£1.20

Vol 3 No 8 JAN/FEB 1985

M U1

] Makmg musnc on the beeb

- Acornsoft UCSD Pascal
system reviewed

I W Na Y
® Split Screen Utility

% L SR Y
® The latest printers

surveyed

\

i 1
® Assembler arithmetic

)
L] Dlgger game

t] Speech and music
revu:awed

® Red :llert game
® Music programs reviewed

® And much more

- >]
'BRITAIN'S LARGEST COMPUTER USER GROUP
'MEMBERSHIP EXCEEDS 25,000} L

EDITORIAL

THIS MONTH'S MAGAZINE

We are featuring this month a program which draws the most interesting and
colourful 3D surfaces - some of the results can be seen on this month's cover. This
is such a fascinating and attractive program that we are running a competition for
all BEEBUG members in connection with this program. We shall be awarding a prize
of £50 to the most interesting surface design that anyone can achieve using this
program - full details are contained within the article itself.

Talking of competitions, the advertising supplement contains this month the
results of the 'Sum-Squares' Brainteaser competition set in BEEBUG Vol.3 No.5. The
fortunate prize winners are Bill Wilkinson and Michael Catty. We expect to include
another of these popular competitions in the next supplement. For those who are
interested, we hope to include the winning program on the magazine cassette/disc for
the next issue (when more space will be available).

We have also included several items this month with a speech or musical flavour,
including the first part of a major new series on 'Making Music on the Beeb' by Ian
Waugh, the author of one of the best known books on the subject which was reviewed
last month. We have also included reviews of speech systems and of commercial music
programs. We would also draw your attention to Murom, the new ROM based music
program that is now available from BEEBUGSOFT.

NEXT ISSUE
Remember that this is a two month issue (January/February). The next BEEBUG will
be the March edition which should be with you by the end of February. See you all in
1985.
Mike Williams

OTICE BOARD NOTICE BOARD NOTICE BOARD NOTICE BO

HINT WINNERS

We have decided to award our first £15 prize to A.E.Wilmhurst for his hint on
using the Aries B-2¢ board. In addition, we have awarded our monthly £5 prize to
D.Morgan. New hints and tips for BEEBUG are always welcome.

MAGAZINE CASSETTE/DISC

This month'S magazine cassette/disc contains an extra item, a utility called
Crunch, written by John Marriage. This most useful program will squeeze already
compacted programs even further by joining together as many lines as possible so
saving even more memory space. This was originally intended to be included with the
Pack program in the November issue, but has been postponed until now through lack of
space on the cassette/disc.

BEEBUG JANUARY/FEBRUARY 1985 Volume-3 Issue 8

L

3

BEEBUG MAGAZINE

GENERAL CONTENTS

2 Editorial
4 3D Surfaces
6 Acorn News
7 Acornsoft’'s UCSD Pascal System Reviewed
10 Points Arising
11 Beginners Start Here
Introducing Machine Code (Part 1)
13 Adventure Games
15 Making Music on the Beeb (Part 1)
20 Addendum to Acornsoft P-System Review
21 The Latest Printers Surveyed
24 Disabling Break
26 Computer Games for the Blind
27 Tube Compatibility of ROM Software
28 Assembler Arithmetic the Easy Way
32 Three Speech Systems Reviewed
34 A Split Screen Utility
37 More News
38 Three Music Programs Reviewed
40 BEEBUG Workshop
Using Indirection Operators (Part 2)
42 Quicksilva’s Drumkit Reviewed
43 Digger
47 Red Alert
PROGRAMS HINTS, TIPS & INFO
4 3D Surfaces 14 Setting the Aries B-20 Board on Break
11 Machine Code Examples 14 View Control Codes
15 Making Music 14 Another Oddity in Basic
24 Disabling Break 20 Which Day is it?
28 Assembler Arithmetic Routines 25 Double Usage
34 Split Screen Utility 25 Quick Wait for Key
40 Four Workshop Examples 39 Tube Core Save

43 Digger Game

46 Local Parameters

47 Red Alert Game

BEEBUG

JANUARY/FEBRUARY 1985 Volume-3 Issue 8

3D SURFACES

by Q.A. Rice

Most users of the BBC micro will never tire of the fascinating
graphics displays that this machine is capable of. This program is
an excellent example of the old idea of representations of distorted
three dimensional surfaces on your computer's screen.

This program will draw out
representations of three dimensional
surfaces on the the screen of your BBC
micro. The surfaces follow one of a set
of equations. A choice of eight
equations is included in the program
and there is room for your own as well.
Because of the way that the surfaces
are drawn (from the back forwards) a
simple form of 'hidden line removal' is
achieved. This makes the surfaces very
realistic.

In addition the display can be drawn
with perspective or not, as you choose,
and in an inverted form if you so wish.
The whole program is menu driven and is
both simple to use and a pleasure to
watch.

Type in the program carefully and
then save it before you run it. Disc
users will find that this program
leaves them with a 'No room' message:
Either use the movedown routine from
the October BEEBUG, or cut out all the
first few lines of REM statements, in
the program and set PAGE to &1200,
before you load it in.

The program gives you a choice of
eight different equations for the
surfaces. The ninth option is for your
own equation. This should be entered in
line 1860 with 2 as a function of X%
and Y%. The equation included in the
program listing at this line just draws
a flat surface. Try variations of the
other equations given in lines 1780 to
1850 first, to get the hang of this.

PROGRAM NOTES

The procedure, PROCchoices, inputs
from the user the equation number and
the choice of whether the display is to
be in perspective and whether it is to
be inverted or not. PROCcalc then calls
one of the two procedures, PROCpers or
PROCiso, depending on which option was
chosen.

The procedure chosen, first
calculates all the points to be
plotted, using the equation chosen
(PROCfnz) and then plots the series of
squares onto the screen (PROCAraw) .

There are no hard and fast rules as
to making up your own equations to
enter as the ninth option. Just try
whatever seems best and you will be
pleasantly surprised by the elegant and
vivid results.

dlsplay. Send in yeur 1dea .

per person please) to the ealtonal
address. Clearly mark your envelope
! surface Cozr@emtwn' The closing date
for entries is 8th February 1985 so get
your ideas in soon. The judges'
decision, as they say, will be final.

comasaes

10 REM PROGRAM 3D SURFACE
20 REM VERSION B2.0

30 REM AUTHOR Q.A.RICE

40 REM BEEBUG JAN/FEB 1985

BEEBUG

JANUARY/FEBRUARY 1985
R s e m——— .. R o

Volume-3 Issue 8

5

50 REM PROGRAM SUBJECT TO COPYRIGHT

100 ON ERROR GOTO 1880¢

120 DIMP% (20,20,2)
130 REPEAT

140 MODE 7

15¢0 PROCchoices
160 MODE 1

1780 PROCcalc

180 UNTIL FALSE
190 END

100@ DEF PROCchoices

1919 PRINT TAB(9,1)"HIDDEN LINE GRAPHS
"TAB (9, 2) "BLACKOUT TECHNIQUE"

192¢ PRINT TAB(10,23)"ENTER CHOICE"

193¢ vDU 28,8,22,39,5

1040 PRINT "1. SOR (Xy*SOR(¥)"" M2,

COS (X) *COS (Y) #1™'

1050 PRINT "3. COS (X) *COS (Y) #2"''"4
. COS (X) *COS (Y) *DISTANCE"'

1060 PRINT "5. COS (D) *COs (D)"''"6.

EXP (DISTANCE) "'

107¢ PRINT "7. COS(CORNER DISTANCE)"
L8 EXP (COS (CORNER DISTANCE))™'

1080 PRINT "9. YOUR OWN PREDEF INED"

19090 REPEAT C=(GET-48) : UNTIL C>@ AND C
<19

1100 CLS

1110 PRINT "1.
RSPECTIVE"

1120 REPEAT PM=(GET-48) :UNTIL PM=1 OR
PM=2

1130 CLS

114@ PRINT "1.
TED"

ISOMETRIC"'''"2. PE

NORMAL"'"''"2, INVER

1150 REPEAT P=(GET-48) :UNTIL P=1 OR P=2

1160 ENDPROC
1170 :

1180 DEF PROCcalc
1190 vDU23,1,0;0;0;0;
1200 COLOUR 2

1219 PRINT TAB(@,8)"Please wait - calcu
lating 400 points:"

122¢ IF PM=2 THEN PROCpers ELSE PROCiso
1230 REPEAT UNTIL GET=32

1240 ENDPROC

1250 2

1260 DEF PROCpers

127@ FOR X%=1 TO 20

1280 FOR Y%=1 TO 20

1299 PROCfnz:PRINTTAB(37,8) ; 20*X%-20+Y%
1300 S=X%-10:Z=Z-5:D=SQR (SQR(Z*Z+S*S) +Y
$*Y%)

1310 P%(X%,Y%,1)=(S/D)*400+600

1320 P%(X%,Y%,2)=(2Z/D) *400+800

1330 NEXT Y%,X%

1340 CLS

1350 FOR X%=1 TO 9

1360 FOR Y%=20 TO 2 STEP-1

1370 PROCdraw

1380 NEXT Y%,X%

1390 FOR X%=19 TO 10 STEP-1

1400 FOR Y%=20 TO 2 STEP-1

1419 PROCdraw

1420 NEXT Y%,X%

1430 ENDPROC

1440 :

1450 DEF PROCiso

1460 FOR X%=1 TO 20

1470 FOR Y%=1 TO 20

1480 PROCfnz:PRINTTAB(37,8) ; 20*X%-20+Y%
1490 P%(X%,Y%,1)=(X%/2+Y%/2) *60

1500 P%(X%,Y%,2)=(2+X%/2-Y%/2) *40+500
1510 NEXT Y$%,X%

1520 CLS

153¢ FOR X%=19 TO 1 STEP-1

1540 FOR Y%=2 TO 20

1550 PROCdraw

1560 NEXT Y%,X%

157¢ ENDPROC

1580 :

1590 DEFPROCdraw

1600 GCOL@, 1

1619 MOVE P%(X%,Y%,1),P%(X%,Y%,2)

1620 MOVE P%(X%,¥Y%-1,1),P%(X%,Y%-1,2)

BEEBUG

JANUARY/FEBRUARY 1985

Volume-3 Issue 8

1630 PLOT85,P% (X%+1,Y%-1,1) ,P% (X%+1,Y%
=142)

1640 MOVE P%(X%+1,Y%,1),P%(X%+1,Y%,2)
1650 PLOT85,P% (X%,Y%,1) ,P% (X%,Y%,2)
1660 GCOL@, 2

1670 DRAW P%(X%,Y%-1,1),P%(X%,Y%-1,2)
1680 DRAW P% (X%+1,Y%-1,1) ,P%(X%+1,Y%-1
12)

1690 DRAW P%(X%+1,Y%,1) ,P%(X%+1,Y%,2)
1700 DRAW P%(X%,Y%,1),P%(X%,Y%,2)

1790 Z=EXP (SIN(X%)*SIN(Y$%)*3) /4:RETURN

1800 Z=EXP (COS (X%/2) *COS (Y%/2) *3) :RETU
RN

1810 A=X%-10:B=Y%-10:T=SQR (A*A+B*B) :Z=
COS(T/1.7) *EXP (-T/5) *10:RETURN

1820 A=X%-10:B=Y%-10:Z=COS (SQR (A*A+B*B
)) *2:RETURN

,‘0:0:::0%‘ o

£ SRR
RN

AR VAL
R "‘}é..,. it
“'}7 ‘NN\\.

1

1830 A=X3-10:B=Y%-10:Z=EXP (6~ (SQR (A*A+
B*B))) /35:RETURN

1719 ENDPROC 1840 Z=COS (SQR (X$*X%+Y%*Y%)) : RETURN

1720 : 1850 Z=EXP (COS (SQR (X%*X3+Y3*Y%)) *3) /4:

1730 DEF PROCfnz RETURN

1740 ON C GOSUB 178@,1790,180@,1819,18 1860 A=X%:B=Y%:Z=1:RETURN

20,1830,1840,1850,1860 1870 :

1750 IF P=2 THEN Z=-Z 1880 ON ERROR OFF

176@ ENDPROC 1890 MODE 7

1770 : 1990 IF ERR<>17 REPORT:PRINT" at line

1780 A=X%-10:B=Y%-10:Z=SQR(ABS (A)) *SQR ";ERL

(ABS (B)) :RETURN 1919 END ==
NEWS NEWS NEWS

ACORN BITS

Acorn quietly unveiled a whole host
of goodies at the recent Compec show at
Olympia. The long awaited 32016 Second
Processor is here at last. This 32 bit
processor comes in the usual cream
side-by-side box complete with 256K RAM
and a heap of software. The software
includes Acorn's own operating system
called Panos (no Unix), BBC Basic,
Fortran 77, Lisp, Pascal, C (not BCPL),
and 32016 assembler. The entire package
will set you back £899.

MUSIC

Also on the Acorn stand at Compec
was the Music 500 system. This add-on
unit, developed by Acorn in conjunction
with Hybrid Systems, opens a whole new
world of computer music for your BBC
micro. The units adds 16 sound channels

to your computer organised as eight
voices, all controllable in amplitude,
pitch, envelope, waveform, stereo
position, and so on. To look after all
this a music language called 'Ample' is
included on ROM. The Music 500 system
costs £199. A music keyboard and real
time software are to be produced soon.

