e

e
.

o =
=

MR’N‘?’S mmsEEE e
w&"marW:‘tfzz‘;,:vaWW,w .
. .

s 95 e

193
s £§§..

o zggg:_ggxgmg,
...
...

...

. %%M?N?;mﬁ:;?:w&: o

) L

. ,w»:;ﬁ.&Qf;**‘:jﬁgézgzﬁi&::‘:wmm
- ”‘”"“‘Zmrrzmmw .
o *’sp« }i»»wywm@;;@mmWM@
: “‘“““uﬁ%"@*ﬁm‘mww -
RN . mmmmw»m
e A’Zm»mmwwmy Lo
Mgﬁ"‘? . «m%“%’%'é-w» - .
. %::;;&e;m} - aﬁ«ﬁ’t@“ . ”%ﬁ%wm&”fwmn&x@n;;
.- w&u o L e

. .
... .
- gwﬁ%mmmwﬁamw .

m;_»ubjs;zz‘;g”‘mz:m

%‘/&&

m'j‘&zz::&“*‘;m sl
s M»?yairg‘;if&?‘;;ﬁx% .
. - o MZ?,:’::;;A;« o z?r::zz::»;m::‘
w&mw@m w;;;;ngxsx;w :w%%i?%”»% .
e . L
- . ?5% . . uz:ia:w -

S - .
o e e ;x“w“i”““"m‘w"”m . -
o Wgéfm . = m%:f,gv .
- .
- wxg\;:,%wmw ﬁgww u,:ﬁ:»%;gfgm .
’
o
or o W B .
- wmgzzamwm};; ’”w%w;mw@h&zﬁxbg“m*w%“f’””?:;rgfﬁjwsxW
. a\f&zm - - ,E«zng;&ez&%‘ég‘? .
- m‘%’wﬁi‘é:@% .

g&m = ;M, - ;m.,mw
a‘“z‘m»%@%?«;’”: wﬁﬁ» . ‘“%»
. .

"D

i - b s i =
. “‘”"i&f’%m &x&é‘vﬁiwﬁ ‘*"?fmm'm -
- . »«;g;m»?;;m‘é .

.
ﬁmwhwwé, mz;,fm S
. ,,Wwwmxwmmw

THIS MONTH'S MAGAZINE

If this month's issue of BEEBUG seems fatter and heavier than usual then you will
not be surprised to learn that we have included an extra four pages. At the moment
this is not a permanent change in the magazine but reflects the fact that this is a
two month issue. We felt that it was necessary to devote rather more space than
usual to reviews in order that we might adequately cover the new second processors
and other hardware recently released by Acorn. The additional pages have allowed us
to both review Acorn's Z80 Second Processor and the recently launched Bitstik system
in depth, and still reasonably maintain the balance of articles in the magazine. The
780 Second processor review covers the hardware, operating system and programming
languages included as part of the package. In the next issue we shall be turning our
attention to the extensive range of applications software that is provided.

With the growing popularity of communications amongst home users we take a
further look at Micronet and some of the latest developments of this highly
successful enterprise. We expect to follow this in the next issue with a review of
Acorn's new Prestel Adaptor and a look at the world of modems and bulletin boards.

With a longer period to the next issue we have included an interesting hardware
project complete with comprehensive software that enables your Beeb to act as a
temperature probe. Two sensors are included in the design for added interest and
flexibilty. The hardware is simple to construct, cheap to buy and has many
applications. This excellent article was contributed by one of our Dutch members,
Roel Grit, who was the author of the mathematical graphs program that we published
in the May issue of BEEBUG.

We have also featured a screen driven music synthesizer which allows all the
sound and envelope parameters to be changed graphically on the screen so that you
can synthesize music from the keyboard using a wide variety of manufactured sounds.
The screen design is a particular feature of this program, and this adds
considerably to the flexibilty of the synthesizer. Mike Williams

ZOOM COMPETITION RESULTS

We had a very large number of entries to our Zoom Treasure Hunt Competition,
which we set in conjunction with the magazine cassette for the June issue, and the
two winners of Computer Concepts Graphics ROMs are D.A.Dobbin of Essex and the joint
entry submitted by Terry Burden and Nigel Knight from Cornwall. Full details of the
solution are included in this month's Advertising Supplement.

HINT WINNERS

Out of this month's good selection of hints we have picked three winners. The £1¢
prize goes to J.Martins of Norway, and £5 prizes go to Richard Sterry, - on behalf of
the Wakefield BBC Micro Users Group, and to Michael Quinion. Our thanks to all those
who take the time to send their hints in to us.

MAGAZINE CASSETTE/DISC

All the programs in this month's magazine are available on both cassette and disc
as detailed on the back cover.

SOFTWARE HELP LINE

We would 1like to remind members that the Help Line is available primarily for
queries relating to subscriptions and software orders. It is not normally practical
to answer over the telephone detailed technical queries related to programs
published in the magazine. Please write with all the details and mark your letter
'Technical Query'. Some queries can only be dealt with satisfactorily by reference
to the original author.

BEEBUG AUG/SEPT 1984 Volume-3 Issue 4

BEEBUG MAGAZINE

GENERAL CONTENTS

2 Editorial

4 Acorn’s Z80 Second Processor

7 Temperature Measurements Using the Beeb
13 Beginners Start Here —

Changing Colour
15 Points Arising
16 FRAK!
An Exciting New Game Reviewed
17 Automatic Disc Menu Utility
20 Micronet — One Million Frames On
24 A Screen Driven Music Synthesizer
29 BEEBUG Workshop — Delay Loops
31 Acorn’s Bitstik Graphics System
35 Testing Out Your Micro (Part 5)
Ports and Interfaces
38 Interstellar Raider
42 Pontoon

HINTS, TIPS & INFO PROGRAMS

12 Position of System Variables in Memory 7 Temperature Measurement
12 Error Detection when Opening Files 17 Disc Menu Utility

28 Wordwise and MCP40 Print Size 24 Music Synthesizer

28 REM Statements in DATA Statements 35 Testing Out Your Micro

30 Watford-Acorn DFS Delete 38 Interstellar Raider

30 Inverse Character Definitions 42 Pontoon

30 Self Deleting Movedown Routine

34 Shinwa CP80 ‘£’ Patch

34 Printer Dump without Corrupting Displays

34 Personalised Header on Break

37 Deleting Null Files

41 Downloading Long Programs from Tape to Disc

BEEBUG AUG/SEPT 1984 Volume-3 Issue 4

ACORN’S Z80 SECOND PROCESSOR

Reviewed by W.D.S.C. Freeman

With the launch of their Z80 Second Processor, Acorn are clearly
aiming at the small business user by the adoption of CP/M as the
operating system (widely used on other business machines) and the
wealth of business software packages bundled in the price of £299
(inc VAT). This month, in the first of two reviews covering the
entire %80 package, we look at the processor itself, the operating
system (CP/M) and the languages supplied with this new system.

h g

BBC model B with standard disc inter-
face (one using the 8271 controller)
and dual double-sided 8¢ track disc
drives. A good monitor and a printer
are also useful, though not essential.

The BBC Micro has grown up. With the
much delayed arrival of the promised
second processors, it is now beginning
to fulfill some of its potential. If
you have a BBC micro, a pair of 80
track disc drives, a printer and the
need for good business software, then
the 280 must be on your shortlist at
the very least. There is so much
software included with the processor
that a review like this cannot hope to
be exhaustive. I shall start by
describing the second processor system,
the operating system (CP/M) and the
programming languages that are part of
the package. Part 2 of this review will
appear in the next issue, and will
concentrate on the applications
software.

The Z80 is packed in two boxes. The
first contains the processor itself
plus a set of seven master discs with
the software, and a DNFS ROM which
replaces your DFS and any NFS fitted
(see last months review of the 65082
second processor for more details of
this new chip). A voucher for a 1.2 MOS
is included should this not already be
fitted to your Beeb. &An introductory
manual provides instructions for
setting up the second processor and a
set of special function key overlays is
also included. The second box contains,
eleven (yes eleven) manuals. This comes

to a couple of thousand pages but you
may well find that you only need a few
of these for your own applications.

Setting up is simple. Replace the
DFS (and the NFS ROM, if you've got
one) with the DNFS ROM. Attach the 780
second processor to the Tube connector
of your Beeb, plug it into the mains
and you are ready to go. The cable that
joins the Beeb to the %80 is very short
to preserve the integrity of commun-
ications between the two processors.

As with the 6502 second processor
reviewed last month, there is no
absolute restriction on only using the
new Acorn DNFS filing systems. The
system functioned correctly when tested
with a Watford DFS, and we can see no
reason why there should be any problems
with this alternative DFS. In general,
if a filing system works with the 6502
second processor, it should work
equally well with the 280 second
processor. The system will not,
however , function correctly with ROMs
such as Disc Doctor fitted. In general
it is best to assume that any product
not made or explicitly supported by
Acorn could cause problems, although
this does not mean that these products
will not work.

Moving between applications that
either require, or won't work with the
780 is quite simple; if the 280 is
needed, simply make sure it is turned
on, and perform a Control-Break.
Likewise, if the Z80 is not needed,
turn it off and perform a Control-
Break. A normal Break with the Z80
turned on places the user into a mode ¢
No Language Enviromment (NLE) very
similar to that discussed in the 6592
review.

BEEBUG

AUG/SEPT 1984

Volume-3 Issue 4

5

You are supplied with 7 discs when
you purchase the Acorn Z8¢ Second
Processor, and these are fairly well
packed with programs and data. Before
using these programs, a specially

written program guides you through the

preparation of working copies, so that
the originals may be stored safely as
backups . This
proceeding further, and the program
provides extensive instructions and
help messages as you continue. These
steps are also covered very well in the
780 User Guide; a short but comprehen-
sive introduction to the system and its
software.

To boot up one of the application
discs it must be placed in drive ¢
(CP/M refers to both sides of the disc
as a single drive with 400K available -
very sensible - and thus drives ¢ and 2
are now called ‘A' by CP/M). Pressing
Control-Break will load and run CP/M. A
start up message with a new prompt
appears. The prompt is A> which tells
you that the default drive is A. When
the 780 is in use under CP/M the Beeb
is an entirely different machine.
*BASIC does not work and if Break is
pressed data, programs and CP/M itself
will normally be lost - the whole lot
then has to be reloaded from disc.

THE CP(M OPERATING SYSTEM
CP/M (Control Program for Micro-

computers) is an industry standard disc
operating system for eight bit micros
(usually based on the zilog Z8@%, though
originally for the Intel 8080). Like
the Acorn MOS/DFS combination it
handles disc filing, printing, screen
handling etc. It consists of four main
components. BIOS (Basic Input Output
System) deals with all the devices
attached to the computer (screens,
discs, printers etc.) and this is
specific to the computer. In the case
of the Beeb it controls the Tube. CCP
(Console Command Processor) interprets
and acts upon commands typed in. On top
of these, disc management is controlled
by BDOS (Basic Disc Operating System),
which handles such things as placement

of files on the disc etc. Finally there.

are applic- ations programs that you
load and run. Because the Beeb handles
input and output devices the %8¢ is
free to concentrate on data crunching.
This makes it a lot more efficient than

is necessary before.

many other CP/M machines. Once CP/M is
loaded about 55K is left for appli~
cation programs or other languages. For
instance with the 28§ version of BBC
Basic loaded from disc and running, 40K
is available to the user.

Although CP/M is a well established
operating system for many micros, there
are still many differences between
machines. Disc formats are affected in
this way and discs are not usually
transferrable between different CP/M
systems, though the software itself is
portable. The conversion of CP/M
software to run on the Beeb will
usually need to be undertaken by
specialist suppliers, and in most cases
the task will be beyond that of many
end-users.

CP/M recognizes a small number of
operating system commands (mostly
different from the Acorn DFS commands) .
For instance to 1list the files on a
disc DIR is used instead of *CAT
(directory rather than catalogue). DIR
is a built in command; others are ERA
(erase a file), TYPE (identical to
*TYPE in DFS) etc. As well as these
there are utilities on disc like FORMAT
and PIP., FORMAT is like the DFS utility
of the same name, whilst PIP can copy
files (though it is more powerful than
*COPY) . Utilities are invoked by typing
the name of the utility as though it
were a command, and this may be
followed by various parameters. Two
non-standard utilities are STAR which
passes the rest of the line entered to
the command line interpreter in the
Beeb (STAR TEXT is thus equivalent to
*TEXT) , and DIP which allows files to
be moved from DFS to CP/M discs and
vice versa.

The CP/M manual is a vast improve-
ment on past issues but is still heavy
going. Fortunately Acorn realised this
and have done a very good job of prov-
iding most of the essential information
necessary to use CP/M in the 280 User
Guide. It is quite possible that you
may never need to look at the CP/M
manual, which is really of more use to
systems programmers.

THE LANGUAGES .
Three languages are supplied with

BEEBUG

AUG/SEPT 1984

Volume-3 Issue 4

6

the 7Z80: BBC Basic, Professional Basic
and CIS Cobol. An assembler is also
supplied but this is for the 8080 chip
which is compatible with, but less
powerful than, the Z80. Users who are
familiar with BBC Basic will probably
carry on using the 780 version, but the
other two languages are arguably more
suited for the development of serious
business applications.

BBC BASIC

This comes with the Welcome package
of programs on disc, and is a faithful
reproduction of Issue 2 Basic apart
from the assembler which is now for the
7Z80. The manual supplied is very small
for this reason, and just outlines the
differences, though the second
processor can significntly upgrade
performance., The less I/0 (access to
the Tube) required then the faster the
program runs compared with Basic on the
Beeb alone. I did not carry out proper
benchmarks but a FOR-NEXT loop wrapped
around a fairly complex calculation was
twice as fast on the 280. A similar
loop that continuously plotted a
triangle on the screen was only 5%
faster on the Z80.

PROFESSIONAL BASIC

This is very similar to Microsoft
Basic as wused on the IBM-PC, ACT
Apricot etc. It is supplied to allow
access to programs written in Basic
such as Nucleus (this is part of the
supplied. software to be reviewed next
issue) but it can be used for
applications programming. It is a
sophisticated package giving more
control over screen formatting and
print layouts than BBC Basic, but it is
still Basic. The use of a proper

run-time package also speeds up
execution.
CIS COBOL
COBOL (COmmon Business Oriented

Language) has been around for over
twenty years, having originated on
mainframes. This version has been
produced for microcomputers by
Micro-Focus. Cobol is a commercial
language that pays especial attention
to the formatting of data. Printed
reports, files and screen layouts can
be defined and manipulated much more
easily than with Basic. Because it was
originally conceived as a language that

BEEBUG

AUG/SEPT 1984

would be used by untrained programmers
it is very wordy, for instance, a Basic
statement like:

A=B+C
becomes the COBOL statement:

ADD B,C GIVING A.

CIS Cobol is compiled and, 1like
BCPL, it produces a compact code that
is interpreted at runtime. Like most
other compiled languages all variables
must be defined before use.

Overlaying is possible allowing
programs larger than the memory size of
the machine to be written.

Two other programs are supplied for
use with Cobol: Animator and Forms-2.
Animator is a very sophisticated Cobol
debugging tool. Forms-2 allows the
screen to be formatted for data entry
and validation, an important aspect of
commercial programs. It is very easy to
use and could save a lot of programming
effort. Not only can a screen
layout be designed but if it is the
input screen for records in a file then
Forms-2 can also create a program that
will produce the file itself.

COMPARISON WITH TORCH

The obvious alternative to the Acorn
Z8@¢ system is the Torch ZEP100 which
has been available for some time now.
In BEEBUG Vol.2 No.1 we reviewed the
similar Torch 28@¢ Disc Pack and this
system now has a number of successors
one of which is the ZEP10@ at £343.85.
it is possible to buy M-Tec Basic
(equivalent to BBC Basic) for £126.50.
This was reviewed in BEEBUG Vol.2 No.6.
[Torch is now wholly owned by Acorn
and we believe the price of the ZEP1§@
will be reduced by about £80 - Ed.]

The Torch system is not a genuine
CP/M system, but uses a similar
look-alike operating system called MCP,
and also comes with some networking
software. The Torch is now supplied
with a range of software known as the
Perfect (!) range, and this is roughly
equivalent to Acorn's 780 software to
be reviewed next issue. No languages
are included with the ZEP100 system
(M-Tec Basic is extra), and the overall
quality 1is probably not as good as the
Acorn product.

Volume-3 Issue 4

7

TEMPERATURE MEASUREMENTS USING THE BEEB (32K)

by Roel Grit

Using the ingenious idea in this simple constructional article you can turn
your Beeb in to an electronic thermometer with both digital and graphical

displays.

The analogue input of the BBC micro
is popularly associated with its use as
the joystick port. This Jjob is done by
accurately reading the voltage at the
output of the joystick itself. The
elementary electronic circuit described
here supplies a voltage in place of this
which is related to temperature. The
program converts the voltage at the
analogue input into a temperature
reading which can then be displayed on
the screen. The program allows the micro
to act as a digital thermometer, with a
continuously updated display. In
addition, temperatures over a period of
time can be displayed in graph form on
the screen and the display saved for
future reference. The circuit to be
described provides two temperature
sensors, thus allowing comparative
measurements to be made as well.

The analogue port is equipped with
four analogue to digital converters,
while the program below is only written
“to deal with the input from two
temperature sensitive devices. The
program could easily be adapted to cater
for any number between one and four of
them,

The active device in each
thermometer is a thermistor. This is
used, in the form of circuit known as a
'potential divider', to ©provide a
variable voltage for input to the
analogue port in the same way that a
joystick does. In common with all useful
temperature measuring devices, this must
be calibrated before use, for the
temperature range over which you would
expect to be wusing it. The program
provides an option to calibrate each
temperature measuring device, by making
some comparative readings with a
conventional thermometer . This
calibration can then be saved on tape or
disc for further use.

HARDWARE REQUIREMENTS
Below is a list of the components

required to build the two thermometers
for use with the program.

2.2k ohm thermistors (2 off)
(Siemens part K164-2.2k from
Electrovalue, 0784-33603)

1k ohm resistors (2 off)

15 pin D-type plug+cover

some two core wire
Apart from the thermistors, the other
components should be readily available
from any electronic supplies shop. The
thermistors cost around 18p each and are
a small, negative temperature
coefficient, disc type with a nominal
resistance of 2.2k at 25 deg.C (this is
not as complicated as it sounds; it
simply means that as the temperature of
the device rises, its resistance
decreases). Though the values are not
critical, the 1k resistor must be
changed according to the resistance of
the thermistor at the centre of its
operational temperature range. For
example, if the thermistor chosen was a
22k ohm, NTC type then you would have to

use a 10k ohm resistor in each
temperature Sensor. It is not
recommended that a lower value

thermistor be wused than the one listed
above.,

CONSTRUCTION
Construction demands the minimum of

BEEBUG

AUG/SEPT 1984

Volume-3 Issue 4

S —
nitcl LY VR _i]
a g — '.___'__j ntoc2
[
e
Analogue * , y o y 5 oa Vi
Port 15 L 9
o]
r2 ril,2 = 2.2k
R ntel,2
—see text

soldering and proceeds as follows.
Solder one of the 1k ohm resistors
between pins 7 and 11 and the other
between pins 12 and 14 of the D-type
plug (you should be able to fit these
inside the plug cover). Solder the ends
of a twin core lead to pins 7 and 8 and
another twin core lead to pins 12 and 5.
Across the ends of each of these leads,
solder a thermistor; it doesn't matter
which way round. These are the
temperature sensing probes; one
connected to channel 1 and the other to
channel 2 of the analogue port. The
length of the connecting cable is not
significant; it simply depends on how
far away from the micro you may wish to
place your temperature sensors.

USING THE PROGRAM

When you have typed in and saved the
program, you will find that when it is
run you will be presented with a menu
providing a choice of 7 options. The
first one that must be taken is option
number 1, to make a calibration curve.

This will require you to raise the
temperature of the probes to a known
point and record it. You will therefore
need another, reasonably accurate,
thermometer at this stage. Some care
must be taken as the accuracy of the

computer thermometer will only be as
good as your readings from the other
thermometer. As you are prompted on
screen, enter the reading of the

temperature and the computer will record
this against the value that it reads
from each probe. As many as a hundred
different temperatures may be recorded
and a simple linear interpolation on
these is used by the program to produce
an accurately calibrated scale for the
thermometer.

You could place some ice in a
saucepan, along with your conventional
thermometer, and let it warm up until
the ice begins to melt. At this point
the temperature will be around @ deg.C.
Warm up the saucepan and as the (by now)
water heats up, take intermediate
readings from the thermometer and enter
them at the keyboard. At the boiling
point of the water the temperature will
be close to 100 deg.C.

Some points of caution, are firstly,
that you should not 1let the sensors
touch the sides or bottom of the
saucepan as these are likely to be at
significantly different temperatures to
the water. Seal the sensors inside a
balloon or something watertight so that
bared wire connections are not in
contact with the water. Both of these
can affect the validity of the readings
obtained from the sensors..

