£1.20

CHRISTMAS ISSUE

This 1is the Christmas issue of BEEBUG and for the first time boasts over 5¢
pages. What is more, future issues will also provide just as many pages, with more
reviews and news, and even ‘more programs and articles.

To provide the Christmas flavour this month, we have a musical Christmas Carol
(with three more on the magazine cassette/disc), and a Cartoon Calendar for 1985
featuring a character from a well-known and popular computer game. As well, in
addition to our usual two excellent full-length games, we have one page containing
no less than three complete and challenging one-line games.

MEMORY SIZE

Starting from the next issue, we shall no longer publicise the relevant memory
size (16K or 32K) with the title of each program in the magazine. The number of
remaining 16K machines is now a small and decreasing proportion of the total, and
the information can be inferred in most cases from mode statements in the programs.

We shall continue to test all our programs on both Basic I and Basic II, and we
also check all programs for disc or tape incompatibilities where appropriate.

Mike Williams

TESTING OUT YOUR MICRO

We have had a number of enquiries regarding the disc drive test program published
in BEEBUG Vol.3 No.5. Although this was tested with a variety of disc drives in use
here at BEEBUG, it is clear that the program can produce a misleading result with
some drives (or with some settings). if your drives otherwise appear to be working
quite correctly, then you should ignore any indication to the contrary produced by
the test program (though it may be worth checking the settings of the DIL switch
under the cover at the front of the keyboard for correct timimg). In particular, if
you have an older (and slower) Shugart drive, for example model SA40(QL, you should
try changing the '-21' at line 127¢ to '-16' to match the timimg.

WEE SHUGGY

Unfortunately, the superb game Wee Shuggy in the last issue (Vol.3 No.7) was
marred by the omission of spaces in lines 290,300 and 1900. These should be inserted
between keywords and variable names in these three lines when typing in the program.
This arose because the version used had been previously compacted'by the author. The
compaction causes no problem on the magazine cassette/disc version.

HINT WINNERS

We have decided to award an additional prize of £15 for any really outstanding
hint that we publish, in addition to our normal prizes of £1¢ and £5. This month the
£10 prize goes to Paul Walls, and we are awarding two prizes of £5, to Ashley
Denninson and Tony Walsh., If you have any useful hints or tips, then why not
write and let us know. Maybe you will be the first to win our new £15 prize.

MAGAZINE CASSETTE/DISC

This month the magazine cassette/disc contains a mammoth 60K of programs. This
includes the full updated printer spooler utility, a total of four visual and
musical Christmas carols, and an extra pbrogram: a superb professional machine code
'Pengo’~style game with a Christmas theme called Christmas Antics, by John Wallace.

BEEBUG DECEMBER 1984 Volume-3 Issue 7

BEEBUG MAGAZINE

GENERAL CONTENTS

2 Editorial
4 A Christmas Carol
6 Book Reviews
8 Points Arising
9 A Page of Games to Play
10 Extending the PLOT Instruction
14 News
15 Games Galore Reviewed
18 Printer Spooler Updated
20 Cartoon Calendar for 1985
23 External ROM Sockets Reviewed
26 Improved Trace Facility
28 Adventure Games
29 Floppy Tape Drives Reviewed
32 BEEBUG Workshop
Using Indirection Operators (Part 1)
34 Sounding out the Beeb “
Two Books Reviewed
36 Build your own Graphics Tablet (Part 2)
39 Beginners Start Here
Debugging Programs (Part 2)
42 George and the Dragon
46 Christmas Fruit Machine

PROGRAMS HINTS, TIPS & INFO

4 Christmas Carol 5 Acorn Tube Screens

9 Three Games 5 New Way to Crash a Beeb
10 Extended PLOT Demonstration 5 Reserving Basic Il Memory
18 ° Printer Spooler Updated 19 ULA or Semi-custom Chip
20 Cartoon Calendar 19 Inverse Video
26 Improved Trace Routine 31 Reading Text from Disc or Econet
32 Two Workshop Examples 31 Saving Envelopes
36 Basic Graphics Tablet Program 31 Sideways ROM Index Again
42 George and the Dragon Game 35 Hard Spaces in View
46 Fruit Machine Game 35 Noise for Fireworks

38 Better Loading with Tensai Tape
Recorders

41 Macros in Assembler

45 Colourful GCOL Commands
45 Reading Sideways ROMs
45 Strange Variables

BEEBUG DECEMBER 1984 Volume-3 Issue 7

A CHRISTMAS CAROL ¢
by D.G. Chappell

With Christmas approaching we have
decided to include a program with a
seasonal flavour that provides a good
demonstration of the sound and graphics
capabilities of your BBC micro. The
program builds up an attractive
Christmas card display on the screen
while playing a rendering of "While
Shepherds Watched Their Flocks By
Night". We are sure that you will find
the results of +typing in this
relatively short program well worth
while. Be careful when copying the
program, particularly with the data
statements at the end, if you don't
want the music to be out of tune.

The program is well structured and
you should have no difficulty in
identifying the various parts from the
procedure names. The music is held as
a series of numbers in data statements
which are used as the parameters for
sound frequency, volume and duration in
the procedure PROCMUSIC. Once started
the music will continue indefinitely

until you press Escape or Break.

10 REM PROGRAM XMAS CAROL
2@ REM VERSION B@.2

30 REM AUTHOR D.CHAPPELL
40 REM BEEBUG DECEMBER 1984
50 REM PROGRAM SUBJECT TO COPYRIGHT
60 :
190 ON ERROR GOTO 350

119 MODE 1
120 vDU23,1,0;0;0;0;

130 DIMQ%(35) ,R%(35),5%(35),S(7),C(7)

140 A%=0:1%=20:C(1)=1:C(2)=2:C(3)=3

150 REPEAT

160 X%=RND(1279) : Y3=RND (1023) : Z%=RND
- 60)+30

T85,0,-0.37*%2%: PLOT85,0.59*%2%

170 1%=

I%-1:1IF I%=0THEN I%=RND(25)+5:
REPEAT :C%=RND (7) :K%=RND (3) : UNTIL (C3<>C(
1) ANDC%<>C (2) ANDC<>C(3)) sVDU19,K%,C%, 0
19,9:C(K%)=C%

180 PROCSTAR(Q% (A%) ,R%(A%),S%(A%)+12,

2)

190 Q% (A%)=X%:R%(A%)=Y%:5% (A%)=2%

200 A%=A%+1:IF A%>35 THEN A%=0

219 UNTIL ADVAL(-6)=15

220 FOR A%=0@TO035:PROCSTAR (Q% (A%) ,R% (A
%) 1S%(A%)+12,0) :NEXT

230 RESTORE

240 VDU26, 20

25¢ vDU19,1,4,0,0,0:VDU19,2,2,0,0,0

260 GCOL®,129:CLG:GCOLJ, 2

27¢ MOVE(@, 650 : DRAW30d, 680 : DRAWS50 , 680
:DRAW858, 740 : DRAWIQ®, 740 : DRAW1279,690

280 FOR Y%=QTO740STEP4

299 PLOT77,900@,Y%:NEXT

300 PROCSTAR(300,950,58,3)

310 FOR Y%=580TO140STEP-40

320 PROCSHEEP (15@+RND (95@) , Y$+RND (50)
»2%RND (2) -3) : NEXT

330 C%=1:REPEAT: PROCRAY: PROCMUS IC: UNT
ILADVAL (-6) =15

340

350 ON ERROR OFF:MODE 7

360 IF ERR=17 END

37@ REPORT:PRINT" at line " ERL

380 END

399 :

* ‘1000 DEF PROCSTAR (X%,Y%,%%,C%)
.(1010 VDU29,X%;Y%; :GCOLY,CS

102¢ MOVE-0.59%2%, -0 . 8% 7% :MOVE®, 2% : PLO
1 ~0.8%2% —>

BEEBUG

DECEMBER 1984

Volume-3 Issue 7

193¢ MOVE®.95*7%,0.3*2%:MOVE-@. 95%Z%,
9.3*Z%:PLOT85,0,-0.37*2%

1040 ENDPROC

1050 :

1060 DEF PROCMUSIC

1907@ IF ADVAL(-6)<3 THEN ENDPROC

1089 READ P%,Q%,R%,D%

1@90 IF D%>50THEN PRINTTAB(@ 20) P%,Q%,

D%:STOP

]1@@ IF D%>1THEN1120QELSE SOUND1,0,d, (1
+30*D%)

111¢ IF D$=1THEN RESTORE:ENDPROC

1120 SOUND&291,-15,P%,D%:SOUND&202,~13
+Q%,D% SOUND&2@3 -12,R%,D%

1139 ENDPROC

1135 ¢

1140 DEF PROCSHEEP(X%,Y%,H%)

1150 VDU29,X%;Y%; :E$=40+RND (20) + (13E3)
DIVY%:F%=E%/2+RND(10) :L3=11

1160 X@%=E%:Y0%=-F%/4:MOVEX@%,Y0%

1178 FOR A=QTO06.3STEP@.15:PROCMUSIC

1180 X%=E%*COSA+E%/L%*COS (A*L%) : Y$=F%*
SINA+FS/L%*SIN (A*¥L%)

1190 GCOL®@, 3:MOVE®, @: PLOT85,X%,Y%

120¢ MOVEX@%,Y0%:GCOLY, @: DRAWXS, Y%

1210 X0%=X%:Y0%=Y%:NEXT

1220 PROCMUSIC:FORZ%=gTO16STEP4

1230 IF Z%=@O0R Z%=16THEN GCOLJ,@ELSE G
coLg, 3

124¢ MOVEQ.65*E$+2%,-0 . 7*F%:DRAWY . 8*ES
+2%,-1.4*F%

1250 MOVE-@.65*E%—
E%-2%,-1.4*F%:

1260 MOVEH%* (-E%+4-%%) ,0:DRAWHS* (-E3-2Z
%) ,~F%/3

%, -0 . 7*F%:DRAW-0 . 8%

127@ NEXT:PROCMUSIC
1280 GCOL@, 3:E%=E%~6:F%=F%/2.3
129¢ MOVEH%* (E%-6) ,F%:MOVEH%* (E3+F%) ,8

S +F%:PLOTS5,H%* (E3-6) ,0

1300 PLOTS85,HS* (E3+2*F%) ,0: PLOT85, H3* (
E%+F%) ,—-F%:PLOT85,H%* (E%+2*F%) ,-6-F%
1319 GCOL@, @:MOVEHR*ES, F%: DRAWHS* (E%+
$) ,84F%: DRAWHZ * (E3+2*F%) 'R DRAWHQ*(E9+2
F3%) ,—6-F%: DRAWHS (E3+F%) ,~F%

1320 PLOT69,H%* (E3+F%*1.2) ,0

133¢ PROCMUSIC:ENDPROC

1340 :

1350 DEF PROCRAY

1360 C%=(C%+2)MOD4:GCOL@,C%:VDU29, 30¥;
200;

137@0 MOVE®,d:DRAWG,-180 :MOVE2@, 10 : DRAW
60,-100:MOVE-20,10:DRAW-69,-100

138@ ENDPROC

1385 :

139¢ REM ** WHILE SHEPHERDS WATCHED **
149¢ DATA121,101,89,12,137,121,101,18,
137,121,101,6,129,117,101,12,121,149,89
,12,141,109,93,12,141,121,109,12,137,12
1,101,12,129,117,101,12,137,121,101,12,
149,117,101,12,149,129,109,12,145,129,1
99,12,149,117,101,36

1419 DATA137,121,101,12,157,121,93,18,
149,121,89,6,141,121,93,12,137,121,101,
12,129,117,101,12,121,199,89,12,117,105
,89,12,137,101,89,12,129,117,101,12,121
,1909,89,12,121,109,93,12,117,101,81,12,
121,101,89,36,0,9,0,1

— s

HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS

ACORN TUBE SCREENS - Archie Ewing

If you had a program that used *LOAD or *SAVE to load and save screen memory
before you purchased your Tube, then you can still load and save screen memory, but
you need to extend the addresses contained. This means using, say FFFF300¢ for modes
¥, 1 and 2 instead of 390¢ (the FFFF says that the operation is to deal with IO

Processor memory) .
:@.$.PICNAME FFFF3000.

780 users need to extend the command further; viz, **LOAD
Note that the two

% are necessary, as 1is the drive

specification. The directory is not an essential requisite. =

NEW WAY TO CRASH A BEEB? - M.P. Briggs

On disc systems try DIM A%(1,1,1,1,1,1,1,1,1,1,1,1), that's 12 of them, or

=

for tape systems use 14.

RESERVING BASIC II MEMORY

If you are using Basic II and wish to reserve up to 255 bytes of memory when
programming in assembler, then you can use the EQUS pseudo command, like this:

Jmemory EQUS STRINGS (amount,CHRSQ)

This also ensures that the memory is cleared to a specific value. =

BEEBUG

DECEMBER 1984

Volume-3 Issue 7

0

With Christmas looming, the ever present problem is here again.
look at a range of suitable stocking fillers in the book world.
Presents for relatives, loved ones, or even yourself. .

Sounds like a wonderful idea for a
book, doesn't 1it? One book filled the
answers to all those 1little problems

that you always come across when
writing programs. Unfortunately it's
not quite like that.

There are about seventy procedures
and functions in this book. Some of
them are truly useful - they give you
ideas on how to solve trivial problems
that are holding up an entire program.
None of them are really worth typing in
as they stand. There is just too much
padding. Most would be more suited as
one liners to incorporate in programs,
rather than going to all the trouble of
a procedure or function.

Some of the programming techniques
are downright sloppy -~ time delays
using FOR...NEXT loops. Tut tut.

There are other problems with this
book too. The actual program listings
are not wonderful. They're rather feint
and tatty looking; a great contrast
from the clear text and good quality
paper. More important is the lack of a
useful index. You're not going to read
through this book. It is a reference
work and the need for an index is
clear. However, all that is provided is

an alphabetic list of the
procedure/function names along with
their applications. Surely an

alphabetic list of the applications
with the choice of program against each
would have been more useful.

It's a nice idea, but I'm not really
impressed with the result.

PrANDBOGK OF

This is yet another new book from
Granada, this time concentrating on
programs for more serious applications.

The book contains listings of 14
complete programs with comprehensive
notes on their use and application but
little about the programs themselves.
Clearly the book is aimed at those
trying to find useful tasks for their
micro rather than those who want to
learn programming techniques. This is
an excellent aim, although I do not
feel entirely convinced by some of the
results.

The chapters, and programs, dealing
with cashflow, stock control, accounts
and information retrieval are sensible
if limited approaches to applications
that many may find useful. Many of the
other applications such as tipster, pie
charts, quiz, pHone call coster (!) etc
seem to be of much more dubious value.
The problem with many of the
applications dealt with here is not
that the application itself is silly,
but that it can only be looked at in a
Quite trivial way by short programs
listed in a book. That is why people
are preparad to spend tens if not
hurdreds of pounds on software for such
applications.

BEEBUG

DECEMBER 1984

Volume-3 Issue 7

7

If you are particularly interested
in one or more of the applications
covered by this book, then you will
find the relevant sections interesting
and useful, particularly if you have
the programming skills to develop the
printed programs into something really
worthwhile, If you are looking for a
ready made solution to a problem then
you would be better off putting the
money towards a good quality software
package.

These two books each contain about
thirty programs, mostly of about 100
lines. As such they are pretty good
value. Although the title says that all
the programs are games this is not so.
Some are amusing graphics displays,
something similar to the type that
you'll find occasionally in Beebug, and
others demonstrations of features of
the Beeb.

There is even a chapter, in both
books, about how to write your own
programs and another giving a limited
glossary of computer terms. These are
only so much padding, especially as
they appear identically in each book.
The "subject of writing programs is gone
into in more detail and better in other
books. iet's keep to the title.

All the games are simple. This is an
advantage. A book with thirty odd 580

line games may be very clever but is
also rather daunting. These programs
are short and sharp. The games are
either thought games, such as Nim and a
reaction tester, or very simple action
games ('arcade' is too much an
exaggeration)., The action games are
typically: simple invaders, frogger,
and the like.

None of these is going to make the
local arcade fearful for its profits,
but they do cram a reasonable amount of
entertainment into a very few program
lines. These books would make great
Christmas presents for the very new
owner of a BBC micro. It's only a
shame, really, that the titles could
not have been more accurate.

Although first published some months
ago, the prospect of 21 games for your
BBC micro at an equivalent price of 30p
each (approximately) is obviously still
attractive, particularly at this time
of year. So let's see how good these
games are. The introduction to the book
also claims that the programs are
intended to improve the reader's
knowledge and use of Basic, so the
design and structure of the programs
must also be considered.

~The book itself is generally well
produced, the printing including that
of the program listings is clear and
readable, and the screen shots of the
various games have reproduced well (in
black and white) though it is sometimes
difficult to make much of the display
without reading the text as well.

If you expect dynamic, action
packed arcade games, sophisticated
thought and logic puzzles or engrossing
adventure games you will be
disappointed. You would probably get
better value for money by buying a
single commercial game program on
cassette. Despite this the games are
varied, if somewhat dated now (noughts
and crosses, space invaders, horse

BEEBUG

DECEMBER 1984

Volume-3 Issue 7

8

racing) and still offer plenty of good,
cheap fun for those who are still
comparatively new to computing. Most of
the programs are of a reasonable
length, so not too much effort is
needed before you can start playing.

As examples of good programming
technique though, these programs
certainly leave a lot to be desired,
and indeed one might well suspect that
many of these games have been converted
rather badly from versions written in
much more primitive dialects of Basic
than that on the BBC micro. Frequent
use is made of GOSUB, and not a little
of GOTO as well, leading to programs
that are difficult to follow,
resembling the proverbial plate of
spaghetti in the convoluted twists and
jumps involved.

I would not recommend this book as
any way to learn good programming and I
am only moderately enthusiastic about
the games, which now seem rather
outdated.

I was more impressed by this book
than I had expected to be. This is one
of the most recent books from the
Granada stable for the BBC micro and it
shows. The production and presentation

is excellent and the program listings
are amongst the best I have seen for
clarity of printing. Equally, the
authors have exploited all the best
features of BBC Basic to present well
designed and structured programs of
excellent quality.

The purpose of this book is to show
those who have already learnt the
rudiments of Basic programming how to
write good games programs. employing
animated graphics. Many useful
techniques are developed in the course
of presenting a total of six complete
computer games and the authors have not
been frightened to introduce sections
of machine code where this is
appropriate. Anyone who is keen to
develop their own computer games
should read this book, but it will have
less to offer those who are just
looking for a book of listings. =

POINTS ARISING

COMPACT FUNCTION KEY DEFINITIONS

The compact definition for the keyword 'AND' should be entered as |!]@ and not

simply as described in the original article in BEEBUG Vol.2 No.9. We were also wrong
in the update published in BEEBUG Vol.3 No.5 when we said that the additional
keywords described required two bytes of memory. Despite the extra characters typed,
all the keywords occupy only one byte each in the function key buffer. Our thanks to
Mr J.P.Jakubovics for pointing these facts out. .;-i-]

MULTI-SCREEN SLIDE SHOW (BEEBUG Vol.3 No.3)

If you want to use this program to display screens produced using the BEEBUGSOFT
Teletext Editor you will need to change the load address for each saved display to
&7C@@. This can be achieved using *LOAD and *SAVE (loading the screen display to
memory and then re-saving), or by using the Disc Snarfer program from BEEBUG Vol.2
No.6. Thanks to the Revd. Melvyn Matthews for providing this useful information. =

BEEBUG DECEMBER 1984 Volume-3 Issue 7

A\
18
3¢
) A PAGE OF GAMES TO PLAY
) -~ o
08 Hio% by N. Silver
To keep you amused over the Christmas break, this page contains
three complete and challenging games. These games will certainly
provide plenty of fun and frustration. Furthermore, each program is
written as a single line of Basic, and shows how much can be
achieved in such a short space.