THE HARD STUFF

The Acorn Winchester disc system is
now officially available. A choice of
18 or 30 Megabyte capacities is
available with data transfer rates of
up to a million bits per second. Fully
compatible with Econet, the Winchester
drives will be an attractive
proposition to schools and other
network users. The 10 Mb and 30Mb
capacity systems are available at £1499
and £2229 respectively. |

BEEBUG

JANUARY/FEBRUARY 1985

Volume-3 Issue 8

ACORNSOFT’S UCSD PASCAL SYSTEM

Reviewed by John Maher

Following the recent launch of

ISO-Pascal, Acornsoft have now

implemented the popular UCSD p-system on the BBC micro with 6502
Second Processor. Both Pascal and Fortran compilers are provided.

John Maher, long time devotee of UCSD and Pascal, reports.

S
Supplier: Acornsoft
Price : £299.00 inc VAT.

OVERVIEW

The "UCSD Pascal System" (UCSD
stands for the University of
California, San Diego) was developed in
the late 197@'s primarily for use as a
teaching package for Pascal. It has now
turned into a major 16 bit operating
system. Amongst micro users its main
impact has been in the form of Apple
Pascal, appearing in the UK in 1979/80.
The p-system is too large to fit on to
a standard BBC micro, but since the
availability of the second processor
UCSD enthusiasts have been eagerly
awaiting a system such as this, which
was developed by TDI for Acornsoft.

The 'p' refers to pseudo code, not
to Pascal. Like ISO-Pascal from
Acornsoft, the programs are compiled to
an intermediate code (p-code) which has
to be interpreted to run on the 6502
processor. This system produces very
compact code, but is slower than fully
compiled code. There have been a number
of p-system versions; the Beeb runs
V.12, the Apple runs (essentially)
version II. The main difference between
these is in size and sophistication.
Since UCSD Pascal supports program
segmentation, large programs can be
held on disc and segments of code
brought into memory to run as needed.
The operating system is written in UCSD
Pascal, as are the compilers, editor,
filer, etc., and these are heavily
segmented. Version 1IV.12 has over 20
memory segments and over 180K of code.
By contrast the same system
configuration for the Apple uses 6
segments and needs 120K of code. As you
might expect, disc use for the BBC
p-system 1is much heavier than for the
Apple version.

THE BBC VERSION OF THE P-SYSTEM

The system comes on two, nearly
full, single sided 80 track discs,
containing p-code compilers for Pascal
and Fortran 77, a screen editor, a disc
filing system, libraries for Pascal and
Fortran, and various utility programs.
In particular there is a program
UTIL.CODE which enables wusers to
format, copy and generate bootable
discs, configure the system in various
ways, and edit character fonts.

Missing are the p-system assembler
and linker, the run-time symbolic
debugger, and some of the utility
programs described in the operating
system manuals. These extra facilities
are available from TDI as an Advanced
Development Toolkit. For contrast Apple
Pascal comes with the assembler and
linker. In view of the price of this
package, the assembler and linker
should really have been provided.

DOCUMENTATION

Three manuals are provided: for UCSD
Pascal, for Fortran 77 and for the
Operating System.

The Operating System Reference
Manual is well written, but should be
supplemented by reading an introductory
text if you are unfamiliar with the
p-system. Before doing anything with
your discs you should read the 70 page

section in the back of this manual very »

BEEBUG JANUARY/FEBRUARY 1985 Volume-3 Issue 8

8

carefully. This contains details of how
to get the system going from the discs
provided, how to configure your system
for your own machine, and descriptions
of BBCUNIT and BBCGRAFIX - library
units for wusing various BBC micro
facilities.

The Pascal manual is "The UCSD
Pascal Handbook" by Randy Clark and
Stephen Koehler. This is an excellent
book, certainly the best reference
available for UCSD Pascal. It is in two
parts, firstly a full description of
UCSD Pascal, secondly a programmer's
guide. By working through the examples
in the guide you will get a good
introduction to this Pascal. However,
the handbook is not a book for
beginners.

The Fortran 77 Reference Manual
(this is the Silicon Valley Software
version of Fortran 77) presupposes a
knowledge of Fortran and some aspects
of the operating system. It would
provide an introduction for someone
already proficient in Basic.

The only mention of the BBC micro in
both language manuals appears on the
covers. It would be very helpful if
later issues of the Acornsoft p-system
could at 1least provide some simple
specific examples. This is especially
true for the Fortran: the one sample
program in Appendix B has text mistakes
in the write statements below label 5@.

Whilst the p-system documentation is
excellent, I would have 1liked more
description of the BBC micro side of
the system. Acornsoft have done the
same as with their 2-80 Second
Processor software, namely taken
another manufacturer's manuals and
appended a few pages to refer to the
BBC micro version. At the least, the
BBC Computer P-System Manual, bound
into the back of the 0S Manual could
have been provided as a separate
booklet. The review copy was Issue 1B,
June 1984; the listing of the system
disc contents is out of date,
especially with respect to Fortran.
Whilst guesses are possible, what are
the files RTLIB2.CODE, RTLIB4.CODE
FORTRAN. 2.CODE, and FORUNIT.CODE?
(FORTRAN.2.CODE had a 'bad block' in it
in any case!). In the OS Manual you
will find reference to various p-system

utilities not present on the system
discs from Acornsoft/TDI.

The quality of the binding of the
Operating System Reference Manual is
poor, it was losing pages by the end of
the review period.

THE REVIEW SYSTEM

The review was conducted on a BBC B
loaned to me by TDI, with Tube version
@.19, DFS 1.00 and OS 1.20, together
with dual double sided 80 track drives,
and a 6502 second processor. This was
necessary since the system crashes
inexplicably on my own BBC system (see
the appendix to this review).

The system can be configured to work
with most Beeb systems with a 6502
Second Processor, but this is not quite
as easy as it could be. As supplied,
the system is configured to work with a
single sided, eighty track disc drive,
although it can be persuaded to work
with both dual and double sided eighty
track drives. Configuring is a tedious
process, but makes the system much more
workable orice correctly done.

Booting the p-system is a complex
process. Thus the master discs contain
both a BBC directory with the files
IBOOT, SBOOT and PSYSTEM, and a regular
(6 x 512 byte code block) p-system
directory. Booting the master discs is
very slow, due to the absence of
interleaving. Boot speed increases
appreciably for copied and reconfigured
discs. It should be possible to improve
the speed of the system by careful
'tuning' of the disc configuration,
though this may be beyond most users.

A word of warning - I would not
recommend anybody to try using the
p-system with a single disc drive,
except where a custom application
program is set wup to run on its own.
The Acorn p-system .is Jjust about
manageable on a dual sided 80 track
drive (400K), but you will find the
system painful, and the reconfiguration
process very tricky! The 180K is really
a minimum space, not including
libraries or any utility programs, or
the user's own programs.

RUNNING PROGRAMS
UCSD Pascal is a complete version of
the language with very many nice

BEEBUG

JANUARY/FEBRUARY 1985
L

Volume-3 Issue 8

9

extensions. It is a pleasure to work
with, and very powerful, and this
applies to the Acornsoft version
(excluding crashes!). The p-system
editor is one of the nicest screen
editors I know, with none of those
awkward control codes, and it can
readily be used for word processing as
well. On the Beeb the cursor keys are
used to move around the text, the Copy
key is used as the accept <etx> key. I
don't like this, and prefer Ctrl-C for
accept. The only problem I noticed was
a tendency to give Error #400 - illegal
character in text - during compilation.

BENCHMARKS

The Eratosthenes prime number sieve
(BYTE 1983,8,283), for primes up to
4095 took 87 secs. The full program,
for numbers up to 8199 will not fit
into memory unless the boolean array
used in the program is packed. With
packing the program takes 5 min 31
secs! For comparison Apple Pascal takes
2 minutes 40 seconds, and Turbo Pascal
running %8¢ compiled code on a BBC 780
second processor 16 seconds. I am
afraid that running the PCW (Dec 1983,
p242) Pascal benchmarks reveal a
similar lack of pace. In Acorn UCSD
Pascal the total time to run them all
is 14 min 11 sec, in Turbo Pascal 2 min
23 sec. The 259 lines of code in the
PCW benchmarks took 1 min 28 secs to
compile, a very similar version of 244
lines took less than 2 secs in Turbo
Pascal.

The 'REPEAT' benchmark in Basic
takes 2 min 41 secs, in UCSD Pascal
19.98 secs. However , the maths
benchmark takes four times as long in
UCSD Pascal as in BBC Basic. The
overall conclusion is that the Acorn
UCSD Pascal system 1is rather slow. A
nice aspect of the BBC system is that
you can use the TIME function to find
out just how slow it is!

The slowness of the system is
unfortunate since BBC Basic, in the PCW
Basic benchmarks of Nov 1982, comes
fourth in a long line of 8- and 16-bit
micros, behind only the SAGE II,
Olivetti M20, and DAI personal
computers. Don't expect to write speedy
games programs with the Acorn p-system
without an assembler.

However, you can run very large
programs. The absolute size of programs
in version IV of the p-system is
governed by disc space since the system
provides for extensive memory
management, and uses library programs
and segmentation. The efficiency of
disc accesses is very critical, though
hopefully this 1is open to improvement.
This is a large system, and as usual
you sacrifice speed for size.

UTILITY PROGRAMS

BBCUNIT gives the user access to the
system configuration parameters from
programs. There are also procedures for
handling some of the BBC 0OS commands. A
few of these were tested. Osword with
A=7 (SOUND) worked well, though the
timer call with A=1 seems to lose the
bottom 8 bits of the 24 bit time
signal.

BBCGRAFIX gives the user access to
various BBC graphics, plot, draw, gcol,
mode etc., though these are equally
well available by simple Pascal
Write (chr (vdu<number>) ,etc) statements.
Some * commands can be used from UCSD
Pascal, and the function keys can be
set up in a limited fashion. Thus you
can set a key to list a disc directory
from the Filer, but cannot then 'Quit'
the Filer! Apparently the function keys
only work in the outer command level.
In the UTIL program I found that a call
to the character font editor CHEDIT
crashed the system. The p-system
utilities include a screen control
unit, the p-system configuration unit
(SETUP) , a corrupt disc unraveller, and
facilities for duplicating disc
directories.

A program to transfer files between
Acorn DFS and UCSD format would be a
welcome addition, though users have the
necessary 'hooks' to do it themselves
from the OS calls.

FORTRAN

UCSD Fortran 77 is a subset of the
language, as for instance it does not
have complex arithmetic, and arrays
have a maximum of 3 dimensions. Useful
features in this version of Fortran are
the ability to create overlays and to
use separate compilation and libraries.
You can also call Pascal modules from
Fortran and vice versa. Whilst I was

BEEBUG

JANUARY/FEBRUARY 1985

Volume-3 Issue 8

10

able to compile the example program, I
could not get it to work because I
could not find the Fortran library on
the discs. FORTLIB4.CODE was missing,
the obvious alternative RTLIB4.CODE did
not work. I suspect that the Fortran
works in either 4 or 8 byte precision.
We are not told in the documentation.

I can see little value in using UCSD
Fortran on a micro, despite most
scientists' prejudices. UCSD Pascal is
very much more powerful and much easier
to use, especially in its I/O format
control. It is unlikely that there is
any speed advantage for Fortran over
Pascal on the BBC micro, both run in
p-code on the same interpreter.

VALUE FOR MONEY

So far, ISO-Pascal looks as if it is
the cheapest route to Pascal on the BBC
micro. Running UCSD Pascal will, I
regret cost £300 plus a second
processor, and this puts it way beyond
most home owners or schools. In
addition, having bought a system you
cannot run programs outside of the
p-system without another p-system, and
the licence only applies for one BBC
micro. Softech, the American vendors of
the p-system, have recently announced
educational discounts. Will this apply
to the Acorn version?

An alternative to ISO- or p- Pascal
is to use a Z80, or slightly cheaper
Torch 2780 card, and one of the other
Pascals available from CP/M. My present
preference would be Turbo Pascal which
is available for both the above pieces
of hardware. The 280 route is also
appropriate for Fortran and other
languages.

SHOULD I BUY IT?
Yes, 1f the problems pointed out in

the Appendix are sorted out, and if you
have a 6502 second processor and £300
to spare. Despite the warts I like the
Acorn p-system, and UCSD Pascal has a
tremendous world-wide following.

APPENDI X

My own BBC runs Tube 1.10, DFS 1.20,
and - 05 ‘1.26. The first p-system
supplied for review refused to work
properly on this hardware, though it
seemed to boot properly. It crashed
repeatedly; from the UTIL, from the
Filer and from the Editor. In
desperation I contacted TDI and told
them of the problems. They were
surprised to say the least, and showed
me a system working satisfactorily on
one of their machines, which they
promptly, and very kindly agreed to
loan me for the review. Whether the
problems are specific to my BBC (which
has no non-Acorn hardware, and only
Wordwise and BCPL ROMS), or whether the
problem lies with the AcornSoft/TDI
p-system operating on slightly
different versions of the Tube and DFS,
is not completely clear. These
questions need sorting out before I can
recommend anyone buying the system.

USUS (UK)

1s 1is the user group for all UCSD
users in the UK. For further
information, if you buy the Acorn
p-system, then contact me at University
of Bristol, School of Chemistry,
Cantock's Close, Bristol BS8 1TS. (0272
24161 Ext 632). I have agreed with the
Chairman of USUS(UK) to start off a SIG
(special interest group) for the Acorn
p-system. You can gain access to an
extensive UCSD Pascal library via
USUS (UK) .

=

POINTS ARISING

ACK DATA BASIC COMPILER REVIEW (BEEBUG VOL. 3 NO. 6)

Ack Data have told us that the price of their Basic compiler on cassette is now
£17.95 and not £14.95 as quoted. They are also releasing a new version to support
around 90 keywords (including array, file and string handling) at £17.95 on cassette
and £19.95 on disc.

