn as part of the initial picture, a
real give away to the location of the
hidden detail.

The pictures with this article show
one such sequence. The first shows a
window with a view of the stars in the
sky (actually the constellation of
Orion). If you zoom in on one of the
stars in Orion you will see a planet
surrouded by asteroids. Magnifying the
central planet will reveal the outline
of some continents and an island, and
further magnification of the island
will show first the road system on the
island, and finally a city of tall
buildings. One point you soon realise
is that you only have to be as little
as a millemetre out initially to be a
100 kilometres adrift at a
magnification of 10 million.

Z0OM _TREASURE HUNT

Because ZOOM is such an interesting
program we have provided a data file,
DZOOM, on the magazine cassette for you
to explore. Unfortunately the data file
is much too large and in the wrong
format to be included in the magazine
itself. If you search hard enough you
will find the name 'BEEBUG' hidden

BEEBUG

JUNE 1984

Yolume-3 Issue 2

somewhere in the picture you see here.
Tell us where 'BEEBUG' is located and
we will award a prize of a Computer
Concepts Graphics ROM to the first two
correct answers opened. Send all
entries to the editorial address, and
mark the envelope 'ZOOM'. Good zooming!

10 REM PROGRAM ZOOM

20 REM AUTHORS P.CHOWN A.WEBSTER

30 REM VERSION B@.6

40 REM BEEBUG JUNE 1984

50 REM PROGRAM SUBJECT TO COPYRIGHT

60 :

100 ON ERROR GOTO 390

110 np%=600

120 *FX4,2

130 *K.0 2z

140 *K.1 y

150 *K.10|U0.

160 *K.12(H

T8 *K, 1311

180 *K.14|J

190 *K.15|K

200 *FX12,3

218 ¢

220 MODE 4

230 vDU19,1,2,0,0,0

240 X=639.5:Y=511.5

250 oldX=X:o0ldY=Y

260 pnt%=0

27¢ DIM endx (np%) ,endy (np%) ,startx (np
%) ,starty (np%)

280 GCOL 4,0

29¢ PROCline

300 REPEAT

310 VDU4:PRINTTAB (3%,0) ;pnt%;SPC(5) :V
DU5

320 COMS=GETS$:*FX15,0

33¢ IF COM$="P" PROCAump

M

340 PROCline
350 PROCcom
360 PROCline
370 UNTIL @

390 ON ERROR OFF

400 *FX4

410 *FX12

420 MODE 7

430 IF ERR=17 END

440 REPORT:PRINT" at line ";ERL

450 END

460 :

100@¢ DEF PROCline

1901¢ MOVE oldX,oldY

1020 *FX19

1030 PLOT21,X,Y

1040 ENDPROC

1050 :

1060 DEF PROCcom

1070 IF INKEY-1 C=32 ELSE C=4

1080 IF COM$=CHRS (8) OR COM$=CHRS (140)
X=X-C

1090 IF COMS$=CHRS(9) OR COMS$=CHRS (141)
X=X+C

1100 IF COMS=CHRS (1) OR COMS=CHRS (142
) ¥=Y-C

111¢ IF COMS=CHRS$(11) OR COMS=CHRS (143
) Y=Y+C

1120 IF COM$S="M" oldX=X:0ldYy=Y

1130 IF COMS$="D" GCOL @,1:MOVE X,Y:DRA
W 01dX,01dY:GCOL 4,0@:startx (pnt%)=0ldX:
starty (pnt%)=o0ldY:endx (pnt%) =X:endy (pnt
%) =Y:pnt%=pnt%+1:01dX=X:01dY=Y

1149 IF COMS="R" AND pnt%<>@ pnt%=pnt$%
-1:GCOL@,d:MOVE startx(pnt%) ,starty(pnt
%) :DRAW endx (pnt%) ,endy (pnt%) :GCOL4, 0
1150 IF COM$S="S" AND pnt%>@ PROCscale(1)
1160 IF COMS="z" OR COM$="y" PROCsavel
oad

1170 ENDPROC

1180 :

1190 DEF PROCscale(sc)

1200 IF sc=@¢ GOTO 1240 ELSE MOVE 0,1023
1150 IF COMS="S" AND pnt%>@ PROCscale(1)
1160 IF COMS="z" OR COMS$="y" PROCsavel
oad

117@ ENDPROC

1180 :

1190 DEF PROCscale(sc)

1200 IF sc=@ GOTO 1240 ELSE MOVE 0,1023
1219 VDU5:GCOL 4,@:INPUT "Scale:"SCALES
1220 SCALE=VAL (SCALES)

1230 IF SCALE<=@ VDU 7:ENDPROC

1240 CLS:GCOL @,1

1250 FOR 1%=0 TO pnt%-1

1260 startx(I%)=(startx(I%)-X)*SCALE+6
39.5:starty (I%)=(starty(I%)-Y)*SCALE+51
)

BEEBUG

JUNE 1984

Volume-3 Issue 2

1270 endx (I%)=(endx (I%)-X)*SCALE+639.5 1420 IF COMS="y" GOTO 1500

tendy (I%)=(endy (I%)-Y)*SCALE+511.5 1430 X=OPENOUT fn$

1280 IF ABS(startx(I%))<32768 AND ABS (1440 PRINT #X,pnt%

starty(I%))<32768 AND ABS (endx (I%))<327 1450 FORp=0TOpnt$%

68 AND ABS (endy(I%))<32768 MOVE startx(1460 PRINT #X,startx(p),starty(p),endx
1%) ,starty(I%) :DRAW endx (I%) ,endy (1%) (p) ,endy (p)

1290 NEXT 1470 NEXT

1300 X=639.5:Y=511.5:01dX=X:01dY=Y 1480 CLOSE#0

1310 GCOL 4,0:VDU 7 1490 GOTO 1570

132@ ENDPROC 1500 :

1330+ % 1510 X=OPENIN fn$

1340 DEFPROCAump 1520 INPUT #X,pnt%

1350 REM VDU5:*GDUMP1 1 1530 FORp=0TOpnt$%

1360 ENDPROC 1540 INPUT #X,startx(p),starty(p),endx
1374 & (p) yendy (p)

1380 DEFPROCsaveload 1550 NEXT

1390 vDU4:VDU31,0,0 1560 CLOSE#0

1400 IF COMS="y" PRINT " Load "; ELSE 1570 SCALE=1:X=640:Y=512:PR0OCscale () :
PRINT " Save "; *FX15

1410 INPUT"Filename :"fn$:CLS:VDU5S 1580 ENDPROC

=

HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINT

WHICH DISC DRIVE ? - R.M.Blackall

MORE PERMANENT *TV EFFECT - G.Middleto

For those who would like to maintain a *TV type shift for the duration of a
session on their Beeb; try the following short routine.

190 MODE7

20 *FX247,0

30 *FX248,0

40 *FX249,0

50 INPUT"Screen shift",X%

60 INPUT"Interlace (ON/OFF)",Y$

70 IF Y$="ON" THEN Y%=0 ELSE Y%=1

80 P%=&A01: [OPT1:.SS LDA#&90:LDX#X%:LDY#Y%:JSR&FFF4:RTS

90 .start LDA#&F7:LDX#&4C:JSR&FFF4:LDA#&F8:LDX#SS MOD 256:JSR&FFF4:LDA#&F9:LDX#S
S DIV 256:JSR &FFF4:RTS]

100 CALL start =]

Is this the shortest way to find the ASCII value of the character at the text
cursor, and the current screen mode ? (A%,M%¥ return ASCII value, current mode
respectively.)

DIMQ%3:A%=135:1Q%=USR&FFF4:A%=Q%?1:M%=Q%?2 5=

THE SHORTEST GAME ? - ROGER JANE

(See the previous shortest Vol.2, No.6, p.19 - after the REM statements have been
removed) .
GH%=Q:REPEATMODE7:VDU28;24,39;:P%=&7C64:S%=0:REPEAT?P%=86:PRINT"]"TAB(RND(38))“*
"TAB(39)"|"CHR$13;: %= (P%+INKEY (-98) -INKEY (-67) -19) MOD38+&7C51 : S3=S%+1 : UNTIL?P%=
42 :H%=H%+ (S%>H%) * (H%-S%) : VDU7: PRINT ' "Score:"S%"'"Hi: "H%'"Press
space: ";:REPEATUNTILGET=32:UNTIL®
Unfortunately there are no instructions with this, but the Z and X keys control left
and right directions of movement. Imagination dictates that you have to pilot a
spaceship safely through a meteor storm! Now try it for yourself, or perhaps you
have a better one ! =]
IERSEEY

BEEBUG JUNE 1984 Volume-3 Issue 2

A LOOK BACK AT BASICODE

by Steve Fox

Basicode ig. | the

brain-child of a
handful of Dutch
computer enthusiasts.

The idea is to package
a Basic program in such
a way that it will run
on a variety of
different machines, and
to build up a stock of
non-copyrighted
software, written by
amateurs for amateurs.
The programs are to be
made available to the
widest possible group
of users via the
domestic radio services
of the countries
participating. Radio
Hilversum broadcasts
them at 1840 QT each
Sunday on 747 kHz and
West Germany also
participates. The BBC,
perhaps fearing adverse
listener reaction to
the unmusical tones,
has so far confined
transmissions to the unsocial hour of
0023 hrs @MT. The first series of
broadcasts, associated with the Radio 4
"Chip Shop" programme, is now at an end
but doubtless a further series will
follow.

The Basicode system has to overcome
two problems in order to make a program
readable by a range of machines.
Firstly, the tones transmitted (or
recorded on cassette) must be
comprehensible to the operating system,
and secondly the Basic statements must
be capable of interpretation by the
computer's Basic ROM. To make these
things possible, different computers
must be provided with a different
software interface. The BBC supplies,
for a modest £3.95, all the software
necessary to load a Basicode program
into a range of popular machines -
Apple, Sinclair, Commodore, Tandy, etc,
and of course the BBC micro. Also
included is a corresponding range of

computer programs using

BBC Radio 4 has recently completed a series of broadcasts of
an Esperanto form of Basic known as
Basicode. Now that this 'Take Away' service, as it was called, has
come to an end, at least for the moment, Steve Fox takes a look
back, and assesses its value.

"Basicode Save" programs to enable the
user to produce a Basicode version of
his own software. Some micros also need
additional hardware to be built, but
this is fortunately not necessary for
the Beeb.

The Basicode signal 1is an ASCII
listing of the program made up of bits
which are serially transmitted at 1200
Baud (bits per second). The obvious
method of coding would be to send one
cycle of 1200 Hz tone for a '1' and
1/1200th of a second's silence for a
zero. However, this would mean that
system noise might generate a '1' for a
zero, so Basicode defines a '1' as two
cycles of 2400 Hz tone and a 2zero as
one cycle of 1200 Hz tone. To make the
system even more robust, each byte is
preceded by a startbit (logic 9), and
is followed by two stopbits (logic 1).
At the end of each program, a special
8-bit word called a checksum is
included. By carrying out an EOR
calculation on the preceding bytes it
is possible to check that they have
been successfully read. If not, a
checksum error is declared by the
loading program, and it is up to the
user to scrutinize the listing to try
and find where the program has been
mis-read. Notice that at this stage the
computer has not recognized the data as
a Basic program, so until "RUN" is
entered no error messages can be
issued.

Because Basicode statements have to
be acceptable by the full range of
machines, each with its own Basic
dialect, it follows that the programs
have to be written using only those
statements which are common to all.
This is a very severe limitation
indeed, especially for BBC Micro users.
Gone are procedures, graphics
statements, sound statements, assembler
language, and *FX commands, to name but
a few! With Basicode, we enter the
colourless world of basic Basic. Is it
worth it? Well, read on...

The original Basicode was so crude
tggt, as there exists no universal

BEEBUG

JUNE 1984

Vol_ume-3 Issue 2

T O | N S Ry S O U O TN gl T L S Tl e OO S L SOOI, SO YO N o ¥ S s~

9

statement for "Clear the screen", it
couldn't be cleared! But then it was
realized that what was needed was a
mechanism for interpreting a number of
universal commands into the "local"
lingo. Basicode 2 issues these commands
in the form "GOSUB (line no.)" and the
Loading program appends to the front of
the main program, lines which will

interpret such commands. The main
program might, for example, begin "1000
GOSUB 100", and if yours 1is a BBC
machine the Loader will supply the

in the form:
there are a

subroutine at 1line 100
"CLS:RETURN". Altogether

dozen such subroutines for a carrying
out such highly desirable tasks as
positioning the cursor, inputting from
the keyboard, giving random numbers,
beeping and print-formatting. To jump
over these sub-routines the first line
has to be "10 GOTO 1009". In addition
to these customized sub-routines, the
Loaders may carry out some special
modifications to the listing. BBC Basic
is unusual in that it doesn't require a
space to be left after the line number
and in the use of LN rather than LOG
for logs to the base 'e'.

These changes are taken care of by

the Basicode Load program, which
consists of an instruction screen at
Page &E@Q (or &1990 for disk users),
the subroutine 1lines which are

initially stored at Location &77FE, and
a machine code program starting at
location &7979, and running up to the
Mode 7 screen at &7C@@. The normal load
consists of shifting down to PAGE the
sub-routines (over-writing the
instructions) and then appending the
decoded listing as it is read off tape.
Once in memory, the program can be RUN
and SAVEA like any other
straightforward Basic program.

Writers of Basicode Basic have to
observe a few more restrictions.
Lower-case letters are not allowed, nor

are integer variables. Real variables
are single-precision only. A screen
size of 24 by 40 is standard, but

larger sizes (including Modes 6 and 7)
are OK. The names of variables must not
be more than two characters long and
must not begin with "O".

With such depressing restrictions, I

supplied by the BBC, and indeed the
presentation of them all does leave
very much to be desired. Four or even
three years ago, this tape would have
been thought a goldmine, but in 1984
such packages, as they stand, cannot be
acceptable to the BBC micro user.
However, if one looks below the surface
at the program ideas themselves,
several are indeed good, and well worth
the effort of rewriting using the full
range of facilities on the Beeb.

Items which particularly appeal to
me are: "Chords", guitar fingering to

order, "Yahtzee" (similar to 'Five
Dice'; BEEBUG Vol.1 No.9), a game of
chance (of which the rules are fairly

easy to guess if you don't know them
but which aren't properly explained),
and Mezirac's Squares. The Germanic
humour in "“Titration" is a bit heavy,
but it makes one of the duller
processes of chemistry seem like fun,
which is surely the measure of any good
educational program.

I also made one or two off-air
recordings and, there were no technical
problems, but the programs I "took
away" are in fact the same as those on
the cassette.

The ultimate value of the Basicode
experiment lies in the quality (and
quantity) of the software which people

are prepared to donate or sponsor. Some
of the present software carries words
of encouragement aimed at getting the
reader to "do his bit", but without a
few carrots being offered by the BBC,
I'm not too optimistic about the future
of the project. I feel too that BBC
micro users would be better served if
the free software which appears on
CEEFAX were to be broadcast as tones

for direct recording on cassette,
instead of being available only to
those who are willing to invest in a
Teletext Adaptor. The BBC's

Telesoftware may not be too wonderful,
but most of it is written for the BBC
micro, and so doesn't suffer from the
over-simplification demanded by
Basicode.

The Chip Shop cassette and Basicode
manual are available at £3.95 including
postage and packing from Broadcasting
Support Services, PO Box 7, London W3

expected little of the sample programs 6XJ. This must be the bargain of the
on the "Chip Shop" cassette, kindly year!
BEEBUG JUNE 1984 Yolume-3 Issue 2

=

®

A < N . - W N AL T R T . T Ly R n.

»®

L R e O e L R R R N S I - S S B L e e I N N - -

0 Fii:: f Ii:i:j T p— T p—
— T ——
@j—.—c‘z\\—W*—u = ._;rf?:
60“%5‘\'7' MUSIC WHILE YOU WORK (16K) o
16893 0 S by David A. Fell
| o (| he . ool Sl
R =e—e———— -
{ é o5 i L L 2 L g

Some people find that they can concentrate much better if there is
some background noise, preferably music, continually playing whilst

they are working.

In this article we show you how your Beeb can be

made to play the music of your choice while you continue using the
machine for programming, word processing or whatever else takes your
fancy (apart from commercial machine code games) .