An increased temperature range may be
measured (provided it is within the
specified working range of the
thermistors wused, which may be to an
upper limit of 125 deg.C) by calibrating
the sensors during immersion in hot oil
or cold alcohol in a similar fashion to
the method wused with water. Alcohol
is particularly useful for calibrating
below @ deg.C. Note that all readings
during the calibration phase must be
entered in ascending order, so you must
start at the lowest temperature you wish
to measure.

It must be realised that thermistors
are not linear devices and accuracy of
measurement may be increased by
calibrating’ over narrower intervals in
the operating temperature range.

After the last reading has been
given, press Return and go back to the
main menu. Select option 2 and save the
calibration that you have made. To
measure any temperature, this
calibration data will always be needed
by the program and should have been
loaded from file prior to any
temperature reading from the probes.
Option 3 of the main menu is used to
load it. (You could have several
different calibration files available
for different temperature ranges).

BEEBUG

AUG/SEPT 1984

Volume-3 Issue 4

9

HE‘ERR'H.YK?‘

A simple digital display of the
measured temperatures on each probe is
provided by option 4. The display is
updated in real time and you will be
able to see from this how quickly or
slowly your thermistor probes respond
to temperature change. You can try this,
and identify which probe is which, by
holding the probe tight in your fingers
and watching the corresponding
temperature rise. Release the probe, and
watch the temperature fall again.

Options 5 and 6 are for constructing
and saving graphs of temperature
against time, and this facility is
flexible enough to cover a wide variety
of applications (provided you've got a
printer and screendump routine, it will
do away with the need for pen chart
recorders tool). You may plot two
continuous temperature functions over a
chosen period of time and over a chosen
temperature range. The graph may be
saved to the current filing system and
reloaded at any time. A caption setting
facility 1is also provided f£for you to
title your graphs with.

Menu option 7
termination of the program, while
pressing Escape at any time always
returns you to the main menu.

provides for

IDEAS FOR FURTHER USE

If you wish to use a screen dumping
routine to output a temperature graph on
to your printer, then append your
routine to the program as a procedure
call and insert a penultimate line to
call it in DEF PROCtempdiag and do
the same to DEF PROCdiagfromfile.

Unusually, for the addition of a new

piece of hardware to the Beeb, this idea .

does not require the use of machine
code; it simply makes use of the ADVAL

instruction from within Basic to do the
required inputting of data. This means
that the resulting program can be easily
adapted for other applications.

If you connect a suitable relay
across the cassette relay output (pins 6
and 7 of the cassette socket), then by
testing for specific temperature levels
from within DEF PROCrmeasuretemp and
using the *MOTOR @ and *MOTOR 1
commands, it's possible to maintain
control of a heating system with the
Beeb.

The basic idea here need not be
limited to temperature measurement. You
might replace the NIC thermistors with
LDR's (light dependent resistors) and
with some slight changes to the program
run a simple control system for your
photographic dark-room (all the better
if you've got a colour monitor and
change all text output on the screen to
red for safety lighting!)

TECHNICAL NOTES

On the program:

The variable MAXN is the maximum
number of calibration wvalues that are
used. These are held in array Wl for the
probe on channel 1 and W2 for channel 3
while the corresponding temperatures are
held in array T. The function
FNtemperature(CH) obtains a temperature
reading by comparing the value at the
analogue input with a recorded value and
temperature in the calibration arrays.

On the hardware:

Positive temperature coefficient
thermistors are also available (PTC's)
and there is no reason why one of these
should not be used instead of the NTC's
specified here. However, their inverse
performance with temperature means that
they must be interchanged with the
position of the resistors in the current
circuit so that the voltage at the input
to the analogue channel continues to
move in the same direction as the
temperature.

10 REM TEMPS
2¢ REM Author ROEL GRIT
3¢ REM Version B1.0 —_—

BEEBUG

AUG/SEPT 1984

Volume-3 Issue 4

10

4 REM BEEBUG AUG/SEPT 1984
50 REM Program Subject To Copyright
60 :
109 vDU23,240,192,192,0,9,9,0,0,0
110 ON ERROR GOTO 130
120 MAXN=10@:DIM T(MAXN):DIM W1 (MAXN)
W2 (MAXN) ,X (200) ,Y1 (200) ,Y2(200)
130 MODE7:PROCtitle ("TEMPERATURE MEAS
UREMENT")
140 PRINTTAB(@,3)CHRS136;
150 PRINT"TYPING <ESCAPE> RETURNS TO
THIS MENU"®®
16@ PRINT'"1";SPC4;"MAKE A CALIBRATIO
N CURVE"
170 PRINT'"2";SPC4;"SAVE CALIBRATION
CUR
180 PRINT'™3";SPC4;"LOAD CALIBRATION
CURVE"
19¢ PRINT'"4":SPC4; "MEASURE TEMPERATU
RE"
20@ PRINT'"5";SPC4;"MAKE DIAGRAM TEMP
/TIME"
210 PRINT'"™6";SPC4;"LOAD DIAGRAM"
220 PRINT'"7":SPC4;"STOP THE PROGRAM"
230@ PRINT' "TAB(10) "YOUR CHOICE ";:X$=
GETS :X=VAL (X$) -
240 IF X=1 THEN PROCmakecalib
250 IF X=2 THEN PROCsavecalib
260 IF X=3 THEN PROCcalibfromfile
270 IF X=4 THEN PROCmeasuretemp
280 IF X=5 THEN PROCdiagdata:MODE 4:P
ROCdiagdecor : PROCdiagscale: PROCtempdiag
29¢ IF X=6 THEN MODE4:PROCdiagfromfile
30@ IF X=7 THEN MODE7:END
310 GOTO 13¢
320 =
1000 DEF PROCmakecalib:PROCtitle("MAKE
A CALIBRATION CURVE")
1019 N=@:PRINT'"PRESS <RETURN> AFTER T
YPING TEMPERATURE."
1020 PRINT"MAX.NUMBER CAL.TEMPERATURES
IS ";MAXN'"PRESS <RETURN> TO STOP."
103¢ PRINT"THE CALIBRATION TEMPERATURE
S MUST BE IN ASCENDING ORDER"
1040 PRINT; 'TAB(4);"TEMP";TAB(13);"ADV
AL(1) ";TAB(25) ;"ADVAL (2) "*
1050 REPEAT
1060 N=N+1
1070 PRINTTAB (@) ;N;: INPUT TAB(4) TS:IF
N>MAXN THEN 1120
1080 IF TS<YU"THEN T (N)=VAL(TS) ;W1 (N)=
ADVAL (2) :W2 (N) =ADVAL (3)
1999 IF N>1 AND TS<O""THEN: IFW1 (N)>=W1
(N-1) OR W2(N)>=W2(N-1) THEN PRINT"TEMP
. MUST BE HIGHER" :GOTO1070
1109 PRINTTAB(14,VPOS-1) ;W1 (N) ;SPC(7);
W2 (N)
1110 UNTIL TS=""
1120 W1 (@) =N-1:W2(0) =N-1
1136 ENDPROC

1140 :

1150 DEF PROCsavecalib: PROCtltle("SAVE
CALIBRATION")

116¢ INPUT''"TYPE NAME OF FILE TO SAV
E CALIBRATON" 'N$:Q=OPENOUT (N$)

117¢ PRINT''TAB(1) ; "MEAS.";TAB(10);"TE
MP.";TAB(20) ; "ADV 1";TAB(30);"ADV 2"

1180 PRINTSTRINGS (37," “)

1190 FOR N=¢ TO W1 (9)

1200 PRINT#Q,T (N) ;W1 (N) ,W2 (N)

1219 PRINT TAB(3);N;TAB(11);T(N) 'I’AB(2
@) ;W1 (N) ; TAB (30) ;W2 (N)

1220 NEXTN

1230 CLOSE#Q:PRINT®'TAB(12) "PRESS A KE
Y":X$=GETS

1249 ENDPROC

1250 :

126¢ DEF PROCcalibfromfile:PROCtitle("™
READ CALIBRATION FROM FILE ")

127¢ INPUT''“TYPE THE NAME OF THE CALI
BRATION FILE"'NS

1280 PRINT' ' 'CHRS (136) ; TAB(7) ; "LOADING
—~ please wait"

1290 Q=OPENIN (NS)

1300 CLS:PROCtitle("CALIBRATION CURVE"
)

1319 PRINT®'*'TAB(8);"TEMP,";TAB(15);"C
AL, 1";TAB(25) ; "CAL.2" "STRINGS (36,"_")

1320 INPUT#Q,T(0) ,W1(0) ,W2(0)

1330 FOR N=1 TO W1 (@)

1340 INPUT#Q,T(N) ,W1(N) ,W2(N)

1350 IF W1 (N)<>@ THEN PRINT T(N),W1 (N)
sW2 (N)

1360 NEXTN

1370 CLOSE#Q:PRINT' 'TAB(12) "PRESS A KE
Y" :XS=GETS

1380 ENDPROC

1390 :

1400 DEF PROCmeasuretemp PROCtltle("ME
ASURING TEMPERAT! ")

1419 VDU136:PRINT TAB(6,20) ; "PRESS <ES
CAPE> TO STOP"

1420 VDU 23;8202;0;@;0; 2 T1=0:T2=0:NM=1
@:REM NM=NUMBER MEASUREMENTS

1430 FORP=1 TO NM

1440 IF W1(0)<2 THEN PROCnocalibs:ENDPR
oC

1450 T1=T1+FNtemperature (2) : T2=T2+FNte
mperature (3)

1460 NEXTP:T1=INT(T1/NM*10+0.5)/10:T2=
INT (T2/NM*10+0@.5) /10

1470 FOR X=1 TO 2:PRINT TAB(4,9+X);CHR
$141"TEMPERATURE 1:%SPC4;T1:NEXT

1480 FOR X=1 TO 2:PRINT TAB(4,12+X):CH
R$141"TEMPERATURE 2:"SPC4;T2:NEXT

1499 GOTO 1420

1500 ENDPROC

1510 ¢
1520 DEF PROCdiagdata:PROCtitle ("TEMPE
RATURE/TIME~-DIAGRAM") PR

BEEBUG) AUG/SEPT 1984

Volume-3 Issue 4

1

BEEBUG

1530 PRINT'®'"FOR HOW LONG DO YOU WANT
TO MEASURE"'" (MINUTES)";

154¢ INPUT MTIME

155¢ NMEAS=MTIME*3@:IF NMEAS>20@ THEN
NMEAS=200

1560 PRINT'"MINIMUM AND MAXIMUM TEMPER
ATURES"

1579 PRINT"don't go beyond the calib t
emperatures”

1580 PRINT"MIN.TEMPERATURE TO MEASURE:
";TAB(36) ;“dgr“

1599 PRINT" not below ";T(1);" dgr”™

160¢ INPUTTAB (29,VP0S~2) MINTEMP:IF W1 (
¢)=0 THEN MAXSTD=@ ELSE MAXSTD=T (W1 (%))

1610 PRINT TAB(@,VPOS+1) ;"MAX. TEMPERAT
URE TO MEASURE:";TAB(36) ;"dgr"

1620 PRINT" not above ";MAXSTD;" dgr"

163@ INPUT TAB(29,VP0S-2) MAXTEMP

164¢ INPUT''“STARTING TIME " STARTTIMES

165¢ VDU136:INPUT' ""PRESS <Return> TO

START "XS$:IF XS<>"VTHEN 1650
1660 ENDPROC
1670 :

168¢ DEF PROCdiagdecor

1690 PRINT'"TEMPERATURE" ;SPC(3) ; "START
ING TIME: ";STARTTIMES;

1700 PROCcadre(@,944,352,1008)

1719 PRINT TAB(14,2);"“TIME TO MEASURE:
"-MIIIME." MIN!I.

1720 PRINT TAB(6,28);"TEMP.1"

1730 PROCcadre(184 16,392,80) : PRINT TA
B(]] 3@).I|C".

1749 PRINT TAB(19,28);"TIME";

1750 PROCcadre(5@4,16,840,80) :PRINT TA
B(16,30);" SECY;

176¢ PRINTTAB(31,28) ;"TEMP, 2"

177¢ PROCcadre (984,16,1192,80) :PRINT T
BB (36,30) "C";

1780 ENDPROC

1799 ¢

1800 DEF PROCdiagscale

1810 VDU5:PROCcadre (128,224,1279,896)
1820 FOR STRP=@ TO (MAXTEMP-MINTEMP) S
TEP INT ((MAXTEMP-MINTEMP+12)/12)

183¢ STP=224+STRP*672/ (MAXTEMP-MINTEMP)
184¢ MOVE 128,STP:PLOT 21,1279,STP
185@0 NEXT STRP

1860 FORTW=MINTEMP TO MAXTEMP STEP INT
((MAXTEMP-MINTEMP+12) /12)

1870 MOVE 32,238 +(TW-MINTEMP)*672/(MA
XTEMP-MINTEMP)

1880 IF TW<@ OR TW>9 THEN PRINT;TW,ELS
E PRINT" ";TW,

1890 NEXT TW

190% STP=INT ((MTIME+10) /10)

191¢ IF MTIME<2 THEN STP=STP/6

1920 IF MTIME>=2 AND MTIME<=4 THEN STP
=STP/2

1939 FOR MT=¢ TO MTIME STEP STP

1940 MOVE 128+MT*115@/MTIME,224:PLOT 2
1,128+MT*1150/MTIME, 896

1950 MOVE 1@@+MT*1150/MTIME,210:PRINT;
INT (MT*100+.5) /100;

1960 NEXT MT

1979 vDU4

1980 ENDPROC

1990 :

200@ DEF PROCtempdiag

2010 IF W1 (@)<2 THEN PROCnocalibsENDPR
ocC

2020 VDU 23;8202;0;0;0; :VDU29,128;224;
203@ TIME=@:STP=13TEMR=MAXTEMP-MINTEMP
: ENDTIME=MTIME*6000:X (3) =0

2040 Y1 (9)=(FNtemperature (2) -MINTEMP) *
672/TEMR

2050 Y2 (%)= (FNtemperature (3) -MINTEMP) *
672/TEMR

2060 STPTIME=MTIME*6000/NMEAS:ENDTIME=
MTIME* 6000

20770 REPEAT

2080 T1=0:T2=0:P=0

209¢ REPEAT

2100 T1=T1+FNtemperature (2) :T2=T2+FNte
mperature (3)

2110 P=P+1:T1M=T1/P:T2M=T2/P

2120 PRINTTAB(6,30) ; (INT (TIM*10+8.5))/
10

213¢ PRINTTAB (31,30); (INT (T2M*10+@.5))
/10

2140 PRINTTAB (18,30) ; INT ((TIME+50) /100)
2150 UNTIL TIME>=STP*STPTIME

2160 Y1(STP)=(T1M-MINTEMP) *672/TEMR
2170 Y2 (STP)=(T2M-MINTEMP) *672/TEMR
2180 X(STP)=STP*1151/NMEAS

2199 MOVE X(STP-1),Y1(STP-1) :DRAW X (ST
P) ,Y1(STP)

220/¢ MOVE X(STP-1),Y2(STP-1):PLOT 21,X
(STP) ,Y2(STP)

2219 VDU5:MOVEX (STP) ,Y2(STP) 2 PRINTCHRS
(249) :VDU4

2220 STP=STP+1

223¢ UNTIL TIME>=ENDTIME

2249 VDU28,0,31,39,27:VDU29,0;0;

225@ CLS:PRINT"DO YOU WANT TO SAVE THI
S DIAGRAM? "

2260 PROCdiagtofile

227¢ ENDPROC

2280 :

2290 DEF FNtemperature (CH)

2300 N=0:WX=ADVAL (CH)

2319 IFWX>W1(1) OR WX>W2(1) THEN TEMP=
T(1) :GOT0239¢

2320 IFWX<W1 (W1(@)) OR WX<W2(W2(0)) TH
EN TEMP=T (W1 (@)) :GOT02399

2330 REPEAT

2340 N=N+1

235¢ IF CH=2 THEN UNTIL WX>W1(N+1) AND
WX<=W1 (N) OR WX<WI] (N+1) AND WX>=W1 (N)

—

AUG/SEPT 1984

Volume-3 Issue 4

2360 IF CH=3 THEN UNTIL WX>W2(N+1) AND
WX<=W2 (N) OR WX<W2 (N+1) AND WX>=W2 (N)
2370 IF CH=2 THEN TEMP=T (N)+ (WX-W1 (N))
*((T(N+1)~T (N)) /(W1 (N+1)-W1 (N)))

2380 IF CH=3 THEN TEMP=T (N)+ (WX~-W2(N))
*((T(N+1) =T (N)) /(W2 (N+1) ~W2(N)))

2390 =TEMP

2400 :

2419 DEF PROCcadre(SX,SY,X,Y)

2420 MOVE SX,SY:DRAW X,SY:DRAW X,Y:DRA
W SX,Y:DRAW SX,SY

2430 ENDPROC

2440 ¢

245@ DEF PROCnocalib

2460 PRINT TAB(5,6) ;CHRS(136) ;"MAKE A
CALIBRATION CURVE OR"

2470 PRINT TAB(3) ;CHRS(136);"-if possi
ble- LOAD FROM FILE "

2480 PRINT'"''TAB(12);"PRESS A KEY ":X
$=GETS

2490 ENDPROC

2500 :

2510 DEF PROCtitle(TITLES)

2520 CLS:SP=INT ((40-LEN (TITLES))/2)
253@ VDU157,129:PRINTTAB (SP-5) ;CHRS (14
1) ;TITLES

2540 VDU157,129: PRINTTAB (SP-5) ;CHRS (14
1) ;TITLES

255¢ ENDPROC

2560 ¢

2570 DEF PROCdiagtofile

2580 CLS:PRINT"DO YOU WANT TO SAVE THI
S DIAGRAM? *

2590 X$=GETS$:IF XSOMY™ AND X$<O'y" TH
EN ENDPROC

2600 CLS:INPUT"WHAT CAPTION WOULD YOU
LIKE?"'TEXTS

2619 CLS:INPUT'""TYPE THE NAME OF THE
FILE TO SAVE"'NS

2620 R=OPENOUT (NS)

2630 PRINT#R,STARTTIMES,MTIME, NMEAS,MI
NTEMP , MAXTEMP , TEXTS

2640 FOR N=@ TO NMEAS

2650 PRINT#R,X(N) YT (N) ,Y2(N)

2660 NEXT N

2670 CLOSE#R:CLS:PRINT"READY"'"PRESS A
KEY" :X$=GET$

2680 ENDPROC

2690 :

2790 DEF PROCdiagfromfile

2710 PRINT STRINGS(39,"*")

2720 PRINT TAB(10);"LOAD DIAGRAM FROM
FILE "

273@ PRINT STRINGS (39,"*")

274¢ INPUT''“"TYPE THE NAME OF THE DIAG
RAM TO LOAD"'NS$

2750 R=OPENIN (N$)

2760 INPUT#R,STARTTIMES,MTIME,NMEAS,MI
NTEMP , MAXTEMP , TEXTS

2770 FOR N=0 TO NMEAS

2780 INPUT#R,X(N),Y1(N),Y2(N)

2790 NEXTN

2800 CLOSE#R:CLS:PROCdiagdecor s PROCdia
gscale)

2810 VDU29,128;224;

2820 FOR N=@ TO NMEAS-1

2830 MOVE X(N) ,Y1(N) :DRAW X(N+1) ,Y1 (N+
1) :tMOVE X(N) ,Y2(N) :PLOT21,X (N+1) ,¥2 (N+1
) 2VDUS5 ¢ PRINTCHRS (240) :VDU4

2840 NEXTN

2850 MOVE®,@:VDU29,0;0; :VDU28,9,31,39,
27:CLS:PRINT ' TEXTS

2869 PRINT"PRESS A KEY":X$=GETS

2870 PROCdiagtofile

2880 ENDPROC

POSITION OF SYSTEM VARIABLES IN MEMORY - P.S.Ganney

The system varibales @% and A% to 2% are all directly accessible at memory
locations &400 to &468. As each is an integer, each has four bytes designated to it
such that the value of A% is !&404 etc. So it is easy to access these system
variables from within machine code programs without passing parameters using the
CALL instruction (see pages 214 and 446 of the User Guide), but is not of course
Tube compatible. =

When opening data files using the commands OPENOUT, OPENIN and OPENUP, the syntax
is basically chan%=OPENOUT ("myfile"). The first file to be opened is allocated a
channel number. Open another before closing the first and it is allocated the next
consecutive channel number. If however you try to open a non-existent file with
OPENIN or OPENUP on disc, instead of generating an error, the channel allocated is
g. Only when you use INPUT# or PRINT# will the DFS produce an error with code 222.
The file will of course not been opened and so there is no need to use CLOSE#. So by
detecting when chan%=@ it is possible to intercept mistakes at an early stage. ==

b

BEEBUG AUG/SEPT 1984 Volume-3 Issue 4

13

| BEGIIWHE

CHANGING COLOUR

BEGINNERS START HERE -~
CHANGING COLOUR

by John Wellsman

s WY

The BBC micro
does give the user
a great deal of
control over which
colours are used at
any time, and one of
the very powerful
commands at our
disposal is the "VDU
19" statement. This
allows us to control

exactly which
colours we use
in the various

modes and to change them selectively
during a program. However, to the
beginner the explanations in the User
Guide can be rather off-putting because
of the wunfamiliar terms used in
explaining the use of VDU19.