=

WEE SHUGGY (BEEBUG VOL.3 NO.6)

Further to the reference to this game, and the absence of critical spaces, in
last month's noticeboard, there is a further error in line 3180, where fairly
obviously two commas have been omitted, in each case between the 231 at the end of a

line and the 31 at the start of the next line.

==

BEEBUG

JANUARY/FEBRUARY 1985

RTESARS:

Volume-3 Issue 8

11

BEGINNHIS INTRODUCING

MACHINE CODE

(Part 1)
by Gordon Weston

In our 'Beginners' slot this month we present the first article

1“\5 wm in a new series which aims to explain the rudiments of assembler

1f you look back
to the time when

you were first
learning programm-
ing, you may

remember the sense
of achievement when
you entered a few
lines of Basic,
typed RUN, pressed
Return and saw an
immediate result. I
hope to do the same
by giving short
Basic programs
containing a few
lines of assembly
language, which you
can enter or just
read. All you need
to start is any BBC
machine and the
User Guide, although I would strongly
recommend the 1.2 Operating System and
the Advanced User Guide as well.

Here are two simple Basic programs:

Program 1
19 MODE7
20 PRINT"A"
30 END

Program 2
10 MODE7
20 VDU65
30 END

Both programs display the letter "A" on
the screen, 65 being the ASCII code for
"A". (See User Guide page 486)

The 6502 microprocessor used in the
BBC has its own storage spaces called
registers, three of which are called
the Accumulator (abbreviation 'A'), the
'X' register and the 'Y' register. Each
of these three registers is capable of

and machine code programming for those still teetering on the
brink. If you have so far avoided the fascinations of machine
code then now could be the time to take the plunge.

holding an 8 bit binary number (or
byte) , which in decimal terms can store
integers in the range ¢ to 255.

The next thing to know is that the
BBC micro's Operating System has been
written in such a way as to give you
easy access to its routines, which you
can find in a summary table on page 452
of the User Guide. If you look up the
OSWRCH routine (Operating System WRite
CHaracter) in the table, it gives the
entry address as &FFEE and tells you
that it writes the character in the
Accumulator to the screen. It is not
made clear, but in this routine the
values in 'X' and 'Y' are ignored.

Finally, there is a Basic command
"CALL" which loads the values of the
resident integers A%, X% and Y% into
the Accumulator ('A'), 'X' register and
'Y' register of the microprocessor. It
also passes control to the routine at
the address following the word "CALL".
When the task of this routine is
complete, control is returned to Basic.
Program 3 shows this, using the same
simple task as programs 1 and 2:

Program 3
19 MODE7
20 A%=65:CALL &FFEE
3¢ END

The ASCII code for "a", 65, is
stored in A%, and then as a result of
the "CALL", the value from A% is stored
in the Accumulator. Control is then
passed to address &FFEE where the
contents of the Accumulator are printed
to the screen and then control is
automatically returned to Basic (a
function of the CALL statement).

The CALL command is very useful for
trying out Operating System routines
before incorporating them in your
machine code programs.

Microprocessors obey a machine code

program stored in memory which is 3§

BEEBUG JANUARY/FEBRUARY 1985

Volume-3 Issue 8

12

totally composed of numbers, and most
inconvenient for us to read. An
assembly language exists so that
machine code can be represented by
easily remembered letter abbreviations
(mnemonics). BBC Basic contains an
assembler which translates this
assembly language to machine code which
the microprocessor can understand. An
example instruction is "&AA" in machine
code which is "TAX" in assembly
language standing for "Transfer the
contents of the Accumulator to the 'X'
register".

An important point to remember is
that when a Basic program goes wrong,
error messages are often given, but
when a machine code program goes wrong
you get no help, except possibly for
some error messages during assembly.
Before running program 4, save it on
cassette or disc. If when you run it,
the Basic prompt symbol (">") does not
return immediately, press Break, type
OLD, and press Return to get back to
Basic. Then check and re-check the
program that you originally typed in.

Program 4 (note that square brackets
appear on the screen as arrows in
mode 7)

10 MODE 7

20 DIM code 100

30 FOR I%=@ TO 3 STEP 3:P%=code

40 [

50 OPT 1%

100 .start

110 LDA #65

120 JSR &FFEE

130 RTS

500]

51¢ NEXT

520 CLS:CALL start

53% END

This program should do exactly the same
as the other three.

Line 20 sets aside a block of 109
memory locations (bytes) in which to
store the machine code program, as it
is translated from assembly language,
and stores the start address of this
block in the variable 'code', so that
the start of this reserved block can be
found by the assembler.

Lines 30,50 and 510 (see 'OPT' page
314 in the User Guide) are an assembler

FOR-NEXT loop arrangement where the
first pass through the loop with I1%=0,
sets OPT to give the 'assembler errors
suppressed, no listing' and the second
and final pass through the 1loop with
I1%=3, sets OPT to give ‘'assembler
errors reported and listing'. This
listing, showing the machine code
program contents and location can be
seen when an assembler error is
reported or by removing CLS from line
52¢. Line 30 also contains P%=code.
When the assembler is used, P% must be
loaded with the start address of the
block reserved in line 20 each time you
pass through the FOR-NEXT loop. In this
case, the start address is held in the
variable 'code'.

Lines 40 and 500 contain the start
and stop assembler symbols (open and
close square brackets). OPT is not
assembly language and is not assembled.
In line 100, the full stop tells the
assembler that this is a ‘'label' and
that a Basic variable, whose name is
made up from the text following the
full stop, must be created containing
the address of this point in the
machine code program. In line 51¢ 'CALL
start' passes control to the machine
code assembled at the address contained
in the Basic variable 'start'. Line 110
(LDA #65) is assembly language for LoaD
the Accumulator (the symbol '#' means
directly) with 65.

Line 120 (JSR &FFEE) is assembly
language for 'Jump to SubRoutine at
address &FFEE'. We wused this same
routine in program 3. At line 130 RTS
(ReTurn from Subroutine) in this
context means go back to Basic. Up to
line 520 the machine code has only been
assembled and stored, but not used. The
code is brought into use by CALL start
where 'start' is the Basic variable
containing the address to which we want
to direct the microprocessor.

You can alter the value of the ASCII
code in line 110 to any you like,
including those not displayed on screen
(such as 7 or 12) providing that they
are one byte codes (See the bytes extra
column on page 378 of the User Guide).

Try entering these 1lines, which
overwrite two previous lines, in which
three bytes

are used to move the »

BEEBUG JANUARY/FEBRUARY 1985 Volume-3 Issue 8

13

cursor.

119 LDA #31:JSR &FFEE
115 LDA #20:JSR &FFEE
120 LDA #10:JSR &FFEE

This has the same effect as:
vDU 31,20,10

from within Basic (move cursor to
position 26,10).

The next step will be to create a
REPEAT/UNTIL arrangement in assembly
language, and this will be the subject
of the next article.

=

ADVENTURE GAMES

by ‘Mitch’

Seems like Acornsoft's Space Pirates
are everywhere! Not content with
infiltrating everyone else's micros and
zapping ‘'harmless' traders, they have
spilled over into my dungeon.

"The ,City of the Seventh Star",
produced by Acornsoft at £9.95 inc. VAT
on tape.

So here I am marooned by pirates on
this distant planet outside the "City
of the Seventh Star", looking for a
public Teleport Box home. This new
adventure breaks new ground for
Acornsoft with the introduction of
sound. No more lonely vigils of the
night trying to solve cryptic clues by
yourself; with this game you can ask
your neighbours for suggestions, when
they come round to complain about the
noise!

The game is peopled with some very
familiar faces. In the red corner is a
tall, black-cloaked villain who appears
to have an engine grille over his face,
and in your corner is a talkative micro
who makes helpful suggestions. Rat
infested tunnels, electric chairs, and
the bloody remnants of previous
adventurers are strewn around this
highly amusing science fiction world.
You will have as much fun recognising
the thinly disguised heroes, as solving

the puzzles. Having given your name at
the game's beginning you will find it
used to good effect to personalise the
text at later stages.

The main attraction of the game is
that it refuses to take itself too
seriously, and it repeatedly causes a
smile with its tongue-in-cheek humour.
Take for example, the 'Useless Room',
this is described as containing
nothing, and serving no useful purpose.
My favourite villain introduces himself
as "Mr. Blobov Slime" and then sticks
your head into a fish tank!

On being killed the game resurrects
you at a nearby location with all your
hard-won goodies still in your

Using the crowbar, are just able to

1ift the grating. e is a foul smell

ﬁ-im from the deep shaft set into the
oor.

»D

You're in a dark subterranean passage
under the grating. The air is musty and
damp, and the thick 1 r of on
the floor makes it difficult to walk.
To the north is a pile of rubble vhere
the roof has caved in, so your only
route is south.

>

You are walking down a dimly-lit
passage. The walls are covered in a
slimy, sticky substance which gives off
a terrible smell. There is an extremely
uninviting hole in the east wall.

BEEBUG

JANUARY/FEBRUARY 1985

Volume-3 Issue 8

a smxpla word editor. The data may then
be canpxessed, mcalled m: stm:ed‘ "ﬂus .

1 have seen for sale and hav‘ .
it myself, I can vouch for 1’t’"s:', <
simplicity of use. Having cm:@xessad . cha
the messages, the program creates a
file which can be loaded into memcry, ~
at any locatwn far your own game s

INTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS

SETTING THE ARIES B-20 BOARD ON BREAK - A.E. Wilmhurst

When using the Aries RAM board, it is useful to be able to ensure the state of
the board when a program is loaded. The following Break routine will ensure that the
Aries board is turned off:

10*KEY10]ﬁ*FX]SlMZ@CLS CHAIN"flle"|M

20*KEY@CALL ! &FFFC|M

30*FX138,0,128

40*XOFF
The space in line 10 is vital. The *XOFF could be changed to *XON if the program
requires this, and the name in the CHAIN command should be changed to that of the
program to be loaded. This short program turns off the board, and then performs the
equivalent of Break, before chaining in the program. =)

VIEW CONTROL CODES - Dr. F.G. Riddell

With View it is not so easy to initialise a printer directly, as you can with
Wordwise, but don't forget that there is nothing stopping you doing a *BASIC, (or
*B.) running a program to configure your printer, and then entering View again =)

ANOTHER ODDITY IN BASIC - D. Morgan

It is quite well known that Basic does not allow you to use a variable before it
has been defined, but there is an exception to this rule; if you define a variable
in terms of itself, when it is not already defined, then it will equate itself to
zero in order to evaluate the equation in question. For example:

A=A+3
will cause A to be set equal to 3. =

BEEBUG JANUARY/FEBRUARY 1985 Volume-3 Issue 8

15

MAKING MUSIC ON THE BEEB (Part 1)

by Ian Waugh

In this series of articles, the author of "Making Music on the BBC
Computer", reviewed in last month's BEEBUG, explains simple music
theory and suggests methods of programming and manipulating music,

music data and musical effects.

MUSIC NOTATION FOR THE BBC COMPUTER

You may have wondered if there is
not a Dbetter, simpler method of
representing notes than the lines and
dots of traditional notation. The short
answer is yes! Although other forms of
notation exist and appear, on the face
of it, to be easier to understand, the
problem is one of communication.
Traditional notation is not perfect but
it is the most widely known and therein
lies its strength.

THE RUDIMENTS OF MUSIC

We'll get the rudiments out of the
way as quickly as possible so we can
move on to the more interesting aspect
of programming. Don't try to learn them
all at once - read through them and use
this section for reference. It is a
brief and potted summary but it should
provide you with enough information to
be able to take a piece of music and
program it into the computer.

Music is written on a series of five
lines known as a staff or stave. The
pitch of a note is indicated by its
position on the stave, on a line or in
a space. The higher up the stave, the
higher the note. The notes are given
letter names, A through to G. When G is
reached we start again with A.

=]
(<]
. -]

DEFGABCDEFG

o

Fall [~}
7 53 =]

(=]
FGABCDEFGAB

We can extend our range of notes by
placing them above and below the stave
on lines called leger lines.

ABCDE
6.2.9’3‘_
”
i o
=]
—& Teo.
Salieir e
ﬁ,fig,c,g c g bl i
WWWWW BN
&) (=]
¥
P
Ceoz—
EDCBA
There are several staves. To

distinguish one from another they are
given clef signs which show the pitch
of the notes in relation to the stave.
The two most common clefs are the
treble or G clef which loops around the
G line and the bass or F clef whose two
dots sit either side of the F line.

The interval in pitch between two

notes of the same letter is known as an
octave. The interval between two

adjacent notes 1is either a tone or a
semitone. The User Guide tells us that
the pitch values in the SOUND statement
alter the pitch by 1/4 of a semitone.
This plays through the complete pitch
range:

19 FOR pitch=@ TO 255
2¢ SOUND1,-15,pitch,10
30 NEXT
This alteration plays a semitone scale:
10 FOR pitch=@ TO 252 STEP 4
We can play octaves like this:

10 FOR pitch=1 TO 241 STEP 48

None of these are particularly musical.
They all lack a sense of... pitch.

10 FOR scale=1 TO 8

20 READ note

3@ SOUND1,-15,note, 1@

40 NEXT

50 DATA 53,61,69,73,81,89,97,101 _

BEEBUG

JANUARY/FEBRUARY 1985

Volume-3 Issue 8

16

The above plays a scale of C major
and sounds more musically satisfying
than a series of semitones. We say it
has a tonality or an affinity towards a
certain group of notes, a musical key.
The intervals between the notes in this
scale are: tone, tone, semitone, tone,
tone, tone, semitone. We can play a
scale based on any note simply by
adding these intervals to it. To tie
all these ideas together, the following
diagram shows the notes on the stave in
relation to a piano keyboard. Also
shown are the note names, the octaves
they fall into and the pitch numbers
required by the SOUND statement to
produce the notes.