The three programs listed here are The second game is very similar to
examples of what can be achieved by the game 'Truffle Hunt' that we
using only one line of Rasic. Here the published in BEEBUG .Vol.. 3 No.2. The
programs are extensively abbreviated so object of the game is, with the 'Z' and
that the line will fit into Basic's X' keys, to guide your ‘'snout' up the

keyboard buffer. Because of this,

you cannot edit a LISTed ve;sior_l, ///////////////////// //////////////////é
i oo o vt tox covors, i+ 1 T
to tape/disc initially. This can be 15=0:X=640:Y=9:MO.5:F.I=1T050:V.5,18;1,
achieved as follows: 25,4, RND(1270) ;RND (1023) ;42,18;2,9,9,12 1
4,18;3:N.:REP.PL.69,X,Y:DR.X+8,Y:X=X+8* Z /
(INKEY-98-INKEY-67) :X= (X+1280)MOD1280:Y
=Y+4:Y=Y MOD1§24:P=P0.X,Y) :S=S~(P=2) :U. |

*SPOOL, PROGRAM
type in program

*SPOOL (1ANDP) =1 :V.7,4:P.S:REP.U.INKEY-—99:RUN

Run the program. If there are any screen, and to devour as many Of the
errors, *EXEC PROGRAM (rewinding your yellow truffles as you can. As you move,
tape if necessary) and correct them on avoid the red poisonous mushrooms
this version. Once the program is however, as these prove fatal within

W) e

//////////////////// //////////////////// ? screen if it leaves the top, and it

comes back on at the other side if
1L=0:REP.L=L+3:M0.4:DR.1279,0:DR.1279,4 A you wander too far.
52:MOVE1279,572:DR.1279,1023:DR. 0, 1023: !
F.I=1TOL:V.31,RND(32)+5,RND(31) ,42,30:N {7
.:b. (L-3) /3:X=0:Y=512:REP. PL.69,X,Y: X=X
+4:Y=Y~ (INKEY-74+.5) ¥8:U.P0O.X,¥) =10RX=1 |
280:U,X<128@:V.7:REP. U, INKEY-99 :RUN

/ The final game is a treasure hunt.
7 Using the standard keys (‘z', 'x’
for left and right, '/' and ‘':' for
up and down), guide a small pirate

7 (the '*') around the screen. Two
working, it can be SAVEd in the normal numbers are displayed at the top of the

manner. With each of the three games, screen. The first indicates the number
you should press the space bar to . of moves your

restart at the end of a game.

1@3=778:X=20: Y=11:5=0: D=0 : A=RND (4¢) ~1:B /]
=RND (11) :MO. 7:REP,C=INKEY9 : X=X+ (C=90) - (
C=88) :X= (X+40) MOD4@: Y=Y+ (C=58) - (C=47) : ¥
= (Y+22) MOD23+1:S=S+SCNINS."ZX/:" ,CHRSC) |7
:D=SOR (ABS (A-X) "2+ABS (B-Y) "2) :V.7807; :P |
.S,D:V.31,X,Y,42:U.D=0:V. 7:REP, U.GET=32

L2 RUN /

The first game (called ‘Asterisk
Tracker') is a very simple game in
which you have to guide a ‘'snake'
across the screen, whilst avoiding
the stars. As the game progresses,
more and Tmore stars will be
displayed, and the ease of the game
rapidly disappears. The Return key
guides the 'snake' upwards, but it

moves down if Return is not pressed. pirate has made, and the second the
Aim your ‘snake' for the gap in the far distance that you are away from the
wall, and don't touch any objects as object. You should use this number to
this causes instant death from space home in on the treasure, and upon
acid poisoning! success a short bleep will sound. =]

s

BEEBUG DECEMBER 1984 Volume-3 Issue 7

10

.)
et Tg;f“;.‘z& EXTENDING THE PLOT INSTRUCTION

an 32“

by Alan Dickinson

The description

of the PLOT

instruction in the User Guide

intriguingly describes PLOT codes 32-63 and 88-255 as reserved for
future expansions. Alan Dickinson shows how to do this yoursel f
using simple machine code routines to build new PLOT instructions
which provide additional graphics functions of your own choice.

Circles? Software sprites? Who knows
what Acorn are plotting, (in fact PLOT
codes 56-63 have now been used in 0.S.
1.2.), but we do have some clues as to
how these extensions might be
implemented. Using these spare codes
enables us to implement additional PLOT
instructions which can then be used in
any Basic program. Each new function
has to be written as . a machine code
routine, but this is not difficult as
the example shows.

There is a little known vector at
RAM address &226, and the system
performs an indirect jump via this
vector whenever an unrecognised VDU
command is used; that is when an
unrecognised PLOT number is used, or a
PLOT command is used in a non-graphics
mode, or a VDU23 command is used to
reprogram characters in the range 2-31.
Remember that PLOT is exactly
equivalent to VDU 25 (see page 378 in
the User Guide). The ‘'Carry' flag is
clear for PLOT commands, and set for
VDU23 commands, so that we «can
distinguish between the two. For VDU23
commands, the accumulator contains the
character number and locations
&31C~&323 contain the eight
re-definition bytes.

Following an unrecognised PLOT
number, the system converts the X and Y
coordinates into internal coordinates,
taking into account = the graphics
origin, and whether the PLOT command
‘was using absolute or relative screen
coordinates. These internal coordinates
are stored in locations &320-&323. The
experienced machine-code programmer
could make use of this data to produce
some very specialised screen output. In
the example program, PLOTextend ¢ I have
kept things simple, and used OSWORD to
convert them back to screen coordinates
so it should be obvious what the PLOT
commands are doing. As a result this
routine is not as fast as it could be.

PLOTextend allows the PLOT numbers
248-255 to PLOT rectangles between the

last point visited and the point
specified in the PLOT command .
Depending on the PLOT number, the
rectangle may be a solid outline, a
dotted outline, or a filled shape. Like
all the resident PLOT commands, it is
limited to the graphics window, and
obeys the actions specified by GCOL
commands. For such a simple graphic it
is scarcely worth writing an intercept
routine. However, if you were writing a
fast and complex routine, perhaps with
direct screen addressing, then the PLOT
command provides a very neat and
powerful interface.

For more information on vectors not
documented in the User Guide, see the
excellent Advanced User Guide, by Bray,
Dickens, and Holmes. Section 16.8 on
page 261 describes the VDU (and PLOT)
extension vector, known as VDUV, while
section 11.4 from page 274 onwards
describes the memory locations used to
store the various graphics coordinates
used in implementing PLOT and other VDU
instructions.

The program PLOTextend shows how a
new set of PLOT instructions can be

BEEBUG

DECEMBER 1984

Volume-3 Issue 7

1

implemented and this serves as a model
for any similar extensions that you
might program yourself. The program is
described in the following notes though
you might like to just type the program
in (you can omit all the comments) and
run it for the sake of its fascinating

visual display.

PROGRAM NOTES

The program PLOTextend contains
extensive comments and if you work
through the program you should have no
problem in understanding what each
section does. These notes supplement
the comments and provide some
additional information.

The program consists of the machine

code routine that implements the new.

PLOT instructions (contained in the
procedure PROCassemble) and a Basic
routine (contained in the procedure
PROCdemo) to illustrate the use of the
newly defined PLOT instructions.

The start of the program reserves
the memory used by the machine code and
initialises some important variables.
The memory — areas are allocated

dynamically by the DIM statements in
lines 370-400 . They are as follows:

The location of these memory areas
is not at all critical. The size of the
memory area used for the machine code
need only be sufficient for the routine
being implemented.

The following few lines in the
program assign the correct addresses
for the two 0.S. routines OSWORD and
OSWRCH, and the default address for the
VDUV vector (&FFA6). This. is the
address normally stored as the VDUV
vector, and the new routines are
programmed so that on exit, a jump is
made to this default address. These
assignments = are not essential ‘but the
use of names rather than hexadecimal

number s leads

to a more readable
program. I :

The main program is quite short,

" from ‘lines 480 to 54¢. This assembles

the machine code, assigns the start
address of the machine code to the
vector address &226 (in place of the
default &FFA6), and then calls the
demonstration procedure.

The machine code is well documented
and almost self-explanatory. The PLOT
number is in the accumulator and it is

‘this which is temporarily stored at

address 'a' for later use. A number of
checks take place at the start of the
machine code before the graphics
routine proper is entered. Note how the
subroutines ‘plot4', ‘plot5', ‘plot2l’
and 'plot85' implement the equivalent
Basic PLOT instruction, while the
subroutines 'x1', 'y1', 'x2' and ty2!
output the appropriate X and Y
coordinates as required. At any time an
exit is made from the routine it is
done by the instruction JMP vduv.

The demonstration program in Basic
is visually quite interesting as well
as illustrating the use of the new PLOT
instructions. It first displays the
different types of rectangles to be
drawn, then builds up a display of
random rectangles, and finally produces
a sequence of rapidly changing patterns
based again on rectangles. All in all,
this is a most impressive display of
the new PLOT instructions implemented
by this program.

Having seen how a new set of PLOT
instructions may be implemented you
should now be able to develop other
PLOT functions of your own choice.

1¢ REM PROGRAM PLOTE

20 REM VERSION B@.3

30 REM AUTHOR Alan Dickinson

40 REM BEEBUG DECEMBER 1984

5¢ REM PROGRAM SUBJECT TO COPYRIGHT

1¢¢ ON ERROR GOTO 2950
119 REM GRAPHICS EXTENSION
120 REM
13¢ REM This routine shows how to
140 REM extend the PLOT commands
150 REM available by inserting a
16¢ REM machine code routine via——p

BEEBUG

DECEMBER 1984

Volume-3 Issue 7

12

1850 \ reason for entry.
1068 \ Flag SET = VDU23,n
1976 \ Flag CLR = PLOTn
1080 :
1099 BCC labl
1100 JMP vduv
1119 .labl
1120 :
1132 \ Accum contains the
1140 \ PLOT number of the
115¢ \ unrecognised PLOT
1160 \ command.
1176 :
1180 STA a
1199 AND #&F8
170 REM the vector VDUV. 1200 MP #&F8
180 REM 1219 BEQ lab2
190 REM Vector VDUV is invoked for 1220 JMP vduv
200 REM VDU23,n commands when n is 1230 :
210 REM in the range 2-31, or for 1240 .lab2
220 REM PLOTn commands where n is an 1250 :
230 REM unimplemented function. 1268 \ The routine does not
240 REM 1276 \ do anything in the
250 REM These routines all draw 1286 \ non-graphic modes.
260 REM rectangles between the 1290 :
270 REM last point plotted and 1309 LDA &361
280 REM the coordinate specifed 1319 QMP #0
290 REM in the PLOT command, but 1320 BNE lab3
309 REM more elaborate code could 1330 JMP vduv
310 REM easily be inserted. 1340 :
320 REM 1350 .lab3
330 REM PLOT248-251 relative 1360 : .
340 REM PLOT252-255 absolute 1370\ &320-3 contain the
350 REM 1380 \ PLOT coordinates in
360 : 1390 \ pixels. These are
370 DIM mc 512 1460 \ copied to &314-7, the
380 DIM vduv 2 1419 \ last-point store.
399 DIM pblock 16 1420
400 DIM a 1 1430 LDA &320:STA &314
410 1440 LDA &321:STA &315
420 osword=&FFF1 1450 LDA &322:STA &316
430 oswrch=&FFEE 1460 LDA &323:STA &317
449 1479 :
450 vaduv?0=&A6
460 vduv?1=&FF
479 =
480 FOR opt%=@ TO 3 STEP 3
490 PROCassemble
500 NEXT
510 ?&226=mc MOD 256
520 ?&227=mc DIV 256
53@ MODE1 : PROCdemo
540 END
550
1009 DEFPROCassemble
1910 P%=mc
1020 [OPT opt%
1030 :
1940 \ Carry flag gives
BEEBUG DECEMBER 1984 Volume-3 Issue 7

13

14890
1499
1500
1519
1520
1539
1540
1550
1560
1570
1589
1590
1600
1619
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1749
1759
1760
1779
1780
1790
1800
1819
1820
1830
18406
185¢@
1860
1879
1889
1890
1900
1919
1920
1939

\ OSWORD &D returns the
\ current point and last
\ point in screen units
\ which is convenient for
\ use in OSWRCH commands.

LDX#pblock MOD 256
LDV#pblock DIV 256
LDA#&D '
JSR osword

\ The type of draw to
\ be used is obtained
\ from the bottom 2

\ bits of the PLOT num.

\

\ @ - line :
\ 1 - dotted line
\ 2 - solid box
\ 3 - line

LDA a

AND #&03

CMP #@:BEQ line

CMP #1:BEQ dotted
CMP #23BEQ solid
JMP line

.line

JSR plot4:JSR x1:JSR yl
JSR plot5:JSR x1:JSR y2
JSR plot5:JSR x2:JSR y2
JSR plot5:JSR x2:JSR yl
JSR plot5:JSR x1:JSR yl
RTS

.dotted

JSR plot4:JSR x1:JSR yl

JSR plot21:JSR x1:JSR y2
JSR plot21:JSR x2:JSR y2
JSR plot21:JSR x2:JSR yl
JSR plot21:JSR x1:JSR yl
RTS

.solid

JSR plot4:JSR x2:JSR y2

2080
2090
2109
211¢
2120
213¢
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2279
2280
2290
2309
2310
2329
2330

2340

2350
2360
2370
2380
2390
2409
2419
2420
2439
2449
2450
2469
2479
2480
2499
2500
2510
2520
2530

LDA#5 :JSR oswrch
RTS

.plot21

LDA#25:JSR oswrch
LDA#21:JSR oswrch
RTS

.plot85

LDA#25:JSR oswrch
LDA#85:JSR oswrch
RTS

°
H

.x1

LDA pblock+@:JSR oswrch
LDA pblock+1:JSR- oswrch
RTS

.yl

LDA pblock+2:JSR oswrch
LDA pblock+3:JSR oswrch
RTS

X2

LDA pblock+4:JSR oswrch
LDA pblock+5:JSR oswrch
RTS

Y2

LDA pblock+6:JSR oswrch
LDA pblock+7:JSR oswrch
RTS

— oo

ENDPROC

°
H

DEFPROCdemo :VDU23,1;0;0;0;0;
MOVE32,32
FOR j%=248 TO 251
PLOT 3%,200,200
NEXT
TIME=0:REPEAT UNTIL TIME>500

FOR %=1 TO 500

1940 JSR plot4:JSR x2:JSR yl 2549 GCOL@,RND (3)

1950 JSR plot85:JSR x1:JSR yl 255@ X%=RND (1279)

1960 JSR plot4:JSR x1:JSR y2 2560 Y%=RND (1023)

197¢ JSR plot85:JSR x2:JSR y2 2579 $=RND(32) *8

198¢ JSR plot5:JSR x1:JSR yl 2580 P%=RND(4)+247

1990 RTS 2599 MOVE X%,Y%:PLOT P%,-S%,-S%

2000 : 2600 NEXT

2019 .plot4d 2619

2020 LDA#25:JSR oswrch 2620 CLS

203¢ LDA#4 :JSR oswrch 2630 FOR Y%=@ TO 1@23 STEP 128

2040 RTS 2640 FOR X%=0 TO 1279 STEP 128

2059 : 2650 GCOL@,RND (3)

2060 .ploth 2660 S%=RND (12) +4

2076 LDA#25:JSR oswrch 2679 FOR k%=@ TO 128 STEP S%

—

BEEBUG DECEMBER 1984 Volume-3 Issue 7

14

2680 MOVEX%,Y%: PLOT247+RND (2) ,k%,k%

2690 NEXT
2706 NEXT
2710 NEXT

272¢ GCOL@, 3:MOVE@, @: PLOT255,1279,1023

2730

2740 TIME=0:REPEAT UNTIL TIME=50¢
2750

2760 REPEAT

2776 CLS

2780 GCOL3, RND (3)

2790 X%=640:x%=X%

2800 Y3=512:y%=Y3%

2810 Ax%=RND (24) +8

2820 dy%=RND(24)+8

2840 FOR j%=1 TO 400
2850 F=X%+dx%: YS=Y3+dy?
2860 x%=x%-dx%1y%2=y%-dy%
2870 MOVEx%,y%:PLOT P%,X%,Y%
2880 IF X%>1279 OR X%<0@ dxo——dx%
2890 IF Y%>1023 OR Y%<@ dy%=-dy%
2900 NEXT
2919 CLS
292¢ UNTIL FALSE
293@ ENDPROC
2949 :
2950 ON ERROR OFF
2960 MODE 7:IF ERR=17 END
297¢0 REPORT:PRINT" at line ";ERL
2989 END
=

NEWS

NEWS NEWS

Too late to appear in the review in

YET ANOTHER ROM BOARD

this issue, Micro-Z has released an
external ROM Dboard for the Beeb.
Micro-Z claims that this is the first
software addressable external ROM
board, meaning that the ROM in
operation is selected with the normal
*FX command and not using a mechanical
switch as other external boards do.
Connections to the Beeb are made via a
small internal board that is plugged
into the processor socket in the Beeb
which also takes the displaced 6502.
The external ROM board also features an
expansion socket for further Micro-z
products. These are to include further
ROM expansion (available now), RAM
expansion and an Eprom
eraser/programmer (available early
1985). The ROM board costs £59.95 incl
VAT. Micro-Z is on ©392-73662.

PUTTING THE P INTO SECOND PROCESSOR

The popular operating system, UCSDp
is now available on the BBC micro
equipped with dual disk drives and a
6502 second processor. Developed by
TDI, of Bristol, -and Acornsoft the
P-system includes compilers and
utilities for both UCSDp Pascal and
Fortran. The complete package will cost
you £299. Acornsoft is on 9223-316039,

OF MICE AND MICROS

Advanced Memory Systems, one of the
first producers of 3.5 in discs for the
Beeb has followed another trend with
the launch of a mouse and graphics

package for the BBC micro. The AmX
mouse is a hand held pointing device
that is moved around the desk top next
to your micro to move a cursor around
the screen. The mouse also includes
three buttons to select actions. The
ArtworX graphics package makes use of
the mouse to produce pictures on your
BBC micro's screen with the minimum of
effort. ArtworX has such features as
pull down menus, shading, and so on. It
bares more than a passing resemblance
to the highly acclaimed graphics
package for the Apple Macintosh, a
machine costing a little under £2000.
AmX and ArtworX are more modest at just
£98 incl. VAT for the pair. Further
details from AMS on @925-602690.

QUICK ON THE DRAW

A low cost CAD system is the claim
of Ibbotsons Design Software for their
DDX package. Costing only £99.95, DDX
uses the Beeb in conjunction with disc
drives and a Grafpad graphics tablet to
produce plans and as a design tool. As
well as offering the generation and
storage of digitised pictures, DDX
features the easy generation of circle,
ellipses, and cross hatching. Further
details from Ibbotsons on §77-389 658.

ELITIST CLAIMS

Just two weeks after its launch,
Acornsoft's Elite game (reviewed in
BEEBUG Vol.3 No.6) has sold over 13,000
copies, Acorn claims. By the time that
you read this, Acorn expect to have
around 190,000 would-be Elitists glued
to their screens. =]

BEEBUG

DECEMBER 1984

Volume-3 Issue 7

highs 02000

srore: DRESD

when Mount Crona (think about it)
erupts, there are four people stuck on
the hillside just dying to be rescued.
Fortunately you happen to have a
helicopter handy for that purpose.

The idea is to pick up each of the
men in turn, before the lava £flows
reach him, and take him to the safety
of your (apparently fireproof)
helicopter base on -the other side of
the mountain. This would be easy were
it not for a few difficulties that
nature and Acornsoft put in your way.

Firstly the men can only hang on to
the helicopter for a short time. You
have to return to base as quickly as
possible. This isn't easy as there are
boulders exploding out of the volcano.
These are not conducive to goed flying.
It is just as well that your helicopter
is equipped with a boulder-blasting
gun. More tricky are the ghosts. If one
of the four men to be rescued dies
(from falling or lava) then he turns
into an indestructible, and
understandably annoyed, ghost.

MES GALOR

Volcano is a very catchy game. The
graphics are as quick and smooth as
we've come to expect from Acornsoft.
Not a blockbuster, but it should run.

The eighth voyage of Sinbad leaves a
lot to be desired when compared to the
first celluloid seven. This game is
certainly original. That is to say
no-one else has bothered to waste time
on such an idea.