Describing a colour as "logical" to
a beginner in. computing is about as
meaningful as calling a cart-horse
transcendental! And if a colour is
not actual, what can it be? It would
have been better, perhaps, to have
devoted an entire chapter in the Guide
to the control and manipulation of

colour rather than mixing it with
graphics.
The so-called "actual colours” are

the colours which are available to the
user in any of the modes. There are
sixteen colours available though eight
of these are two colour "flashers".
Each colour has a reference number used
in the VDU19 statement. These numbers
are listed in several places in the
User Guide, especially on page 165.
They are quite independent of any mode

and they can, therefore, be
meaningfully called ‘'Actual Colour
Values' because when used in the VDU19

statement they always refer to the same
colour irrespective of mode. So 2 will
ALWAYS signify green and so on.

This month we turn our
procedures as John Wellsman takes you on a guided tour of the
world of colour on the Beeb.

attention away from functions and

What is the colour?

logical
Depending on the mode (except mode 7 in
which VDU19 does not apply) either two,
four or sixteen colours can be used.
They are not really colours at all, but
"slots" to which we can assign colours.

On power-up, the slots in the two
colour modes contain black & white, in
the four colour modes black, red,
yellow and white. Mode 2 has the full
sixteen colours in its sixteen slots.
These colour slots can be defined and
referred to by a number. The default
background slot is always zero but
this can be changed. So in a two
colour mode the slots are @ and 1, in
the four colour modes they are @ to 3,
and in mode 2 with sixteen colours, ¢
to 15.

All these numbers have default colour
values according to the mode, but they
can all be changed by the user. They
can in some ways be thought of as
colour variables but only in the sense
that the actual colour values can be
assigned to * them by the VDU19
statement. They are what the User Guide
refers to as "logical colours" but if
the expression "colour" has to be used
to describe them it would seem more

BEEBUG

AUG/SEPT 1984

Volume-3 Issue 4

14

useful to call them 'Relative Colour
Values' as they are strictly relative
to the mode and any subsequent user
alterations.

We can abbreviate 'Actual Colour
Value' to ACV and ‘Relative Colour
Value' to RCV.

Now let us look at the statement
itself without bothering about what the
values mean for the moment. It can be
written in two ways, for example:

vDu19,1,2,9,9,9
or
vDU19,1,2;9;

These say exactly the same thing but
because it 1is shorter, we shall be
using the = second form. It is
important to note the position of the
two commas and the two semi-colons.
Using our abbreviations, we can
re-write it as:

VDU19,RCV,ACV;3;

This means that in the first position
after VDU19, we insert the relative
colour value that we wish to change,
and in the next position, the actual
colour that we want to assign to it.
The final 2zero is wunused by the
computer. If we look at our first
example, VDU19,1,2;0; its effect would
depend on what mode we were in. If we
use it in mode @, a two colour mode,
then it would change colour 1, normally
the foreground colour, to dgreen, 2
being the ACV of green. Type in this
little program, then RUN it and press
the space-bar.

10 MODE 4:REM two colour mode
20 PRINTTAB(19,10) "TEST"

30 A=GET

49 VDU19,1,2;0;

(In case you are quite a beginner, and
dont understand line 30, this simply
stops the program until you press any
key and then carries on.)

Note that the change to green is
immediate, you do not have to print
WTESTY again, and that everything,
including the cursor is printed in
green until you change mode, press
Break or execute another VDU19

statement changing relative colour
value 1 to another colour. Add another
GET line to the above program and then
a second VDU19 statement changing the 2
to some other value (less than 16), and
you will see the text change colour
again on pressing the space-bar. In
the same way you can change the
background by replacing the 1 by a zero
in the RCV position. You may know that
some computers, the SPECTRUM for
example, normally use black letters on
a white background, which you may think
is better. If so, try this:

19 MODE 4

20 VDU19,0,7;0;

3¢ vDU19,1,0;0;

40 P.TAB(5,10)"This is black on white"”
Line 20 changes the background

colour, usually RCV =zero, from black
(the default colour) to white, ACV 7.
Line 30 changes RCV 1, in this mode the
only other RCV that is possible, to
black, ACV 4.

Try the same effect using mode 6.
You may find this useful sometimes.
Changing the background (RCV #) to blue
(ACV 4) in this mode gives the effect
that you may have seen in some of the
BBC TV programmes on computing.

With a four colour mode, the same
rules apply, only now you have three
colours plus background colour which
can be used. Type this in:-

10 MODE 5:REM 4 colour mode

20 FOR X = 1 TO 3

3¢ COLOUR X:P.TAB(14,9+X)"COLOUR ";X
40 NEXT

50 FOR X= 1 TO 3

60 A=GET

70 VvDU19,X,4;0;

80 NEXT

When you run it, the program will first
display on the screen the three default
colours of the mode with their relative
colour values. Now look at line 7¢ and
check what is going to happen when you
press the space-bar. The loop will
successively change RCV 1-3 to ACV 4
which is blue. So when you have
pressed the space-bar three times you
have converted all the mode 5 colours
into blue and changed, temporarily,
mode 5 to a two colour mode. To

BEEBUG

AUG/SEPT 1984

Volume-3 Issue 4

15

A A e B S
experiment a bit further, change line 40 NEXT
5@ to: 5¢ PRINT"PRESS SPACE-BAR"
60 A=GET

5¢ FOR X=0 TO 3

This will include the background colour
in the change to blue, which will
happen the first time that the
space-bar is pressed. But as you
continue, the lines of text will.
apparently disappear, though in reality
they are also being changed to blue
which makes them invisible.

Now change line 5@ to:
5¢ FOR X= 1 TO 15

and in line 79 substitute either 1, 2
or 3 for X and substitute X for 4.

If you now run the program and
repeatedly press the space-bar, you
will change whatever relative colour
value you have used in line 7@ through
the whole pallette of available
colours.

The only mode which has the full
range of colours available is mode 2.
Only in this mode do the default values
of RCVs correspond to the ACVs but they
can all be changed, if necessary, in
exactly the same way as the other
modes.

Just for fun, the following will
change mode 2 to a two colour mode
using only black and white.

19 MODE 2
20 FOR X=1 TO 15
3@ COLOUR X:PRINT"COLOUR"

POINTS ARISING

70 FOR X= 1 TO 15
80 VDU19,X,7;0;
90 NEXT

Lines 20 to 30 will display all the
default colours of mode 2. Lines 70 to
99 will change them all to ACV 7, which
is the value for white. Remember that
these changes made by VDU19 will remain
in force until you change the mode or
press Break. Neither Escape nor NEW
will affect the changes.

One more point, if you use a value
relating to a colour, which is too
large in the context, the computer
will always modify the value (in the
same way as the MOD operator)
accordingly. For instance, if you are
in mode 5 (a four colour mode) and you
execute VDU19,5,2;@; the computer will
divide the "5" by the number of colour
slots in the mode, in this case "4" and
will regard the remainder "1" as the
proper value in this position. In the
instruction VDU19,1,25;0; in mode 2 the
125" would be divided by "16" and would
put actual colour "9" into slot 1. This
will apply generally with colour values
in such statements as COLOUR and GCOL
as well.

Now you can really ring the colour
changes in your programs for the very

best effects.

=

MUSIC WHILE YOU WORK (BEEBUG VOL.3 NO.2)

Some confusion arose in the preparation of the text accompanying this program
between the different needs of cassette and disc users. The following notes apply to
the program MUSIC as listed in the magazine. The program will work as listed for
disc users but cassette users should change the hexadecimal value ‘&900°' in line
120 to '&D@@'. No other changes are required.

The confusion also affected the magazine cassette and disc. Because of the
additional lines included in these versions, The following line should be added:
1415 P%=P%+15+LENS (ENV+14)
and cassette users should change the value of B@1 in line 100 to AG1 and the value
of B@G at 1line 1410 to AGQ. We apologise for any inconvenience caused by these

errors.
’ =

BEEBUG AUG/SEPT 1984 Volume-3 Issue 4

16

FRAK!

An exciting new game reviewed by David A. Fell

The standard of games for the Beeb
was set very early in its history by an
implementation of a popular arcade game
under the name of Planetoid. About nine
months ago, a game called Zalaga was
first seen. This was based upon an
arcade game called Galaga. Since then,

mighty forces have Dbeen at work
devising a game that combines total
originality with masterful programming;
the result - Frak!

The basic concept in Frak is for
you, who play the part of Trogg, to
negotiate an ingenious complex of
ladders, ropes, chains, rock ledges,
logs and iron girders in the endless
pursuit of that unattainable goal - the
end of the game. There are three basic
screen layouts, each of which features
a different monster, and you have to
collect all of the keys in order to
complete the level. Each key collected
gives a time bonus, but the available
time is slowly ticking away. If your

time reaches =zero in the early stages

you are not penalised, but later stages
inflict a variety of mean effects upon
poor Trogg.

There are gems to be collected for
bonus points, and light bulbs for a 10
second time bonus. Your plight is also
further hindered by daggers and
balloons, and your only weapon against
these, and the three monsters Scrubbly,
Poglet and Hooter, 1is your faithful

achieve some astounding feats of self
defence - even catching a Scrubbly and
a dagger at the same time if you aim
correctly. [This does require a
considerable degree of dexterity - a
pained Ed!]

The graphical depiction of the
characters in the game is very detailed
(the game's in Mode 1), and movement is
on a pixel basis - not a byte basis. As
you move left and right, the screen
scrolls with a delightfully smooth
movement to accommodate your actions.

At first, Frak is merely a question
of not being hasty, but as the game
develops, it reveals itself to be a
combination of both action and thought
games. The later screen layouts require
some advance planning before being
attempted as there are a significant
number of one-way traps, precise jumps
and loop backs. Perhaps the first thing
that can trap the unwary is finding
that ~ his yoyo will not reach the
Scrubbly that he is attempting to
'knock out' of play. When flinging (how
else do you describe ‘firing' a yoyo?)
your yoyo, you need to make sure that
you utilise its full potential, or you
will find a number of apparently
insoluble problems.

As the game progresses, there are
some delightful ‘twists' and variations
that will keep you in confusion for a
long time. The high score table
features three 'check characters', and
these are for verification of the
scores in the high score competition.
Frak sets new standards for games on
the Beeb, and I would recommend that
any games player should definitely

yoyo (yeah, a yoyo as a weapon!). With purchase this masterpiece of
this amazingly versatile weapon you can programming .

=
BEEBUG AUG/SEPT 1984 Volume-3 Issue 4

17

AUTOMATIC DISC MENU
UTILITY (DFS)

by Peter Hunter

This month's utility is
an extension of the disc
menu concept that we
introduced in BEEBUG
Vol.2 No.4. This most
useful variation on that
theme will automatically
list any appropriate
files that are present
on the disc when the
program is run. New
files added to the disc
will be accommodated
automatically.

The menu program listed here
displays a list of the programs present
on the chosen disc drive(s) every time
it is run. This is accomplished by a
little~-known call to the DFS that
allows for the filenames in the current
directory to be read by virtually any
program. The program listed here reads
these filenames and then forms them
into a menu for you to select the
program to run. The menu is not
restricted to a single drive, but can
be readily extended to present a single
‘menu using up to all 4 drives if
required.

To use the program, first type it in
and save it away safely on disc. Note
that you should save the menu program
explicitly as "MENU" for the program to
work correctly and to avoid "“MENU"
itself appearing as one of the options
in the menu list. The program should
also be saved onto each disc with which
you wish to use the menu utility. To
use the program, put the appropriate
disc into drive @, and then CHAIN
"MENU". The program will then scan the
disc drive(s) present, and display a
list of programs that may be run. To
select a program, all you have to do is
press the highlighted letter alongside
it on the screen, and the menu program
will then execute that program for you.

The current version of the menu
program can cater for two types of
files: Basic programs (to be CHAINed),
and machine code programs (to be *RUN) .

CASPRIL

. MENU

flanis ODisc

Press the key to select the program of :
your choice

EASERTZ
SWOOR6
SETUR
RARPIDS
BACKWRD
INVEDE
TRBLES
CHERQUER
SHAREER

B
b

=
H
J

L
N
P‘
R
T
Y
X
z

=

Because the ways in which these two
types of file are loaded and executed
are different, the program needs to be
able to distinguish between them. This
is accomplished by using different
directories for each type of program. A
Basic program is indicated by saving it
in directory "B" (see your disc manual
if you are uncertain as to how to
achieve this), and. a machine code
program is indicated by saving it in
directory "R". The other directories
are not used by the menu program, and
may contain any other files; these will
not appear in the menu display. For
example, you may have a large machine
code program that has a ‘'header'
program in Basic. The suggested method
for accessing this program would be to
put the header program into the "B"
directory, so that this will be listed
in the menu options, and the machine
code program in to the "$" directory,
so that this will not be listed. You
could, as an alternative, put the
machine code program into the "R"
directory. This would allow for the
header program to be run as normal, or
for the machine code program to be run
directly.

To allow greater flexibility, the
program includes a facility to scan
more than just one disc surface (i.e.
not just DRIVE 0); Line 1148 governs
this. You can alter the program to scan
all four drives if you wish. You should
note that although the program works
quite correctly if a large number of

BEEBUG

AUG/SEPT 1984

Volume-3 Issue 4

18

files are present on the disc (say due
to the 62 file catalogue option of the
Watford DFS), the screen display will
scroll and will not appear as
attractive if more than 40 files are
found. This could be avoided at the
expense of extra code, but is unlikely
to be a problem for most users.

In practice, the most convenient way
of using the menu program is for it to
be run automatically, by booting the
disc with Shift-Break. This is done by
creating a !BOOT file on the disc, and
this might be created as follows (if
you are uncertain on !BOOT files,
please consult your disc manual):

*OPT 4,3

*BUILD !BOOT

*BASIC

*TV <whatever parameters you want>
CHAIN"MENU"

<Escape>

The *TV command listed above is
optional. If you normally use !BOOT
files to set your preferred parameters,
then these could be included as well.

The menu program has a couple of
minor limitations, which are most
obvious when it is used in extreme
circumstances.

1) The program does not incorporate
facilities for programs that need to be
moved down in memory (although it has
been designed for easy updating if you
so desire). You could possibly amend
the program to incorporate (or CHAIN) a
'movedown' routine, or to alter the
value of PAGE to &1200 if necessary.
(This could be included as part of the
1BOOT file).

2) The order in which the various
disc drives are scanned prevents the
use of some combinations of drives
(e.g. @, 2, 3).

PROGRAM NOTES

The program is well structured, and
has been specifically designed with an
"open" structure to facilitate easy
addition of any extra code required.
Line 1140 is where the selection of the
drives is made. By altering this to '@
TO 1', you can scan drives ¢ and 1,
while '@ TO 2 STEP 2' scans both sides

of the first disc drive. The program,
as listed here, will scan just drive 0.
The program will work on either 40 or
80 track drives with no problems.

Although only directories "B" and
"R" are used by this version, the
program has been designed to allow
other directories to be used, and to
have different meanings attached to
them. Line 2010 is a DATA line holding
the number of directories to be
scanned, then the letter for each
directory. If you add any more
directories, make sure you update the
number of directories as well.

In order that the program can
remember in which directory each
program is found, it assigns a number
to each of the directories it scans.
For example, the current version
allocates @ to "B" and 1 to "R", and
this is tested for at lines 160 and
176. If you add another directory
option to the DATA statement at line
2010 (add it to the end, and update the
1 toa?2), then a new line 175 could
check for type%(A%) being 2, and select
your own option as a result. The

e

10 REM PROGRAM MENU
20 REM AUTHOR PETER HUNTER
30 REM VERSION B1.2
40 REM BEEBUG AUG/SEPT 1984
50 REM PROGRAM SUBJECT TO COPYRIGHT
60 :
199 MODE 7
119 PROCreadnames
120 PROCdisplay
139 A%=FNprogram
140 PROCoscli ("DRIVE "+MIDS (name$ (A%)
12,1))
150 PROCoscli ("DIR $")
160 IF type% (A%)=0 CHAIN name$(A%)
17¢ IF type% (A%)=1 PROCoscli ("RUN "+n
ame$ (A%))
180 END
190 :
1099 DEF PROCreadnames
1010 num%=100
1020 RESTORE
1030 READ N:N=N-1
1040 DIM type$ (N)
1050 FORI%=@TON
1060 READ type$(I1%)
1079 NEXT —

BEEBUG

AUG/SEPT 1984

Volume-3 Issue 4

19

1080 DIM nameS$ (num%)

1099 DIM type% (num%)

1100 DIM cb% 16

1119 DIM os% 30

1120 DIM buf% num%*8

1130 N%=0

1140 FOR drive=@ TO 0

115¢ FOR type=0 TO N

1160 PROCread (typeS$ (type) ,type,drive)
1170 NEXT

1180. cb%!1=buf?

1199 PROCosgbpb (5,cb%)

1200 buf%?13=13

121¢ TITLES=TITLES+CHRS131+$ (buf%+1)
1220 NEXT

1233 ENDPROC

1240 ¢

1259 DEF PROCread (AS,type%,drive)
12648 CLS

1270 PRINTCHRS13@"Scanning Drive ";dri
ve

128¢ PROCoscli (YDRIVE "+STR$drive)
129¢ PROCoscli("DIR "+AS)

1300 FOR I% = buf% TO buf%+num%*8-3 ST
EP 4

1319 '1%=0

1320 NEXT

1330 cb%!1=buf%

1340 cb%!5=num3¥

1350 cb%19=0

136@ PROCosgbpb (8,cb%)

1370 z%=buf%

1380 IF ?Z%<>7 ENDPROC

139¢ REPEAT

1400 22%=13

1410 72%=72%+8

1420 UNTIL ?22%<>7

1430 ?72%=13

1440 M%=buf%+1

1450 REPEAT

1460 IF SM%<>"MENU"+STRINGS (3,CHR$32)
AND S$M2<>"!BOOT"+STRINGS (2,CHRS$32) name
$(N%)=":"+STRSdrive+" . "+AS+" . "+SM%: type
% (N%) =type%:N%=N%+1

1470 M%=M%+8

1480 UNTIL M%?27<>13

1490 ENDPROC

1500

1519 DEF PROCoscli (AS)

1520 $0s%=AS$

1530 LOCAL X%,Y%

1540 X%=0s%

155¢ ¥%=X% DIV 256

1560 CALL &FFF7

157¢ ENDPROC

1580 :

1599 DEF PROCosgbpb (A%,X%)

1600 LOCAL Y%

1610 Y%=X% DIV 256

1620 CALL &FFD1 : REM OSGBPB

procedures

1630 ENDPROC

1640 :

1650 DEF PROCdisplay

1660 VDU 23,1,0;0;0;0;12

1670 FOR Y%= 1 TO 2

1680 PROCcntr (CHRS141+CHRS$129+CHRS157+
CHR$131+"MENU "+CHR$156)

1690 NEXT

1709 AS=TITLES:IFAS="" GOTO 1680 ELSE
TITLES=""

1719 FORI%=1TOLENAS

1729 IFASCMIDS (AS,1%,1)>31 TITLES=TITL
ES+MIDS (AS$,1%,1)

1730 NEXT

1740 PRINT'

1750 PROCentr (TITLES)

1760 IF N%=0 PRINT'CHRS$129"No suitable
files on disc.":END

1779 PRINT'"Press the key to select th
e program of"'"your choice™'

1780 N%=0

1790 REPEAT

1800 PRINT TAB (-20* (N¥MOD2=1) ,N%DIV2+9
) CHRS133CHRS (N%+65) CHR$131MIDS (name$ (N%
) +6)

1810 N%=N%+1

182¢ UNTIL name$ (N%)=""

183@ ENDPRCC

1840

1850 DEF FNprogram

1860 *FX15,1

1870 REPEAT

1889 G%=GET

1890 UNTIL G%<(N%+65) AND G¥>64

1908 =G%-65

191¢ DEF PROCdefkey (AS)

1920 *FX18

1930 PROCoscli("KEY @ "+AS)

1940 *FX138 @ 128

1950 ENDPROC

1960 :

1970 DEF PROCcentr (AS)

1980 PRINTTAB (20-LENASDIV2)AS

1990 ENDPROC

2000

2019 DATA 2,"B","R"

PROCoscli (to perform an OS
(or *) call of the string passed), and
PROCdefkey (which defines a key to the
string passed, and then inserts the
code for this key into the keyboard
buffer) are both available to help make
any additions easier. For example, MRUN
(from Watford DFS) is easily added by
combining MRUN and the file
specification, and passing this via
PROCoscli at line 175 say. Overall,
this is both a flexible and most useful
utility for disc users.