Sometimes, even using your Beeb can
become a little boring, such as waiting
for a cassette file to load, or listing
a long program out to a printer. The
programs described here can liven up
these moments (and others) by playing
music at the same time using
interrupts. These are used continually
by the operaing system, but in the
packaged form of 'events' (see BEEBUG
Vol.2 No.8) they can also perform
operations for the user. The programs
listed here allow for you to generate a
data file (containing a tune), and then
play this tune using a special 'event
driven' routine.

The main program 'MUSIC' assembles
and saves a machine code routine that
plays the tune. The program is well
anotated, and has been kept as short as
possible. To use it, you will also need
a data file holding a sequence of bytes
that correspond to the tune that you

wish to play. The program 'CREATE'
allows you to generate such a data
file.

The first step is to type the two
programs in, and to save them before
running (this is especially so for the
MUSIC program, as any mistake in
entering this could result in your
program being corrupted). Once this has
been done, you should run the MUSIC
program. This will pause briefly while
it assembles, and then *SAVEs the
resulting machine code program under
the name TUNE.

The next stage is to run the CREATE
program. This short Basic program is
used to enter the tune to be played and
to create a corresponding data file.
When using CREATE, you will be prompted
to enter a group of four numbers, the

same as you would enter in a normal
Basic SOUND statement. For example;

SOUND 17,-10,200,3

would be entered simply as
17,-10,200,3. To create a tune, just
keep entering the notes until you reach
the end. Once you have finished
entering the data, just type 0,0,0,0.
This will cause the data to be saved as
a file called DATA. Incidentally, you
cannot have more than 255 notes, nor
less than two. (The data supplied will
play ‘'Jesu Joy of Man's Desiring' from
Bach's Cantata No.147, as we listed in
BEEBUG Vol.2 No.9.)

If you have a word processor such as
Wordwise, you might find it easier to
build up a text file that contains your
data. The file should start with

OLD

RUN
followed by the data for the tune to be
played. To use this proceed as follows.
Type?

*BASIC

LOAD"CREATE"

*EXEC FILE
where FILE is the name of the text file
containing the data. This causes the
CREATE program to be run, and then the
numbers following in the data file
would be input as the data. You can now
watch the computer enter the data for
you. The advantage of this method is
that if you decide that one note is
wrong, then only that particular note
need be altered in the text file.

Whenever you want a musical
accompaniment, just type:

*RUN TUNE

BEEBUG

JUNE 1984

Volume-3 Issue 2

11

This will run the machine code program
TUNE. Note that it expects to *LOAD the
file called DATA. If you wish, you
could have different versions of the
TUNE program that *LOAD different
files, and thus play different tunes.

TAPE USERS
If you are using tape, then you will

the routine doesn't end up waiting for
a note to finish playing.

The data for the tune is held in a
data file which is *LOADed into memory
when the machine code program is run.
In this file, the first byte holds the
total number of notes in the tune, and

1,1,81,4 1,1,177,4 1,1,137,4 ¢ 1,185,4 1,1,171,4 1,1,109,4
2,1,81,12 2:,1,117,12 2,1,181,12 .1,81,12 2,117,112 2,1,189,12
1,1,129,4 1,1,157,4 1,1,165,4 ,1,129,4 1,1,157,4 1+1,129,4

1,1,13],4 1,1,145,4 1,1,157,4 ,1,137,4 1,1,145,4 1,1,125,4

10,1454 1.1.139.4 1,1.128 ¢4 ,1,145,4 1,1,129,4 1,1,129,4
2,1,128,12 2,1,69,12 2,1,89.12 (L0 2.1.108,12 2,0,81,24
1,1,157,.4 1,1,137,4 1,1,129,4 +1,157,4 1,1,13),4 1,1,145,4
1,144 1.1,1654 11,137, 4 ,1,149,4 1,1,145,4 1,1,157,4
1,1,149.4 1.1,189,4 1,1,109,4 ,1,149,4 1,0,117,4 1,1,017,4
3,1111,12 2,1.89,10 2,1,77,12 00 208,00 V004
1,1,165,4 1,1,187,4 1,1.12,4 ,1,165,4 1,1,157,4 1,1,145,4
1,1,157,4 1,1,165,4 1,1,137,4 1,157,4 1,1,149,4 1,14129,24
1,1,3/,4 1,1,157,4 1,1,149,4 :1,157,4 1,1,145,4 2,1,109,24
2,1,97,12 21,9712 2,1,109,12 1,99, 10 2,1,165,12 '9.1.,0,0
1,5,177,8 . 1,1.149 4 1,1,145,4 074 1,1,137.4 0,0,0,0
1,1,173,4 1,1,145,4 1,1,137,4 s1,1713,4 1,1,129,4

Data for 'Jesu Joy of Man's Desiring'
need to alter the locations at which then groups of eight bytes, in the

the data and machine code program are
to reside. The program TUNE could easiy
reside at &D@@ onwards by altering line
120 of the MUSIC program to P%=&900. As
the data can no longer reside at &AQQ,
we also need to alter lines 100 and
1419 to refer to &B@1 and &B@P and not
as listed.

PROGRAM NOTES

The program initialises itself by
copying the current event vector to a
safe place for future reference, and
then copies the entry address for
itself into the event vector. This
means that whenever an event occurs,
our piece of code will be called first.
Then, under the vertical sync event
(which occurs regularly every fiftieth
of a second, and so provides a frequent
event for us) the program plays its
notes. Once entered, the program
repeatedly enters notes into the sound
buffer until it finds that the buffer
for sound queue number 1 is full. Once
this has happened, the routine exits to

format as described on page 461 of the
User Guide (i.e. channel , volume,
pitch, duration as two byte low-high
numbers). By storing the notes in this
format, there is no need for extensive
decoding of the data before the call to
OSWORD is made. In fact, all that is
done is that the current note number is
multiplied by 8, and an offset (equal
to the base of the data - &A@1 in the
example given) is added. This gives us
the values to pass directly to OSWORD.
It would be possible to take the sound
statements and to compress them into
four bytes per note, but this would
require a considerable degree of
decoding, and would drastically
increase the length of the machine
code.

Although the program itself can cope
with up to 255 notes, there are some
practical limitations. This is because
the area of memory ‘'safe' from most
applications is sorely limited. Thus,
it is not very easy to have more than

the original event routine. The reason 64 notes with the current program
for doing this test is to ensure that design.
o o Sk A i
g T lefe,ilsn [T T35 ri_ "
e o e e o e e L2) e R = v e
* — T S S
é? = P .‘; _;?.IijL‘ -v{}~ﬂ’
BEEBUG JUNE 1984 Volume-3 Issue 2

@

R i T T B T R MICI |

®®

12
10 REM PROGRAM MUSIC 640 TXA
20 REM AUTHORS DAVID FELL 650 PHA
30 REM AND ALAN WEBSTER 660 TYA
40 REM VERSION B1.0 670 PHA
5¢ REM BEEBUG JUNE 1984 680 \ SAVE ANY REGISTERS, MAINLY
60 REM PROGRAM SUBJECT TO COPYRIGHT 690 \ FOR THE SAKE OF SAFETY
79 : 700 .EVENT3
100 data=&A@1 :REM ALTER FOR DATA. 710 LDA #128
110 FOR PASS=0 TO 1 720 LDX #250
120 P%=&900 :REM ALTER FOR CODE. 730 LDY #255
130 [OPT PASS*2 740 JSR &FFF4
140 \ FIRST DEFINE THE ENVELOPE 75¢ \ CHECK TO SEE IF CHANNEL ONE
150 \ TO BE USED 760 \ IS FULL. THIS ALLOWS FOR US
160 LDA #8 770 \ TO KEEP PILING UP THE NOTES
170 LDX #ENV AND 255 780 \ WITHOUT HAVING TO WAIT WITH
180 LDY #ENV DIV 256 790 \ A FULL BUFFER. CHANNEL ONE
199 JSR &FFF1 800 \ SHOULD BE USED FOR MOST OF
200 \ THEN *LOAD IN THE DATA BLOCK 810 \ THE PROCESSING THOUGH.
210 LDX #(ENV+14) AND 255 820 CPX #0 \ FULL?
220 LDY #(ENV+14) DIV 256 830 BNE EVENT2 \ NO
230 JSR &FFF7 840 .EXIT \ YES
240 \ STOP ANY INTERRUPTS OCCURING 850 \ GENERAL EXIT POINT
250 \ WHILE WE SWITCH OVER THE EVENT 860 PLA
260 \ VECTOR. 870 TAY
270 SEI 880 PLA
280 LDA &220 890 TAX
290 STA &230 90¢ PLA
300 LDA &221 919 JMP (&230)
310 STA &231 920 \ EXIT VIA OLD EVENT HANDLER
320 \ OLD VECTOR COPIED 93¢ \ ALLOWS OTHERS TO BE CHAINED IN
330 \ *** CAUTION *** 94() .EVENT2
340 \ DON'T RUN MORE THAN ONCE OR 95¢ INC &90
35¢ \ WE'LL FOUND OURSELVES LOOPING 960 \ UPDATE BLOCK POINTER
360 \ AROUND, AND NEVER GETTING 970 LDA &90
370 \ ANY WORK DONE! 980 \ CHECK IF GOT TO END OF LIST
380 LDA #EVENT AND 255 999 CMP data-1
390 STA &220 1000 BNE L1 \ NO
400 LDA #EVENT DIV 256 1010 LDA #0 \ YES
419 STA &221 1020 STA &90
420 \ NEW VECTOR INSTALLED 1030 .L1
430 LDA #14 1040 PHA
440 LDX #4 1050 LDA #0
450 JSR &FFF4 1060 \ ZERO OUT WORKSPACE
460 \ WE'LL USE THE VERTICAL SYNC 1070 STA &92
470 \ EVENT 'CAUSE IT'S THE EASIEST 1080 STA &93
480 \ MAKE SYNC EVENT HAPPEN 1099 PLA
490 LDA #0 1100 STA §92
500 STA &90 1110 LDX #2
519 CLI 1120702
520 \ ALLOW INTERRUPTS AGAIN, 1130 ASL &92
530 \ AND EXIT 1140 ROL &93
540 RTS 1150 DEX
55¢ \ THIS IS THE MAIN ENTRY POINT 1160 BPL L2
56@ .EVENT 117¢ \ MULTIPLY BLOCK # BY 8
570 CMP #4 1180 CLC
580 \ IS THE EVENT OURS? 1199 LDA #data AND 255
599 BEQ EVENT1 \ YES 1200 ADC &92
600 JMP (&230) \ NO! 1210 TAX
610 .EVENTI 1220 LDA #data DIV 256
620 \ WE'VE GOT THE EVENT 1230 ADC &93 »
630 PHA 1240 TAY
BEEBUG JUNE 1984 Volume-3 Issue 2

13

1250 \ ADD IN OFFSET, AND COPY TO
1260 \ THE X AND Y REGISTERS, READY
1270 \ FOR THE OSWORD CALL TO MAKE
1280 \ THE SOUND

1290 LDA #7

1300 \ OSWORD # 7 IS MAKE SOUND

1310 JSR &FFF1

1320 JMP EVENT3

1330 \ KEEP LOOPING 'TIL BUFFER FULL.
1340 .ENV

1350 \ DATA TO DEFINE THE ENVELOPE
1360]

137¢ RESTORE:FOR I%=0 TO 13

1380 READ ENV?I%

1390 NEXT

1400 DATA 21,1, 850 1=1,127=2,=1,~1

5,127,127,0

1419 $(ENV+14)="LOAD DATA AQQ"
1420 NEXT
143@ *SAVE TUNE 900 9FF

10 REM PROGRAM CREATE (MUSIC)

20 REM AUTHOR DAVID FELL

30 REM VERSION B1.0

40 REM BEEBUG JUNE 1984

50 REM PROGRAM SUBJECT TO COPYRIGHT
60 :

100 MODE 7

110 DIM N%(255,3)

12¢ PROCbanner ("Music")

139 PROCbanner ("Data file Creator")

140 PROCbanner ("By David Fell")

150 PRINT'"Enter the desired four par
amters for thesound command like this:"
'UA,B,C,D™ "Use 0,9,0,0 to exit."

160 vDU28,0,24,39,10

170 N%=0

180 REPEAT

190 N%=N%+1

200 CLS

210 PRINT"ENTER NOTE NUMBER e

220 INPUT"'"N% (N%,0) ,N% (N%,1) ,N
,N% (N%,3)

230 IF (N%(N%,0) (
,2) OR N%(N% 3)) =@ AND N%

240 UNTIL (N%(N%,0
(N%,2) OR N%(N%,3)) =
255

250 CLS

260 PRINT"NUMBER OF NOTES ENTERED = "

sN%

270 F%=OPENOUT"DATA"

280 IF F%=0 PRINT"CAN'T OPEN FILE":END
299 BPUT#F%,N%

300 FORI%=1TON%

310 FORJ%=@TO3

320 PROCbput (N% (1%,J%))

330 NEXT

340 NEXT

350 CLOSE#F%

360 PRINT"DATA FILE CREATED"
379 END

380 :
1000 DEF PROCbanner (AS)

1010 LOCAL I%

1020 FORI%=0TO1

1030 PRINTTAB (16-(LENASDIV2));
1040 vDU141,129,157,131
1050 PRINTAS;
1060 vDU32,32,156
1070 NEXT
1080 ENDPROC
1090 :
1199 DEF PROCbput (N%)
1110 BPUT#F%,N% AND 255
1120 BPUT#F%,N% DIV 256
113@ ENDPROC

=

HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS

INTEGERS AND INTEGERS - Richard Sterry

Note that conversion of real numbers to integers can be done in

two alternative

but direct ways that give different answers (for negative numbers only):

A%=INT(-1.3) gives A%=-2

by rounding down to the next nearest integer but
=(-1.3) gives A%=-1
by truncating the number for the integer part. =5

FIFTH WAY TO USE FUNCTION KEYS - Paul Holgate

In addition to the
INKEY with a

function key will enter
disabled by the *FX18 command.

four ways of obtaining input from any of the function keys
listed in BEEBUG Vol.2, No.6, p.41 there is a fifth way

(User Guide, p.275).Using

negative argument (eg. -33 for f0), then depression of a particular
function key can be detected. However, don't forget that if wused
it's soft key definition into the keyboard buffer unless

in this way, a

i)

BEEBUG

JUNE 1984

Volume-3 Issue 2

«®

14

BEGINNERS

BEGy
WNERS | [PROCEDURES

START HERE

1\-\\5 WN This month, Peter

procedures, and shows you how useful they are for
that most difficult of tasks for the beginner,
designing and developing your own program.

It's easy to feel
impressed when you
look at some of the
longer programs
published in books
and magazines, and
wonder how the
author managed to
work out how to get
it all together.
In fact, even
experienced program
writers often don't
have a clear idea
of how the whole
program will finish up when they start
writing. An excellent approach to this
sometimes daunting task involves the
use of procedures right from the word
go, and this is what I'm going to tell
you about this month.

Let's take a fairly simple example of a
program that we want to write. We will

Lewis continues writing about

DESIGNING PROGRAMS
USING PROCEDURES

by Peter Lewis

17¢ IF answer$="chimney" THEN PROCchi
mney

180 IF answer$="door"THEN PROCdoor

190 IF answerS$="garden" THEN PROCgard
en

200 UNTIL answer$="finish"

210 END

This isn't the complete program, of
course. Every occurrence of the word
'PROC' in the program followed by a
name like PROCgarden, is an example of
a procedure call, just like those we
looked at last month. At the moment, we
have not described (or defined) any of
the procedures that we are going to
use.

Now this may sound odd at first, but
in fact is one of the real beauties of
using procedures anyway. At this stage
in designing our program, we don't
really know what our house is going to

construct something that will build up
a picture of a house on the screen as
we type in the names of the various
parts of the house. We will use Mode 2,
because that allows us to use lots of
colours. Our basic program could look
something like this:

100 MODE 2

110 PROCbegin

120 REPEAT

130 PROCask

140 IF answer$="walls" THEN PROCwalls
15¢ IF answer$="roof" THEN PROCroof

160 IF answerS="windows" THEN PROCwin
dows

% BEEBUG JUNE 1984

Bt m e W e L e ot e [T R BB B L

Volume-3 Issue 2

15

look 1like. We don't know how the walls
or roof will be drawn. But that doesn't
matter, because by using procedures, we
can put together the outline of our
whole program as you see it above.