MIDDLE. C

flattened D. Both produce the same
pitch and are known as enharmonics. It
is convenient to refer to all such
notes as sharps. Apart from anything
else, the computer has a built-in sharp
sign (#) and it avoids any possible
confusion with the letter 'b'.

SCALES

There are 12 notes in an octave from
which twelve major scales can be
formed. Black notes are indicated by
sharp (#) and flat (b) signs positioned
on the stave to form a key signature
(see overleaf). Each note with the same
name as the one upon whose line or
space the sharp or flat lies is played

N | -pfF _____
10} T 7 o
p 4 7 I e Y D
__@ % [
oJ
—&):
el
- — &
— 83 st 3§ §8R §
N4 DbEb GbAbBb DbEb GbAbBb Db
Eq ‘——[G D PG A CHDE FRGH AR O
%)
£
ur §= g
5]
= cvies
B
X
\)b
55 &
L c|olelFlalalelciplE|F|alalglc|p
1 5 S S 5 o T
[EERAS $RESREPEESSRZ SR
OCTAVE
NUMBER. ¢ 1 2 5 + 5 6
The notes have been moved or a semitone higher (sharp) or lower
transposed an octave. The staves show (flat) throughout the piece. For
most of the musically useful notes. If example, the key signature of D
the Cs were lined up we would often contains two sharps, F and C. If we

find ourselves an octave short in the
lower range.

Some notes have two names, eg C# and
D flat. A sharpened C is the same as a

start on a D note and "move upwards
playing the F# and C# notes as we go we
will play a major scale. The figure
also mentions minor scales: produced by
playing a different sequence of

BEEBUG

JANUARY/FEBRUARY 1985

Volume-3 Issue 8

T o L SRR W) gt s e e N R

17

RELATIVE A E B FR CHDH GH(AD)
P R S 8

only for the remainder of that bar. A
natural () is used to return a sharp
or flat to normal. Used like this,
these signs are known as accidentals.

CHORDS AND HARMONY

MINOR KEY A
't e a8 1. ey S
S i . e, G e
e ¥
MATOR c flafof A E B
Key
Hy— ¢
| LR | e -
o a2 e i
S ¥ ¥
RELATIVE b BEYE v G Bb Eb
MHINOR KEY e L ; i
s 7 T e s e o
= 1 e ok
b b
ATOR c [[riso | Es | a» ob Gb
KEY
i e T " T
;3 T o o e i
o o e § e
= T e L

intervals. To complicate matters, there
are technically two forms of minor
scale - the melodic and the harmonic.
They share the same key signature and
differ only in the way they are played
- a slightly academic point and one you
need not be too concerned about. The
diagram below shows the notes of the
major and minor scales of C.

To play a note which is not a part
of the designated key we place a sharp
or flat immediately before it. The
change only affects that one pitch, not
notes an octave up or down, and lasts

Now is a good time to introduce
chords and harmony, primarily because
they relate strongly to scales. Some
common chords are shown below. Harmony
refers to notes sounding simultaneously
- as opposed to notes sounding
consecutively which we would call a
melody. A chord is a combination of,
usually, three or more notes and is
built up from a sequence of intervals,
much like a scale. The most common
chord type 1is a major chord which is
formed by adding intervals of a third
and a fifth to the root note - from
which it takes its name. To construct a
C major chord, start on C and count
that as one. Move up the scale until
you reach three and that will be the
third, E. The fifth is calculated in
the same way and leads to a G note.
Together, these three notes form the
chord of C major.

c* co
= c Cn Cave C om c7 Cmar7 cé Cmné CmnT
17 :
p 4 4 b
=% = 1= #s Prel = o Ees t
') -; Y ; v-& - < < VG V@
MATOR MINOR AUAMENTED DIMINISHED (DOMINANT) MATOR (MATOR) MINOR MINOR
SEVENTH SEVENTH SIXTH SIXTH ~ SEVENTH
. c1q Cming Cll
U 4 N
p 4 be
/.1 s S s
QY -
oJ P P4 P4
(MATOR) MINOR ELEVENTH
NINTH NINTH
i C MAJOR
1
p 4 (<]
[/N =])
A\SY)] <]
D e
. | C MINOR (HARMONK) ” C MINOR (MELODIC)
o A = |57 .
X b 1 heChe p 4 1 L haSh ol
| /-] e i o) [/)) (e Rl ')
A\ - (=] 397 SO B Bl -~ =)
Viiie e >y J e° =28

BEEBUG

JANUARY/FEBRUARY 1985

Volume-3 Issue 8

18

A minor chord is produced by
flattening the third (a D# in the case
of a C chord) and this produces a 'sad'
sound. Many chords are named according
to their construction. Names are given
in terms of flattened, augmented
(sharpened) and added intervals. Chords
are useful for all manner of musical
things and provide a convenient method
of adding harmony to a melody.

NOTE DURATIONS
The duration of a note is
represented by the notation below.

THE TIME SIGNATURE

This is written at the beginning of
the piece as two figures, one above the
other. The upper figure tells us how
many beats there are in a bar and the

lower figure tells us the length of
each beat. A time signature of 4/4
would indicate four beats in a bar,

each made up of a crotchet.

MCL - MUSIC COMPOSITION LANGUAGE

Now we have enough information to
tackle some programming. Large
computer-based synthesizers such as the

NOTATION ENGLISH NAME AMERICAN NAME DURATION VALVE.
[SEMIBREVE WHOLE NOTE 32
J. DOTTED MINIM DOTTED HALF NOTE 24
] MINIM HALF NOTE 6
J. DOTTED CROTCHET DOTTED QUARTER NOTE. e
J CROTCHET QUARTER NOTE 8
) DOTTED QUAVER DOTTED EIGHTH NOTE §
) QUAVER ElGHTH NOTE 4
J)\ DOTTED SEMIQUAVER DOTTED SIXTEENTH NOTE. 3
ﬁ SEMIQUAVER SIXTEENTH NOTE 2
ﬁ DEMI- SEMIQUAVER THIRTYSECOND NOTE. 1

Duration

is relative only to other

Fairlight and Synclavier

(these cost

notes in the piece. It is important to
realise that it bears no relation to
the speed or tempo. Rest values are
shown here. Like a note, if a rest is

several thousands of pounds) have their
own MCL. Unfortunately, the BBC micro
does not contain an MCL so we must
devise and program our own. This can be
quite an exciting and challenging task.
You may 1like to refer to the music
programs in past issues of BEEBUG and
compare the methods used.

As a musician, I would rather enter
note names into the computer than
numbers or symbols. They show the
melody and can be arranged in sections
of one bar to simplify debugging. This
method, although not the only way, has

NOTATION | DURATION VALVE. followed by a
:? dgt itg dur_:a—
e tion is in-
T 6 creased by one
e half ~but. it is

! 8 more usual to

y 4 see a separate

—t rest of the half

7 b value placed

-77 1 after the other.
BEEBUG

JANUARY/FEBRUARY 1985

Volume-3 Issue 8

19

many advantages, especially when we
want to refer to notes and note
progressions - as opposed to just
playing a tune - such as in a
compositional program. Notes can be
described by note name plus octave
number followed by their duration. For
example, C#4,4 would represent a quaver
note produced by a pitch value of 153.
It is a fairly simple matter to decode
such an entry into the numbers required
by the SOUND statement.

The program is from Making Music on
the BBC Computer and illustrates the
principles behind the note to number
conversion. PROCAnalyseNote does the
work and variations on this procedure
are used throughout the book. I found
it better to adapt the procedure to
particular requirements than to try to
write a universal routine to cover
every possibility. You should be able
to enter data from a sheet of music and
program the computer to play the
melody. If you have any thoughts or
ideas about note representation or
music programming, I'd be interested to
hear them.

The figures and program with this
article are from Making Music on the
BBC Computer by Ian Waugh, published by
Sunshine books at £5.95 and used with
kind permission of the publishers.

PROGRAM NOTES

The program plays the first eight
bars of Mozart's Rondo Alla Turca. The
variable, Key, in 1line 120 is set to 1
(more on this in a moment) and the
envelope number is put in CurrentEnv.
The data between lines 230 and 310 is
organised into one bar per line. The
loop between lines 170 and 20@ reads
the note and its duration and calls
PROC’layNote once per note. This in
turr calls PROCAnalyseNote which
returns with values for Env, Pitch and
Dur which are wused in the SOUND
statemer.c. Note$S, Pitch and Dur are
printed so you can check that all is
working well.

PROCAnalyseNote first checks for a
rest, represented in our notation as an
R. If present, Env is set to @ which
produces a note with zero volume. Line
1980 is an error check. The length of
Note$ should only be two or three
characters long. You will notice that

the procedure does not check for sharp
signs, merely the length of Note$. The
name of the note is extracted followed
by the octave.

Line 1110 calculates the pitch. The
INSTR function determines how far along
ScaleS the note is and this is
multiplied by 4 as there are four pitch
increments in a semitone. Then 48
multiplied by the octave value is added
as there are 48 pitch values in an
octave. The variable, Key, gives us an
easy method of transposition. With a
value of 1 it plays as written; 5 will
take the tune up a semitone. Negative
values can also be used.

Lastly, the value of Pitch is
checked to ensure it falls in the sound
chip's range and the procedure ends.
The error checking is not essential but
you may find it useful. Add this:

205 Key=Key+4:RESTORE:GOTO 17¢

The program will eventually stop
with an error message when Pitch rises
above 255. If you REM out line 1120 you
will hear how, as the pitch rises above
255, the sound loops back to the bottom
end of the scale. Key only affects the
Pitch value, not Note$ or Octave.

You might like to try using the same
program to implement other pieces of
music before we continue with part two
of this series in the next issue.

190 REM Program MUSICPI

20 REM Version B1.0

30 REM Author Ian Waugh

4¢ REM BEEBUG Jan/Feb 1985

50 REM Program subject to copyright

10@ ON ERROR GOTO 1150

110 Scale$=" C C# D D¢ E F F# G
G# A A# B"

120 Key=1:VDU15

140 ENVELOPE1,1,0,0,0,9,0,0,126,-2,9,
-16,126,100

150 CurrentEnv=1

160 :

170 FOR N=1 TO 46

180 READ Note$,Dur

190 PROCPlayNote

200 NEXT N

21@ END

228 »

230 DATA B2,2,A2,2,G#2,2,A2,2 -

BEEBUG

JANUARY/FEBRUARY 1985

Volume-3 Issue 8

20

240 DATA C3,4,R,4,D3,2,C3,2,B2,2,C3,2 1080 IF LEN(Note$)<2 OR LEN(Note$)>3 T
25@ DATA E3,4,R,4,F3,2,E3,2,D#3,2,E3,2 HEN PRINT"ERROR IN DATA ";Note$:PRINT"N
260 DATA B3,2,A3,2,G#3,2,A3,2,B3,2,A3 ote Number ";N:STOP
,2,G#3,2,A3,2 1090 IF LEN(Note$)=2 THEN NoteNameS$=LE
270 DATA C4,8,A3,4,C4,2,G3,1,A3,1 FT$ (Note$,1) ELSE NoteName$=LEFTS (Note$
280 DATA B3,4,A3,4,G3,4,A3,2,G3,1,A3,1 i2)
290 DATA B3,4,A3,4,G3,4,A3,2,G3,1,A3,1 1100 Octave=VAL (RIGHTS (Note$,1))
3¢@ DATA B3,4,A3,4,G3,4,F#3,4 1119 Pitch=Key+INSTR (Scale$,NoteName$)
310 DATA E3,8 /3*4+(Octave-1) *48
320 : 1120 IF Pitch<@ OR Pitch>255 THEN PRIN
1000 DEF PROCPlayNote T"ERROR IN PITCH DATA ";Note$;" Pitch =
1919 PROCAnalyseNote ";Pitch:PRINT"Note Number ";N:STOP
1020 PRINT Note$,Pitch,Octave 1130 ENDPROC
193¢ SOUND1,Env,Pitch,Dur*1.5 1140 :
1040 ENDPROC 1150 ON ERROR OFF:MODE 7
1050 : 1160 IF ERR<>17 THEN REPORT:PRINT" at
1060 DEF PROCAnalyseNote line ";ERL
1070 IF Note$="R" Env=@:ENDPROC ELSE E 117¢ END
nv=CurrentEnv %

ADDENDUM TO ACORNSOFT P-SYSTEM
REVIEW

Subsequent to the review of the Acornsoft p-system, on page 7, we have now been
able to establish that the system crashes referred to in the appendix appear to have
been caused by the hardware configuration used rather than the p-system itself. In
further tests with other hardware the p-system has run quite successfully, though
the other comments relating to software and documentation still stand.

Acorn say that con a very small percentage of machines, timing problems can arise
when a second processor is in use, particularly when the tube is being driven hard
by complex software such as the p-system. If you suspect that your system, with
second processor, suffers from otherwise inexplicable crashes or failures, you
should contact your nearest Acorn dealer.

All official dealers have been notified by Acorn of a test for this condition and
a hardware fix that they can carry out, which will be free of charge to the
customer. Apparently the timing problem is caused by the cumulative effect of
several components operatmg only just within their individual tolerances in a
highly critical ti

HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS

WHICH DAY IS IT?

The short function below allows the day of the week to be calculated from a date
entered. Note that the format required by the code below is fairly exacting; the
format being DD:MM:YYYY, where DD is the two digit (with a zero preceding if
necessary) date, MM likewise the month and YYYY the year. The ':' may be replaced by
most characters, but it is best to standardize on just one separator.

