Vol 3 No 6 NOVEMBER 1984

Elite — the new supergame

O Build a graphics tablet

O Midland homebanking
experiment

O Auto-keyword generator

O Cross reference lister

O Acornsoft ISO-Pascal
reviewed

B O Basic compilers reviewed
O Number hunt game
O Wee Shuggy game

O Latest ROM/RAM boards
reviewed

O Adventure games

O And much more

BRITAIN'S LARGEST COMPUTER USER GROUP
MEMBERSHIP EXCEEDS 25,000 °

EDITORIAL

MORE PAGES IN BEEBUG

This is the first regular issue of BEEBUG with an extra four pages. We hope that
in the next few months that this will enable us to include more reviews and other
information as well as some extra programs and other features. We shall be taking
advantage of the extra pages next month to add a Christmas flavour to the magazine.

DNE'S ROM FROM ACORN

The DNFS ROM, supplied as part of Acorn's second processor systems, is now
available separately for around £20.6¢ inc. VAT. This provides later, improved
versions of the Disc and Network Filing Systems. The chip is accompanied by a 10
page booklet. The Acorn reference number is ANB21.

OTICE.BOARD NOTICE BOARD NOTICE BOARD NOTICE BO

NEW RELEASES FROM BEEBUGSOET

You should receive a copy of our new software brochure with this magazine
mailing. As you will see, we have considerably expanded the range of our software,
and have upgraded a number of our current titles. For example Masterfile II allows
very flexible print options, and can even print documents from Wordwise or View,
inserting specified data from Masterfile - e.g. insert the name, address and other
particulars into circulars etc. Exmon II incorporates a full screen editor, and dual
screen facilites, and we have a ROM based version of Spellcheck which runs up to 10
times faster than the disc based version. Upgrades for all these products are
available at 5@% discount on trade in of previous versions.

Sleuth is a totally new ROM offering dual screen single step debugging in Basic.
Our Music Extension ROM is also worth close examination, and we are now offering our
own brand of full specification discs which are fully tested and guaranteed, and
supplied in a free case in quantities of 10, 25 and 30.

We are now taking Access and Barclaycard orders on all products - ring Penn
(0494810) 6666 (multi-lines, 24 hour service). If you are taking a member's discount
it is essential to quote your membership number.

In expanding our range of products we have regretfully had to phase out our
software club offers. See this month's supplement for stock clearance price cuts.

PRINTMASTER ROM UPDATE

The STAR compatible version of Printmaster is now available at the same price as
the existing Epson version. The new release will work with STAR printer models
DELTA, DP, GEMINI and RADIX.

Computer Concepts have also stated that they believe the Epson version of
Printmaster will work with the following compatible printers: KAGA TAXAN, CANON,
MANNESMAN TALLY MT8@.

HINT WINNERS

This month F.Duerden is the winner of the £10 prize, and S.R.Linton and D.Long
both win £5 prizes. We are always please to receive your latest hints for the
magazine.

MAGAZINE CASSETTE/DISC

This month we have included one extra program on the magazine cassette/disc. This
is a copy of the PACK program by David Tall first published in BEEBUG Vol.l No.9,
and is intended to complement the Cross Reference program included in this month's
magazine. The PACK program can be used to remove unnecessary spaces and comments
from programs to save space.

BEEBUG NOVEMBER 1984 Volume-3 Issue 6

B —

BEEBUG MAGAZINE

GENERAL CONTENTS

2 Editorial
4 Acornsoft ISO-Pascal Reviewed
7 ELITE — An Outstanding New Game from
Acornsoft
8 Auto-Keyword Generator
10 The Midland Home Banking Experiment
13 Build Your Own Graphics Tablet (Part 1)
16 Adventure Games
18 Domestic Accounts Extended
19 New Edition of Birnbaum’s Book
20 Two Basic Compilers Reviewed
22 Points Arising
23 Improved Function Key Labels
25 Beginners Start Here
Debugging Programs (Part 1)
28 Cross Reference Lister
33 The Latest ROM and RAM Boards Reviewed
36 BEEBUG Workshop
Formatting Text
38 Watford Electronics’ ROM Manager
39 Wee Shuggy
44 Number Hunt

HINTS, TIPS & INFO

PROGRAMS

Number of Characters per Line
Disc Tips

Faster Basic

Cassette Usage of Wordwise
Hobbit and GDUMP

Torch Corruption

Doctor Soft Mods

Another Use for *BASIC
Amusing *FX Call

Power up Reset

Basically Mistaken

Length of a File

Long Disc Files

Delay Loop

6502 Tube and the Graphics ROM

8
18
23
28
36
39
44

Auto-Keyword Generator
Domestic Accounts Extended
Function Key Labels

Cross Reference Lister

Text Formatting Routine
Wee Shuggy Game

Number Hunt Game

BEEBUG

NOVEMBER 1984

Yolume-3 Issue 6

ACORNSOFT ISO-PASCAL

Reviewed by Matthew Rapier and Paul Spurgeon

At last a full implementation of Pascal is available for the BBC

micro. We report on ISO-Pascal,

a major new programming language

system from Acornsoft, due to be launched in mid November.

Product: ISO-PASCAL
Supplier: Acornsoft
Price: £69.00 inc VAT,

ISO-PASCAL from Acornsoft is a full
implementation of the Pascal language
to the latest ISO standard. Pascal is
very popular as a teaching language.
However, it is not Jjust limited to use
in Universities and Colleges, but is
often used for systems programming and
other applications on all manner of
computer systems.

Compared to S-Pascal and the HCCS
Pascal, this is surely a superb system.
At £69 it is one of the cheapest full
language systems available for the Beeb
as an an alternative to Basic.

A BRIEF EXPLANATION OF PASCAL

Pascal is an example of what is
termed a ‘'block structured' language.
For those wunfamiliar with block
structured languages it is worthwhile
giving a brief explanation of Pascal.
It is impossible here to describe all
the features of the language, and for
further information you should consult
some of the many books that explain
the language more fully.

Pascal was devised by Niklaus Wirth
at the Tecnological University of
Zurich to embody the best principles
of program structure and design. Pascal
is a well defined language with a
recognised standard (see Jensen and
Wirth, "Pascal User Manual and Report",
Springer -Verlag, New York 1975), which
has deservedly established a world wide
reputation.

Pascal programs are entered and
modified using a text editor (akin to
Wordwise or View on the BBC micro), and
without line numbers. At this stage a
Pascal program is simply a standard
text file and this allows instructions
to be laid out in a way which
emphasizes the structure of the program

as shown in the example:

WHILE p > start DO
. BEGIN
q:=start+1;
p:=p-1;
WHILE q < fin DO
BEGIN
q:=q+l;
IF NOT costfixed THEN
IF cost+max<total THEN

BEGIN
total :=cost+max; min:=w
END
END
END

Once the text of the Pascal program
has been entered and saved on disc, it
can then be compiled to machine code or
similar using a Pascal compiler. It is
this 'object code' file which is then
executed to run the program.

One important feature of Pascal is
the way in which 'compound' statements
can be constructed consisting of simple
statements enclosed between 'BEGIN' and
'END'. A compound statement can be used
anywhere in the program in place of a
simple statement. This leads to the
nested block structure so typical of
Pascal and encourages a well structured
approach to the writing of Pascal
programs. This is helped by a
comprehensive set of structured control
statements including not only the
REPEAT-UNTIL that is part of BBC Basic,
but also a WHILE-DO and most useful, a
CASE statement which provides for
multiple branching usually handled by
the IF-THEN-ELSE or ON-GOTO type of
construction in Basic.

Procedures and functions also
feature strongly in Pascal, though the
Pascal versions are both more powerful
and flexible than in BBC Basic. They
can be thought of in simple terms as a
block with a name. The block of the
procedure can refer to previously
defined procedures and to itself,

BEEBUG

NOVEMBER 1984

Volume-3 Issue 6

I———

5

allowing recursion. The wuse of
parameters and local variables ensures
that both functions and procedures can
be written quite independently of each
other and the main program.

Another characteristic of Pascal is
its insistence that the data type of
every variable be declared before use.
Not only that, but Pascal also allows
you to define your own data types. In a
procedure definition the type of each
parameter 1is explicitly stated and you
can only pass variables of the correct
type to that procedure. This strong
data typing helps to structure the
program and often highlights potential
errors caused by the mis-match of data
types at an early stage of program
development. The option to define your
own data types also allows complex data
structures to be introduced into a
program with minimal difficulty.

ACORNSOFT ISO-PASCAL

ISO-Pascal is supplied on two 16K
ROMs for standard BBC machines and on
disc for use with the 6502 second
processor. One ROM contains a machine
code interpreter, to execute the
intermediate code generated by the
compiler, and also the editor and other
Pascal system commands. The other ROM
contains the compiler but this still
needs the interpreter to run. Pascal
programs are standard ASCII text files
which are then compiled, not directly
into machine code, but into an
intermediate code (called BL code).
This is then interpreted by the BL
interpreter in ROM. The Pascal compiler
is itself in BL code (presumably
compiled from Pascal) which is why the
compiler needs the interpreter.

Switching between the two ROMs is
automatically controlled by the Pascal
interpreter ROM. The system can be used
with any filing system, but to use full
error reporting a random access system
like DFS or Econet is necessary. The
system will work with cassette files
but developing large programs in this
way would be very tedious.

THE EDITOR

A text editor is provided as part of
the main ROM for the creation and
editing of Pascal programs, though
other text editors such as View or

Wordwise could equally well be used.
The supplied editor is quite powerful
with screen editing using the cursor
and function keys, and includes a very
flexible search and replace facility.
You can search not only for alpha-
numerics (including spaces), but also
for ranges of characters, not ranges of
characters and so on, making this a
very useful and powerful feature.

THE COMPILER

The ROM based compiler will compile
a program from either a disc file or
from the current memory file created by
the editor. The intermediate code file
in turn can be sent either to disc or
stored in memory. This provides a fast
development environment for small
programs as both source and object code
may be kept together in memory. The
disc based compiler for the 6502 second
processor system does not have this
facility, and can only compile from and
to disc. Compiling a Pascal source
program provides a line numbered
listing of the program on the screen
(which can be turned off) as
compilation proceeds.

The single pass compiler produces
runnable intermediate code if no errors
are encountered. If an error is found
then the compiler pauses, giving an
error code, and if an error file is
available on disc, a descriptive
message. It also identifies the line in
error by giving a line number, and also
points to the approximate position of
the error. The editor is able to search
for and locate a specified line number
in the Pascal source program (remember
that this does not explicitly include
line numbers), a feature not usually
available in word processors. Not only
did the compiler seem to run slowly
(with or without the 1listing being
displayed on the screen), but error
messages took a surprisingly long time
for the compiler to fetch from disc.

The disc version of the compiler
implements the full ISO specification
to level la, while the ROM version is
to the lower level @b (thus no support
for conformant arrays, and packing has
no effect on strings).

THE EXTENS IONS
Acornsoft have added many extensions

BEEBUG

NOVEMBER 1984

YVolume-3 Issue 6

6

to their ISO-Pascal to allow access to
the BBC micro's input and output
routines. These are, of course, non-
standard (in Pascal), and mostly mimic
the operation of BBC Basic functions
(including MODE, VDU, PLOT, POINT,
SOUND, ENVELOPE, OSCLI, ADVAL, INKEY,
TIME, and SETTIME). Other useful
extensions provide for numeric/string
conversion, the use of external file
names, dynamic storage management and
machine code calls. The latter allow
other operating system routines to be
called quite easily, but calling your
own machine code is more complicated,
though it is all explained in the
manual with examples. Although these
extensions make a useful addition to
the language, they are not part of the
accepted standard for Pascal.

HOW WELL DOES THE SYSTEM WORK?

Our impression was that the speed of
execution of the compiled code was not
always as fast as expected. In some
examples that we tried, Basic was very
slightly faster than Pascal. Run time
error reporting is somewhat cryptic,
and there are no extensions allowing
for error trapping within a program. A
simple trace facility can be enabled
which prints out 1line numbers and
procedure names as they are executed.
Although it is fairly simple to write
comprehensive debugging code into your
program, it is much easier if the
system does it all for you.

DOCUMENTATION

The system 1is delivered with a
substantial manual, and the book
"Pascal from BASIC" by P.J.Brown. The
manual contains chapters on the editor,
compilation, compiler options, language
extensions, memory organisation,
internal representations, machine code
linking and various appendices. We were
confused by the manual, with its large
section devoted to the editor right at
the start, and the chapter on using the
compiler is spoilt by continual
reference to memory organisation (high
water mark etc.). Apart from this the
manual is comprehensive and detailed in
the information it provides.

THE DISADVANTAGES
There are two drawbacks to this
Pascal system. There is firstly no

modules. While not standard Pascal, it
is generally acknowledged that it is
good practice to decompose a program
into relatively independent and
self-contained modules. Thus, for
example, it would be useful to write a
module implementing graphics calls to
the BBC's operating system. A sample
program showing how procedures such as
move (X,y) and draw(x,y) may be written
is provided, but it is impossible to
compile this as a separate library
module. The best that can be done is to
include text files within the Pascal
source program, chaining files together
and creating one monolithic program,
all of which has to be compiled
everytime. Quite large programs can be
compiled in this way.

Secondly, as already described,
ISO-Pascal compiles to intermediate BL
code, which can be saved to tape or
disc. This code can only be executed by
using the interpreter ROM, or (with a
second processor) by using the disc
based run-time system. There is no way
of producing a compiled program that
can then be run by other users, unless
they buy I1SO-Pascal as well. It may be
that, as with BCPL, Acornsoft will
produce a stand-alone package for
Pascal.

THE GOOD POINTS

The system has an excellent text
editor which is ideal for program
development, and the compiler has good
error reporting facilities which
pin-point errors, at least as far as
syntax is concerned. The extensions
allow simple use of all the BBC micro's
facilities without resorting to any
complicated programming techniques.
Overall, Acornsoft have achieved a
notable success in implementing a full
version of Pascal on the BBC micro,
notwithstanding the criticisms above,
and at the reasonable price of £69 for
the complete ISO-Pascal system.

IN CONCLUSION

At present the main interest in this
product is likely to be from lecturers
and teachers seeking to use Pascal to
teach computer programming, and from
individuals who are interested in
programming in this powerful language.
For all of these, Acornsoft's

provision for segmenting a large I1SO-Pascal provides a major new
program into separately compiled language for the BBC micro.
BEEBUG NOVEMBER 1984 Volume-3 Issue 6

ELITE — AN OUTSTANDING NEW GAME

FROM ACORNSOFT
Reviewed by David Fell

Name Elite

Supplier : Acornsoft

Price : Tape £14,95 inc. VAT
Disc £17.65 inc. VAT

Rating s Kkkkk

e ae

"Acornsoft Elite is the first in a

new generation of 3-D space games
featuring interstellar travel in a
distant cluster of galaxies..." said
the advertising. Thoughts of an
over-hyped third rate nightmare started
to loom close as, with a degree of
trepidation, I loaded Elite. That was
just over a week ago, and I'm now
convinced that Acornsoft have just
released the best game ever for the
Beeb.

Elite combines the elements of a
number of classical games to produce a
superb three dimensional graphical
trading game of skill and absolute
addiction, that squeezes every ounce of
performance out of the Beeb. Let me
explain this further; Elite combines
together a three dimensional fast
action combat game, a 'Monopoly' like
trading game and various aspects of an
adventure style exploration game. Elite
takes its name from the overall goal of
the game, which is to achieve a rating
of Elite (the highest accolade
available which, as yet, has not been
reached by any mortal). To achieve this
you need to be a successful space
trader (to purchase the necessary
weapons) and to achieve a high level of
flying and combat skills (your rating
is based upon the latter, and your
survival is dependent upon both).

In Elite you pilot a Cobra MK3 space
ship equiped with normal and
hyperspacial drives. Combat, normal
flight and docking are all performed in
real time, with some stunning graphics
achieving an amazing impression of
realism. Docking at an orbiting space
station is essential if you are to be
able to trade. The trading itself is
quite complex due to the sheer quantity
of information involved: 2000 planets
selling 17 different items; political
situation; planetary produce, etc. If
all this sounds too dull you can always
give up the 1life of the honest trader
and become a bounty hunter or space
pirate, but this involves living life
dangerously.

Frant View

Combat takes a while to master, and
requires sheer determination and three
dimensional perception to survive. Your
armoury, apart from three missiles and

a small laser, will depend upon
accruing money from trading. For a real
demonstration of combat, go to your
nearest dealer, and he should have an
Elite demonstration disc. As a warning,
it is said that there are spaceships
'out there' that no one has ever seen!
CONCLUSION

Elite is undoubtably a masterpiece
of programming that I would recommend
anyone who has a Beeb to purchase as
soon as possible. Even now, just a week
after it's launch, Elite has already
firmly established itself as a cult
game for the Beeb that seems to create
its own self perpetuating fame. There
is a monthly competition for players of
Elite, and full details are included
with the game.

BEEBUG

NOVEMBER 1984

Yolume-3 Issue 6

8

—r‘&.\‘

B e ‘1AUTO—KEYWORD GENERATOR (16k)

by John Bower

Many microcomputers,

including the Electron for example, allow you

to enter Basic keywords with just a few key strokes directly from
the keyboard. John Bower describes a short utility to add this most
useful feature to the BBC micro, to save both time and effort when

typing programs into your Beeb.

The purpose of this program is to
allow the user to type in a whole
keyword with ease and speed. Wouldn't
it be nice to be able to type in the
keyword ENVELOPE by pressing only three
keys instead of eight, or to type in
ENDPROC with just two keys instead of
seven? This utility will allow you to
do not only that, but will allow you to
type in up to 52 Basic keywords with a
maximum of 3 key presses each time.

BKHERTYUIODP
LEFTS RUN ENDPR. REP. THEN DRAN UNT. INPUT HOVE PRINT
RIGHTS RND EMU. READ ELSE POINT TRUE DIM PLOT PROC

D F G H L
AUTO SOUND DBEF FOR GCOL LOCAL TABC INKEY LIST
ADVAL EAVE DATA FALSE GET GETS TIME INKEYVS LOAD

Z X C U B H M

pIv STRS COLOUR WDU CHR$ WENT MODE
MOD STRINGS CH. UAL CL3 NEW HIbs

STHLRT IR RS G BN TR

Using this program you can enter
any of the 52 Basic keywords using
either two or three key strokes in each
case. The first 26 keywords are
generated by pressing Tab followed by
one of the 26 alphabetic keys, and the
other 26 by using Ctrl/Tab together
first. The keywords generated in this
way are shown in the diagram - those
using Tab alone at the top and those
using Ctrl/Tab at the bottom of each
pair. Even if you don't use all 52
keywords generated in this way, you may
still find some of the Tab combinations
particularly useful and convenient. You
can also decide which 52 keywords you
want to include. You may also find it
helpful to copy the keyword diagram and
place it above the function keys of
your machine for reference.

To use the program, just type it in
and save it on cassette or disc (you
can omit all the assembler comments if
you wish - that is text following '\').
If you are using a cassette system you
will need to change the address for the
location of the machine code. This is
at line 110 where &A@G@ should be
changed to &D@@. A further change is
required to allow this program to run
properly using Basic I. The information
is contained in the program as a
comment at line 360, and and involves
changing the first instruction on line
370 from LDA #&74 (for Basic II) to
LDA #&70 (for Basic I). This is because
the keyword look-up table starts in a
different place.

Once saved you may then run the
program and test it out. To do this
just press the Tab key once, and then
press the 'A' key. You should now see
the keyword AUTO appear on the screen.
Now press Tab followed by all the other
keys between A and Z to check that they
all work. If some do not give the
expected results, check 1line 600 to
make sure that the values of the tokens
are correct.

Next you can test if the second set
of keywords work. To do this hold down
the 'CTRL' key,and at the same time
press 'TAB' (represented as Ctrl/Tab).
Now release both keys and press a key
between A and Z. You should now get
more keywords, but different to those
before.

If they all work (corresponding to
the diagram), you can customise the
program to suit your own needs. You can
do this by changing lines 600, 610, 630
and 640. If for example you wish to
substitute the keyword OPENOUT for GET,
you can do this by finding the token
for OPENOUT (&AE) from the User Guide
(page 483) and putting that in place of

BEEBUG

NOVEMBER 1984

Volume-3 Issue 6

9

the token for GET (&A5) in line 640. It
would also be prudent to replace the
keyword GET by OPENOUT in the REM
statement at line 638. The REM
statements at lines 600 and 630 serve
as reference guides to the current
token settings in lines 610 and 544.

Once you are satisfied with the
keywords that you have set up, then you
can save the machine code by typing:

*SAVE KEYWORD AQ@ AFF
and re-run the program by typing:

*RUN KEYWORD
Cassette users should save their code
by typing:

*SAVE KEYWORD D@@ DEFF.