Many of the procedures will be
obvious from their names, and just draw
the relevant part of our house. The
procedure called PROCask is where the
program will ask for the name of the
next part of the house to be drawn, and
the program assumes that the answer is
in fact stored using the character (or
string) variable 'answer$S'. The
procedure called PROCbegin simply
indicates that there may well be a need
to set up a few things at the start of
the program. All of this is very nice
even 1if still rather vague at this
stage. Of course we can think about how
the program looks, and change it around
if we want to before putting in any
more detail. Nearly any program, large
or small, that we want to write, can be
started in this outline fashion.

We will now start defining some of
our procedures, adding more detail to
our program. It is a good idea to leave
a gap in the line numbers between the
main program already written and the
procedures. This allows the main
program to grow if necessary. We will
start at 1000, which is Jjust a nice
round number (in fact we do just this
with most of the programs published in
BEEBUG) . The group of instructions that
makes up each procedure is sandwiched
between the two statements 'DEF PROC'
and 'ENDPROC', that mark the start and
finish of that procedure. For example,
PROCbegin could be defined as follows
to put a title at the head of the
screen.

100¢ DEF PROCbegin

101¢ COLOUR 3

1020 PRINTTAB(3,1)"Build a House"
1030 ENDPROC

1040 :

Let's define some of the other
procedures as well. PROCask is rather
more complicated. The program not only
needs to ask for the name of the next
part of the house to be drawn, but also

. needs to delete the previous reply.
Here is a procedure that will do that,

and also the procedures to draw the
walls, roof, and door of the house.

1100 DEF PROCask

1110 PRINTTAB(11,30)SPC9;

1120 INPUT TAB(1,30)"What next",answer
1130 ENDPROC

1140 :

1200 DEF PROCwalls

1210 GCOL@, 1

1220 MOVE 340 ,400:DRAW 340,700

1230 PLOT 85,940,400:PLOT 85,940,700
1240 ENDPROC

1250 ¢

1300 DEF PROCroof

1310 GCOL@,5

1320 MOVE320,700:MOVE 400,800

1330 PLOT 85,960,700:PLOT 85,880,800
1340 ENDPROC

13582

140¢9 DEF PROCdoor

1410 GCOL@,6

1420 MOVE60(®, 400 :MOVE60D, 540

1430 PLOT85,680,400:PLOT85,680,540
1440 ENDPROC

1450 :

If you add these lines to the main
program you can now test out what you
have done so far. Run the program, and
if you type in ‘'walls' or 'roof' in
response to the question, then you
should see the appropriate part of the
house appear on the screen. Note that I
have chosen to use lower case for the
names in my version. You could change
this if you wished.

Baild » HoWwsss

e s & et T

If you type in a word for another
part, 1like ‘'chimney' or 'garden' then
you will get an error message because

BEEBUG

JUNE 1984

Volume-3 Issue 2

«®

16

we haven't yet written these
procedures. Anything else typed in will
just cause the question to be asked
again, except that typing 'finish' will
terminate the program.

The procedures for drawing the
walls, roof and door use a combination
of MOVE and PLOT instructions to plot
coloured triangles to form the shapes.
If you are not too sure about the use
of these instructions, then 1look them
up in the User Guide (pages 56 and
162) , or your favourite Basic book.
Each procedure also specifies a colour
using the GCOL instruction.

1550 GCOL@,7:MOVE x,y

1560 DRAWX ,y+size:DRAWx+size,y+size
1570 DRAWx+size,y:DRAWX,y

1580 MOVEx,y+size/2:DRAWx+size,y+size/2
1590 MOVEx+size/2,y:DRAWx+size/2,y+size
1600 ENDPROC

1619 :

The values of x and y represent the
position of the bottom left hand corner
of the window on the screen where x is
in the range from @ to 1239 and y is in
the range from @ to 1023 (the normal
graphics dimensions). The size of the
window is set quite arbitrarily in this
example by trial and error. Now we can
define the procedure to draw all five
windows as follows, simply using the
single window procedure that we have
already written.

1700 DEF PROCwindows
1710 PROCwindow (400 ,440)
1720 PROCwindow (800 ,440)
1730 PROCwindow (400, 600)
1740 PROCwindow (800, 600)
1750 PROCwindow (600 ,600)
1760 ENDPROC

These procedures are all relatively
straightforward, but the next procedure
(PROCwindows) will involve the use of
parameters if we are to write our
program well (we also 1looked at
parameters last month). We want this
procedure to draw five identical
looking windows in five different
places. The best way of doing this is
to write one procedure that will draw a
single window in such a way that we can
specify where the window is to be
drawn, and then £O Yeall' that
procedure five times from within
PROCwindows. Here is the procedure for
drawing a single window.

1508 DEF PROCwindow (x,y)

1510 size=80

1520 GCOL®,0

1530 MOVEx,y:MOVEX,y+size

1540 PLOT 85,x+size,y:PLOT 85,x+size,y
+size

If you add these two procedures to
the program you can try them out for
yourself by typing in 'windows' as the
part of the house to be drawn. As the
program is written, if you ask for the
walls to be drawn after the windows,
then the windows will disappear! Each
window is drawn by first displaying a
black square (made of two triangles)
followed by drawing white lines over
the top to form the frame.

The use of parameters with
procedures 1is a very important concept
and worth spending a little more time
on. In our procedure PROCwindow(x,Y)
the 'x' and the 'y' are really only
meaningful within the procedure, and
are said to be 'local’ to ‘the
procedure. On the other hand, variables
like ‘'answer$' are meaningful both in
the main program and in the procedures,
and we say this is ‘'global' to the
whole program.

Remember, as we saw last month, that
any of these procedures can also be
tried out in immediate mode if you
select the right graphics mode first
(Mode 2).

BEEBUG

JUNE 1984

Volume-3 Issue 2

T . e T O I = T T T e K e e L

17

Sometimes we need to use more
variables inside a procedure other than
just the parameters or global
variables. It is always a good idea to
specify them as local to the procedure
by using the Basic keyword 'LOCAL'. For
example, we could specify the variable
'size' in PROCwindow as being 'local'
to that procedure by adding the
following line:

1505 LOCAL size

There is another very important
reason for knowing about this feature
in BBC Basic. If we say that 'size' is
local to this particular procedure,
then it will not make any difference at
all if we happen to have used the same
variable name ('size') anywhere else in
the program. The micro is able to
distinguish between the different uses,
all of which helps to avoid mistakes or
problems when writing programs.

I hope that you can now see how very
useful procedures are in designing and
writing even modest programs like the
one we have developed here. I will not
define the remaining procedures, but
leave that for you to try. You might
like to consider defining PROCgarden by
calling some further procedures
(PROCpath, PROCgrass, PROCtrees etc),
and experiment further with parameters
as well. In fact, experimenting is what
it's all about, both when you are
learning, and when you get more
experienced. Few people can sit down
and write a complete program just like
that. A lot of trial and error is
needed to get any program to do what
you want. Procedures will go a long way
in helping you design and write good
computer programs.

Next month I hope to talk again
about procedures and show you how you
can build up a collection of your own
procedures to assist in program
development.

=

POINTS ARISING

PRINTER RIBBON REJUVINATION - Jonathan Jones

We are advised that the hint that we published in Vol.2, No.10, p.38, for
recycling of old printer ribbons can be detremental to the longevity of your printer
head, and further, has no lasting effect on the ribbon anyway. We can only therefore
advise due caution and would be pleased to hear from anybody who has any experience
of this.

MODE 7 CLOCK DISPLAY - Dick Orton

Mr. Orton points out a neater solution to a section of the assembler program used
in this program (Vol.2, No.6). First of all, having identified what he calls a
'cluge' (a patch to correct for an unlocated bug), the DEX instruction at line 640
should be removed and a CLC inserted before the ADC of line 684.

As he says, this emphasises the necessity for always using a CLC before a new ADC
operation when using 6502 machine code. ‘

CHAINING ASTAAD - R.W.Smith.

If entering the extended version of ASTAAD (Vol.2, No.9) from another program,
the system variables E%, F%, U% should be reset to =zero at 1line 370. Erroneous
values could otherwise be passed on to the ASTAAD toggle switches and lead to

confusion.

OUTDENTS IN WORDWISE

Further to our previous point about outdenting of text (Vol.2, No.9); a number of
readers have required clarification of the point that the 'TI' command means
temporary indent. Outdenting therefore, by using this with a negative number, first
requires previous use of the indent command, 'IN', by a positive amount.

BEEBUG JUNE 1984 Yolume-3 Issue 2

o®

18 Tested on Basic I&II
and O.S. 1:2

DYNAMIC LOADING OF
FUNCTIONS AND PROCEDURES

by Hans Bakker

One of the most frustrating
limitations for disc users of the BBC
micro is the lack of memory. The utility
described in this article overcomes these

°®

A e [IR R N, S R L SRR 8 NS e NSNS S - S i mmemmm

problems by dynamically loading functions and
required. With
use, it could be adapted for tape use

procedures into memory when
careful

as well. Now your programs can be as

you like.

The lack of sufficient memory on the
Beeb is one of the most often quoted
criticisms of this fine machine. Disc
users, and users of other ROM based
filing systems such as Econet and
Teletext suffer an even greater loss of
memory. In the higher resolution modes,
a disc user can have as little as 5.5K
of memory left for his own program and
data.

Coping with the limitations of too
little memory is a long standing
problem in computing. Many mainframe
computer users have had to contend with
this problem, and one of the oldest
solutions is that of overlays. With
this technique, a large program is
divided into a main module and a series
of overlay modules. The main module
sits pewmanently in memory, while each
overlay module is loaded into a
separately designated area of memory as
and when required.

In principle, exactly the same
technique is implemented by the OVERLAY
utility presented here. This allows
functions and procedures, which have
previously been saved on disc, to be
loaded into a special overlay area of
memory when called by the main program.
Once set up, the whole system runs
quite automatically, allowing you to
run programs which are effectively much
larger than the available memory area.
Indeed, with such a 'virtual memory
system', program size is limited only
by disc capacity rather than memory.

long as

The OVERLAY utility reserves two
pages of RAM (512 bytes) for a machine
code routine which controls the loading
and execution of the functions and
procedures. It 1is placed in memory
between &900 and &A@®, which means that
the system cannot be used if the RS423
system, cassette file system, the
speech system or envelopes 5-16 are
active at the same time. However, the
user is quite free to assemble the code
to an alternative location, if care is
taken.

USE_OF THE PROGRAM

The program OVERLAY, written in
assembler, should be typed in and run.
The machine code that it generates will
automatically be saved to disc by the
program, as a file called U.PROCFN.
This 1is then available to *LOAD as
needed. To speed up entry, comments
(i.e. the parts on 1lines after, and
including the back-slash character) may
be omitted. As with all programs that
use the Basic assembler, save the
program before running it!

Programs that are to use this
overlay technique should be structured
as follows:

1. Set LOMEM to TOP+length, where
'length' is the length in bytes of
the longest function or procedure
that is to be loaded (found using
*INFO for disc, or *CRT - for
cassette) .

BEEBUG

JUNE 1984

Volume-3 Issue 2

19

2. *LOAD U.PROCEN - this is the
machine code used to control the
loading of functions and
procedures.

3. CALL &90¢ - this initialises the
loader. If the code is assembled to
a location other than &900 this

value should be changed
accordingly.
4. ON ERROR PROCfinish, followed by

your own error trapping routine.
5. The normal program.
6. PROCfinish
7. END

8. Finally, the following lines should
be appended to the end of your
program (assuming that 10000 is
higher than any line number used in
the main program) .

100@9 DEFPROCfinish
10001 ?(TOP-1)=&FF
10002 ENDPROC

Functions and procedures definitions
are prepared as programs of their own,
and can be SAVEd in the usual way.
Their line numbers are not significant,
and may clash with the calling program
provided that the function or procedure
doesn't reference line numbers directly
(this 1is because any overlaid function
or procedure is never seen as being
part of ‘the main program by Basic).
Functions and procedures should be
SAVEd under a filename within directory
'0', and with the first six letters of
their name preceeded by F or P (for
Function or Procedure) . Thus a
procedure called 'walk' would be saved
as 0.Pwalk, and a function called 'big'
would be saved as O.Fbig. Note that
while the disc system does not
differentiate between lower and upper
case characters, Basic does, so beware!
The format can be seen in the example
program, DEMO.

19 REM Program DEMO

20 REM Authors H.Bakker

30 REM and A.France

40 REM Version Bl.1

50 REM BEEBUG June 1984

60 REM Program subject to copyright

70 2
100 LOMEM=TOP+&40
1190 *LOAD U.PROCFN
120 ON ERROR PROCfinish:REPORT:PRINT"
at line ";ERL:END
130 CALL &900
140 PROCastrix
150 PROCprint ("This will test")
160 PROCprint ("The automatic loading")
170 PROCprint ("of FNs and PROCs")
180 PRINT FNlimit ("---")
190 PROCastrix
200 PROCend
210 END
2289 3
1000 DEFPROCfinish
1010 ?(TOP-1)=&FF
1020 ENDPROC

1008 DEF PROCastrix
1007 PRINT STRINGS (39,"*")
1002 ENDPROC

1000 DEF PROCprint (AS)
1010 PRINT TAB((40-LEN(AS))/2)AS
1020 ENDPROC

1000 DEF FNlimit (AS)
103¢ =AS$+"Nesting of these is not poss
ible"+AS$

LIMITATIONS

There are various limitations to the
functions and procedures that the
program calls. These are as follows:

1. A function or procedure that is
overlaid cannot call for another one
to be loaded - i.e. it can only use
routines that are either in the main
program (e.g. if other functions and
procedures need to use them) or must be
defined at the end of the function or
procedure to be loaded, and saved with
it. Note, however, that if the latter
action 1is taken, the function or
procedure called MUST have a unique
name, otherwise Basic may get its
pointers confused, with unpredictable
results!

2. Avoid referencing line numbers in
the function or procedure. If you must
use them, make sure that your function
or procedure uses high numbers, and
that they are higher than any in your
main program.

BEEBUG

JUNE 1984

Volume-3 Issue 2

@

20

3. There is a limit of six characters
for the name of any function or
procedure that is to be loaded. This
only applies to the function or
procedure that calls the loading
routine, and is due to the 1limit of
seven characters as a disc filename. If
a non-existent function or procedure
with an illegal name 1is called, the
routine faults it, and returns to Basic
with a 'Name too long' error, and
ERR=47. The limit is nine characters if
using cassettes.

HOW IT WORKS

When a language detects an error in
a program, it ceases execution of it by
indirecting through the vector, BRKV,
at &202. By redirecting this to point
at user supplied code, it is possible
to modify the way that program errors
are dealt with. In this case, when a
procedure or function that has not been
defined is discovered, the error
generated will cause an indirection to
the machine code OVERLAY routine, which
will then instigate a search of the
current filing system for the missing
procedures or functions. This is then
*LOADed above TOP and below LOMEM. The
original 1line of Basic calling the
overlaid routine is then re-presented
to Basic for execution in immediate
mode before re-entering Basic.

When a new function or procedure is
to be loaded, any existing overlaid
routine is deleted from Basic's own
catalogue of functions and procedures.
This prevents Basic from jumping into
'mid-air' expecting to find an old
routine.

Note that the OVERLAY utility checks
for Basic 1 or Basic II, and adapts
itself accordingly.

FOR CASSETTE USE
The OVERLAY utility can be used with
cassette systems, all be it with less

convenience, provided the procedures
and functions are called in a known
order. This limitation must be
remembered, and the following

modifications made to the program.

150 space%=&C00

1270 CPX #11

1470 LDX #(comline-2) AND &FF
1480 LDY #(comline-2) DIV &100

3070 $P%="L."+STRINGS (16,CHRS32)
3080 comline=P%+2
3150 *SAVE PROCFNCODE C@@ DFF

The main Basic program will then have
to CALL &C@0 - not &900 as for the disc
version.

330
340
350

REM Program OVERLAY

REM Authors H.Bakker

REM and A.France

REM Version B1.6

REM BEEBUG June 1984

REM Program subject to copyright

oscli=&FFF7
brkvec=&202
textp=&B
top=&12
sysvar=&400
space%=&900
varloc=&3A
varpos=&2A
FOR pass=0TO 3 STEP 3
P%=space$%
[OPT pass
LDA brkvec \Check to see if
CMP #begin AND 255
BNE notyetsaved
LDA brkvec+1 \pointers are
CMP #begin DIV 256

BEQ over \set up already
.notyetsaved

LDA brkvec \Save old vector

STA brksav

LDA brkvec+1

STA brksav+1

LDA #begin AND 255

STA brkvec \and make new.