First the scenario. This is going to
sound stupid, but here goes anyway. You
are presented with Sinbad's flying
carpet swooping around the screen
trailing a rope ladder. Also buzzing
around are several malevolent life
forms. You must jump Sinbad onto the
ladder so that he touches these 'life
forms' and converts them to peaceful
ways. 1f he touches one already
converted he falls off the ladder.

When all that is done it's off for a
quick trip through an asteroid storm.
If you manage to steer him through that
with the awful controls provided, then

BEEBUG

DECEMBER 1984

Volume-3 Issue 7

16

you go back to 'sguare one with the
addition of different life forms and
other things like spiders.

Virgin has described this game
admirably with its title.

e

Another original game, this one, but
this time well worth the trouble.

The monkeys have kidnapped
(roo-napped?) the baby wallaby and you
have to help dad (or mum; it's hard to
tell) to rescue it. The baby wallaby is
held in a cage at the top of the
screen. Up and down the sides and along
the various levels, ferocious apple
core throwing monkeys roam. These must
be avoided as you climb the ladders and
hop over the gaps. Fortunately you are
equipped with a powerful punch that can
dispatch a monkey very nicely to his
death.

Just to add to the excitement there
are whole apples to gather on the way
to give you extra points. No sooner
have you rescued the bouncing baby
than the whole palaver starts again in
a more tricky jungle clearing.

Wallaby is a delight to play. The
graphics are excellent, smooth, and
cute. The basic idea of climbing
ladders and avoiding adversaries isn't
new but that doesn't seem to matter.
Matilda would have waltzed with joy at
this one.

i
Preue. , Emaeees

Swag is a brand new one or two
player game for the BBC micro featuring
mode 2 multi-coloured graphics and a
practice feature where you can play
against the computer.

The game of S$wag involves you
pitting your wits against the other
player to become the first person to
steal £250,000 in diamonds. There are
several killer droids that try to
hamper you in your task of stealing the
diamonds. You can also shoot at police
cars, but this has the effect of making
them angry (the police not the cars),
and they then give chase (giving extra
money to your opponent). Apparently the
only way you can stop these police cars
from chasing you is by "...drinking a
can of bear..."! (is this a sly advert
for a famous lager or just a misprint
by Micro Power?)

Overall $wag is a very hectic and
enjoyable game with a lot of shooting
and action and, at £6.95, gives good
value for money.

TR

At last, an arcade game with no
lasers! Super Pool is a simulation of
Pool, the table game, but on a micro.

BEEBUG

DECEMBER 1984

Volume-3 Issue 7

17

It's a scaled down version of the
real game with just one white cue ball
and six coloured balls numbered from 1
to 6.

The object of the game is first to
pot all the balls. To do this you are
allowed 60 seconds for each shot. Each
time you pocket one of the balls, you
gain a number of points and these
points can be increased if you pot
another ball in the same pocket. After
potting the first six balls, you
proceed to level two, where you have to
pot the balls in order, and then level
three where the balls have to be both
hit and potted in order.

To play the game you have to
position a target around the table,
moving it clockwise or anticlockwise.
Then you choose the strength of the cue
pall, signified by a horizontal bar at
the top of the screen and when you are
ready, release the cue ball which heads
towards the target.

The game features excellent
graphics, and is both smooth and
realistic. This is an excellent example
of what can be achieved on a BBC micro
with games such as snooker and pool,
and is highly recommended if you fancy
a break from the 'zapping®' noises of
other games.

Mr.Ee is an excellent version of the
arcac;{e game Mr.Do, and must rate as one
of Micro Powers' best releases yet.

In the game you take the part of a
wizard whose Jjob it is to collect all
of the cherries in the orchard.
Unfortunately there are angry 'Umphs'
on the rampage which will try to stop
you from doing this. To kill the Umphs
you can throw your magical crystal ball
at them, hoping that it will bounce
around the orchard and kill one of
them, or you can crush them with apples
which fall down when the ground
underneath is dug away.

Mr.Ee features ten different screens
and has an awful lot happening at once,
although, understandably, the game
slows down when there are eight Umphs
and various other creatures on the
screen.

1f you are looking for one special
game this Christmas, then you should
seriously consider this one. Al though
there is no high score table in the
game (due to the amount of memory
needed), this shouldn't spoil your
enjoyment of such a good game.

Boxer is an arcade style game from
Acornsoft of an original nature (I'm
sure I've heard the various sounds and
noises somewhere before, though!). In

Boxer, you play the part of an
energetic and robust idiot who leaps
around a gym attempting to catch five
balloons from the poor damsel in
distress with the aim of winning her

BEEBUG

DECEMBER 1984

Volume-3 Issue 7

Test®

18

affection from the other character in
the plot, the baddy.

Although described as "fast moving",
Boxer does not feature particularly
fast graphics, and provided a few hours
of frustration before I was able to
tolerate the slow response of the game.
The graphics themselves are quite

attractive, but I don't think these use
the available colours as well as they
could.

Boxer is an average game that will
appeal to some, and create a sense of
loathing in others; see it before you
buy it!

=

20 T io W

,x5%" PRINTER SPOOLER UPDATED
a 02

by C.J. Dawson

In BEEBUG Vol.3 No.3 we published a. machine code utility that
allowed you to print a file whilst carrying on with some other task.
The original version did not allow files to be printed from within
Wordwise but we have now overcome this with the update described

here.

The major part of this update is
concerned with allowing the use of the
spooler from within Wordwise. This is
achieved by taking the original
listing, and adding the extra lines
below, replacing old lines with the new
if necessary. A number of comments are
included in the program, but these may
be omitted if you wish when you type
the program in. '

The spooler also now contains a
modification to cater for one of the
peculiarities of Wordwise. Whenever
Wordwise prepares a file with option 8
(spool), it inserts &@2 bytes for all
of the control codes present within the
text file. The wupdated spooler now
checks for these, and sends out a null
(&09) byte whenever it encounters an
&02. If Wordwise generates one of its
own errors (markers or room error),
then the spooler will stop operating.
This is unavoidable, and is due to the
way in which Wordwise works.

There is also now a check for a "g"
character, and the user is able to
select the character sent to the
printer if this is found. Lines 2714
and 2885 should be altered to cater for
your own printer. As it stands, it is
tailored to a Shinwa printer, but the
table below will allow you to configure
the program to your own requirements.

One of the limitations of the
spooler 1is that it cannot cope with
View, Wordwise and Basic listings if

there are any extra codes included such
as formatting codes or Basic tokens.
The way to over come this is to spool
out the text to a file, and to print
that file. With Basic this is simply
achieved by using the *SPOOL command
before listing. This creates a file of
pure ASCII codes which can be printed
with no problems. Wordwise provides a
spool option, and this works quite well
(apart from the &@2 byte catered for by
the update). With View, you need to
type *SPOOL and a file name, then
SCREEN the appropriate file and *SPOOL
again. Having done this you will have a
file containing the text correctly
formatted, but there will also be the
View command mode information. If you
wish to delete this, you need to type
in NEW, READ filename, delete the
unwanted headings, and then SAVE

filename. The file can then be printed
using the spooler.

BEEBUG

DECEMBER 1984

Volume-3 Issue 7

19

35 REM UPDATES C.J.Dawson.
160 PRINT"Use *SAVE SPOOLER "; code;"
e~ (P%3+7) ;" M5 7 (codet&26)
200 IF code=&9¢@ PRINT"*SPOOLER calls

the spooler from disc.”™ ELSE PRINT"*RU
N SPOOLER calls from tape"

1985 OSFINDV=&21C:0SBGETV=&2163:0SBPUTV
=§218

1225 temposfindv=code+24:temposbgetv=c
odet26: temposbputv=code+28:spoolflag=co
de+30

1320 P%=code+&26

1351 LDA #@:STA spoolflag

1352 LDA OSBGETV:STA newosbgetvi+1:LDA

OSBGETV+1:STA newosbgetvl+2

1354 LDA OSBPUTV:STA newosbputvl+1:LDA
OSBPUTV+1:STA newosbputvl+2

1610 LDA#7:JSR&FFE3:RTS

1811 LDA OSFINDV:STA temposfindv:LDA O
SFINDV+1:STA temposfindv+l \ Set osfind
vector

1812 LDA #newosfind MOD 256:STA OSFIND
V:LDA #newosfind DIV 256:STA OSFINDV+1

1813 LDA OSBGETV:STA temposbgetv:LDA O
SBGETV+1:STA temposbgetv+l \ Set osbget
vector

1814 LDA# newosbgetv MOD 256:STA OSBGE
TV:LDA# newosbgetv DIV 256:STA OSBGETV+1

1815 LDA OSBPUTV:STA temposbputv:LDA O
SBPUTV+1:STA temposbputv+l \ Set osbput
vector

1816 LDA #newosbputv MOD 256:STA OSBPU
TV:LDA #newosbputv DIV 256:STA OSBPUTV+1

2009 BEQ viasJIMP exit

202¢ .via LDA ifr \ Check printer flag
2040 BNE spooltest:JMP exit \ If not,
done

2045 .spooltest LDA#0:CMP spoolflag:BE
Q disablesJMP printit \ See text

2050 .disable

229¢ \ Event 4 always disabled

230¢ SEI \ Block interrupts

INTS HINTS HINTS HINT

ULA OR SEMI-CUSTOM CHIP?

chip, as opposed to the video ULA

removed, ard a wire ¢
your

you will need to £it this if the new chip is one of the early batch. Acorn are now

and which should not have this

=

statements,
normal video.

Acorn have recently started

in function to the old ULA. Early

supplying chips that are pin for pin compatible,
alteration performed. If you are in doubt, contact your dealer.

INVERSE VIDEO - Ashley Denninson
To produce reverse
use ?&D3=255 to produce

_ these can be found by experimenting.)

2302 LDA temposfindv

23@4 STA OSFINDV

2306 LDA temposfindv+]

2308 STA OSFINDV+1

2412 LDA temposbgetv:STA OSBGETV:LDA t
emposbgetv+1:STA OSBGETV+1

2414 LDA temposbputv:STA OSBPUTV:LDA t
emposbputv+1:STA OSBPUTV+1

2416 CLI \ Re-enable interrupts

249¢ .newosfind \ Test for close files
2495 CMP #@:BNE osfindout \ close a fi
le?

2500 CPY #@:BNE osfindout \ close all
files?

25@5 RTS

251¢ .osfindout \ Not close all files,’
or any other call

2512 JMP (temposfindv) \ Goto original
osfind routine

2514 .newosbgetv PHA:LDA#13STA spoolfl
ag:PLA: .newosbgetvl JSR&FFFE:PHA: LDA#@:
STA spoolflag:PLA:RTS

2516 .newosbputv PHA:LDA#1:STA spoolfl
ag:PLA: .newosbputvl JSR&FFFF:PHA :LDA#D:
STA spoolflag:PLA:RTS

2710 CMP #2:BNE test:LDA #&20:JMP noge
tch \ See text

2712 .test CMP #ASC("£") :BNE nogetch \
Is it a "g"?

2714 LDA #129 \ Yes see text

2870 CMP #2:BNE testl:LDA #&20:JMP pri
ntit \ See text

2880 .testl CMP #ASC("£"):BNE printit
\ Is it a "g"?

2885 LDA #129 \ Yes see text

2890 .printit STA ora \ Output byte to
printer

2965 REM Adjust code location for extr
a code

sending out Beebs fitted with a semi-custom
they used originally. This is virtually identical
batches of this chip required link S26 to be
onnecting the centre pin of $26 to IC1d pin
video ULA needs replacing, and you decide to perform this task yourself, then

1 to be fitted. If

video without resorting to a sequence of COLOUR
inverse video, and ?&D3=0 to revert back to
(Note that modes with more than two colours will need different values

=

BEEBUG

DECEMBER 1984

Volume-3 Issue 7

wist®" CARTOON CALENDAR FOR 1985

o
8% oS)
ges a0 0’51\‘ by T.A’Hara
What could be better for the forthcoming new year than a
calendar with your favourite cartoon character? Using the program
y . :
listed here you can have just that, and the program can be used to
produce calendars for other years too.

’Ihis program Will in faCt prOduce a FEEETRE EREREEE bRAC R SEERERRELEIREE
calendar for any year after 1980. When OO AM -0 i
you run the program, it asks initially hut @0 g §2§ 071724 31 T
for the year (only integers greater :E‘;: % # é fg‘; é g; %, ; 3 :é:;
than 1980 will be accepted). In the Hi i) !) 1 / ¢) § gs 5§ P
bottom left hand corner of the screen zsgeuiuﬁ 3455 i2|;l u;i'u! 5 ;Hllii"l!ég{
the word 'DAY' will be displayed with a :;;:“H!(,l“;v‘ Vb i‘!”&lu?aﬂnlﬁi!‘ixnsﬂﬂHﬂiile!;iméll-g"}?2}‘:
corresponding number. The number o i é ¢ gig é % %;i % :%‘32
represents the first day of the year Her g %,;9 % é 3 4 12% :s!*
with @=sunday,l=Monday, etc. From then s dtuns o IEBE kN Sufi iyl
on all output will be sent to the T GET0nER AOVERBER DECHRGEK v

. s . ARSI R IR H RO 4R AR R R R R R R S R R L R R AR B R R R E LR R 0Y
printer (Centronics compatible). BAny s 5 n g 57 5
special codes included in the listing i 95 % s§ 1% %{ 1 e
are designed for an Epson or similar HiH “‘; pplpas | pnuas g{ . 5% ;zp;
Printer: although it can be run without :‘i;‘:‘ ;1&!!*“}!2{};‘ 2{?2 ! (é{;lll! ! ;}ﬁeun“:!g
any codes onto any 80 column printer.

The codes use REM statements to signify
their operation.
PRINTER CODES

The codes are marked in the listing
by appropriate REM statements. For BQBB
those who may want to change them to i pre EBBBEB
suit other printers the codes used are 080 a0k
as follows: eff -

a0 @
r
jajuinisi X
A pesis
£ xxQ
%
X
a0y ¢
“gn X
i b gggﬁ *x &F

If you know the first day of the °g xﬁ“ﬁ‘,‘ xx XXX
year for a particular year (1980 in basjesls
this program) you can calculate the Jabiesl
first day of the year for any year %
after your starting point by adding HO%
days. From this starting point it is Ronono
then a straightforward task for the o 008000 0000,
géca);]rg;eé?fci:gpile a calendar for the H_ __‘ﬁgjijﬁﬁ'r{ % XJGB'Q‘H'QQB'U

Once the calendar is complete the
program then draws the well known Trogg —_

S R R ISR

BEEBUG DECEMBER 1984 Volume-3 Issue 7

21

character from the popular game FRAK!
produced by Aardvark Software. On non
Epson printers an elongated picture
will be produced.

The part of the program that draws
the cartoon is very simple. It is just
a listing of data. The routine itself
consists of just two loops, one to READ
the data and one to carry out the
operation of printing. The data
comprises four possible items of
information, an integer followed by a
character, where the integer is the
aumber of times that particular
character is to be printed, -1 to
indicate the end of a 1line, and |
(close square bracket) or any other
consistent character to indicate a
space. Certain characters produce
different results in that double strike
is used for all characters other than
g. Any number of conditional loops
could be added to make use of what ever
effects the printer is capable of.

So now you can print out your own
cartoon calendar, indeed as many as you
wish. Be careful about showing them to
your friends though because if our

experience is anything to go by they
will all want one as well.

The Trogg character from FRAK! is
reproduced by kind permission of
Aardvark Software.

10 REM PROGRAM CALENDAR

20 REM VERSION B@.3

3¢ REM AUTHOR T.A'HARA

AQ REM BEEBUG DECEMBER 1984

50 REM PROGRAM SUBJECT TO COPYRIGHT
60

109 ON ERROR GOTO 2390

11¢ REM SEND CONTROL CODES TO PRINTER
12¢ vbu2,1,15,1,27,1,51,1,23

13¢ voul,27,1,108,1,31,3

14¢ DIM Days$ (381) :DIM Months$(12) :DI
M Day$(7) :DIM R%(12)

15¢ Day=@:CLS:MODE 7

160 FOR A=1TO2:PRINT CHR$141;CHRS132;
TAB(15) "CALENDAR" :NEXT

17@ PRINT'''

180 FOR A=1TO2:PRINT CHRS141;TAB(5)"E
NTER YEAR OF CALENDAR NOW":NEXT

199 sounD 1,-15,20,5

200 INPUTYear

210 IF Year<1980 OR Year<>INT(Year) T
HEN SOUND 1,-15,8,5:GOTO 150

2200 PRINT'"!

23¢ FOR A=1T02:PRINT CHRS141 ;SPC(16) ;
Year :NEXT

240 PRINT''"*®

25¢ PRINT"IS THIS CORRECT ? Y /N

260 SOUND 1,-15,38,5

270 Ans$=INKEYS (1)

280 IF AnsS="Y" OR Ans$="y" THEN320

290 IF Ans$="N" OR Ans$="n" THEN15¢

300 IF Ans$="" THEN270

319 SOUND1,-15,120,1¢:SOUND 1,-15,30,
5:GOT0279

32¢ SOUND 1,-15,160,3

33¢ PROCLEAP

340 PROCDAYS

35@ PROCCALENDAR

360 MODE3

37¢ PROCPRINT

389 REM SEND CONTROL CODES TO PRINTER

39¢ vDU2

4¢g vDU1,18,1,27,1,108,1,0

41¢ vDU3

4209 PROCtrogg

43¢ END

440 :

100@ DEF PROCLEAP

1019 T%=Year/4

102¢ IF (T%*4)=Year THEN Leap%=1 ELSE
Leap%=0

193¢ ENDPROC

1049 2

195¢ DEF PROCCALENDAR

1060 FOR T=1 TO12:READ Months$(T) JRE(T
) 2 sNEXT

1970 D%=Day:FOR T%=1TO12:FOR T2%=1TOR%
(T%)

1980 D%=D%+1:Days% (D%)=T2%

1099 IF Leap%=1 AND D%=59 D%=D%+1:Days
%(D%)=29

1100 NEXT,

111¢ FOR T=1 TO7:READ Day$(T) :NEXT
112¢ ENDPROC

1130 =

1140 DATA JANUARY,31,FEBRUARY,28,MARCH
,31,APRIL,30,MAY, 31 ,JUNE, 30

1150 DATA JULY,31,AUGUST,31,SEPTEMBER,
3@ ,0CTOBER, 31 ,NOVEMBER, 30 ,DECEMBER, 31
1160 DATA Su*,Mo*,Tu*,We*,Th*,Fr¥, Sa*

BEEBUG

DECEMBER 1984

Volume-3 Issue 7

22

1179 :

1180 DEF PROCDAYS

1190 Y%¥=Year-1980¢

1200 IF Y%<4 GOTO 1279

1210 Nodays%=Y%/4

1229 Ddays%=Y%-Nodays$*4

1230 Tdays%=Nodays%*1461+Ddays%*365

1240 Fdays%=Tdays%- (Y3*364)

1250 IF Fdays%<7 THEN1270

1260 REPEAT:Fdays$=Fdays%~-7:UNTIL Fday
s%<7

127¢ IF Y%=0 THEN Fdays3%=

1280 IF Y%2=1 THEN Fdays%=

1290 IF Y$=2 THEN Fdays$=

1300 IF Y%=3 THEN Fdays%=4

131¢ Day=Fdays%+3~Leap%

1320 IF Day>6 THEN Day=Day-7

1330 PROCWAIT

1340 PRINT CHR$133"DAY";CHRS135;"= ";D
ay

135¢ ENDPROC

1369 :

1370 DEF PROCPRINT

1380 vDU2

1390 E%=0:EXTRA=Q

140@ VDU1,14:PRINTTAB (19) Year :REM DOUR
LE HEIGHT CHARACTER

1419 PRINT STRINGS (88,"*")

1420 PRINT"™*DAY"SPC(6) "JANUARY"SPC(10)
"FEBRUARY"SPC (12) "MARCH"SPC (14) "APRIL"S
PC (5) "DAY*"

143¢ PRINT STRINGS(80,"*")