You can, if you wish, use any name you
choose rather than KEYWORD. To disable
the effect at any time, type in the
command *FX13,4 and to re-enable the
code type *FX14,4. If you press Break
you can restart the code by typing
CALL &A0@ (or CALL &D@J on cassette).

10 REM PROGRAM SHRTHND

20 REM VERSION B@.3

30 REM AUTHOR John Bower

4¢ REM BEEBUG NOVEMBER 1984

50 REM PROGRAM SUBJECT TO COPYRIGHT

160 FOR pass=0 TO 2 STEP 2

110 revector=&A0@:REM &D@@ for casset

120 store=revector+&C@

130 OSBYTE=&FFF4:O0SRDCH=&FFE0
140 P%=revector

150 [OPT pass

319 AND #&DF:SBC:SBC #65:CMP #0@:BMI f
in2:CMP #26:BCS fin2:TAY
320 \ if cntrl used advance data poin
ter
330 PLA:CMP #&FF:BNE offset:TYA:CLC:A
DC #26:TAY
340 .offset \ get token value from st
ore
350 LDA store,Y:STA &79
360 \ load ROM address of 1st BASIC I
I keyword token (for BASIC I use LDA #&
70)
370 LDA #&74:STA &80:LDA #&80:STA &81
:LDY #0
380 .search \ search ROM for token
399 LDA (&80),Y:CMP &79:BEQ found
400 INY:CPY #0:BNE search:INC &81:JMP
search
419 .found LDX #8 \ copy keyword
420 .loop CPY #0:BNE loopl:DEC &81
430 .loopl DEY:LDA (&80),Y:CMP #&24:B
CC display
440 CMP #&7F:BCC ok:INX:JMP display
45¢ .ok STA &84 ,X:DEX:JMP loop
469 .display \ put into keyboard buf £
er
470 INX:LDA &84,X:STX &82:TAY:LDA #&8
A:LDX #0:JSR OSBYTE:LDX &82:CPX #8:BEQ
over
48¢ JMP display
490 .over LDA #@:STA &74 \ cancel key
press
500 .finish \ restore regs & key press
510 PLA:TAY:PLA:TAX:LDA &74:JMP (&79)
520 .fin2:PLA:LDA #7:STA &74:JMP fini
sh
530]
540 NEXT pass
55@ FOR location=store TO store+51:RE

160 \ revector write character routine| Ap token:?location=token:NEXT

170 LDA &20E:STA &70

180 LDA &20F:STA &71

190 LDA #start MOD256:STA &20E
200 LDA #start DIV256:STA &20F
210 RTS

220 .start \ save key press & registe

230 STA &74:TXA:PHA:TYA:PHA
240 \ check for TAB key

250 LDA &74:CMP #9:BEQ cntrl:JMP fini
260 .cntrl \ check for cntrl key/esca

270 LDA #s&81:LDX #&FE:LDY #&FE:JSR OS

BYTE:CPX #&1B:BNE get2ndky:JMP finish

280 .get2ndky \ get A to Z key/escape
290 TXA:PHA:JSR OSRDCH:(MP #&1B:BNE 1

owcase:PLA:JMP finish
300 .lowcase \ mask for lower case &
adjust A-Z offset

560 REM store selected keyword tokens

570 CALL revector

580 END

590 REM keyword tokens with TAB+ A-Z

600 REM AUTO,CHR$,COLOUR,DEF,ENDPROC,
FOR, GCOL, LOCAL, INPUT, TAB (, INKEY, LIST, MO
DE, NEXT,MOVE, PRINT, LEFT$, REPEAT, SOUND, T
HEN, UNTIL,VDU,RUN, STRS, DRAW, DIV

610 DATA &C6,&BD,&FB,&DD,&E1,&E3,&E6,
&EA,&E8,&8A,&A6,&C9,&EB, &ED, &EC, &F1,&C0O
,&F5,&D4,&8C,&FD, &EF,&F9,&C3, &DF, &81

620 REM keyword tokens with TAB+CNTRL
+A-Z

630 REM ADVAL,CLS,CHAIN,DATA, ENVELOPE
,FALSE, GET,GET$, DIM, TIME, INKEYS , LOAD,MI
D$,NEW, PLOT , PROC, RIGHT$, READ, SAVE, ELSE,
TRUE, VAL, RND, STRINGS , POINT,MOD

640 DATA &96,&DB,&D7,&DC,&E2,&A3,&A5,
&BE, &DE,&91,&BF,&C8,&C1,&CA,&F0, &F2,&C2
,&F3,&CD, &8B, &B9,&BB, &B3,&C4,&B0,&83

BEEBUG

NOVEMBER 1984

Volume-3 Issue 6

10

THE MIDLAND HOME BANKING EXPERIMENT

by Peter Rochford

Homebanking,

using a specially adapted television set or a

microcomputer, has been talked about for many years. The rapid
increase in interest and ownership of low-cost microcomputers has
now made this a reality for some. Peter Rochford describes his own
experiences with this new service using a BBC micro.

Some six months ago the Midland Bank
quietly launched an experimental
homebanking service for its customers.
The Midland is the first of the 'big
four' major banks to show any practical
interest in electronic banking at the
domestic user level.

The experiment was originally set to
run for one year with a view to it
being extended if proved successful.
Those like myself, who applied to
participate in the experiment, were
sent a letter outlining how the system
would work and details of what
equipment (which includes a BBC micro
with suitable Prestel type modem) would
be needed by the user. During the
experimental stage, no charge would be
made in return for the feedback
obtained from users and the resultant
experience gained by the Midland Bank.

Once accepted and registered, a user
is sent a rather impressive folder
containing the phone numbers relevant
to the system and an instruction
manual. The manual is really excellent,
providing easy step-by-step guides to
logging on and accessing the many
services available. Included in the
manual are numerous facsimile screen
displays and examples to help you find
your way round the system.

Even at this experimental stage, the
facilities and information provided are
remarkably comprehensive. Obviously you
can check the balance of your
account(s) and look at your current or
previous statement. What really
impresses though, is the way in which
you can use the system to interrogate
your account to find individual details
quickly and simply.

For example, debits can be found
without having to scan through the
entries of all the pages of your

Homebanki
General I

n? Service
nformation

General Facilities

Change Password .
Auxiliary Information (Help)
To leave the service

SRR

statement. Instead, you can tell the
system the number of the cheque you are
looking for, or the value of the
cheque, and it will find it for you,
assuming of course that it has been
entered in your account. As an
alternative, you can enter start and
end cheque numbers and all cheques
between and including these numbers
will then be displayed. You are also
notified of the numbers of cheques that
have not yet been cleared.

Credits can be searched for by just
asking the system to search for a
credit of a specific value. All credits
which correspond to this value will
then be displayed.

If you use a lot of standing orders
homebanking is definitely for you. You
can obtain a list of all your current
standing orders and then go on to ask
for a detailed look at any one you
choose, or indeed all of them. You are
given the name of the beneficiary, the
bank and account into which it is paid,
the frequency of payments, value of
payments, when the next payment is due,
and other details.

As well as examining your accounts,
a recently added facility allows you to

BEEBUG

NOVEMBER 1984

Volume-3 Issue 6

10

transfer funds between your accounts
on-screen. There is a set limit to the
amount you can transfer in any one day
and a limit to the number of transfers
you can effect in one day.

Apart from the details of your
account, there are a whole host of
information services at your disposal
on such subjects as foreign currency,
interest rates, exchange rates,
autobanks, personal loans etc. You may
also order a new cheque book or
statement and any of the currently
available literature on bank services.

A mailbox is provided for sending
messages to other users of the system
and a noticeboard where the bank
provides details of changes to the
services provided.

Because of the security aspect,
logging-on to the Midland Bank computer
does mean remembering several codes.
Once you have dialled up the computer
and obtained the welcome page on
screen, you are asked to enter your
user number. This is a permanently
allocated 6 digit number which you can
divulge to other users on the system
allowing them to contact you by
mailbox. Next you enter a password
which is not shown on screen as you
type it in. Finally, before entering
the system, you have to enter your
customer identity. This 1is another
password, but unlike the first, can be
of variable length between four and ten
characters. Both the password and
customer identity <can be changed
on-screen as and when you wish whilst
connected to the system.

Having entered all the correct codes
you then gain access to the system. You
are now presented with the main menu
page, but to obtain access to your
accounts you must type in the relevant
account numbers.

Should you make a mess of typing in
any of the codes, you are allowed just
two further attempts before the system
will disconnect you. Further attempts
by re-dialling and trying to 1log on,
even with the correct codes, will be
fruitless. Access can only be restored
by writing to the homebanking unit who
will also re-notify you of your codes.

Page 201311a

Key 1 Balance of nominated account

2 Balances of all your
registered accounts

Homebanking Index
Main Index
To leave the service

cHOm

In general, using the system is
quite simple. There are lots of menus
to guide you and in most cases it
requires only a single key press to
obtain the service you want. It is
virtually impossible to 'get lost' in
the system as there is always the
facility to jump back to a menu from
any page. The screen displays are very
well laid out and plenty of use is made
of colour to highlight various
features.

To aid you in finding out about
everything on offer, there is a
'rolling demonstration' that takes you
through most of the services available,
you Jjust sit back and watch. This is a
very helpful, not to mention intriguing
facility. However, it takes quite a
while so beware the cost to your
telephone bill.

At present, there are certain
restrictions on the system out of
normal banking hours. This amounts to
preventing you searching your account
for credits and debits and obtaining
detailed information on standing
orders. This is quite significant as
your telephone charges are higher
during the day and you do not have the
convenience of 24 hours a day full
service which should surely be one of
the main benefits of any homebanking
system. Your balance and latest
statement are always available, as are
the general information and ordering
services.

To use the service you must be a
Midland Bank customer. Apart from that
qualification, you will need your
Beeb, a 1200/75 baud modem and Prestel

BEEBUG

NOVEMBER 1984

Volume-3 Issue 6

12

type software. Although the Midland
homebanking uses Prestel standards it
doesn't utilise Prestel to relay the
information to you. Instead it uses a
mini-computer, linked to the two bank
mainframes, to provide a private
Viewdata system. The advantage is that
you don't have to be a Prestel
subscriber to use the service, but the
bad news is that the mini-computer is
on a London number only at present.
Those outside the capital may find the
phone costs prohibitive. The Midland
has not yet hinted how a fully fledged
system would operate on a nationwide
basis, perhaps they will eventually
utilise Prestel.

My own personal feelings after using
homebanking for six months are of great
enthusiasm. I have found it well worth
the cost of the phone calls and it has
enabled me (much to my bank manager's
joy!) to manage my account much better.
How much benefit you derive from using
homebanking will depend on how much use
you normally make of your bank account.
Businesses that need to keep close tabs
on their finances I am sure will find
it indispensable.

MIDLAND BﬂNK’-

Amount Paid

Beneficiary

s

Key
&Y 3 Petails of lndluxdual order
& Homebanking Inde

MIDLAND BANK plc Page 2411ia
BALAKCE ENQUIRY

The balance of the above acoount at
close of business on

was b ”nl‘ RED

Key b Homohankxuu Index
9 aip In
“ To leave the service

If the full range of services can be
made available 24 hours a day and
extended to cover more transactions,
such as paying bills, obtaining loans
etc, then homebanking will become a
most useful facility for many people.
Even so, the cost of the service is
bound to be a significant factor as far
as home users are concerned.

At the time of writing this article
(July 84), the Midland Bank homebanking
unit have indicated that the experiment
is to be extended for a further year
and that there is spare capacity on the
system for anyone wishing to become a
user of the service. For further
details and to check availability at
present, you should contact them at the
address shown below.

Electronic Banking Development Unit,
Midland Bank plc,

27/32 Poultry,

London. EC2P 2BX.

Tel: @1 606 9911 Ext 3113.

=

HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINT

NUMBER OF CHARACTERS PER LINE

If you wish to calculate screen width dependent on the current mode, then the

following formula will enable you to do this

(C% will hold the number of characters

on exit, and M% holds the mode number on entry):
IF M%<6 C%=2"(2-(M% MOD 3))*20 ELSE C%=40 we=)

DISC TIPS -~ Peter Chambers

When using either DNFS or Watford DFS with a *RUN !BOOT file, remember to include

& CLT

instruction before any OSRDCH attempt, as interrupts will be disabled. When

using A=0, Y=0 for OSARGS, the control block will be found in the second processor,
despite what the Advanced User Guide suggests.

BEEBUG

NOVEMBER 1984
e e | R

Volume-3 Issue 6

13

BUILD YOUR OWN GRAPHICS TABLET (Part 1)

by Ben Miller-Smith

The analogue port of the BBC micro (model B) provides an easy way of
interfacing a simple graphics tablet to the machine, and this can then
be used to draw and copy diagrams onto the screen, or input relevant
coordinates into a program. This article describes how to build such a
graphics system, the first part detailing the construction of the

tablet itself.

A graphics tablet connected to the
analogue port provides an ideal way of
entering a variety of visual images
into the micro for display on the
screen, and storage on cassette or
disc. Drawings can be entered freehand,
or existing diagrams traced out as
required. Several such graphics tablets
are commercially available, but at a
price (see review in BEEBUG Vol.2
No.8), whereas the number of components
required is minimal and the home
construction cost is very small.

MATERIALS REQ(_JIRED
(a) A Chipboard or Contiboard base,

approximately 24" x 18", with a smooth
(e.g. Melamine) finish. Available in
8mm or 12mm thicknesses (either
suitable) from any DIY store at
approximately £1.5¢ for a 24" x 36"
panel, which you will need to cut in
half to obtain the correct size.

(b) One metre of Stom X 20mm
(approx.) wood strip, to make the arms.
If such strips are not available from
your DIY store as straight timber, look
for hardwood mouldings that are
generally available in a variety of
cross-sections, including rectangular.
Approximate cost is about 50p.

COMPONENTS REQUIRED

(a) Two 10k linear panel-mounting
potentiometers with at least 1" shafts.
Available from Tandy shops (Part No.
271-1715 at 79p each); or . Maplin
Supplies (Part No. FW@2C 'Pot Lin 10k'
at 43p each).

(b) Three metres of four (or more)
core cable, reasonably flexible.
Available from most shops selling
telephones, or from Maplin as Part No.
XR66W '4-wire Phone Cable' in any
reasonable length at 21p per metre. You

can use twin flex, or even single wire,
if necessary, but it won't be so neat.

(c) One 15-way D plug (i.e. with
pins) to fit the BBC analogue port,
preferably with a covering shell and
cable strain-relief fitting. Available
from Maplin as Part No. BK58N 'D-Range
15 way Plug' at £1.45 (optional cover
BK6@Q 'D-Range 15 Way Cover' at £1.20),
or many computer shops.

(d) Four rubber feet for the
base-board. Available from Maplin as
Part No. FWI19V 'Feet Cab', at 8p for 4.

You will also need to have available
a soldering iron and solder, drills in
a range of sizes, some hand tools for
wire cutting, and some adhesive.

Maplin components are available from
their shops in Westcliffe, Hammersmith,
Birmingham, Manchester and Southampton,
or mail-order from their main office at
Rayleigh in Essex (Tel. @702-552911).

TABLET CONSTRUCTION

The plan and cross-section of the
tablet are shown in diagrams 1 and 2.
Drill a hole in the top left hand
corner of the base board, about 1 inch
in from the edges, with a diameter such
that the threaded mounting collar of
the first potentiometer is a tight
(screw-in) fit. Screw the potentiometer
into the base board from the bottom,
with some glue if necessary to ensure
that the whole potentiometer will not
rotate when the shaft is turned. The
shaft of the potentiometer will
protrude through the board, ready to
accept the first arm.

Cut a 13 inch length of the arm
material and 0.5 inches from one end
drill a hole to accept the board

BEEBUG

NOVEMBER 1984

Volume-3 Issue 6

14

]

o
i

potentiometer's shaft as a tight fit.
Aim for the shaft/arm joint to be stiff
enough so that in normal use the arm
will always turn the shaft without
slipping, but under abnormal stress
(like dropping the tablet!) the joint
will slip - however, if the joint is,
or becomes, too slack a suitable
adhesive can be used at the joint
during final assembly. At the other
enrd of the arm, glue the base of the
second ('hinge') potentiometer to the
top surface, such that the distance

between the two shafts is 12 inches
approximately. LE the second
potentiometer has not got a flat base

(probably because the back end of the

shaft protrudes slightly), drill a
clearance hole in the arm so that the
potentiometer can sit flat. The four

rubber feet, referred to in the list of
components, or just suitable blocks of
wood, can be fitted to the underside of
the four corners to provide a firm and
level base.

SIDE VIEW
(wiring omitted for clarity)

Glued joint
Glued joint bl 1o Arm 2
o[Arm 1 5 Glued joint [J stywus
l Bass board / J
(Hlng-
Board potentiometer
potentiometer

The second arm is prepared with a
similar tight-fitting shaft hole @.5
inches from one end, and a wood screw
(or bolt) as a pointer at the other.
Drill the hole for the pointer so that
the effective length of the two arms is
the same (i.e. arm 1 shaft centre to
shaft centre equals arm 2 shaft centre

to pointer). If it's not quite right,
don't worry - corrections can be made
in the software. Aim for the height of
the pointer to be such that the second
arm will be supported horizontally by
its mounting on the hinge potentiometer
shaft at one end, and the pointer
resting on the base board at the other.
Do not have the pointer tip too sharp
or you may tear things being copied.

Complete the mechanical assembly.
Press the first arm down the board
potentiometer's shaft until it is flat
on the base board, but can turn freely.
Ensure that the potentiometer will not
meet its 'end-stops' during normal use
(rotate the shaft with respect to the

arm if required). Glue the arm/shaft
joint if necessary. Similarly, mount
the second arm on the hinge

potentiometer's shaft, ensuring a tight
fit (glue if required), and free
movement of the shaft between end
stops. The pointer on the end of the
arm linkage should now be able to reach
almost all points on the base board,
and all the action should be smooth
with no jerkiness, sloppiness or
slipping between the arms and the
potentiometer shafts. This is most
important and should be tested before
final gluing.

ELECTRICAL CONNECTIONS

Four wires connect the Graphics
Tablet to the computer Analogue port.
VREF (pin 14) and ANALOGUE GROUND (pin

8) are connected to the two
potentiometers in parallel, on the
outer potentiometer tags. The wiper
(centre) connection of the first

(base-board) potentiometer is connected
to CHANNEL 1 (pin 15), and the second
(hinge) potentiometer wiper to CHANNEL
2.(pin-7).

In practice, carefully solder three
wires to the hinge potentiometer (using
multicore solder), twist them together,
and run them back along arm 1
(attaching them with blobs of glue if
necessary) and over the edge of the
board (or down through an extra hole)
to reach the first potentiometer,
making the same two connections to the
outer tags of this potentiometer, and
connecting a fourth wire to its wiper.
At the other end of at least 3 feet of
cable solder the wires to the Analogue

BEEBUG

NOVEMBER 1984

Volume-3 Issue 6

15

e
port plug according to the table below, following little program and observe
preferably using a soldering iron with the displayed voltages as the arms are
a fine tip, and some sleeving over the moved (ignore any jitter in the least
joints to prevent accidental significant digits).
short-circuits.

19 MODE 7

20 REPEAT

30 PRINT TAB(@,5) ;SPC(40)

49 PRINT TAB(@,5) ;ADVAL(1)

50 PRINT TAB(20,5) ;ADVAL(2)

60 TIME=0:REPEAT UNTIL TIME>50
70 UNTIL FALSE

"D-—Plug Connectmn i ;,’ Signal Name

nge potmtwmeter
wit :

If either potentiometer 1is working
in reverse, interchange the connections
on its 'top' and 'bottom' tags (i.e.
the two outer tags). If both are
reversed it 1is probably easier to
interchange the connections on pins 8
and 14 of the Analogue input plug.

This completes the detailed
construction of the graphics tablet.
Next month we will conclude this

Test the connections as follows. project by looking at how to calibrate
Clockwise rotation of either arm should the graphics tablet and at a program
give an increasing analogue voltage which provides a set of basic drawing
input to the computer. Run the routines to use with your new add-on.

HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINT

FASTER BASIC - P.J. Vincent

When performing certain operations in Basic, some programming techniques are more
efficient than others (timewise). Generally speaking, REPEAT-UNTIL is faster than
IF-THEN-GOTO, but FOR-NEXT is faster than REPEAT-UNTIL. A GOSUB is slightly faster
than a procedure, contrary to what the User Guide suggests, and it is quicker to use
global variables instead of local variables, again different to what the User Guide
says. Turning off the ADC conversions though has very little effect upon timings._;]

CASS AGE OF WORDWISE - F. Duerden

If tape users of Wordwise want to produce several similar letters with just the
top section different, then this can be achieved by means of the GF"name" command.
If this is included in the DH section, and a number of files, all with the same name
but different contents are present on tape, then Wordwise will produce a number of
copies of the current piece of text, except that the headers will be different. 5=

HOBBIT AND GDUMP - Tim Pearkes

Users of the Hobbit system may be interested to know that GDUMP will not function
correctly with the Hobbit enabled. Disable it, and GDUMP then functions correctly.
Several ROMs are apparently affected by the Hobbit system in this way. =)

TORCH CORRUPTION - John Satchell & John Sowden

When chaining between BBC Basic programs, or hitting Escape while running such a
program, the Torch 788 (version v71) corrupts location &80. 5=

bOC‘I‘OR SOFT MODS - Bjoern Floetten

There is an extra hidden command in Doctor Soft's 747 Flight Simulator; pressing
'T' will move the plane forward by 1 nautical mile. &=s)

BEEBUG NOVEMBER 1984 Yolume-3 Issue 6

oz

: u',0'0°" - /Eh
QI 0

NN

: S\
N A

ADVENTURE GAMES Dungeon Master ‘Mitch’ invites you to join him in his adventure world i

Welcome to the Dungeon mortal. Let
me clear a space on this coffin 1id for
you to sit down. Ignore the dragon - he
has already eaten so you are safe for a
while. Well have you finally tired of
zapping the Invaders? Perhaps now's the
time to accept you're never going to
get to the fourth screen on Killer
Gorilla or see the sixth screen of
Swoop. Never mind, there are other
worlds to conquer where your brain can
compete on equal terms with those
nimble-fingered twelve year olds who
can clear a Snapper screen while eating
a hamburger with their other hand.

For those gentle readers who have
never entered the world of Adventures
let me briefly explain tne delights.
Before the coming of graphic screens
and sound generators, programmers on
mainframe computers were restricted to
playing Noughts and Crosses and
Hangman. Luckily, some bright spark
realised that the text handling power
of the computer, coupled with the
imagination of a fantasy author, could
produce a brilliant new dimension to
adventure stories. Unlike a book, where
the reader is unable to help or hinder
the progress of the hero, the
computerised adventure story allows the
reader to decide the next move (e.g.
shall bne enter that dark doorway or
not?). A wrong decision could result in
an early and Dbloody demise. Well
written adventures are an exciting
escape into a world of magic and
fantasy which fascinate both young and
old. Too many adventure writers forget
that the text must be skilfully used to
draw the player into his world to
amuse, intrigue and stimulate the
imagination - boring text always means
a boring game.

Bearing in mind that well written
text 1is the first essential of an
adventure, the use of sound and
graphics 1is creeping in. The BBC micro

is restricted in its memory size
compared with others and so far the
introduction of graphics has normally
been at the expense of the descriptive
text. However text compression
techniques are making it possible to
include quite large graphic sections in
some of the new games. Potential
authors among you snould remember that
graphics should be treated with caution
however, as pretty pictures are no
substitute for exciting prose. Teletext
graphics are becoming more popular as
their use does not require the use of a
graphics mode with its subsequent loss
of memory. The latest game from Epic
Software, 'Wheel of Fortune', has
managed to combine a full sized game
with a half screen teletext picture at
every location without losing much in
its text. However Bug Byte's 'Twin
Kingdom Valley' seems to have placed
its eggs firmly in its graphics mode
basket with full screen graphics
combined with limited lack-lustre text
which does 1little for the imagination.
Other games such as 'Vampire Castle'
from Micrograf use small novelty
teletext effects to introduce some
spice into a mainly text game. I note
that Level 9 computing intend to
introduce graphics into their future
games. [The grapevine says that these
will start to appear soon. - Ed.]

So far Acornsoft have resisted the
move towards graphics. Their
traditional text-only games such as
'Castle of Riddles' and 'Philosophers
Quest' have instead relied on amusing
descriptions to create the scene. While
this is perfectly acceptable (and
preferred by some - do you need picture
story books?), it's a pity they didn't
use lower case lettering which is
easier on the eye. This apart they can
still hold their own against some of
the glossy competition which uses
coloured text for everything making it

BEEBUG

NOVEMBER 1984

Volume-3 Issue 6

e e e e R R R R R R R e e e e e R R e may

17

impossible to read on some monitors and
black and white televisions. Remember -
rubbish written in pretty colours is
still rubbish.

The Grand Wizard of Acornsoft has
just sent me his latest offering called
'Gateway to Karos'. This adventure is
another in the same Acornsoft mould -
no graphics or sound. The format has,
however, been changed slightly to
include lower case letters and some
coloured text. The location of the game
is the mythical land of Karos where
your task is to find the Talisman of
Khoronz plus any other jewelled bauble
you happen to stumble wupon and then
return safely through the magical
gateway. As with earlier games Karos is
populated with demons and magic users,
0il lamps, screwdrivers and ruby
brooches. There are 25¢ locations to
explore and 65 objects to manipulate
which should keep most glory hunters
busy for quite some time. The
inhabitants may be questioned by you to
obtain clues and your questions, plus
other commands, may be complex
statements instead of the usual two
word instructions such as 'FILL BOTTLE'
(yes the bottle is back again!). In
addition to falling rocks, and man
eating wolves your condition gradually
deteriorates unless you eat and drink
occasionally. As usual that damned lamp
starts to flicker just as you need it
most so don't forget to turn it off
when you don't need it.

I have enjoyed all Acornsoft's
adventures and this is no exception as
it sticks closely to their winning
formula of lots of relatively easy
problems which you know you will solve
if you persist. Some other companies'
adventures are too devious for their
own good, and they have failed in the
art of setting the problems at the
level designed to satisfy master and
novice alike. Karos is 1like a tin of
Heinz beans; it is a safe buy, and you
know before you hand over your money
what you are getting, which although
may not be a brave new leap forward,
will not leave you feeling cheated as
with some over-hyped games. I'm not
sure that the trend towards complex

commands. I found I quickly returned to
two word commands as it 1is usually
quicker and safer. In addition I found
that posing clever questions to the
games inhabitants was a waste of time,
as simply typing "ASK" seems to get the
same reply - which incidentally is
usually a baffling cryptic quote. The
game certainly has hours of fun packed
into it and so far 1I've found no mazes
- thank goodness! I'd like to strangle
the programmer who first introduced
these as a feature.

Included with the game is an
envelope containing answers to the
various problems. This seems a better
solution to the earlier idea of the
postcard in Philosophers Quest which
could be used to request clues from
Acornsoft. I bet they didn't know what
they had let themselves in for with
that. So far I have resisted the
temptation to open the envelope, but I
hope they have laid it out better than
Level 9 have done with their clue
sheet. It appears to be impossible
there to find only the answer to your
problem without seeing the answers to
everything else. As a final word on
Acornsoft, whatever happened to
'Kingdom of Hamil' which they released
last year? I've seen precious little of
it in the computer press and I note
that its name 1is excluded from the
'Also Available' 1list of titles on
Karos' rear cover. Perhaps it has
disappeared up one of its own twisty
mazes or got stuck in the mud below the
wishing well. [We actually have a copy
of this game, but don't have the time
to solve it! - Ed.]

For those heroes and heroines who
have already crawled into some dark
opening inside their micro and are
currently beating their brains out
against some unsurmountable puzzle, why
not scribe the details on a piece of
old parchment, mark it ADVENTURE
DUNGEON, keeping it apart from any
other queries you have and drop it into
the dark opening of a pillar box to me
here, at BEEBUG. 1I'll welcome any
problems , hints or suggestions, so if
you have any spare spells let me know.

command analysers in adventures is P.S. Write in ink not blood, it
worth the trouble for Karos, like scares the postman and agitates the
others, misinterprets some long dragon!

=
BEEBUG NOVEMBER 1984 Volume-3 Issue 6

18

DOMESTIC ACCOUNTS EXTENDED

by David Fell

In the BEEBUG Vol.2 No.10 (April 1984) issue, we published a program
called Home Accounts - Annual Budgets (or DOMAC for short), and this
attracted quite a lot of feedback from members. One question that
was frequently raised was that of dumping the screen to a printer.
This update to the DOMAC program provides a couple of extensions to
this program, including a quick universal screen dump.

Adding the new sections to the
program is a fairly easy task. Load in
your original version (which should not
have been renumbered), and type in the
new lines from the section that you
require; for example, if all you want
is the screen dump, type 1in only the
lines from the screen dump section.
Note that some of the 1lines in the
original will be overwritten - this is
intentional.

SCREEN DUMP

This is the main update to the
original program, and consists of a few
minor alterations to the main program,
plus a section of code at the end of
the program that pokes the screen dump
to memory. There is an error detection
check built into this, which will stop
the program before any damage 1is done
if you have made an error when typing
in the DATA statements. The screen dump
can be called at any time from within
the program by holding down the Shift
key and pressing Escape. The program
will make a short tone, dump out the
current screen to the printer, and then
return to the main menu.

TUBE _* COMMANDS

The original DOMAC program was 6502
Tube compatible with the possible
exception of the * commands section,
which tended to overwrite the program
with the * command. Either set PAGE to
&DP0 or greater if running in the Tube,
or make the short alterations listed
below. Basic I users should not add the
last two lines of the * command
section. An asterisk (*) typed in at
the menu now also calls the 0S command
section.

ACCURACY

Due to the way in which the program
stored its numbers, there were
occasional rounding errors. Whilst the
degree of error here is probably less

than that in estimating the figures
entered, it is still irritating. The
correction 1is quite simple; change the
factor of 1080 to a factor of 1000 in
the following lines where 109 is used
for division or multiplication: 175@,
1890, 1950, 2080, 3040, 3090, 3120,
3150, 3910, 399@8. Those of you with
Toolkit may like to use the search and
replace option to do this.

AND FINALLY...

Thankyou to all the members who have
written in with comments and

suggestions on this program, and also
to TPL for providing assistance to
members who wanted screen dumps before
I wrote the little routine here.

SCREEN DUMP SECTION

110 MODE4:HIMEM=&57@@:PROCinit:PROCti
tle

130 MODE4:HIMEM=&570@ : PROCcolours:PRO
Ccolour (1)

2105 PROCreadassem

2280 DEF PROCerrorl SOUND1,-15,10,10
2285 IF INKEY-1 CALL&570@: ENDPROC
2330@ DEF PROCerror2 SOUND1,-15,14,10
2335 IF INKEY-1 CALL&5700:E%=FALSE:END

5009 DATA 202657203957EEA8
5010 DATA 57A928CDA857DJF3
5020 DATA A90UBDA85720ET7FF
5030 DATA EEA957A920CDA957
504¢ DATA DUE120985760A%00
5050 DATA 8DA8578DA957A91A
5060 DATA 20EEFFA90220EEFF
5070 DATA 60A91F20EEFFADAS
5080 DATA 5720EEFFADA95720
5090 DATA EEFF206E57A98720

BEEBUG

NOVEMBER 1984

Volume-3 Issue 6

19

5100 DATA FAFFE@@@DOOE2083

5110 DATA 57A98720F4FFEQ0QO

5120 DATA D@@2A920A90120EE

5130 DATA FF8A2QEEFF60A911

5140 DATA 20EEFFA9072QEEFF

5150 DATA A91120QEEFFA98020

5160 DATA EEFF60A91120EEFF

5170 DATA A98720EEFFA91120

5180 DATA EEFFA90020EEFF60

5190 DATA A9012@EEFFA90C20

5200 DATA EEFFA90320EEFF60

5210 DATA EAEAQ@0000000000

5230 DEF PROCreadassem

5240 RESTORE 5000

5250 P%=&5700:T%=0

5260 FORI%=0T021

5270 READ A$

5280 FORJ%=0TO7

5290 V$=EVAL("&"+ (MIDS (A$,J%*2+1,2)))
T 2 R R D RN S M

5300 ?(P%+J%+1%*8)=V%

5310 T%=T%+V%

5320 NEXT,

5330 IF T%<>23519 PRINT"Checksum error
.":END

5340 ENDPROC

* COMMANDS SECTION

190 R=GET:IF R<>42 R=R AND &DF
260 IF R=71 OR R=42 PROCos
3220 INPUT"*"0S$:0SCLI 0S$
3239 VDU14

REM SECTION

10 REM Program DOMESTIC ACCOUNTS II
30 REM VERSION B2.0M
40 REM BEEBUG

=

NEW EDITION OF BIRNBAUM’S BOOK
Reviewed by Mike Williams

n) by Ian
priaeﬁ&.%. .

Back in 1982 when the Beeb was still
a mysterious adventure for most (that's
if you were lucky enough to be able to
get hold of one) there appeared a book
that immediately became a best seller
in its field. That book on assembly
language programming has now progressed
to a new second addition. So what has
changed since we reviewed this book in
BEEBUG Vol.1 No.9?

Certain changes stand out straight
away, the cover is brown, not green,
the whole book (apart from the program
listings) has been typeset and (hurrah,
hurrah) the book now has a full index.
It is also marginally longer (by 12
pages) yet looks slimmer because of the
thinner paper used. The price remains
unchanged from the original.

The effect of typesetting has been
to lose the somewhat distinctive
appearance of the first edition and
this also seems to have resulted in a
more frequent occurence of diagrams
that are separated from the text that
refers to them. On the other hand the
program listings are now much clearer,
and advantage has been taken of the
LISTO comand to produce better
structured and more readable listings.

Essentially the content of the book
is as before, with a progressive
introduction to assembly language
programming based on equivalent Basic
concepts, and backed up by plenty of
short example programs. I personally
remain unconvinced of the use of Basic
as an introduction to assembler as it
propogates a high level language view
of low level programming, but it is
clearly an approach which has proved
popular and succesful.

The chapters on indexed and indirect
addressing are indeed models of
excellence, and the text has been
revised to take full advantage of the
EQUS and EQUB commands of Basic II. The
chapter on subroutines and interrupts
has been extensively re-written to
cover the extra features of 0.5.1.2
such as events, and extra example
programs have been included to
illustrate the new material.

Solutions to all the exercises set
in the book are provided as before and
all the programs are now available on a
single cassette, not two, for £9.00.

Without doubt this book must remain
one of the best introductions to
assembly language programming for the
BBC micro that has been published.

=

BEEBUG

NOVEMBER 1984

Volume-3 Issue 6

20

TWO BASIC COMPILERS

Reviewed by Eric Glover

Although Basic is easy to learn and convenient to use, machine code
is often preferred for its speed and compactness (think of all those
machine code games). In consequence, a compiler which could convert
Basic to machine code would seem to be high on everyone's priority
list. Eric Glover looks at two compilers for Basic that have
recently been released. Could one of these be the solution to your

programming problems?

Product : Turbo Compiler
Suppliet : Salamander Software,
17 Norfolk Road, Bnghton, ~
 Sussex, BN1 3AA
Machme 1 BBC models A & B
Price : B9, 95 tape inc.VM' +sap p&p

onduct’ 2 BBC Basic Compxler .
Supplier : ACK Data, 21 Salcombe Drive,
 FRednill, Nottingham, NG5 8JE'
Machine : BBC 32K

Price : £14.95 tape, 219 95 disc

~ inc.VAT

INTRODUCTION

When a program in BBC Basic is run,
the Basic interpreter, built into the
micro, interprets each instruction and
carries out its function. Much time is
spent on interpretation. For example,
every instruction in a loop has to be
interpreted each time it is
encountered. Basic cannot 'remember'
its meaning from the previous time.

As a result, interpreted Basic is
slow compared to machine code, but
programs written in Basic can be made
to run much faster. If a Basic program
is translated (or compiled) into
machine code prior to execution, then
the resulting program will run nearly
as fast as one written directly in
machine code, but with all the
convenience of programming in Basic.

Once converted to machine code, the
program can be saved in this format for
execution at any future time using the
command *RUN. The machine code version
will probably also take up less memory
space than the original Basic program.
In addition, programs in machine code
are very difficult to read, and this
format provides a degree of program
protection not possible with Basic.

SOME TERMS EXPLAINED

When using a compiler, the original
Basic program is called the 'source'
program, and the compiled machine code
is known as 'object' code. With both
the compilers reviewed here, the source
code is prepared by typing it as usual
into memory from the keyboard. Although
convenient, this limits the size of the
Basic program that can be compiled (or
the size, and hence capability, of the
compiler) as both must share memory
together. Not only that, but memory
space must also be found for the object
code as well. This is not
essential - most professional compilers
take the source code from disc, and in
turn send the object code back out to
disc, thus allowing the compiler to
occupy most of the available memory,
and the Basic program to be very much
larger.

THE LIMITATIONS

Ideally you should be able to
compile any Basic program, but in
reality it is impossible to fit a full
compiler into memory, together with

BEEBUG

NOVEMBER 1984

Yolume-3 Issue 6

g1

both source and object code.
Consequently compilers tend to accept
only a subset of BBC Basic. Amongst the
features often excluded are string
variables, arrays, and real numbers.
The two compilers reviewed here are no
exception to this trend.

SALAMANDER SOFTWARE - TURBO COMPILER

This compiler is well packaged with
a good clear manual. A tape version and
a disc version of the compiler are
included on the cassette as well as a
demonstration graphics program. The
manual provides full instructions for
the use of the compiler and its
transfer to disc if required. It is
written in compact machine code (only
2K!) and sits below PAGE. The default
addresses for the start of the source
program and object program are &1500
(&2100 disc) and &2200 (&280@ disc)
respectively, but they may be easily
changed. Compilation is achieved by the
*TURBO command, but there is no
assembler listing. If an error is
detected, the faulty 1line will Dbe
indicated (in hexadecimal!) . 1f
compilation is successful, the object
program may be CALLed at the
appropriate address, and also saved
using *SAVE.

The facilities offered by the Turbo
compiler are barely adequate to justify
the term "compiler", and in many
respects Turbo is little more than a
high level assembler. The major
constraints on the Basic source code
include:

1. Except for line numbers and memory
addresses, only positive hexadecimal
single byte integers are allowed in the
range @ to 255, negative numbers being
handled as complements.

2. Only the integer variables A% - 7%
may be used.

3. Each Basic line may only contain one
statement.

4, String variables are not allowed,
but the string indirection operator 'S$'
is implemented in the wusual Acorn
fashion (as is '?' but not '!').

The following Basic keywords are
implemented as normal or with only

minor restrictions: CALL (returns 6502
register values in A%, X%, Y%), CLG,
CLS, AND, EOR, OR, END, GET, GOSUB, IF,
INKEY, LET, MIDS, MODE, REM, RETURN,
SOUND and VDU.

Basic keywords implemented with
quite major restrictions are: CHRS (may
only 'be used in PRINT statements),
FOR-NEXT (must not be nested), PRINT
(only strings may be PRINTed), and THEN
(only a line number may follow).

The effect of several other Basic
statements (ADVAL, ASC, BGET#, BPUT#,
CLOSE#, DRAW, ENVELOPE, INPUT, LEN,
MOVE, OPENIN, OPENOUT, PLOT, POINT,
RND, and TIME) may be obtained by the
use of the VDU statement, the
indirection operator 52 or
OSBYTE/OSWORD calls. Division is
carried out by repeated subtraction.

As you may realise, a full 1list of
Basic statements not supported by the
Turbo Compiler would be rather long.
These drawbacks may be less serious if
it is regarded as a tool for compiling
machine code subroutines, which may
then be CALLed from interpreted Basic.
Providing the user has a knowledge of
0.S. routines (as given in the BBC User
Guide) and a degree of perseverance it
could prove useful in this respect. But
writing a large program wholly for
compilation by Turbo could well prove
to be frustrating if not impossible
with so many restrictions.

ACK DATA - BASIC COMPILER

Only the disc version of this
compiler is reviewed here, but the tape
version would seem to be identical in
function. The «compiler itself is
written in Basic and occupies about 9K.
Again you type in or load your source
program as for a normal Basic program.
The compilation is started by pressing
function key fl1. If all goes well, an
assembler listing of the compiled code
is produced, which may then be run by
CALLing &1902 (&E@2 for cassette
systems). If, however, there is an
error in the source program, then an
error message usually appears
indicating the offending line (if you
are lucky). Occasionally, the compiler
will go into an endless loop until
Escape is pressed, whereupon it will
confess that it can't compile the
program.