LDA #begin DIV 256

STA brkvec+1
.over

LDA &8015

CMP #&31

BNE basic2

LDA #&B6

STA procvec

LDA #&92

STA procvec+]

LDA #&10

STA fnvec

LDA #&B2

STA fnvec+]

BNE endinit
.basic2

LDA #4

STA procvec

LDA #&93

STA procvec+]

LDA #&E1 »

\Basic I or II?

\Basic I so
\set up
\vectors.

\Basic II
\similarly.

BEEBUG

JUNE 1984

Volume-3 Issue 2

21~

550 STA fnvec 1150 BCC inctp \numer ic

560 LDA #&B1 1160 CMP #58

570 STA fnvec+1 1170 BCC ok

580 .endinit 1180 CMP #64 \If not- assume

590 RTS 1199 BCC inctp \end of name

600 .begin 1200 CMP #91 \reached

610 LDY #0 1219 BCC ok

620 LDA (&FD),Y \Read error no. 12290 CMP #96

630 CMP #29 \No FN/PROC? 123¢ BCC inctp

640 BEQ findcat 1249 CMP #122

650 JIMP (brksav) \Back to Basic 1250 BCS inctp

660 .findcat 1260 .ok

670 LDA #&FF 1270 CPX #8 NiE e ts,

680 LDA comline,Y \Did we have 1280 BNE addchar \it's too long

690 CMP #ASC("P") \FN or PROC 1299 JMP toolong \so fault it.

700 BEQ clearproc \loaded before? 1300 .addchar

710 CMP #ASC("F") 1310 STA comline,X

720 BEQ clearfn 1320 INY:INX

730 BNE clear \neither! 1330 BNE loop

740 .clearproc 1340 .inctp

750 LDY #&F6 \We have to 1350 LDA #32 \add space after

768 BNE readcat \clear the old 1360 STA comline,X \filename

779 .clearfn \PROC/FN, so 1370 INX

780 LDY #&F8 \Basic can't 138¢ SEC \Calculate TOP-2

790 .readcat NEind it 1399 LDA top

80¢ JSR findvar 1400 SBC #2 \that's where

810 BEQ clear 1419 PHA \we must load

820 JSR setbit \hide it! 1420 LDA top+l \the PROC/FN

830 .clear \This routine 1430 SBC #0

840 LDY #0 \clears the 1440 JSR conv \Convert to hex

850 .clearl \command line 1450 PLA \ASCII and put

860 LDA #ASC(" ") \for oscli. 1460 JSR conv \ in oscli line

87¢ STA comline,Y 1470 LDX #(comline-4)AND&FF

880 INY 1480 LDY #(comline-4)DIV&100

890 LDA comline,Y 1490 JSR oscli \execute *LOAD

990 CMP #&D \all cleared? 1500 PLP \Take BRK

910 BNE clearl \No, so back.. 151¢ PLA \entries from

920 LDY textp-1 \Where error was 1520 PLA \stack

93¢ .find \Search back for 1530 LDA comline \Was it PROC?

940 LDA (textp),Y \FN/PROC token 1540 CMP #ASC("P")

950 CMP #&F2 \PROC token 1550 BEQ procl

960 BEQ proc 1560 LDY #&F8

970 CMP #&A4 \FN token 1570 JSR findvar \Had we hidden

98¢0 BEQ func 1580 BEQ restore \this before?

999 DEY \None found,so 1590 JSR resetbit \get it back!

100¢ BPL find \try further 1600 .restore

1019 .proc 1610 LDA &B \restore text

1020 LDA #ASC("P") \Store F or P 1620 PHA \pointer on

1030 BNE store 1630 LDA &C \stack

1040 .func 1640 PHA

1050 LDA #ASC("F") \as first letter 1650 JMP (fnvec) \all done, so

1060 .store 1660 \back to Basic

1070 STA comline \of filename. 1670 .procl

1089 INY 1680 LDY #&F6 \as before, but

1090 STY textp-1 \Store offset 1699 JSR findvar \this time

1100 \in pointer 1708 BEQ jproc \for PROC

1110 LDX #1 1710 JSR resetbit

1120 .loop 1720 .jproc

1130 LDA (textp),Y 1730 JMP (procvec)

1140 CMP #48 \Check if alpha- 1740 : »
BEEBUG JUNE 1984 Volume-3 Issue 2

r——————————*,,

22
175@ .conv \Routine to 2350 INY
1760 \convert from 2368 LDA (varloc),Y
1770 PHA \binary to ascii 23780 BEQ lencheck
1780 LSR A \hex. 2380 .check2
1799 LSR A \high nibble 2390 CMP comline-1,Y\Check against
1800 LSR A \first. 2400 BNE lencheck \oscli command
1819 LSR A 2419 CPY varlen \line.
1820 JSR nascii 2420 BNE checkl
1830 PLA 2430 INY
1840 AND #&F \now low nibble 2440 LDA (varloc),Y
1850 JSR nascii 2450 BNE lencheck
1860 RTS 2460 .storeposl
‘ 1870 .nascii 2470 LDA varloc \It is the one
:‘ 1880 CMP #10 \convert nibble 2480 STA varpos \we are looking
| 1899 BCC nasl \to ascii and 2499 LDA varloc+l \for, so store
: 1900 CLC \add to command 2508 STA varpos+l \it away.
| 1910 ADC #7 \line for oscli 2510 .endrout
1920 .nasl 2520 RTS
193¢ ADC #ASC("@") 2530 .lencheck
19490 STA comline,X 2540 LDA varloc+3 \look for next
1950 INX 2550 BEQ endrout \FN/PROC
1960 RTS 2560 LDY #&00
: 1970 : 2570 LDA (varloc+2),Y
| 198¢ .findvar \routine 2580 STA varloc
1990 \searches for 2590 INY
2000 LDX #@ \PROC/FN 2600 LDA (wvarloc+2),Y
2010 .len \requested, and 2610 STA varloc+]
2020 INX \stores result 2620 INY
2030 \in &2A and &2B. 26390 LDA (varloc+2),Y
2040 LDA comline,X 2640 BNE check4
2050 CMP #ASC("™ ") \puts length of 265¢0 DEY
| 2060 BNE len \name in X 2660 CPY varlen
| 2070 STX varlen \and stores it. 2670 BNE start
“‘ 2080 LDA sysvar,Y \on entry Y 2680 INY
| 2090 \points to 2690 BCS storepos2
| 2100 \a linked list 2709 .check3
| 2110 \of FNs or PROCs 2710 INY
2120 STA varloc 2720 LDA (varloc+2),Y
2130 LDA sysvar+l,Y 2730 BEQ start
2140 STA varloc+1 2740 .check4
2150 .start 2750 CMP comline-1,Y\check against
2160 LDA varloc+] 2760 BNE start \oscli line
2170 BEQ endrout \If zero, none 27790 CPY varlen
2180 \have been used 2780 BNE check3
2190 \yet, so finish. 2799 INY
2200 LDY #0 2800 LDA (varloc+2),Y
2210 LDA (varloc),Y 2810 BNE start
| 2220 STA varloc+2 \store next fn 2820 .storepos?2
| 22390 INY \or proc in 2830 LDA varloc+2
| 2240 LDA (varloc),Y \varloc+2 and +3 2840 STA varpos
| 2250 STA varloc+3 2850 LDA varloc+3
| 2260 INY 2860 STA varpos+1
| 2270 LDA (varloc),Y \Could this be 2870 RTS
1 228¢ BNE check2 \the one we are 2880 .setbit
g“ 229¢ DEY \looking for? 289¢ LDY #2 \hide FN/PROC
| 2300 CPY varlen 2900 LD4 (varpos),Y \by setting top
E 2310 BMNE lencheck 2910 ORA #580 \bit of the
| 2320 INY 2920 STA (varpos),Y \first character
i‘ 2330 BCS storeposl 2930 RTS \in the name.
’1 2349 .check] 2940 .resetbit

Continued on page 25

BEEBUG

JUNE 1984

Volume-3 Issue 2 :

23

SIX NEW GAMES REVIEWED
by David Fell and Alan Webster

Crazy Painter, together with Crazy
Tracer, are two of the 'painter' games
for the Beeb that are currently on the
market. The basic idea is to fill in
rectangular areas on the screen by
totally navigating their boundaries,
whilst being chased by a variety of
nasty marauders.

Name : Crazy Painter

Supplier : Superior Software

Price t £1.95

Reviewer : David A. Fell

Rating L

Name t Crazy Tracer

Supplier : Acornsoft

Price : Tape £9.95 Dise £11.5¢
Reviewer : David A. Fell

Rating 1 Bk

been completed, you start at the first
one, but with more Indians/bears to
compete with.

Overall, this game is a superb
example of a non 'zap-zap' game, with
attractive graphics, a pleasant tune
and some realistic keys (if only all
games distributors would stick to a
common set of keys - but then, that is
asking a lot!). If it were not for the
fact that there is a small bug which
very occasionally prevents you from
completing a screen, I would be sorely
tempted to give this game five stars.

CRAZY PAINTER by Superior Software

Crazy Painter is a superb copy of
the arcade game, and includes three
basic screen layouts. In the first type
of screen, you are a small green monkey
(!) being chased by some nasty pink
Indians. Your aim is to eat up the
small blue dots that surround the
rectangular grid work forming the
screen. The Indians display a wavering
intelligence; occasionally pursuing you
and sometimes wandering around like
aimless dodos.

By completely going round a corner
square, the tune, which is perpetually
played unless the 'quiet' option has
been selected, will speed up. This
indicates that you can temporarily stun
the Indians - but beware, for this only
lasts a short length of time

The second sheet pits your wits
against a network of lines down which
you have to guide a monkey to reach a
banana for a bonus. This is much more
difficult than it sounds. In the final
sheet you guide a roller paint brush
around another grid network, painting
its borders in yellow. Unfortunately,
you have to contend with a group of
ferocious 1light blue bears and a paint
supply that always has to be joined to
a previously painted rectangle. Once
each of three different screens has

I.Tgn HI 0"1388“(,

e e

CRAZY TRACER by Acornsoft

Acornsoft's Crazy Tracer is similar
in its basic concept to Crazy Painter,
but lacks the same enjoyment when the
game is being played. There was no
music playing while the game was in
progress, the keyboard didn't feel as
responsive as it could have been, and
the game was infuriatingly slow. The

noises that were made struck me as
rather unimaginative and dull. The
creatures chasing you are fairly
standard 'nasties', and the 'paint'

mode is by no means as intelligent as
the Superior Software routine.

Overall, this is not as good as
earlier games from Acornsoft, who will
need to produce future games to a much
higher standard particularly if they
are to meet the challenge of Atarisoft,
who are launching their own well known
computer games for the BBC micro.

BEEBUG

JUNE 1984

Volume-3 Issue 2

«®

r—————————*i, —
| 24

4 Name : JCB Digger scooping up the only landscape in which
‘ Supplier : Acornsoft you can hide, and at the same time
Price ¢ Tape £9.95 - Disec £11.50 avoiding the 'Meanies'. These cannot be
Reviewer : David A. Fell killed, but can be put to sleep by
Rating e Loy dumping them into the sea (fresh water

won't do) or by burying them. The
screen, unfortunately, scrolls in a
very sluggish and disappointing way.
Perhaps one could have accepted this a
couple of years ago, when the Beeb was
still a new entity, but now that the
secrets of screen scrolling have been
so successfully mastered by other
software houses, one would expect
Acornsoft to have produced some better
scrolling.

Acornsoft produced this game in
conjunction with J. & Bamford
Excavators Ltd., and I assume that this
is one of the main reasons for
marketing this game. However, one
wonders about Acornsoft's sincerity in
the comment on the rear of the
packaging that "..this game is a must
for the games connoisseur"!

This game from Acornsoft, 1long
announced, has at last been released,
though the results do not seem to
justify the wait. The basic scenario in
this game is to drive a JCB 3CX
Excavator Loader around two islands,

This month sees the emergence of two
more games for the BBC micro based on
the very poular arcade game known as
'Pengo'. These are Penguin by H.Soft
and Percy Penguin by Superior Software.

Title : Penguin
Supplier : H SOFT (Watford Electronics)
Price t £10]8 VAT
Rating 3 kAk%
Reviewer : Alan Webster
Title : Percy Penguin
| Supplier : Superior Software
; Price : £7.95 inc. VAT
| Rating *kkk

BBC micro. The graphics, sound and

| Reviewer : Alan Webster
The idea of Pengo is to kill the speed are very good, although our copy
creatures known as Snobees, by crushing was very fussy as to which ROMs were
: them with cubes of ice, before they installed in the micro at the same
| kill you. At the same time, your main time.
: aim, apart from staying alive, is to
| push three special blocks together for The music with this game is
j big bonus points. The longer you take particularly noteworthy, and the key
L to get the three blocks together, the response is the best I have seen for
| fewer bonus points you gain. this type of game. Unfortunately the
game is spoilt by the occasional
PENGUIN by H Soft corruption of the screen display that
- This version of Pengo has takes place, though this seemed to be
r transferred quite successfully to the dependent on which ROMs were installed

BEEBUG JUNE 1984 Volume-3 Issue 2

25

in the micro at the same time. Never
the less, this is an annoying feature
when it occurs.

PERCY PENGUIN by Superior Software

The second of the 'Pengo' games
reviewed this month comes from Superior
Software and is one of six new releases
from this company.

Once again, Percy Penguin is trapped
in the snow maze, trying to push the
special bonus blocks together, and
still trying to avoid the Snobees.

This version is not as graphically
stunning as

Penguin from H SOFT, but

runs much better, with no problems over
conflicts with any ROMs. There is also
a time bonus on this version for
completing a sheet quickly.

CONCLUSIONS

If it were not for the occasional
corruption of the screen display then
Penguin from H Soft would be the choice
here. We were unable to determine the
exact cause of the problem, other than
that it seemed related to the selection
of ROMs in our office machines. In the
circumstances, Percy Penguin from
Superior Software is a reliable if
slightly duller choice.

: Crawler

: Watford Electronics
Price : £6.95 + VAT

Rating s kkkk

Reviewer : Alan Webster

A lony time ago, in the arcades, a
game was released which caught the eye
of arcade enthusiasts. The game was
Centipede, and since then all of the
home micros have had their own versions
of the game, including the Beeb, with
Bug Blaster. This version from Watford
Electronics is much Dbetter, much
faster, and much harder.

The game takes place in a mushroom
patch full of creepie crawlies, such as
centipedes, spiders, fleas and

2

scorpions. The object is to keep these
undesirables at bay, by shooting them
down. The scorpion is particularly
troublesome, poisoning the mushrooms,
and consequently making the centipede,
your principal adversary in this game,
extremely difficult to deal with.

Overall, this is a very good game,
and the graphics and speed are of a
high standard. 5=

Note: Both games from Watford
Electronics are available to BEEBUG
members at 50p off the basic price
quoted above - order direct from
Watford Electronics quoting your BEEBUG
membership number.

Continued from page 22

2950 LDY #2 \restore FN/PROC
2960 LDA (varpos),Y \by clearing
2970 AND #&7F \that bit.

2980 STA (varpos),Y
2990 RTS

3000 .toolong

3010 BRK

3020 |

3030 ?P%=47

3040 S$(P%+1)="Name too long"
3050 P%=P%+LENS (P%+1)+2

\error

3060 ?(P%-1)=0

3070 $P%="L.0."+STRINGS (13,CHRS$32)
3080 comline=P%+4

3090 P%=P%+LEN (SP%) +1

3100 procvec=P%:fnvec=P%+2:P%=P%+4
3110 brksav=P%:P%=P%+2

3120 ?brksav=?brkvec:brksav?1=brkvec?1
3130 varlen=P%

3140 WEXT

315¢ *SAVE U.PROCFN 900 AFF

3160 END =

T e S L L B A A T B S R ST BB R S ST
HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINT

TORCHNET PROBLEM

If you've been using Basic (or another language) and your machine supports the
Torch 0.S. MCP #.41 with networking, then you may find that your station number has
become incremented to a large number, greater than 255. You may also have found that
hard breaks won't clear it back again. Poking zero to &1E8C before re-entering MCP,
should reset the number to it's original status.