BEEBUG

AUG/SEPT 1984

Volume-3 Issue 4

20

MICRONET - ONE MILLION FRAMES ON

by James Fletcher

Micronet gives the home user access to huge volumes of information,
and software, but at a price. Now that Micronet is being claimed a
major success, James Fletcher evaluates the service by recounting

his own experiences, and describes some of the most

developments.

The advertisements were compulsive
reading, promising a whole new world of
opportunities for microcomputer users,
access to a huge database of
information, hundreds of free software
programs, and communication with other
like-minded computer nuts. Micronet 800
really did seem to offer everything.
"It's fun, friendly, and inexpensive to
run", continued the beguiling prose,
which went on to describe how a
low-cost subscription could turn the
BBC micro into the hub of the brave new
world of information technology,
offering a whole range of services that
never before would have been possible
in the home.,

It all sounded to be Jjust what I
needed to bring back the sparkle to my
rather jaded love affair with my micro,
which had been more than sated with a
continuous diet of space-invaders and
adventures where I could never get out
of the cold, dank cave, whichever way I
tried. Returning the coupon in the
magazine brought an even more
impressive set of leaflets and the
knowledge that as a special
introductory offer all this technology
could be mine for about fifty pounds.
The cheque went off by the next post,
and surprisingly for an industry that
has gained a terrible reputation for
delays on orders, a well-packed parcel
arrived within just a few days,
containing everything needed to turn my
BBC into a Micronet terminal.

The main part of the hardware is a
box about 18"x3"x2" with holes into
which your telephone handset fits, the
acoustic coupler. Professional
couplers, which normally cost at least
three times the price of the Micronet
coupler, usually have the holes for
microphone and earpiece thick with foam
rubber so as to ensure a good seal. The
Micronet coupler is rather less well

recent

padded, and the seals around the
telephone mouthpiece and earpiece are
of a fairly stiff plastic which makes
it less easy to ensure a perfect fit. I
found it necessary on several occasions
to push the handset very hard into the
coupler to avoid problems with data
errors which showed up on the computer
screen as typing mistakes. A colleague
with a Trimphone found it very

difficult to get satisfactory results,
so if you have this type of telephone
you will be well-advised to use one of
the directly wired 'modem' units which
are now available.

The initial offer price on the
acoustic coupler type of modem has now
ended, but it is now available with
ROM-based software for around £75,
which still seems reasonably good value
for money when you consider how little
proprietry software you could buy for
that amount of money. There are two
other modems available from Micronet,
both of which need to be directly
connected to a telephone line (By B.T.,
not you, of coursei). Both of these
modems allow 12006/75 baud transmission
rates for Prestel/Micronet and also
1200/1260 baud for micro-to-micro
communication, and both come complete
with ROM-based software. The Modem 1000

BEEBUG

AUG/SEPT 1984

Volume-3 Issue 4

21

costs £93.65 while the Modem 2000 costs
£108.65 but offers auto-switching when
used for communication between users
and a few other features which make the
system more user-friendly.

The acoustic coupler that I use came
complete with a cable suitable for
plugging directly into the RS423 socket
at the back of the BBC micro, so it was
the work of only a ' few moments to
connect up the hardware and be ready
for communicating with the world. The
software provided on tape was soon
transferred to disc, and worked well
although it didn't take long to realise
that the system could be made more
user-friendly with a more "automatic"”
type of operation. I presume that the
ROM-based software provided with the
latest models will overcome some of the
initial difficulties that I found.
David Graham gave Beebug readers a good
account of the various facilities that
Micronet provides in his article in
Vol.2 No.4 so I'll concentrate on the
Telesoftware side of Micronet, which
allows a wide range of computer
programs to be downloaded directly into
the BBC micro.

The Micronet information that is
currently available off-screen says

that over 20¢ programs are available
for the BBC, but I was able to find
only a fraction of this number, and
some of these seemed too simple to be
worthwhile, although they would be
suitable for beginners looking for
something simple to download. Once you
have chosen your program, downloading
is simple; all you have to do is to
follow the instructions, which in my
case said "Press F5".

Having done this the pages start to
appear, Jjust like pages of teletext.
Each program uses the first frame of
its program as a header which gives the
program name and its length. There is
also a check number which serves to
ensure that the program has been
received correctly. If any errors have
been picked up during transmission or
reception of the program, the check
value will not agree with the value
transmitted with the header page, and
an appropriate warning appears on the
screen. The system automatically tries
to reload an incorrectly-received
program, but if it receives a frame
incorrectly after three attempts it
asks you "try again ? -Y/N ".

I found that although excellent
reception was obtained most of the time
it was possible to get a poor telephone
line, Jjust as sometimes happens when
the phone is being used for ordinary
talk. Under these conditions it proved
impossible to download a program
correctly no matter how many times I
tried, and the only solution was to
ring off and re-dial.

Micronet telesoftware programs are
in Basic, but have ©been crammed
together to improve transmission
efficiency. The programs are divided
into blocks, one per Micronet frame.
Spaces in the program are replaced by
the 3/4 sign and if it proves necessary
to actually use a 3/4 sign in a program
it has to be preceded by | (ASCII
character 124) to prevent confusion.
If you have to make use of | in a
program then this must be entered as
|E. ASCII 124 also has other uses in
Micronet telesoftware, |L indicating
the end of a line and lF showing the
end of a program or of a file.

I managed to download a good deal of
the free software on Micronet, but
refrained from buying the commercially
produced offerings using a credit card
for payment. In these days when the
postal services can take for ever to
deliver a packet it may very well be a
good idea to buy your software over the
telephone line, (and when the BEEBUG
editor offers to pay the bills I will
be glad to give you a complete run-down
of all the programs I can buy via the
Micronet telesoftware service!). One
big advantage of a live downloading

BEEBUG

AUG/SEPT 1984

Volume-3 Issue 4

22

service is that an up-to-the-minute
catalogue of software can be offered,
and I noticed that a BBC Basicode
converter program was available on
Micronet in time to be used with their
Chip-Shop radio programmes whereas
there was a considerable delay if the
converter was ordered by post from the
BBC.

Several weeks of playing convinced
me that Micronet is great but, and it's
a big but, my telephone bill at the end
of the quarter was horrendous. Not only
do you pay to subscribe to Micronet,
about £1 per week, but you pay the cost
of the telephone call all the time that
you are connected, as well as a further
computer connection charge if you
should dare to use the system during
business hours or before 1lunch on a
Saturday. The free software is
obviously useful, as are all the other
facilities that Micronet and Prestel
offer, but no father can afford to risk
bankruptcy by - giving his children
access to this most modern of the new
technologies. I think that the old
expression ‘money down the drain' may
well be replaced by ‘'money down the
phone® if Micronet catches on!

MICRONET ~ RECENT DEVELOPMENTS

Recognising the success of Micronet,
B.T. has launched a new service under
the ' Prestel Microcomputing ' banner,
and Micronet continues as just one part
of this new service, which brings
together all the services connected
with home computing, making them much
easier for the user to find.

Existing Micronet members
automatically become paid-up members of
'Prestel Microcomputing', whereas new
recruits will not Join Micronet as
such, but will subscribe to 'Prestel
Microcomputing® and receive Micronet as
just one part of the package, which
costs £8 each quarter. Micronet
currently provides all the features of
a printed computer magazine, which is
not too surprising when you learn that
its owners are in fact members of a
company that publishes several of the
computer magazines that grace the
newsagents' shelves. Computer news can
be far more up-to-date than in printed
magazines and Micronet proudly boasts
that it had news of the QL launch on
Micronet within an hour of the first

announcement. (Micronet cannot,
however, work miracles - they couldn't
actually get their hands on a QL!)

The last few weeks have seen a
considerable increase in the amount of
software available via Micronet, and
Acorn Computers now have quite a few
pages on the system. One of these is
called ' Talking back to Acorn', which

should help to improve customer
communications; there is no guarantee
that they will actually reply, of
course!

Other services available on the
Prestel Microcomputing database include
"Clubspot® and 'Viewfax'. 'Clubspot' is
a service operated by the Association
of Computer Clubs, which provides
individual databases for computer clubs
around the country where they can make
information available about any aspect
of their clubs' work. Not only can
such a database be useful for the
members of each particular club, but
non-members can get a broader: idea of
what is happening in other clubs around
the country. There is no charge to
clubs for these pages.

Viewfax claims to be ‘the
professional micro database', and
offers a wide range of pages which
should appeal to more advanced home
computer users. Viewfax was one of the
pioneers of using Prestel for computer
software and its entry into the Prestel
Microcomputing stable should bring its
products to the notice of far more
computer users. Viewfax intends to sell
computer peripherals as well as
software, and claims that its prices
will be cheaper than the shops; most of
its current offerings seem to be)

BEEBUG

"AUG/SEPT 1984

Volume-3 Issue 4

23

utility packages suitable for home.
finance or small businesses.

Other databases within the Prestel
Microcomputing fold are provided by
'Prestel Education’', 'The National
Computing Centre', 'Spectrum UK', and
'VNU Publishers', and other companies
such as 'Transam' and 'DRG Business
Machines® are soon to join them.

There 1is no doubt that the hundreds
of pages available from Prestel
Microcomputing are interesting and
great fun to access, but having spent
many hours ‘playing' with the Prestel
services I have come to the conclusion
that most of the pages contain fairly
trivial information and lack the 'meat’
that longer, written articles in
magazines such as Beebug can provide.
Prestel's many screenfuls, each of
which can only carry about 12¢ words,
seam a poor substitute for a chunky
monthly magazine, even though the
printed version can never be as
up-to-date as its electronic companion.

Prestel Microcomputing offers some
great communications features. Using
‘Mailbox' you can contact many other
Prestel users, sending either your own
message or one of a wide range of
pre-formatted on-screen greetings cards
which make imaginative use of Prestel's
graphics capabilities. Messages can be
left on various 'bulletin-boards' and
these allow you to make contact with
other enthusiasts around the country.

If you have problems with a computer
company, and you want to attract the
immediate attention of the managing

director, what better than to send him °

an official-looking Telex message?
Until recently Telex has been limited
to those businesses that could afford
to hire expensive equipment from B.T.
Prestel now allows Microcomputing
subscribers to send Telex messages of
up to 100 words to any UK Telex
subscriber for only 58p. I tried it,
and it works! Within minutes of the
message being despatched from the
keyboard of your home micro it ig being
printed out in the office of the MD's
secretary.

Another fascinating extension of the
Prestel network is available by using
the 'Gateway' service. This allows you
to gain access to a computer belonging,
not to B.T., but to an information
provider who has his own private
database. When you pass through the
Gateway, and you can only do this if
you hold the correct electronic key,
the Prestel computer sends instructions
to the information provider's computer,
which will then send the required
information, via the Prestel computer,
into your home. Business users such as
doctors, travel agents and mail-order
companies are already finding the
system invaluable, and this type of
service could be readily extended to
the home user as well.

Prestel Microcomputing looks to be
set for expansion. The newly-organised
service makes it easy for home computer
users to see all the information that
is available about their hobby from a
wide range of different information
providers. With something like two
million home computers in the UK,
Prestel believes that many other groups
will be seeking to come under the
'Microcomputing® umbrella. I can
certainly say that if you do join the
club, you will open up many new avenues
for you and your computer to explore,
and you will have the satisfaction of
knowing that you are right at the
forefront of the information-technology
revolution.

[For further information on Prestel
Microcomputing contact Micronet at
Scriptor Court, 115 Faringdon Road,
london ECIR 3AD. Tel. 01-278-3143]

BEEBUG

AUG/SEPT 1984

Volume-3 Issue 4

24

A SCREEN DRIVEN MUSIC SYNTHESIZER (32K)
by D.J. Westbrook

The sound generating capabilities of the BBC Micro are pretty

sophisticated when compared with other home micros.

Using these,

this program will turn your Beeb into a very practical music
synthesizer, by the use of a well designed screen display.

A modern music synthesizer popularly
offers, amongst its standard features,
the facility to build a particular
sound by shaping its envelope, a
keyboard to play the sounds as notes,
and memory to record a sequence of
notes played. This program makes use of
the BBC micro's own resources to
provide all these features and thereby
lets you program the machine to play
music very easily, as though it were a
synthesizer. To support this, there is
a very useful, graphic colour display
of the synthesizer's configuration; the
envelope selected, the envelope's
shape, mode of operation, etc.

HOW TO USE THE SYNTHESIZER

Run the program and immediately, the
default status of the synthesizer will
be displayed. Across the middle of the
screen are the parameters that may be
adjusted to contruct a sound. Each is
denoted by the initial letter of its
operational effect and selection is
made by use of the left and right
cursor keys.

The options are 'A', 'D', 'S', and
'R' which respectively, are used to set
an envelope's Attack, Decay, Sustain
and Release times (see the User Guide
page 247 for a graphical explanation of
these terms); then 'T', 'F', shown
separately, for Tremolo depth and
Frequency of the tremolo pitch
variation. BAbove each, a bar chart
indicates the setting of these, which
is adjusted by the use of the up and
down cursor keys. On the far left of
the screen there is a similar option
for selecting one of the four envelopes
that are available for programming
(envelope @ 1is fixed to percussive
sounds however) .

The bottom two rows of keys on the
computer keyboard form the notes of the

synthesizer keyboard. They are
duplicated on the screen and identify
themselves when pressed. The white
notes are represented by 'Z' to ‘/',
and 'S', 'D', 'G' etc., are the black
notes.

When you want to record a tune,
press function key £ to place the
synthesizer in record mode. This mode
is shown 1in the status display at the
bottom left of the screen. Anything
that you play after that will be
recorded until function key f£1,
replay, is pressed; or the record key
is pressed again (which simply toggles
recording mode off); or the end of the
recording memory 1is reached (which
automatically switches off recording
mode) .

There are two more facilities that
need mentioning. Numeric keys '1°' to
'4' set the octave for the keyboard,
and function keys £8 and f9 change the
speed of replay of notes - slower or

1 | S— Il
PR

g 3 7

BEEBUG

AUG/SEPT 1984

Volume-3 Issue 4

25

faster. (The chosen speed is shown on

the display at the lower left of the
screen) .

Though we have published programs
before to help the user experiment with
the Beeb's sound and envelope
facilities, this program makes it very
easy to produce a variety of musical
results. The keen user might add a
simple editor for amending music stored

~ in the synthesizer, and an associated
filing mechanism so that pieces of
music generated in this way could be
saved for future performances. He might
also make it possible for the playing
of a stored piece, accompanied by the

user at the keyboard whilst
simultaneously recording the duet - a
kind of computerised multi-track

recording but without a tape recorder.

PROGRAM NOTES

The synthesizer is initially
configured by PROCinit which sets up
the keys for various functions and also
the default envelopes. One variable
here called 'limit%', claims the area
of memory available to the recording
function. You might extend the size of
this area simply by increasing its
value (the maximum is about 2300 with
PAGE at &1900) .

The main part of the program, as you
might expect, is structured around a
continuous loop, responsible for
sampling the keyboard for the player's
response, playing the required sounds
and maintaining an up-to-date screen
display. The pitch of a note is
interpreted by calculating its distance
away from bottom 'B' in terms of
semitones. Sounds generated in direct
response to keyboard input in this way,
are performed by PROCsound. If record
mode is selected, then this instigates
the action of PROCstore which pokes

data about pitch and envelope into
memory. A note's duration is stored in
an array (durn®). Recorded music is
replayed from memory. by PROCplayback.

LIST OF PROCEDURES

PROCinit - keyboard, envelope

: initialisation

PROCscreen - display setup

PROCchangevalue - alters an envelope

PROCbeep - beeps and pauses

PROCsetchannel - sets up the current
channel

PROCprintcolumn() - draws a bar on the
chart

PROCcursor () - draws or deletes
the cursor

PROCcursorshift - moves the cursor

PROCupdate -~ refreshes the
current envelope

PROCoctave - sets the octave

PROCrecordswitch -~ toggles the record
mode :

PROCkeyon () - displays the note
played

PROCkeyoff - erases the note
played

PROCsound () - plays a note from
the keyboard

PROCplayback - replays a tune from
Memory

PROCspeed () - changes the speed
of replay

PROCwait () - delay loop

FNoffset () - calculates screen

position for column

10 REM Program SYNTH
20 REM Author DAVID WESTBROOK
3¢ REM Version B1.0
40 REM BEEBUG Aug/Sept 1984
5¢ REM Program Subject to Copyright
60 :)
109 ON ERROR GOTO 380
120 MODE 7:PROCinit:PROCscreen
15¢ PROCsetchannel
160 REPEAT
161 in=INKEY (@)
170 key=INSTR(note$,CHRS (in))
180 IF key THEN PROCkeyon (key) :PROCso
und (key) : PROCkeyoff
199 IF in=136 OR in=137 THEN PROCcurs
orshift
200 IF in=138 OR in=139 THEN PROCchan
gevalue
210 IF in>48 AND in<53 THEN PROCoctave
220 IF in=200 THEN PROCrecordswitch
230 IF in=201 THEN PROCplayback
24¢ IF INKEY(-119) THEN PROCspeed(-1)
e

BEEBUG

AUG/SEPT 1984

Volume-3 Issue 4

26

250 IF INKEY(-120) THEN PROCspeed(1)

260 UNTIL forever

27¢ END

280 ¢

380 REM-=—w-- Error handling —------

390 ON ERROR OFF

400 MODE7

410 *FX4

420 *FX12

430 *FX21

440 *FX225,1

450 IF ERR<>17 THEN REPORT:PRINT" at
% FRL

460 END

47¢ s

1000¢ DEF PRCCinit

1010 LOCAL 1%,J%

1020 *FX4,1

1030 *FX11,1

1040 *FX12,1

1050 *FX202,32

1060 *FX225,200

1070 limit%=500

1080 DIM notename$ (11) ,P%(6) ,maxP%(6) ,
minP% (6) ,minF%(25) ,E%(4,14) ,env® limit%
,Pitch% limit%,durn% (limit$)

1099 note$="ZSXDCVGBHNJIM,L.;/"

1100 black$="SDGHJIL;"

1110 up$=CHRS11+CHRS8

1120 FOR I%=0 TO 11:READ notename$ (1%)
s NEXT

113¢ DATA "B “,“C ","C#","D ","D#","E
“'"F “'“F#“'"G “'"G#","A ll'llA#ll

1140 FOR 1%=@ TO 6:READ maxP%(I%),minP
% (I%) sNEXT

115¢ DATA 3,0, 125,1, 124,1, 124,1, 12
4,1, 25,0, 13,1

1160 FOR I%=1 TO 4

1170 FOR J%=2 TO 14

1180 READ E%(1%,J%)

1190 NEXT

1200 ENVELOPE I%,E%(I%,2),E%(I%,3),E%(
1%,4) ,E%(1%,5) ,E%(1%,6) ,E2(I1%,7) ,E% (1%,
8) ,E%(1%,9) ,E%(1%,10) ,E%(I%,11) ,E3(I%,1
2) ,E%(1%,13) ,E%(1%,14)

1219 NEXT :

1220 DATA 1, 0,9,9,25,50,25, 125,-2,0,
-1, 125,53

1230 DATA 1, 0,0,9,25,50,25, 125,-2,0,
-1, 125,53

124¢ pata 1, 1,-1,1,3,6,3, 1,-2,0,-1,
125,100

125¢ DATA 1, 0,0,9,25,59,25, 7,-2,0,-1
; 125,53

1260 FOR I%=0 TO 25:READ minF$%(I%) :NEXT
1270 DATA 1,13,9,7,6,5,4,4,3,3,3,3,2,2
12;2,2,2,2,2,2,2,2,2,2,1

1280 r$=CHRS$145:9$=CHRS146:y$=CHR$147:
gfﬂHRSI 48:m$=CHR$149:cS=CHRS150 :wS=CHR

51

1290 pn=0:P% (pn) =1 :en=pn+1:basenote=48

1300 event%=0:recording=FALSE: tempo%=5

1319 forever=FALSE

1320 ENDPROC

1330 ¢

1340 DEF PROCscreen

1350 LOCAL 1%,J%,CX%

1360 CLS:VDU 23,1,9;0;0;0;

1370 REM = —~——ee Frames ——w——-

1380 lside$="j"+yS:rsideS=cS$+"5"