BEEBUG

NOVEMBER 1984

Volume-3 Issue 6

22

The source program starts at &3900
and the compiler itself resides at
&5300. These locations appear to be
fixed. A source program of up to 6.5K
(!) can be compiled with the following
restrictions:

1. Arithmetic is two byte integer only
(@ to 65535 or -32768 to 32761,
Numbers may be in decimal or
hexadecimal.

2. Only the variables A% - 2% may be
used.

3. There are no string variables or
string handling facilities.

4. Nested FOR-NEXT and REPEAT-UNTIL
loops are not permitted.

The following BBC Basic keywords and
operators are "supported": ADVAL, AND,
CALL, CLEAR, CLG, CLS, OOLOUR, DEF,
DIV, DRAW, END, ENDPROC, ENVELOPE, EOR,
FOR, GCOL, GET, GOSUB, GOTO, HIMEM, IF,
INKEY, INPUT, LET, LOMEM, MOD, MODE,
MOVE, NEXT, OR, PAGE, PLOT, POINT, POS,
PRINT, PROC, REM, REPEAT, RETURN, RND,
SOUND, SPC, SQR, STEP, TAB, THEN, TO,
TOP, “UNTIL; VDU, VPOS; '+', '-lp: 0%t
|/|' |&|’ and '?'.

I say "supported" because although
one is told that "the purpose and
effect of these words is the same as
described in the BBC User Guide", this
is not quite true. For example, I could
not call procedures recursively or use
strings in INPUT statements. Neither of
these restrictions was mentioned.
Generally, however, the compiler worked
well provided that spaces were avoided
in the source program. Although more
sophisticated Basic programs could be
compiled with this compiler than with
the previous one, its main use, I
suggest, would be the same, the
development of compiled machine code
routines to be CALLed from within a
Basic program.

CONCLUSIONS

Both compilers were robust, easy to
use and did not overwrite the source
program, although the ACK compiler
annoyingly renumbered it @, 1, 2...etc.
Since the main attraction of using a
compiler is the speed of the compiled
code (the speed of compilation is
irrelevant as it only has to be
compiled once) it is important to say
that both performed well in this
respect. The ACK compiler was able to
compile the first five PCW benchmarks
which then executed roughly 15 times
faster than with Acorn's Basic
interpreter (itself very fast). Owing
to its limited arithmetic facilities,
Salamander's compiler could not compile
these benchmarks except in a modified
form, but the results were just as
quick in general.

Overall, the ACK compiler is a more
comprehensive offering than that of
Salamander Software, and it produced
more sophisticated machine code
programs. For example, when printing a
string it would set up a loop and
access each character by indirect
indexed addressing, whereas the Turbo
compiler would simply load the
accumulator with each character
directly until it reached the end. The
difference in capabilities of the two
is reflected in their prices, but both
exemplify the soft options of compiler
design (rudimentary parser, no symbol
table etc.) and are rather
disappointing. However, given a little
ingenuity and some expertise, both
could be put to some good effect, e.g.
shifting aliens. Despite their relative
cheapness, it 1is difficult to give
other than 1lukewarm approval to
compilers that impose so many
limitations upon the Basic programmer.
As such, we look forward with
anticipation to the future release of
Computer Concepts' new Basic compiler.

=

POINTS ARISING

780 SECOND PROCESSOR REVIEW (BEEBUG Vol.3 No.4)

We have been asked to point out that M-Tec Basic, which was referred to in the
comparison with the equivalent Torch ZEP100 system, is now bundled in with the
Perfect software at no extra charge. The price of £126.5¢0 only applies when M-Tec
Basic is purchased as a separate software item.

BEEBUG

NOVEMBER 1984

Volume-3 Issue 6

23

IMPROVED FUNCTION KEY LABELS (16K)

by Graham Crow

In BEEBUG Vol.2 No.9 we published a program to print out function
key labels on an Epson printer. Graham Crow has now improved this
program to produce even neater function key 1labels on an Epson

FX-80.

By using superscript mode for the label. Cutting between these will
text, it is possible to achieve a whole ensure that the keystrips fit your Beeb
line of bold heading and still have 9 exactly.
lines of text. Using reverse feed, the
border is printed in single strike For each keystrip you will need 9
mode, while the text 1is in double lines of data, the first to contain the
strike. Several examples of excellent keystrip title, and the remainder will
keystrips produced by the program have each require 10 data items to be
been selected to illustrate this printed on that line, as shown in the
article. example provided.

Type the program in and save it on Before you print a keystrip with
cassette or disc. The program already this program, you will need to make
contains data to produce a keystrip for sure that the buffer on your printer is
ASTAAD2 published in BEEBUG Vol.2 No.9. switched off because user defined
If you run the program, then this will characters on the printer use the same
be the keystrip printed. memory space as the buffer. This can be

done by removing the cover for the DIP

You can easily add further lines of switches and making sure that switch
data for other keystrips of your choice 1-4 (switch number four in the row of
and simply change the value after the eight switches) is in the off position.
RESTORE in line 130 to point to the Then you can run the program and see
start of the data for the keystrip you the results for yourself. Remember
want to print. This allows you to though, to turn the buffer back on when
maintain one program that is capable of you have finished.
printing any one of several keystrips.

The program also has double broken
lines above and below the function key

WORDWISE) : "

SHET o mABN ¢ UNDERLINE O UNDERLINE® ENPMASISED o ENPHASYSED CONDENSED © CONDENSEDS ENLARBED © ENLARGED © STANDARD
+CTRL * BIBN L4 ° v * FF A ON o OFF ° ON
S OER7 Baa0s0 BEITAB.T o OCET.AB0s | BEaT.er b oeav.re o Beis e ocia ¢ ocz7,87, 027,867,600 LuBLLTAPL7Z
35,27,82,3° ° o » s @ ‘ TS2BS2EPJID ©
ST INBERT/ o EMBEDDER o EMREDDED © P o = A oy e
¢ OVERWRITE® COMMAND @ COMMAND MARKER * CURSOR ° COUNT o uP TO g MARKED Ld MARKED s MARKED
A AL L T G S L L R P L o i £ B SO s R [B 0 T 3 o B
10 REM PROGRAM CRIB 160 PROCreverse(176)
20 REM VERSION B@.1 170 PROCtext
30 REM AUTHOR G.M.Crow 180 vDU1,27,1,64,3:REM printer off
40 REM BEEBUG NOVEMBER 1984 190 END
50 REM PROGRAM SUBJECT TO COPYRIGHT 200:
60: 210 REPORT:PRINT" at line ";ERL:END
100 MODE 7:ON ERROR GOTO 210 220:
110 PROCinit 1000 DEFPROCinit
120 PROCredefine("*") 1010 superscript=TRUE:condensed=FALSE
130 RESTORE 1880:REM change this line 1020 C$=STRINGS(7," ")
to change CRIBS 193¢ vDU2,1,27,1,64:REM printer on
140 PROCheading 1040 REM *FX6
150 PROCborder e

BEEBUG NOVEMBER 1984 Volume-3 Issue 6

24

1050 REM enable linefeeds (delete if a
lready set by DIP switch)

1060 PROCspacing(24) :REM 24/216" lines

1070 ENDPROC

1080:

1090 DEFPROCheading

1100 cutline$=STRINGS (132,"=")

1110 PROCfont (4) :REM condensed

1120 PRINT'cutline$;

113@ PROCfont (49) :REM enlarged/emphasi
sed/elite

1140 READ heading$

1150 PRINT SPC(4) ;heading$

1160 ENDPROC

1170:

1180 DEFPROCborder

]]9@ t$=“*********** kkkkkkkkkkkk W
120“ n.$=ll* * "
1219 T$=CS$+STRINGS (5,t$)

1220 M$=STRINGS (6," ") +STRINGS (5,m$) +"
1l

1230 PROCspacing(18) :REM 18/216" lines
1240 PROCfont (4) :REM condensed

125¢ PROConeway:PRINT T$

1260 FOR J=1 TO 9:PROConeway:PRINT MS:
NEXT

1270 PROConeway:PRINT TS

1280 ENDPROC

1290:

1300 DEFPROCtext

1310 FOR J%=0 TO 8:FOR I%=0 TO 10

1320 IF condensed THEN PROCfont (20) :RE
M condensed/double-strike

1330 IF superscript THEN VDU1,27,1,83,
1,0

1340 READ text$

1350 IF text$="line" THEN I%=10:printl
ine$=T$:GOTO 1430

1360 IF I%=@ THEN printline$=LEFTS$ (tex
tS+C$,6)+" ":GOTO 1430

1370 IF I%/2=INT(1%/2) THEN text$=LEFT
S(text$,12) ELSE textS$=LEFTS (text$,11)
1380 REM 12 chrs(evens),11 chrs(odds)
1390 text$=STRINGS (6-INT (LEN (texts$)/2)
,CHRS32) +text$+CS$:REM centre string
1400 IF 1%/2=INT(1%/2) THEN text$=LEFT
S(text$,12) ELSE text$=LEFTS (text$,11)
1410 textS=text$+" "

1420 printline$=printline$+text$

1430 NEXT

1440 PROConeway:PRINTprintline$;

145@ NEXT:PRINT''

1460 vDU1,27,1,84:REM superscript off
1470 PROCfont (4) :REM condensed

1480 PRINT cutline$

1490 ENDPROC

1500:

151¢ DEFPROCspacing (n)

1528 VDUl ,27,1,51,1,n

1530 REM lines are n/216" apart

1540 ENDPROC

1550:

1560 DEFPROCfont (n)

157¢ voU 1,27,1,33,1,n

1580 REM n specifies mix of type modes
1599 ENDPROC

1600:

1610 DEFPROConeway

1620 vDU1,27,1,60

1630 REM prints left to right only for
best alignment

1640 REM acts only on current line

1650 ENDPROC]
1660:

1670 DEFPROCreverse (n)

168¢ vDU1,13,1,27,1,106,1,n ‘

1690 REM reverse feeds paper by n/216"
1708 ENDPROC

1710:

1720 DEFPROCredefine(char$)

1730 REM Printer manual sections 3-36
onward

1740 char=ASC(char$)

1750 REM copy ROM characters into RAM
Character Generator

1760 vpU1,27,1,58,1,90,1,0,1,0

1770 REM specify character

178¢ vpUu1,27,1,38,1,0,1,char,1,char
1790 VDU1,139:REM attribute ‘'a’'

1800 REM numbers for new shape

181¢ vpul,9,1,0,1,32,1,0,1,80,1,9,1,80
+178,1,32;1,0,1,0

1820 REM select download character set
1839 vpul,27,1,37,1,1,1,0

1840 ENDPROC

1850:

1860 REM** ¥k kkkkkkdkkhkkhkkhkkhhkkkhkkk
Jededk ek e dede e de ek ek ek ok ek de ok ok e e e ek

1870:
1880 DATA "ASTAAD2
84"
1890 DATA,,;srrrrres
1900 DATA plus,SCREEN,SCREEN,SCREEN,SO
FT CHARS, INFILL,DUMMY,REVERSE,,, I
1919 DATA SHIFT,SAVE,LOAD,DUMP,ON/OFF,
ON/OFF , ROUT INE, COLOURS, , ,
1920 DATA,srrrrrees]
1930 DATA line
]946 DATAIIIIIIII’I
1950 DATA,ASTAAD,DRAW,DRAW,REPEAT,MOVE
,DRAW, LINE, DELETE, DELETE , DRAW
1960 DATA,TEXT,ARROW, POLYGON,POLYGON, ,
, LINE,AREA,CIRCLE
1970 DATA,srrvovrerr
1980:

1990 REMA**kkkkkkhkkkkhkhkkhhhikkikkhkdk
dedede e de e dede e e e A ek ek e ek ek

BEEBUG March 19

=

BEEBUG

NOVEMBER 1984

Volume-3 Issue 6

EB NG
PROGRAMS

25

(Part 1)
by Ben Miller-Smith

the beginner,

1. INTRODUCTION

The BBC computer and
its Basic interpreter
provide quite compre-
hensive and powerful
error detection and
reporting routines
which are a big help
in debugging programs,
especially as a
program of any
complexity is very
unlikely to work quite
as expected first
time. This may create
a whole series of
error messages or
strange results which
can be quite difficult
to sort out. If you
have copied programs
out of magazines or
books you will
probably have made some typing errors and
found some difficulty in getting the
program to run properly. Various different
troubleshooting techniques may be
necessary depending on the nature of the
apparent errors, but before we look at
them in detail it is well to understand
the error handling facilities on the BBC
micro, as these can affect debugging.

2. ERROR HANDLING ON THE BBC

In normal operation the BBC's Basic
interpreter will report errors as a
descriptive message, with an associated
program line number if possible - perhaps
the most familiar is the result of
pressing the Escape key while a program is
running, which wusually results in a
message of the form:

Escape at line 210

indicating that the program just happened

to be executing line number 219 at the
time the Escape key was pressed.
Similarly, if 1line number 410, say, had

been incorrectly entered as:
419 Y = SIN(X

This month Ben Miller-Smith presents the first of two articles on
coping with errors in programs. This can be a difficult task for
despite the excellent error reporting on the BBC
micro. This month's article concentrates on some of the problems
that may arise from errors introduced when typing in a program.

then the error message should be:

Missing) at line 410

which is a pretty clear statement of
the problem. However, complications in
debugging a program may arise if the
error handling mechanism of the BBC
computer has been modified with an 'ON
ERROR @OTO...' or similar statement,
usually near the start of a program, or
in an initialisation procedure. In
this case the reporting of the action
following any error is the
responsibility of the programmer, and
in some cases this leaves much to be
desired [Hopefully not with the
programs we publish in BEEBUG - Ed.].
Using the ON ERROR type of statement is
one way of disabling the Escape key,
since depression of the key creates, as
far as the computer is concerned, error
number 17 ('Escape'). The programmer
might wish to cause the program to
start again when the Escape key is
pressed, so a statement of the form:

10 ON ERROR RUN

is likely to be included near the start
of the program. This is all very well,
but if you have copied a magazine
program and unfortunately introduced
some errors, then when the program
comes across the first error it will
restart, find the error again, restart,
and so on for ever. The simplest thing
to do, having pressed Break and typed
OLD (carefully! Oh L D, not zero L D),
is to disable the ON ERROR statement
temporarily by putting a REM in front
of it thus:

10 REM ON ERROR RUN

which will enable the normal error
reporting system to operate - at least
you now have a chance of finding and
correcting any errors. When you think

BEEBUG

NOVEMBER 1984

Yolume-3 Issue 6

26

the program is operating correctly you
can always restore the ON ERROR
statement to its original form if
necessary. Always look for this type of
problem if you have copied or modified
someone else's program, and it either
appears not to work at all, or seems to
run for a time and then unexpectedly
restarts.

The BBC computer keeps an internal
record of the last error encountered,
and the line number associated with it,
if any. This information can be
recalled at any time by examining the
values of two pseudo-variables called
ERR (the last-error number) and ERL
(the line number). This facility is
sometimes used in programs to give a
'tidy' error detection and reporting
routine, especially where a program has
put the computer into an unusual state
(e.g. small text window, different
colours, a large character mode, etc.,
etc.) The additional command 'REPORT'
will cause the error message associated
with a given ERR number to be printed,
so a nice way to handle errors,
including terminating a program with
the Escape key (error number 17) is to
include the statement:

900@ IF ERR<>17 THEN ON ERROR OFF:
MODE 7: REPORT: PRINT "at line"ERL: END
9019 REM Tidy up following Escape

9020 VDU 15: VDU 20: VDU 26: REM Res
tore defaults, etc.
9930 END

At or near the start of the program
this error-handling routine would be
switched on with a statement of the
form:

10 ON ERROR GOTO 9000

Note that this method of error
interception gives the programmer
complete control over the system

following any error and not just
Escape, as in the example above. It is
thus possible to trap all run time
errors such as ‘'Division by Zero' or
trying to extract 'Negative Square
Roots', to do something about it, and
then return to the main stream of the
program at some suitable re-entry point
- the availability of such restart
points will markedly depend on how well
the program is structured.

3. COMMON ERRORS

If the computer comes across an
instruction that it cannot understand
it will stop running the program and do
its best to report the type of error
encountered, and the line number
currently being executed in the
program. The commonest cause is a
typing error, or your misunderstanding
of the format required for a particular
type of instruction. For example, a
Basic line reading:

320 PRONT "Enter a new position”
will cause the error message:
Mistake at line 320

since PRONT is not a valid Basic word,
and ‘'Mistake' is the computer's way of
saying that it cannot make any sense of
the given line.

Sometimes the error reporting system
has a problem in identifying the exact
cause of the error, as in the line:

400 newheight = time ** droprate

which will result in the message 'No
such variable at line 40@' because the
second * is interpreted as a variable
name rather than as an extra arithmetic
symbol. The 'No such variable' error is
probably the most common type of
mistake, mainly due to typing errors in
variable names, not taking care with
upper and lower case letters, or
missing out % signs at the end of
(integer) variable names. A more subtle
variation of this error may occur if
early on in a program a variable name
is mis-spelt, but is referred to
correctly in other 1lines of the
program. In this case when you list the
line that has been reported as faulty
you may find there is nothing obviously
wrong with it. For example:

360...

370...

380 droprat = startrate + gravity *
time

3904

400 newheight = time * droprate

410...

will again result in 'No such variable
at line 400' even though 1line 400

BEEBUG

NOVEMBER 1984

Volume-3 Issue 6

T e S SR S S S e e O S ST o

27

looks perfect. There is nothing for it
but to look back through the program
for previous occurances of the
variables named in the line reported as
faulty and so find the real problem,
which in this case is in line 380 (too
easy!) .

Probably the worst possible instance
of this type of error, or at least the
one that can be hardest to find, can
occur when using a procedure in a
program, especially one that has many
arguments. When the procedure is called
the necessary parameters (usually
variable names) are listed in brackets
after the procedure name, and their
values are substituted into the
corresponding arguments in the
definition of the procedure. The
problem is, if one of these variable
parameters is invalid then an error
will indeed be reported, but at the
line number of the procedure
definition, not the 1line number that

called the procedure (which has at
least got the faulty variable name
included in it). If the procedure
reporting the error is called only once
from elsewhere in the program then it
it not too difficult to trace back to
the problem area - but a commonly used
procedure could be called quite often,
and it may not be easy to identify
which call is creating the fatal error.

Clearly, some detective work may be
necessary to identify the exact cause
of errors reported by the computer when
you first run a new program (or modify
an existing one), but at least the BBC
camputer has quite comprehensive error
checking and reporting, even if it is
sometimes misleading. The best approach
is to take the initial debugging
carefully, and be prepared to look not
only at the line reported as faulty,
but at possibly related lines. With the
right attitude of mind, you may even
enjoy the puzzle presented. =)

HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS

HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS

ANOTHER USE FOR *BASIC - S.R. Linter

If you have both Disc Doctor and Watford DFS in your machine, then Disc Doctor
traps any use of the *EDIT command before the DFS can react to it. By typing in
*FX187,n where n is the number of the ROM socket holding the DFS (@-15), *BASIC will

now perform the equivalent of *EDIT directed straight to the Watford DFS.

Following on from the weird GOTO hint, try the following:

*FX243,129
*FX243,151

These will produce some rather strange effects on the screen. Make sure that you
have saved whatever is in the machine before hand. Press the Break key or Return a
few times to produce more effects, or experiment with other values! Control-Break

will reset the machine afterwards
RESET

POWER

If you want to simulate a power up reset (which does not check the *FX247 flaqg),
then keying *FX151,78,127 followed by pressing Break will suffice.

BASICALLY MISTAKEN — Roger Garratt

Basic gets confused in assembler with variable names that begin with a capital
'A'; it thinks you want Accumulator addressing, and assembles accordingly. There are
two solutions: use lower case variable names, or enclose the variable in brackets g

LENGTH OF A FILE

If you want to find out quickly the length of a file, use the following code,

where name$ holds the file name:
len%=EXT# OPENIN name$:CLOSE#0

LONG DISC FILES - Dudley Long

=

To create a large disc file, use a command like:

*SAVE FILE 0+31E0@

This saves a considerable amount of time over other methods. L |

BEEBUG

NOVEMBER 1984

Volume-3 Issue 6

28 o

- 3‘35‘°

w39 CROSS REFERENCE LISTER (16k)

by Ian Gooding

This month's utility is a very useful program that provides a cross
reference listing of a Basic program. It builds up lists of all the
variables, procedures, functions, etc used in the program, and the

lines at which they are referenced. This program
serious developer of Basic software.

INTRODUCTION

The purpose of this program is to
provide the user with a 1list of names
and lines numbers used within his Basic
program to aid in debugging and
documentation. The program searches for
procedure and function names and the
lines at which they are referenced; it
deals similarly with variable names and
lines which have GOTO or GOSUB
statements referring to them. Support
for printers is included within the
program, and any or all of the search
options mentioned above may be omitted.
The total number of 1lines in the
program is always displayed after the
program has been run, as 1is an
indication of the amount of remaining
free memory.