BEEBUG

JUNE 1984

Volume-3 Issue 2

®®

26 Tested on Basic 1 & 11
and O.S. 1-2

Priogiraimimielrs

STRING HANDLING
by SURAC

Werlishe®

String handling is a very

important and interesting part of

programming. This month's workshop discusses four useful routines
for you to experiment with, and provides a number of ideas for you

to try out for yourself.

Most modern computers probably spend
more of their time processing text and
characters then they do handling
numbers and mathematics. The use of
strings and the ability to manipulate
and process strings is' an important
part of many programs. In this workshop
we will look at some basic and useful
routines to show how to extract a
single character from a string, how to
space out text for titles, as well as
converting mixed upper and lower case
all into upper case, and the removal of
leading and trailing spaces from a
string.

The first task is a very simple one,
and illustrates a useful technique that
we will use in most of our other
examples. Suppose we have a string, AS,
and wish to extract each consecutive
character beginning at the lefthand
end, and proceeding to the righthand
end. How do you accomplish this? The
solution is in the use of the MID$
function, which allows us to extract a
given character (or group of
characters) from another string. There
is a description of MIDS on page 298 of
the User Guide, and you might 1like to
try and work out how to use this
function to extract single characters
from a given string before going any
further.

The program below is my routine to
extract each character in turn. See if
you. fcan ‘modify. it to | print. ithe
characters in reverse order; i.e. G as
the first one, N as the second, etc...

10 AS="OUR EXAMPLE STRING"
20 FOR I%=1 TO LEN(AS)
30 BS=MIDS (AS,1%,1)

40 PRINT BS
50 NEXT

In general, to extract character
number N% from string AS, use
MIDS (AS,N%,1). This will return a
single character, and we need to either
‘put* this into another string
variable, print it immediately, or to
use it as a ‘'parameter' for another
function. AS, N% and ;; are all
parameters to the function MIDS in the
example above. In the examples that
follow, we will use this technique of
extracting characters to perform some
simple operations on strings.

SPACING OUT TEXT

When writing programs, it is nice to
display a banner at the start giving
the program name. To distinguish the
name from the rest of any text that may
be present on the screen, it is
convenient to have some method of
'highlighting' this banner. One way to
do this is to spread the string out to
twice its original length by padding it
out with a space after every character.
Below is the function and a
demonstration program that illustrates
the string padding function. Type it in
and run it:

10 REPEAT
20 INPUT AS
30 PRINT FNpad (A$)
4@ UNTIL AS=""
50 END
60 :
1000 DEF FNpad (AS)
1010 LOCAL I%,BS
1020 IF AS="" THEN GOTO 1070
193¢ IF LEN(AS)>127 PRINT"STRING TOO
LONG TO PAD!":STOP ,.

BEEBUG

JUNE 1984

Volume-3 Issue 2

27

1040 FOR I%=1 TO LEN(AS)
1050 BS=BS+MIDS (AS,1%,1)+" "

1060 NEXT
1070 =BS
The string is passed as AS to the

function FNpad, which checks for a null
(empty) string. The function also
checks that the length of the padded
string will not exceed the maximum
string length of 255 characters
(original string length less than 128
characters) . Provided the string
submitted passes these checks, the
additional spaces are inserted. The
result is displayed on the screen, and
the program will continue looping until
you enter a blank string, or escape.

What the program does is to step
through the supplied string one
character at a time, and append this
character to the current output string
(BS) followed by a space. This results
in B$ containing a copy of A$, but with
a space after each of the original
characters from AS.

CONVERSION TO UPPER CASE

Our next example is based upon the
use of MID$, as was the last one, but
this one also uses a couple of other
Basic functions. The purpose of the
function is to take a string of text,
and to force each character to upper
case (this sort of conversion is very
useful for checking user input which
could be in a mixture of upper and
lower case, for example in adventure
games). It does this by going through
the string supplied one character at a
time, and performing a logical AND with
the ASCII value of that character. If a
logical AND with a character's ASCII
code and &DF (the 's! means
hexadecimal) is performed, then the
value returned is that for the upper
case equivalent, whether it was an
upper case or lower case character that
was used originally.

The program is used in much the same
way as the last one; i.e. a string is
typed in, and if not null the upper
case equivalent is printed. If it is
null, the program exits. Trying to
obtain the upper case equivalent of

the program so that it only attempts to
alter a character if it is a letter,
and not anything else.

10 REPEAT

20 INPUT AS

30 PRINT FNucs (AS)

40 UNTIL As=""

50 END

60 :

1000 DEF FNucs (AS)

1019 LOCAL 1%,BS

1020 IF A$="" THEN GOTO 1060
1030 FORI%=1 TO LEN (AS)

1040 B$=BS$+CHRS (&DF AND ASC (MIDS (AS, 1%
/1))

1050 NEXT

1060 =BS

STRIPPING SPACES

Our final example program this month
is a slightly more complex one, but it
is exceedingly useful. What it does is
to take a given string, and to 'lop
off' any leading or trailing spaces.
Say you had a string such as the one
below (with the ' marks just showing
where the string starts and stops):

' AN EXAMPLE STRING '

What the function does is to take off
the spaces to leave:

'AN EXAMPLE STRING'

10 REPEAT
20 INPUT LINE AS
3@ PRINT "#";As;"#"
40 A$=FNstrip(A$)
50 PRINT n#u;As;u#n
60 UNTIL AS=""
70 END
80 :
1000 DEF FNstrip(AS)
101@ IF AS="" THEN GOTO 1040

102¢ IF RIGHTS (AS,1)=" " REPEAT:AS=LEF
T$ (AS,LENAS-1) :UNTIL RIGHTS (AS,1)<>" "
103@ IF LEFTS(AS$,1)=" " REPEAT:AS$=MIDS
(A$,2) :UNTIL LEFTS(AS,1)<>" "

1040 =AS

You may be able to think of a way of
using the MIDS function to make this
more efficient. If you come up with any
routines that you think other readers
would like to see, then send them into
SURAC at:

characters other than alphabetical The Programmer's Workshop

characters can produce some odd BEEBUG

effects. As an exercise, try and amend P.O. Box 50 St. Albans Herts. =]
BEEBUG JUNE 1984 Volume-3 Issue 2

«®

e
e

R R R R R R R RRTRRRRRRRRDRRRRR=R

28

AN INTRODUCTION TO SPREADSHEETS

by David Otley

Spreadsheets form one of the major and more serious applications of
microcomputers. Ultracalc from BBC Soft is already available, and
Viewsheet from Acornsoft is expected shortly. As a prelude to a
review of these two spreadsheet packages, David Otley introduces the
whole subject of spreadsheet analysis.

INTRODUCTION

The advent of two new spreadsheet
programs indicates the increasing
attention being paid to serious
business oriented software for the BBC
micro. The original spreadsheet
program, VISICALC, is reputed to have
been a major factor in the success of
the Apple computer. For the first time,
users were able to make the computer do
what they wanted without the barrier of
learning a complex programming
language. The BBC's impact on the
serious market has already begun with
word processing. The availability of
good spreadsheet packages must continue
to enhance its attractiveness to
serious users.

WHAT IS A SPREADSHEET?

A spreadsheet is a large sheet of
paper ruled into rows and columns on
which complicated calculations can be
logically and neatly set out. Only the
figures to be ‘'plugged' into the
calculations can be seen however, and
their corresponding answers. The
computer-based version displays a small
part of this tabular sheet on a monitor
screen (usually some twenty rows by up
to twelve columns) but permits the
screen to act as a 'window' that can be
moved to any part of the sheet. Numbers
can be entered into the individual
boxes (or cells) on the sheet and
calculations performed such as the
addition of column totals, the
extension of quantities and prices into
invoice totals, or the computation of
specified statistics.

The delight oF spreadsheet
applications comes to the fore when you
need to change the original values
entered. If a new number 1is entered
into a cell, every other number on the
sheet is automatically recalculated in
a matter of seconds. The sheer joy of

seeing hundreds of changes calculated
before your eyes, when manual methods
previously took hours of tedious
effort, has to be experienced to be
appreciated.

The application of spreadsheets to
date, has been primarily in accounting
and financial planning and it's with
mainframe-based financial planning
packages and VISICALC on a micro that I
have gained my experience. This is not
to suppose that spreadsheets are
limited to financial calculations
however; their flexibility means that
they can be used for any type of
numerical manipulations such as those
involved in scientific and statistical
calculations; and their area of
application depends, to a large extent,
on the ingenuity of the user. What can
be computed on a spreadsheet is about
as limitless as what can be organised
on a data-base filing system.

This article, the first of two, will
describe this type of application in
more detail, particularly for the
reader with no previous experience of
spreadsheet programs. In the second
part, the two packages from BBC Soft
and Acornsoft will be examined in some
depth.

FEATURES OF SPREADSHEETS

A simple application of spreadsheet
use, based on one particular package,
is given in the pro-forma invoice
printed out with this article. This
shows how the columns are identified by
letters and the rows by numbers
(although these border headings could
be removed in a final version for
printing). The names of various items
stocked are listed in the first column.
The user would fill in the required
quantities in the second column; prices

BEEBUG

JUNE 1984

Volume-3 Issue 2

29

are given in the third column and may
be changed if necessary. The
spreadsheet has then been programmed to
calculate an appropriate quantity
discount for each item (in this case on
the same scale for each item, although
individual discounts can easily be
incorporated) . It then extends the
invoice to calculate net totals, VAT
and the total payable. The important
point to appreciate is that the
necessary programming for a calculation
of this kind can be entered in a few
minutes, even by an inexperienced user,
and then used to calculate the new

These formulae closely resemble Basic
expressions and can include a
reasonable range of in-built functions
such as LOG, SIN and INT. They would be
entered from the keyboard and stored
with the spreadsheet but are not
normally visible unless required for
editing or copying.

However, having made these entries
for the first row, 'Widgets', it is not
necessary to re-enter equivalent
formulae for the six subsequent rows. A
replication device will do this for you

results from each quantity in a few merely by specifying the source range
seconds.
cesicaescBiiiia e Bl 0 Ciiiaaiai Diailiiii Bl 0Bl 0
. Item Quantity Price Discount = Net VAT Total inc
. % VAT
i3
4
..5 Widgets 50 5.00 15 212.50 31.87 244.37
.+6 Toggles 13 1.90 5 23.47 3.51 26.98
..7 Nurdles 40 1.25 19 45.00 6,75 51,75
- ..8 Gazoos 120 .60 20 57.60 8.64 66.24
..9 Flumps 20 2.50 5 47.50 12 54.62
.10 Bits 150 9.25 20 30.00 4.50 34.50
.11 Bobs 32 2.75 10 21.60 2.24 24.84
12
.13 TOTAL 437.67 65.63 503.30
.14
Numbers, formulae and labels are (i.e. E5 to G5, also stated as E5:G5)
entered directly with the program and the required destination (i.e. rows
automatically distinguishing between 6 to 11). For each variable used in the
them. Labels are left-justified and formula replicated, the wuser is

numbers right-justified by default, so
the contents of columns A, B and C can
be entered simply by placing the cursor
in the correct box (using the cursor

keys), typing the entry and pressing
Return. The next cell is then accessed
also using cursor keys, although

advancement to the next position can be
set to be automatic.

Omitting the derivation of column D
for a moment, values in columns E,F and
G are calculated by entering formulae
in a way familiar to any Basic user,
with the content of a cell being
identified by its column letter and row

prompted to specify whether the
variable should betransferred exactly
as it stands (i.e. ES5 remains as E5
even in row 6) or whether it should be
treated as a relative reference (i.e.
E5 in row 5 becomes E6 in row 6). In
this example, all replications should
be relative. Although difficult to
describe in words, the use of
replication rapidly becomes second
nature and is a most powerful method of
writing the logic of calculations into
a spreadsheet.

Next, totals are
columns E, F and G.

required for
These can be

number (e.g. E5): specified by referring only to the
E5=B5*C5* (1-D5/100) first and last values in each column
F5=E5*0.15 and using an automatic total feature.
G5=E5+F5

BEEBUG JUNE 1984 Volume-3 Issue 2

«®

®®

30

Returning to column D, the discount
offered depends upon the order
quantity. This can be calculated using
an IF statement having the format :

IF (logical expression,formula,formula)

The first formula (or value) is
evaluated if the logical expression is
true, the second if it is false. These
statements can be nested, so a typical
entry in column D reads :

IF (B5<19,0,IF (B5<25,5, IF (B5<50,10, IF (B5
<100,15,20))))

If such logical expressions become
too complicated, lookup tables can be
constructed. A lookup table is a list
of wvalues of one variable with
corresponding values of a second
variable. Thus a more complex set of
discount percentages could be set up in
a table located elsewhere on the sheet,
and the correct value read off.

Order quantity Discount %
g- 9 [’}
10 - 24 B
25 - 49 10
50 - 99 15
100 and over 20

As the table might be set up on the
spreadsheet quite separately from the
main one, it wouldn't be displayed
unless specifically requested. Such
tables are particularly valuable where
a relationship follows no easily
represented mathematical formula (e.g.
discounts offered to different
customers) or formulae which are
difficult to calculate each time they
are required (e.g. a statistical table
requiring numerical integration).

Finally, colunmn widths and cell
formats can be set so that numbers are
displayed with necessary decimal places
neatly aligned. If additional rows or
columns are required, these can be

inserted at any point; a most necessary

facility in practical spreadsheet
construction!
Once the results have been

calculated, required portions of the
sheet can then be directed to a printer
(the coded row and column headings
being removable) and the overall
spreadsheet saved to disc or cassette
for future use or amendment. Protection
can be set so that other users are
allowed only to enter new values for
certain cells, to ensure that the model
structure is not inadvertantly
corrupted.

This example gives only one simple
application of the general spreadsheet
capability. Obvious financial app-
lications include profit budgeting
(with each column representing a week
or a month), cash flow planning and
investment analysis. There are further
facilities that one might expect to
find on larger spreadsheet 'systems'
on the more capable micro's: the
ability to link spreadsheets that run
several sheets concurrently and carry
results between them all; graphics
facilities to display the results as
graphs or pie-charts; spreadsheets that
interface directly with certain
database packages for their
information, or word processors, soO
that tables can be neatly formatted for
document printing. Non-financial
applications include things 1like club
membership records, limited resource
scheduling, holiday planning charts for
employees and a general home data base.

NEXT MONTH

Next month we shall be looking at
two programs recently made available
for the Beeb called Viewsheet and
Ultracalc. Both programs possess most
of the features described so far and
operate in a very similar way. However
there are still some significant
differences in their capabilities and
these we shall attempt to highlight. =

HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS

BREAK FROM WITHIN BASIC

Try CALL !-4. This has the same effect as pressing the Break key (only from
within a program), but note that cassette filing system selection will take place
if you enter this in immediate mode and hold the Return key down for too long. 5=

BEEBUG

JUNE 1984

Volume-3 Issue 2

31

MACHINE CODE GRAPHICS (Part 5)

by Peter Clease

in this,
multi-coloured character
great ease.

So far I have only dealt with
horizontal movement, since this is very
easy to do - you add or subtract eight
from the screen pointer to move two
pixels right or left. If you look at
the byte map for Mode 2 (given in the
first article in this series, in BEEBUG
Vol.2 No.8 - see also Vol.2 No.9) you
will see that vertical movement is much
more difficult since the boundary
between character blocks vertically has
to be detected and crossed, and this
involves an additional increase in the
pointers.

The machine code routines below,
however, will do it all for you. Append
them at the end of your program as an
assembly subroutine and call 'plot' to
plot characters. The program plots a
Mode 2 8x8 character anywhere on the
screen (the structure of the characters
is the same as those defined earlier in
this series). When calling the routine,
you need to supply information about
where the data is in memory, and where
to put the character on the screen.
This is done by making &72 and &73
point to the character data (with &72
being the low byte, and &73 being the
high byte) and &70 and &71 point to the
screen memory address of the top left
pixel in the desired position of the
shape.

the concluding article
graphics, we present an extremely useful
to be placed anywhere on the screen with

series on machine code
routine that allows a

in our

NOTES ON SUBROUTINE

The first two lines of this routine
are used to set up two counters. One of
these is for the number of pixels that
have been placed across the current
character row (the Y register), and the
other is a count of how many lines have

been drawn (the X register). By
altering the tests on these two
registers, and a few other

instructions, you could alter the size
of the character plotted, but you would
need to modify the character data
supplied as well. The third line adds
the offset to find the byte of data for
each group of two pixels to be plotted
for each character line, and checks to
see if the character 1line has been
fully plotted. The fourth line checks
to see if the whole character has been
printed, exiting if it has, running
through to the next line and
incrementing the X register for the
next line if the routine has not
finished. The remaining lines decide
upon the size of the offset increment
needed, and add this onto the screen
pointers.