190 DIMday$ (7) :FORA%=0TO7:READday$ (A%) :NEXT:CLS: PRINT

200 REPEAT

3¢¢0 INPUT LINE"date:"AS:D$=VALAS:M%=VALRIGHTS (AS$,7) : YS=VALRIGHTS (A$,4)-1600

4¢@ PRINTday$ (FNday) "DAY"
500 UNTILO
2003 DATA NO ,SUN,MON,TUES,WEDNES, THURS, FRI, SATUR
3000 DEFFNday:L%= (Y$MOD4ORY$MOD1@@=@ANDY3MODAGY) >0 : y$=Y%-1:m%=M%- o= ((YR+y3DIV4A-y%
DIV1@0+y$DIV4@0+31*m%- (m3DIV2) - (m3=8) - (m3=1 @)+ (m%>1) + (L3ANDmE>1) +D%+6) MOD7) +1AND (D%
>@ANDD%< (32— (m3MOD7MOD2) + (m%=1) + (L$ANDm3=1)) ANDM%>» @ANDM% <1 3ANDY%>@)
=

BEEBUG JANUARY/FEBRUARY 1985 Volume-3 Issue 8

2]

THE LATEST PRINTERS SURVEYED

by Tim Powys-Lybbe

Since we reviewed the popular Epson FX80 and similar printers over a
year ago several new machines, including two colour printers, have
appeared. We asked our expert on printers, Tim Powys-Lybbe, to
survey the latest printers, and see how they compare with the Epson.

This review covers the eight
printers listed including my eighteen
month old FX80, principally as a

standard of comparison for 'Epson
compatibility'. Two of the printers
were claimed to have Epson

compatibility and a third was almost
compatible, a fairly desirable feature
in the interests of standardization.
With the exception of the Mannesmann
Tally printers, all the others are of
Japanese origin.

DATAC FX80 KAGA MT16¢
Ensign Integrex MT80 Seikosha
Print quality 4 5 5 4 5 4 5 3
Print speed 3 4 4 1 5 3 5 1
Graphics quality 4 5 5 5 5 4 5 3
Graphics speed 3 3 4 1 5 3 5 1
Graphics linearity 5 2 5 5 5 4 4 5
Thread paper 3 4 2 4 5 4 3 2
Near letter quality %} 3 [} %] 5 %] 5)
Right justification [’} /)) (/) [’}) 5)
Underline 4 5 5 2 5 4 4 (/)
Noise (@=noisy) 2 3 3 5 3 2 3)
Italics "} 3 3 5 3 /) ()]
Condensed 4 5 5 4 5 4 5)
Elite type 4 5 5 [’} 5) 5)
Double width 4 5 5 5 5 5 5 4
Double height [’} %} [’} 5 () [’} [’} [
Emphasised 3 5 5 0 5 S 5 ()
Double Strike 3 5 5 4 5 3 3 3
Definable characters 3 5 5 [’} 5 [’} [’} [’}
Coloured text "] %] "] 5 [} [’} %] 4
Coloured background '] "] "] 5 [’} %}) [}
Subscript 3 5 5 /] 5 7] 1 7]
Superscript 3 5 5 [} 5 [’} 1)
Block graphics 4 %) %) 5) 2 0 [’}
Separated graphics [’} [}) 5) %} %} [’}
Appx. price inc VAT | 320 300 370 400 299 210 520 320
DATAC FX80 KAGA MT160
Ensign Integrex MT80 Seikosha

BEEBUG JANUARY/FEBRUARY 1985 Volume-3 Issue 8

22

The main results of the tests are
shown in the table. The tests were
twofold, first to run a program
consisting of most of the control codes
for that printer and second to perform
a graphics shaded dump. Special
programs were written for each printer
for both these tests.

The scores of @ to 5 are on an
arbitrary scale with 5 meaning the best
and @ meaning either the worst or that
the facility does not exist.

The prices were the cheapest
advertised in the October edition of
Personal Computer World.

DATAC 109V

The Sales Director claimed it had
'absolute compatibility' with the Epson
RX80. This was not true in one respect,
that of the ESC "*" graphics mode
selection. The actual printing was very
dark (good in itself) which however
meant that emphasised and emphasised
double strike were almost identical.
The graphics dump suffered from the
same over inking but the precision was
good and the printer has one particular
advantage, that it can print circles
correctly.

DRG ENSIGN 1750

This printer was claimed to be Epson
compatible by Micro Peripherals, though
not by Twickenham Computer Centre who
provided the review machine. The only
non-compatibility I could find was with
the defined characters on my FX80.
Additionally it could not do the FX80
plotter graphics and so could not print
circles correctly.

The print quality was identical to
the FX80 with one exception: that it
had an additional print mode called
'Fine' (Near Letter Quality, or NLQ, by
Micro-P). This was the same typeface as
the FX80 but with the gaps between dots
filled in. It produced a very pleasant
result, much better than anything the
FX8J can do. But it is not a typewriter
typeface and thus not really NLQ.

EPSON FX80

This 1s still going strong after
eighteen months of use, though now on
its second print head. It produces good
matrix print with a wide range of
facilities that others are now
beginning to exceed. It “has one

enormous advantage to me, that it will
print circles circularly and cope with
all graphics dumps with considerable
precision in terms of pattern clarity.

INTEGREX COLOURJET 132

Although made in Japan, in view of
what transpired I do not think this was
a totally Japanese machine and think
that the ROM has been rewritten in this
country, possibly to provide a fast
Teletext colour screen dump.

The excellent feature of this
machine was the total clarity of the
colouring of screen dumps. I could not
detect any imperfection in large sheets
of the same colour. It coped superbly
with the very difficult picture of a
desert island formed by an Acornsoft
Creative Graphics program. While the
graphics dumps are not fast, taking
about 7 minutes, the results are well
worthwhile (until someone comes along
with a printer that does as well but
faster). You can even print in colour

BEEBUG

. JANUARY/FEBRUARY 1985
Bttt e s oo cmve o L R Nl e oo A B R I S e e = e e

Volume-3 Issue 8

23

onto overhead projector transparencies,
though these must be of a special type
which Integrex can supply. The only
problem with the graphics dumps is that
it requires special paper for the best
results: even top copy typewriter paper
gave inferior results.

The tragedy with this printer is
that not all the bugs have been removed
from the ROM. When I received it the
printer even missed out the last
character on every, yes every, line;
Integrex provided me with the latest
ROM after I had pointed some faults out
to them. The typing facilities, as
opposed to the graphics dump
facilities, were still not correct.

The machine came with a Teletext
dump program; while this worked with
some screens, it did not reproduce a
test screen of mine correctly.

The blessing of this machine was its
quiet operation: one can only just hear
the jet head moving from side to side,
and there is none of the strident rasp
of the matrix.

KAGA TAXAN

This printer has only recently
appeared on the market, and with little
attempt to disguise it, is being sold
both as the branded Canon and as the
less well known Kaga.

This printer has more facilities
than the FX80, and it is compatible,
with the sole exception of the same
user defined character controls as on
the Ensign. It will dump a screen
linearly like the FX80, but 50% faster.
Its text printing is faster than the
FX80 and it has a superb Near Letter
Quality mode, whose characters do
resemble those of a typewriter.

MANNESMANN TALLY MT8¢

This 1s a bottom end of the market
machine of probably far east origin as
it has little resemblance to other
Mannesmann machines of my acquaintance.
As you would expect it is slow, with
limited facilities and does not produce
the clearest of print.

MANNESMANN TALLY MT160

This 1is the only machine that was
not of Japanese origin. Its weight and
solidity seemed to confirm its Teutonic
origin. It lacked a few features but
also had several possessed by no other
printer in this survey.

The 'Correspondence Quality' mode
enables this machine to be used in
place of a daisy wheel printer. While
the print quality is detectably matrix,
the advantage is that there is a usable
facility to proportionally right
justify on the machine, as the
illustration shows. This provides a
high quality print with a very even
spacing between letters and words of
each line.

If the print quality is acceptable
(and emphasised Correspondence Quality

.ty with normal letter
e entered and exite~”

TS S0
-xibility,

.on of the KAGA TAXAN's Near Letter
agraph is printed using Wordwise
spe~’

<€ Mannesmann Tally MT164
~ Quality printing. The text hi

Wordwise
has been able to send the r

an example of

which, with its

BEEBUG

JANUARY/FEBRUARY 1985

Volume-3 Issue 8

24

looked good to me), its price and speed
would render this machine preferable to

a daisy wheel. It 1is clearly faster
than an FX80.

Another feature of this machine is
the ability to set the 'DIP switches'
without having to delve inside it. This
is performed by answering 'yes' and
'no' using the two appropriately marked
keys on the front of the printer.

SEIKOSHA GP70@-A

This 1s the second colour printer in
this survey. I regret to say that there
is nothing to commend on this printer.
It 1is extremely noisy, the colours are
poor even after obtaining replacements
from DRG, the main distributors, the
text print quality is poor and the
facilities are extremely limited.

SUMMARY

There are three printers that have
something special to commend them. The
Integrex for its coloured screen dumps,
the KAGA for its print quality and
speed and the Mannesmann MT16¢ for its
proportionally right justified
correspondence quality, and speed. Of
the others the FX8# is now looking
expensive for what it offers, the
Ensign is a strong contender for one's
purse and the MT8J is not bad value at
the bottom end of the market.

All printers were supplied for
review by the main distributors except
for the Ensign and the Kaga which came
from Twickenham Computer Centre.

=

DISABLING BREAK

by Tim Powys-Lybbe

Have you ever yearned to make your program foolproof against the
frantic fingers of today's computer age kids? Well here's the
routine which will protect your program against forced entry, and do

wonders for your self esteem.

This small routine will enable you
to stop people from breaking into your
program. The idea is a simple one,
based on the re-programming of function
key 10 (the Break key). The machine
code routine sets up this key so that
every time Break is pressed, it
reproduces OLD followed by RUN. It is
not possible to totally inhibit the
normal Break function but it is quite
possible to keep control within the
current program. Any values previously
assigned to the resident integer
variables will be preserved and these
can therefore be used to store useful
information.

Another potential interruption to
the running of a program is the use of
the Escape key. Although it would

appear that Escape can be easily
disabled, the combination of Escape
with Ctrl-Break is very powerful and
succeeded in breaking into the original
program (lines 128 to 14@ below). So
the Escape disable had to be included
in the machine code at line 10060.

The following program is a
development of that by G.Middleton in
BEEBUG Vol.3 No.2. A result of
Ctrl-Break is to clear the function
keys so this has to be allowed for. The
assembler program, line 1009@ onwards,
works by intercepting the Break routine
(line 1011@) on the second pass through
the vector, and ensures that *KEY10 1is
reset.

BEEBUG

JANUARY/FEBRUARY 1985

Volume-3 Issue 8

25

The re-programming of the Break key
is specified as a character string
assigned to A$ in line 10090. As listed
it performs OLD followed by RUN as
already stated. The content of A$ can
be changed, the only restriction being
that A$ should not contain more than
around 180 bytes in length. It is
easiest if your program runs from the
computer's PAGE value at start up;
though it is possible to relocate PAGE
through AS. It is best to.;start
experimenting with the content of A$
only after you have proved your entry
of the program.

Once the machine code has been
assembled, another program can be
CHAINed in, but anything that
overwrites the machine code in memory,
in page &A on disc machines or page &D
on tape, will corrupt this code and
cause a total machine crash.

Lines 120 to 140 listed below are
there purely to demonstrate the use of
the routine and should be replaced in
practice by your own program, which can
now be secured, against accidental (or
deliberate) pressing of the Break key.

19 REM PROGRAM NOBREAK

2() REM VERSION B@.3

30 REM AUTHOR T.POWYS-LYBBE

4¢ REM BEEBUG JAN/FEB 1985

50 REM PROGRAM SUBJECT TO COPYRIGHT

60 :

100 PROCAssemble

110 CALLDisable

120 MODE7

130 PRINT"This proves that it works..
."''"Did you hear the bleep every time
the"'"little darlings pressed BREAK or"
'"CTRL BREAK or even ESCAPE, CTRL and"'
IIBREAK?"

140 END

158 3

160 REM Put the rest of your program
here

1705
10000 DEFPROCAssemble
10010 OSBYTE=&FFF4:0SWRCH=&FFEE:CLI=&FF
F7
10020 FORPass=¢TO1
10030 P%=&A0@ : REM Use P%=&D@1 with ta
pe machines; P%=&A00 is for disc machin
es.
10040 [OPTPass*2
10050 .Start BCSStartl:RTS
1006@ .Startl LDA#7:JSROSWRCH:LDA#200:L
DX#1:JSROSBYTE: LDX#KeyMessage MOD256:LD
Y#KeyMessage DIV256:JMPCLI
10070 .KeyMessage
10080 :
10099]:AS$S="KEY1 GO.LMRUN]M":$P%=A$:P%=P
%+LENAS+1: [OPTPass*
10100 :
10119 .Disable LDA#&F7:LDY#0:LDX#&4C:JS
ROSBYTE: LDA#&F8: LDX#Start MOD256:LDY#d:
JSROSBYTE: LDA#&F9: LDX#Start DIV256:LDY#
@ : JMPOSBYTE
10120 :
10130]NEXT
16140 ENDPROC =)

HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS

DOUBLE USAGE - D. Morgan

If you are really concerned with reducing the number of variables used by a
procedure, for example when a DIM command is used, don't forget that you can assign
a result to a variable used in the calculation. By way of example, consider:

DIM N% N%

AS=RIGHTS (AS,4) +LEFTS (AS, 3)

These are both quite legitimate Basic statements. The first one will reserve N%+1
(d..N3) bytes, and the second one performs a small amount of string manipulation on
AS, and then puts the result back in A$. Note that the variable on the left band
side is not altered until the right hand side has been FULLY evaluated; so A$ in the
LEFTS above still refers to the original A$, and not an intermediate value. =

QUICK WAIT FOR KEY - D. Morgan

When writing ‘'user friendly' programs, it is often necessary to wait for a key to

be pressed in order to provide time for

the user to read a piece of text. The

briefest way in which Basic can perform this is by means of the following:

IF GET
This uses less memory than the more usual A=GET. Brief, ain't it! =]
BEEBUG JANUARY/FEBRUARY 1985 Volume-3 Issue 8

26

COMPUTER GAMES FOR THE BLIND

by David Calderwood

David Calderwood, himself blind,

describes how he has adapted a

variety of computer games so that they may be played by the blind on

the BBC micro.