1399 FOR I%=1 TO 13

1400 PRINTTAB(7,1%)cS$;lsideS

1410 PRINTTAB(26,I%)rside$

1420 PRINTTAB(30,1%)1lside$

1430 PRINTTAB(38,1%)rside$

1440 NEXT

1450 PRINTTAB(7,0)cS$;"j"; STRINGS (18,"£
") PRl j";STRING$ (8, u£u) PR

1460 PRINTTAB(7,2)c$;"j" ;STRINGS (18,"p
") ;"5 j";STRING$ (8,"}_)") ;"5“

1470 PRINTTAB(7,14)cS$;CHRS162;STRINGS (
18,"£") ;"1 ";CHRS162;STRINGS (8,"£") ;™1 %

1480 REM = ————- Labels ————

1490 PRINTTAB(11,1)CHRS$135"Amplitude™;
TAB(31,1)CHRS135"Pitch”

1500 FOR 1%=1 TO 13 STEP 4

151¢ PRINTTAB (1,1%)CHR$157;CHRS135;3-1
2DIV4;"™ YCHRS$156

1520 NEXT .

153¢ FOR 1I%=20 TO 24

1540 PRINTTAB(1,I%)CHRS157;CHRS$135;STR
INGS(19,"™ ")CHRS$156;

1550 NEXT

1568 PRINTTAB(3,20) "OCTAVE "; (basenote

DIV 48)+1 -

157¢ PRINTTAB(3,21)"SPEED ";tempo%-5

1580 PRINTTAB(3,22) "ENV/PLAY"

1599 PRINTTAB (3,23) "RECORD"

1600 PRINTTAB(3,24) "REPLAY";

1610 PRINTTAB (0@,20)b$

162@ PRINTTAB(#,21)cS

1630 PRINTTAB (#,22)gS

1640 FOR I%=16 TO 17

1650 PRINTTAB(1,I%)CHRS$141;yS$;"C";SPC(
6) ;"A“;SPC (4) ;"D";SPC(4) ;"S";Sm(4) ;"R“
7SPC(6) ; "T";SPC(4) ; "F"

1660 NEXT

1670 REM -—-——- Cursor ————-—

1680 PRINTTAB(Q,15)rSCHRS136;TAB(0,18)
r$CHRS$136

1690 PROCcursor (-1)

1700 REM ----- Keyboard ---

1710 FOR 1%=20 TO 23

1720 PRINTTAB(15,1%)g$;CHR$157;CHRS (14
8-3% (I1%>21));TAB(39,1%)CHRS156;

1730 NEXT

1740 FOR 1%=20 TO 21

1750 PRINTTAB(19,I%)CHR$255;SPC(1) ;CHR
$255;SPC(3) ;CHR$255; SPC(1) ;CHR$255; SPC(
1) ;CHR$255;SPC(3) ;CHR$255;SPC (1) ;CHRS25
5; >

BEEBUG

AUG/SEPT 1984

Volume-3 Issue 4

27

1760 NEXT

1779 FOR I%=@ TO 9:FOR J%=22 TO 23
1780 PRINTTAB (18+2%1%,J%)CHRS255;
1790 NEXT,

1809 ENDPROC

1810 :

1820 DEF PROCchangevalue

1830 LOCAL inc

1840 IF pn>4 OR pn<1 THEN inc=1 ELSE i
nc=4

1850 IF (P%(pn)> (maxP%(pn)-inc) AND in
=139) OR (P%(pn)<(minP%(pn)+inc) AND in
=138) THEN PROCbeep:ENDPROC

1869 P%(pn)=P% (pn)-inc* (in=139)+inc* (i
n=138)

1870 IF pn=@ THEN PROCsetchannel ELSE
PROCupdate (pn)

1880 *FX21

189¢ ENDPROC

1900 :

1919 DEF PROCbeep

192¢ SOUND 1,-10,200,1:*FX21

193¢ PROCwait (5) :*FX21,5

1940 ENDPROC

1950 :

1960 DEF PROCsetchannel

197¢ LOCAL I%

1980 ch=P%(0)

1990 PRINTTAB (@,13-4%* (en-1))w$S

2000 PRINTTAB(@,13-4*ch)r$

2019 en=ch+1

2020 P%(1)=125/E%(en,9)

2030 P%(2)=-(125-E%(en,14))/E%(en,10)

2040 P%(3)=E%(en,14)

2050 P%(4)=-E%(en,14)/E%(en,12)

2060 P%(5)=E% (en,3) *E%(en,6)

2079 P%(6)=100/(4*E% (en,2)*E% (en,6))

2080 FOR I%=1 TO 6

2099 PROCprintcolumn(I%)

2100 NEXT

211¢ ENDPRCC

2120 ¢

213@ DEF PROCprintcolumn(par)

2140 LOCAL inc,colx,blocknum,rem,top

2150 IF par>4 OR par<l THEN inc=1 ELSE

inc=4

2160 colx=FNoffset (par)+1

2178 blocknum= (P% (par)-1)DIV(3*inc)

2180 rem=(P% (par)-1)MOD(3*inc)

2190 top=112-12* (rem>=inc AND rem<2*in
c) =143* (rem>=2%*inc)

220¢ PRINTTAB (colx,13) ; STRINGS (blocknu
m,CHR$255+up$) +CHRS (top) +STRINGS (10-blo
'cknum,up$+“ |I)

2219 ENDPROC

2220 :

2239 DEF PROCcursor (on)

2240 LOCAL cx%,c1$,c28

2250 cx%=FNoffset (pn)

2260 IF on THEN c18="7£k":c2$="upz" EL
SE c1$=STRINGS (3," "):c28=c1$

2270 PRINTTAB (cx%,15)c1$; TAB (cx%,18)c2$

2280 ENDPROC

22909

2300 DEF PROCupdate (N)

2319 PROCpr intcolumn (N)

2320 E%(en,9)=125/P%(1)

2330 E%(en,10)=-(125-P%(3)) /P%(2)

2340 E%(en,12)=-P%(3)/P%(4)

2350 E%(en,14)=P%(3)

2360 E%(en,6)=100/(4*E% (en,2)*P%(6))

2370 E%(en,7)=2*E%(en,6)

2380 E%(en,8)=E%(en,6)

23909 E%(en,3)=P%(5)/E%(en,6)

2400 E%(en,4)=-E%(en,3)

2410 E%(en,5)=E%(en,3)

2420 ENVELOPE en,E%(en,2) ,E%(en,3) ,E%(
en,4) ,E%(en,5) ,E%(en,6) ,E% (en,7) ,E% (en,
8) ,E%(en,9) ,E%(en,10) ,E%(en,11) ,E%(en,1
2) ,E%(en,13) ,E%(en,14)

2430 maxP%(2)=E%(en,13)-E%(en,14)

2440 maxP%(3)=125-P%(2)

2450 minP% (3)=P%(4)

246@ maxP% (4)=E%(en,14)

2470 IF N=5 THEN minP% (6)=minF% (P%(5))
:P% (6) =minP% (6) : PROCupdate (6)

2480 ENDPROC

2490 :

25¢0@ DEF PROCcursorshift

2510 PROCcursor (@)

2520 pn=pn+(in=136 AND pn>@)-(in=137 A
ND pn<6)

2530 PROCcursor(-1)

2540 PROCwait (10) :*FX21

255@ ENDPROC

2560 :

2570 DEF FNoffset(col%)

2580 =2+5%c0l1%-2* (col%>0)~-2% (col%>4)

2590 :)

260¢ DEF PRCCoctave

2610 basenote=48* (in-49)

2620 PRINTTAB(10,20);in-48

2630 ENDPROC

2640 :

2650 DEF PROCrecordswitch

2660 recording=NOT recording

2679 IF recording THEN PRINTTAB(@,23)r
$;TAB(0,22)w$:TIME=0 :event%=0

2680 IF NOT recording THEN PRINTTAB (@,
23)wS$;TAB(9,22)g$

2690 PROCwait (20) :*FX21

2709 ENDPROC

270

2729 DEF PROCkeyon (keynum%)

273¢ IF INSTR(black$,MIDS (note$,keynum
%,1)) THEN colour$=b$ ELSE colour$=w$

2740 keyX%=16+keynum%- (keynum?>5) - (key
num®>12) tkey¥%=22+2% (colour$=bs)

2750 symbol$=notename$ (keynum% MOD 12)

—

BEEBUG

AUG/SEPT 1984

Volume-3 Issue 4

28

2760 PRINTTAB (keyX%,key¥%)wS;LEFTS (sym
bol$,1) jcolours

2770 PRINTTAB (keyX%,key¥%+1)wS; RIGHTS (
symbol$, 1) ;colour$

2780 ENDPROC

2799 :

2800 DEF PROCkeyoff

2810 PRINTTAB (keyX$%,key¥%)colour$;CHRS
255; TAB (keyX%, key¥%+1) colour$;CHRS255

2820 ENDPROC

2830 s

284¢ DEF PROCsound (semitones)

2850 LOCAL pj,new

2860 IF ch=@ THEN p=6-semitones MOD 3
ELSE p=4*semitones

3080 PRINTTAB(Q,24)mS;

3090 PRINTTAB(@,22)w$;TAB(d,23)wS:reco
rding=FALSE

3190 PROCwait (15) :*FX21

3110 FOR I%=2 TO event%

3120 TIME=0

3130 IF env%?I% THEN hsfc%=&10+ch:e%=e
n:PROCkeyon ((pitch%?1%)/4) ELSE hsfc%=&
1010+ch:e%=0:PROCwait (2)

3140 SOUND hsfc%,e%,basenote+pitch®?I%
=1

3150 REPEAT UNTIL TIME*tempo%+6>durn% (
1%)

3160 IF env%?I% THEN PROCkeyoff ELSE P
ROCwait (1)

2870 IF recording THEN PROCstore(d,0)
2880 SOUND &1@+ch,en,basenotetp,~1
2890 REPEAT

2900 new=INSTR (note$,CHRS (INKEY (2)))
291¢ UNTIL new<>semitones

2920 SOUND &1@1@+ch,d,0,-1

293¢ IF recording THEN PROCstore(en,p)

317¢ IF INKEY(@)=201 THEN I%=event%
318¢ IF INKEY(-119) THEN PROCspeed(-1)
3190 IF INKEY(-120) THEN PROCspeed (1)
3200 NEXT

3210 SOUND &1018+ch,0,9,9

3220 PRINTTAB(0,24)w$;TAB(9,22)g$
3230 PROCwait (10) :*FX21

3240 ENDPROC

3250 :

3260 DEF PROCspeed (change)

3270 IF change=1 AND tempo%>12 OR chan
ge=-1 AND tempo%<2 THEN ENDPROC

3280 tempo%=tempo%+change

3290 PRINTTAB(10,21) ;tempo%-5;" *

33@@ ENDPROC

3319 :

2940 ENDPROC

2950 :

2960 DEF PROCstore(envelope,pitch)

2970 IF event%=1imit% THEN PROCrecords
witch:ENDPROC

2980 event®=event%+1

2990 durnt (event%) =TIME* tempo$%

3009 pitch%?event¥=pitch

3019 env%?event%=envelope

3020 TIME=0 3320 DEF PROCwait (delay)
3030 ENDPROC 3330 LOCAL now
3040 : 3340 now=TIME

3050 DEF PROCplayback 335¢ REPEAT UNTIL TIME-now>=delay
3060 LOCAL hsfc%,e%,I% 3360 ENDPROC
3070 IF event$=g THEN PROCbeep:ENDPROC 5=

INTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS

WORDWISE AND MCP4¢ PRINT SIZE - N.J.Gill

Printing on the Tandy MCP40 printer is done at the size last selected. So the
required print size for Wordwise text can easily be set before entering Wordwise
using Basic. If portions of the text require different sized text, then the function
keys can be used in the following way *KEY@ VDU2,1,18:P."S@":P."A":VDU3: |M*W, |M This
will print at size @. Any other size can be selected by changing the "Sg" to "sx",
where x is the required size. Remember to reset the line length (LLnn) in Wordwise
after this operation to ensure that the text is printed out correctly.

=

REM STATEMENTS IN DATA STATEMENTS - B.Woods
Mrs. Sellick claimed in BEEBUG Vol.1, No.5 that a REM statement could not be

placed at the end of a DATA statement. However, it may be inserted at the beginning
of a DATA line provided that DATA is followed by a comma and the line is RESTORE'd
before use. Here is an example:

10 REM staff DATA,NIGE,ALAN,DAVE,**#*%

20 RESTORE 10

3¢ REPEAT:READ name$:PRINT name$:UNTIL name$="#¥*%%*"

49 END =]

BEEBUG AUG/SEPT 1984 Volume-3 Issue 4

29

BiEEBUG

DELAY LOOPS
by Surac

This month we'll look at some of the
various methods of implementing delay
loops on the Beeb, and the relative
merits of each. When writing large
programs, it is very useful to have a
set of standard procedures and
functions to perform commonly used
tasks. The routines presented here can
easily have procedure and function
definitions built around them to
provide flexibility.

Perhaps the first type of delay that
many programmers use 1is one based
around a loop that repeatedly performs
a calculation or an operation that
achieves nothing but takes some time to
process; the most common example of
this being a FOR-NEXT loop:

FOR I = ¢ TO 1000:NEXT I

What this will achieve is a delay of
approximately half a second. Note that
the value 1000 does not convey much
meaningful information as to how long
the loop will take. Further, the speed
which this takes can vary dramatically,
depending upon the configuration of
your system. Running this on an
Electron, a standard Beeb, and a Beeb
using a second processor will result in
different delays. Even using Jjust a
standard Beeb running another task
under events (say the event driven
music program published in BEEBUG Vol.3
No.2) could result in different
timings. This method does not have any
particular advantages, and has the two
major disadvantages mentioned above. I
therefore suggest that you avoid the
use of this method.

The next three methods to be covered
all have their good and bad points, and
the choice of which one to use is very
much dependent upon the application.
The first of these is vulnerable to a
key press while the second is not. The
third represents a combination of the
virtues of both routines.

woerkishep

The following method of implementing
a delay is based upon the use of the
Basic function INKEY. The version of
this that we will use takes a given
number of centiseconds (hundredths of a
second), and waits for up to this
length of time, but will exit early if
a key is pressed, or there is a
character waiting in the keyboard
buffer. Note that any key pressed to
exit from the delay will no longer
remain in the keyboard buffer when the
routine is left. Thus you couldn't use
a single key press to terminate the
delay and select, say, a menu option
unless you specifically allocate a
permanent (global) variable just to
hold the value of the last key pressed.
The sort of delay routine that might be
written around this built-in function
is as follows:

*FX15,1
durmy=INKEY (delay)

Note the *FX15,1 is to ensure that the
keyboard buffer is empty before the
delay starts. Without this, any
character remaining in the keyboard
buffer will cause an immediate exit
from the delay. The variable "delay"
must have been previously set to the
maximum number of centiseconds that the
delay should last for., This sort of
delay is convenient where it is
necessary to exit from the delay before
it has waited the full length of time;
for example a game might cycle around
alternately printing the high scores
and running a demonstration game.
Between each of these it might pause
for a certain length of time, when it
would be possible for the user to start

playing.

The next delay loop we will look at
cannot be terminated prematurely by the
user pressing a key (except Escape).
This uses the in-built pseudo variable
TIME to count a specific number of
centiseconds. Again, if "delay" has
been set to the duration of the pause,

BEEBUG

AUG/SEPT 1984

Volume-3 Issue 4

30

the following code would achieve the
required delay:

TIME=0
REPEAT
UNTIL TIME>delay

This form of delay loop might be used
where readings are to be sampled from
the analogue port every minute, and it
is essential to avoid an accidental key
press terminating the delay
prematurely.

The third form of delay is really a

hybrid between the last two, and was

first used in BEEBUG in the extensions
to ASTAAD. The code is:

*FX15,1

TIME=0

REPEAT

UNTIL TIME>delay OR ADVAL(-1)

As in the two previous examples,
"delay" 1is the variable holding the
maximum number of centiseconds for

which the delay should last. The ADVAL
(-1) tests the keyboard buffer to see
if there are any characters present. If
there are, then the delay loop will be
immediately terminated, but the
character will not be taken from the
buffer. This is useful in situations
where there is no easy way for one
section of a program to determine the
last key pressed and read in by another
section; i.e. there is no easy way to
implement a "global™ variable for the
last key press, as suggested for the
"INKEY" delay above. By not actually
removing the value from the keyboard
buffer, we can be certain that any key
pressed before the delay loop is
finished will not be lost, and also
that the delay will exit as soon as
there is some more data for the program
to act upon.

These last three routines will cater
for most of the situations in which
some form of delay is required within a
Basic program.

=

WATFORD-ACORN DFS DELETE

HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS

The Wattord DFS up to and including version 1.3, generates an error when trying
to delete a file that does not exist using an OSFILE instruction (&FFDD); the Acorn

DFS #.9¢ does not. (Which is the most useful?).

INVERSE CHARACTER DEFINITIONS - M.Quinion

Using the routine listed below, it is possible to generate characters in inverse
video (reversing foreground and background colours) for highlighted text on screen

for instance.
10 OSWORD=&FFF1:DIM param 9
1090 DEF PROCrevvid(a%)

1010 ?paramblock=a%:A%=10:X%=paramblock MOD 256:Y%=paramblock DIV 256
1920 CALL OSWORD:VDU23,224:FOR B%=1 TO 8:VDU?(paramblock+B%) EOR &FF:NEXT

10930 vDU224
1049 ENDPROC

The routine looks up the definition of the character whose ASCII code is held in
a% and its inverse definition is put into character 224. If this one is now printed
(ie. PRINT CHR$224 or VDU224) then the reversed image of the original appears on

°

SELF DELETING MOVE DOWN ROUTINE - C.A.M.Timmerman

This is a move down routine that after having moved the program in which it is
included, deletes itself. It does however, make use of a function key.

RUN|M
2 *FX138,0,128
3 END

1 *K.ODEL.1,3|MF.I3=0 TO TOP-PA.S.4:I%!&E00=I%!1900:N. |MXT, |MPA.=4EG0|ME. |M

The routine should be placed at the start of any program in which it is used.

(Remember to save it before running it!-Ed.).

=l

BEEBUG

AUG/SEPT 1984

Volume-3 Issue 4

31

ACORN’S BITSTIK GRAPHICS SYSTEM

Reviewed by Terry Hallard

Following last month's report -on Acorn's 6502 Second Processor,
Terry Hallard now casts his expert eye over the Bitstik graphics
system, which relies on the same second processor for its computing
power. After all the publicity, does this come up to expectation?

Minimum configuration required:

BBC Model B; 6502 2nd. processor; dual
80-track double-sided disc drives and
colour monitor.,

The first time that I saw the
Robocom Bitstik on the Apple micro, I
was absolutely staggered by the
graphics that appeared on the screen so
easily and were manipulated so
incredibly. At the time it was the only
computer aided draughting package on
the market for a personal micro, and
with its superb range of facilities and
screen manipulation, it was - well -
just fantastic. This was in 1981, back
in the very dim and distant past.

Now there are many micros on the
market with graphic capabilities equal
to or better than the Apple, and of
course, the standard micro of today is
the Beeb, for which a number of drawing
packages have now been produced. So it
was with some slight trepidation that I
approached the job of delving into the
latest version of the Bitstik,
wondering if some of the shine has been
taken off the one Beeb add-on that I
have been locking forward to for so
long. Inevitably I suppose, I have to
say that for me it has a bit -
principally by the great cost of the
complete system. However, make no
mistake, it is a very clever,
impressive peripheral to have and I
wish I had one of my own.

Bitstik comes in a neatly packaged
cubical box which disgorges three
special utilities discs, a ROM, a well
written and very comprehensive handbook
and the Bitstik itself. This is a
plastic, cream coloured rectangular box
which incorporates three buttons which,
when pressed together in various
combinations, send appropriate command

messages to the computer. The box is
moulded around a very large ball socket
marked with graduations on which is set
a three-way joystick - the ball
movement axes being the usual X and Y
movements and, by twisting the stick,
a 2 axis 1is obtained. This piece of
equipment is ergonomically well
designed and produced to a very high
standard, with rubber feet to stop slip
and also a moulded rubber handrest pad
conveniently placed so that control of
all movement and buttons is fairly
easy. The joystick moves almost too
smoothly and exhibits no ‘'bias’'.
Installation is simple (this pre-
supposes that the second processor has
already been set up) with the Bitstik
merely being plugged into the analogue
port at the rear of the Beeb.

When up and running, with the system
master disc, the first thing to appear
on the screen is a very comprehensive
menu - one part along the bottom of the
screen and the other up the right hand
side. The right hand menu gives the
system command words, such as 'draw'
'mode', 'paint' (which allows infilling
of shapes with a choice from 16
patterns made up from the current four
colours - like all fill commands it is
prone to leaking all over the screen),
‘copy', 'file', ‘zoom' (of which more

BEEBUG

AUG/SEPT 1984

Volume-3 Issue 4

32

later), ‘erase', 'utilities', etc. The
system always defaults to draw mode.

In the lower menu, the line of
symbols indicates a range of line
types, colours and drawing functions
such as straight line, circle, arc and
'nib', the latter ©being a very
interesting method of painting very
broad lines or even wedge shaped areas
with plain colour or a choice of
‘texturing' parallel lines. This is
great for the creation of bar charts or
even block lettering.