10000 .plot LDX#0

10010 .PL1 LDY#0 .
10020 .PL2 LDA(&72) ,Y:EOR(&70) ,Y:STA (&7
2),Y

10030 CPY#24:BEQ PL3:CLC:TYA:ADC#8:TAY:
JMP PL2

10040 .PL3 CPX#7:BNE PL4:RTS

10050 .PL4 INX

10060 LDA&7@:AND#7:CMP#7:BEQ biginc
10070 CLC:LDA&7@:ADCH1:STA&70:LDA&71:AD
C#0:STA&71

10080 .PL5 CLC:LDA&72:ADC#1:STA&72:LDA&
73:ADC#0:STA&73:IMP PL1

10090 .biginc CLC:LDA&70:ADCH#&79:STA&70
:LDA&71:ADC#2:STA&71:IMP PL5

The data for the character should be
arranged in column order, i.e. the
first byte of data is the data for the
top left pixel, the second byte is for
the second byte of the first column ...
the ninth byte is for the top pixel of
the second column and so on. This is
the same way of arranging the data that
we have been using throughout these
articles. How to enter the data and use
the routine generally is shown in the
demonstration program (Program 11).
This uses the animation techniques from
last month and the 'plot' subroutine
already described this month to show a
walking 'creature' moving across a
multi-coloured background.

<— 'The Plot Subroutine'

BEEBUG

JUNE 1984

Volume-3 Issue 2

«®

o
e

3

Basically, when each character is to
be plotted, we want to repeat a basic
sequence for each line of the

character, viz: plot this line, decide
upon the size of the increment

necessary, add this increment, and then
repeat. The more complex part of this
is deciding when we have crossed the
boundary between one standard character
position and the one below. If we have
crossed this division, then it is
necessary to add on a bigger increment.
Normally we add just 1 to move down to
the next pixel, but we need to add &279
if we have crossed this boundary.

This program will only work in Mode
2 as it stands, since it is assumed
that each character needs a data block
that is four by eight bytes in size. To
convert it to Mode @ or Mode 4, change
the CPY value at the start of line
10030 to 8; this alters the program so
that each line will then only require 1
byte per horizontal line to specify all
8 pixels. To convert it to Mode 1 or
Mode 5, change the CPY value to 16 (two
bytes per horizontal line). These
differences are summarised in the table
below. In all modes, the data reads
down the columns of bytes.

Mode | Colours | Bytes per Line | CPY
0,4 2 1 8
1,5 4 2 16

2 16 4 24

Table showing bytes per character line
for different modes.

This program uses Exclusive-OR
plotting, as you may have noticed in
examining the machine code. This is the

same kind of plotting as is invoked by
the GCOL 3,x statement (where x is a
number standing for the colour to be
plotted 1in). The property of this
method of plotting is that if you plot
the same character at the same location
twice, then the character will
disappear, leaving the background
unchanged. The outcome of this is that
you can move a character very easily
across any background, without any
problems, provided that all actions to
the screen use Exclusive-OR plotting.
First plot the character, wait a while,
unplot <. it (by plotting the same
character at the same place a second
time), increment the pointers and then
start at the beginning of this sequence
again. This gives the effect of
movement. The effect is similar to the
way cartoons are animated. The next
program, the final demonstration
program, shows nicely how the routine
can be used to animate characters over
a pre-defined background, without
deleting any of the background through
the use of Exclusive-OR plotting.

10 REM PROGRAM 11
20 REM AUTHOR PETER CLEASE
30 REM VERSION B1.0
40 REM BEEBUG JUNE 1984
50 REM PROGRAM SUBJECT TO COPYRIGHT
60 :
100 FORPASS=0 TO2 STEP2
110 P%=&2300
120 [OPTPASS
130 .start LDA#0:STA&2800 :LDA#&30:STA
&2801
140 .loop JSRfigl:JSRdelay:JSRfigl:JS
Rinc:JSRfig2:JSRdelay:JSRfig2:JSRinc:LD
A#&80:BIT &FF:BMI exit:CMP&28@1:BPLloop
teeXit RIS
15¢ .delay LDX#80:.DE1 LDY#255:.DE2 D
EY:CPY#0:BNE DE2:DEX:CPX#@:BNE DE1:RTS
160 .figl JSRHEAD:JSRCOORDS:LDA#&20:S
TA&72:LDA#&29:STA&73:JSRplot:RTS
170 .fig2 JSRHEAD:JSRCOORDS:LDA#&40:S
TA&72:LDA#&29:STA&73:JSRplot :RTS
180 .COORDS CLC:LDA&2800:ADC#&80: STA&
70:LDA&2801 :ADC#2:STA&71:RTS
190 .HEAD LDA&2800:STA&70:LDA&2801:ST
A&71:LDA#0:STA&72: LDA#&29:STA&73:JSRplo
t:RTS
200 .inc CLC:LDA&280@:AND#7:CMP#7:BEQ
IN1
210 CLC:LDA&2800 :ADC#9:STA&2800 : LDA&2
801 :ADC#0:STA&2801 :RTS
220 .IN1 LDA&2890@:ADC#&81:STA&280@:LD
A&2801 :ADC#2:STA&2801:RTS
230 .plot LDA#0:STA&74 »

BEEBUG

JUNE 1984

Volume-3 Issue 2

33

240 .PL1 LDY#0

250 .PL2 LDA(&72),Y:EOR(&79),Y:STA (&7
9),Y

260 CPY#24:BEQ PL3:CLC:TYA:ADC#8:TAY:
JMP PL2

270 .PL3 LDA#7:CMP&74:BNE PL4:RTS

280 .PL4 INC&74

290 LDA&70:AND#7:CMP#7:BEQ biginc

300 CLC:LDA&7@:ADC#1:STA&7@:LDA&71:AD
C#0:STA&71

319 .PL5 CLC:LDA&72:ADC#1:STA&72:LDA&
73:ADC#0:STA&73:IMP PL1

320 .biginc CLC:LDA&70:ADC#&79:STA&70
:LDA&71:ADC#2:STA&71:JMP PL5

330 1]

340 NEXT

350 :

360 MODE2

370 vDU23,1,0;0;0;0;

380 FORI%=@T095

390 READ 1%?7&2900

400 NEXT

410 FORI%=QTO1279STEP80

420 FORJ%=QTO10@23STEP64

430 PROCblock (1%,J%, (RND(2)-1)*RND(7))

440 NEXT,

450 COLOUR15:PRINTTAB(3,3)"E.T. phone
home" : COLOUR7

460 :

470 REPEAT

480 CALL start

490 UNTIL 0

500 :

510 DATA4,12,12,12,12,12,4,8,12,12,12
2 12,12,12;12,12,12,12,12,63,42,42.12,12
i207:8:12:12,12;:12,;12;8

520 REM head

530 :

540 DATAG,®,9,4,12,4,0,0,12,8
:9,9,12,4,4,4,4,4,4,4,0,0,0,0,0

55¢ REM taill

~ ~
= 00
~ =
[(SHeel
~ ~

560 :

57¢ DATA®,0,9,0,9,9,9,9,12,8,8,8,8,8,
8,12,12,4,0,9,9,9,9,9,9,8,8,8,8,12,9,0

580 REM tail2

590 :

600 DEF PROCblock (A%,B%,C%)
610 GCOL®,C3%+128

620 VDU24,A%;B%;A%+79;B%+63;
630 CLG

640 ENDPROC

TECHNICAL NOTES ON PROGRAM 11

Line 140 is the main program loop,
and also contains code to check for
Escape being pressed.

Line 150 is the delay subroutine,
and merely loops round doing nothing a
lot of times!

Lines 160 and 170 are the two
subroutines that draw the two alternate
lower half characters. This provides an
animated character, as was shown in
part 4 of this series.

Line 1809 increments the
pointer.

screen

Line 190 draws the head of the
character, which is constant for either
of the two lower halves.

Lines 200 to 220 are concerned with
checking and wupdating the screen
pointer.

Lines
routine,
article.

230 to 320 are the plot
as described earlier in this

Lines 360 to 450 set up the screen
with some different coloured
backgrounds for the character to walk
over.

Lines 470 to 490 repeatedly call the
character routine to walk the shape
across the screen.

Lines 510 to 580
character data.

contain the

Finally, lines 600 to 640 fill in a
small block at a given address with a
given colour.

One point to note, though, is that
although no net alterations result to
the background, when two colours
overlap, a different colour may be
displayed.

I have now given all the information
you need on screen structure and layout
to write a machine code graphics game,
but you may still be unsure of how to
write one. Although it is beyond the
intended scope of this series to cover
this topic, you might like to consider

BEEBUG

JUNE 1984

Yolume-3 Issue 2

34

using the following basic structure as make the base fire and the aliens move
a starting point: but in doing so you will learn how to
design a program's structure.
.Loop JSR moveinvaders

JSR firealiens
JSR firebase
JSR movebase
LDA lives
BNE Loop

GOOD LUCK!

[We hope to follow up this series later
by looking at the problems involved in
designing a complete machine code game
based upon the ideas presented in this

You will have to work out how to series. Ed.] qﬁa

TESTING OUT YOUR MICRO (Part 4)
THE CASSETTE INTERFACE

by Mike Williams

This month we continue our series on testing out your micro, by
looking at the cassette interface and the use of a cassette
recorder. The article provides help to ensure that your cassette
recorder is properly adjusted, as well as suggestions for sorting
out any problems that may arise.

®®

In this month's article I am going
to deal with the cassette interface of
the BBC micro. Clearly, if you suspect
a favlt, and find it difficult if not
impossible to load programs from
cassette, it will be equally difficult
to load a program to test out the
interface. This month's article does
not therefore include a program, but
looks at a variety of practical ways

recorders we have seen), about 8 or 9
on a scale to 10.

Every BBC micro is supplied with a
'Welcome' cassette and the first
program on this can be used to achieve
the Dbest setting for the volume
control. In fact, this is exactly what
this program is there for. Set the
volume control to a low setting, start

with which you can set up and test out the tape going following the
your cassette filing system. instructions supplied with the
'Welcome' cassette, and very slowly

Of course, any test of the cassette
interface is as much a test of the
cassette recorder and the setting of
its volume and (where fitted) tone
controls, as it is of the interface
itself. Remember too, that with some
cassette recorders, usually those
designed specifically for wuse with a
micro (like the BBC Data Recorder), the
tone and volume controls have no effect
on the signal fed into the computer, as
the record 1level is controlled
automatically.

SETTING UP YOUR CASSETTE RECORDER

If the tone and volume settings on
your cassette recorder affect the
signal fed into the computer, then you
will need to establish the optimum
settings for these controls. The tone
control, where fitted, should normally
be set quite high (certainly on all the

increase the volume setting until you
continually and reliably load this test
program. You may find it worth while to
mark these 'correct' settings on your
recorder for future reference. It is
also worth checking at this stage that
you can type in a short program, and
reliably save and then reload this on
your micro.

If you do use the 'Welcome' tape as
described, remember that it is a
possibility (however remote) that your
machine has been supplied with a poor
copy of this cassette. If you suspect
this to be the case then consult with
your dealer.

You can also buy ‘'head cleaning'
tapes for use with cassette recorders,
though these do have an abrasive
effect, and are not to be recommended.

BEEBUG

JUNE 1984

Volume-3 Issue 2

il R e e e e Bvvoven {5 L L el D eearsar i o et L e B S e I e R o3 oo el e B e S e N BN~ S~ ™ T T N

35

Cleaning fluid sold specifically for
this purpose is definitely preferable.
Keeping the heads clean is probably
more important when it is to be used
with a computer than for just playing
music. One wrong note will hardly be
noticeable, but one wrong bit in a
program may make it unusable!

GENERAL FAULT FINDING

There are a number of practical
ideas that you can try out if you
suspect a problem in loading a cassette
file. Knowing exactly where best to set
the volume and tone controls for
optimum results is clearly important,
and this should ideally be done with
any new cassette recorder before trying
to save and load programs.

Another very good standby in case of
potential failure is to have one or
more cassettes, which you can normally
rely on, and which you can keep just
for use in situations like this. So,
make sure the settings are correct, and
try loading one of your 'test' tapes.

One indication of the correct
working of the cassette interface is
the regular clicking of the relay
inside the micro during 1loading or
saving. If you hear no clicks at all
then your cassette interface, or the
micro in general, may be at fault. If
you hear only one initial click, and no
more, then the micro is not receiving
any kind of recognizable signal, even a
poor one. This 1is exactly what will
result if the cassette recorder is
disconnected, for example, but may also
indicate a fault in the cassette
recorder.

One of the common causes of poor
recorder performance is poor head
alignment. With this problem, you will
very often find that you can save and
load your own programs, but not those
from other sources. If you suspect that

recorder needs adjustment, then you are
strongly recommended to consult your
dealer on this.

Another item that may cause problems
is the cable connecting the cassette
recorder to the micro. If one of the
wires has a break in it or has become
detached from the socket at either end,
then this will clearly affect the
system. Such a fault may not be
immediately apparent. For example, it
may be impossible to record, and hence
load, any new programs of your own,
whereas older programs, and those you
purchase, may load with no problems at
all. The surest way to check, is to
swap your normal cable with one from a
fully working system, and see if that
makes any difference.

One useful idea is to listen audibly
to the computer tape, either while
trying to load, or just on its own. If
you cannot hear anything, then assuming
a good tape, the trouble is likely to
be in the cassette recorder. If you are
not familiar with the rather ghastly
sound of a computer program, then it is
worth a brief listen .at least once.

Cassette tapes also vary in quality.
If you often get problems trying to
load programs from a particular
software company, then the cause may be
poor quality tapes rather than any
failing in your cassette system. The
same is true for tapes that you buy for
your own recordings, and here it is
worth paying more for known quality.

Finally, you would be surprised at
how many people have been convinced
they have a major problem, only to find
the ‘'Pause' button on the cassette
recorder was on!

Next month we shall be looking at a
program to help test out the other
ports and interfaces to be found on

the head alignment on your cassette the BBC micro (model B). i

HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS

SINGLE KEY BAD PROGRAM RECOVER - M.C.Behrend

*KEY@M%=PA. : ?M%3=13:M%?1=0 :REP.REP.N%=M%+3:REP.N%=N%+1:U. ?N3<320RN%-M%>250: ?N%=13
tM%?3=N3-M3:P.M%?21*256+M%?2, "M% :M3=N%:U.M%?1>1270RINKEY(<>-1:M%?1=M%?10R128:P."f

urther ?":G%=GET:IFG%=89ORG%=121M%?1=M%?1A.127:U.FA.{M
This will recover as much meaningful program as it is ab

e to, so that the user can

list the program again and delete or amend the corrupted lines. This is convenient
but not as comprehensive as the Rescue program in BEEBUG Vol.1 No.8.

BEEBUG

JUNE 1984

Volume-3 Issue 2

B T B T s S ——

®

TRUFFLE HUNT (32K) 55

by T. Moody-Stuart

Imagine, if you will, that you're a
builder and you've got to build a wall
across a piece of ground. Imagine also,
that you have an insatiable appetite
for truffles (?!). What do you do when
you find out that the said piece of
ground bares richly this fruit of your
desires? Well as you're a keen sort of
brick-layer, you build towards these
little delights of course. But there
are problems (you knew that there would
be, didn't you?). You've got to watch

out for the Killer Grass ! (I dare say
you knew that's what it would be as
well) .