1440 FOR W=1TO7

1450 C%=W+EXTRA

1460 @3=1:PRINT"*";DayS$ (W) ; :@%=

1470 FOR N=1T04

1489 D13=

1499 FOR T=1T06

1509 D%=Days$% (C%)

1518 IF D%=0 THEN PRINTSPC(3);:GOTO 15
79

152¢ IF D%>20 AND N=1 AND T<3 THEN PRI
NTSPC(3) ; :GOTO1579

1530 IF D%<8 AND T=1 AND D%>W THEN PRI
NTSPC(3) ; :GOTO1580

1540 IF D%>=D1% THEN PRINTD%; ELSE PRIN
TSPC(3) ; :GOTO1588

1550 IF T<3 AND N=1 AND D%>7 THEN D%=

1560 D1%=D%

1670 IF E%=2 THEN PRINT"*DAY"SPC (6) "SE
PTEMBER"SP:(9)"OCTOBER"SB:(9)"NOVEMBER"
SPC(12) "DECEMBER"SPC (4) "DAY*"

1680 PRINT STRINGS (80 ,"*")

1690 IF E%<>3 THEN 1449

1709 vDU3

1710 ENDPROC

1729 :

1730 DEF PROCWAIT

1740 CLS

1750 FOR A=1T02:PRINT CHRS$141 ;CHRS$132;
TAB (15) "QALENDAR" :NEXT

1760 PRINT'''?

1776 FOR A=1 TO2:PRINT CHRS1 41;CHRS$135
7SPC(4) "WAITING ; OUTPUT TO PRINTER ":N
EXT

178¢ PRINT'''re

179¢ ENDPROC

1800 :

1810 DEF PROCtrogg

]820 REM *#%%% DRAW TROGG *#**%¥kikkkk

1830 REM SEND CONTROL CODES TO PRINTER

184¢ vDU2:vDU1,27,1,51,1,18

185¢ vDU1,27,1,108,1,20,1,1¢,1,10

1860 RESTORE2000:@%=0:REPEAT: READA%,AS

1870 IF A%<@ THEN PRINT" “:GOTO193@

1880 FOR N=1 TOA%

1890 IF AS="]" THEN PRINT" ";:GOTO192¢

1900 IF AS<O"0"™ THEN vDU1,27,1,71 ELSE

vDU1,27,1,72

1910 PRINT AS;

1920 NEXT N

1930 UNTIL A%=-99

194¢ vDU1,12:VDU1,27,1,64:VDU3

1950 VDU22,7:PROCAGAIN

1960 IF AGAIN=1 THEN CLEAR:RUN

1970 END

1980 :

1990 REM Top Half 1-6

2009 DATA 28,],4,@,-],],25,],5,@,4,0,~
1,1.,23,1,6,@,6,0,-1,1,22,1,6,@,3,0,3,1,
2101“111IZﬂl]181@'2101211121@17lor‘1l]r

']9r]181@13101211121@17101“111

2019 REM 7-12

2020 DATA 18,1,9,€,4,0,3,1,2,0,-1,1,17
l]1111@17101‘111116111121@17701‘17]7157
]l]4r@l5ror‘]l]l]6r]1147@13101-]r1r]7l]
I]Sl@l‘]l]

2030 REM 13-18

1576 C3=(C%+7) 204¢ DATA 14,],4,0,1,%,2,1,1,%,9,@,-1,
]58@ NEXT T]l%zl]é6ioillxézlll}l?lgl?l;;l]I}gllé9f
. OI IXI 2N IXI ror‘ vleZrloe IOI IXI 2
L §R§§T§*";Days(w) 1/%,9,0,-1,1,8,1,11,0,1,%.3,1,1,%,8,0,
1619 NEXT W , -1,1,7,1,13,0,1,%,2,1,1,X,9,0,-1,]
1620 PRINT STRINGS (84,"*") 2050 REM 19-24
1636 ES=R2+] 2060 DRTA 6,],12,0,3,X,3,],1,X,8,0,-1,
1649 IF E3=1 THEN EXTRA=119]ISI]I]]10121X1210111X13r]I]lxrglol“]l]
1650 IF E%=1 THEN PRINT"*DAY"SPC(8)"MA +5,1,9,0,2,%,5,0,1,%,3,],1,X%,8,0,-1,1,4
Y"SPC(14) "JUNE"SEC(15) "JULY"SEC(13) "aUG ~ ¢1+9.0,1,X,7,0,1,%,4,1,1,X,8,0,-1,],4,]
UST"SPC (5) "DAY*" +8,0,1,X,8,0,1,X%,4,1,2,%,7,0,-1,1,3,]1,8
1660 IF E$=2 THEN EXTRA=238 :9,1,X,10,0,1,%,4,1,1,X,8,0,-1,] —_—
BEEBUG DECEMBER 1984 Volume-3 Issue 7

23

EXTERNAL ROM SOCKETS

Reviewed by Geoff Bains

" With the plethora of ROMs for the BBC micro, the methods of
connecting them abound. In BEEBUG Vol.3 No.6 we looked at the
internal ROM expansion boards available. This month Geoff Bains
looks at a new trend amongst ROM boards.

If you're blessed with more ROMs companies have also had this thought
than either your Beeb or an internal and there are several external ROM
ROM board can handle, or if you have boards now on the market especially
many that are incompatible, you'll designed for the owner who swaps and
frequently need to swap ROMs in and out changes.
of your machine. Of course you can just
prise them out of their sockets with There are problems with all kinds of
the traditional screwdriver or Bic biro external ROM socket. The length of
top, but this is both cumbersome and, ribbon cable that has to come between
in the long run, damaging. It means them and your Beeb circuit board can
taking your Beeb apart every time too. cause all kinds of strange errors. It

is not a definite phenomenon. It .

How much simpler things would be if happens with some ROMs in some ROM
you could simply plug a ROM into an sockets on some Beebs, with some ROM
external socket. Fortunately several =~ internal boards...in months with an R—

BEEBUG DECEMBER 1984 Volume-3 Issue 7 .

I

24

in their name! Using these extension
sockets in conjunction with a well
buffered internal ROM board helps to
prevent mysterious machine crashes but
that is no comfort if this is to be
your first ROM board.

Fitting these sockets is not easy
either. The bad standard of
documentation doesn't help, nor does
the fact that they are all designed to
connect to one of the four standard ROM
sockets in the Beeb and not to an
internal ROM board with which they work
better!

The external ROM sockets fall
broadly into two classes. The first is
the simplest and consists merely of a
'zero insertion force' socket that fits
in the hole at the side of the keyboard
and connects to one ROM position,
either on the main Beeb board or on an
internal ROM expansion board. The
Watford Electronics, and Toad sockets,
and ATPL's 'Inside Out' are all of this
kind. WwWith all of them the ZIF socket
(a special sort of chip socket that
will not damage the ROM even on
repeated removal and replacement) sits
on a small circuit board. From this a
ribbon cable connects to a header plug
that fits into a spare ROM socket. The
cable on the Toad socket is soldered
directly onto the ZIF board and
directly onto the pins of the header
plug. This is not as secure as using a
proper connector as the others do.

During the course of this review two of
the ribbon cable cores broke at these
connections.

The hole at the side of your Beeb's
keyboard is not designed to take this
kind of socket. It's made for speech
vocabulary cartridges (if Acorn ever
produces them). This means that the
mounting arrangements of the external
sockets are not wonderful. Watford
Electronics' version 1is probably the
best of its genre. It has a hole on the
circuit board through which the
mounting pillar for the computer's 1lid
fits. This gives a reasonably stable
arrangement. Even then, 1like all the
others it is Jjust stuck to the
underside of the 1id with double sided
sticky tape. The ATPL board has a
greater area of sticky tape than most

BEEBUG

DECEMBER 1984

Volume-3 Issue 7

25

and this makes it fimer in position.
in addition ATPL's is not restricted to
this position in your machine, but can
easily fit on the top, beside it,
indeed anywhere.

The other kind of external ROM
socket is designed to take several ROMs
just like its internal counterpart.
Here, however, the selection of which
ROM is in operation does not depend on
software. A switch on the unit takes
care of this.

The idea behind this Dblatant
disregard for Acorn's clever operating
system is so that you can change over
ROMs without knowing the fancy *FX
commands .

Ramamp's and Micro Pulse's ROM boxes
are of this type. The Micro Pulse
version has room for eight ROMs that
plug into normal chip sockets under a
transparent 1id. A switch on the side
selects the ROM in operation. Ramamp's
wnit has four sockets for special
cartridges. These are in effect small
circuit boards containing a chip socket

5

inside a plastic case. These plug into
the ROM box.

The advantage of this system is that
not only can you select the ROM of your
choice from those in the box, but the
range in the box can be easily changed.
The drawback is that the spare
cartridges, essential to make full use
of the idea, cost a rather staggering
£3,80 each.

Different from either of these types
of external ROM secket, but combining
many of the advantages of both, is the
ROM cartridge system from Viglen. This
gives you a special socket that fits
into the hole at the side of the
keyboard . Into this fit cartridges

containing ROMs.

The socket fits positively into the
keyboard hole. It has been specially
moulded for this position and so can be
both inserted securely and removed
easily. It is not a botched up, off the
shelf answer. The cartridges, too, are
made well. The problem with this system
is, again, that of price. Producing
special plastic mouldings of this kind
is not cheap so the system costs £19
for the initial pack and then nearly £7
for each empty cartridge. This is a
great shame as this effectively rules
out an otherwise excellent idea.

Of the rest, if you want the
switchable option and don't mind paying
over the odds for the cartridges then
the Ramamp ROM box is probably your
best bet. Otherwise, a single ZIF
socket type would seem the answer and
ATPL's and Watford's the better of
these.

BEEBUG

DECEMBER 1984

Volume-3 Issue 7

26

ot l" IMPROVED TRACE FACILITY

and ©

16k by Martin Dale

This month we present a useful utility that extends the Basic trace
facility by printing the line number in the top left hand corner of
the screen, avoiding a screenful of scrolling numbers, and by
providing a delay between each line executed.

Most serious program writers find
the occasional need for a trace
facility when debugging programs.
Unfortunately, the original facility in
BBC Basic will, unless used very
selectively, fill the screen with an
horrendous and confusing amount of
output. The short utility listed here
is designed to extend the Basic trace
to overcome these drawbacks.

There are two basic improvements
implemented in this extension; the
printing of ‘the line numbers only in
the top left hand corner of the screen
(or current text window), and the
facility to pause between each line to
allow you time to study the current
position in the program.

To use the program, type it in and
save it to tape or disc (it is sensible
to save it first in case there are any
errors in the machine code). Once run,
the extended trace facility will
initialise itself, and you may then use
it as you wish. Note that it will be
lost on pressing Break, and that it
shouldn't be initialised twice or the
machine will hang. As with the standard
Basic trace, you use TRACE ON to enable
it, and TRACE OFF to disable it. See
page 367 of the User Guide for more
details on the TRACE command.

HOW IT WORKS

The utility works by intercepting

the operating system routine OSWRCH,
which writes a character, and
performing three tests to check for the
start of printing of the current line
number. These tests are: is the trace
flag set, is this character not within
a VDU sequence, and is it the "["
Character (the trace facility prints
line numbers within square brackets)?
If all of these tests are true, then
the extended trace routines are called.

The current cursor position is first
stored away, as are flags indicating

whether the text and graphics cursors
are joined and that the trace routine
is active. Next, the cursor is
positioned at the top left of the
screen (more accurately, the current
text window). Once this is done, the
routine exits back to Basic, which then
prints the current line number.

When the printing of the current
line number is complete, the trace
routine. is again entered (this is
triggered by the trailing space after
the line number). A simple loop will
normally wait for 2 seconds, but can be
made to terminate quicker by the press
of a key, or immediately by a press of
the shift key. This is designed to
allow the program to be stepped through
at a variety of speeds, allowing
correct sections to be passed over very
quickly whilst up to 2 seconds can be
spent on any lines which seem worthy of
more detailed study.

Once the delay has finished, the
cursor is restored to its original
position, the trace active flag is
cleared, and the text and graphic
cursor are re-joined if necessary. The
routine then exits, and the user's
program carries on running as normal.

KNOWN LIMITATION

There 1s a known limitation in the
current version of the program; any
attempt to print a "[" as a single
character (ie not as part of a graphics
sequence) whilst tracing will cause the
program to respond un-predictably.
There is no easy way to cure this, but
knowing that it exists should help
users to avoid too many problems.
BEEBUGSOFT's Sleuth, a powerful Basic
monitor, includes a similar trace
option, amongst its many = other
features, but without this limitation.

i

BEEBUG

DECEMBER 1984

Volume-3 Issue 7

27

REM PROGRAM TRACER

19 64@ DEC trcflg \ Restore flag
20 REM VERSION B@.9d1 650 LDA #31 . \ Restore cursor
3¢ REM AUTHOR MARTIN DALE 660 JSR printchar

4@ REM BEEBUG DECEMBER 1984 670 LDA pos

53 REM PROGRAM SUBJECT TO COPYRIGHT 680 JSR printchar

60 @ 690 LDA vpos
10@ osbyte=&FFF4 7@@ JSR printchar
110 FOR pass=§ TO 2 STEP 2 710 LDA trcflg+l \ Cursors joined?
120 pP%=FNlocate 72¢ BEQ ntgrphic \ No, branch
139 [OPT pass 730 LDA #5 \ Rejoin cursors
140 .newvec 749 JSR printchar
15¢ PHA 750 DEC trcflg+l \ Clear VDU 5 flag
160 LDA &20 \ Get trace flag 760 .ntgrphic
17@ BNE trcon \ Branch if <> @ 77¢ LDA #21 \ Flush keyboard
180 PLA 780 LDX #9 \ buffer
19¢9 JMP printchar 79¢ JSR osbyte
200 .exit 80@ LDA #2090 \ 200 ticks
21¢ PLA 810 STA delay \
220 .exit2 82¢ .loopdelay \
23¢ LDX temp \\ Restore 830 LDA #129 \ Shift key
24¢ LDY temp+l \ registers 84% LDX #255 \ pressed?
25¢ .printchar 850 LDY #255 \
260 JMP (oldvec) \ Print character 860 JSR osbyte \
278 .trcon 870 CPY #255 \
280 STX temp \ Save registers 880 BEQ exitdelay \ Yes, exit
29¢ STY temp+l 890 LDA #129 \ No, wait a

3@0 LDA #&DA \ Is it in the 90@ LDX #1 \ tick. Key

310 LDX #0 \ middle of a 91¢ LDY #0 \ pressed whilst
32¢ LDY #&FF \ VDU command? 920 JSR osbyte \ waiting?
330 JSR osbyte 930 BCC exitdelay \ Yes, exit
340 TXA 94¢ DEC delay "\ No, any more
350 BNE exit \ Return if yes 950 BNE loopdelay \ ticks?

360 LDA trcflg \ In trace output? 960 .exitdelay: \ exit delay

37¢ BNE midtrc \ Yes, branch 970 RTS
380 PLA ' . 98¢ .delay \ delay byte
39 CMP #ASC("[") '\ Start of trace? 990@ NOP
4(@ BNE exit2 \ No, return 1000 1

419 INC trcflg \ Set trace flag 1010 trcflg=P%

420 LDA #&86 \ Save cursor 1920 temp=P%+2

43@ JSR osbyte \ position 1030 pos=P%+4:vpos=P%+5

44@ STY vpos 1948 oldvec=P%+6

45¢ STX pos 1050 NEXT

460 LDA #&75 \ Is VDU 5 set? 1060 1P%=0:! (P%+4)=0

473 JSR osbyte 1979 20ldvec=2&20E:? (oldvect+l) =?&20F
480 TXA 1080 ?&20E=newvec MOD 256

49¢ AND #32 1099 ?&20F=newvec DIV 256

50¢ BEQ ntgraphic \ No, branch 1109 END

51¢ INC trcflg+l \ Yes, set flag 1119 =

520 LDA #4 \ VDU 4 1120 DEF FNlocate

53¢ JSR printchar 1130 LOCAL A%,X%,Y3%

540 .ntgraphic 1140 A%=0:Y%=0

55@ LDA #3@ \ Move cursor to 1150 A%=(USR&FFDA)AND&FFO@0U DIVsa10000
560 JSR printchar \ top left corner 1160 IF A%=1 OR A%=2 X%=&DGU

570 LDA #ASC("[™) \ Print left "[" 1179 1IF A%=4 X%=&A00

58¢ BNE printchar \ and return 118¢ IF X%=@ PRINT"Tape or Disc only!"
59¢ .midtrc :END

603 PLA 1190 =X%

619 CMP #ASC(" ") \ Finished ?

620 BNE exit2 \ No, return

630 JSR printchar \ Clear "]"

==
BEEBUG DECEMBER 1984 Volume-3 Issue 7

ADVENTURE GAMES
. by Mitch

A midnight raid on the dwarfs'
adventure games for the Beeb. Wizard
against the sword's.

Pausing only to grab a couple of
rejuvenation spells, I left the dragon
to guard the dungeon and conjured
myself inside the first offering.

You can alsc see!
The gatellisiclosad

You ‘are on a track which rins
east it <outh beside & high wall,
inithe north green fields /s a
wooden|gate can Be seen

You are on la track that runs NS
Beside!s Righiwall;a path
branches west & a Sign reads TO
THE HOLY SPRING

You are at the end of a rocky
valley whichistretches east Water
gushes from beneath a boulder &
trickles awaylacross the 'stony
ground »

Having been foully murdered
husband,

by her
the Lady Leonara has cursed
the castle and all who set foot within

it. It was my task to find her mortal
remains and lay them to rest in peace.
The present ghastly inhabitants didn't
seem impressed by my chivalry, however,
and did their damnedest to kill me. A
few kindly souls did assist me, if I
first solved their problems, so it does
help to be polite! The game is a
coloured text, split screen affair with
lots of well written descriptions. The
castle abounds with locked doors which
require an endless supply of keys.
Opening doors becomes such a confusing
business that I found I spent an hour

repository unearths some new
Mitch tests the pen's might

Not so easy is the solution to the
wandering monster that follows you.
Unfortunately he continues to reappear
with monotonous regularity causing you
to repeat the same action ad-infinitum.
The game however has a nice "feel' to
it and is not too difficult.

large tent

You

are by'a group
Tracks lead north

of hobbled camels:
& west

You are wandering around the
archaeologists camp. Tracks' lead
south,west & east ‘towards a

large tent

You: are . in:along arid valley at
the middle of an archaeoclogists
camp A track.leads away north

You are by ai group of hobbled camels!
Tracks lead north & w
Y

A similar format of coloured text

and split screen, this game found me
crawling around in decaying corpses
beneath the pyramid of old King Tut.
The place is so hot and smelly that
you'd better ensure you bring lots to
drink and something to keep the deadly
stink out of your nostrils. I found a
laundry basket which hissed and a pit
in which something nasty was
slithering!

trying to unlock one which I later

found wasn't even locked! A real time element coupled to your
endless thirst and flickering torch has

BEEBUG DECEMBER 1984 Volume-3 Issue 7

29

been added to the game. You have no
time to stand and stare but must hurry
ever forward towards that light at the
end of the tumnel. Which knowing my
luck will be a train coming the other
way!l :

This game has all the usual
ingredients, but in that is its
weakness. I couldn't find that magic
something which is needed to keep me
battling forward so I folded my tent,
mounted my camel and stole off home.

among this month's offerings I have
a book as well:

1 confiscated this from the Troll.
He is trying to write an adventure in
which he gets to keep the gold for a
change. :

The book contains wmany of the
secrets used in the Acornsoft games, in
fact most of the procedures are a
straight copy from Philosophers Quest.
Topics include how to write 'Hack ‘and
Slash' games, a full-size Roman-style
adventure, a chapter on Databases and
all the procedures needed to create
your own games. I give this book four
stars for the clear and amusing style,
but I deduct.one as some Demon Editor
failed to notice that part of the
program listing on page 133 has not
been printed. Luckily the corrupted
lines are used elsewhere in the book
(page 127), so all is not lost. However
I hurled a few of my more dreadful
curses before finding those.