The different line drawing
parameters (line type, -colour and
drawing method) are easily chosen by
simply moving the cursor to the
relevant symbol. The cursor is easily
and quite accurately moved by the
joystick in the X Y axes and a constant
flashing 'rubber band' ensures that one
is always aware of the effect that any
line might have. I found it slightly
annoying at times that I could not
switch this off. The cursor is a '+'
symbol and is constantly attached to
the last drawn point by the flashing
'rubber-band' line. If the red command
button is pressed then a line
instantly appears in place of the
rubber~band line. If no line is needed
then pressing another button deletes
the rubber-band line and the position
of the cursor at that moment is the new
fixed basepoint. Circles are
fantastically easy to draw - Jjust
touching the cursor to the appropriate
symbol causes a flashing circle to
appear. It is centred on the cursor and
by twisting the Z axis joystick knob it
can be made to grow or shrink. Such is
the speed of the second processor that
the flashing circle constantly follows
the cursor with no discernible lag.
Rapidly pushing the red button and
moving and twisting the joystick causes
a 'spray' of circles to appear on the
screen. Great fun!

Arc drawing takes a little getting
used to because it works by projecting
an arc which is tangential to a
straight line between the last two
points indicated, and if you think that
that complicates things you are quite
right. The arc indicated is fixed at
one end at the last point marked and
will grow or shrink with any movement
of the joystick, and will even whip

backwards if one overdoes it - the
effect is rather that of a skipping

rope!

I have a personal set of drawing
routines and effects that I look for in
any drawing package and one yardstick
that I apply is ease and accuracy of
ellipse generation and manipulation -
the ellipse being vitally important in
any kind of formal pictorial technical
illustration. Other criteria I use are

ease of construction of isometric
drawings and aids for accurate
orthographic drawing. The Bitstik

software has a splendid set of grids
which can be called up from the
vertical right hand menu. These can be
set at various angles and the cursor
constrained to move in only two pre-set
directions and only in multiples of
fixed increments, these being recorded
as you g¢go in a new menu which appears
on the right, replacing the other.

Isometric is one of these preset
grids and away one goes - that is until
one wants -an ellipse! Here we have a
splendid, sophisticated drawing package
and back we go to the Stone Age,
drawing ellipse approximations by the
four-arc method! Not only that, but

because of the peculiar tangential
method of generating the arcs,
mentioned earlier, this takes a

tediously long time.

With regard to the other grids,
admittedly I did not spend a lot of
time exploring them, but apart from
right angled ones for orthographic
projections, I cannot think of a lot of
uses for two-way grids at other angles.
They would aid the creation of
parallelograms I suppose, but otherwise
I feel that movement along two lines of
direction only is too limiting.

All in all the actual drawing
techniques employed appear to me to
have been produced by some very clever
programmers with minimal reference to
actual practicing draughtsmen and their
real needs. However, when one has
completely absorbed the system
techniques and short cuts, one can use
the package to produce superb drawings.
But it does need a lot of practice -
and the manual tends to admit this by
giving a very extensive course of

BEEBUG

AUG/SEPT 1984

Volume-3 Issue 4

33

‘Teach Yourself Bitstik' in thirteen
fairly involved lessons.

Two drawbacks to producing accurate,
detailed technical drawings on a micro
- lack of screen drawing area and only
moderate resolution compared with
mainframe CAD systems - are, however,
dealt with in breathtaking fashion.

This is by means of the ZOOM
command. When it is selected from the
menu at the side, the cursor
imuediately breaks up into a set of
four little ‘Right Angle' marker
symbols, each indicating one of the
corners of a square. This square can be
enlarged or shrunk by twisting the 'Z°
axis knob, and can be moved anywhere on
the screen by normal joystick movement.
When positioned over part of the
drawing, pressing the red button causes
the drawing to vanish and the part
selected by this framing reappeatrs,
blown up to full screen size. Fine work
can now be done much more accurately at
this larger scale and when complete the
original drawing is recalled. Now all
the added detail is incorporated. It is
possible to zoom, draw, zoom, draw,
zoom, etc. many times, so that we can
get detail nested into finer and finer
proportions. The now classic example of
this process is of the view of the
Galaxy, then the Solar System, then
Earth, and so, in stages, right down to
the compound eye of a fly somewhere in
London.

ZOOM really is a tremendous asset in
producing highly detailed technical
drawings and illustrations and some of
the possibilities are fantastic.
Imagine a motoring map of the country
that you wuse at large scale for
motorway journeys and then, when you
reach a town, the dot which represents
it expands to become a detailed street
map, with fine detail and more
information available if needed. The
effect of 2ZOOM is as incredible as
that.

One cannot store a ‘zoomed' screen
in the main library, only the full
detailed picture. But one can hold in a
temporary store two zoom frames at a
time, which could prove useful if a lot
of 'to and fro' working is to be done.
Also, whilst in zoom mode, one can call
PAN which allows panning to areas
adjacent to the current screen. So if

work was needed in detail on a piece
that extends over the edge of the
screen, one does not have to go all
through the selecting and zoom, zoom,
zoom again, but merely ‘'hunts’ sideways
in the same magnification mode until it
is found. Very useful.

Of course with something like this,
without megabytes of memory to play
with, there is a penalty to be paid.
This is the long drawing time for each
successive zoom. This means that you
could well have fallen asleep by the
time the final fly's eye zoom appears
in the sequence outlined above. What
happens is that each amended drawing is
put onto disc in its library space,
overwriting and updating the previous
one, and is then pulled out again for
redrawing at the new scale.

It is the library storage and-access
facility that really puts the cherry on
the top, to make the whole package a
mouthwatering treat. FILE allows the
current drawing to be put into a

massive library from whence it can be
withdrawn at will. Imagine! This means
that anything, once drawn, is always
available to be reproduced straight or
to be manipulated in various ways.

The beauty of the recall system,
using the COPY command, is that one is
shown the complete contents of the disc
at one go. The screen divides into a
grid of 4 or 16 rectangles, according
to initial formatting, each of which
di.splays the stored picture in
miniature. Very <clever and very
helpful. One selects the item one wants
a'md the screen returns to the drawing
in progress. Now the ‘square frame'

BEEBUG

AUG/SEPT 1984

Volume-3 Issue 4

34

cursor appears and one can shrink it,
expand it (in both, or in either axis
independently) or, by again twisting
the Z axis knob, after an appropriate
button command, rotate it to any
desired angle. Of course the normal
joystick movement allows this modified
cursor to be put anywhere, and on
pressing the red button the drawing,
straight or modified, appears.

The possibilities are tremendous -~
any item stored can now be adapted to a
new purpose. Imagine, house plans could
be altered, or even made into terraces
by repeated COPY calls. (Regarding my
earlier grumble, the manual says that a
circle can be called and altered to
make any perfect ellipse - but because
the cursor indicators only mark the
corners of the original screen, it is
almost impossible to align these new
ellipses with any degree of accuracy).

There are two more serious gquestion
marks over the whole package however.
In the earlier Apple version the

package could accept digitiser tablet
input which of course opens up whole
new areas of possibilities - such a
facility coupled with British Micro's
Graphpad seems logical, but there isn't
one! Similarly the old Bitstik could
output to a Calcomp or Watanabe
plotter. To be useful, any CAD system
must have a facility for clear,
accurate hard copy. At present Bitstik
can output to the Acorn Sparkjet
printer which . is adequate but doesn't
really do justice to the full power of
the Bitstik system. [We understand that
Acorn are working on a driver routine
for an, as yet unannounced, graph
plotter - Ed.]

So all-in-all the whole package is a
veritable Aladdins Cave of graphics
delights marred only by the price and
the occasional niggle that consultation
with a battery of practicising
draughtsmen would have avoided. Do I
want one? Yes please, and I am now
saving up hard - because can 1 afford
one? NO! &=

SHINWA CP8@ '£' PATCH - D.A.Clover

HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINT

Change line 70 in the small patch program published in HINTS (Vol.2, No.1¢, p.17)

to read

70 LDA #&81
run the program, and a pound sign will be correctly printed on the Shinwa CP80.

=

Pressing Break is not required.

R DUMP WITHOUT CORRUPTING DISPLAYS - P.S.Ganney

This is for use in immediate mode and allows you to call a screen dumping program
without corrupting the display. It works by typing to the display at the graphics
cursor which is first moved off the visible screen area. It's easiest to define a

function key to do this.
*KEYQ |Y|D|M|M|M

M| ECALL&AGE [M ‘ D

The screen dump is assumed to reside at &A00, but this could be altered if required.

PERSONALISED HEADER ON BREAK - J.Martins, Norway.

There are of course more useful ways to use the Break vector, but the short piece
of code below will personalize your title banner on Break.
19 osasci=&FFE3:o0sbyte=&FFF4:PROCassemble:CALL init:END

2@ DEFPROCassemble
3¢ FORpass%=0 TO 3 STEP 3:P%=&C00

40 [OPT pass%:.start BCC exit:LDX#11:LDY#0

50 .print LDAmess,Y:JSRosasci:INY:DEX:BNEprint:.exit RTS

60 .init LDY#@:LDA#&F7:LDX#&4C:JSRosbyte:LDA#&F8:LDX#start MOD 256:JSRosbyte
7¢ LDA#&F9:LDX#start DIV 256:JSRosbyte:RTS:.mess:]

80 $P%="Your name":P%=P%+9
90 ?P%=13:P%?1=13:P%=P%+2
109 NEXT:ENDPROC

Replace 'Your name' with a suitable string no longer than nine characters. =]

BEEBUG

AUG/SEPT 1984

Volume-3 Issue 4

35

TESTING OUT YOUR MICRO (Part 5)
PORTS AND INTERFACES
by Hugh Brown-Smith

This month we continue our series on testing out your micro, by

looking at the various ports and interfaces, apart from the cassette
interface which was covered in the previous article in this series.

The BBC micro (Model B) has a
variety of ports and interfaces as
standard. This single program will test
all of these (apart from the cassette
port), and also includes a test of the
sound generator, which is another part
of the machine's hardware.

The program is presented in such a
way that you need type in only those
sections needed for the parts you wish
to test. You will need to enter all
lines before 1000, and lines 9997 to
11030 in every case. The instructions
for each part are headed by a REM
statement for identification. Simply
include the sections you require.

ANALOGUE PORT

The first part of the program tests
the analogue port. It will be necessary
to connect a set of linear joysticks to
the analogue input to do this. Linear
joysticks are the ones with
potentiometers as opposed to the
digital type which have switches, If
you have a switched type of joystick,
which switches in different resistor
values, it should work but this will
depend on the values of resistors used,
and this will vary between
manufacturers. If you do not wish to
test the analogue port, wait until you
are prompted, and press the space bar.

Two separate tests are performed
with each joystick, one being the
analogue test and the other digital
(for the fire button). If you do not
have a fire button, or it is not
working, then the program will
automatically move on to the next test
after about 10 seconds. This does mean
that if you have fire buttons, you will
have to press the right one within 10
seconds. There 1is an option to repeat
the joystick tests, as failure in the
analogue test could be simply because
you have positioned the joystick badly,
or used the wrong one.

USER PORT

e second section of the program
deals with the user port. It will be
necessary to imsert a loop-back plug
here if you wish to test the user port,
(see accompanying table for connection
details). The results will be plotted
whether the plug is connected or not,
and will show red for a fail or green.
for a pass. No test is made of the
control bits as in most applications
these are not used. It should be noted
that it is possible to confuse the
system if a large number of bits are
permanently high or low. In such a
case, where a large number of fails are
displayed (assuming that the plug is
fitted correctly), the test can only be
taken as an indication of possible
failure in this area. Further test
equipment would be needed to isolate
the fault.

SOUND CHANNEL

The third test is for the sound
channel which although not technically
an interface, has been included for the
sake of completeness. You should listen
here for a series of four notes, the
first being a noise produced on channel
while the following 3 produce a
series of rising notes on channels 1, 2
and 3 respectively. The test will loop
around until the space-bar is pressed.

RS423 PORT

Finally the RS423 port is tested.
This will produce a 'PASS' or 'FAIL'
message and requires no user
interaction other than the insertion of
a serial loop-back plug before the
start of the test (see table below).
This is only a simple loop-back test,
and can therefore only be taken as a
guide to the working of the RS423
system (it does not cover different
baud rates nor does it test individual
bits).

BEEBUG

AUG/SEPT 1984

Volume-3 Issue 4

36

PRINTER PORT AND 1MHZ BUS

No tests have been included for the
printer port or the 1MHz bus. As most
printers have a self-test facility,
anyone using this interface should be
able to determine whether any apparent
failure in the use of this port is due
to the port itself, or to the device
connected to it. The MHz bus has also
not been included because of the need
for additional hardware that would be
expensive and of little use to most
readers.,

o

1¢ REM Program PORTS

20 REM Author Hugh Brown-Smith

3@ REM Version Bl.1 .

4¢ REM BEEBUG AUG/SEPT 1984

50 REM Program subject to copyright
60 :
100 ON ERROR GOTO11000¢

11¢ DIMBIT(8)

- 100@ REM ANALOGUE PORT

1010 Jo=1

1020 vDU28,0,24,39,2

1830 CLS

104¢ PRINT''CHRST141CHRS130SPC9"The Ana
logue Input”

1050 PRINTCHRS141CHR$130SPC9"The Analo
gue Input"

1060 vDU28,0,24,39,7

1070 @%=&00001

1080 PRINT'CHRS$129"Connect Joysticks"
1999 PRINT'CHR$131"Move joystick "Jo"
to top left & press spc"

1108 R1=0:R2=0

1119 *FX15,1

1120 REPEAT

113@ UNTILGET=32

1149 IFJO=1:R1=ADVAL (1) :R2=ADVAL (2)

11580 IFJO=2:R1=ADVAL (3) :R2=ADVAL (4)

1160 SOUND 1,-15,180,2

1178 PRINT'CHR$131"Move joystick "Jo"
to bottom right & space”

1180 R3=0:R4=0

1190 *FX15,1

1200 REPEAT

1210 UNTIL GET=32

1220 IFJO=1:R3=ADVAL (1) :R4=ADVAL(2)

1230 IFJO=2:R3=ADVAL (3) :R4=ADVAL (4)

124¢ SOUND 1,-15,180,2

1250 PRINT'CHRS1315PC8"Press joystick
"JO" button”

1260 TIME=0

1270 IFJO=1 REPEAT S1=ADVAL (@) AND1:UN
TILS1=1 OR TIME>1000

1280 IFJO=2 REPEAT S1=ADVAL (@) AND2:UN
TILS1=2 OR TIME>1000

1296 IF S1<10R S1>2PRINT'CHR$129SPCO"F
AILED JOYSTICK "JO" FIRE"ELSE PRINT'CHR
$130SPC9"PASSED JOYSTICK "JO" FIRE"

1300 IF ABS(R1-R3)<15000 OR ABS (R2-R4)
<20@0% PRINT'CHRS$S129SPC11"FAILED JOYSTI
CK "JO ELSE PRINT'CHRS$S13@SPC11"PASSED J
OYSTICK "JO

1319 PRINT'CHRS$134SPC7"Test Joystick
"Jo" again (Y/N)"

1320 *FX15,1

133¢ REPEAT A=GET:UNTILA=ASC"Y"OR A=AS
C"N“

1340 IF A=ASC"Y" GOTO0102¢ ELSE IF JO<>
2 JO=2:GOTO1020

1350 :

2000 REM USER PORT

2010 vDU28,0,24,39,2:CLS

2020 PRINT''CHRS141CHRS130SPC12"User P
ort Test"

2030 PRINTCHRS$S141CHRS$130SPC12"User Por

12¢ *TAPE t Test"

139 MODE7 2p40 vDU28,0,24,39,6

140 Q=0 205¢ PRINT'CHRS$129SPC7"Insert User Loo

150 : p-Back Plug"'®)
BEEBUG AUG/SEPT 1984 Volume-3 Issue 4

37

2060 PROCget

2070 HI%=15:LI%=240

2080 2&FE62=HI%

2099 ?&FE60=0

2100 IF ?&FE60<>0 HFA=?&FE6(ELSE HFA=Q
2110 2&FE62=LI%

2120 ?&FE60=0

2130 IF ?2&FE60<>0 LFA=?§FE60 ELSE LFA=0
2140 IF(LFA AND1)=1 BIT(¢)=0 ELSE BIT
(2)=1

2150 IF(LFA AND2)=2BIT(1)=@ ELSE BIT(1
)=1

2160 IF(LFA AND4)=4BIT(2)=0 ELSE BIT(2
)=1
2170
)=1
218@ IF(HFA AND16)=16BIT(4)=0 ELSE BIT
(4)=1

2190 IF(HFA AND32)=32BIT(5)=@ ELSE BIT
(5)=1

2200 IF(HFA AND64)=64BIT (6)=0 ELSE BIT
(6)=1)

221¢ IF(HFA AND128)=128BIT(7)=0 ELSE B
IT(7)=1

2220 FORX=@TO3

2230 ?&FE62=HI%

2240 IF BIT(X) ?&FE60=(2"X):IF (2&FE60
AND (27 (X+4))) =2" (X+4) PRINTCHRS130SPC12
"PASSED BIT "X"] "X+4 ELSE PRINTCHR$12
9SPC12"FAILED BIT "X"] "X+4

2250 NEXT

2260 FORX=4TO7

2270 2&FE62=LI%

2280 IF BIT(X) ?&FE60=(2"X):IF (?&FEG0
AND (27 (X~4))) =2" (X-4) PRINTCHRS13@SFPC12
"PASSED BIT "X" ["X-4 ELSE PRINTCHRS12
9SPC12"FAILED BIT "X" ["X-4

2290 NEXT

2308 PROCget

2310

309@ REM SOUND

3019 vDU28,9,24,39,2:CLS

3020 PRINT' 'CHRS$130CHRS141SPC9"The Sou
nd Channels"

3030 PRINTCHRS$130CHRS141SPC9"The Sound
Channels®”

3049 vDU280,24,39,6:CLS

3¢50 PRINT''CHRS$S134SPC10"Press space t
o exit"

3060 REPEAT

3079 SOUND@,-15,100,1¢

3080 TIME=@:REPEAT UNTIL TIME>30

IF(LFA AND8)=8BIT(3)=0 ELSE BIT(3

3099 SOUND1,-15,120,10

310¢ TIME=@:REPEAT UNTIL TIME>30
3119 SOUND2,-15,140,10

3120 TIME=@:REPEAT UNTIL TIME>30
3130 SOUND3,-15,160,10

3140 TIME=@:REPEAT UNTIL TIME>30
3150 UNTILINKEY (-99)

3160 ¢

400@ REM SERIAL PORT

4010 VDU28,9,24,39,2

4020 CLS

4030@ PRINT' 'CHRS130CHRS141SPC12"RS423
Port Test"

4040 PRINTCHRS130CHRS141SPC12"RS423 Po
rt Test"

4050 vDU28,0,24,39,6

4060 PRINT''CHRS129SPC6"Insert RS423
Loop-Back Plug"''

4070 PROCget

4080 PRINT'CHRS134SPC15"TESTING"'

4090 *FX7 1

4100 *FX8 1

4119 *FX3 7

4120 PRINT"RDBSDU!LDRR@FD"

4130 *FX3 4

4140 *FX2 1

4150 AS=""

4160 FORX=0TO13

4179 AS=AS+INKEYS(15)

4180 NEXT

419¢ IF A$="RDBSDU!LDRR@FD" PRINT'CHRS
13@SPC13"PASSED RS423"'ELSE PRINT'CHRS1
29SPC13"FAILED RS423"'

4200 *FX2

4219 :

4220 REM EXIT!

4230 PROCget

9997 CALL!-4

9998 END

9999 :

10000 DEFPROCget

10010 PRINT'CHRS131SPC6"Press spacebar
to continue”

10020 *FX15,1

1003¢ REPEAT

10040 UNTIL GET=32

10050 ENDPROC

10051 :

11009 ON ERROR OFF

1101¢ MODE7:REPORT

11020 PRINT" at line "ERL
11039 END

HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINT
DELETING NULL FILES

To delete a null file from disc, that is one whose presence in the catalogue only
shows as spaces, type *DEL."".
=

BEEBUG AUG/SEPT 1984 Volume-3 Issue 4

38

INTERSTELLAR RAIDER (32k)
by Alastair Nicol

Your spaceship, the Black Falcon, is endlessly locked in battle with
Starfighters of the Galactic Empire. Your hands grip the controls of
the laser cannon as you wait apprehensively for one of the enemy

ships to move into your sights.

Interstellar Raider is a one player
space game which runs in mode 2 and
uses the BBC micro's graphics very
well, The game 1is both fast and
compelling, with a full high score
table. The 1listing is quite long, but
the game certainly justifies the
length.

Your view is from the cockpit of the
fighter, and you are looking out into
deep-space. You use the four direction
keys, Z2, X, * and ? to move left,
right, up and down respectively.
Remember that when you move left, the
enemies ship will move to the right.
You fire your laser cannon using the
Return key, and you have 25 shots for
each enemy ship. Destroy the enemy ship
and your firepower is returned to the
starting level of 25 shots ready for
the next attack. If you use all of your
25 shots, then you die and the game is
over. There is also a facility to turn
the sound on and off, and this is
implemented by pressing the 'S' key.