It was the concept of adventure
games that started me off. Like radio
having the edge on T.V., a text only
adventure game makes use of the
players' imagination - and that can
build pictures far more fantastic than
the most impressive main frame
computer graphics. Using a BBC micro
and Votrax "Type and Talk" the *FX5,2
command read me the text of Sphinx, a
brilliant starter game (although there
is no easy 'save game' facility). If
the text was not heard properly the
first time then "LOOK" could be
entered for an immediate recap. Since
that time I have played a number of
adventures, the limiting factor being
my brain rather than not being able to
see.

But why stop at text games?
Backgammon and Chess are played by the
blind using tactile boards; surely
something could be done in this field.
Using "Talking Basic" I set about
doctoring "Beeb Gammon" so that it
read out the written moves with the
addition of a review command which
simply read out the players' positions
on the board. The game is simply played
on the tactile Backgammon board
available from the Royal National
Institute for The Blind. So far I have
not been able to find a Chess program
that can be suitably modified. Software
houses are not that keen on lending out
programs for such trials by the most
minor of computer minority groups! The
advent of "Microspeak" firmware has,
however, made the possibility of Blind
Monopoly come about, and in a version
that can be played by either blind or
sighted players, or both together.

But again why not action games?
The next step was "Fruit Machine" -
after all a sighted player only
registers the type of fruit with his or
her eyes; so they can just as easily
be shouted by the speech synthesizer
and the Beeb sonics can do the rest. I

had to leave a little longer time for
the nudge option but apart from that
it's identical to a visual game.
Pinball was more of a challenge. "The
who" sang of a deaf, dumb and blind boy
who was a pinball wizard. How could I
make this possible for the blind? I
started by a table layout based on a
two dimensional array BOARD%(X,Y). This
was then filled with a 1, 2 or 3 etc.
The "ball" then rolled down the board
and reacted to the number it saw on the
matrix, e.g. if 1 stood for a bumper
then PROCBUMPER was called up thereby
producing a bumper type sound, the
speaking of the word "“bump" and the
direction in which the ball continues
its downward movement (left, right or
up for a second bump) .

Other numbers stood for other
goodies like rollers, flippers, spots
etc. Little extras 1like bonus scores
when buzzers sound made all the
difference between a boring and an
addictive game. The ball position on
the X axis could be manipulated by the
initial firing of the ball and by left
(Z) or right (/) nudges. Too many
nudges brings up the "tilt warning"
message.

The success of pinball and its
popularity drove me on to write a blind
version of Pacman and Asteroids,
Noughts and Crosses, and various card
games. The limitation 1is that of "band
width" - getting as much information
over to the player as possible in the
shortest possible time. Subtle use of
speech and sonics are important and the
use of a second speech output would
make possible even faster games, i.e.
one voice giving your position and the
other giving the position of the
monsters - listening to two voices at
once is not difficult. Alas this stereo
information has not been tried; Acorn
were not impressed with the idea of
using their speech chip as the second
information source.

BEEBUG

JANUARY/FEBRUARY 1985

Volume-3 Issue 8

0

4

I do hope that this article has
stimulated a few ideas in readers'
minds and banished the idea that Simon

 magazine called
audio cassette, complete with computer

and distributes to members a quarterly
‘'Computer Talk' on an

is the only computer game that a blind A pmgrams on the reverse side. ’I’he'
person can cope with. The Votrax will _ Votrax 'ty and Talk' system with
speak any PRINT statement and screen 'Talking Basic' 1is available from John

layout is immaterial. If you think that
you may have any programs that would be
of particular interest to blind people,
then send me anything you may write on
cassette, or 40 or 8¢ track disc. You

‘Tilitch of Sensory Information Systems,

2n Enqland’s Lane, [London NW3 ATG.
talking Basic was developed by Dr Tom

 Vincent at the Open Hm.versstty, Milton

Keynes, and 'Micro Speak’ is the latest

won't make a penny out of it but you version Of this in EPROM, Anyone:
will shed a little light in a dark wanting more ‘information, or interested
world. in helping in any way {by reading

[David Cald‘erwood organises a user

group fo): blmd users of thee BBC mmro, .

BEEBUG aloud for exampie} can contact
David Calderwood at Hafan, Minfordd,
‘ TPem:hyndeudraath, Gy

ydd LL48 GHP. -Ed]

TUBE COMPATIBILITY OF ROM SOFTWARE

List compiled by Benjamin Rietti

With 6502 second processors now and he has given us permission to
becoming more widely available, we reproduce this list here. The
thought it would be helpful to members information refers to the current

to list the ROMs that do, or don't work

version or the stated version of the

with a 6502 second processor active. ROMs listed. If you know of any ROMs
Fortunately, Benjamin Rietti, of not mentioned, then please let either
Viewfax Tubelink (*258216#) fame, has us or Benjamin know so that the

already compiled a very extensive list,

DATAGEM
 DATASTORE
 DECCE TERMINAL

ACORN MONITOR

 ADE

=0 YD O

w‘BUE‘FEF:/BACKUP ,
 CARETAKER GDUMP 3.00
~ GRAPH. EXTN.
GrELIN
. HEBREW 1.00

P
P
COMUNICATOR P
COMMUNICATOR 2.1C
CopsTAR P

«;’The coding system' .

- Completely Cmmpatlble
P~ pPartially Compatzble
i Incompatlbla m all :espects

cmwmobowO H‘a'n‘*‘p Orieom

 LISP (ACORN)

 MULTI-FORTH 83
 PRINTMASTER

Cgmz

information can be of use to others.

wEr
ISO PASCAL

 STARBAS
~ STARMON
 STARSTICK
. TERMI
 TOOLKIT (BEEBUG)
. TOOLKIT (D-WARE)
. TootsmR
ULTRACALC mﬁm
UROM
VIEW 1.4/2.1
VIEWSHEET
WATFORD DDFS
 WAT. DFS 1.40
WORDWISE
WORDWISE+
WORKSTATION 1.4
XCAL

MUROM @
PASCAL-T HOCS
'PRESTEL 4.80n
PRINTER MON.

ROM MANAGER
some
SLEUTH ,
SPELLCHECK I

‘@OHQ“GO@Q@HQQQQGOK
mnngnonomnwmﬁmgn5j¢

List courtesy of Viewfax and Tubelink (258216). %]

BEEBUG

JANUARY/FEBRUARY 1985

Volume-3 Issue 8

28

ASSEMBLER ARITHMETIC THE EASY WAY

by Derek Chown

Some of the easiest Basic programming tasks become difficult and
time consuming when using assembler. Derek Chown introduces a method
of making assembler arithmetic nearly as easy as in Basic.

You are faced with a major problem
the instant you attempt to rewrite a
Basic program in Assembler Language,
which helps to bring home to you just
how much the Basic interpreter is
doing. The problem is that of simple
arithmetic. The 6502 instruction set
cannot directly cope with floating
point or high precision arithmetic.

The machine code routines required
for this already exist in the Basic
ROM. This program allows you to use
these ROM routines from your own
assembler language program, saving you
the trouble of writing your own.
However, the price that you have to pay
is that all numbers to be used by the
ROM routines have to be suitably
packaged for them.

Five functions are provided by the
accompanying program. These allow you
to add, subtract, multiply and divide

integer and floating point numbers,
producing either integer or floating
point answers. The fifth function
enables_you to find the address of a
Basic variable.

The ROM routines are designed for

use with Basic variables. When using
them from an assembler program you have
to work hand in hand with the Basic
variable system. All numbers must be
presented to the ROM routines in the
same form as Basic variables are
presented. Thus numbers must be stored
in a particular format (see the later
section), and in memory locations that
they would occupy if they were Basic
variables in a Basic program.

To achieve this, variables should
first be 'declared' in Basic and then
processed by your assembler program
(using the routines presented here).
The declaration of variables in Basic
simply takes the form of assigning a
value to that variable (e.g. X=4).

The value assigned is not crucial as
long as Basic is informed of the
variable and sets aside some memory for
it. You can substitute your own values
later from assembler and indeed, you
will want to do this when manipulating
these numbers in your assembler
program. All the time, the variable's
value is kept in the location assigned
to it, at the start, by Basic just as
it is in a Basic program. This is so
that the ROM routines know where to
find it. This location can be obtained
from the 'address' routine.

USING THE ROUTINES FROM BASIC

The routines are called 'add',
"sub", *‘mul','div' and 'address'. It is
a simple matter to call these from
Basic (as a preliminary to final coding
in assembler, for example):

CALL div,NUM,DEN,QUO%
is equivalent to:
QUO%=NUM/DEN

CALL add,A,B,C
is equivalent to:
C=A+B

The address of C(I%) can be found by:
CALL address,C(I%),ADR

VARIABLE POINTERS)

The last routine, ‘Yaddress', is a
useful routine, for Basic, in its own'
right. It can be used to simulate the
function, VARPTR, found in versions of
Basic on some other computers.

If you find yourself trying to
convert a program from another machine
that contains a line such as:

AD=VARPTR (V)

This can be replaced with a call to the
address routine of the form:

CALL address,V,AD

USING THE ROUTINES FROM ASSEMBLER
To use the routines from an
assembler program you must imitate the

BEEBUG

JANUARY/FEBRUARY 1985

Volume-3 Issue 8

29

action of the CALL statement, setting
up the parameter block that points to
the memory locations of all the
variables used in the calculation. The
parameter block always starts at
address &600 with a format as given on
page 214 of the User Guide. To set up
the block you need to know the
addresses of the variables. Although
the system integers (@%, A%-2%) are
always stored, in order, in locations
&404 to &468, to have easy access to
any other variables, you should use the
address routine as follows:

1. Assemble the 'address' and arith-
metic routines (lines 1350 to 2250).

2. Use 'address' to find the addresses
of the variables declared in the
Basic part of the program.

3. Assign these addresses to (other)
Basic variables.

4. Use these latest wvariables as
symbolic addresses in the main
assembler language part of the
program and as variable address
pointers when accessing the ROM
routines.

For example:

A section of Basic that is to be
converted to assembler uses the
variables X and Y which are to be
multiplied, and the result put into the
integer variable 2%, i.e. Z%=X*Y.

1. At the start of the program declare
the variables (eg X=4) and use
'address' to find the location of the
variables needed, storing these as,
say, A%, B%, and C%:

CALL address,X,A%
CALL address,Y,B%
CALL address,Z%,C%

2. In the assembler part when the

calculation is needed, create a

parameter block using these addresses:
FLOATING POINT STORAGE

BYTES BYTE 4

LDA #A% MOD 256:STA &601 \ X L byte
LDA #A% DIV 256:STA &6@2 \ X H byte
LDA #5:STA &603 \ X variable type 5
LDA #B% MOD 256:STA &604 \ Y L byte
LDA #B% DIV 256:STA &605 \ Y H byte
LDA #5:STA &606 \ Y variable type 5
LDA #C% MOD 256:STA &607 \ Z% L byte
LDA #C% DIV 256:STA &608 \ Z% H byte
LDA #4:STA &609 \ Z% variable type 4

(Variable type 5 denotes a floating
point variable while 4 1is for an
integer variable. See the User Guide

page 215)

3. Call 'mul' routine (which will use
the parameter block) :
JSR mul

4, The last two steps are the assembler
equivalent of 'CALL mul' in Basic. The
result will be in the Basic variable,
C%. This result is pointed to (as
before) by the address at &607 and &608
ready for use.

VARIABLE STORAGE

In order to manipulate numbers in
assembler language in this way you need
to know how the numbers that are to be
used in the calculations are stored by
Basic so that you can imitate this for
the benefit of the ROM routines.

Integers are easy. These are 32-bit
quantities stored with the least
significant byte at the lowest address.
The most significant bit is the sign
bit. If the sign bit is set (negative)
then the number is the value of the
remaining 31 bits minus (2 " 31)

If you are uncertain of this method
of storing integers (known as two's
complement) you can experiment by
assigning numbers to A%, and examining
the locations where this variable is
stored using, say,

BYTE 2 BYTE 1

(T T T T T T T JIUI LLELL T

LSB MSB LSB MsB LSB MSB LSB|MSB Ls8
MANTISSA SIGN BIT : EXPONENT
INTEGER STORAGE
BYTE 4 BYTE 3 BYTE1
(RAEREANERERRE TANRRE R SRS
LSB|MSB LSB

i MSB LSB|msB LSB MSB
SIGN BIT

BEEBUG

JANUARY/FEBRUARY 1985

Volume-3 Issue 8

30

PRINT !&404' 28407 28406 ?&405 25404
Some good numbers to try are 1, 2, -1,
-2, 2147483647, -2147483648, 0.

Floating point numbers are a little
more complicated and need five bytes of
memory. The first (lowest address) byte
is an exponent (in a format known as
excess 128 notation), and the next four
bytes form a 32-bit integer. This time
the least significant byte is at the
highest address.