Having earned my supper by solving
that problem I highly recommend the
book as essential reading by all fans.
The infectious enthusiasm of the author
is so strong it is bound to inspire any
troll +to write his own game. Trouble
is, if all wizards give away secrets
like Peter, this dungeon is going to
get pretty crowded! ==

R

FLOPPY TAPE DRIVES

Reviewed by Geoff Bains

Many BBC micro users, despairing of their lethargic cassette
recorders, will still think twice before spending the large amounts
needed for a disc system. Geoff Bains investigates an alternative.

product : Ultradrive

Price s £83.40

Supplier : Ikon Computer products
Kiln Lane, Laugharne,
Dyfed, SA33 4QE.
¥99421-515

product @ Phloopy

Price : £147.75

Supplier : Phi Mag Systems

PO Box 21, Falmouth,
Cornwall, TR11 3TD.
9326-76040

With a disc drive interface for your
BBC costing upwards of £70¢ and the
drives themselves priced at over £100,
the atmosphere is ripe for an
alternative system. Ikon Computer
Products and Phi Mag Systems both have
cheaper alternatives that claim to
perform like disc drives.

ULTRADRIVE

The Ultradrive is
version of the Hobbit floppy tape
system reviewed in Beebug Vol.2 No.Z2.
The Ultradrive records programs and
data onto a standard Philips mini

an improved

BEEBUG

DECEMBER 1984

Volume-3 Issue 7

30

cassette, as used in many dictation
machines. The mini cassette deck is
totally under the control of the Beeb.

Fitting the Ultradrive to your BRC
is simplicity itself. The actual drive
comes in a (cream!) case about four
inches cubed. This connects to the user
port and the auxiliary power socket
under the computer by means of a couple
of cables. Once that is done there is
only the inevitable control ROM to fit.

The Ultradrive works in two modes.
In the simple mode the Ultradrive acts
as a very fast cassette recorder with
no need for manual control nor any of
the Beeb's memory. In the complex mode
the Ultradrive takes on more of the
facilities of a disc drive. Now up to
five files can be open at once and two
drives can be used though the penalty
for this is that PAGE is set to &1699.

Depending where you buy them, the
cassettes cost up to £3.5¢. Each can
store about 109K of data. This is
arranged 1in four sections. There are
two 'sides' to each tape and each side
has two separate directories. Because
of the Ultradrive's cassette heritage,
all files must have a length of tape
(in blocks) assigned to them before
they are first stored. This can be
inconvenient when you have really no
idea of the final length of a program
that you are working on.

There is a very laudable system to
warn you that you're about to overwrite
one file with another of the same name,
and give you the chance to change your
mind. In addition files can be locked
with a *ACCESS command just as they can
with the DFS, though the utility to do
this is unfortunately on a separate
utilities cassette. There are plans to
bring out a ROM upgrade, containing all
the utilities, for about £2d.

The Ultradrive filing system is a
clever piece of software that makes the
most of the limitations of this
cassette system. Most of the disc
filing system commands are supported
and, for the machine code programmer,
most of the disc operating system calls
are also there for the using.

Although the facilities for random
access are there, the time taken for
the Ultradrive to rewind to the
required record can mean that sometimes
this is not practical. The Ultradrive
will probably be used by most Beeb
owners only as a super-fast cassette
recorder.

However, as such, the Ultradrive
scores well. A commercial game that
takes 3 minutes to load from normal
cassette takes a mere 40 seconds from
the Ultradrive.

Unfortunately there is next to no
software available in the mini cassette
format. Any game that you want to load
from the Ultradrive (in double quick
time) you first have to transfer from
cassette. Not an easy task for many.
However, a supplied wutility will
transfer many casSsette programs onto an
Ultradrive tape. If you get really
stuck then Ikon promises to transfer
any software sent in, for free.

PHLOOPY
Phi Mag Systems have scorned the
'off the shelf answer' to produce a

~custom designed floppy tape drive. The

Phloopy is much prettier than the
Ultradrive but nearly twice the price.
The Phloopy uses continuous loops of
tape housed in a plastic cartridge
about the size of a cigarette case. The
cartridges will store 100K and cost £20
for a pack of five. A demo cartridge
and a blank one are included in the
starter pack. Inside the smart black
drive there is a nine channel tape head
and a complete microprocessor based
control system. You get a lot of
sophistication for your money.

BEEBUG

DECEMBER 1984

Volume-3 Issue 7

31

The Phloopy is also a much more
complicated add-on to fit than the
Ultradrive. There are two small header
plugs and a small circuit board that
fit into the Beeb's disc interface
sockets. The Phloopy drive itself then
plugs into the disc drive socket under
the Beeb and takes its power from the
auxiliary power socket. You can't have
a phloopy and a disc drive interface in
your machine at the same time, but you
can have up to eight Phloopies fitted.

There is also a control ROM to be
fitted, of course, but fitting doesn't
end there. You also have to cut two
resistors on the Beeb's own circuit
board. This makes restoring your Beeb
to normal, should you want to upgrade
to discs later, very much more
difficult.

Once installed, you can treat your
phloopy much like a disc drive. The
‘Loop Filing System' that accompanies
the drive is, to the user, as near to
the DES as can be. The *ACCESS command
is for some reason called *LOCK and
*UNLOCK for its two actions. This is
not only an annoying difference, but a
confusing one, considering Acorn's own
‘locking' of files with a quite
different meaning.

Random access filing is catered for
very nicely on the Phloopy, with all
the commands that you'd expect to find
on a disc system. However programs that
make extensive use of random access are

tediously slow. This is because the
tape loop inside the Phloopy cartridge
is continuously moving round. Once one
item of data has been read in, if you
want to read another from the same
file, you have to wait until the same
area of tape comes around again.

The loop system does have the
advantage that no slow rewinding is
needed along the length of the tape, as
the Ultradrive requires. Loading a
single program can therefore be much
quicker. it's all swings and
roundabouts, but the overall advantage
seems to be with the Ultradrive.

One advantage, for now, that the
Phloopy has is that all the utilities
it uses are in the ROM. Like the
Ultradrive, these include a program to
transfer software from cassette. Phi
Mag Systems is (so far unsuccessfully)
trying to persuade software houses to
use Phloopies.

Although the Phloopy is, in many
ways, a more elegant solution to the
problem, it lacks the reasonable price
and the well thought out approach of
the Ultradrive. If you want a flashy
add on to impress your friends, the’
Phloopy wins hands down. If however you
are looking for a useful stopgap
between cassette and discs then the
Ultradrive is not only the cheaper
solution but more practical one as

well.
=

HINTS HINTS HINT

READING TEXT FROM DISC OR ECONET - D.J. Scott
If you are writing a program that is going to be displaying a large amount

of text, and you are using disc or Econet, t

hen a considerable amount of memory can

be saved by using *TYPE in the program to print out files of information. ==

SAVING ENVELOPES ~ J.S. Swiszczowski

Tn the past we have published hints on how to save definitions for function
keys and user defined characters. This basic technique can be extended to save the
currently defined envelopes. This is accompilished with:

*SAVE ENVS 8CO+109

=

SIDEWAYS ROM INDEX AGAIN - P.J. Higgins

Tf you have been using the ROM lister published in BEEBUG Vol.2 No.9 ‘with

Printmaster fitted, then you will find that

because of its length the title will be

concatenated with the next one. The solution to this is to add an additional line
1525 LDA &74 and .alter the #19 to #20 in line 1530.

BEEBUG

DECEMBER 1984

Volume-3 Issue 7

32

BEEEBUE

Weorlishep

INDIRECTION OPERATORS (PART 1)

by Surae

This month we start a two part series on the use of indirection
operators with a general introduction to the subject, and a detailed
look at the use of "?"™ and "I" in manipulating numbers in memory.

Indirection operators allow a Basic
program to access directly locations in
memory. The necessity for this occurs
when using some operating system calls,
and they are very useful for creating
some forms of data structure - and
manipulation. Those of you who are
familiar with other dialects of Basic
will come to realise that indirection
Operators are roughly equivalent to
PEEK and POKE in their function.

To illustrate the use of indirection
operators, and expose their
limitations, we'll use one byte of
memory, say &70. An understanding of
hex helps when using indirection
operators. Note that memory locations
&70 to &8F are always free to a user
program. We'll then perform a number of
fairly simple actions wupon this
location, and observe the results. Type
in the following, and study the results
displayed.

A=10 : PRINT A
?2&70=10 : PRINT ?&70

The "?" indirection operator is
normally pronounced as 'query',
although you may find it helpful to
read it as meaning 'the contents of'.
The name itself allows wus to
distinguish between the different
indirection operators. In both cases
above, the same result is printed; ie
1. Now change the 10 to a 1009, and
try the examples again. In this
instance, different results will be
produced. What is happening is that the
"?" operator only works with one byte
of memory at a time. The number 1009 is
bigger than 255 (the maximum number

below) . Clearly, if we want to store
numbers bigger than 255, the "¢

operator is not appropriate.

Fortunately, there is a method of
storing numbers up to +/-
2,147,483,647. This is accomplished by
using the "I" operator (pronounced
pling), which operates on four bytes at
a time. Thus, if you change the "?"
characters to a "I" characters in the
above examples, and then retype them,
you will find that the 1009 is
correctly handled. Another limitation
of the "?" operator is that it does not
handle negative numbers as fully as "{"
and normal Basic variables. The "?"
operator can only handle negative
numbers which have already been
converted to a 2's complement format
(see the Advanced User's Guide, page
3.

To illustrate another point, change
the number being using to 34.34 instead
of 1000, and try the above examples
again. This shows that pling stores
numbers only as integers (ie no decimal
part). There is no indirection operator
that = copes correctly with floating
point values.

In summary, "?" addresses a byte at
a time, whereas "!"™ works with four
bytes. Both deal just with integers,
but only "™ copes with negative
numbers in the way that you are used

which can be stored in a byte) and thus to, and thus it is the use of "I" which
the low byte only of this number (232) is equivalent to the use of a normal
is assigned to address &79 (see diagram integer variable in Basic. —
BEEBUG DECEMBER 1984 Volume-3 Issue 7

33

One immediate use of the "2
operator is to display in detail the
contents of any section of memory. The
program below demonstrates the use of
"?" in this way.

19 FOR A%= PAGE TO TOP

20 B%=?A%

3@ PRINT ~A%, B%,"=>";

40 IF B%<32 OR B%>126 B%=42

5¢ VDU B%

60 PRINT

79 NEXT

This steps through the area of
memory holding your program and reads

the byte at each location into B%
(carried out by line 20). It then
prints the memory address and the byte
value in hex, and checks to see if the
byte is printable as an ASCII value. It
sets B% to the ASCII value of an
asterisk if it isn't because various
control codes could trigger off the
drawing of random graphics in the
middle of the program. The byte is then
printed, and the loop is continued. If
you run this program straight away, the
characters displayed will be those
corresponding to this program. You
could also program a function key to do
this and use the routine to look at any
Basic program you choose to load into
memory. Note the way in which the
variable A% holds the address of the
byte of memory which we wish to access.

The program below illustrates a
slightly more powerful way of using the
indirection operators. See if you can
anticipate the function of 1line 93
before reading any further. When you
are ready, type in the program, run it,
and then press a few keys on the
keyboard (you should make sure that you
are not in mode 7 before you run the
this program) .

10 DIM X% 20

20 Y%=X% DIV 256

30 A%=10

40 REPEAT

50 ?X%=GET

60 CALL &FFF'1

70 VDU 23,128
8¢ FOR 1%=8 TO 1 STEP -1
90 VDU I%?X%

100 NEXT
110 vDU 128
12¢ UNTIL @

This short program uses one of the
operating system calls known as OSWORD
(at address &FFF1) to read the
definition of ‘a character, and then
manipulates this data to write the
character upside down. Note the way in
which line 10 is used to allocate 21 (¥
to 2¢) bytes to the program, with the
start address (of the first byte)
assigned to X%. The CALL to OSWORD (see
the User Guide page 214 for more
information on the use of CALL)
requires that the 'high byte' of the
address be in Y%, and this is achieved
by line 20 in the program. Although X%
contains the full address the OSWORD
call takes only the low byte of this
value. This manipulation of an address
in X% and Y% occurs frequently when
calling operating system routines.

Line 99 of the program contains an
an interesting variant on the use of
wpw. 197%X%, The effect of this is to
access the contents of (X3+I%). This
provides a powerful and flexible use of
w>n that has some similarities with
Basic arrays. By setting X% to point to
the start of a set of bytes and
incrementing I% within a loop, it is
easy to reference each byte in turn, as
in line 99 above. The alternatives to

.this would be to use ?(X%+I%), or for

the loop to go from X%+8 to X%+1, both
of which are less elegant.

After calling OSWORD at line 6@ with
a%=10, the eight bytes defining the
characters will be stored from the
address specified by X% and Y%. By
outputting these bytes in reverse order
(lines 89 to 1¢@) the character is
displayed upside down on the screen. A
further example of the extensive use of
indirection operators occurs in the
movedown routine published in BEEBUG
Vol.3 No.5.

Next month we will conclude our look
at indirection operators by looking in
particular at their use in connection
with string handling.

=

BEEBUG

DECEMBER 1984

Volume-3 Issue 7

34

SOUNDING OUT THE BEEB

Two Books Reviewed by Steve Ibbs

Two Dbooks have recently been published dealing with music and the
BBC micro. We asked Steve Ibbs, a lecturer in music and the director
of an electronic music studio to read both and give his reaction to
them.

This book contains 244 pages divided
into 13 chapters, and all the programs
are conveniently available on cassette
if required for a further £5.95.

The first chapter of this book is an
easy guide to 'What is Sound', and how
to generate sound on the BBC micro. It
is sufficiently detailed, without
losing those very readers the book was
aimed at, namely the enthusiast with
perhaps not much theoretical expertise.
The next chapter then proceeds to
explain traditional musical notation
with staves, scales, and rests.

Chapters four and five examine the
SOUND and ENVELOPE commands in some
detail. There are nine sample envelopes
for wvarious instruments and the
accompanying program displays the
envelope, and allows the user to change
it very easily and hear the result.
Another program later in the chapter
dealing with the pitch envelope can be
combined with this and together they
form a most useful aid.

Chapter seven looks at various sound
effects: zaps, zings, ricochet, space

ship etc. There is a small section on
sound effects in utility programs, and
a small rhythm-generator program.

The next part of the book looks at
the Beeb as a musical keyboard and the
limitations imposed by this. The last
part of this chapter contains a set of
programs enabling a bass sequence to be
set up with improvisation above it
being possible. With the development of
editing facilities these could, as the
last page suggests, be the basis of a
miniature recording studio, albeit
extremely limited. Chapter nine
contains several programs to produce
renditions of Mozart, Tchaikovsky, and
Sousa, (Monty Python's signature tune).

Chapters ten and eleven look at the
computer as a composer, within the
various traditions and rules governing
harmony, tonality, etc. Some of the
results are I feel rather artificial,
because the art of composition is
linked with our emotions, experiences
and expectations, attributes impossible
to program into a computer.

Chapter twelve looks at harmony and
transposition, and contains a program
for converting from one key to another.
This could perhaps be useful for those
learning about theory work, or involved
in song-arranging.

Generally the programs in the book
perform well, and are quite enjoyable
to use, the exception being "Hercules".
This produces Bizet's 'March of the
Torreadors' accompanied by a Hercules
strong man rippling his muscles in
synchronisation, and with applause to
start and finish. This has to be seen
to be believed, and can only inspire
readers to attempt something slightly
more adventurous.

BEEBUG

DECEMBER 1984

Volume-3 Issue 7

35

3, to complement the one in chapteif 4,
that will produce graphics, and a
print-out of the parameters.

The fifth chapter starts looking at
producing music, and there is an

This is a slightly thinner book, and interesting section on actually
with speech being covered as well, I programming musical notation, (used in
didn't expect there to be much of a later program), to easily reproduce
interest in the music section, but I the right symbols.

was very pleasantly surprised.
Chapter six deals with the Acorn

The first chapter introduces us to speech synthesizer module, and at last
the possibilities of sound on the it is put into simple layman's
computer, and the very first program language, with lots of examples so I
impressed me with the sound effects of can actually get words out, and hints
waves and seagulls. A second program on compounding syllables together to
converts the keyboard to generate four produce new words.
octaves of notes, accompanied by a
clear screen display. The appendices are very

comprehensive, giving details of the

Chapter two explains what sound is, sound buffers, FX calls, speech
and this is more technical than Ian vocabularies, pitch parameters and two
Waugh's book with several diagrams more envelope generators.
illustrating basic scientific ideas. In
this chapter is one of the nicest In conclusion I found this book to
little programs I've seen for drawing be extremely useful, detailed, with
waveforms and their harmonics. lots of examples and ideas, and I have

to say that I preferred it to the Ian

The next two chapters deal with the Waugh book. Having said this, there are
SOUND and ENVELOPE commands in great programs in both that I will use, but
detail, with a plethora of small it is the Phillips book that will be
examples to illustrate the text. placed in the reference section!

Obviously a lot of the information is
duplicated between the two books, but I
did find the Phillips book to be more
helpful, mainly because of all the
examples. There 1is a good envelope
designer, but the Waugh program wins
here because of its simplicity of use
and the graphics. Phillips includes a
program later in the book, in appendix

HARD SPACES IN VIEW

TEf you are preparing a document using View, and insert text with the
justification turned on, then View occasionally adds a few spaces, and these can
confuse the formatting of the text. To solve this, edit the text with only
formatting switched on, and add the justification at a later date. This can be done
globally with the FORMAT command, but note that you should not use FORMAT directly
after a SCREEN, SHEETS or PRINT commands (this is a known bug in View 1.4 and 2.1);
press Escape twice to reset View.

=

NOISE FOR FIREWORKS - M. Scott

If you liked the fireworks program published in BEEBUG Vol.3 No.5, then you
might like to add the following line for some sound effects whilst the program is
running.

1g15 IF RND(10)<4 SOUND @,-15,4,1 =]

BEEBUG DECEMBER 1984 Volume-3 Issue 7

gested ‘:;‘o.So 12

36

asicd

2% BUILD YOUR OWN GRAPHICS TABLET (Part 2)
by Ben Miller-Smith

This month sees the second and concluding part of our hardware project
designed to help you build your own graphics tablet. This second part
is presented with a program to make full use of the tablet.

Having constructed the tablet, the
next step is to calibrate it so that
the voltages input from the
potentiometers to the analogue port can
be converted to a corresponding X,¥Y
position on the screen. We need to use
the program listed last month (and
reproduced again here for convenience) .

19 MODE 7

20 REPEAT

30 PRINT TAB(@,5);SPC(40)

40 PRINT TAB(@,5) ;ADVAL(1)

5@ PRINT TAB(20,5) ;ADVAL(2)

60 TIME=0:REPEAT UNTIL TIME>5Q
7@ UNTIL FALSE

CONVERTING THE VOLTAGES TO ANGLES

Run the above program and position
the first arm horizontally along the
base board from left to right and note
the ADVAL(1) reading (call it armlzero,
say). Swing the am to a straight down
position, at 9¢ degrees to the first
position, and again note the reading
(call it armlninety). The difference
armlninety minus armlzero represents 9¢
degrees, and armlzero is the reference
('zero') point, so the angle in any
position is given by the expression:

(ADVAL (1) - armlzero) * 9¢
/ (armlninety - armlzero)

with the appropriate values substituted
for amlzero and armininety.

g 100~

i
1, Y1) _—~

fength 1 arm 2 angle
\

m 1angle \

arm 1 zero \\

\
\
\
\

\
fength 2| arm 2 ninety

arm 1 ninety

X%, Y%)

GEOMETRY

The . second arm is calibrated in a
similar fashion, but note that the
angle is with respect to the first arm,
not the base board. Stretch both arms
out horizontally and note the ADVAL(2)
reading (arm2zero). Without allowing
arm 1 to move, swing arm 2 down to a
vertical posiion at 90 degrees to arm 1
and note reading armZninety. As above,
the arm angle will be given by the same
expression, with the appropriate values
for arm2zero, arm2ninety and using
ADVAL(2) as the input reading. Check
that all is well by amending the test
program as follows:

Add lines:

39 armlangle = (ADVAL(1) - armlzero) *
99 / (armininety - armlzero)

49 arm2angle = (ADVAL(2) - arm2zero) *
99 / (arm2ninety - arm2zero)

where the armzero and armninety values
are those noted during the initial
manual checks and calibrations above.
Change lines:

40 PRINT TAB(@,5); armlangle
50 PRINT TAB(20,5); arm2angle

Run the program and check that the
displayed angles are consistent with

- the arm positions as you move them

about. Note that the angles may be
displayed as negative for some typical
arm positions.