There are three enemy ships per
level, and after each level the enemy
moves more erratically, and
becomes harder to hit. You score points
by shooting three ships before your
fuel reaches zero, and you score one
point for every unit of fuel remaining.

All of the colours are used in this
game, and most of them are used solely
to build up the moving background of
stars.

PROGRAM NOTES

As the program is only a moderate
length, there is plenty of room for the
full procedure names. The most
important procedures, and their
functions are outlined below.

PROCinstr Gives instructions and
the keys to use in the
game .

Initialises the envelopes

PROCinit
and high score table.

PROChiscore Prints out the high score
table.

PROCvdus Defines the characters
and sets the colours.

PROCstars Draws the stars on the
screen.

PROCsights Draws the sight on the
screen.

PROCinitl Initialises and prints
the fuel, score and other
information.

PROCNman Resets the fuel, number

of shots and alters the
level and ships.

PROCmove and Moves and prints the
PROCprint Imperial Starfighter.
PROCupdate Update the fuel.

PROCgameover Prints out 'Game Over'
PROContable Tests to see if you are
on the high score table.

1@ REM Program STELLAR

20 REM Version B@.3

30 REM Author Alastair Nicol

40 REM BEEBUG Aug/Sept 1984

50 REM Program subject to copyright
60 :

100 ON ERROR GOTO 57¢

110 PROCinstr
120 PROCinit

BEEBUG

AUG/SEPT 1984

Volume-3 Issue 4

39

130
140
150
1690
170
180
199
200
210
229
230
249
25¢
260
274
280
299
300
318
320
330
340
350
360

REPEAT

MODE7
VDU23;11,0;9;92;0
PROChiscore
MODE2
VDU23;11,0;0;0;9
VDU5

PROCvdus
PROCstars
PROCsights
PROCinit1
Ships%=1
COLOUR1@
PROCoutput (STRS (Dif%) ,17,1,1)
REPEAT

PRCCNman

1%=0

REPEAT

I%=1%+1

IF I%=7 THEN I%=1
VvDU19,1%,7;:0;
t3=TIME+10
REPEAT

IF POINT(608,496)<>@ THEN SOUND1,

-15,100,1

370
380
390
400
410
420
422

PROCrove (Di£%)

IF INKEY-73 PROCprint (MX%,MY%-32)

IF INKEY-105 PROCprint (MX%,MY%+32)
IF INKEY-98 PROCprint (MX%+64,MY%)

IF INKEY-67 PROCprint (MX%-64,MY%)

IF INKEY-74 PROCshoot

IF INKEY-82 S0%=S0%+1:50%=S0% MOD

2:PROCsound (S0%)

430
440
450
460
479
480
490
500
519
520
530
540
55¢
560
570
580
590
600
610
1009
1010
1029
1030
1049
1959
1060
1079

UNTIL TIME>t%

*FX21,0

PROCupdate

vDU19,1%,0;0;

UNTIL Dead%<>0
Ships%=Shipsg+1

UNTIL Ships%=4 OR Dead%=

IF Dead%=2 THEN PROCnewlev:GOT0240
PROCgameover

MODE7

PROContable

UNTIL FALSE

END

ON ERROR OFF

MODE7:IF ERR=17 END
REPORT:PRINT" at line ";ERL

END

DEF PROCinit

Hi%=0

DIM Name$(8),Sc%(8)
@g=1

FORJ%=1 TO 8
Name$ (J%) ="BEEBUG"
Sc%(JI%)=1000

NEXT

1080 ENVELOPE1,1,-10,-5,-2,2,10,3,9,0,
9,-3,126,4

1999 ENVELOPE2,4,0,0,9,9,0,1,0,-4,0,-6
;126,80

1100 ENDPROC

1119 :

1120 DEF PROChiscore

1130 Hi%=Sc% (1)

1140 AS=CHRS(131)+CHRS (157)+CHRS (141)+
CHR$ (129)

1150 FORR=0TO1:PRINTTAB(J,R)AS TAB(6)"
INTERSTELLAR RAIDER HISCORE":NEXT

1168 FORJ%=1 TO 8

1179 PRINTTAB (3, (J%*2)+3);J%".."RIGHTS
("000P9"+STRS (Sc% (J%)) ,5) ,TAB(9) .o "N
ames (J%)

1180 NEXT

1190 PRINTTAB (9,22)CHRS134;CHRS136"Pre
ss any key to play"™

1200 G=GET

1210 ENDPROC

1229 ¢

123¢ DEF PROCvdus

1249 VDU23,224,192,192,0,0,0,9,9,9
125¢ vDU23,225,192,195,153,255,255,153
, 195,102

1260 vDU19,8,0
1279 vDU19,9,1
1280
12990
1300
1310
1320
1339 vDU19,15
1340
13590
1360

1370 NEXT

1380 ENDPROC

1390 :

1409 DEF PROCstars

1419 FOR J%=15 TO 360 STEP 15

()
=
O
~
[}
o
~
=
~s

BEEBUG

AUG/SEPT 1984

Volume-3 Issue 4

40

RAD (J%))

(

1420 C%=RND(6) :CS=COS (RAD (J%)) 2 SN=SIN (

1430 FOR K%=RND(30)+5@ TO 709 STEP RND

40)+100

1440 C%=C%+1

145¢ GCOL@,C% MOD 6+1

1460 PLOT4,640+CS*K%,512+SN*K%:VDU224

1470 NEXT

1480 NEXT

149¢ ENDPROC

1500 : .

1519 DEF PROCsights

1520 vDU19,10,0;0;

153% GCOL®,10

1540 S=SIN(2*PI/90) :C=COS (2*P1/90)

1550 X1=79:Y1=0

1560 COLOUR13

1570 MOVE678,496

1584 FOR J%=1 TO 98

1590 X=X1*C-Y1*S

1600 Y=X1*S+Y1*C

1610 DRAW6D8+X,496+Y

1620 X1=X:Y1=Y

1630 NEXT

1640 MOVES5@8,496 :DRAWS98,496

1650 MOVE618,496:DRAW798,496

1660 MOVE6QS,396:DRAW608, 486

1679 MOVE6(@8,506:DRAW6Y8,596

1680 vDU19,10,2;0;

1690 GCOL@,11

1769 MOVEQ,@:MOVE@, 130:PLOT85,1280,0

171@ MOVE1280,0:MOVE1280,130:PLOT85,0,0
2@ ENDPROC

1730 :

1740 DEF PROCinitl

1750 TIME=0

1769 Sc%=0

1779 Difg=

1780 Dead3=0

1790 Ships%=0

1809 vDU4

1819 COLOUR13

1820 PRINTTAB(@,@)"™ Score

1830 PRINTTAB(4,1)" 00000"

1849 PROCoutput (STRS (Hi%) ,12,1,5)

1850 vDU4

1860 vDU28,@,31,19,30

187¢ COLOUR139:COLOUR12

188¢ CLS

189¢ PRINT" Fuel

1909 PRINT" Ship

1919 vDUS

192@ ENDPROC

1930 ¢

1940 DEF PROCNman

1950 VvDUS

1960 Dead%=

1970 Fuel%=1500

1980 Shot%=25

1990 MX%=64:MY%$=920

HiScore"

Shots"
Level";

2000 GCOL4,7

2019 MOVEMX%,MY%:PRINTCHRS225

2029 PROCoutput (STRS (Shot%) ,17,0,2)
2030@ PROCoutput (STRS (Shipsg) ,6,1,1)
2040 ENDPROC

2050 :

2060 DEF PROCmove (D%)

2079 PROCprint (MX%+ (RND(3)-2)*12.8*D%,

MY%+ (RND (3) ~2) *6 .. 4*D%)

2080 ENDPROC

2090 :

21¢@% DEF PROCprint (X%,Y%)

2110 IF X%<=0 OR X%>=1216 OR ¥Y%<=162 O
R Y%>=924 ENDPROC

2120 GCOL4,7

2130 MOVEMX$%,MY%:PRINTCHRS$225:MOVEX%, Y
%: PRINTCHRS$225

2140 MX%=X%:MY%=Y%

215@ ENDPROC

2160 :

2170 DEF PROCshoot

2180 Shot%=Shot%-1

2190 PROCoutput (STRS (Shot%) ,17,8,2)
22008 IF Shot%=0 THEN Dead%=1

2219 GCOL3,9

2220 MOVE160,115:DRAW60O8, 496

2230 DRAW1120,115

224¢ SOUND1,1,150,1

225@¢ MOVE160,115:DRAW6GS, 496

2260 DRAW1120,115

227¢ IF POINT(608,496)=0 THEN ENDPROC
2280 VvDU19,1%,0;0;

2290 Dead%=2

2300 GCOL4,7

2310 MOVEMX%,MY%:PRINTCHRS225

2320 SOUND@,2,5,18

2330 FORI%=1 TO 6 STEP 2

2340 VDU19,1%,1;0;

235¢ VDU19,1%+1,7;0;

236@ PROCwait (29)

2370 vDU19,1%,9;0;

2380 VDU19,1%+1,0;0;

2390 NEXT

2400 ENDPROC

2410 :
2420 DEF PRCCupdate

2430 Fu%=Fuel%-TIME DIV 19
2440 IF Fu%<=0 Fu%=0:Dead%=
245@¢ PROCoutput (STRS (Fu%) ,6,0,4)
2460 ENDPROC

247¢ DEF PROCnewlev

2480 Sc%=Sc%+Fu%

2490 VDU4,26

2500 COLOUR128:COLOURT 3

2510 PROCoutput (STRS (Sc%) ,1,1,5)
2520 vDU28,9,31,19,30

2530 COLOUR139:COLOUR12

254@ TIME=@

2550 Dif%=Dif%+1

2560 ENDPROC

BEEBUG

AUG/SEPT 1984

Volume-3 Issue 4

41

2579 :

2580 DEF PROCgameover
2590 FORJ%=0 TO 1
2609 FORK%=1 TO 6
2619 VDU19,K%,7
2620 VDU19,K%,0
2630 NEXT

2640 NEXT

2650 SOUNDZ,2,5,50

2660 VvDU19,3,1;9;

2670 VDU4,26

2680 COLOUR14 :COLOURG

2699 VDU19,1,1;0;

2709 PRINTTAB(5,15) "Game Over"

271¢ PROCwait (750)

2720 ENDPROC

2730 :

274@ DEF PROContable

2750 *FX21,0

2760 IF Sc%<=Sc%(8) THEN ENDPROC

2770 PRINTTAB(11,9)CHRS(134)+"YOUR SCO
RE WAS IN"

278¢ PRINTTAB (12,10)CHRS (134)+"THE TOP
EIGHTY

2790 PRINTTAB<(8,11)CHRS (130)+CHRS(136)
+"PLEASE ENTER YOUR NAME"

2800 NameS=""

2819 PRINTTAB(9,12);

2820 REPEAT

2830 G=GET

2840 IF G=13 THEN 2900

2850 IF G=127 AND LEN (Name$)>=1 THEN N
ame$=LEFTS (Name$, LEN (Name$) ~1) : GOT02880
2860 IF (G=127 AND LEN(Name$)=0) OR LE
N (Name$) =15 THEN VDU7:GOT028949

2870 NameS$=NameS$+CHRS (G)

2880 VDUG

2890 *FX21,0

2900 UNTIL G=13

2910 Rank%=9

2920 REPEAT

293¢ Rank%=Rank%-1

2940 UNTIL Rank%=1 OR Sc% (Rank%-1)>Sc$%
295¢ FOR J%=8 TO Rank%+1 STEP -1

2
]

14
°
7

~o wo

DOWNLOADING LONG PROGRAMS FROM TAPE TO DISC - R.Ager
' Having got a long program (up to 6E blocks) from tape on to disc

vol.2, No.7)
you might expect,

4
2 *FX138,0,128
3 END

HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS

12:CA.&FFF7:$&CO0="TA." :CA.&FFF7:F. 1%
:IS1&E00=1%1&1100:N. : PAGE=&EQ@Q:CLS: END|MRUN)M

2960 Name$ (J%)=Name$ (J%-1) :Sc% (J%)=Sc%
(J%-1)

2970 NEXT

298¢ Name$ (Rank$%)=Name$: Sc% (Rank%)=Sc%
2999 ENDPROC

3000 :

301¢ DEF PROCoutput (AS,X%,Y%,N%)

3020 vbu4

3030 B$=STRINGS (N%-1,"0")

3040 PRINTTAB (X%,Y%)RIGHTS (BS+AS,N%) ;
3050 vDU5

3060 ENDPROC

3079 =

3080 DEF PROCwait (T%)

309¢ Time%=TIME

3100 REPEAT UNTIL TIME>Time%+T%

3119 ENDPROC

3120 :

3130 DEFPROCinstr

3149 vDU22,7

3150 SO%=

3160 AS$S=CHRS (134)+CHRS (157)+CHRS (141) +
CHRS (133)

3170 FORR=¢ TO1:PRINTTAB(J,R)AS TAB(11
) "INTERSTELLAR RAIDER":NEXT

318¢ PRINT'TAB(15)CHRS130"by A.Nicol™
3199 PRINT''®

3200 PRINT" Your mission is to destroy
the enemy byfiring your lasers at them
. You controlyour spaceship by pressin
g these keys:"

3210 PRINT''TAB(8)"Z - Left / Right
- X"'TAB(8)"* - Up / Down - 2%
3220 PRINT'TAB(3)"S - Turns the sound
on and off"''TAB(8)"and 'Return’ to FIR
E“

3230 PRINT''''TAB(5)CHRS$134"Press any
key to continue.":G=GET

3240 ENDPROC

3250 :

3260 DEFPROCsound (s2)

327¢ IF s2=0 THEN *FX210,0

328¢ IF s2=1 THEN *FX210,1

329¢ ENDPROC =

(see BEEBUG
how do you then load and run it? This solution uses screen memory, as
but carefully adjusts HIMEM and calls the 0.S. to avoid damaging
the screen memory contents.

1 *K, PHIMEM=&8000:V.23;8202; 0; 0; ; : $&CO0="L0.<filename>1100" : X2=0;

=0TO&6EDD

Don't forget to replace <filename> with the name of your file. If it's a machine
code program then replace PAGE=.....RUN by CLS:CA.<execution address>

BEEBUG

AUG/SEPT 1984

Volume-3 Issue 4

42

PONTOON (32K)

by Nick Day

Here is an excellent implementation of the card game Pontoon or 21,
Card games like Killer Dice in BEEBUG Vol.2 No.7, can be represented
very well on the BBC micro with its high resolution of graphics. If
you like card games, you will find the effort of typing this program
in will be well rewarded.

Having presented you with a nice
baize cloth, the computer is ready to
preside as banker and adjudicator over
a game of Pontoon with you. All the
card shuffling, dealing and betting is
handled by the program offering no
opportunity for you to cheat! So this
is your challenge; to beat the
computer .

If you do not know how to play
Pontoon, the idea of the game is to win
as much money as possible from the
'‘Banker'. Your hand (which may consist
of between two and five cards) must
total as near to 21 with their face
values as possible without actually
exceeding 21; an ace counts as 1 or 11
(the choice is yours). The rules of
this version of Pontoon are that the
best possible hand is a 'Pontoon' which
is an ace and a picture card (11 + 19)
which will give you a total of 21. The
second highest hand is a 'five card
trick', and is accomplished by getting
five cards whose total is not more
than 21, for example ace-4-6-3-4 would
give you 18. The next best hands are 21
with an ace and 10, then 21 with more
than 2 cards. After that the next best
hand is 20, then 19 etc. The number of
cards is unimportant other than in a
Pontoon itself, and clearly, in five
card tricks.

The program starts most amusingly,
with the actual sound of the cards

being shuffled
before play
commences. You are
asked to place your
bet when you are
given your first
card. You should
determine the amount
“that you bet by
examining your first
4 card; an ace would

normally attract a
Sl / larger bet
than, say, a 5. After betting on the
first card (just press a key between 1
and 9 to indicate how much to bet) you
are then given your second card. If
your first two cards are good enough
(and they must total at least 16) you
may decide to 'stick', which means that
you do not want any more cards, and the
computer is required to play its hand.
If you want another card you can 'buy’
this by betting. any amount from 1 up to
the amount of your previous bet on this
hand, or you could simply 'twist' the
next card which means you can have the
card, but you are not allowed to
increase your bet any further.

If your cards total over 21 you
'bust' and the banker wins regardless.
When you have finished your turn, and
have ‘'stuck' with your cards, the
computer will take its turn to play.
The computer as banker need only
achieve a total equal to or greater
than your hand to win. If the computer
"sticks' on a lower total than you, or
'busts', then you win. Remember that
although your cards are displayed for
you to see on the screen, they are
'invisible' as far as the computer is
concerned when playing its hand as
banker .,

PROGRAM NOTES
To save space the procedure names

BEEBUG

AUG/SEPT 1984

Volume-3 Issue 4

43

have been shortened, but the most
important procedures are outlined
below.

PROCse Sets up the sound envelopes,
variables and characters.

PROCshu Shuffles the 52 cards.

PROCsh Decides which card to display.

PROC2 to PROCk draws the corresponding
card, for example:

PROCj Draws the Jack.

PROCg Draws the Queen.

PROCk Draws the King.

Take care when typing in this
program, especially with the three
procedures PROCj, PROCqg and PROCk,

otherwise you will be confronted with
very strange cards indeed!

10 REM PROGRAM PONTOON

20 REM VERSION B@.2

30 REM AUTHOR N.DAY

40 REM BEEBUG AUG/SEPT 1984

5@ REM PROGRAM SUBJECT TO COPYRIGHT

60 :

100 ON ERROR GOTO 420
11¢ MODE1

120 PROCse

130 REPEAT

140 CLG

15@ IFH%<1 VDU4:PRINTTAB(1,30);"you h
ave run out of money!";STRINGS (14,CHRS3

2) :END
160 GCOLZ,0

170 P%=0:a=0:b=0:t=0:1%=0:w=0:p=0:F%=

@:bpon=@:bust=0g

(3)=P(4) :P(4)=temp

19¢ FORC%=1T019 :B(C%)=(P(C%)MOD13)+1
:S(C%)=(P(C%)DIV13)+1:IFS(C%)=5 S(C%)=4

200 NEXT

210 FORC2=1TO12:N(C%) =0 : NEXT

220 FORD%=1T012

230 *FX15,1

249 PROCKi

250 IFD3<8 ORD$>9 P%$=P%+1:L(P%)=P (1)
260 PROCp

276 PROCE

280 N(D%)=N3%

290 IFD%<8:IFD%=1 ORD%=3 ORD%>4:IFN%=

1 a=TRUE
30@ PROCsh
319 IFN(D%)>10 N(D%)=10¢
320 IFD%=2 PROCbet
330 IFD%$>3 ANDD%<8 PROCscore
340 IFD%>8 ANDNOTbust PRCCbank
35@ NEXT:PROCr : PROCi : PROCrep

180 IFP(1)MOD13=P(3)MOD13 temp=P(3):P

360 VDU4:PRINTTAB(1,30);"You have "H%
7" pound”; s IFH%>1PRINT; "s" :VDU5
370 PROCm ("ANOTHER HAND?")
380 REPEAT:A%=GET:UNTILA%=89 ORA%=78:
UNTILA%=78 ’
39¢ VDU4:PROCm ("™ ") :VDU4: PRINTTAB(1,3
@) ;"You finished with "H%;" pound”;:IFH
$>1 PRINT;"s"
400 END
419
420 ON ERROR OFF:MODE 7
430 *FX4
440 *FX12
450 IF ERR=17 END
460 REPORT:PRINT" at line ";ERL
479 END
480 :
1009 DEF PROCse
1019 p=@:bpon=0
102¢ ENVELOPE1,1,0,100,0,50,2,2,5,100,
9,126,90,100
193¢ ENVELOPE2,2,0,40,5,-10,5,5,14,10,
0,~100,100,40
1040 ENVELOPE3,3,0,0,0,1,1,1,50,-4,0,-
4,126,890
1050 *FX11,0
1060 *FX4,1
1070 *FX202,32
1080 H%=50
1099 DIMB(19),S(19) ,L(10),N(12)
1100 vDU23;8202;0;0;0;
1110 vDU24,48;128;1232;960;
1120 VvDU19,2,2;0;
1130 GCOL#,130
1140 CLG
1150 VvDU23,224,24,60,126,126,255,255,2
19,60
1160 vDU23,225,24,60,90,255,255,90,60,
126
1179 vDU23,226,24,60,126,255,255,126,6
7,24
118¢ vpu23,227,102,255,255,255,255,126
;60,24
11%¢ vDU23,228,76,82,82,82,82,82,82,76
12¢¢ vDU23,229,255,255,255,255,255,255
+255,255
1210 G%=0
122¢ PROCshu
1230 G%=G%+1
1240 ENDPROC
1250 :
1260 DEF PROCsh
1270 SOUND®@,1,4,4
1280 GCOL®, 3:MOVEXS, Y% :MOVEX%+160,Y%:P
LOT85,X%,Y%+256: PLOT85,X%+160,Y%+256:VD
us
1290 IFD%=2 ORD%=4 PROCb:ENDPROC
1300 IFS%<3 GCOLY,1 ELSE GCOLY, @
1310 MOVEX%,Y%+250: PRINTNS s IFN2<11 MOV
EX%+128,Y%+32: PRINTNS
—