USING THE CROSS REFERENCER

The cross referencer should be
typed in and saved away for future use.
The program to be analysed should be
first saved onto disc or tape (provided
that for tape you have motor control).

The program as listed appears longer
than it really is as many REM
statements have been included to assist
lt,hose who wish to examine the workings

of the program. All REM statements may
be omitted when you type the program
in. Readers with Basic I should replace
OPENUP at line 120¢ with OPENIN.

Once run, the cross referencer prompts
for your choice of the available
options. These include selecting output
to the printer, and the checking for
procedures, functions, variables, and
GOTO and GOSUB references. There is an
option to reference all the options
without having to type in 'yes' to each
of them. Having answered the questions
mentioned above, the program prompts
for the file name of the program to be
analysed, and then procedes to build up
the cross reference list.

is a must for the

Total program lines = 21

Memory used = 11 %

FN D (130>
80

while the program is running, it
displays on the screen the current line

being scanned, the most recent
procedure, function or variable name
read, and the last line number
referenced by a GOTO or GOSUB

statement. No information is displayed
for any option omitted (e.g. no
reference to line numbers with GOTO or
GOSUB) though the current 1line number
is always displayed.

Once the analysis has been
completed, the program lists out the
information collected with coloured
highlights, with the corresponding text
sent to the printer if selected. For an
example of the output produced, see the
sample listing included with this
article.

The program functions quite happily
in a 6502 second processor (there is a
significant speed improvement in fact).
Once the run is finished, you may
obtain the list of references again by
typing PROCreport.

The necessary data is contained
within the program in a fairly complex
manner, and space does not permit here
a detailed explanation of how this
arranged. For the more adventurous

BEEBUG

NOVEMBER 1984

Volume-3 Issue 6

29

reader, an examination of the program
should prove quite interesting as it is
very well structured.

LIMITATIONS

A consequence of writing a utility
like this in Basic, and keeping the
program to a reasonable length is that
some simplifications have to be made.
Any computed GOTO or GOSUB line number
references are ignored (these are
impossible to determine in advance
anyway) . DATA, REM and assembler
comment blocks are ignored, and any *
calls are treated as variables; e.g.
*FX243,129 is treated as a reference to
the variable FX243. The program will
mark arrays such as A(..) as A(, but
for arrays such as A%(..) or AS(..),
then only A% or A$ will be displayed.

To provide
programmers, we have

even more bhelp for

magazine cassette/disc.

Vol.1 No.9, which allows you to remove
spaces, REMs and comments from long

accompanied by sufficient instructions
for its use if you don't have the
original magazine handy. These programs
together with the performance analyser
published last month provide a most
| useful set of utilities for serious
Basic programmers and we expect to add
further sucl
issues.

10 REM PROGRAM CROSS REFERENCER

20 REM AUTHOR IAN GOODING

30 REM VERSION B1.00

40 REM BEEBUG NOVEMBER 1984

5¢0 REM PROGRAM SUBJECT TO COPYRIGHT
60 :

100 ON ERROR MODE7:PROCerror :END
110 MODE 7:crlf$=CHR$13+CHRS$10

120 PROCassemble: PROCbanner : PROCoptio

ns :CLS: PROCbanner

130 FOR I%=16 TO 23:PRINT TAB(@,I%);C

HRS (130) ; :NEXT

140 REM If tape show tape movement, a

llow error retries

150 A%=@:Y%=0:T%=(USR&FFDA) AND 15:IF
T%=2 OR T%=3 THEN A%=139:X%=1:Y%=2:CAL

L&FFF4:X%=2:Y%=2:CALL&FFF4

160 VDU15:REM Scroll screen

170 mline%=260:REM Space for current
line

180 DIM line% mline%

included an
additional programs on this month's
This is the
program PACK, first published in BEEBUG

programs to save space. The program is

utilities in future

190 REM Set up chain heads

20@ DIM proc% 3:!procg=-1

210 DIM fn% 3:!fn%=-1

220 DIM var% 3:!vary=-1

230 DIM goto% 3:!goto%=-1

240 DIM gosub% 3:!gosub%=-1

250 REM Set up flags

260 eof%=FALSE:ass%=FALSE:gos%=FALSE

270 count%=-1

280 REM Open the program file

290 f%=FNopenfile

30@ REM Loop reading each line

310 REPEAT

32¢ PROCreadline

330 IF eof% THEN 360

340 count%=count$+1

350 PROCscanline:REM Store references

360 UNTIL eof%

370 MODE 7:PROCreport

380 END

390 :

1009 DEF PROCreport

1019 IF NOT print% THEN VDU 14:prlen%=
@ ELSE PROCsetprinter

1020 PROCpdouble ("Progra#¥ "+prog$,CHRS
(134))

1030 PROCp(“","")

1040 PROCp("Total program lines = "+ST
RS (count$%) ,CHRS$130)

1058 PROCp("","") :REM blank line

1060 DIM P% -1:PROCp("Memory used = "+
STRS (INT (100-(1@0* (HIMEM-P%)) / (HIMEM-TO
P)))+" %",CHR$(130))

1079 PROCp("",""):REM blank line

1080 IF lproc% THEN PROCpvar (!proc%,"P
ROCEDURES" , "PROC")

1990 IF 1fn% THEN PROCpvar (!fn%,"FUNCT
IONS", "FN")

1100 IF lvar% THEN PROCpvar (!var%,"VAR
IABLES“'“")

1110 IF lgoto% THEN PROCpgo(!goto%, "GO
TO LINES","GOTO")

1120 IF lgosub% THEN PROCpgo (!gosub%,"
GOSUB LINES","GOSUB")

113¢ PRINT:VDU 15

1140 ENDPROC

115072

1160 DEF FNopenfile

117¢ LOCAL f%:VDU 28,6,23,35,16

1180 REPEAT

1194 INPUT "Program name :"prog$

1200 £%=OPENUP (prog$)

1210 UNTIL £%<>0

122¢ vDU 28,0,24,39,0:=f%

1230 :

1240 DEF PROCreadline

1250 LOCAL i%

1260 VDU 28,6,23,35,16:REM set screen
subset up

1270 eline%=line%-1:i%=BGET#f%

BEEBUG

NOVEMBER 1984

Yolume-3 Issue 6

30

1280 IF i%<>&@D THEN PRINT "Bad file":
END

1290 nline%=BGET#f%*256+BGET#f£%:REM 1i
ne number in 2 bytes

1300 IF (nline% AND &800¥@) <> @ THEN C
LOSE#£%:e0£%=TRUE: ENDPROC

1310 i%=BGET#f%:REM character count
1320 REPEAT

1330 eline%=cline%+1

1340 IF (eline%-line%)>mline% THEN PRI
NT "Line buffer overflow":STOP

1350 ?eline%=BGET#f%

1360 UNTIL (eline%-line%)=(i%-5)

1370 ?(eline%+1)=&@D:REM terminator
1380 vDU 28,0,24,39,0

1399 ENDPROC

1400 :

14190 DEF PROCscanline

1420 LOCAL i%,3j%,k%,q9%,quote%,proc$:pr
m$=llll

1430 def%=0:fnc%=0:quote%=FALSE:gos%=F
ALSE

1440 A%=POS:B%=VPOS:PRINTTAB(8,5);"Lin
e number : ";RIGHTS (" "+STRS (nline%)
,6) ;TAB (A%,B%) ;

1450 FOR i%=line% TO eline%

1460 REM &F4 => Keyword "REM", so skip
out

1470 REM &DC = Keyword "DATA", ignore
this too

1480 IF ?i%=&F4 OR ?i%=&DC THEN i%=eli
ne%:GOTO 1890

1490 REM look for start of assembler
1500 IF 2i%=ASC("([") AND NOT quote% TH
EN ass%=TRUE:GOTO01890

1519 IF ?1%=ASC("]") AND NOT quote% TH
EN ass%=FALSE:GOTO189¢

1520 IF ass% THEN GOTO 1890

1530 REM &DD => Keyword "DEF"

1549 IF ?i%=&DD THEN def%=2

1550 REM ":" 1s statement separator
1560 IF 2i%=ASC("""") THEN quote%=NOT
quote%:GOTO1890

1570 IF 2i%=ASC(":") OR i%=ASC("(") TH
EN def%=0:fnc%=0:proc$="":GOT01890

1580 REM Look for GOTO etc line numbers
1590 REM &E4 GOSUB &E5 = GOTO
1600 REM &F7 RESTORE &8C = THEN
1610 IF ?i%=&E4 THEN gos%=TRUE ELSE IF
?1%=&F7 OR ?i%=&E5 OR ?i%=&8C THEN gos
%=FALSE

1620 REM &8D = line number marker

1630 IF ?i%=&8D THEN i%=FNscangoto(i%)
:GOTO 1890

1640 IF ?i%=&B8 AND ?(i%+1)=&50 THEN i
%$=1%+1:GOTO 1899:REM bodge for TOP = TO
+P

1650 REM &F2 => Keyword "PROC"

1660 REM &A4 => Keyword "FN"

1670 IF (?i%<>&F2) AND (?i%<>&A4) THEN
GOTO 1780

1680 IF ?i%=&A4 THEN fnc%=4 ELSE fnc%=0
1690 j%=i%+1

1700 REPEAT

1710 proc$=proc$+CHRS (73%) : j3=j%+1
1720 UNTIL i%>eline% OR NOT (FNletter (
23%) OR ?3j%=ASC("#") OR ?3%=ASC("") OR
FNdigit(?3%))

1730 i%=3j%-1

1740 IF 1lfn% AND fnc% THEN PROCline(FN
def (fn%,proc$)) ELSE IF (NOT fnc%) AND
lproc% THEN PROCline(FNdef (proc%,procs))
1750 proc$="":£fnc%=FALSE:def%=FALSE
17680 GOTO 1894

1770 REM hexadecimal number ?

1780 IF ?i%<>ASC("&") THEN GOTO 1810
1790 REPEAT:1%=i%+1:UNTIL i%>eline% OR
NOT FNhex(?i%)

1800 i%=1%-1:G0T01890

1810 REM variable reference ?

1820 IF quote% OR NOT FNletter (?i%) TH
EN GOTO 1890

1830 var$=""

1840 REPEAT

1850 var$=varS$+CHRS (?21%) :1%=i%+1

1860 UNTIL i%>eline% OR (NOT FNletter (
?i%)) AND (NOT FNdigit(?i%))

187@ IF 2i%=ASC("(") OR ?i%=ASC("S$") O
R ?1%=ASC("%") THEN var$=varS$S+CHRS (?i%)
ELSE i%=i%-1

1880 IF lvar$% THEN PROCline(FNdef (var$
,var$))

1890 NEXT i%

1900 ENDPROC

1919 :

1920 DEF FNscangoto (i%)

193¢ LOCAL num$:num¥=FNgnumber (i%) : REM
extract line number

1940 i%=i%+3:REM skip over it

1950 IF lgosub% AND gos% THEN PROCline
(FNgo (gosub%,num$)) ELSE IF (NOT gos$%)
AND lgoto% THEN PROCline(FNgo(goto%,num
%))

1960 =i%

1970 :

1980 DEF FNgnumber (x%)

1990 REM Turn 3 bytes from x% into lin
e number

2000 REM from internal GOTO format
2010 ?2&70=2 (x%+1) :2&71=?(x%+2) :2&72=2(
X%+3)

2020 CALL denumb:=256*2&73+2&74

2030 :

2040 DEF PROCassemble

2050 DIM denumb 30

2060 FOR I%=0 TO 2 STEP 2:P%=denumb: [0
PT 1%

2079 \ Decode GOTO line ref in &70,&71
1&72

2080 \ to binary line number in &73,&74
2090 \ Temporary storage in &75

2100 LDA &79:ASL A:ASL A:STA &75 __

BEEBUG

NOVEMBER 1984

Volume-3 Issue 6

Ty - e i S T [e S e T T R S e e S S S S PR e e e e e e L

31

2110 AND #&C@:EOR &71:STA &74

2120 LDA &75:ASL A:ASL A:EOR &72:STA &
73:RTS

2130]:NEXT

2140 ENDPROC

2150

2160 DEF FNletter (x%)=((x%>=ASC("A") A
ND x%<=ASC("z")) OR (x%>=ASC("a") AND x
%<=ASC("2")))

2170 =

2180 DEF FNdigit(x%)=(x%>=ASC("@") AND

X%<=ASC("9"))

2190 :

2200 DEF FNhex (x%)=((x%>=ASC("@") AND
x%<=ASC("9")) OR (x%>=ASC("A") AND x%<=
ASC("F"))

2210 2

222¢ DEF FNdef (chain%,name$)

223@ A%=POS:B%=VPOS:PRINTTAB (8,7) ;"Sym
bol :";name$;SPC(40-POS) ; TAB(A%,B%);

2240 LOCAL end%,found%,new%,last$

2250 end%=FALSE: found%=FALSE:last%=cha
in%:chain%=!chain%

2260 REPEAT

227@ IF chain%=-1 THEN end%=TRUE:GOTO
2300

2280 IF name$=$ (chain%+11) THEN end%=T
RUE: found%=TRUE: GOTO 2300

2290 IF name$>$ (chain%+11) THEN last%=
chain%:chain%=!chain% ELSE end%=TRUE

2300 UNTIL end%

2319 IF found% THEN GOTO 2380

2320 DIM new$% LEN(name$)+11

2330 !last%=new%: !new$=chain%:chain%=n
ews

2340 $(chain%+11)=name$

235¢ ?(chain$%+9)=0:?(chain%+10)=0

2360 DIM new% 3:!new%=-1:!(chain%+4)=n
ews

2370 ?(chain%+8)=0

2380 IF def% THEN ?(chain%+9)=nline%/2
56

2390 IF def% THEN ?(chain%+10)=nline%

2400 =chain%

2410 :

2420 DEF FNgo(chain%,line%)

2430 LOCAL end%, found%,new%,last%

2440 end%=FALSE: found%=FALSE: last%=cha
in%:chain%=!chain%

2450 A%=POS:B%=VPOS:PRINTTAB (8,9) ; "Ref

Line 2. M2 RIGHTS (" "+STRS (1ine%) ,
6) ; TAB (A%,B%) ;

2460 REPEAT

2470 IF chain%=-1 THEN end%=TRUE:GOTO
2500

2480 IF FNnumber (chain%+9)=1ine% THEN
end¥=TRUE: found%¥=TRUE: GOTO 2500

2490 IF FNnumber (chain%+9)<line% THEN
last%=chain%:chain%=!chain% ELSE end%=T
RUE

250@ UNTIL end$%

2510 IF found% THEN =chain%

2520 DIM new% 10@:!last%=new%:!new¥=cha
in%:chain%=new%

2530 DIM new$% 3:!new%=-1:!(chain%+4)=n
ews

2540 ?(chain%+8)=0:? (chain%+9)=1ine%/2
56

2550 ?(chain%+10)=1ine%:=chain$%

2560 :

2570 DEF PROCline(ref%)

2580 LOCAL i%,p%,end%,new%¥,qu%,last%
2590 end%=FALSE

2600 last%=! (ref%+4):p%=!last%

2610 REPEAT

2620 IF p%=-1 THEN DIM new$% 43:!last%=
new%:p%=new%:FOR i%=0 TO 40 STEP 4:!(i%
+new%)=-1:NEXT i%

2630 i%=2

2640 REPEAT

2650 1i%=1%+2:qu%=FALSE

2660 IF i1%=42 THEN qu%=TRUE ELSEIF FNn
umber (p%+1%)=&FFFF OR FNnumber (p%+i%)=n
line% THEN qu%=TRUE

2670 UNTIL qu$

2680 IF 1%<42 THEN end%=TRUE ELSE last
%=p%:p%=!p%

2690 UNTIL end$%

2700 ?(p%+i%)=nline%/256

2710 ?(p%+i%+1)=nline%

2720 ENDPROC

2738 3

2740 DEF FNnumber (x%)=(?x%)*256+? (x%+1)

21750 &
2760 DEF PROCpvar (chain%,title$,typeS)
2770 LOCAL a$
278@ PROCpdouble (title$,CHRS(131))
2790 PROCp("",““)

2800 IF chain%=-1 THEN PROCp(" (NON
B}ty :PR(x:p(""’lul) : ENDPROC
2810 REPEAT

2820 aS=type$+" "+$(chain%+11)

2830 IF FNnumber (chain%+9)<>@ THEN a$=
as$+" ("+STRS (FNnumber (chain%+9))+")"

2840 PROCp(a$,CHRS (134))

2850 PROCplines(chain%)

2860 chain%=!chain%

2870 UNTIL chain%=-1

2880 ENDPROC

2890 :

2900 DEF PROCpgo(chain%,title$,tis$)

2910@ PROCpdouble (title$,CHRS (130)) :PRO

("ll'llll)

2920 IF chain%=-1 THEN PROCp (" (NON
E) n ‘ nn) :PROCP("" - Illl) + ENDPROC
2930 REPEAT

2940 PROCp (" "+ti$+" "+STRS (FNnumber (¢
hain%+9))+" From :",CHRS (134))
2950 PROCplines(chain%)
2960 chain%=!chain%
2970 UNTIL chain%=-1
29803 ENDPROC
RN SO

BEEBUG

NOVEMBER 1984

Yolume-3 Issue 6

2990 :

3000 DEF PROCplines(ref%)

3010 LOCAL p%,1%,end%,a$:p%=!! (ref%+4)

3020 REPEAT

303¢ IF p%=-1 THEN GOTO 3110

3040 i%=2:end%=FALSE:a$=STRINGS (6," ")

305¢4 REPEAT

3060 1%=1%+2

3070 IF 1%<42 AND FNnumber (i%+p%)<>&FF
FF THEN a$=a$+RIGHTS (" "+STRS (FNnum
ber (1%+p%)) ,6) ELSE end%=TRUE

3080 IF (riint% AND LEN(a$)>prlen%-7)
OR (NOT print% AND LEN(a$)>33) THEN PRO
Cp<a$,nu) :a$=n n

3099 UNTIL end$%

3100 p%=!1p%

3110 UNTIL p%=-1

3120 PROCp(a$,“"):PROCp(“","")

3130 ENDPROC

3149 : !

3150 DEF PROCp (text$,control$)

3160 REM print control$+text$ on screen

3170 REM print text$ only on printer

3180 REM if enabled

3190 PRINT control$;

3200 IF print$ THEN VDU 2

3219 PRINT text$:VDU 3

3220 ENDPROC

3230

3240 DEF PROCpdouble (text$,controls$)

3250 REM print control$ AND text$ in

3260 REM double height on screen,

3270 REM print text$ on printer (once)

3280 REM if enabled

3290 PRINT CHRS$ (141) ;control$;text$

3300 PRINT CHRS(141);controlS$;

331¢ IF print% THEN VDU 2

3320 PRINT text$:VDU 3

333@ PRINT SPCl;control$;

3340 IF print% VDU2

3350 PRINT STRINGS (LEN text$,"=")

3360 VDU3

3378 ENDPROC

3380 :

3390 DEF PROCsetprinter

3400 REM user to do whatever needed

3410 prlen%=80:REM line length to use

3420 REM send line feeds

3430 REM *FX6,0 if necessary

3449 ENDPROC

3450 :

3460 DEF PROCoptions

3470 REM User inputs options

3480 REM Is print output required ?

3490 print%=FNyesno("Do you want to pr
int the results"+crlf$+"as well as disp
lay them")

35¢@ IF NOT FNyesno("Do you want to 1li
mit the types of detailwhich are record
ed") THEN lvar$%=TRUE:lproc%=TRUE:1fn%=T
RUE: 1goto%=TRUE: lgosub%=TRUE: ENDPROC

3510 lproc%=FNyesno ("Do you want PROCs
II)

352¢ 1fn%=FNyesno ("Do you want FNs")

353@ lvar%=FNyesno("Do you want variab
les")

3540 lgoto%=FNyesno ("Do you want GOTOs
"

)

3550 lgosub%=FNyesno ("Do you want GOSU
lel)

3560 ENDPROC

3579

3580 DEF PROCbanner

3590 FOR I%=1 TO 2

3600 PRINT CHRS$ (141);CHRS$(134);SPC(3);
CHRS (157) ;CHRS (132) ;CHRS (139) ;"Cross Re
ference Lister ";CHR$(156)

3610 NEXT:PRINT

3620 ENDPROC

3630 :

3640 DEF FNyesno (prompt$)

3650 LOCAL end%,ans$:end%$=FALSE

3660 PRINT prompt$;" (Y or N) ";

3670 REPEAT

3680 INPUT ans$

3690 ans$=LEFTS (ans$,1)

3700 IF ans$="Y" OR ans$="y" OR ans$="
N" OR ans$="n" THEN end%=TRUE ELSE VDU
7:PRINT "Answer Y or N please “;

3719 UNTIL end$

3720 =(ans$="Y" OR ans$="y")

3730°:

3740 DEF PROCerror

3750 ON ERROR OFF

3760 IF ERR<>17 REPORT:PRINT" at line
W ERL

377¢ END

=

R D B R R D A D BN aTas
HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS

DELAY LOOP
A REPEAT UNTIL TIME ... delay loop doesn't have to use positive values, as can be
demonstrated by:
TIME=-500
REPEAT UNTIL TIME>Q
This also means that different delay times (maybe set in another program)
the same delay loop instruction.

can use

=

BEEBUG NOVEMBER 1984 Volume-3 Issue 6

33

THE LATEST ROM AND RAM EXPANSION BOARDS

Reviewed by Peter Rochford

Exprom ROM/RAM Expansion Board

Cost: £61.95 to £82.50 inc. VAT and pP&p.
deperding on options fitted.