CALCULATING AND DISPLAYING THE POINTER
POSITION

Consider arm 1. Its angle with
respect to the base board horizontal is
known, so the end point (i.e. the hinge
with arm 2) can be calculated if the
length is known. Call the length of arm
1 ‘'lengthl'. The X,v position of the
hinge is then given by:

X1
Yl

lengthl * COS (RAD (arml angle))
lengthl * SIN(RAD(arm]angle))

Hou

BEEBUG

DECEMBER 1984

Volume-3 Issue 7

37

remembering to convert the angle from
degrees to radians with the RAD
function.

With the position X1,Y1 known, the
pointer position at the far end of arm
2 can be calculated from the angle and
length of arm 2. Note that the
arm2angle value is with respect to arm
1 so we have to allow for this by
adding the two angles. We also want the
pointer position (PX,PY) with respect
to the base board fixed point (the
first potentiometer) rather than X1,Y1.
The pointer position is thus given by:
PX = X1 + length2 * COS (RAD (armlangle
arm2angle))
v1 + length2 * SIN(RAD(armlangle
arm2angle))

PY

+ 0+

The final points concern the
transformation of PX and PY into useful
graphics coordinates for display.
Assuming the arms are of equal length,
initialise lengthl and length2 to 1023
at the start of the program (if they
are unequal, set the long one to 1923,
and amend the value of the other to be
in the same ratic as the actual
lengths) . Because of the way the angles
are measured, the arms are configured
and the position of potentiometer one,
the actual screen X%,Y% value for the
pointer is given by:

INT (PX)
INT (length2 - PY)

<
men

o o

GRAPHICS TABLET PROGRAM

Combining all of the above leads to
the following program that provides a
basic Graphics Tablet input facility,
including automatic calibration before
use. PROCinit goes through the process
of calibrating the =zero and ninety
degree arm positions with your help,
and PROCgetXY then returns the current
X,Y position of the pointer in the
variables X% and Y%. PROCinit can be
simplified if you wish (with some loss
of day to day accuracy) by equating
‘calpoint (1 to 4)' with the numeric
values of ‘armlzero', ‘armlninety',
tarm2zero' and ‘arm2ninety' noted in
the manual calibration exercise, and
deleting PROCcalibrate and the calls to

C Clear Screen (& Pen Up)
U Pen Up
D Pen Down

with a cross-hair cursor always showing
the Pen position (if on screen). It may
easily be modified and extended, for
example by using the keyboard to
provide additional commands for colour
switching, coordinate capture, scaling,
etc.

FINISHING TOUCHES

The base board can be provided with
small feet so that it can siton a
table top, providing clearance for the
body of the board's potentiometer. The
feet can be made from small scrap
blocks of wood, glued on. If you make
your own feet it may be useful to
arrange that the board slopes slightly
towards you by adjusting the height
appropriately.

The potentiometer shafts may be cut
shorter, almost flush with the top
surfaces of the arms, and small
circular paper or cardboard discs glued
onto the ends of the shafts. If these
discs are marked with calibration
points corresponding to the positions
of the arms any subsequent slippage of
the arm/shaft joints will be obvious,
and the joint can be repaired and the
unit re-calibrated if necessary.

The base board surface may be marked
out with horizontal and vertical lines,
especially those showing the
corresponding ‘screen window', and with
reference points for placing A4 and
other standard paper sizes on the
board. It is also desirable to provide
horizontal and vertical ‘calibration’
lines for the two arms, for use during
the initial auto-calibration operation
(PROCinit) .

19 REM Program GRAPHT
20) REM Version B@.2
3y REM Author J.B. Miller-Smith
40 REM BEEBUG DECEMBER 1984
5¢ REM Program subject to Copyright
6g =

- 19@ ON ERROR GOTO 1779

it, thus avoiding the slightly tedious 118 MODE1

setting up operation. The main program 120 PROCinit

loop runs forever, and provides three 13¢ REPEAT

basic commands: 140 key=INKEY (@) —
TR

BEEBUG DECEMBER 1984 Volume-3 Issue 7

38

150 IF key=ASC("™ ") THEN PROCreset:GO
TO190
160 IF key=ASC("U") THEN pen=4

179 IF key=ASC("D") THEN pen=5
180 :
196 PROCgetXy

2@ PROCcursor (X%,Y%)

210 PLOT pen,X%,Y%

220 UNTIL FALSE

230 END

240 :

1000 DEF PROCinit

1019 :

1020 REM Limit ADC to 2 Channels

1030 *FX16,2

1040 :

1050 REM Change 'lengthl%' and/or

1060 REM 'length2%' to suit hardware
1070 lengthl%=1923

1089 length2%=1¢23

1099 :

1160 REM Cursor off, set colours, &
1110 REM DIM calibration points array
1120 vDU 23,1,0;0;0;0;

113¢ vDU19,1,7,9,9,0,19,2,3,0,9,0

1140 DIM calpoint(4)

1159 :

1160 REM For both 0 & 9¢ deg. positions
1170 REM on each arm, average the ADVAL
1180 REM value over 1¢ readings to help
1190 REM remove jitter. Prompt user to
1200 REM position arms as required.
1210 PROCcalibrate ("1 horizontal along
board”,1,1)

1220 PROCcalibrate ("1 vertical down bo
ard",2,1)

1230 PROCcalibrate("2 in line with Arm
1",3,2)

1240 PROCcalibrate ("2 at right angles
to Arm 1%,4,2)

1250 ¢

1260 PROCreset

1279 ENDPROC

1280 :

1299 DEF PROCcalibrate (prompt$,posn,ch
an)

1300 PRINT'"Make arm ";prompt$;"."'vwpy
ess any key, wait for Beep."'

1319 REPEAT UNTIL GET

1320 calpoint(posn)=0

1330 FOR 1%=1 TO 10

1340 calpoint (posn)=calpoint (posn)+ADV
AL(chan)

HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTSVHIN'T
BETTER LOADING WITH TENSAI TAPE RECORDERS - R. Barnes '

tape files to load, then try solderin
47K ohm resistor across the 'remote’

1350 NEXT 1%

1360 vDU7

1378 calpoint(posn)=calpoint (posn) /19

1380 ENDPROC

1390 :

1400 DEF PROCgetXY

1419 :

142¢ REM See text for explanations

1430 armlangle=(ADVAL (1)-calpoint(1))*
90/ (calpoint (2)-calpoint (1))

1449 arm2angle=(ADVAL (2)-calpoint (3))*
90/ (calpoint (4)-calpoint (3))

1450 armlangle=RAD (armlangle)

1460 arm2angle=RAD (arm2angle)

1470 X%=INT (length1%*COS (armlangle) +le
ngth2%*COS (armlangle+arm2angle)) -

1480 Y%=length2%-INT (lengthl%*SIN(arm
langle) +length2%*SIN (arml angle+arm2angl
e))

1490 ENDPROC

1500 :

. 1510 DEF PROCcursor (cx%,cy%)

1520 MOVE cx%,cy%

1530 GCOL1,2

1549 PROCdrawcross
1550 MOVE oldcx%,oldcy%
1560 GCOL2,1

1570 PROCArawcross

1580 oldcx%=cx%:oldcy%=cy$
1590 GCOLY,1

1609 ENDPROC

1610 :

1620 DEF PROCArawcross
1630 PLOT 9,16,8

1649 PLOT 1,-32,0

1650 PLOT @,16,16

1660 PLOT 1,0,-32

1670 PLOT@,d,16

1680 ENDPROC

1690 :

1709 DEF PROCreset
1710 CLS

1720 pen=4

1730 0ldcx%=2000

1740 oldcy%=2000

175@ ENDPROC

1760 :

1770 ON ERROR OFF

1780 MODE 7

1790 IF ERR<>17 REPORT:PRINT " at " ERL
1809 END

If you have a cheap Tensal tape recorder and are having problems getting

g a @.1 microfarads capacitor in series with a
jack socket.

=

BEEBUG

DECEMBER 1984

Volume-3 Issue 7

39

é’/
=
=)

DEBUGGING

PROGRAMS (PART 2)

by Ben Miller-Smith
Ben Miller-Smith continues with the problems of debugging

\

programs by looking this month at run-time errors, their
RUN-TIME ERRORS

/ i
Run-time errors

are those faults
which occur during
the execution of a
program, but which
are not due to the
Basic interpreter
failing to under-—
stand and execute
the statements
making up the
program, except
perhaps in special
circumstances.

Run-time errors
may cause all kinds
of problems and
display all sorts
of symptoms as you
try and run the
program, and a
different kind of
detective work may be needed to track
them down, find the cause, and rectify
it. Let's look first at some run-time
problems that can still be due to
typing or similar mistakes, and which
are related to the 'No such variable'
type of fatal error discussed last
month.

360 <o

370 ...

380 droprat = startrate + gravity *
time

390 ...

400 newheight = time * droprate

410 ...

This example from the last section
was used to illustrate the effect of a
typing error in one line (380) causing
a fault to be reported in another line
(400) . The situation would be different
if the variable 'droprate' (spelt
correctly) had already been used or
initialised earlier in the program,
around line 200 say, as part of another
subtask. In this case line 408 will
execute without reporting any error,

detection and correction.

but will not be using the expected
current value of ‘'droprate' that was
supposed to be calculated in line 380 -
it will still be the old (line 280)
value: no errors will be reported, but
the program will not operate correctly.

Other run-time errors can be due to
attempts by the program to work out
impossible arithmetic or other results,
usually because the actual value of one
or more variables used in the program
has taken on an unexpected value.
Examples include:

Division by zero attempted in an
expression.

Square root of a negative number
attempted.

Attempting to evaluate the LOG of
a negative number.

Exceeding the EXP range (up to 88
is valid).

You may quickly find that the
commonest cause of such errors is the
data input into a program by you or
other users. It is surprisingly easy to
'crash' many programs by entering
unlikely numbers when some input is
requested. This reflects the fact that
most programmers are somewhat careless
(or optimistic) in their assumptions
about the validity of data that will be
given to their programs by users.
Children especially are likely to enter
all sorts of funny data, consciously or
unconsciously, but even adults can make
typing errors when entering numbers or
other information. A good quality
program will trap such potential errors
and report them to the user, and give
him another chance to re-enter the data
before continuing with the program -
nothing is more annoying than to have a
program crash after several minutes of
use just because of a typing error,
especially if you have spent that time
carefully typing in data.

BEEBUG

DECEMBER 1984

Volume-3 Issue 7

40

Some run-time software bugs can be

due to the incorrect wuse of VDU
instructions, either through a
misunderstanding of the required
format, or through a typing error. A

VDU command in the range VDU2¢ to VDU29
that has accidentally been entered with
the second digit missing (thus creating
a VDU2) will cause the program to try
outputting text to a printer, which if
not present or enabled, will cause the
program to hang up once it has filled
the printer buffer (and probably output
some text to the screen). Pressing
Escape at this point may give you a
clue as to the location of the faulty
VDU statement, but not if the incorrect
VDU command is part of an
initialisation procedure (defining some
characters with a VDU23 for example).
There is little for it but to look
carefully through all the lines
containing VDU statements, and check
them carefully.

Strange effects can arise from the
incorrect format of a VDU instruction,
either because of one or more missing
parameters or an incorrect parameter
separator (some VDU instructions
separate parameters by a comma (,),
others by a semicolon (;) =~ always
check this carefully). For example:

19 vDU 19,1,1,0
20 PRINT "VDU Format 2 "
30 END

will result in the display of "U Format
?", which is a trifle unexpected. This
happens because the VDU instruction at
line 2¢ is missing two parameters, and
thus the next two characters (the 'VD'
of line 20) to be output to the screen
are taken as the two extra parameters
required.

2. TRACING A PROGRAM

Sometimes a bug in a program defies
all efforts to find it by the normal
methods as outlined above, and a more
drastic approach becomes necessary. In
these cases it is usually a quite
subtle error that 1is causing the
problem, and it may only occur
infrequently, and give you little
information as to where or why. If you
can find some particular combination of
inputs or other circumstances that
always reproduces the errors then that

is half the battle, but this is not
always easy. It becomes necessary to
Trace the operation of the program,
either in whole or in part, using one
or both of the following techniques.

The BBC Basic command TRACE ON will
cause every line number executed to be
printed on the screen in square
brackets during the execution of the
program. This makes a real mess of the
screen, especially if the program is
also outputting text or graphics as it
runs (but see the TRACER program in
this issue for a better solution), but
does at least enable you to follow the
sequence of events as the program is
executing. This may well give you a
clue to the problem if you can spot an
unexpected departure from the expected
sequence, especially if you can create
the troublesome error condition with
the relevant inputs or whatever. As a
first 1line of attack, proceed as
follows.

Add a VDU14 statement to the program
as early as possible, but after any
mode changes. This switches on the
'paged’ mode of operation so that no
more than a screenful of information is
printed at any one time, and the
program and trace output will remain on
the screen until you press the Shift

key -~ you thus have time to study the
display. Type TRACE ON, and run the
program,

If you have a printed listing of the
program then you should be able to
follow the course of the program's
execution in as much detail as
necessary, otherwise make mental or
written notes of anything that strikes
you as odd, especially if the elusive
fault occurs (in which case make extra
careful notes of the 1line numbers
executed leading up to that point). Go
back to a 1listing of the program and
follow the course of execution
indicated by the trace listing of
executed line numbers. Look especially
for conditional or similar tests
(IF-THEN etc.) which do not behave as

expected, or for loops (FOR-NEXT or
REPEAT-UNTIL) that do not terminate
correctly.

This process may be sufficient in
itself to identify the problem and give

BEEBUG

DECEMBER 1984

Volume-3 Issue 7

41

you a flash of insight as to the
necessary cure, but in some cases you
may have to use the trace facility more
selectively, perhaps coupled with some
additional information about the run
time value of one or more variables.
This can be done by including TRACE ON
and TRACE OFF statements at selected
points in the program to switch the
trace listing on and off and, if
necessary, by including additional
statements in the program that enable
you to examine the value of one or more
variables in the program at strategic
points. The simplest way of doing this
is often to include extra lines of the
form:

135 IF droprate > 10@ THEN PRINT
“Jroprate =";droprate : REPEAT UNTIL
GET

if you suspect that the value of
'droprate’ may be being miscalculated
at some point, and values over 100 are
invalid. On executing this line the
current value of ‘'droprate' will be
printed if it exceeds 108, and you then
have the option of pressing a key to
continue, or pressing Escape. After an
Escape you will also have the option of
asking for the value of any other
variables by using a direct command of
the form:

PRINT variablel,variable2,variable3

which may help to establish what has
gone wrong.

The above line of attack can
sometimes be improved by including an
extra procedure in the program that
will display on the screen (in an
unused corner say) the value of one or
more variables at strategic points in
the program. An example of such a
procedure could be:

9¢0@ DEFPROCvartrace(vl,v2,v3,posx%,
posy%)

9019 LOCAL cursx%,Cursy?

9020 cursx%=P0S: cursy%=VPOS

9930 PRINTTAB (posx%,posy%) ;vl,v2,v3
940 REPEAT UNTIL GET

995@¢ PRINTTAB (cursx%,cursys);

996@ ENDPROC

This procedure stores the current
position of the text cursor in 'cursx?d’
and ‘cursy%', and prints the value of
the three variables named in the
procedure call at position 'posx%' and
"posy%' also given in the call. It then

awaits any key depression (giving you

_time to note the variable values),

restores the original text cursor
position, and exits.

Calls to this procedure can be
scattered around in the program to
check on the current value of relevant
variables - a typical call could be:

12¢ PROCvartrace (droprate,gravity,d,
5,20)

which would print the current values of
‘droprate' and ‘gravity' (and a zero,
to make up the third parameter) at text
cursor position (5,20). Note that you
can make <calls to this procedure
conditional on the value of other
variables or situations in the program
by including the «call in an IF
statement if necessary.

3. CONCLUSTON

Fault finding in BBC Basic programs
is usually not too difficult, thanks to
the powerful and 'user-friendly' error
handling software built into the
system, but there are occasions in
which the reported fault is misleading,
and some detective work may be
necessary. The more practice you have
in debugging programs, the quicker
you will recognise the different types
of error that may occur. There is a lot
to be said for deliberately introducing
errors into a known, working program
(better still, get someone else to do
it), and experimenting with the
debugging techniques covered in these
notes. Bugs can be elusive, but they
are there to be found. Happy Hunting!l =

T e e e e e TR

MACROS IN ASSEMBLER

HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS

If you are using functions to generate macros in the Beeb's 6502 assembler, you
will find it more reliable to use EQUS to call your code (and return a null string)

than to use OPT (and return the current

'pass'). The reason for this is that there

are some obscure bugs in the OPT section of Basic which don't occur when using EQUS.
G R A

BEEBUG

DECEMBER 1984

Volume-3 Issue 7

42

2" GEORGE AND THE DRAGON

VA by O.R. Thomas

Now it's time for some light-hearted relief from zapping and
blasting aliens. No sooner has your Christmas pudding settled than
you are off to rescue ‘'Hideous Hilda' from the flames of the dragon,
in this fast and exciting action game from O.R. Thomas.

The idea of the game is to run along
each level, jumping over the moving
hole to collect the key which will
allow George to climb the ladder up to
the next level. George needs to reach
the top level to free 'Hideous Hilda'
before the dragon's flame reaches her.
If you succeed in freeing Hilda, you
proceed onto the next screen, where in
addition to moving holes in the floor,
you will have to face the additional
hazard of arrows being fired just above
your head.

The keys to use to play this game
are 'zZ' and 'X' for left and right,
plus '/' to climb the ladders and
'Shift!' to jump. There are nine
different skill levels ranging from 1,
which is fast, to 9 which is slow. As
you complete each screen, the game
automatically gets faster and faster.

Remember to take extra care when
typing in the character and string
definitions, as mistakes here will
corrupt the screen display when you run
the program.

S0 now you are ready to undertake
your perilous quest, to
wicked

thwart the
dragon by reaching ‘'Hideous

10 REM PROGRAM GEORGE
2(REM VERSION B@.2
30 REM AUTHOR 0.R.Thomas

BEEBUG

40 REM BEEBUG DECEMBER 1984

50 REM PROGRAM SUBJECT TO COPYRIGHT

60 :

100 ON ERROR GOTO 2950

118 MODE7

120 PROCinstructions

130 hi%=@:MODE 7:REPEAT

140 PROCskill:PROCvariables

150 FOR lives%=2 TO @ STEP-1

160 MODE5:PROCcharacters

17@ PROCscreen:PROCsetup

180 time%=0:totaltime$=0

199 REPEAT:time%=time%+1

200 IF time%>=pause% time%=@:totaltim
e?¥=totaltime%+1:VDU5:GCOLY, 2 :MOVE (total
time%*32)+32,816: PRINTflameS$: VDU4

21¢ IF totaltime%=37 dead%=TRUE

220 PROCman

230 IF NOT jump% AND xpos%=holepos% d
ead%=TRUE: GOT0290%

240 PROChole

25¢ IF NOT jump% AND xpos%=holepos% d
ead?¥=TRUE: GOT0290

260 IF xpos%=keypos% AND ypos$=keyhei
ght% key%$=TRUE:SOUND1,-15,108,1:score%=
score%+50: PROCscore tkeypos$=20

27¢ IF arrow$ AND xpos%=arrowpos2 AND
ypos%=keyheight% dead%=TRUE:GOT029%

288 IF arrow$ PROCarrow

290 UNTIL dead%:PROCdeath

300 FOR ag%=1 TO 15:SOUNDY,-15+ag%,10
@, 2:NEXT

310 jump%=FALSE: junpno%=@:ychange$=0:
xchange$=0

";TAB (4,1

1000 DEF PROCvariables
1010 key%=FALSE:dead%=FALSE:score=
1020 level?=1:jump%=FALSE: jumpno%=0
1030 arrow%=FALSE:arrowpos$=10

1049 ENDPROC

1959 :
—

e e e
DECEMBER 1984

Volume-3 Issue 7

43

T wor-aw B The e s

erops

*2.