BEEBUG

AUG/SEPT 1984

Volume-3 Issue 4

44

1320
1330
1340
1350
1360

IFN%=1 PROCS

IFN%=2 ORN%=3 PROC2
IFN%>3 ANDN%<11 PROC4
IFN%=11 PROCj

IFN%=12 PROCQ

1370 IFN%=13 PROCk

138¢ ENDPROC

1399 :

1400 DEFPROCE

1410 IFD%=8 N%=N(2):S%=S(2) :GOTO1460

1420 IFD$=9 N%=N(4) $5%=S (4) :GOTO1460

143@ N%=(P(1)MOD13)+1

1440 $%=(P(1)DIV13)+1:IFS%=5 S%=4

145¢ FORC%=1TO51:P(C%)=P(C3+1) :NEXT

1460 RESTORE1510

1470 FOR PIP=1TO13

1480 READ NUMBERS
1490 IFN%=PIP N$=NUMBERS
1500 NEXT

1519 DATAA,2,3,4,5,6,7,8,9,10,3,0,K

1520 IFNS$="10" NS$=CHRS (228)

1530 IFS%=1 S$=CHRS(227)

1540 IFS$=2 SS=CHRS (226)

1550 IFS%=3 SS$=CHRS (225)

1560 IFS$=4 S$=CHRS(224)

157¢ ENDPROC

1580 :

1590 DEF PROC2:MOVEX%+64,Y%+192:PRINTS
$:MOVEX%+64,Y%+96: PRINTSS: IFN%=3 MOVEX
%+64 ,Y%+146: PRINTSS

160¢ ENDPROC

1619 3

1620 DEFPROC4:MOVEX%+32,Y%+224:PRINTSS
:MOVEX%+32, Y2+64 : PRINTS$:MOVEX%+96 , Y3+6
4:PRINTSS :MOVEX%+96 , Y3+224: PRINTSS

1630 IFNS=CHRS(228) PROC9:PROC2:ENDPROC
1640 IFNS="5" OR N$="9" PROCS

1650 IFNS="6"OR NS="7" ORN$="8" PROC6
1660 ENDPROC

1670 :

1680 DEF PROC5:MOVEX%+64,Y%+146:PRINTSS
1690 IFNS$="9" PROCY

170@ ENDPROC

1710 ¢

1720 DEFPROC9:MOVEX%+32,Y%+175:PRINTSS

<MOVEX%+32,Y%+1162 PRINTS$'MOVEX%+96 Y3+
1162 PRINTSS :MOVEX3+96 ,Y%+175: PRINTSS : EN
DPROC .
1730

1740 DEFPROC6:MOVEX%+32,Y%+146:PRINTSS
:MOVEX$+96,Y%+146: PRINTSS: IFN$="7" ORNS
'“8“ PRm7

1758 ENDPROC

1760 :

177¢ DEFPROC7

1780 MOVEX%+64,Y%+110:PRINTSS

1790 IFN$="8" MOVEX%+64,Y%+187:PRINTSS
180@ ENDPRCC

1810 :

1828 DEFPROC]:GCOL#,?:MOVEX%+32,Y%+32:
MOVEX%+32,Y%+112:PLOT85,X%+88,Y%+32:MOV
EX%+112,Y%+32:MOVEX%+112,Y%+96 s PLOT85,X

%+96 Y%+60:PLOT85,X%+96,Y%+128

1830 GCOL®Z,1:MOVEX%+92,Y%+128:MOVEX%+9
2,Y%+80:PLOT85,X%+64, Ys+128 MOVEX%+32,Y
o+] 28:MOVEX%+40,Y%+128: PLOT85,X%+96 , Y%+
32:PLOT85,X%+112,Y%+32:MOVEX%+40,Y%+32:
MOVEX%+80 ,Y%+32

1840 PLOT85,X%+40,Y%+80 :MOVEX%+120, Y%Jr
176 :MOVEX%+120, Y9+32 PLOT85,X%+128,Y%+
762 PLOT85,X%+128,Y%+32

1850 GCOLQ @ :MOVEX%+64 ,Y%+128 :MOVEX%+4
7,Y%+128:PLOT85,X%+64,Y%+192:PLOT85,X%+
48,Y%+192

1 86(5 GCOL@, 1 :MOVEX%+112,Y%+192:PLOT85,

2+128,Y%+224 :MOVEX%+48,Y%+192: PLOT85,X
%+32,Y%+224

1870 GCOLJ, J:MOVEX%2+76,Y%+144:DRAWXS+9
2,Y%+144 :MOVEX%+80,Y%+156: DRAWX%+88, Y3+
156 s DRAWX%+88 , ¥3+168:MOVEX%+80,Y%$+184:D
RAWX%+72,Y%+176:MOVEX%+102,Y%+184: DRAWX
%+96,Y%+176

1880 GCOL®,1:MOVEX%+104,Y%+202:MOVEX%+
112,Y%+224:PLOT85,X%+56,Y%+202: PLOT85,X
%+48,Y%+224: PROCPIC: ENDPRCC

1890 :

190@ DEF PROCPIC

1910 GCOLY,0

1920 MOVEX%+32,Y%+32:DRAWXS+128,Y%+32:
DRAWX%+128,Y%+224: DRAWX%+32,Y%+224: DRAW
X%+32,Y%+32

193¢ IFS%<3 GCOLO,1

1940 MOVEX%#+132,Y%+64 : PRINTNS :MOVEXS,Y
2+218:PRINTSS :MOVEX3+135,Y%+32: PRINTSS

1950 ENDPRCC

1960 :

197¢ DEFPROCkK :GCOL#, 1:MOVEX%+32,Y%+224
:MOVEX%+48,Y%+192: PLOT85,X%+128,Y%+224:
PLOT85,X%+112,Y%+192

1980 GCOL@, @:FORH=112TO8@STEP-8 :MOVEX%
+H,Y%+192:DRAWXS+H+16,Y%+128: NEXT :FORH=
88T064STEP-8 :MOVEX%+H , Y%+144 : DRAWX%+H+1
6,Y%+128: NEXT

1990 MOVEX%+80 ,Y%+152:DRAWX%+60, ¥3+152
:MOVEX%+72,Y%+160: DRAWX%+60,Y%+152 :MOVE
X%+72,Y%+1 69 DRAWX%+68, Y3+180 : DRAWX2+52
,Y3+180 :MOVEX%+80,Y%+180: DRAWX3+64,Y3+1
80 :MOVEX%+48,Y%+192: DRAWX%+72,Y%+128:MO
VEX%+32,Y%+112: PLOT85,X%+32,Y%+32

2009 MOVEX%+72,Y%+128:PLOT85,X%+128,Y%
+128

2019 PLOT85,X%+128,Y%+32:PLOT85,X%+32,
¥%+32:GCOLY, 1 :MOVEX%+32 ,Y%+64 sMOVEX%+12
8,Y%+128:PLOT85,X%+32,Y%+32: PLOT85,X%+1
28,Y%+96:GCOLY, 3

2020 MOVEX%+44 ,Y%+220: PRINT"X" :MOVEX %+
68,Y%+220: PRINT"X" :MOVEX%+92,Y%+220: PRI
NT"XII

—

BEEBUG

AUG/SEPT 1984

Volume-3 Issue 4

45

2030 MOVEX%+48,Y%+32:MOVEX%+64,Y%+32:P
LOT85,X%+48,Y%+128:PLOT85,X%+64,Y%+128:
MOVEX6+]]2»Y6+]28 MOVEX% +1]2 Y%+32:PLOT
85,X%+96,Y%+128: PLOT85,X%+96, Y¥+32:GCOL
0, 0:FORH=132T064STEP~16:MOVEX%+44 , Y%+H:
PRINT"," :MOVEX%+92, Y$+H: PRINT" , " : NEXT

204¢ PROCPIC:ENDPROC

2050 ¢
2060 DEFPROCqQ:GCOL#, #:MOVEX%+32,Y%+224
<MOVEX%+32,Y%+128:PLOT85,X%+96,Y%+224:M
OVEX%+112,Y%+224:PLOT85,X%+112,Y%+176:M
OVEX%+84,Y%+192: DRAWX%+72,Y%+168 :MOVEX%
+104,Y%+168:DRAWX%+92,Y%+192 s DRAWXS+96,

%+148:DRAWX%+84,Y%+148
207¢ GCOL@,1:MOVEX%+92,Y%+140: DRAWX%+7
6,Y%+140:MOVEX%+56,Y% +224 MOVEX%+72,Y%+
224:PLOT85,X%+32,Y%+160:PLOT85,X%+32,Y%
+128:MOVEX%+48,Y%+128:PLOT85,X%+32,Y%+3
2:PLOT85,X%+48,Y%+32
2080 FORH‘=48TO64STEP8 MOVEX%+H,Y%+32:D
RAWX%+H+32,Y%+96 : NEXT :MOVEX%+96 ,Y%+128:
MOVEX%+64,Y%+128:PLOT85,X%+128,Y%+112:P
LOT85,X%+128,Y%+32
2090 GCOL®, #:MOVEX%+48,Y%+112s PRINT"*"
:MOVEX%+8@,¥%+64: PRINT"*" :MOVEX%+96, Y*+
128:MOVEX%+112,Y%+64: PLOT85,X%+128, Y%+
12:PROCPIC: ENDPROC
21900 :

2119 DEFPROCb:GCOLY, 1 :FORC%=40TO244STE
P20 :FORW=12T0128STEP2{ :MOVEX3+WS, Y3+C%
s PRINT"#" :NEXT , : ENDPROC

2120 :

2130 DEFPROCshusVDU4:PRINTTAB(1,30) ;"1
'm shuffling "VDUS: IFG%>@ GOT0217¢

2140 DIMP(52)
215¢ FORT$=1T052
2160 P (T%)=T%:NEXT
217@ FORC%=1 TO 52
2175 IFC% MOD 5=@ SOUND@,2,4,5:T=TIME:
REPEAT:UNTIL TIME>T+ (RND(25)+20)

2180 dummy=P (C%)

2199 newplace=RND(52)

2200 P(C%) =P (newplace)

2219 P(newplace)=dunmy
2220 NEXT
223@ ENDPROC
2249 :
225¢ DEFPROCp
2260 IFD%=1X%=160:Y%=192
2270 1FD%=2Y%=640:X%=160
2280 IFD%=3X%=348:Y%=192
2290 IFD%=4Y%=640:X%=348
2300 IFD%=5X%=576
2319 IFD%=6X%=784
2320 IFD%=7X%=992
2330 IFD%=8X%=160
2340 IFD%=9X%=348
235¢ IFD%=10X%=576
2360 IFD%=11X%=784
2370 IFD%=12X%=992

2380 IFD%>4 ANDD%<8 Y%=192

2390 IFD%>7 Y%=640

2400 ENDPROC

2419 :

2420 DEFPROCscore

2430 Q%=N(1)+N(3)+N(5)+N(6)+N(7) : IFa=T
RUE ANDQ%<12 0%=Q%+10

2440 IFQ%>2T1PROCm ("BUST! ™) :D%=12:Q%=0:
bust=TRUE: ENDPROC

245¢ IFD%=4 ANDN(1)=1 ANDB(3)>1¢ p=TRUE
2460 IFD%=4 ANDN(3)=1 ANDB(1)>18 p=TRUE
247¢ IFN(7)>@ PROCm("5 CARD TRICK") :EN
DPROC

2480 IF w=TRUE AND Q%>15 PROCm("STICK
or TWIST?")ELSE IF w=TRUE PROCm("TWIST?
"YELSE IF Q%>15 PROCm ("STICK, TWIST,BET?
") ELSE PROCm("™TWIST or BET?")

2499 REPEAT

2509 A%=GET

2510 UNTILA%=83 ORA%=84 ORA%=89 ORA%=66
252¢ IF w=TRUE ANDA%=66 GOT02490

2530 IFA%=83 AND Q%>15 D%=7:PROCm("YOU
STICK") :ENDPROC ELSE IF A%=83 VDU 7:GO
TO2430

2540 IFA%=84 OR A%=89 w=TRUE:PROCm("TW
IST") s ENDPROC

2550 IFA%=66 PROCbet:ENDPROC

2560 :

2570 DEFPROCbank

258¢ IFN(2)=1 ORN(4)=1 b=TRUE

2590 IFD%>7 ANDN%=1 b=TRUE

2600 R%=N(2)+N(4)+N(19)+N(11)+N(12) s IF

=TRUE ANDR%<12 R%=R%+10

2610 IFD%=9 ANDN(2)=1 ANDB(4)>19 Q%=0
bpon=TRUE:D%=12: ENDPROC

2620 IFD%=9ANDN (4)=1 ANDB(2)>10 Q%=@:b
pon=TRUE:D%=12: ENDPROC

2630 IFp ANDNOTbpon PROCM("PAY PONTOON
) :D%=12: ENDPROC

2640 IFR%>21PROCm("DEALER'S BUST ") D%
=12:R%=0: ENDPROC

2650 IFR%<17 ANDD%=11 ANDN(7)>@ ENDPROC
2660 IFR%<17 ANDRND(1)>.5 AND w=TRUE:I
FN(6)>0 ORN(5)>@ ENDPROC

267¢ IFR%=21 ANDNOTp AND N(7)=@ D%=12:
ENDPROC

2680 IFR%>15 PROCm("BANK STICKS:"):VDU
4:PRINT; "PAY" ;R%+1:VDU5:D%=12: ENDPROC
26990 ENDPROC

2709 =

2719 DEFPROCK : PROCW

272¢ IF Q%>21 OR Q%=0 I%=@:PROC1:ENDPR
oC

2730 IFN(12)>0 AND NOT p I%=
DPROC

2740 IFN(7)>0 ANDNOTbpon H%=
¢ PROCv ¢ ENDPROC

275¢ IFR%=21 ANDNOTp ANDN(7)=@ PROCm("
SORRY™) : I1%=0 : PROC1 : ENDPROC

2760 IFp H%=H%+(I%*4):PROCV: JF.:I\JDPROC,‘_____l>

@ ¢ PROC1 :EN

H%+ (1%%3)

BEEBUG

AUG/SEPT 1984

Volume-3 Issue 4

46

2770 IFQ%>R% H%=H%+(I%*2) s PROCv:ENDPROC
IFQ%<R%+1 PROCI ¢ ENDPROC
2790 :
2800 DEFPROCrep
2819 FORC%=1TOP%
2820 P(53-C3)=L(C%)
283¢ NEXT:ENDPROC
2840 :
2850 DEFPROCbet
PROCm ("YOUR BET?")

2870 B%=GET: IFB%<490RB%>57G0T02870
2880 IFD%>3 AND B%>F%GOT02860

2890 IFB%-48>H% PROCm("SILLY!"™) : PROCw:
GOT02859

2900 F%=B%

2910 B%=B%-48:1%=I%+B%:PROCi:PROCi2
2920 H%=H%-B%:PROCH (STRINGS (15,CHRS32))
2930 ENDPROC

2949 :

295@ DEFPROCm (MS) : PROCw :VDU4 : PRINTTAR (
22,39) ;SPC(17) :PRINTTAR (22, 30) ;M$; :VDU5S
: ENDPROC

2960 :

2979@ DEFPROCw :C%=INKEY (200) : ENDPRCC
2980 :

2990 DEFPROCki

300¢ VDU4:PRINTTAB (1,30) ;"You have "H%;
" pound™;:IFH$>1PRINT;"s ":VDU5:ENDPROC
3019

3@¢2¢ DEFPROCi :VDU5:GCOL@, 2:FORC%=480T0
800 STEP32:MOVEC%,512:PRINTCHRS (229) :NE
XT

303@ ENDPROC

3049 3

3050 DEFPROCiZ2:GCOL@,¥:MOVE48Y,512:VDU
5:¢PRINT;I%;" Pound";:IFI%>1 PRINT;"s":V
DU4

3360 ENDPROC

3079

3080 DEFPROCV:SOUND1,3,197,4:ENDPROC
3090 :

3199 DEFPROC1:SOUND1,3,33,4:ENDPROC

=

(8727) 60263
Manned Mon~Fri
1pm—4pm

oo,

All rights

programs ,

reserved. No part of this publication may be reproduced without prior written permission of
the Publisher. The Publisher cannot accept any responsibility,

whatsoever, for errors in articles,

or advertisements published. The opinions expressed on the pages of this journal are those of

the authors and do not necessarily represent those of the Publisher, BEEBUG Publications Limited.
BEEBUG Publications Ltd (c) 1984.
BEEBUG MAGAZINE is produced by BEEBUG Publications Ltd.

Editor: Mike Williams.
Production Editor: Phyllida Vanstone.

Technical Assistants: David Fell, Nigel Harris and Alan Webster.

Managing Editor: Lee Calcraft.

Thanks are due to Sheridan Williams, Adrian Calcraft, John Yale, and Tim Powys-Lybbe

for assistance with this issue.

BEEBUG

AUG/SEPT 1984

Volume-3 Issue 4

1.2 OPERATING SYSTEM

A special arrangement has been agreed between Acorn and BEEBUG whereby BEEBUG members may
obtain the 1.2 operating system in ROM at the price of £5.85 including VAT and post and packing.

The ROM will be supplied with fitting instructions to enable members to install it in their machine.

If the computer does not subsequently operate correctly, members may take their machine to an Acorn
dealer for the upgrade to be tested, which will be done at a charge of £6.00 plus VAT. This charge will be
waived if the ROM is found to have been defective. If the computer has been damaged during the
installation process, the dealer will make a repair charge.

NEW ROMS FOR OLD
EXCHANGE YOUR 1.0 FOR THE 1.3

FREE

We can now exchange your old 1.0 operating system for the new 1.2, free of charge. To take advantage of
this offer, please send your 1.0 (supplied on eprom with a carrier board), in good condition to the
address below.

£8 FOR YOUR OLD 1.0

If you have the 1.0 operating system and have already bought a 1.2 we will exchange the 1.0 (supplied
on eprom with a carrier board) for a £85 voucher. This voucher may be used against any purchase from
BEEBUGSOFT.

ADDRESS FOR 1.2. 0S:
ROM Offer, BEEBUG.PO Box 109, High Wycombe, Bucks, HP10 8 HQ

THE BEEBUG

O DISC

The programs featured each month in the BEEBUG magazine are now available to members on disc and
cassette.

Each month we will produce a disc and cassette containing all of the programs included in that month’s
issue of BEEBUG. Both the disc and the cassette will display a full menu allowing the selection of
individual programs and the disc will incorporate a special program allowing it to be read by both 40
and 80 track disc drives. Details of the programs included in this month’s magazine cassette and disc
are given below.

Magazine cassettes are priced at £3.00 and discs at £4.75.
SEE BELOW FOR FULL ORDERING INFORMATION.

This Month's Programs Include:

MAGAZINE DISC/CASSETTE SUBSCRIPTION

Subscription to the mé.gazi.ne cassette and disc is also available to members and offers the added

advantage of regularly receiving the programs at the same time as the magazine, but under separate
‘cover.

Subeription is offered either for a period of 6 months (5 issues) or 1 year (10 issues) and may be
backdated if required. (The first magazine cassette available is Vol 1 No. 10; the first disc ava.ﬂa.ble is
Vol 3 No. 1.)

BBLRTIE SEBRTTE SUBSCRIPTION RATES
6 MONTHS (B issues) UK &17.00 INC. .. Overseas £20.00 (No VAT payable)
1 YEAR (10 issues) UK £33.00 INC. .. Overseas £39.00 (No VAT payable)

MAGAZINE DISC SUBSCRIPTION RATES

6 MONTHS (5 discs) UK £25.50 INC. .. Overseas £30.00 (No VAT payable)
1 YEAR (10 discs) UK £50.00 INC. .. Overseas £56.00 (No VAT payable)
CASSETTE TO DISC SUBSC TOE SEER

If you are currently subscribing to the BEEBUG magazine cassette and Would prefer to receive the
remainder of your subscription on disc, it is possible to transfer the subscription. Because of the
difference between the cassette and disc prices, there will be an extra £1.70 to pay for each remaining
issue of the subscription. Please calculate the amount due and enclose with your order.

ORDERING INFORMATION

Please send your order to the address below and include a sterling cheque. Postage is included in
subscription rates but please add 50p for the first item and 30p for each subsequent item when ordering

md1v1dua.1 discs or cassettes in the UK. Overseas orders please send the same amount to include the
extra, post but not VAT.

SEND TO:

BEEBUGSOFT, PO BOX 109, HIGH WYCOMBE, BUCKS, P10 8HQ

Printed in England by Staples Printers St Albans Limited at The Priory Press. ISSN 0263 ~-7561