Supplier: Anderson Electronics,

2 Hollin Park Road, Cal.verlay,

Pudsey, Leeds.

Ramamp ROM Extension Board ,

Cost: £26.80 inc. VAT and p&p.

Ramamp ROM/RAM Extension Board.

Cost: £47.00 to £59.00 inc. VAT and P&p.
Supplier: Ramamp Computers, ‘

25 Avon Drive, Whetstone, {eacestex:.

Aries-B12 ROM Expansion Board

Cost: £46.00 inc. VAT and p&p.

Supplier: Cambridge Computer Consultants,
Science Park, Milton Road, Cambridge.

Computer Villége CVX16 ROM/RAM
Expansion Board

Qost: £48.88 inc. VAT and psp.

Supplier: Computer Village Ltd.,
Hazeldine House, Central Square,

Telford, Shropshire.

cossimironns 38 ey o sssa

Name COB CIT 2K 4K 8K 16K RM IM EM SN BB WP Price
Exprom Rom/Ram 16 16 Y Y Y Y 16Y Y N N - £61.95 basic
Ramamp ROM board T 19 N Y Y Y @6 Y N Y N N £26.80
Ramamp ROM/RAM board § 7 16 N N Y Y 32 Y N Y N N £47.00 basic
Aries B-12 12 16 NN Y ¥ 16 Y Y N N - £46.00
CVX16 16 16 N N Y Y 16Y N N Y Y £48.88
Sir Computers 12° 16 Y ¥ Y 'Sl6¥ ‘NYN' N = £54.05
Watford MK2 13 165Y"%Y ¥ ¥ 16 Y 'N" Yy Y3738
ATPL 126 iy sy v yIERN6 v NTENS YRS S g T

Key:

COB Maximum number of ROMs on the board BB Battery backup (if applicable)

CIT Maximum number of ROMs in total WP Write protect (if applicable)

RM RAM expansion/Maximum figure £ Price, inclusive of VAT.

IM Internal mounting - Not known i

EM External mounting * BEEBUG members price.

SN Soldering necessary

In a standard Beeb there are four
paged ROM sockets for you to use. If
you have Basic in one of them, as most
people do, and then add a DFS chip, you
are left with only two vacant sockets.
With probably in excess of a 100
different ROMs now available for use
with a Beeb, this is clearly not
sufficient. Fortunately, the circuitry
that handles paged ROMs can cope with
up to 16 devices. In BEEBUG Vol.2 No.6
we reviewed ROM expansion boards from
Watford Electronics, Sir Computers and
ATPL. All the boards in that review are
still available although the Watford
board has wundergone a significant
improvement, and now includes full
on-board buffering. In this review we
will be looking at some of the more
recent boards to see how they compare.

For reference, the basic information
on each board, including those reviewed
before, is shown in the table above.

EXPROM ROM EXPANSION BOARD

The overall construction of this
board is to a high standard. All the
ROM sockets are numbered and easy to

identify, as are all the other
components such as the links and
switches. RAM may be used in 2K or 8K

chips; with the 2K devices there can be
a maximum of 8K, whilst the 8K devices
provide a maximum of 16K. There is a
plug-in 1link for each socket to enable
a 'wait state' for EPROMs slower than
the normal 250ns.

On the standard board two toggle
switches are mounted along the rear
edge of the board, and these allow

BEEBUG

NOVEMBER 1984

Volume-3 Issue 6

|

34

sockets 14 and 15 to be switched out,
or disabled. Two further switches to
disable sockets 12 and 13 can be fitted
as an option at the time of purchase,
bringing the price of the board up to
£65.50. When the board is positioned
inside the computer, access to the
toggle switches is via the slot at the
rear of the case. The facility to
switch off a ROM can be used to
overcome the problem of one ROM
interfering with the operation of
another. [See also the review of
Watford's ROM Manager elsewhere in this
issue - Ed.]

A ‘'zero insertion force' socket can
be provided as an alternative in
position 4 on the board. This allows
ROMs to be inserted and removed easily
without much risk of damage. The Exprom
board may be installed inside or
outside the computer and this position
may be changed as and when required.

Connection to the computer requires
removal of the 6502 CPU and all the
paged ROMs in the BBC micro. These are
then plugged into the appropriate
sockets on the Exprom board. A 40 way
ribbon cable from the Exprom board is
then connected to the 6502 socket in
the micro with a DIL header plug.

When finally clipped into place on
its pillars, the board is very secure
and stable. The position of various
chips on the board makes the insertion
and removal of ROMs more difficult than
it might be. However, if you use a
proper ROM removal tool (highly
recommended and cheap) then you will
have no problems, particularly as the
sockets are of the older type and it
requires only a small amount of force
for insertion and removal.

The documentation supplied with the
board was in the form of an excellent
manual of some 20 pages. The section on
the link options takes a fair amount of
close reading to understand fully but
should not cause any real problem.

RAMAMP ROM EXPANSION BOARD

This board supports seven paged ROMs
along with three on the BBC board (the
fourth is taken up by the new board).
It will accommodate 8K or 16K EPROMs,

and by altering some links three of the
sockets can utilise 24 pin 4K devices.

Although the quality of construction
is very good, the design is less
impressive. A four-way ribbon cable
must be soldered to four of the pins of
IC76 on the main BBC computer board. On
some versions of the BBC micro, this IC
is soldered in place. Personally, I do
not like the idea of soldering direct
to the pins of an IC like this. It is
difficult to attach four wires to the
closely-spaced pins without shorting
them out, and there is the possibility
of damaging the IC if too much heat is
applied trying to rectify mistakes.

The documentation supplied with this
board consisted of two sheets of clear
instructions and a single sheet of
diagrams. If you live close enough to
their workshops (see address at head of
review), then Ramamp will fit the board
for you at no extra cost.

RAMAMP ROM/' RAM EXPANSION BOARD

This board 1is very similar to the
Ramamp ROM board described above,
except that it can accommodate paged
RAM. It allows the use of 8k and 16K
EPROMs but not the 4K type. There are
two versions of the board available;
one fitted with 16K of paged RAM
(costing £47.00) and the other with two
16K pages of RAM (costing £59.00). The
documentation consisted of just a sheet
of text and a sheet of diagrams.

ARIES B-12 ROM/RAM EXPANSION BOARD

This system comprises three boards.
The main board carries the ROMs and a
second the Dbuffering and decoding
chips. The quality and standard of
construction of these three boards is
very impressive indeed.

If you have the Aries B-20 RAM
expansion board fitted (reviewed in
BEEBUG Vol.2 No.9), the 6502 CPU is not
removed and a 5-way ribbon cable is
plugged into the socket provided on the
B-20. If not, the 6502 is plugged into
the other small board provided with the
B-12 ROM board. This small carrier
board is then plugged into the 6502
socket on the BBC by means of pins on
the underside and the 5-way ribbon
cable plugged into the socket provided
on this.

BEEBUG

NOVEMBER 1984
;——_—J

Volume-3 Issue 6

35

- The main board supports up to twelve
paged EPROMs and 16K of paged RAM may
be added in two 8K devices. All the
sockets are numbered very clearly for
ease of identification and are arranged
in a 2 x 7 layout. There is no battery
backup facility provided for the paged
RAM.

Documentation consisted of a very
comprehensive sixteen page manual, with

clear instructions and plenty of
illustrations.
COMPUTER VILLAGE CVX16 ROM/RAM

EXPANS ION BOARD

Again the quality and construction
of the double sided PCB is excellent
and features some eighteen buffering
and decoding chips.

The board will accept 8K and 16K
EPROMs and has a paged RAM facility
allowing the use of 2K CMOS or NMOS RAM
devices up to a maximum of 16K. A
battery backup facility is provided for
the paged RAM as standard, requiring
only the addition of the Ni-Cad
battery. Paged RAM on this board can be
write-protected under software control.
Using the cheaper 2K RAM chips uses up
8 sockets allowing space for only 8
ROMs to be fitted at the same time.

CONCLUSIONS

I am pleased to say that all the
boards worked without fault during
testing. Every board was operated
continuously inside the computer for a
period of at least six hours and none
suffered with overheating. Because the
Computer Village board is installed so
close to the computer's RAM chips,
which produce a good deal of heat, it
was soak tested for twelve hours but
continued to work perfectly.

Which of these boards you choose
will depend on the cost, the facilities
you need and the ease of fitting. If
you change ROMs regularly, the
convenience of doing this will be
important to you.

The Ramamp ROM board provides an
inexpensive solution for those needing
up to six extra ROM sockets. The
ROM/RAM version 1is particularly good
value when you consider the RAM comes
with the board and enables you to store
some of your ROMs on disc and load them

BEEBUG

NOVEMBER 1984

in when needed. However, you must be
prepared to undertake some soldering
(as described above) when fitting
either of these boards.

The Computer Village board needs
modifications, I feel, to provide a
more satisfactory way of attaching it
to the computer, and to make it more
secure. It 1is sad that little thought
seems to have been given to this, yet
the board itself is so well made and
provides good facilities. This is the
only ROM/RAM board in the review that
can provide battery backup for the
paged RAM. I hope Computer Village give
some attention to the problems I have
mentioned before they release any new
version of this board.

The last two units, the Exprom and
Aries boards, both provide the best
way, in my opinion, of attaching a ROM
board to your computer. That is
externally in its own case. A great
deal of thought went into the design of
both of these boards and it shows.

If it's facilities you're after then
the Exprom board may be considered as
the unit for you. I have yet to come
across another ROM/RAM board that has
as many operating options as this one.
My only dislikes about this board were
the unco-operative ribbon cable and the
slight difficulty in removing ROMs.
Don't let this put you off too much
though, this unit is well worth serious
consideration even if you don't need
all the extra facilities.

Finally, my own personal choice out
of all these boards is the Aries B-12.
It is beautifully made, easy to fit,
provides all the facilities that I need
and is realistically priced. It can be
mounted internally and externally,
removal of ROMs is straightforward and
the unit is secure and stable. True it
supports only twelve paged ROMs but the
paged RAM can be used to load some of
your ROMs from disc. I find it hard to
fault this board in any way.

of the boards x:eviemd pxekusly

,that produced by ATPL still stands out
| as being excellent value, especially at

 the BEEBUG members pric:e. Our px:evious
. ‘comments on the b
, latg:e tama nkavalxd. &3

Yolume-3 Issue 6

36

BEEBUE

FORMATTING TEXT

by Surac

Woerlishe®

This month we take a look at the problem of printing text on the
screen without splitting words over the end of a line. A method to
achieve this is explained in this month's workshop together with a
description of a machine code routine to put this into effect.

Imagine, say, that you are writing
an adventure game and that you want to
print out the description for the
current room. You are working in mode 7
(vith a screen width of 40 characters),
but the text you have is over 40
characters long, and you wish to avoid
any breaks in the words. Obviously, you
could type in the text with breaks at
the appropriate points, but this would
be tedious, and make changing a
description inconvenient. What you need
is a routine that takes each word, and
looks to see if it will fit into the
current line totally, or if you need to
start on the next line before you can
print it. What we're going to do is
discuss exactly how we want our
formatting routine to work, and then
I'll provide an example of how to code
it written in machine code for you to
use.

Basically, the way to print the text
in the required format is to take each
word, add its length to the current
position of the cursor on the screen,
and compare this with the width of the
screen that we are using. If the new
position is before the end of the line,
we print the next word and a space, and
carry on. If the new word finishes
exactly on the end of the line, we just
print the word, but no space. If the
word overlaps, we start on the next
line down, and print the word and a
space. This process will ensure that
each line is filled with whole words
(but not right justified).

The routine listed here includes a
short program in Basic to demonstrate
its use. Type it all in and save it to
tape or disc first (particularly

important with machine code which may
completely corrupt the program when run
if any typing errors have been
introduced). If the program is then
run, it will assemble the machine code,
and then prompt for the mode you wish
to test it in. You will also be asked
for a string to format, and the screen
width you wish to use. If you want to
use the full screen width for the mode
selected, just enter zZero. The
demonstration is repeated as often as
you wish.

Using the routine in your own
programs is quite simple. "All you have
to do is to add the machine code
routine contained in the procedure
PROCassemble, the two functions FNequb
and FNequs (the wuse of these is
equivalent to the functions EQUB and
EQUS available in Basic II and
Hi-Basic), and the procedure
PROCformat. The procedure PROCassemble
should be called to assemble the
machine code before PROCformat is used
in your program. The format procedure
takes two parameters, the string to
format, and the line width to be used.
The width is supplied as a parameter in
case you should want to use text with a
width less than that of the full screen
(perhaps with a text window for
example). However, if the width is
specified just as zero then the current
mode is used to determine the screen
width using a small look-up table (the
data at line 215@). This is much easier
in machine code than using an
expression to calculate the result as
in last month's Basic program.

The formatting routine could quite
easily be used by itself in a machine

BEEBUG

NOVEMBER 1984

N e R e v S L S U s U e SR SOV e B0 e 6) P P SR ey B B

Volume-3 Issue 6

e A

37
code program. In this case the X and Y 1310 INY 1900 CMP width
registers on entry point to a block of 1320 BNE pretty2 1919 BCC patch2
text, with a zero byte marking the end. 1339 BRK 1920 JSR &FFE7
The block can be virtually any length, 1340 OPT FNequb(19) 1930 .patch2
but an individual word should not be 1350 OPT FNequs 1940 LDY #0
longer than 255 characters. Note that ("string too long") 1958 .patch3
Return and other characters that don't 1360 OPT FNequb (@) 1960 LDA (look),Y
occupy a single space on the screen 1370 .pretty3 1970 BEQ patch4
will lead to errors in the accuracy of 1380 JMP patchl 1980 JSR &FFEE
the formatting. 1390 .pretty4d 1999 INY

1400 TYA 2008 BNE patch3
1419 CIC 2010 .patch4
10 REM PROGRAM PRETTY 1420 ADC xpos 2020 RTS
20 REM VERSION B1.@0 1430 QMP width 2030 .findwidth
30 REM AUTHOUR SURAC 1440 BEQ pretty5 2040 LDA #135
40 REM BEEBUG NOVEMBER 1984 1456 BCC pretty6 2050 JSR &FFF4
50 REM PROGRAM SUBJECT TO COPYRIGHT. 1460 ROR byte 2060 LDA data,Y
60 : 1479 JSR &FFE7 2070 RTS
19@¢ PROCassemble 1480 JMP pretty7 2080 .data
119 PRINT "MODE :" 1490 .pretty5 2090]
120 MODE GET-48 1500 LDA #9 2100 NEXT
130 REPEAT 1519 STA byte 2110 RESTORE
140 INPUT'"String to format:"string$ 1520 BEQ pretty7 2120 FORI%=0TO7
150 INPUT"Width for format:"linelengt 1930 .pretty6é 2130 READ data?I%
hg 1540 LDA #255 2140 NEXT
160 PROCformat (string$,linelength$) 1550 STA byte 2150 DATA 89,44,
170 UNTIL @ 1560 .pretty7 20,80,40,20,
180 END 1570 LDY #0 40,40
199 : 1580 .pretty8 2160 ENDPROC
1000 DEF PROCformat (Sbuffer ,Ws) 1590 LDA (look),Y 2179 :
1919 ?width=w% 1600 CMP #32 2180 DEF FNequb (A%)
1020 buffer?LENSbuf fer=0 1610 BEQ pretty9 2190 ?P%=A%
1030 X3=buffer:Y%=buffer DIV 256 1620 JSR &FFEE 2200 P%$=P%+1
1040 CALL pretty 1630 INY 2210 =PASS%
195@¢ ENDPROC 1640 BNE pretty8 2229 :
1060 : 1650 .pretty9 2230 DEF FNequs (AS)
1070 DEF PROCassemble 1660 BIT byte 2240 $P%=A$
1080 DIM space 30@,buffer 256 1670 BPL prettya 2250 P$=P%+LEN AS
1090 look=&70:width=&72 1680 LDA #32 2260 =PASS$%
1100 xpos=&73:byte=&74 1690 JSR &FFEE ==
11190 FOR PASS$=0TO2 STEP 2 1700 .prettya
1120 P%=space 1710 LDA (look),Y
1130 [OPT PASS% 1720 QMP #32
1140 .pretty 1730 BNE prettyb
Lo o :;ég g:l; prettya
1160 STY look+1
117¢ LDA width 1760 .prettyb
1180 BNE prettyl 1770 TYA
119¢ JSR findwidth 1780 CLC
1200 STA width 179¢ ADC look
1210 .prettyl 1800 STA look
1220 LDA #134 1810 LDA look+1
123@ JSR &FFF4 1820 ADC #0
1240 STX xpos }gig igg igokﬂ
1250 LDY #0
1260 .pret#:ty2 1850 JMP prettyl
1276 LDA (look),Y 1860 .patchl
1280 BEQ pretty3 1876 TYA
1290 CMP #32 1880 CLC
1300 BEQ pretty4 1899 ADC xpos
BEEBUG NOVEMBER 1984 Volume-3 Issue 6

38

WATFORD ELECTRONIC’S ROM MANAGER

Reviewed by David Fell

£21 Sﬂ {special przce o
. BEREBUG mnbers}

Price:

One of the problems that may arise
now that so much ROM based software is
available for the Beeb is that, almost
inevitably, a well populated machine
will contain two or more ROMs which
have been programmed to recognise the
same command; perhaps the most common
example being the use of 'EDIT'. BEEBUG
has already proposed a 'ROM Rule' to
alleviate this situation (see last
month's editorial), and now Watford
Electronics have come up with 'ROM
Manager' which is intended to provide
comprehensive management of all your
installed ROMs, including conflicts
with ROM commands.

Probably the most useful feature is
the *DIRECT command. This allows any
command to be passed directly to a
specified ROM. Because this command is
so valuable, says the manual, there is
an alternative command name @ for
performing the same action; viz the
*VECTOR command. *STOP and *START are
two commands that allow sideways ROMs
to be turned on or off. All * commands
are then ignored by any ROMs in an
'off' state.

There are also various other
commands provided by ROM Manager.
These will list out the ROMs present in

‘reque the 'BEEBUG m

the machine, display detailed
information on a specified ROM, list
the contents of a ROM, edit memory, and
calculate the checksum of a given ROM.
There is also a command to list the
function key definitions (although this
doesn't cope with a delete character in
a definition), and a command to display
help on the first 22 (@ to 21) FX
calls. This seems to be rather a space
filler as the Advanced User Guide
contains most of the relevant facts.

The final selection of commands
allows you to develop sideways ROMs in
normal memory (not sideways RAM), and
to have all service calls directed to
your 'ROM'. This is a nice feature,
even if of interest to just a few.

If your Beeb is filled with ROMs, as
mine is, then Watford Electronics' ROM
Manager will at last allow you to avoid
many of the conflicts and other

problems that have bedevilled the use
of ROM-based software until now. It is
worth it for this feature alone.

HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS

6502 TUBE AND THE GRAPHICS ROM - Roy A. Harcup

To use the facility of the Computer Concepts'

Graphics ROM to pass integer

parameters over the Tube, you need to form a string and place this in an OSCLI

statement. For example,
*IN 1 500 Y%

would be encoded as
AS="IN 1 500 "+STRSY%
OSCLI AS$

Do not, however, try to use the trig routines built in to the Graphics ROM in
this way, as these will not work, and the integrity of the machine cannot be
guaranteed. =)

BEEBUG NOVEMBER 1984 Yolume-3 Issue 6

39

WEE SHUGGY (32k)

by Hugh Darby

If you enjoyed Block

Blitz published in BEEBUG Vol.2 No.8

(acclaimed by many members as one of our best ever games) then you
will certainly like Wee Shuggy, a game about a small guy trapped in
a dungeon. He needs your help to find several keys and escape from
the nightmare world in which he finds himself.