1060 DEF PROCcharacters

1079 VDUZ3,224,56,56,56,48,62,62,56,56
:VDU23,225,56,56,56,48,48,48,48,56

1980 VDU23,226,28,28,28,12,124,124,28,
28:VDU23,227,28,28,28,12,12,12,12,28

1g9¢ VDU23,228,60,60,189,153,255,255,6
@,6@:VDUZ3,229,6Q,6@,6@,36,36,36,36,1@2

1199 VDU23,239,0,0,9,0,24,44,118,175
111¢ vDU23,231,32,32,48,60,251,255,254
,252:VDU23,232,248,252,255,254,224,96,1
12,89

1120 vDU23,233,9,16,32,96,224,96,32,16
:VDU23,234,60,60,126,126,255,255,36,102

113¢ VDU23,235,96,97,149,159,159,144,9
6,96:VDU23,236,255,255,255,129,66,36,24
+255

1140 vDU23,237,129,129,129,255,255,129
,129,129:VDU23,238,0,%,@,99,254,99,%,@

115¢ vDU23,239,0,9,9,198,127,198,0,0:VD
U23,24ﬁ,129,129,129,129,129,129,129,129
1160 VDU19,3,4;9;

1170 VDU23;8202;0;0;9;

1180 right$=CHRS17+CHR$1+CHRS224+CHRS1
J+CHRS8+CHRS 1 7+CHR$2+CHR$225

119¢ left$=CHR$17+CHRS1+CHRS226+CHRS10
+CHRS84+CHRS 1 7+CHRS2+CHR$227

1200 Still$=CHR$17+CHR$1+CHR$228+CHR$]
G+CHR$8+CHR$]7+CHR$2+CHR$229

1219 dead$=CHR$32+CHRS1@+CHR$8+CHRS17+
CHRS2+CHR$230

1220 dragon$=CHR$17+CHR$1+CHR$231+CHR$
10+CHRS8+CHRS232

1230 flame$=CHRS$17+CHR$2+CHR$233

1240 maiden$=CHR$17+CHRS2+CHRS228+CHRS
]Q+CHR$8+CHR$17+CHR$1+CHR$234

1250 key$=CHR$17+CHR$2+CHR$235

1260 safefloor$=CHRS17+CHR$1+CHR$236

1270 dangerfloor$=CHR$17+CHR$3+CHR$236

1289 ladder$=CHR$17+CHR$2+CHR$237

129¢ doubleladder$=CHRS$17+CHRS2+CHRS23
74+CHRS10+CHR$8+CHRS237

1300 arrowleftS$=CHRS17+CHR$2+CHR$238

1319 arrowright$=CHR$17+CHRS$2+CHRS239

1320 gap$=CHR$17+CHR$]+CHR$240

1330 blank$=CHR$32+CHR$1Q+CHR$8+CHR$32
1349 ENDPROC

1350 :

136@ DEF PROCscreen

137¢ GCOL®,130:VDU24,d;847;1279;1023;
1380 CLG:VDU24,0;16;1279;80; :CLG

1399 GCOL@,128:VDU24,8;855;1271;1015;
1400 CLG:VDU24,8;24;1271;72;:CLG

1410 VDU24,9;0;1279;1023;:VDUS

1420 GCOL®,1sMOVE24,991

143¢ PRINT"George & The Dragon”

1440 GCOL@, 2:MOVE32,995

145@ PRINT"George & The Dragon”

1460 VDU4:PROCscore

147¢ PRINTTAB(6,3) " SCORE i

1480 PRINTTAB(9,4)"HI ="

149¢ PRINTTAB(6,30) “"LEVEL nelevel®
15(¢ PRINTTAB(,6)dragons$

1510 PRINTTAB(19,6)maidens

152¢ PRINTTAB(1,26)still$

1530 xpos%=1:ypos%=26

154¢ PRINTTAB(J,8)STRINGS (20,dangerflo
or$)

1550 FOR ah%=12 TO 28 STEP 4

1569 PRINTTAB (0,ah%)STRINGS (20,safeflo
or$)

157¢ PRINTTAB (4,ah%)STRINGS (12,dangerf
loor$)

1580 NEXT:anyx%=18

159¢ FOR ah%=8 TO 24 STEP 4

1600 FOR anyy%=ah% TO ah%+3

16190 PRINTTAB(anyx%,anyy%)ladder$

1620 NEXT

1630 IF anyx%=18 anyx%=1 ELSE anyx%=18
1640 NEXT

165@ ENDPROC

1660 =

1670 DEF PROCscore

168@ COLOUR2

169¢ IF lives%<1 GOTO 1730

17¢0% FOR ah%=@ TO lives%-1

1719 PRINTTAB(ah%+1,3)right$

1720 NEXT

173¢ PRINTTAB (lives%+2,3)blanks

1740 PRINTTAB(14,3) ;score%

175¢ PRINTTAB(14,4);hi%

176¢ ENDPROC

1779 =

1780 DEF PROCman

179¢ IF jump% PROCjump:GOTO1860

180@ xchange%=0

1819 ychange%=0

1820 IF INKEY(-98) AND NOT jump% xchan
ge%=-1

1830 IF INKEY(-67) AND NOT jump% xchan
ge%=1

184¢ IF INKEY(-1) Jjump%=TRUE

185¢ IF INKEY(-105) AND POINT (xpos%*64
, (32-ypos%) *32+36) =2 AND key% PROCclimb

—

BEEBUG DECEMBER 1984 Volume-3 Issue 7

44

AMarepicsEm W ¥ B 8 i s e

x?’”

£ =EORE
| SRR

1860 IF xchange%<>@ OR jump$ PRINTTAB(
Xpos%,ypost)blank$: IF POINT (xpos$*64, (3
2-ypos¥) #32+36) =2 AND NOT jump$ OR POIN
T (xpos%*64, (32-ypos$) *32+4) =2 PRINTTAB (
xpos%,ypos%)doubleladders

187¢ IF jumpno%=3:junpno%=@:jump%=FALSE

1880 xpos%=xpos¥+xchange$

1890 ypos%=ypos%+ychange%

1900 IF xpos%<@ xpos%=0¢

1910 IF xpos%>19 xpos%=19

1920 IF xchange$%=1 PRINTTAB (Xpos$%, ypos
%)rights

1934 IF xchange%=0 PRINTTAB (xpos$%,ypos
$)stills

1940 IF xchange%$=-1 PRINTTAB (Xpos$,ypo
s%) lefts

195¢ ENDPROC

1960 :

1970 DEF PROCclimb

1980 key$=FALSE

1999 FOR ah%=1 TO 4

20@¢ SOUND1,-15,50*ah%,2

2010 IF ah%=1 PRINTTAB (xpos%,yposs+1) 1
adder$: GOT02039

2020 PRINTTAB (xpos%,ypos3+1)doubleladd
er$

2030 ypos%=ypos%-1

204@ PRINTTAB (xpos%,ypos%)still$

2050 NEXT

2060 score%=score%+10:PROCscore

2079 IF ypos%=6 CLS:level%=level%+l:sc
ore%=score%+ ((37-totaltime$) *14d) : PROCsc
reen:totaltime%=0:IF pause%>5 pause%=pa
use%-1

208¢ PRINTTAB (arrowpos$,keyheight$%) ;CH
R$32

2090 IF POINT (arrowpos$*64, (32-keyheig
ht?) #32+4) =2 PRINTTAB (arrowpos$ keyvheiq
ht%)ladder$

2109 PROCsetup

211¢ ENDPROC

2129 :

2130 DEF PROCjump

2149 jumpno%=jumpno%+1

2150
2160
2179

IF jumpno%=1 ychange%=-1
IF jumpno%=2 ychange$=0¢
IF jumpno%=3 ychange%=

2180 SOUND1,-18,140+ (3@*ychange$) ,1

2199 ENDPROC

2209 :

2219 DEF PROCsetup

2220 IF ypos%<26 PRINTTAB(4,ypos$+6)ST
RINGS (12,safefloor$)

2230 holepos%=1g:holedirg=1

2240 keypos%=RND (12)+3:keyheight%=ypos
2-1

2250 key%=FALSE: PRINTTAB (keypos$, ypos$
-1)key$

2260 IF level®>1 arrow%=TRUE:arrowpos$
=RND (18) : IF arrowpos%<1@ dir%=1 ELSE di
re=-

2279 ENDPROC

2280 :

2290 DEF PROCarrow

2300 PRINTTAB (arrowpos%,keyheight$) ;CH
R$32

2314 IF arrowposi=keypos$ PRINTTAB (arr
owpos$,keyheight?) ;key$

2320 IF POINT (arrowpos%*64,(32-kevheig
ht%) *32+4) =2 PRINTTAB (arrowpos?,keyheig
ht%) ladder$

2330 arrowpos%=arrowpos%+dirs

2340 IF dir%=1 AND arrowpos$>19 dirg=-
1:arrowpos3=19

2350 IF dir%=-1 AND arrowpos$<g dirs=1
sarrowposy=g

2360 IF dir%=1 PRINTTAB (arrowpos$,keyh
eight®)arrowright$

2370 IF dir%=-1 PRINTTAB(arrowpos$%,key
height%) arrowleft$

2380 ENDPROC

2390 :

2409 DEF PROChole

2419 PRINTTAB (holepos%,keyheight$+3)da
ngerfloor$

2420 holepos%$=holepos%+holediry

2430 IF holepos%>15 holepos%=15:holedi
rg=—

2449
=1
2450
PS$

2460 ENDPROC
2479
2483 DEF PROCdeath

2490 IF totaltime%=37 PRINTTAB(19,6)de
ad$:GOTO 2550

250¢ REPEAT

2510 PRINTTAB (Xpos$,yposs)CHRS32

2520 ypos%=ypos%+1

2530 PRINTTAB (xpos%,ypos$)stills

2540 UNTIL POINT (xpos%*64+32, (32-(ypos
$+2))*32-4)>0 OR yposg=27

2550 PRINTTAB (xpos%,yposs)deads

IF holepos%<4 holepos%=4:holedirg

PRINTTAB (holepos%,keyheight%+3)ga

>

BEEBUG

DECEMBER 1984

Volume-3 Issue 7

45

2560 ENDPROC 2710
2570 : 2720 DEF PROCskill
2580 DEF PROCinstructions 2730 VDU23;8202;0;9;0;
2590 CLS 2740 PRINTTAB (9,14)CHRS141;CHR$129;"SK
260@ VDU23;8202;0;0;9; ILL LEVEL (1-9):"
261¢ PRINT'CHRS$129;CHRS157;TAB(8) ;CHRS 2750 PRINTTAB(9)CHRS$S141;CHRS131; "SKILL
131;CHR$141; "GEORGE AND THE DRAGON" LEVEL (1-9):"
2620 PRINTCHRS$129;CHRS157;TAB(8) ;CHRS1 2760 *FX15,1
31;CHRS$141; "GEORGE AND THE DRAGON" 2778 pause%=5+(GET-48)
2630 PRINTTAB(13)CHR$134;"by O.R.Thoma 2780 IF pause%<6 OR pause$>14 GOTO 2770
g 279¢ PRINTTAB (29,14) ;pause’-5
2640 PRINTCHRS$133;" Help George to do 280% PRINTTAB(29,15) ;pause%-5
dge arrows and leap"CHRS133;"over hol 281¢ TIME=Q:REPEAT UNTIL TIME>70
es as he rushes to grasp the"CHRS$133; 2820 ENDPROC
"keys allowing him further up th 2830 DEFPROCscodisp
e"CHRS133; "battlements. But hurry - 284¢ vDU22,7
you must"; 2850 FORA%=2TO3
265¢ PRINTCHRS133; "rescue Hideous 2860 PRINTTAB(9,A%)CHRS141;CHRS (127+A%
Hilda before the"CHR$133;"dragon's) ; "YOUR SCORE WAS ";STRS (score%)
flames reach her.” 2870 NEXT
266@ PRINT'''TAB(4)CHRS133;"The contro 2880 PRINT''':FORA%=1TO2
1s are as follows :"'TAB(13)CHR$131;"Z 2890 PRINTTAB (10)CHRS141;CHRS (132+A%) ;
- left"'TAB(13)CHRS131;"X - rig "ANOTHER GAME ?"; :NEXT
ht"*'TAB(13)CHRS131;"/ - climb"'TAB(2960 *FX15,1
9)CHRS$131;"SHIFT - jump" 2910 Q$=GETS:PRINTCHRS11;0Q$;CHRS8 ;CHRS
2670 PRINTTAB (@,24)CHRS$129;CHR$157; TAB 19;08
(7)CHRS$136;CHRS131; "PRESS SPACE TO CONT 292@ ENDPRCC
INUE"; 2930 :
2680 *FX15,1 294¢ ON ERROR OFF:MODE 7
269¢ REPEAT UNTIL GET=32 295¢ IF ERR=17 END
27909 ENDPROC 2960 REPORT:PRINT" at line ";ERL:END,;EJ

HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINT

COLOURFUL GCOL PARAMETERS - Paul Watts

As you may know, you can get the operating system to draw in two striped
colours by using the GCOL statement with silly parameters. Here is a routine
(non-Tube compatible as it stands) that allows you to specify the two colours
yourself. The displayed colours will, of course, be dependent upon the current
chosen mode.

DEF PROCgcol (option,first,second) LOCAL a,b

GCOL option,first:a=?&359 AND &AA:GCOL option,second

b=2&359 AND &55:?&359=a + b:ENDPRCC =

READING SIDEWAYS ROMS

Tf you want to read a byte x from ROM y, then use the function below, with x
as the first parameter and y as the second:
DEF FNpeek (!&F6,Y%) = USR(&FEFB2) AND &FF
For example, to read the byte at &B89AB in ROM 7, then the following would be used:
PRINT FNpeek (&892B,7) =

STRANGE VARIABLES -~ Tony Walsh

If you have Toolkit and you wish to make a program unalterable, then try
changing variables to built in words such as PRINT (with the search and replace
option), but omit the £ sign to indicate that it is a Basic keyword. Toolkit then
replaces your variable for one spelt like the Basic keyword, but not tokenised. Most
attempts to change the program will result in the variable being tokenised, and thus
Basic producing an error when the program is ru . =

BEEBUG DECEMBER 1984 Volume-3 Issue 7

46

s o2l CHDISTMAS FRUIT MACHINE

aﬂd 32 k

by A. Hayden

Have you ever wanted to play a fruit machine without the risk of
losing a pocketful of money? Well BEEBUG gives you the chance to do
Jjust that with A.Hayden's computerised and colourful version.

Fruit Machine is a colourful (and
noisy) game in which the player
attempts to increase their wealth by
gambling their money. You start the
game with £2.00, and each spin of the
reels costs 10 pence, with a chance of
winning anything from 26 pence to £3.00
(and not just in tokens either).

There are three reels with eight
different symbols (there are a total of
20 symbols on each reel, but some occur
more times than others) and three of
these symbols -are displayed on each
reel at any one time. The middle line
of each displayed reel is called the
win line, and all but one of the wins
has to occur by getting two of the same
symbol on the first two reels or by
getting all three the same. There is
however one exception to this which is
the BEEBUG symbol. To win with this,
you only need to have the symbols
showing, and not just on the win line.

INSTRUCTIONS

To start the reels spinning press
the 'S' key. At this point three things
may happen; a ‘'Shuffle', a 'Hold', or
the reels just spin. Given the choice,
you can hold each reel by pressing the
appropriate number (e.g pressing 1 and
3 will hold reels 1 and 3) and pressing
C will cancel the holds. If you get a
shuffle, then pressing the space bar
will shuffle the reels before offering

you a hold (this does not cost you any

money and will spin the reels around
approximately halfway). If you don't
wish to shuffle the reels (if you
already have a win) then you can press
C to cancel the shuffle, and then hold
your win.

When you get a win you will be given
a chance to gamble your winnings (if
they are 20p, 40p or 80p). To gamble,
press C (to double your winnings or
lose it all) or press S to collect your
winnings.

HOL D HOLD HoLD
DOUBL & Ll]
HNOTHING

If after the reels have stopped
spinning you get a 'Feature Stop', you
can then press F which will randomly
select a number (displayed on the
screen) between 1 and 19. This number
represents the number of available
'nudges’, and you must then try and
nudge the reels to produce a win. To
nudge a reel down you simply press the
corresponding number key (1, 2 or 3),
and to nudge a reel up you simply press
Shift and a number key together.

If you are not a regular and

compulsive player of fruit machines
some of these terms and instructions
may sound confusing. As soon as you
start playing everything will quickly
become clear and you will probably
become as addicted as the next person.

19 REM PROGRAM FRUIT

2() REM VERSION B@.7 .

30 REM AUTHOR A.HAYDEN

40 REM BEEBUG DECEMBER 1984

50 REM PROGRAM SUBJECT TO COPYRIGHT

69 =

109 ON ERROR GOTO 3830

110 MODE 7:X=RND (~TIME)

120 DIM F$(8) ,X%(3) ,R$(3) ,RLS(3) ,H% (3
) +PR%(3)

130 REPEAT:PROCchars

140 MODE2:PROCvar : PROCset

150 REPEAT:PROCroll

160 IF F%=0 OR DON%=@ THEN PROCcheck

170 F%=0:DON%=0:UNTIL MN%=F OR MN%>999 >

BEEBUG

DECEMBER 1984

Volume-3 Issue 7

47

18¢ PROCmore:UNTILG
190 END
200 :
1009 DEF PROCvar
1010 RESTORE 3814
1920 FOR A%=@ TO 7:READ B%:C%=A%*4+224
1030 FS(A%)=CHRS17+CHRS (B%) +CHR$17+CHR
$128+CHRS (C%) +CHRS (C%+1) +CHR$8+CHRS$8+CH
R$10+CHRS (C%+2) +CHRS (C%+3)
1040 NEXT
1959 RLS(1)="AGCRMPCMAOGCPBGCRMAP"
10608 RLS (2) ="MRBAOCGPCAMCGPAGRMCP"
1970 RLS (3)="CRPMBACMBOAPGRCPCGMA"
1086 FOR A%=1 TO 3:PR%(A%)=RND(18):R$(
%)=MIDS (RLS (A%) ,PR% (A%) ,3) :H% (A%) =@:NE
XT
1090 %=20: S$="RMGAPOBC"
1199 PRIZE%=0:X=4:F%=0:DON%=0
1119 ENDPROC
1129 :
1130 DEF PROCroll:*FX15,1

1140 REPEAT GI'S=GETS$:UNTILGTS$="S":GM3=0

115¢ IF RND(8)=1 THEN PROCshuffle:PROC
hold:GOTO1179

1160 IF RND(X)=1 THEN PROChold

1170 X=4:X%(1)=RND(10)+20

1180 Y%=RND(8)+3:X%(2)=X%(1)+Y%

1190 X% (3)=X%(2) +Y% :MNZ=MN%-1

1209 PROCmoney (MN%)

121¢ FOR R%=1 TO X%(3):FOR $%=1 TO 3
1220 IF R%=X%(S%) AND NOT H%(S%) THEN
SOUND @,~15,4,2

1230 IF H%(S%) OR R%>=X%(S%) THEN 1310
1240 PR%(S%)=PR%(8%)~1

125¢ IF PR%(S%)=@ THEN PR%(S%)=20

1260 RS (S%)=MIDS (RLS (S%) ,PR%(S%) ,1)+R$
(s%)

1270 RS$(S%)=LEFTS (RS(S%),3)

1280 FOR A%=1 TO 3

1290 PRINTTAB (5*S%-1,A%*3+5) ;F$ (INSTR (
88,MIDS (RS (S%) ,A%,1))-1)

135¢ DEF PROCmoney (M%)

1360 COLOUR 6:COLOUR 128

1370 PRINTTAB(12,5);"£":M% DIV 14;".";
M% MOD 1g;"¢ "

1380 ENDPROC

1399 :

1400 DEF PROCmore

141¢ FORA=1TO5000: NEXT

142¢ vDU 22,7

1439 PRINTTAB (10,10) ;CHR$133; "Another
go (Y/N)?";

1440 A=GET

145¢ IF A=89 THEN ENDPROC

1460 IF A<>78 THEN 1420

147¢ PRINT:END

1489 :