The sign of the integer part also
works differently. If the sign bit is
set (1) then ALL the bits, including
the' sign ' bit, represent negative
quantities (ignoring, for the moment,
the exponent). If the sign bit is zero
then all the bits represent positive
quantities, but you must also add on

2 " 31 (=2147483648)

Once you have arrived at the value of
the integer part, the value of the
complete number is arrived at by
multiplying by:

2 © (exponent - 128 - 32)
where the exponent is treated as a
signed 8-bit number. Here is a simple
example.

A=96

CALL address,A,AD%

PRINT ?AD% :REM gives &87

PRINT ?(AD%+1) :REM gives &40
As the remaining bytes are zero in this
example the value of the integer part
is:

2030 472731,

This must be multiplied by:

27(&87 - 128 - 32)
to get ‘the" result - 96, Try it for
yourself.

So 96 is stored as &87, &40, &090, &00,
&00, and -96 is stored as &87, &CH,
&00, &00, &00.

It is worth noting that floating
point numbers maintain 32-bit accuracy.
This means that integers can be
converted to floating point numbers and
back with complete accuracy. This is a
great help in a language like Basic.

PROGRAM NOTES

The program is in three parts.
PROCassem contains the arithmetic
routines and the numerous labels

identify the various parts.

PROCbasicl and PROCbasic2 set up the
entry points to the Basic ROM for the
two versions of the language.

Although the program can detect
which version of Basic you have in your
BBC micro, it can be shortened by
leaving out the procedure not relevant
to your Basic and altering line 1660 to
call just the procedure that you need.

PROCtest performs a test, from
Basic, on each of the routines to check
that you have entered them correctly.
This is performed with random variable
values repeatedly for 100 times. The
test number is printed out as this is
being done. The program stops if any of
the tests fail.

Once the routines have been checked
in this way, this part of the program
does not have to be included in your
assembler program.

10 REM Program Assembler Arithmetic
20 REM Version B@.1

30 REM Author Derek Chown

40 REM BEEBUG Jan/Feb 1985

50 REM Program subject to copyright

100 ON ERROR GOTO 2270

120 MODE 7
130 DIM C(360)
140 PROCassem
150 PROCtest
160 END

1000 DEF PROCtest

1010 PRINT:PRINT"TESTING";

1020 I=RND(-TIME)

1030 C=0

1040 FOR count%=1 TO 100

1050 REM Check address of integers
1060 CALL address,Z%,A%

1070 IF A%<>&468 -STOP

1080 M%=&7FFFFFFF :N%=360

1090 REPEAT CALL random:UNTIL !&D>=0
11900 REM Check divide

1119 CALL div,!&D,M%,1

1120 IF !&D/M%<>I STOP

1130 REM Check multiply

1149 CALL mul,I,N%,I%

1150 IF 1%$>360 OR I%<@ STOP

1160 J%=I*N%:IF J%<>I% STOP

1170 REM Check address

1180 CALL address,C,X%

1190 CALL address,C(I%),Y%

BEEBUG

JANUARY/FEBRUARY 1985

Volume-3 Issue 8

e s e v I e S [0 O N O L = Lo RS on =Tl W= e L PO

31

1200 C(1%)=COS (RAD(I%))

1210 ! (X%+1) =1 (Y%+1) :2X%=2Y%
1220 IF C<>COS (RAD(I%)) STOP
1230 REM Check addition

1240 A%=RND:B=RND:CALL add,A%,B,C
125@ IF A%+B<>C STOP

1260 REM Check subtraction
1270 A=RND*RND/RND :B=A-RND
1280 CALL sub,A,B,C%

1290 D%=A-B:IF D%<>C% STOP
130@ PRINT count%;

1310 NEXT count$%

1320 PRINT

1339 ENDPROC

1340 :

1350 DEF PROCbasicl

1360 REM Name some useiful addresses
1370 REM within the BASIC ROM
1380 additi=&AS50E

1390 divisi=&A6F2

1400 facl=&30

14190 fac2=&3D

1420 floati=&A2AF

1430 fixedp=&A3F2

1440 multip=&A661

145@ random=&AF78

1460 setupl=&B35B

1470 transf=&A20F

1480 subtra=&A505

1499 ENDPROC

1500 :

1519 DEF PROCbasic2

1520 additi=&A500

1530 divisi=&A6E7

1549 facl=&30

1550 fac2=&3D

1560 floati=&A2BE

157¢ fixedp=&A3E4

1580 multip=&A656

1590 random=&AF49

1600 setupl=&B32C

1610 transf=&A21E

1620 subtra=&A4DY

1639 ENDPROC

1640 :

1650 DEF PROCassem

1780 LDA &606:JSR assb

1799 RTS

1800 :

1819 .set LDA &601,Y:STA &2A

1820 LDA &602,Y:STA &2B

1830 LDA &6@3,Y:STA &2C

1840 PHA:TYA:PHA

1850 JSR setupl

1860 PLA:TAY:PLA

187¢ CMP #4:BNE tra

1880 TYA:PHA:JSR floati:PLA:TAY

1890 .tra CPY #3:BNE eset

19¢0@ JSR transf:.eset

1910 RTS

1920 :

1930 .prep LDY #3:JSR set

1940 LDY #@:JSR set:RTS

1950

1960 .ass LDA &6@7:STA &37

1970 LDA &6@08:STA &38

1980 LDA &609

1990 .assb CMP #4:BEQ ias

2000 JSR sigl:LDY #4

2019 .flp LDA facl,Y:STA (&37),Y

2020 DEY:BPL flp:JMP eas

2030¢ .ias JSR fixedp:LDY #3

2040 .ilp LDA &2A,Y:STA (&37),Y

2050 DEY:BPL ilp

2060 .eas RTS

2070 :

2080 .sigl LDA #&80@:EOR facl-2:AND #&8
@:EOR facl+1:STA facl+1:RTS

2090 .sig2 LDA #&80:EOR fac2-2:AND #&8
@:EOR fac2+1:STA fac2+1:RTS

2100 :

2119 .div JSR prep:LDA #fac2:STA &4B:L
DA #0:STA &4C

2120 JSR sig2:JSR divisi:JSR ass:RTS
2138 =

2140 .mul JSR prep:LDA #fac2:STA &4B:L
DA #@:STA &4C

2150 JSR sig2:JSR multip:JSR ass:RTS
2160 :

2170 .sub JSR prep:LDA #fac2:STA &4B:L
DA #0:STA &4C

2180 JSR sig2:JSR subtra:JSR ass:RTS

1660 IF 2&8015=531 PROCbasicl ELSEIF ? 2199

&8015=&32 PROCbasic2 ELSE PRINT"Incompa

tible basic":END
1679 S%=&F3:DIM Q% S%
1680 FOR pass=@ TO 3 STEP 3
1699 P%=Q%
1700 [OPT pass
1710 .start
1720 .address LDA &601:STA &2A
1730 LDA &6@2:STA &2B
1740 LDY #@:STY &2C:STY &2D
1756 JSR floati
1760 LDA &6@4:STA &37
1770 LDA &6@05:STA &38

2200 .add JSR prep:LDA #fac2:STA &4B:L
DA #0:STA &4C

2219 JSR sig2:JSR additi:JSR ass:RTS
2229 :

2230 .end RTS:]

2240 NEXT pass

2250 ENDPROC

2260 :

2270 ON ERROR OFF

2280 MODE 7

2290 IF ERR=17 THEN END

2300 REPORT:PRINT " at line ";ERL
2310 END

=

BEEBUG

JANUARY/FEBRUARY 1985

Volume-3 Issue 8

32

THREE SPEECH SYSTEMS REVIEWED

There are two main ways by which
speech can be simulated on the micro.
Words spoken by a real human voice can
be recorded, turned into digital form
and stored on a chip. Alternatively,
the small units of sound (allophones)
that go together to make spoken words
can be produced art1flc1a11y and put
together to make intelligible speech.
Whilst the first method produces a more
natural result, the number of words
available is limited to those recorded,
and various combinations of them. The
other method, using allophones, is much
more flexlble, as almost any word can
be created, but this flexibility is at
the price of 1losing the human quality
of the speech. This month we look at
three of the speech systems on offer.

Ptoduct -

P::lce . T '

Supplier Cheetah Marketmg Ltd.. .
. 24 Ray Street,

. london KCIR 3DJ

Reviewer : Ernest Bebbington

es c)f .

The Cheetah Sweet Talker uses the
allophone method. It is a small circuit
board holding a speech synthesizer chip
and a few other components. It comes
well protected in a box with
demonstration software on cassette and
an instruction leaflet.

Installation is merely a matter of
inserting the circuit board into the
Beeb's speech socket. The 'Beebtalk'
tape, included with the unit, gives a
demonstration of the Sweet Talker's
capabilities. As the words are spoken
through the Beeb's loudspeaker the
program prints them on the screen. To
test the clarity of the speech I tried
not looking at the monitor, and I had
no trouble in understanding what was
said, in spite of the monotonic
delivery. The second part ‘of the
demonstration program tells the user
how to write software for the unit and
possible uses for speech synthesis are
also mentioned. There is a brief
demonstration of its use in a game and
a rather weak attempt at producing
foreign words: no Frenchman would be

fooled by the Sweet Talker's version of
'bonjour"'.

In order for the Sweet Talker to
speak, a short assembly language
program, (printed in the instruction
leaflet) must be incorporated into any
Basic program using it. This is just a
few lines and can be in the form of a
procedure invoked near the beginning of
a program to assemble it into memory.
The resulting machine code (about 20
bytes) is then CALLed from Basic when
required.

Each word spoken by Sweet Talker is
split up into a series of allophones
(of which a complete list is supplied),
and it is very easy to make the unit
say any one of them. There are even set
length pauses built in to aid the user.
I'm not convinced as to the
completeness of the set of allophones
though; I couldn't find one for the
'oo' of 'move'.

One major drawback to the Sweet
Talker is the Dalek-like enunciation.
This is acceptable in games, where
short phrases are spoken, but in more
serious software, where longer periods
of speech may be needed, the monotony
could be unpleasant. However, because
of the flexibility of the allophone
system, the relatively low price of the
unit and the ease of writing its
software, I recommend Sweet Talker as a
good, no-frills introduction to speech
synthesis on a microcomputer.

Product ¢ ,Easytalk Speech Utillty ROM
Price : E21,95 ipc.VAT
Suppher ¢ Galaxy Sthware, .
123 Links i}rwe, .
Solihull,
A West Mldlands 1391 2DJ
Reviewer : Ernest Bebbington

The Easytalk Speech Utility ROM is
not a speech synthesizer in itself;
more a powerful tool for the Acorn
Speech System unit for the BBC micro.
Consisting of just an EPROM, and a
twenty three page booklet of
instructions, the Easytalk system fits
easily into a vacant ROM socket on your

BEEBUG

JANUARY/FEBRUARY 1985
R e Ry L et e T e A T e o TR T R D R LI L Y

Volume-3 Issue 8

33

Beeb. The computer must, of course, be
already fitted with the Acorn Speech
interface (reviewed in BEEBUG Vol.2
No.3).

Basically, what Easytalk does for
the speech upgrade is to allow much
easier access to the words and sounds
already available, to let users create
their own words from a given set of
phonemes and to design their own custom
built phonemes.

To access the pre-set words and
sounds in the Acorn Speech interface,
Easytalk provides several easy-to-use
commands. *VOCAB followed by a word or
phrase causes the words to be spoken
without having to 1look up the codes.
*NUMBER x, where x 1is any real number
between -999999 and +999999, speaks the
number in the correct way and not just
as a string of digits. Similarly,
*AMOUNT can be used to pronounce
amounts of money in pounds or dollars,
*TIME and *CLOCK turn the Beeb into a
speaking clock (with 24 to 12 hour
conversion) and *ALARM will sound a
bleep at a specified time. I found that
all of these commands worked correctly
and were easy and straightforward to
use.

The *SAY command, in conjunction
with a set of phonemes, can be used to
make the computer speak almost any
word. For example, *SAY Y.U:N.I.V.ER.S
will pronounce the word ‘'universe'.
There are enough phonemes to provide
intelligible speech with a more human
quality than with a normal phoneme-type
speech synthesizer. *SING is similar to
*SAY except that it voices each sound
at one of sixty-four specified pitches.
I tried to make Easytalk sing a simple
song, but the pitches available were
not close together enough to produce a
very musical result.

The cost of the Easytalk ROM does
not seem excessive in the light of the
facilities it provides. It gives the
user of the Acorn Speech system a much
easier way of getting at the prescribed
words and, by the use of phonemes,
banishes the frustration of being stuck
with a limited set of words and sounds.
It cuts out the complex programming
needed to make the computer speak
numbers, prices and times and it allows

the creation of phonemes and sounds not
normally available. The instruction
manual is a paragon of clarity and
completeness. My only frustration with
Easytalk was that it would not work on
my Beeb, but this may have been the
fault of my Microware DFS, so I had to
borrow a friend's machine to try it
out. The existence of Easytalk may give
people who are thinking twice about
buying the Acorn Speech system the help
they need in making their decision.

Beeb Speak, like the Cheetah Sweet
Talker, uses allophones allowing nearly
any word to be spoken. The system
comprises a small circuit board which
plugs into the speech socket.
Instructions are included of course,
and the board is said not to clash with
a double density disc controller (if
fitted), nor does the unit use any RAM
etc. Although the unit makes use of the
micro's own amplification circuit it
does not interfere with SOUND or
ENVELOPE instructions at all. The
machine can make sounds and talk at the
same time!