Wee Shuggy is a version of the
popular computer game called 'Manic
Miner' in which the player has to
fetch all of the keys to open a grating
so that he can escape from the dungeon.
There are various obstacles on the way
including thorn bushes, floors that
collapse as you walk on them,
stalactites and conveyor belts.

You lose a life if you jump into a
stalactite or a thorn bush, and then
have to start the current screen from
the beginning again.

You have three lives in all, and
there is a high score table and
instructions in the program. The game
uses just three keys to control the
movements of the man, 'Z' and 'X' for
left and right, and 'Return' for jump.

There are six different dungeons in
this fast and colourful game, and each
one provides a challenging, enjoyable
and often frustrating experience.

We are sure that once you start
playing Wee Shuggy you will agree that
this is one of the most outstanding
games that we have published in BEEBUG.
The time and effort spent typing the
program into your micro will be well
rewarded.

PROGRAM NOTES

The program is well structured, but
care is still required when typing it
in. Extensive use is made of
user-defined characters set up in the
procedure PROCcharacter from line 3490
onwards. These characters are used
extensively in displaying the different
screens used in the game (procedures
screen, screen2, screen3, screend,
screen5, and screen6) by putting the
character codes in a series of VDU
statements in each case. The VDU
statement is more concise as only the

! LIVES »3

BONUS I S6

character code 1is required (224, 225
etc) rather than the character itself
(CHR$224, CHRS$225 etc) as would be
needed in a PRINT statement. It is also
easy to include any of the other VDU
codes (in the range @ - 31) to change
colour, move the cursor etc as
required.

For speed, the program also
incorporates a short machine code
routine PROCassem (to check on the
screen character at the current cursor
position) and uses direct memory access
(the procedure PROCobject for example).

All the procedures have reasonably
meaningful names and you should be able
to identify their functions without
too much difficulty.

10 REM PROGRAM WEE SHUGGY

20 REM VERSION B@.2

30 REM AUTHOR HUGH DARBY

40 REM BEEBUG NOVEMBER 1984

50 REM PROGRAM SUBJECT TO COPYRIGHT

100 ON ERROR GOTO 3714

119 MODE7

120 PROCcharacter : PROCassem
13¢ PROCinstr:PROCarray
140 REPEAT

150 PROCvar : PROChi

BEEBUG

NOVEMBER 1984

Volume-3 Issue 6

40

160 MODE5:VDU23,1,0;0;9;0;
170 REPEAT:CLS
180 ONSCR%GOTO0190,200,210,220,230,240
1250
190 PROCscreen:GOT0260
200 PROCscreen2:GOT0260
210 PROCscreen3:GOT0269
220 PROCscreen4:GOT0260
230 PROCscreen5:GOT0260
240 PROCscreen6:GOT0260
250 PROCfinale
260 PROCheader
270 REPEAT
280 PROCplayer : PROCtest
290 UNTILdeadORfinish
300 IFdeadPROCEinishELSEPROCnewscr
310 UNTILdead
32¢ MODE7:PROCend
330 UNTILFALSE
340 END
350 :
1000 DEFPROCarray
1010 DIMNS(5) ,HI%(5) :FORI%$=1TO5:NS$ (1%)
="BEEBUG MAG":HI% (1%)=3000-I1%*500:NEXT
1020 ENDPROC
1039 :
1049 DEFPROCassem
1050 P%=&80
1060 [OPT2:LDA#135:JSR&FFF4:TXA:CLC:AD
C#96 : TAX: STX&7@:RTS:]
1070 ENDPROC
1080 :
1690 DEFPROChi
1100 CLS:PRINT
1110 HD$=CHR$129+CHRS157+CHR$131+"TODA
YS TOP SHUGGYS "+CHR$156:PROCdouble (HD

$)

1120 FORI%=1TO5

1130 VvDU31,0,I%*3+1

1140 string$=" - "“+CHR$(129+I%)+STRS (I
%) +"..."+FNspc+NS$ (I%) +FNspc+". . ."+STRS (
HI%(I%))

1150 PRINTstring$

1160 NEXT

1170 PRINT'':HDS$S=CHR$134+"Press"+CHRS1
31+"<"+CHRS$130+"SPACE"+CHRS131+">" : PROC
cent (HDS)

1180 REPEATUNTILGET=32

1190 CLS

1209 ENDPROC

1210 :

1220 DEFPROCdouble (AS)

1230 A$=CHRS$141+A$

1240 PROCcent (AS) : PROCcent (AS)

1250 ENDPROC

1260 :

1270 DEFPROCcent (AS)

1280 pos=20-LENAS/2

1299 VDU31,pos,VPOS : PRINTAS

1300 ENDPROC

1318

1320 DEFFNspc=STRINGS ((20-LENNS (1%))/2
,CHRS$32)

1330 :

1340 DEFPROCscreen

1350 CLS:COLOUR1:PRINTTAB (@, 30) ; STRING
$(20,CHR$224) ;CHRS$30;CHRS11

1360 VDU31,4,27,224,224,224,224,224,22
4;17,2,232,232;232,31,19,26,232,232;232
s17,1,224,225,225,225,225,224,224

1370 vDU31,0,22,224,224,224,32,32,32,2
24,224,224,224,224,17,2,232,232,232,117,
1,228,228,228,32,224,224,31,11,21,17,2,
232,232,232,;17,3,229

138¢ vDU31,0,18,17,1,224,224,31,0,14,2
24,224,224,224,224,224,224,224,225,225,
225,224,225,225,225,224,224,224,224,224
1390 vpU31,6,26,17,3,229,31,15,13,229,
17727231,31,19,17,231,3%,4,109,231732,17
.3,230,32,230,32,32,236,32,17,2,231
1400 KEYS=4

1419 ENDPROC

1420 :

1430 DEFPROCheader

14490 VvDU19,3,2;0;

1450 IFG%<>@GOTO1470

1460 COLOUR2:FORI%=28T030@:VDU31,17,1%,
233,233,233:NEXT

1470 COLOUR132:FORI%=1T09:PRINTTAB(d,I
%) SPC20: NEXT

148¢ PRINTTAB(1,3)"SCORE:";SC%;TAB(1,6
)"LIVES:";1iv%;TAB(10,6) "BONUS: 60"

1490 MOVE®@, 704 :DRAWG,992:DRAW1279,992:
DRAW1279, 704 :DRAWD, 704

150@¢ MOVE16,712:DRAW16,984:DRAW1262,98
4:DRAW1262,712:DRAW16,712

1510 TIME=0

1520 ENDPROC

1530 :

154¢ DEFPROCinstr

155@ PRINT:HDS$=CHRS$129+CHR$157+CHR$131
+"WEE SHUGGY "+CHRS$156:PROCcent (HDS)
1560 PRINT'CHRS$131" Wee Shuggy is tr
apped in a small"CHR$131"dungeon an
d can't get out unless he has"CHR$131"t
he necessary number of keys to unlock"
CHR$131"the grate at the bottom of the
screen."

1570 PRINT'CHRS131" To collect the
keys he has to run"CHR$131"around the
dungeon leaping over cracks"CHR$131"i
n the floor,jumping thorny bushes,and"
CHRS131"avoiding the stalactites on the
dungeon"CHRS131"roof ."

1580 PRINT:PROCcent (CHR$131+" The keys
are :-")

159¢ PRINT:PROCcent (CHR$129+"Z........
LEFT")

1600 PRINT:PROCcent (CHR$130+"X.......R

IGHT")
i

BEEBUG

NOVEMBER 1984

L e e D RN S O N P e e B B PR ATl .

Volume-3 Issue 6

41

W '?8
the grate at the bono- of the screen.

keys he has to run
leapxng over cracks

To collect the
around the
in the {loor, jumpi rmy bushes, and
m:dlnq the stal n?ntes on the dx.nqeon

roof

The keys are : -
RIGHT
RETURN. . . JumpP

> to start

161@ PRINT:PROCcent (CHRS134+"RETURN. . .
JUMP")

162@ PRINT:PROCcent (CHR$133+"Press"+CH
R$136+"< SPACE >"+CHRS$137+"to start")

1630 REPEATUNTILGET=32:CLS

1640 ENDPROC

1650 :
1660 DEFPROCvar

1670 X%=0:Y%=30:J%=0:DIR%=0:G%=0
1680 OX%=X%:0Y%=Y%:S5C%=0:1iv%=3
1690 dead=0:finish=0:SCR%=1:keys=0

1700 ENDPROC

1710 :]
1720 DEFPROCprint(c)

173@ IFc<>@GOTO1760

1740 *FX19

175@ vDU31,X%,Y%,32:ENDPROC

1760 *FX19

177¢ vDU17,c,31,X%,Y%,253+X3MOD2

1780 ENDPROC

1790

1800 DEFPROCplayer

1810 PROCprint (@)

1820 IFFNcheck (X%,Y%+1)=0ANDJ%=0:Y%=Y%+
1: IFADVAL-6=15SOUND1, 2,30-Y%, 1:GOTO1 900

1830 IFFNcheck (X%,Y%+1)<>@PROCobj2

1840 0X%=X%:0Y%=Y%

1850 IFINKEY-74ANDJ%=@DIR%=INKEY-98-IN
KEY-67:J%=1:UNO%=-1: IFADVAL-6=15SOUND1,
31572

1860 IFJ%<>@PROCjump:GOTO1890

1870 IFINKEY-67ANDX%<19X%=X%+1

1880 IFINKEY-98ANDX%>0X%=X%~-1

1890 IFFNcheck (X%,Y%)<>@PROCobject

190@ COLOUR2:PRINTTAB(16,6) ; 6@-TIMEDIV
100 ;CHRS32

1910 PROCprint(2)

192¢ ENDPROC

1930 :

1940 DEFFNcheck (x%,y%)

1950 VDU31,x%,y%:CALL&8@

1960 IF’&?G 960R?&70=128THEN=@ELSE=1

1970

1980 DEEPROCobJect

1999 IF?&70>=224AND?&70<229J%=0:UNO%=0
:Y%$=Y%-1:ENDPROC

2000 IF?&70=2290R?&70=2300R?&70=234dea
d=-1:ENDPROC

2019 IF?&70=231PROCbonus : ENDPROC

2020 1F?&70=232X%=0X%:Y%=0Y%: ENDPROC

2030 1F?&70=233ANDKEYS=keys finish=-1E
LSEIF?&70=233X%=16:Y%=30: ENDPROC

2040 IF?&70=235PROCprint (@) :X%=6:Y%=19

2050 1F?&70=236PROCprint (@) :X%=14:Y%=19

2060 ENDPROC

2070 :

2080 DEFPROCjump

2090 X%=X%+DIR%:J%=J%+1:Y%=Y%+UNO%

2100 IFFNcheck (X%,Y%)<>@PROCobject

21190 IFJ%>3UNO%=1

2120 IFJ%=7UNO%=0:J%=0

2130 ENDPROC

2140 :

2150 DEFPROCtest

2160 IFY%>3@dead=-1:Y%=30ELSEIFY%<11PR
OCprint (@) :Y%=11

2170 IFX%>18PROCprint (@) :X%=18ELSEIFX%
<1PROCprint (@) :X%=1

2180 IFTIME>=6000 dead=-1

2190 ENDPROC

2200 :

2210 DEFPROCcollapse

222¢ vDU17,1

2230 I1F?&70=227VDU31,X%,Y%+1,32: ENDPROC

2240 VDU31,X%,Y%+1,?2&70+1

2250 ENDPROC

2260 :

227¢ DEFPROCbonus

2280 SC%=SC%+100:keys=keys+1:VDU17,0,3
1,X%,Y%,32

2290 SOUND1,1,200,1

2300 COLOUR2:PRINTTAB(7,3) ;SC%

2310 ENDPROC

2320 :

2330 DEFPROCobj2

2340 IF?&70>224AND?&70<228PROCcollapse
: ENDPROC

2350 IF?&70=228X%=X%-1:ENDPROC

2360 IF?&70=233ANDKEYS=keys finish=-1E
LSEIF?&70=233X%=16:Y%=30: ENDPROC

2370 1F?&70=234dead=-1:ENDPROC

2380 IF(?&70=2290R?&70=230)ANDI%=0Y%=Y
%+1 : ENDPROC

2390 IF?&70=231ANDI%=0Y%=Y%+1

2400 ENDPROC

2410 :

2420 DEFPROCnewscr

2430 T=TIME

2440 CLS:SCR%=SCR%+1 : SC%=SC%+60-TDIV100
2450 X%=0:Y%=30:J%=0:DIR%=0:0X%=X%:0Y%
=Y%:dead=0:finish=0:keys=0

2460 IFSCR%<7 PRINTTAB(@,10)"GOING ONT
O SCREEN"; SCR$ELSEENDPROC

247¢ T=TIME:REPEAT UNTIL TIME=T+300
2480 ENDPROC

2499 : S

BEEBUG

NOVEMBER 1984

Volume-3 Issue 6

42

2509% DEFPROCfinish

2510 CLS:FORI%=100TO@STEP-4:SOUND1,3,1
%, 2:NEXT

2520 1iv%$=1iv%-1:IFliv$<=0@dead=TRUE:EN
DPROC

2530 X%=0:Y%=30:J%=0:DIR%=0:0X%=X%:0Y%
=Y%:dead=0: finish=0:keys=0

2540 IFTIME>=60@@PRINTTAB(@,10)"YOU RA
N OUT OF TIME"

2550 ENDPROC

2560 :

257¢ DEFPROCend

2580 *FXx21,0

2590 FORT%=255TO@STEP-1:SOUND&11,4,T%,
1:SOUND&1@,4,7,1:NEXT

2600 T=TIME:REPEAT UNTIL TIME=T+300

2610 IFSC%<=HI% (5) ENDPROC

2620 FORI%=5TO1STEP-1

2630 IFHI% (I%)<SC%C%=1%

2640 NEXT

265@¢ PRINT''':PROCcent (CHR$129+CHRS136
+"WELL DONE! ")

2660 PRINT':PROCcent (CHR$13@+"YOUR SCO
RE OF "+STRS (SC%))

2670 PRINT':PROCcent (CHRS13@+"IS ENOUG
H TO RANK YOU "+STRS$ (C%)+MIDS$ ("stndrdth
th",C%*2-1,2))

2680 PRINT':PROCcent (CHR$134+"PLEASE E
NTER YOUR NAME ")

2690 INPUTTAB(5,15)A$

2700 IFLENAS>20CLS:GOT02650

2719 IFC%=5G0OT02740

2720 FORI%=4TOC%STEP-1

2730 HI%(I%+1)=HI%(I%):N$(I%+1)=N$(I%3)
:NEXT

2740 HI%(C%)=SC%:N$ (C%)=AS

2750 ENDPROC

2760 :

2776 DEFPROCscreen2

2780 *FX21

279¢ vDU31,@,30,17,3:FORI%=0TO19:VDU23
4:NEXT:VDU30,11

28¢@ vDU31,0,10,17,3:FORI%=0TO19:VDU23
@:NEXT

281¢ vDU31,0,15,17,1:FORI%=0TO19:VDU22
5: NEXT

282¢ vDU31,0,31,224,224,224,11,11,32,3
2,224,224,11,11,32,32,224,224,11,11,32,
32,224,224,31,8,30,228,228,228,228,32,3
2,10,225,225,224

2830 VDU31,7,22,225,225,225,32,32,32,3
2,32,32,225,225,225,31,0,26,224,224,31,
3,22,224,224,31,5,18,224,224

2849 vDU31,8,29,17,2,231,31,8,21,231,3
10720, 231,381,185 ,.14, 231231 ;231

2850 keys=0:KEYS=6

2860 ENDPROC

29¢@ vDU31,0,30,17,3:FORI$=0T019:VDU23
4:NEXT:VDU30@,11

291¢ vDU31,0,10,17,3:FORI%=@T0O19:VDU23
@: NEXT

292¢ vbpu31,0,31,17,1,224,224,225,31,3,
28,278,228,11,11,11,228,228,11,11,11,22
8,228,11,11,11,228,228,225,225,32,32,22
4,224,225,225,225

2930 VvDU31,0,27,224,224,31,0,23,224,22
4,31,0,19,224,224,31,17,27,224,224,31,6
313,225,225 ,225,2254228,225

2949 vDUu31,3,16,225,225,225,31,11,27,2
24,224,31,15,20,17,2,232,8,10,232,8,10,
232:8,10,232,31,13,31,232,232,232,232
2959 VDUi7,2,31,9,26,231,31,18,26,231,
31, 10,12,231 ;31 ,18,22,231;31,6; 24, 231
2960 keys=@:KEYS=5

2970 ENDPROC

2989 :

2990 DEFPROCscreen4

3000 *FX21

3019 vDU31,@,30,17,3:FORI%=0T0O19:VDU23
4:NEXT:VDU3@,11

3@2@¢ vDbu31,10,12,17,2:FORI%=0TO18:VDU2
32,10,8:NEXT:VDU232

3¢3¢ vpu17,1,31,0,31,224,224,31,9,27,2
24,224,31,0,23,224,224,32,225,225,32,11
+11,224,11,11,224,11,11,224,31 ,0,14,228
,228,228,228,228,224,224,224

3940 YDU31,11,12,225,225,225,31 ,11,13,
17,2,230,230,230,17,1,31,14,15,228,228;
31,12,18,228,228,31,11,31,224,224

3¢5¢ vpu3l,13,27,224,224,31,15,23,224,
224,31 ,17,19,224,224,17,2,31,16,27,232,
232,232,232,31,16,26,232,232,232,232,17
+1,31,16,31,224,31,18,15,224,224

3@¢60 vDU17,2,31,0,26,231,31,11,39,231,
3E,49,14,231,31 ;19,285,231 51:0,13;231
3070 keys=0@:KEYS=5

3080 ENDPROC

3090 :

3100 DEFPROCscreen5

3119 *FX21

312¢ vDU31,0,30,17,3:FORI%$=0T019:VDU23
4:NEXT:VDU3@,11

3130 vDU31,10,10,17,2:FORI%=0T020:VDU2
32,10,8:NEXT:VDU232

3140 vDU31,16,13:FORI%=0TO17:VDU232,10
,8:NEXT:VDU232

315¢ vDU17,1:FORI%=13TO27STEP3:VDU31,1
7,1%,;225,225,225:NEXT

316¢ vDU17,1,31,0,31,224,224,224,31,5,
31,224,224,31,8,31,224,224,31,8,27,224,
224,31,5,24,224,224,31,0,21,224,224,224
,31,0,17,224,224,224

3170 vDU31,0,13,224,224,224,32,225,225
2225,225,225,31,9,20,224,13,32,8,11,32,

2870 : 31,%1,208,225,225,32,225,225,31 ,13,16,22
288¢ DEFPROCscreen3 8,228,228,31,13,13,228,228,228,31,15,31
2890 *FX21 P 1
i
BEEBUG NOVEMBER 1984 Volume-3 Issue 6

43

318¢ voul?7,2,31,19,12,23%1,31,17,15,231
+31,19,;18;231,31,17,21;231;31,19,24, 231
«31,8,26,231,31,10,18,23%,31,15,30,23]}
3190 keys=0:KEYS=8

3200 ENDPROC

3219 ¢

3220¢ DEFPROCscreen6b

3230 *Fx21

3240 vDU17,1,31,0,31,224,224,224,32,22
15227,32,17,3,234,17,1,227,32,227,227,2
24,225,17,3,234,234,17,1,225,224,225, 22
4,380,101 ,31,2,27,224,31,1,23,224,224 31,
1,19,235,31,5,29,228,228

325¢ VvDU17,2:FORI%=31TO19STEP-1:VDU31,
3,1%,232,31,9,1%,232:NEXT

3260 FORI%=27TO19STEP-1:VDU31,12,1%,23
2,232,31,16,1%,232:NEXTsVDU31,7,19,232,
8,10,232,8,10,232,31,6,29,232,8,108,232,
8,10,232

3270 FORI%=@TO19:VDU31,1%,18,232,31,1%
+17,232:NEXT:VDU31,14,17,32,32,33,14,18
v 32,32

3288 VvDU17,1,31,8,27,224,31,8,23,224,3
1,828,224, 11,32, 3%, 10;27,227,31 19,23,
227,17:3,3%,19,;24,230;31,11,21,230,17,2
+31,11,26,232,17,1,31,18,27,224,224,31,
18,23,224,224,31,18,19,236

3290 vDU31,14,17,226,226,31,14,206,226,
226

3399 VDU17,2,31,2,19,231,;31,6;28;231,3
1, 9;09,:231,31,18,22,23Y 31,13 ,28:23] , 31
¢16,28,231,31,17,16,231

3310 FORI%=14TO16:VDU31,@,1%,233,233,2
33,231 ,231,231 sNEXT

3320 keys=0:KEYS=16:G%=1

3330 ENDPROC

3340 :