1499 DEF PROCcheck:PRIZE%=0

1509 H%(1)=@:H% (2)=0:H% (3) =0: M=

1519 R1$=MIDS(RS$(1),2,1)

1520 R2$=MIDS (R$(2),2,1)

1530 R3$=MIDS(RS(3),2,1)

154¢ IF INSTR(RS(1),"B")>@ AND INSTR(R
$(2) ,"B")>@ AND INSTR(RS$(3),"B")>0 THEN
PROC3beebugs : GM%=1:G0OT01580

155¢ IF INSTR(RS(1),"B")>0 AND INSTR(R
$(2) ,"B")>@ THEN PROC2win:GM%=1:GOTO1580
1560 IF R1$=R2S AND R1$=R3$ THEN PROC3
win:GM%=1:GOTO1584

1570 IF R1$=R2$ THEN PROC2win

1580 PROCmoney (MN%) : PROCAispmon

1599 ENDPROC

1609 :

1619 DEF PROCdispmon

1620 COLOUR3:PRINTTAB(1,19)"DOUBLE";TA
B(1,21) "NOTHING" :FORC=1T04

1639 COLOURC:PRINTTAB(3,21+(2*C)); (2°C
) *1@; "p" s NEXT

1643 ENDPROC

1659 :

1660 DEF PROC2win:IF GM%=1 ENDPROC
167@ PRIZE%=FNdorn(2) :MN%=MN%+PRIZE%:G
%=1

168 IF PRIZE%=@ THEN SOUND 3,-15,30,1
@:GOT01739

1699 SOUND 1,-15,100,19
170@ sounD 1,-15,88,5
1719 SOUND 1,-15,104,5
172¢ souND 1,-15,96,10 a

1730 X=2:ENDPROC g g
1749 3

1750 DEF PROC3beebugs:IF GM%=1 ENDPROC
1760 MN%=MN%+1@:SOUND 1,-15,88,5

177¢ SOUND 1,-15,92,5

178¢ SOUND 1,-15,112,19

1799 SOUND 1,-15,108,5

1809 SOUND 1,-15,120,19

1300 NEXT 1819 X=3:@4%=1:ENDPROC
1310 NEXT, 1820 :
1320 IF RND(15)=15 THEN PROCfstop 1830 DEF PROCset:COLOUR 128
1339 ENDPROC 1840 ‘CLS
1349 185¢ COLOUR 1 -
NS
BEEBUG DECEMBER 1984

Volume-3 Issue 7

48

1860 GCOL@, 3:MOVE100,632:DRAW1187,632

1870 MOVE100,640:DRAW1180, 640

1880 COLOUR 4

1899 PRINTTAB(12,1) ; "RUNNING"

1909 PRINTTAB(13,3);"TOTAL"

1919 COLOUR 6

1929 PROCmoney (MN%)

193¢ PROCdAispmon

1940 FOR A=8 TO 15

1950 FOR C=4 TO 14 STEP 5

1960 PRINTTAB(C,A);" "

1970 NEXT,

1980 FOR A%=1 TO 3

1990 FOR B%=1 TO 3

2000 G$=MIDS (RS (A%),B%,1)

2010 PRINTTAB (5%A%-1,5+3*B%) ; FS (INSTR (
SIG)_])

202@ NEXT,

2038 GCOL@,6:MOVE32,16:DRAW32, 1008:DRA
W1248,1008:DRAW1248,16:DRAW32,16

2040 FOR X%=0 TO2:MOVE 250+ (X%*320) ,500
2050 DRAW 390+ (X%*320) ,500:DRAW 390+ (X
$%320) ,780:DRAW 250+ (X%*320) ,780:DRAW 2
50+ (X%*320) , 500

2060 NEXT:VDU23,1,0;0;0;0;

2079 ENDPROC

2080 :

2099 DEF PROChold:H%(1)=@:H%(2)=0:H%(3
)=0

2100 COLOUR4:PRINTTAB(8,25);"1/2/3=HOL
DS":*FX15 1

2119 COLOUR 14:COLOUR 128

2120 PRINTTAB(3,17);"HOLD HOLD HOLD"

2139 REPEAT:A=GET-48

2140 UNTIL (A>Q AND A<4) OR A=35 OR A=
19

2150 IF A=19 THEN FORA2=1TO3:H% (A2)=0:
NEXT:GOTO 2110

2160 IF A=35 THEN 2210

2179 H%(A)=TRUE

2180 COLOUR 4

2199 PRINTTAB (5*A-2,17) ; "HOLD"

2200 GOTO 2130

2210 COLOUR @

2220 FOR A%=1 TO 3

2230 PRINTTAB (5*A%-2,17) ; "HOLD"

2240 NEXT:PRINTTAB(8,25) ;SPC(11)

225 ENDPROC

2260 :

2279 DEF PROC3win:IF GM%=1 ENDPROC
228¢ IF R1$="C" OR R1$="P" OR R1$="A"
THEN PRIZE%=4

2290 IF R1$="M" OR R1S="G" THEN PRIZE%
=8

2300 IF R1$="R" THEN PRIZE%=15

231¢ IF R1$="0" THEN PRIZE%=20:PROCtune
2320 IF PRIZE%<10 THEN PRIZE%=FNdorn (P
RIZE%)

2330 IF PRIZE%<20 AND PRIZE$>Q THEN SO
UND 1,-15,109,5:SOUND 1,-15,89,5:SOUND1
,-15,97,5

2340 MN%=MN3%+PRIZES

2350 PROCmoney (MN%)

2360 GM%=1:ENDPROC

2379

2380 DEF PROCtune

2390 RESTORE 2630

2400 READ L%

2410 FOR Y%=1 TO L%

2420 READ P,D

243¢ SOUND 1,-15,P,D3IF P=¢ P=-1]

2449 SOUND 2,-15,P+1,D

2450 NEXT

2460 X=3:ENDPROC

2479 :

2480 DEFFNdorn(U%)

2490 J%=1:COLOUR 128:PROCup(U3%)

250@ REPEAT:SOUND 2,-1 5,53,3

2519 COLOUR 4

2520 PRINTTAB(1,19); "DOUBLE"

2530 A=INKEY (15) :IF A=67 THEN U%=U%*2:
PROCup (U%)

2540 IF A=83 THEN J%=0:G0T02610

255@0 COLOUR 3:PRINTTAB(1,19);"DOUBLE"

2560 sounND 2,-15,61,3

2570 COLOUR 4:PRINTTAB(1,21);"NOTHING"

2580 A=INKEY(15) :IF A=67 THEN U%=0:S0U
ND 1,-15,53,5

2599 IF A=83 THEN J%=

2600 COLOUR 3:PRINTTAB(1 »21) ; "NOTHING"

2610 UNTIL U%=16 OR U%=0 OR J%=

2620 DON%=1:=U%

2630 DATA 16,117,7,145,12,117,3,120,3

2640 DATA 123,3,126,3,129,10,0,2,80,7

2650 DATA 95,12,80,3,77,3,74,3,71,3

2660 DATA 68,3,65,10

2679 :

2680 DEF PROCup (US%)

2699 COLOUR7

2700 IF US%=2 THEN PRINTTAB(3,23) ;"20p"

2710 IF US%=4 THEN PRINTTAB(3,25) ;"40p
";TAB(3,23) ; "20p"

272 IF US%=8 THEN PRINTTARB(3,27) ;"80p
";TAB(3,25) ;"40p"

2730 IF US%=16 THEN PRINTTAB(3,29);"16
Op" : TI=TIME: REPEATUNTILTIME>10@+TI

2740 ENDPROC

2750

2760 DEF PROCshuffle:*FX 15,1

2770 COLOUR 2:PRINTTAB(1,1) ;“SHUFFLE";
TAB (8, 3@) L Y S 181y s Mo

2780 L%=50:REPEAT:L%=L%+4:S=INKEY (J) :S
ounp 1,-15,L%,2

2799 UNTIL S=32 OR S=67

2800 IF S=32 THEN PROCshuf

281¢ PRINTTAB(1,1);SPC(7) ; TAB(8,30) ;SP
c(1n

2820 ENDPROC

2830 :

2840 DEF PROCshuf:X%(1)=-(RND(8)+2)
2850 X% (2)=RND(8)+2

- HEAE

—

BEEBUG

DECEMBER 1984

Volume-3 Issue 7

49

2860 X% (3)=~(RND(8)+2)

2870 FOR Y%=1 TO 14

288¢ FOR 5%=1 TO 3

2899 IF ABS (X%(S%))=Y% THEN 2980

2900 PR%(5%)=PR%(5%)+SGN(X%(5%))

291¢ IF PR%(S%)=22 THEN PR% (5%)=1

2920 IF PR%(S%)=0 THEN PR%(5%)=21

2930 IF X%(S%)<@ THEN RS (S%)=LEFTS((MI
DS(RLS(S%) ,PR%(S%) ,1)+R$(5%)) ,3)

2949 IF X%(S%)>@ THEN RS (S%)=RIGHTS ((R
$(S%)+MIDS (RLS(S%) ,PR% (S%) ,1)),3)

295@ FOR A%=1 TO 3

2960 PRINTTAB (5*S%-1,A%*3+5) ;F$ (INSTR(
S$1M1D$ (R$ (S%) rA%r]))"])

2970 NEXT

298¢ NEXT,

2999 PROCcheck

3000 ENDPROC

3019 ¢

3029 DEF PROCfstop

3@3@ *FX15,1

3¢4¢ COLOUR 1:X=1

3¢50 COLOUR 128

3060 PRINTTAB(1,3);"FEATURE";TAB(1,5);
"STOP"; TAB(8,19) ; "SHIFT=NUDGE" ; TAB (17,2
@) "UP" :COLOURS: PRINTTAB (9, 27) ; "F=FEATUR
E";TAB(15,28) ; "STOP"

3079 PROCstop -

3989 PRINTTAB(1,3);SPC(7);TAB(1,5);SFC
(4) ; TAB(8,19) ;SPC(11) ; TAB(17,20)SPC(2) ;
TAB(9,27) ;SPC(9) ; TAB(15,28) ;SPC(4)

3099 ENDPROC

31909 :

311¢ DEF PROCstop

312¢ COLOUR 3:COLOUR 128:K%=

3130 REPEAT:SOUND2,-15,RND(20) *4+53, 2

3140 A%=RND(10)

3159 PRINTTAB(6,5);A%;" "

3160 S=INKEY (20)

3170 UNTIL S=70

318¢ PROCnudge (A%)

319¢ ENDPROC

3200 3

321¢ DEF PROCnudge (A%) :*FX15 1

3220 ROLD1S=R$(1)

323¢ ROLD2$=R$(2)

3240 ROLD3$=R$(3)

325¢ FOR B%=0 TO A%-1

3260 PRINTTAB(6,5);A%-B%;" "

3279 REPEAT:S=GET

3280 UNTIL (S>48 AND S<52) OR (S>32 AN
D 5<36)

3299 T=INSTR("321
BS(T)

330@ PR%(U)=PR%(U)+SGN(T)

331¢ IF PR%(U)>2¢0 THEN PR%(U)=1:GOTO33
30

3320 IF PR%(U)<1 THEN PR%(U)=20

333¢ IF PR%(U)>18 THEN RS (U)=RIGHTS (RL
?(U) ;21-PR% (U)) +LEFTS (RLS (U) ,ABS (18-PR%

U)))

1Y, CHRS (S)) ~4:U=A

33408 IF PR%(U)<19 THEN RS (U)=MIDS (RLS(
U) ,PR3(U) ,3)

335¢ FOR D%=1 TO 3

3360 PRINTTAB (5*U~1,D%*3+5) ;F$ (INSTR (S
$,M1D$ (R$ (U) ID%I]))"‘])

337¢ NEXT:IF NOT(ROLD1S$=R$(1) AND ROLD
2$=R$(2) AND ROLD3$=RS$(3)) THEN PROCche
ck

3380 IF GM%=1 B%=A%*%2:F%=

339¢ NEXT:PRINTTAB(6,5) ;SPC(3)

340¢@ ENDPRCC

3410

3420 DEF PROCchars:RESTORE 3490

3430 FOR A%=224 TO 255:READ AS$:VDU 23,
A%

344@ FOR B%=1 TO 15 STEP 2

3450 VDU EVAL("&"+MIDS$ (AS$,B%,2))
3460 NEXT,

347¢ ENDPROC

3480 :

3490 DATA (0010307070F0F00

3500 DATA (@80CYUEJEQIFIFIGD

3510 DATA 1F1F@F@7939000090

3520 DATA F8F8FOE(J80804038

3530 DATA 0Q070A1222524A47

354% DATA @@COFQ783C5COEIE

355@ DATA 7F474A5222120A07

3560 DATA FF1E9E5C3C78F0CIH

3570 DATA 0@@1@D@2C3E7FFFFF

3580 DATA (Q000000003080CH

359¢ DATA FEFFFFFFF7F7E3FQF

3600 DATA EQFQFQF8FCFEFEF8

3619 DATA 00Q0010F1F1F3FFF

3620 DATA 78FCFCFEFFFFFFFF

363¢ DATA 3F1F1FQFQ1000000

3640 DATA FFFFFFFEFCEC7800

3650 DATA 558291A8908040A0

366@¢ DATA 5582112811020508

3670 DATA 55AA552A15081069

3680 DATA 718041A0512845A3

3690 DATA @61F3F766666663F

3709 DATA C@F@F8DCCCCYUCIF8

3710 DATA 3F@69666763F1F06

3729 DATA F8CCCCCCDCF8F@Ca

3730 DATA GOFF80B690E61436

374@ DATA @9FF@1DD@5D985DD

3750 DATA OUOAJAJAQAIGI000

376@ DATA 016181BF90600000

3770 DATA @191010107081038

3780 DATA 0Q0QQ000080402010

3790 DATA 387C7C3838100000

380¢ DATA 1038387C7C38381¢

381¢ pATA 2,3,5,2,7,2,5,1

3820 :

3830 ON ERROR OFF:MODE 7

3840 IF ERR=17 END

385¢ REPORT:PRINT" at line ";ERL:END

BEEBUG

DECEMBER 1984

Volume-3 Issue 7

IF_YOU WRITE TO US ! EROGRAMS AND ARTICLES
- All programs and articles used are paid for at
around £25 per page, but please give us warning
. . X of anything substantial that you intend to write.
ALl back issues are kept in print (from In the case of material longer than a page, we
April 1982) priced as follows: | would prefer this to be submitted on cassette or
Individual copies: I| disc in machine readable form using "Wordwise",
Volume 1 - £0.80 "View", ™Minitext Editor" or other means. If you
Volume 2 - £0.99 | use cassette, please include a backup copy at 389
Volume 3 - £1.0¢ | baud.
Volume 1 set (10 issues) £7 :
Volume 2 set (19 issues) £8 HINTS

Please add cost of post and packing as shown: | There are prizes of £5 and £18 for the best hints

No of DESTINATION : .
, each month, plus one of £15 for a hint or ti
copies UK Europe Elsewhere | deemed to I;epexceptionally good. e

BACK ISSUES (Members only)

9.30 .79 1.50 s : .
° P
5 .50 1.50 470 lease send all editorial material to the

é 19 1.0g 300 5 55 | editorial address below. If you require a reply
1 - 29 1.521 4.60 7.!30 it is essential to quote your membership number

1 and enclose an SAE.

All overseas items are sent airmail (please send
a sterling cheque). We will accept official UK | . . .
orders but please note that there will be a £1 Bditorial address
handling charge for orders under £1¢ that require
an invoice. Note that there is no VAT on | BEEBUG
magazines. PO Box 50
» St Albans
This offer is for members only, so it is Herts
ESSENTIAL to gquote your membership number with
your order. Please note that the BEEBUG Reference Subscriptions &
Card and BEEBUG supplements are not supplied with Software Address
back issues.
BEEBUG
PO BOX 109
SUBSCRIPTIONS High Wycombe
Bucks HP1¢ 8HQ
Send all applications for membership,
subscription renewals, and subscription queries Hotline for queries and software orders
to the subscriptions address.

St.Albans (9727) 69263
MEMBERSHIP COSTS: : Manned Mon-Fri 9am-4,3¢pm

U.K.
£6.40 for 6 months (5 issues)
£11.90 for 1 year (10 issues) 24hr_Answerphone Service for Access and
‘ Barclaycard orders, and subscriptions

Eire and Europe
Membership £18 for 1 year. - Penn (049481) 6666
Middle Fast £21 !
Awericas and Africa £23 If you require members' discount on software it
Elsewhere £25 is essential to quote your membership number and
Payment in Sterling essential. claim the discount when ordering.

BEEBUG MAGAZINE is produced by BEEBUG Publications Ltd.

Editor: Mike Williams.

Assistant Editor: Geoff Bains. Production Editor: Phyllida Vanstone.

Technical Assistants: David Fell and Alan Webster.

Managing Editor: Lee Calcraft.

Thanks are due to Sheridan Williams, Adrian Calcraft, Matthew Rapier, John Yale, and
Tim Powys-Lybbe for assistance with this issue.

All rights reserved. No part of this publication may be reproduced without prior
written permission of the Publisher. The Publisher cannot accept any responsibility,
whatsoever for errors in articles, programs, or advertisements published. The
opinions expressed on the pages of this journal are those of the authors and do not
necessarily represent those of the Publisher, BEEBUG Publications Limited.

BEEBUG Publications Ltd (c) 1984,

High Qualit Low Priced Discs

Backed by The Reputation of BEEBUG

10 S/S D/D Discs — £13.90 10 D/S D/D Discs — £19.40
25 8/S D/D Discs — £33.45 25 D/S D/D Discs — £46.95
50 S/S D/D Discs — £59.30 50 D/S D/D Discs — £87.05

IHE BEEBUG MAGAZINE
O DISC AND CASSETTE

The programs featured each month in the BEEBUG magazine are now available to members on disc and
cassette.

Each month we will produce a disc and cassette containing all of the programs included in that month's
issue of BEEBUG. Both the disc and the cassette will display a full menu allowing the selection of
individual programs and the disc will incorporate a special program allowing it to be read by both 40
and 80 track disc drives. Details of the programs included in this month’s magazine cassette and disc
are given below. :

Magazine cassettes are priced at £3.00 and discs at $4.75.
SEE BELOW FOR FULL ORDERING INFORMATION.

This Month's Programs Include:

MAGAZINE DISC/CASSETTE SUBSCRIPTION

Subscription to the magazine cassette and disc is also available to members and offers the added

’ «Ka.dvantage of regularly receiving the programs at the same time as the magazine, but under separate
cover.

Subcription is offered either for a period of 6 months (5 issues) or 1 year (10 issues) and may be
backdated if required. (The first magazine cassette available is Vol 1 No. 10; the first disc gvailable is
Vol 3 No. 1.)

MAGAZINE CASSBTTE SUBSCRIPTION RATES
6 MONTHS (Bissues) UK&£17.00 INC. .. Overseas £20.00 (No VAT payable)
1 YEAR (10 issues) UK £33.00 INC. .. Overseas £39.00 (No VAT payable)

VMAGAZINE DISC SUBSCRIPTION RATES
6 MONTHS (5 discs) UK £825.50 INC. .. Overseas £30.00 (No VAT payable)
1 YEAR (10 discs) UK £50.00 INC. .. Overseas £56.00 (No VAT payable)

CASSRITE TO DISC SUBSCRIPTION TRANSFER
 If you are currently subscribing to the BEEBUG magazine cassette and would prefer to receive the
remainder of your subscription on disc, it is possible to transfer the subscription. Because of the
difference between the cassette and disc prices, there will be an extra £1.70 to pay for each remaining
issue of the subscription. Please calculate the amount due and enclose with your order.

ORDERING INFORMATION

Please send your order to the address below and include a, sterling cheque. Postage is included in
subscription rates but please add 50p for the first item and 30 D for each subsequent item when ordering
individual discs or cassettes in the UK. Overseas orders please send the same amount to include the
extra post but not VAT.

SEND TO:

BEEBUGSOFT, PO BOX 109, HIGH WYCOMBE, BUCKS, HP10 8 HQ

Printed in England by Staples Printers St Albans Limited at The Priory Press. ISSN 0263 -7561