This game is fairly self explanatory

and makes good use of the Beeb's 10 REM Program TRUFFLE HUNT
graphic and sound facilities. The 'Z' 20 REM Version B1.2
and 'X' keys control the left and right 30 REM Author T. Moody-Stuart
directions that your bricklayer takes 40 REM BEEBUG June 1984
with his wall. You will see it grow up 50 REM Program Subject to Copyright
the screen in plan view. When the wall 60 :
goes off the top of the screen, it will 199 MODE 7
immediately reappear at the bottom. Be 110 ON ERROR GOTO 530
careful not to build the wall over the 120 DIM AS(7)
top of itself though, as this is as bad 130 hisc%=500
as building over the killer grass. 140 hisc$="BEEBUG"
After traversing the field a few times 15¢ PROCinit
successfully you'll find that the game 160 REPEAT
will get progressively more 176 MODE 2
challenging. When you have successfully 180 PROCdefine
completed seven walls, a new field of 190 REPEAT
truffles will appear. 200 VDU 23;11,0;0;0;0;
219 PROCsetup
220 N%=0
As a mason, you build a wall across 230 RuRRAT N%=N%+1
the garden happily eating the 240 PROCplay
truffles! (&, X.3,%,4,4,1) 250 UNTIL dead$=1 OR N%=7

But alas, 1f you :::.; tuft of 260 SC%=SC%+100

vou, snifs ,DIEI 270 M3=M3+20

The same applies if you hit your 280 R%=(R% MOD 7)+1

AR DI K 290 FOR N%=1 TO 4

ot 300 SOUND 1,-15,50+(N%*10) ,5
But don't be deceived! 310 I%=INKEY (25)

The screens get progressively harder.

320 NEXT N%

330 FOR N%=5 TO 2 STEP -1

340 SOUND 1,-15,50+ (N3*10),5

350 I%=INKEY (25)

360 NEXT N%

370 SOUND 1,-15,100,10:I%=INKEY (50)
380 UNTIL dead%=1

ot
k
to finish

So there we are, one of the games 390 *FX 15,0
based on gluttony and salvation rather 400 SOUND 2,-15,100,10
than genocide and galactic megadeath. 410 I%=INKEY (100) :*FX15 »
< BEEBUG JUNE 1984 Volume-3 Issue 2

R RO RO BRI,

37

420 IF SC%>hisc% THEN hisc%=SC%:CLS:V
DU4:COLOUR 3:INPUT TAB(5,10)"Enter your
name ", hisc$
430 CLS
440 VDU 4:COLOUR 5:PRINT TAB(2,9)"His
core = ";hisc%
450 PRINT TAB(2,14)"Scored"TAB(9,15)"
by"TAB(12,16) ;hisc$
460 SC%=0:M%=50
47¢ PRINTTAB (@,24)"SPACE
eIII 1
480 PRINT"ESCAPE to finish"
490 REPEAT UNTIL GET=32
50@ UNTIL FALSE
519 END
520 :
53¢ ON ERROR OFF:MODE 7
54¢ IF ERR<>17 REPORT:PRINT" at line
" ERE
55@ END
560 :
100¢ DEFPROCdefine
1010 X%=500
1020 M%=50
1030 R%=1
1949 vDU 23,249,8,8,28,28,62,62,62,62
1950 VDU 23,241,42,20,42,20,42,20,42,20
1060 VDU 23,242,20,42,20,42,20,42,20,42
1@79°VDU 23,243,62,62,62,127,127,127,9
3,93
1089 vDU 23,244,0,17,106,106,60,28,62,
255
1090 FOR YY%=1 TO 7
1100 READ AS(YY%)
1110 NEXT YY%
1120 RESTORE
1130 DATA &,><,%," Fi)
1140 dead%=0
115@ ENDPROC
1169 :
1170 DEFPROCsetup
1180 vDU 5
1190 CLS
1209 FOR N%=1 TO M%
1210 T%=INT(RND(5))
1220 IF T%=5 THEN N$=AS(R%):T%=(R% MOD
2)+5:ELSE NS=CHRS (244) : T%=2
1230 GCOL @,T%
1240 MOVE RND(120@) ,RND (1000) +200:PRIN
T N$
1250 NEXT N%
1260 ENDPROC
1270 :
1280 DEFPROCplay
1290 Y%=80
1300 REPEAT Y%=Y%+10
1310 GcoL @,1
1320 MOVE X%,Y% :PRINT CHRS240
1330 MOVE X%,Y%-20:PRINT CHRS$241
1340 MOVE X%,Y%-40:PRINT CHRS241

to continu

1350 MOVE X%,Y%-60:PRINT CHR$243

1360 GCOL @,7

1370 MOVE X%,Y%-40:PRINT CHRS$242

1380 MOVE X%,Y%-60:PRINT CHRS$S240

1390 IF INKEY (-98) THEN P%=-10:X%=X%+P%
1400 IF INKEY(-67) THEN P%=10:X%=X%+P%
1419 POINT%=POINT (X%+30,Y%+10)

1420 IF POINT%=3 OR POINT%=0 THEN 1460
1439 IF POINT%=-1 THEN PROCOK:GOTO 1460
1440 IF POINT%=5 OR POINT%=6 THEN SC%=
SC%+ (19*R%) : SOUND1,-15,50,5:GOTO 1460
1450 dead%=1:Y%=1000:GOTO 149¢

1460 SC%=SC%+1

1470 VDU 4:COLOUR 3:PRINT TAB(%,@) "Hi
:"shisck!.. Scores":8C%:VDU..5

1480 SOUND 1,-15,20,1:SOUND 2,-15,0,1
1490 UNTIL Y%=1000

150@ ENDPROC

THHgSS

1520 DEFPROCok

1530 IF P%=-10 THEN X%=X%+1270 ELSE X%
=X%-127¢

1540 ENDPROC

1550 2

1560 DEFPROCinit

1570 PRINT TAB(12,12)CHR$141 CHRS129"T
RUFFLE HUNT"

1580 PRINT TAB(12,13)CHRS$141 CHRS$129"T
RUFFLE HUNT"

1590 PRINT TAB(5,20)"Press any key....
n

1600 T%=GET

1610 CLS

1620 PRINT

1630 PRINT CHR$132"As a mason, you bu
ild a wall across"

1640 PRINT CHRS$132"the garden happily
eating the"

1650 PRINT TAB(8) ;CHRS141;CHRS134;CHRS
136 ErfFlest. (5 5¢,% .=+, 1"

1660 PRINT TAB(8) ;CHRS$141;CHRS134;CHRS
136"truffles! (&,><,*, ,+, ,)"

1670 PRINT'CHRS$132"But alas, if you h
it a tuft of"'TAB(10);CHR$13¢"killer gr
ass"

1680 PRINT CHRS$132"you, sniff ,DIE!™'

'CHRS$132"The same applies if you hit your"

1690 PRINT CHR$132"own wall."

1700 PRINT'CHR$129"Complete seven wall
s and get a"

1719 PRINT TAB(10) ;CHRS129"new screen
."''CHR$132"But don't be deceived!"
1720 PRINT CHR$132"The screens get p
rogressively harder."

1730 PRINT'TAB (10) ;CHRS129"7 left"
"TAB (10) ;CHR$129"X right"
1740 PRINT TAB(10);CHR$129"ESC to fi

nish"
1750 PRINT TAB(5,23)"Press any key....."
1760 T%=GET

1770 ENDPROC =]

BEEBUG

JUNE 1984

Volume-3 Issue 2

L

38

sic 1& u

ted on BY
e ea“d 0.5

2 GRAND PRIX CAR RACE (32K)

by Jeremy Graves

You know how unusual it is to find
games for two players on the Beeb? Well
here's one. Both players assume the
roles of racing drivers, each with
their own controls at opposite ends of
the keyboard. It's then a question of
'driving' your car round the track as
fast you can (without hitting anything)
and beat your opponent across the
winning line (sounds just like the real
thing doesn't it?).

Acceleration and braking are
provided by the 'Q' and 'A' keys for
driver 1 and 'P' and ';' keys for
driver 2. Cornering, and we emphasise
that this IS cornering, for driver 1
and 2 respectively, is done with 'S'
and 'DY, and. ‘3* and Ul (Full
instructions are provided on the screen
when the program runs).

The race-track 1is displayed in
colour on the screen, as might be seen
from one of those Goodyear balloons.
There are only two cars waiting on the
starting grid, which 1is just as well
(one yellow one and one white). After
the fourth warning siren it's up to
you. Engine revs are indicated by the
pitch of the engine noise generated for
each vehicle. A lap round the track may
take about 2 minutes (well that's our
experience anyway, but without the
obstacle of a second car going round as
well!). So with the option of as many
as twenty laps you could set up a race
lasting for as long as three quarters
of an hour, if you can concentrate that
long!

Due to the exacting nature of

handling a formula racing car (think of
the expense!), we think that there's a
serious recommendation to be made that
only one driver at a time is let loose
on the track to start with.

TECHNICAL NOTES

Please note that the large amount of
data at the end of the program is the
plan for the race track; as such, any
errors should be immediately apparent
on the screen when you run the program.
However, you could quite well change
the DATA statments to redesign the
track having once mastered this one.

GRAND PRIX
By J.GRAVES
INSTRUCTIONS:

FOR LEFT PLAYER FOR RIGHT PLAYER
‘@“ ACCELERATE ‘P’ ACCELERATE
‘A’ BRAKE “+’ BRAKE

“8” TURN LEFT ‘¢’ TURN LEFT
‘D’ TURN RIGHT “3” TURN RIGHT

YELLOW CAR WHITE CAR

THE RACE STARTS AFTER FOUR SHORT BEEPS

HOM MANY LAPS IN THE RACE (1-28)7

10 REM PROGRAM GRAND PRIX
20 REM AUTHOR J.GRAVES
30 REM VERSION B@.5
40 REM BEEBUG JUNE 1984
50 REM PROGRAM SUBJECT TO COPYRIGHT
60 :

100 MODE1

110 CLEAR

120 PROCtitle

130 PROCinit

140 PROCdefine

150 PROCtrack

160 PROCstart

170 TIME=0

180 REPEAT

190 PROCpr intnew

200 PROCrenew

210 F%=0

220 *FX21,0

230 IFINKEY(-129) THENGOTO340

240 F%=1 .

250 IFINKEY (-82) THENCS (0)=C%(d)-1:IF
C%(9)=-1 THENC% (@)=7

260 IFINKEY (-51) THENC%(9)=(C%(2)+1)M
0D8

270 IFINKEY(-73) THENC%(1)=C%(1)-1:IF
C%(1)=-1 THENC% (1)=7

280 IFINKEY (-89) THENC%(1)=(C%(1)+1)M

0oD8 »

BEEBUG

JUNE 1984

Volume-3 Issue 2

39

290 IFINKEY(-17) ANDA%(0)<60 THENA% (@
) =A% (0) +1

300 IFINKEY(-66) ANDA%(0)>0 THENA% (0)
=A% (0)-1

310 IFINKEY (-56) ANDA% (1)<6@ THENA% (1
)=A% (1) +1

320 IFINKEY (-88) ANDA%(1)>@ THENA% (1)
=A% (1)-1

330 *FX15,0

340 IFF%=1THENSOUND1,1,A% (@) ,255:SOUN
D2, 1,8% (1) ;255

350 FORC1%=0TO1:X%(C1%
(C1%)) *A%(C1%)) : YR (C1%) =
%)) *A% (C1%) :NEXT

360 PROCcheck

370 PROCprintold

380 UNTILCAR%>@ ORL% (@) >=TL% ORL%(1)>
=TL%

390 IFP%(@)>@ ORP%(1)>0 THENPROCcrash
:GOTO430

400 *FX15

410 PROCprintnew:FORD%=0TO10000 : NEXT

420 TFL%(0)>L% (1) THENCAR%=0 ELSECAR%

43¢ IFCAR%=0 THENPS$S="YELLOW" ELSEPS="
WHITE"

440 CLS

450 *FX21,0

460 COLOUR2: PRINTTAB(]S 2) "GRAND PRI
X" :COLOUR1:PRINTTAB (15, 3)

470 IFP%(0)>0 ORP%(]))G THENGOTO520

480 PROClaptime

490 COLOUR2:PRINTTAB(9,12)"THE ";PS$;"
CAR WON"

500 PRINTTAB(2,14)"WITH A QUICKEST LA
P TIME OF ";RB%;" secs"

510 GOTO530

52@ COLOUR2:PRINTTAB(9,12)"THE ";PS;"
CAR CRASHED"

53¢ COLOUR3:PRINTTAB(11,17)"ANOTHER R
ACE (Yy/N)"

54¢ *FX15

55@ AS$=GETS:IFASO"Y" ANDAS<>"N" THEN
GOTO540

560 IFAS="Y" THENGOTO10@

57@ MODE7:PRINTTAB(10,10) "BYEEE"

580 END

590 3

1000 DEFPROCdefine

1919 vpU23,225,04,0,0,0,0,0,0,0

1929 vDU23,226,255,255,255,255,255,255
y 255,255

193¢ vDU23,227,255,254,252,248,240,224
,192,128

1048 VDU23,228,255,127,63,31,15,7,3,1
105¢ vpu23,229,1,3,7,15,31,63,127,255
1060 vDU23,230,128,192,224,240,248,252
1254,255

1070 vpu23,231,60,126,255,255,255,255,
255,255

1980, VDU23,282,252; 254,255,255 ,255,255
,254,252

1890: VDU23;233;255, 255,255,255}255;255
,126,60

1180 VDU23,234,63,127,255,255,255,255;
127,63

111¢ vbu23,235,255,255,255,90,90,90,9¢
,90

11209 vpU23,236,90,99,90,90,90, 255,255,
255

113¢ vDpU23,237,129,66,36,24,24,36,66,1
29

1140 vDU23,238,90,126,90,24,24,219,255
7219

115@ VDU23,239,8,30,14,223,250,112,129
nold

1160 vDU23,240,224,231,66,255,255,66,2
31,224

117¢ vDU23,241,24,120,112,250,223,14,3
a,8

1180 VPU23,242,219,255,219,24,24,90¢,12
6,90

1199 vDU23,243,24,30,14,95,251,112,120

1209 vDU23,244,7,231,66,255,255,66,231
121¢ vDU23,245,16,1206,112,251,95,14,30
1220 vDU23,250,4,74,114,87,205,171,170

123¢ vbu23,251,0,4,12,40,50,84,84,0
1249 ENDPROC

1250 i

1260 DEFPROClaptime

1270 RB%=1000000:FORC2%=1TOL% (CAR%) : IF
LT% (CAR%,C2%)<RB% THENRB%=LT% (CAR%,C2%)
1280 NEXTC2%

1290 RB%=RB%/100

1300 ENDPROC

1319 :

132¢ DEFPROCcheck

1330 FORC2%=0TO1

1340 IFC%(C2%)=0 THENP% (C2%)=POINT (X% (
C2%)+16,Y% (C2%) +4) »

BEEBUG

JUNE 1984

Yolume-3 Issue 2

o®

©®

40

1350 IFC%(C2%)=1 THENP% (C2%)=POINT (X% (
C2%) +28,Y% (C2%) -4)

1369 IFC%(C2%)=2 THENP% (C2%)=POINT (X% (
C2%)+32,Y%(C2%)-16)

1370 IFC%(C2%)=3 THENP$% (C2%)=POINT (X% (
C2%)+32,Y%(C2%)-32)

1380 IFC%(C2%)=4 THENP% (C2%)=POINT (X% (
C2%)+16,Y%(C2%)-32)

1390 IFC%(C2%)=5 THENP% (C2%)=POINT (X% (
C2%) ,Y%(C2%)-32)

1400 IFC%(C2%)=6 THENP% (C2%)=POINT (X% (
C2%)-4,Y%(C2%)-16)

1419 IFC%(C2%)=7 THENP% (C2%)=POINT (X% (
C2%) ,Y%(C2%))

1420 IFX%(C2%)<SX% (@) ANDX% (C2%)>SX% (0
)=-50 ANDY$% (C2%)<SY%(0)+20 ANDTIME>OT% (C
2%)+4000 THENLS® (C2%)=L% (C2%)+1:LT% (C2%,
L% (C2%)) =TIME-OT% (C2%) :OT% (C2%) =TIME:FO
RC2%=0TO1:COLOUR2+C2%: PRINTTAB (TX% (C2%)
/TY%(C2%)) ;L% (C2%) :NEXT