335@0 DEFPROCfinale

3360 FORT%=@T0255:SOUND&11,4,T%,1: SOUN
D&1@,4,7,1:NEXT: SOUND@,1,7,1

3370 ENVELOPE1,1,0,0,0,0,0,0,8,0,-1,-1
,126,126

3380 SOuND17,1,101,2:SOUND1,@,d,1:SOUN
D1,1,101,2:SOUND1,@,0,1:SOUND1, 1,101, 2:
SOUND1,@,9,1:SOUND1,1,125,5:SOUND1,@,0,
2:S0UND1,1,101,2:SOUND1,@,d,2:SOUND1, 1,
125,5

3390 COLOURI1:PRINTTAB(5,4) "WELL DONE!"
3400 PRINTTAB(3,7)"WEE SHUGGY HAS";TAB
(6,9) "ESCAPED"

3419 VDU31,0,21,17,2:FORI%=0T019:VDU23
2,8,10,232,11:NEXT

3420 Y%=20:X%=10:U=-1:REPEAT

3430 IFY%>16ANDU Y%=Y%-1ELSEU=0:Y%=Y%+1
3440 PROCprint (2): IFY$%=20U=-1

3450 T=TIME:REPEATUNTILTIME=T+3:PROCpr

SBCORE : 206

LIVES 1 3 BONUS s 551

3490 DEFPROCcharacter
35@0 vDU23,224,255,170,255,170,255,170

3510 vDu23,225,255,129,255,129, 255,129

352¢ vbu23,226,0,0,255,129,255,129,0,0
353¢ vpu23,227,9,9,9,9,255,129,0,0
3540 vDU23,228,146,146,255,129,255,255

355@ vDU23,229,16,138,73,82,60,16,16,16
3560 vDU23,230,255,255,191,173,44,8,8,0
357¢ vpu23,231,60,36,60,16,28,16,28,16
3580 vpu23,232,255,66,255,8,8,255,66,2

3590 VvDU23,233,24,24,24,255,255,24,24,

3609 vDU23,234,0,0,9,146,73,36,146,73
3610 vDU23,253,28,62,107,127,20,20,20,

3620 vDU23,254,0,0,28,62,107,127,20,54
3630 VDU23,235,255,254,252,248,240,224
+192,128,0

3640 VDU23,236,255,127,63,31,15,7,3,1
3650 ENVELOPE1,1,0,0,0,0,0,0,0,0,-2,-2
+126,0

3660 ENVELOPE2,1,0,0,0,0,0,9,0,0,-5,-5
+95,0

3670 ENVELOPE3,1,5,5,5,-5,-5,-5,15,15,
-9,-9,126,126

3680 ENVELOPE4,0,0,0,-1,1,1,1,0,1,0,25
4,120,128

3690 ENDPROC

3700 :

3719 ON ERROR OFF :MODE 7

3720 IF ERR=17 END

3730 REPORT:PRINT" at line ";ERL
3740 END

B S

=

int(Q)
3460 UNTILQ
3470 END E '!,l_;- E
BEEBUG NOVEMBER 1984 Volume-3 Issue 6

Al &\\

oS,

oy

N %
‘05@6‘)060

NUMBER HUNT (16k)

by Kevin Allen

Hunt the Numbers 1is a

simple but fast game written in Basic. It

incorporates coloured graphics in mode 5 and at the fastest level is
very quick and extremely challenging.

Your man is a number-eating beasty,
or a kind of number-cruncher, I
suppose, whose world consists of a nice
bright yellow square. Within this, by
the magic of computers, ever increasing
numbers keep appearing as a temptation
to your man to raise his calorific
intake for the day. But as you move him
to digest these numeric morsels, other
nasty monsters will give chase all
round the board with only the demise
and consumption of your innocent
glutton as their objective. These chaps
are number-cruncher gulpers and they
increase in quantity with your man's
success. With higher levels of skill,
selected at the beginning of the game,
these aggressors become faster and more
direct in their descent upon your
ever-hungry number-cruncher which can
result in a peculiarly loopy dance
around the board's surface.

Controls to change the horizontal
and vertical directions of movement are
the usual 'z2','X', and '*' and '/' keys
but it's important to note also that
simultaneous use of a horizontal and a
vertical control key will produce a
diagonal motion, which is just as well
because the ‘'nasty monsters' have no
qualms about cutting corners when
they're chasing you.

10 REM PROGRAM NHUNT

20 REM VERSION B@.1

30 REM AUTHOR K.ALLEN

40 REM BEEBUG NOV 1984

50 REM PROGRAM SUBJECT TO COPYRIGHT

109 CLEAR:MODE7

110 ON ERROR GOTO 330

120 PROCinfo

130 man%=3:score%=-50:Q0%=0
140 MODE 5

150 PROCsetup

160 PROCnumbers

-

o R
"

200 IF Q%>10:PROCmonster2:ELSE PROCde
lay (6)

210 PROCman

220 IF skill%>1:PROCmonster1:ELSE PRO
Cdelay(16)

230 PROCman

240 IF skill%>2 PROCmonster1:PROCman:
IF Q%>10:PROCmonster2:ELSE PROCdelay (8)

250 PROCman

260 IF skill%>3 PROCmonsterl1:IF Q%>10
:PROCmonster2: ELSE PROCdelay (8)

27¢ PROCman

280 IF skill%<4:PROCdelay(8)

290 IF Q%>20:PROCmonster3

300 UNTIL FALSE

31@ END

3200 %

330 ON ERROR OFF:MODE 7:IF ERR<>17 TH
EN REPORT:PRINT "at line";ERL

340 END

350 :

1009 DEFPROCman

1010 IF Q%>20 AND (A=W AND B=Z) PROCde
ad:GOTO 100

1020 IF Q%>10 AND (A=F AND B=G) PROCde
ad :GOTO 100

1030 IF (A=M AND B=N) PROCdead:GOTO100
1040 IF NOT(A=K% AND B=L%) THEN GOTO 1
@50 ELSE VDU 7:PROCnumbers

1050 IF INKEY-98 A=A-3:IF A<5 A=5

1060 IF INKEY-67 A=A+3:IF A>26:A=26
1070 IF INKEY-73 B=B+4:IF B>31:B=31
1080 IF INKEY-105 B=B-4:IF B<3:B=3

170 REPEAT 1090 IF a=A AND b=B:GOTO 1130
180 PROCmonster1 1100 *FX21,4
190 PROCman 111¢ SOuND @,-15,4,3
et
BEEBUG NOVEMBER 1984 Volume-3 Issue 6

45

\\ss HUNT THE NUMBERS s»//

The object of the game is to collect
as many numbers as you can, avoiding the
monster. When you get to numbers you get
a 2nd monster and when you get 20 you’ll
have three to avoid.

for LEFT

for UP

2

X for RIGHT
-

7 for DOWN

Please enter Skill level (1-4):

1120 GCOL @,2:MOVE 40*a,26*b:VDU 241
1130 GCOL @,1:MOVE 40*A,26*B:VDU 241
1140 a=A:b=B

1150 ENDPROC

1160 :

1170 DEFPROCdelay (D%)

1180 now=TIME:REPEAT UNTIL TIME>now+D%

1190 ENDPROC

1200 :

12190 DEFPROCinfo

1220 CLS

1230 vbU 19,1,6;0;

1240 FORA=1 TO2:PRINT TAB(5,A)CHR$141;
CHRS$134"** HUNT THE NUMBERS **":NEXT:PR
INTTAB (3,3)CHRS$129; STRINGS (28,"-") ; TAB (
12,4)CHR$130"by K.Allen"

125¢ PRINT TAB(@,7)CHR$131"The object
of the game is to collect as"CHR$131"ma
ny numbers as you can, avoiding the"'CH
R$131"monster. When you get two digit n
umbers";

1255 PRINTCHRS131"you get a 2nd monste
r and when you get"'CHR$131"up to 20 yo
u'll have three to avoid."

1260 PRINT TAB(13,14)CHRS$S133"Z for LEF
TII

1279 PRINT TAB(13,15)CHRS$133"X for RIG
HTII

1280 PRINT TAB(13,16)CHRS$133"* for UP"

1290 PRINT TAB(13,17)CHRS$133"/ for DOW
N"

1300 PRINT TAB(2,19)CHRS$134"Please ent
er Skill level (1-4):"

1310 REPEAT:skill$=GETS$:UNTIL INSTR ("1
234" ,skill$) >0

1320 skill%=VAL(skill$)

1330 PRINT TAB(33,19);skill%

1340 PRINT TAB(4,22)CHRS$129 CHRS136"=>
PRESS SPACE BAR TO START<="TAB(6,23) ST
RINGS (28,"-")

1350 REPEAT UNTIL INKEY(-99)

1360 ENDPROC

1370 :

1380 DEFPROCsetup

139¢ ENVELOPE 3,2,8,4,8,2,2,2,126,0,0,
-126,126,126

1400 A=5:B=3:a=5:b=3:f=26:F=26:9=31:G=
31:N=7:n=7:M=26:m=26:W=5:w=5:2=31:2=31:
K%$=0:L%=0

1410 VDU 24,160;16;1120;848;

1429 VDU 23,240,102,153,153,255,129,16
5,165,126

1430 VDU 23,241,195,126,90,90,102,60,6
6,195

144¢ VDU 5:VDU 18,0,130:VDU 12

1450 VDU 26:VDU 19,0,4;0;:VDU 4

1460 VDU 19,2,3;0;:VDU 19,1,2;0;

1470 vDU 19,3,1;0;:VDU 18,0,2

1480 start=TRUE:start2=TRUE:start3=TRUE
1499 COLOUR2

150¢ PRINT TAB(1,2);"*HUNT THE NUMBERS
*"sTAB(1,4);"SCORE:™; TAB(15,4);

1510 IF man%>1:COLOUR 1:FOR lives=2 TO
man%:VDU 9,241:NEXT

1520 VDU 5

1530 GCoL @,3

1540 FOR X=160 TO 1120 STEP 120:MOVE X
16:DRAW X,848:NEXT

1550 FOR Y=16 TO 848 STEP 104:MOVE 160
Y:DRAW 1120, Y:NEXT

1560 ENDPROC

1578 2

1580 DEFPROCmonster1

1590 IF M=A:GOTO 160@ ELSE M=M+3* (-1-2
*(M<A)) :IF M<5 M=5 ELSE IF M>26:M=26
1600 IF N=B:GOTO 1610 ELSE N=N+4* (-1-2
*(N<B)) : IF N<3 N=3 ELSE IF N>31:N=31
1610 IF (M=F AND N=G) OR (M=W AND N=Z)
:N=n:M=m: ENDPROC

1629 GCOL 3,1

1630 MOVE 40@*m,26*n:VDU 240:IF start=T
RUE:start=FALSE:GOTO 1630

1640 MOVE 40*M,26*N:VDU 240

1650 n=N:m=M

1660 ENDPROC

1670 :

1680 DEFPROCmonster2

1699 IF F=A:GOTO 1700 ELSE F=F+3*(-1-2
*(F<A)):IF F<5 F=5 ELSE IF F>26:F=26
1700 IF G=B:GOTO 1710 ELSE G=G+4* (-1-2
*(G<B)) : IF G<3 G=3 ELSE IF G>31:G=31
1710 IF (M=F AND N=G) OR (W=F AND Z=G)
:G=g:F=f : ENDPROC

1720 GCoL 3,1

1730 MOVE 40*f,26*g:VDU 240:IF start2=
TRUE:start2=FALSE: GOTO 1730

1740 MOVE 40*F,26*G:VDU 240

1750 f=F:g=G

1760 ENDPROC

17795

1780 DEFPROCmonster 3

1790 IF W=A GOTO 180@ ELSE W=W+3*(-1-2
*(W<A)):IF W<5 W=5 ELSE IF W>26:W=26

BEEBUG

NOVEMBER 1984

Volume-3 Issue 6

46

1800 IF Z=B GOTO 1810 ELSE Z=Z+4* (-1-2
*(2Z<B)) :IF Z<3 Z=3 ELSE IF Z>31:Z=31
1810 IF (W=F AND Z=G) OR (W=M AND Z=N)
:W=w:Z=2:ENDPROC

1820 GCOL 3,1

1830 MOVE 40*w,26*z:VDU 240:IF start3=
TRUE:start3=FALSE:GOTO 1830

184¢ MOVE 40*W,26*Z:VDU 240

1850 z=Z:w=W

1860 ENDPROC

1870" 3

1880 DEFPROCnumbers

1890 MOVE 40* (K%-14.7-(Q%>9)) ,26*L%:GC
OL @,2:PRINT Q%

1900 k%=3*RND(7)+2:1%=4*RND(7)-1:IF k%
=K% AND 1%=L%:GOTO1900:ELSE K%=k%:L%=1%
1910 GCOL @,0:MOVE 40% (K%-14.7-(Q%>8))
1 26*L%:Q%=0%+1:PRINT Q%

1920 S=score%:score%=score%+50¢

1930 GCOL ¥,@:score%=INT (score%) :MOVE
64,896:PRINT S:MOVE 64,896:GCOL 0,2:PRI

NT score$%

1949 ENDPROC

1950 :

1960 DEFPROCdead

1979 SOUND 1,3,80,24

198¢ vbU 19,0,0;9;19,1,7;8;

1990 TIME=@:REPEAT UNTIL TIME=250

2000 man%=man$%-1:IF man%>@ GCOL @,128:
CLS: PROCsetup:Q%=Q%-1:score%=score%-50:
GOTO 160

2010 VDU 4:PRINT TAB(2,1¢)SPC(21)"WOUL
D YOU LIKE ";SPC(23);"ANOTHER GAME? (Y/N
) "SPC (20)

2020 *FX15

2030 REPEAT KEYS$S=GETS:UNTIL INSTR("YyN
n" ,KEYS) >0

2040 IF KEYS="N" VDU22,7:END ELSE CLS:
AGAIN=TRUE: ENDPROC

=

IF_YOU WRITE TO US

BACK _ISSUES (Members only)

All back issues are kept in print (from
April 1982). Send 90p per issue PLUS an
AS SAE to the subscriptions address.
This offer is for members only, so it
is ESSENTIAL to quote your membership
nunber with your order. Please note
that the BEEBUG Reference Card and
BEEBUG supplements are not supplied
with back issues.

SUBSCRIPTIONS
Send all applications for membership,
subscription renewals, and subscription
queries to the subscriptions address.
MEMBERSHIP COSTS:
Uu.K.
£6.4¢0 for 6 months (5 issues)
£11.90 for 1 year (10 issues)
Eire and Europe
Membership £18 for 1 year.
Middle East £21
Americas and Africa £23
Elsewhere £25

PROGRAMS AND ARTICLES

All programs and articles used are paid
for at around £25 per page, but please
give us warning of anything substantial
that you intend to write. In the case
of material longer than a page, we
would prefer this to be submitted on
cassette or disc in machine readable
form using "Wordwise", "Minitext
Editor" or other means. If you use
cassette, please include a backup copy
at 300 baud.

HINTS

There are prizes of £5 and £10 for the
best hints each month.

Please send all editorial material to
the editorial address below. If you
require a reply it is essential to
quote your membership number and
enclose an SAE.

Payment in Sterling preferred. BEEBUG
Subscriptions & Subscriptions and Editorial Address PO Box 50
Software Address Software Help_Line St Albans
BEEBUG St.Albans Herts
PO BOX 109 (0727) 60263
High Wycombe Manned Mon-Fri
Bucks 9pm-5pm

All rights reserved. No part of this publication may be reproduced without prior written permission of

the Puk
progran
the authc

ever, for errors in articles,
S pages of this journal are those of
Publ isher, BEEBUG Publications Limited.

ications Ltd (c) April 1984.

BEEBUG MAGAZINE is produced by BEEBUG Publications Ltd.

BEditor: Mike Williams.

Assistant Editor: Geoff Bains, Production Editor: Phyllida Vanstone.
Technical Assistants: David Fell and Alan Webster.

Managing Editor: Lee Calcraft.

Thanks are due to Sheridan Williams, Adrian Calcraft, John Yale, and Tim Powys-Lybbe

for assistance with this issue.

BEEBUG

NOVEMBER 1984

Volume-3 Issue 6

S TTTTRRSSS——

NEW BEEBUG BINDERS

We have produced a new
hard-backed binder for
the BEEBUG magazine.
These binders are dark
blue in colour with
“BEEBUG” in gold
lettering on the spine
and allow for the whole
of one volume of the
magazine to be stored
as a single reference
book.

The new binders now have a slightly

larger capacity to accommodate 10 thicker BEEBUG
magazines, and are supplied with 18 wires. This enables
the index and the latest copy of the supplement to be
included within the binder if required. Individual issues
may still be easily added and removed, allowing for the
lastest volume to be filed as it arrives.

The price of the new BEEBUG binder is £3.90 including
VAT. Please add 50p post and packing for delivery
within the UK. Overseas members please send the same
amount, this will cover the extra postage but not VAT.

BEEBUGSOFT, PO BOX 109, High Wycombe, Bucks, HP10 8HQ.

1.2 OPERATING SYSTEM

A special arrangement has been agreed between Acorn and BEEBUG
whereby BEEBUG members may obtain the 1.2 operatmll%lsystem in ROM at
the price of £5.85 including VAT and post and packing. The ROM will be
supplied with fitting instructions to enable members to install it in their
machine. If the computer does not subsequently operate correctly, members
may take their machine to an Acorn dealer for the upgrade to be tested,
which will be done at a charge of £6.00 plus VAT. This charge will be waived
if the ROM is found to have been defective. If the computer has been damaged
during the installation processs, the dealer will make a repair charge.

ADDRESS FOR 1.2 OS: .
ROM Offer, BEEBUG. PO Box 109, High Wycombe, Bucks, HP10 8HQ

THE BEEBUG MAGAZINE
ON DISC AND CASSETTE

The programs featured each month in the BEEBUG magazine are now available to members on disc and
cassette.

Each month we will produce a disc and cassette containing all of the programs included in that month’s
issue of BEEBUG. Both the disc and the cassette will display a full menu allowing the selection of
individual programs and the disc will incorporate a special program allowing it to be read by both 40
and 80 track disc drives. Details of the programs included in this month’s magazine cassette and disc
are given below.

Magazine cassettes are priced at £3.00 and discs at £4.75.
SEE BELOW FOR FULL ORDERING INFORMATION.

This Month’s Programs Include:

Superb action game Wee Shuggy, a useful and comprehensive Cross-Reference Lister for Bagic
programmers, BEEBUG Workshop Text formating routine, Auto-Keyword Generator for Basic, full
extended version of the Domestic Accounts Home Budgeting program, improved utility for printi.né
function key labels, another challenging game Number Hunt, and as an extra a copy of the BEEBU

Pack program for squeezing unnecessary spaces and comments out of Bagic programs.

MAGAZINE DISC/CASSETTE SUBSCRIPTION

Subscription to the magazine cassette and disc is also available to members and offers the added

advantage of regularly receiving the programs at the same time as the magazine, but under separate
cover.

Subcription is offered either for a period of 6 months (5 issues) or 1 year (10 issues) and may be
backdated if required. (The first magazine cassette available is Vol 1 No. 10; the first disc available is
Vol 3 No. 1.)

MAGAZINE CASSETTE SUBSCRIPTION RATES
6 MONTHS (5 issues) UK&£17.00 INC. .. Overseas £20.00 (No VAT payable)
1 YEAR (10 issues) UK £33.00 INC. .. Overseas £39.00 (No VAT payable)

MAGAZINE DISC SUBSCRIPTION RATES
6 MONTHS (5 discs) UK £R5.50 INC. .. Overseas £30.00 (No VAT payable)
1 YEAR (10 discs) UK £50.00 INC. .. Overseas £56.00 (No VAT payable)

CASSETTE TO DISC SUBSCRIPTION TRANSFER
If you are currently subscribing to the BEEBUG magazine cassette and would prefer to receive the
remainder of your subscription on disc, it is possible to transfer the subscription. Because of the
difference between the cassette and disc prices, there will be an extra £1.70 to pay for each remaining
issue of the subscription. Please calculate the amount due and enclose with your order.

ORDERING INFORMATION

Please send your order to the address below and include a sterling cheque. Postage is included in
subscription rates but please add 50p for the first item and 30p for each subsequent item when ordering
individual discs or cassettes in the UK. Overseas orders please send the same amount to include the
extra post but not VAT.
SEND TO:

BEEBUGSOFT, PO BOX 109, HIGH WYCOMBE, BUCKS, HP10 8 HQ

A e G RS

Printed in England by Staples Printers St Albans Limited at The Priory Press ISSN 0263 -7561