1430 NEXT

1440 IFP%(0)=0 ANDP%(1)=0 THENGOTO1460

1450 IFP%(0)=0 THENCAR%=2 ELSECAR%=1

1460 ENDPROC

14705

1480 DEFPROCprintold

1490 VDUS5:FORC2%=0TO1:GCOL3,2+C2%:MOVE
0X% (C2%) ,0Y% (C2%) : PRINTCHRS (238+0C% (C2%
)) :NEXT

1500 vDU4

1510 ENDPROC

1520 :

1530 DEFPROCprintnew

1540 VDUS:FORC2%=@TO1:GCOL3,2+C2%:MOVE
X% (C2%) ,Y% (C2%) : PRINTCHRS (238+C% (C2%)) :
NEXT

1550 vDU4

1560 ENDPROC

15705

1580 DEFPROCrenew

1590 OX% (@) =X% (@) :0Y% (@) =Y% (@) :0Y%(1)=
Y% (1) :0X% (1) =X% (1) :0C% () =C% (@) :0C% (1) =
c%(1)

1600 ENDPROC

1614@ @

1620 DEFPROCcrash

1630 VDUS

1640 PROCprintnew:VDU5

1650 CAR%=CAR%-1

1660 GCOL3,2+CAR%:MOVEX% (CAR%) , Y% (CAR%
) : PRINTCHRS (238+C% (CAR%))

1670 GCOL@, 2:MOVEX% (CAR%) ,Y% (CAR%) : PRI
NTCHRS$250

1680 GCOL@, 1:MOVEX% (CAR%) ,Y% (CAR%) : PRI
NTCHRS$251

1690 VDU4

1700 *FX15

1710 SOUND@,-10@,14,25:FORD%=0TO10003:N
EXT

1720 ENDPROC

1730 :

1749
1750
1760

DEFPROCstart
PROCpr intnew: TIME=0
FORC2%=0T06 : COLOURT+ (C2% MOD2) : PR

INTTAB(8,1) ; STRINGS (4,CHR$226)

1770
1780
'S5
1790
1800
181¢
1820
1839
1840
1850
1860
187¢

FORD%=0TO190@:NEXTD%
IFC2%/2=INT (C2%/2) SOUND2,-15,200

NEXTC2%

COLOUR2: PRINTTAB (8, 1) ; "*GO*"
PROCrenew: PROCprintold
ENDPROC

DEFPROCtitle

ABPX15

VDU23;8202;0;0;0;
COLOUR2:PRINTTAB (14,2) ; "GRAND PRI

X" :COLOUR1:PRINTTAB(14, 3pii==cCemeg =

1880

COLOUR3:PRINTTAB(14,5) "By J.GRAVE

S":COLOUR2:PRINT' ' "INSTRUCTIONS:"'''" F
OR LEFT PLAYER"SPC(7)"FOR RIGHT PLAYER"

189¢ PRINT'" 'Q' ACCELERATE"SPC(8)"'P
' ACCELERATE"''"™ 'A' BRAKE"SPC(13)"'+'
BRAKE"

1909 PRINT'" 'S' TURN LEFT"SPC(9)"'#*"'
TURN LEFT"''" 'D' TURN RIGHT"SPC(8)"'

]' TURN RIGHT"''SPC(4)"YELLOW CAR"SPC(1
2) "WHITE CAR"

1919

PRINT''" THE RACE STARTS AFTER FO

UR SHORT BEEPS"

1920

COLOUR3:PRINTTAB (3, 28) SPC(39) : PRI

NTTAB(3,28) "HOW MANY LAPS IN THE RACE (
1-20)"; : INPUTTLS

1930

IFTL%>20 ORTL%<1 THEN GOTO1920¢

1940 CLS

1950
1960

ENDPROC

1970 DEFPROCinit
1980 DIMS(7),C(7),P%(1),X%(1),Y%(1),0X

%(1),0Y%(1),C%(1) ,A%(1),0C%(1)

/SX%(1),S

Y%(1),LT%(1,20),0T%(1),L%(1),TX%(1),TYS

(1)
1990

90,99,

2000

ENVELOPE 1,1,1,1,0,1,1,1,99,0,0,-
90
*FX16,0

2010 C%=1:FORA%=45T0316STEP90:S (C%)=ST
N (RADA%) :C(C%) =COS (RADA%) :C%=C%+2:NEXT:

S(@)=0:5(2)=1:5(4)=0:5(6)=-1:C(Q)

=1:C(2

)=0:C(4)=-1:C(6)=0

2020 X% (0)=980:Y%(0)=124:X%(1)=980:Y%(
1)=94:C%(0)=6:C%(1)=6

2030 FORC2%=@TO1 : SX% (C2%) =X% (C2%) : SY% (
C2%) =Y% (C2%) :NEXT

2040 CAR%=0

2(5¢ ENDPROC

2060

20770 DEFPROCtrack

2080 RESTORE3000

2090 COLOUR1 :FORC%=@TO1239STEP8Q

2100 READBS:FORC2%=1T080

2110 B%=ASC (MIDS (BS,C2%,1))-48 »

BEEBUG

JUNE 1984

Volume-3 Issue 2

41

2120 VDU (225+B%)

2130 NEXTC2%,C%

2140 COLOUR2:PRINTTAB(21,18) ;"LAPS"

215¢ PRINTTAB(21,21) ;"A=@":TX% (9) =23:T
Y% (9) =21

2160 COLOUR3:PRINTTAB(21,23) ;"B=0":TX%
(1)=23:TY%(1)=23

217@ ENDPROC

2180 :

30@¢ DATA"111111111111111111111111 1111
111111111111120000311111120000000000000
0000000000311

3010 DATA"1000000111112000000300000000
000000000001100000031000000000000000000
000000000001"

302¢ DATA"1000000010000000041111111111
111111700001100060001000000001200000000
0000000000001 "

3030 DATA™1000100010000000010000000000
000000000001100010001000000001300000000
0000000000041"

3040 DATA"1000100010000000010091111111
111111111111100010001000000001000000000
0000000000031

3050 DATA™1000100010000000415000000000
000000000001100010001000000011111111111
1111111500001"

3060 DATA"1000100080000000120000000000

00000310000110001 000000000001 0000000000
#000000100001 "

3070 DATA"10001000000000001 00000000000
000000100001 10001 000000000001 0000000000
0000000100001 "

3080 DATA"1000150000000004100111111110
0000001 6000110003111111111111001 6000001
0000000100001 "

3090 DATA"10000000000000000001 0000001 0
000000100001 10000000000000000001 000000
0000000100001"

3100 DATA"1000000000000000000111111110
000000160061111111111111111111110000001
0090000100001 "

3110 DATA"1200000031110000031111111110
000000130001 10000000003100000001 0000001
60000001 00001 "

3120 DATA"1000100000010001000111111110
0000001 6000110001 50000000041 00000000000
0000000100001 "

3130 DATA"1000115000000411000000000000
809004100001166631111111111111111111111
111:111200001"

3140 DATA"1000000000000000000000000000
000000000001 150000000000000000000000000
0000000000041"
315¢ DATA"1111111111111111111111111111
11511111111 WA
WA =)

HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS

EASTER TRIG FUNCTIONS - J.Uys (Pretoria)

Basic programmers longer in the tooth may be aware of this useful technique.
Faster use of trig. functions in Basic can be made by storing values, prior to use,
in an array used as a look-up-table (if you have the space). Plotting a circle in

this way can be done four times faster than by the inclusion of the calculations of
the coordinates within the PLOT statement itself. For example, set up two arrays for
function results, construct a loop to calculate entries into
loop to PLOT

holding sin and cos
these at useful intervals and, fill them up, then construct a second
the contents of the arrays.

USR_HINT - Laurie Nicolson

Here's a reminder. If you use the USR construct to obtain the status register of
the 6502, do not use the DIV instruction to shift it to the right. Mask off the top
byte of the integer obtained (from USR) first. This is because if the sign bit of
the status register (which is the MSB of the integer) is set, then Basic thinks the
integer is a signed and therefore negative 2's complement number and may give
unexpected results. =)

IMPLEMENTING WHILE

- Maarten Oosterbroek (Holland)

If you really do miss a WHILE statement, here is the
structure for

WHILE X%<100 DO X%=X%+1
(Now hold on to your hats !...)

REPEAT IF X%<10@ THEN X%=X%+1:UNTIL FALSE ELSE UNTIL TRUE
(but is it structured ?).

offer of an equivalent

=

BEEBUG JUNE 1984 Volume-3 Issue 2

e e o N e s i

]
L]

IF YOU WRITE TO US

BACK ISSUES (Members only)

All back issues are kept in print (from |

April 1982). Send 90p per issue PLUS an
A5 SAE to the subscriptions address.
This offer is for members only, so it
is ESSENTIAL to quote your membership
number with your order. Please note
that the BEEBUG Reference Card and
BEEBUG supplements are not supplied
with back issues.

SUBSCRIPTIONS
Send all applications for membership,
subscription renewals, and subscription
queries to the subscriptions address.
MEMBERSHIP COSTS:
U.K.
£5.40 for 6 months (5 issues)

PROGRAMS AND ARTICLES

All programs and articles used are paid
for at around £25 per page, but please
give us warning of anything substantial
that you intend to write. 1In the case
of material longer than a page, we
would prefer this to be submitted on
cassette or disc in machine readable
form using "Wordwise", "Minitext
Bditor" or other means. If you use
cassette, please include a backup copy
at 300 baud.

HINTS

There are prizes of £5 and £10 for the
best hints each month.

Please send all editorial material to

£9.99 for 1 year (10 issues)
Eire and Europe
Membership £16 for 1 year.
Middle East £19
Americas and Africa £21
Elsewhere £23
Payments in Sterling preferred.

Subscriptions &
Software Address
BEEBUG

PO BOX 109

High Wycombe

Bucks

the editorial address below. If you
require a reply it is essential to
quote your membership number and
enclose an SAE. ‘

BEEBUG
PO Box 50
St Albans

Herts

Bditorial Address

Subscriptions and
Software Help Line
St.Albans

(8727) 60263
Manned Mon-Fri

1pm-4pm

All rights reserved. No part of this publication may be reproduced without prior written permission of
the Publisher. The Publisher cannot accept any responsibility, whatsoever, for errors in articles,
programs, or advertisements published. The opinions expressed on the pages of this journal are those of
the authors and do not necessarily represent those of the Publisher, BEEBUG Publications Limited.
BEEBUG Publications Ltd (c) 1984.
BEEBUG MAGAZINE is produced by BEEBUG Publications Ltd.
Editor: Mike Williams.
Production Editor: Phyllida Vanstone.
Technical Assistants: David Fell, Nigel Harris and Alan Webster.
Managing Editor: Lee Calcraft.
Thanks are due to Sheridan Williams, Adrian Calcraft, Colin Lindsay, John Yale, and
Tim Powys-Lybbe for assistance with this issue.
@it

TR

BEEBUG NEW ROM OFFER

e
1.2 OPERATING SYSTEM
A special arrangement has been agreed between Acorn and BEEBUG whereby BEEBUG members may obtain the 1.2 operating system
in ROM at the price of £5.85 including VAT and post and packing.
The ROM will be supplied with fitting instructions to enable members to install it in their machine.
If the computer does not subsequently operate correctly, members may take their machine to an Acorn dealer for the upgrade to be
tested, which will be done at a charge of £6.00 plus VAT. This charge will be waived if the ROM is found to have been defective. If the
computer has been damaged during the installation process, the dealer will make a repair charge.
Qg, NEW ROMS FOR OLD
& EXCHANGE YOUR 1.0 FOR THE 1.2
We can now exchange your old 1.0 operating system for the new 1.2, free of charge. To take advantage of this offer, please send your 1.0
(supplied on eprom with a carrier board), in good condition to the address below.
£5 FOR YOUR OLD 1.0
If you have the 1.0 operating system and have already bought a 1.2, we will exchange the 1.0 (supplied on eprom with a carrier board) for
a £5 voucher. This voucher may be used against any purchase from BEEBUGSOFT.
ADDRESS FOR 1.2 OS:-
. ROM Offer, BEEBUG, PO Box 109, High Wycombe, Bucks, HP11 2TD.
e

BEEBUGSOFT

ATPL’S SIDEWAYS ROM EXPANSION BOARD

SPECIAL PRICE T0 MEMBERS £39.88 inc.
Save £5.78 on normal price of £44.78

Naa o O & |
* Simply plugs into the BBC Micro i1 sz 1 lonedll owe
* No soldering necessary L
* Increases the sideways ROM capacity ® ® ® ¢
to 16
* Fully buffered - allows all sockets ML [RO T [ROMSE I ROM0)] RO 1t
to be used
* Complete with full and detailed @ F.— B r—
instruction booklet.
RAM / RAM /
* Accepts 16K KAM in special sockets GEIL [BRI | i HOE [B ROREN R UR1o8
* Battery back up facility for RAM T i}
(parts available directly from ISidEWiS El ® | os.rom
ATPL at extra cost) 5'[]]57 SIDEWAYS ROM/RAM EXPANSION S(XKUA\
— ©" ga
* As used at BEEBUG =—w ®O" U
M e
* Reviewed in BEEBUG vol.2 number 6 :g
" n‘:’n:]g]Q 3 = = €21
*U{% = T
g o+ ;D LR

HOW _TO ORDER

Please send your order with a cheque / postal order made payable to BEEBUG, and
enclose your membership number. We are unable to supply the board to overseas
members .

The address for SIDEWAYS is:
BEEBUGSOFT, PO Box 109, High Wycombe, Bucks.

BEEBUG JUNE 1984 Volume-3 Issue 2

MAGAZINE CASSETTE OFFER

To save wear and tear on fingers and
brain, we offer, each month, a
cassette of the programs featured in
the latest edition of BEEBUG. The
first program on each tape is a menu
program, detailing the tape's
contents, and allowing the selection
of individual programs. The tapes are
produced to a high technical standard
by the process used for the
BEEBUGSOFT range of titles. Ordering
information, and details of currently
available cassettes are given below.

All previous magazine cassettes (from
Vol.1 No.19) are available.

This month's cassette (Vol.3 No.2
includes: Zoom Graphics and the data
file for our Zoom Treasure Hunt
competition, two programs to create
and play event driven music including
the data for 'Jesu Joy of Man's
Desiring' from Cantata No.147 by

Mag Cassette

o [|NNI| o
BEEBUGSOFT

Bach, example of program design
(HOUSE) , utility to overlay functions
and procedures, three examples from
the Programmer's Workshop, Machine
Code Graphics example, Truffle Hunt
Game, Grand Prix Car Race game and
the winning entry in our 'Niagara
Falls' Brainteaser competition.

All magazine cassettes cost £3.00
each. For ordering information see
separate order form in this month's
magazine supplement.

MAGRZINE CASSETTE SUBSCRIPTIOM

We are able to offer members
subscription to our magazine
cassettes. Subscriptions will be for
a period of one year and are for ten
consecutive issues of the cassette.
If required, subsriptions may be
backdated as far as Vol.1 No.14,
which was the first issue available
on cassette. This offer is available
to members only, so when applying for
subscription please write to the
address below, quoting your
membership number and the issue from
which you would like your
subscription to start.

CASSETTE SUBSCRIPTION ADDRESS:

Please send a sterling cheque with
order, together with your membership
number and the date from which the
subscription is to run, to:

BEEBUG, PO Box 109, High Wycombe,
Bucks, HP1@ 8HQ.

CASSETTE SUBSCRIPTION PRICE:

UK £33 inc VAT and p&p

OVERSEAS (inc Eire) £39 inc p&p
(no VAT payable) .

BEEBUG BINDER OFFER

BEEBUG MAGAZINE BINDER OFFER

A hard-backed binder for BEEBUG
magazine is available. These binders
are dark blue in colour with 'BEEBUG'
in gold lettering on the spine. They
allow you to store the whole of one
volume of the magazine as a single
reference book. Individual issues may
be easily added or removed, thus
providing ideal storage for the
current volume as well.

BINDER PRICE
U.K. £3.90 inc p&p, and VAT.
Europe £4.90 inc p&p

(no VAT payable) .
Elsewhere £5.90 inc p&p

(no VAT payable) .

Make cheques payable to BEEBUG.

Send to Binder Offer, BEEBUG, PO Box
109, High Wycombe, Bucks, HP1@ 8HQ.
Please allow 28 days for delivery on
U.K. orders.

Printed in England by Staples Printers St Albans Limited at The Priory Press.

ISSN 0263-7561