Using the device is simplicity
itself. There are a couple of programs
supplied with Beeb Speak which
demonstrate its capabilities and the
software which drives the unit is only
22 bytes of machine code which can be
incorporated 1in a user's program and
assembled to anywhere in memory. To
make the device speak, an allophone is
passed to the machine code using A% and
then the code is CALLed. One small
point is that any speech so generated
must be terminated by a ‘'silence' -
allophone @ 1is useful for this - as
otherwise the last allophone will
continue until the machine is switched
off (not even Break will help).

All in all, the Beeb Speak is simple
and great fun to use. The only drawback
is that a few words, particularly short
ones such as "man", are a little
unintelligble. Like Sweet Talker, this
product can be recommended.

=

BEEBUG

JANUARY/FEBRUARY 1985

Volume-3 Issue 8

A SPLIT SCREEN UTILITY

by A. Nicol

One of the characteristics of many of the new machines appearing on
the market today (e.g. the Apple Macintosh) is their use of multiple
windows to help separate information. This utility will allow the

Beeb's screen to be divided

windows, most useful for program development

applications.

The program here is a short machine
code utility that provides the user
with two windows in any mode, and
allows for easy toggling (or switching)
between the two at any time. A full
record of all text and graphic details
is maintained for both windows,
allowing for different text colours to
be set up for the two windows, and then
for the windows to be switched,
maintaining the correct colours for
each.

Using the utility is very easy.
First, type in the program, and save it
away to tape or disc BEFORE running it,
as it modifies itself when run. Once
run, the program will report that the
split screens are installed. At this
point, PAGE will have been raised By
&400 to accommodate the machine code
and the data necessary for its correct
operation. You should not alter the
value of PAGE with the split screen in
operation, or the machine may crash
with a loss of program and data.

To use the split screen facility the
two windows must first be initialised.
This is accomplished by means of the
*LINE command, which may be issued from
either command mode, or from within a
Basic program. Once ready, the toggling
is performed by means of the *CODE
command, which may also be issued from
either command mode, or from within a
program. Changing mode clears the split
screens, and you will need to use *LINE
again before you can swap between the
two screenc.

As it stands, the program locates
the machine code at the default value
of PAGE, and then increases PAGE by
&400 to cater for this. Pressing Break
will not affect the code as it
intercepts this, and re-installs
itself. If the code becomes corrupted

into two separate and independent

and many other

however, the machine is likely to
'hang'. You can arrange for the code to
avoid resetting PAGE by deleting lines

L.,999
10REM PROGRAN NOBREAK

This small routine will enable you
to stop people from breaking into your
30REM AUTHOR T, POMYS-LYBBE progran. The idea is a simple one,
AREN BEEBUG JAN/FEB 1985 based on the re-programing of function
SIR[H PROGRAM SUBJECT T0 COPYRIGHT ~ key 18 (the Break key). The machine
code routine sets up this key so that
llll’lﬂtﬁssuhl! every time Break is pressed, it
110CALLDisable reproduces OLD folloved by RUK.. It is
128M0DE7 not possible to totally inhibit the
130PRINT*This proves that it works... normal Break function but it is quite
**"*Did you hear the bleep every tine t possible to keep control within the
he*’*1ittle darlings pressed BREAK or" rurm\l progran.
“CTRL BREAK or even ESCAPE, CTRL and"’
”

20REN VERSION 80,3 85/11/84

finother potential interruption “to
the running of a-progran is the use of
the Escape key, Rlthoush it would
mnm Put the rest of your progran h appear that Escape can be easily
m disabled, the combination of Escape
(4 with-Ctrl Break is very poverful and
>'WDE failed to protect the original progran
(lines 38 to 58 below). So the Escape
disable had to be included in the
nachine code at line 10868,

100 to 130, and replacing this with:
109 A%=&900

This uses memory that is normally
allocated to cassette, speech, extra
envelopes, RS423, user defined keys and
user defined characters. To stop it
intercepting Break, delete lines 2090
to 2200.

Split screens have a variety of
uses, and you are likely to find
yourself using them quite frequently
once you are familiar with them. Split
screens are particularly helpful in
program development. If you get an
error, you can leave the current error
message on one screen, and switch over
to the other and edit the program. You
can't use split screens with Wordwise,
but you can, if you alter the program
slightly, do so with View; change all
memory references from &8x to &9x (easy
with BEEBUGSOFT's Toolkit), and re-run
the program. Then enter View (via
*WORD) and go to mode 1; enter Ctrl-v
followed by @, and a *LINE. Then use
*CODE to toggle between the two
screens. This 1is useful for looking at
two separate pieces of text at the same

BEEBUG

JANUARY/FEBRUARY 1985

Volume-3 Issue 8

BRSO

38

time. Note that you cannot have both
Basic and View ‘'active' at the same
time.

PROGRAM NOTES

Lines 100 to 130 of the program
define a function key to move the
program up in memory by &400 bytes.
This is to allow room for the machine
code, and these lines should be kept in
if the machine code is to reside at the
default value of PAGE. The use of a
function key to effect this movement is
because this provides the easiest way
to execute a piece of code once, and
then to delete it from a program.

Editing Mo File
Ser Mode 3

reen
Printer default

e
e, Bl
(93) O IBEEBUS SPLIT
Drive | Option 8 (off))
Directory :1.$ Library :0.8 E[R SPLIT SCREEN UTI
Nork file §. CE by A. Nicol

View One of the characteristics of
on the market today (e.9. fipp
vindows to help separate info
Beeb’s screen to be divided i
windows, nost useful for prog

B.RSSENL V.BLIND
V.DECH V.DIGGER
V. IS V. MSICL
v.seLm V.authors applications. other
U.titles W.ALERT g 5T SIS BRI e T
N.CLEF
N.MUSREV The progran here is a short machin
W.NoBreak L code utility that provides the user
W. SURF vith two vindows in any mode, and
allows for the easy toggling (or
switching) between the two at any tin
A full record of all text and graphic

NPTk
20 files of 31 on 80 tracks
)oK

1¢ REM PROGRAM SPLIT

20 REM AUTHOR A. NICOL

30 REM VERSION B.02

40 REM BEEBUG JANUARY/FEBRUARY 1985

50 REM PROGRAM SUBJECT TO COPYRIGHT

60 :

109 *FX18

11¢ *KEYYMODE7 |MDELETE®, 199 |MA%=PAGE:
B%=TOP—PAGE]MFORI%=@TOB%STEP4:I%l&3090=
1% !PAGE:N. %$=0TOB%STEP4:1%! (A%+&40
9)=I%!&3000:N. ‘E=A%+&4@®|MEND|MLOME
M=TOP|MRUN£M

120 *FX138,0,128

130 END

1409 :

200 DIM space 10

210 oswrch=&FFEE

220 osbyte=&FFF4

230 userv=&200

240 mstart=A%

250 block=mstart:blocka=mstart+&Ad

260 datapnt=mstart+&C0

270 start=mstart+&100

280 PROCassemble

29¢ CALL run

291 PRINT ''"Split screens installed.

Sty

1009 DEF PROCassemble
19010 FOR 1%=0 TO 3 STEP 3
1920 P%=start

1030 RESTORE

104¢ FOR K%=0 TO 14 STEP2
1050 datapnt!K%=P%

1060 FOR J%=@ TO 37

1070 READ J%?P%
1080 NEXT

1090 P%=P%+J%
1100 NEXT

1110 [OPT I%
1120 .enter
1130 CMP #1
1149 BEQ setup
1150 CMP #0
1160 BEQ swapscr
1170 BRK

1180]
1190 2P%=128:P%=P%+1
1200 $P%="Incorrect entry"
1210 P%=P%+LENSP%
1220 [OPT I%

1230 BRK

\test for *line entry

\test for *code entry

o\

defghijklmnoparstuvwxyz{!»CABCDEFGHIIKLM
NOPORSTUUNXVZ(\J" £abcdefghijklmnoparstu
vuxyzdl)ERBCDEFGHIJKLMNOPORSYUUNXVZ[\]"
£abcdefghijklmnoparstuvwxyz{i)>CABCDEFGHT
JKLMNDPQRSTUUNXVZ[\]“ £abcdefghijklmnopq
rstuvwxyz{i YCABCDEFGHIJKLMNOPQRSTUVUMWXYZL
N12_fabcdefghijklmnoparstuvwxyz{!}»@ABCDE
FGHIJKLMNOPQRSTUVMWXYZLN1”_fabcdefghijklm
nopqrstuvwxyz{ ! YCABCDEFGHIJKLMNOPQRRSTUVUMN
XYZL\1~_fabcdefghijklmnoparstuvwxyz{!}eA
BCDEFGHIJKLMNOPQRSTUUMXYZL\1”~_fabcdefghi
jklmnoparstuvwxyz{i)>sCODE

FOR B%=1 T0 18
FOR A%Z=64 TO 127
CALL RFFEE
NEXT:NEXT

END

1240 .setup

125¢ LDA &355

1260 CMP #8

127@ BCC validmode

1280 BRK

1290]

1300 ?P%=128:P%=P%+1
1310 $P%="Invalid mode"

1320 P%=P%+LENSP%
1330 [OPT I%
134¥ BRK

1350 .validmode
1360 LDA #22
1370 J3R oswrch
1380 LDA &355
1390 JSR oswrch
1400 LDA &355

it 1410 ASL A
300 END 1420 TAX »
BEEBUG JANUARY/FEBRUARY 1985 " Volume-3 Issue 8

1439 LDA datapnt,X 2030 STX &D1,Y

1440 STA &85 2040 INY

1450 LDA datapnt+1,X 2050 CPY #&F

1460 STA &86 2060 BNE loopa

1470 JSR window 2070 RTS

1480 LDY #9 2080 .run

1490 .loopl 2090 LDA #247

1500 LDA &300,Y 2100 LDX #76

1519 STA block,Y 2110 LDY #0

1520 INY 2120 JSR osbyte

153¢ BPL loopl 2130 LDA #248

1540 LDY #0 2149 LDX #break MOD 256
1550 .loopla 2150 LDY #0

1560 LDA &D1,Y 2160 JSR osbyte

1570 STA blocka,Y 2170 LDA #249

1580 [ily 2180 LDX #break DIV 256
1590 CPY #&F 2190 LDY #0

1600 BNE loopla 2200 JSR osbyte

1610 CLC 2210 .brkpnt

1620 LDA &85 2220 LDA #&0D \new program
1630 ADC #&13 2230 STA PAGE

1640 STA &85 2240 LDA #&FF

1650 LDA &86 2250 STA PAGE+1

1660 ADC #0 2260 LDA #PAGE DIV 256 \change page
1670 STA &86 2270 STA 1

1680 .window 2280 STA 3

1690 LDY #@ 2290 STA &13

170@ .loop2 2300 STA &18

1719 LDA (&85),Y 2319 STA &1D

172@ JSR oswrch 2320 LDA #enter MOD 256
1730 INY 2330 STA userv

1740 CPY #&13 2340 LDA #enter DIV 256
1750 BNE loop2 2350 STA userv+l

1760 RTS 2360 RTS

1770 .swapscr 2370 .break

1780 LDA #8 2380 BCC breakl

1790 BIT &D@ 2390 RTS

1800 BNE splitset 2400 .breakl

1810 BRK 2410 LDA #0

1820] 2420 STA &8F

1830 ?P%=128:P%=P%+1 2430 LDA &210

1840 $P%="Split screens not set up" 2440 STA &8A

1850 P%=P%+LENSP% 245@ LDA &211

1860 [OPT 1% 2460 STA &8B

1870 BRK 2470 LDA #break2 MOD 256
1880 .splitset 2480 STA &210

1890 LDY #0 2490 LDA #break2 DIV 256
1900 .loop 2500 STA &211

1910 LDA &300,Y 2519 RTS

1920 LDX block,Y 2520 .break2

1930 STA block,Y 2530 LDX &8F

1940 TXA 2540 INC &8F

1950 STA &300,Y 2550 LDA call,X

1960 INY 2560 CMP #32

197¢ BPL loop 257¢ BNE end

1980 LDY #0 2580 LDA &8A

1990 .loopa 2590 STA &219

2000 LDA &D1,Y 2600 LDA &8B

2019 LDX blocka,Y 2610 STA &211

2020 STA blocka,Y 2620 LDA #&D »
BEEBUG JANUARY/FEBRUARY 1985 Volume-3 Issue 8

37

2630 .end

2640 CLC

265@ RTS

2660 .call

2670]

2680 NEXT

2690 S$call=CHRS$11+CHRS$152+CHR$9+CHRS12
7+"CALL"+STRS (brkpnt) +" "

270G ENDPROC

2710 :

2720 REM data for mode @

2730 DATA 24,0,9,90,9,128,2,255,3,29,0,
9,0,0

2740 DATA 28,0,31,39,0

2750 DATA 24,129,2,9,0,255,4,255,3,29,
129,2,0,9

2760 DATA 28,40,31,79,0

2Tge:

2780 REM data for mode 1

2790 DATA 24,0,9,0,2,255,4,255,3,29,0,
0,0,2

280¢ DATA 28,0,15,39,0

2810 DATA 29,0,0,9,9,24,0,0,9,0,255,4,
255,1

2820 DATA 28,0,31,39,16

2830 :

2840 REM data for mode 2

2850 DATA 24,0,9,0,2,255,4,255,3,29,0,
9,0,2

286¢ DATA 28,0,15,19,0

2870 DATA 29,0,0,0,9,24,9,0,9,0,255,4,
25551

2880 DATA 28,0,31,19,16

2900 REM data for mode 3

291¢ DATA 0,9,0,9,9,0,9,9,9,0,9,0,9,0
2920 DATA 28,0,24,39,0

293¢ DATA 0,0,0,9,0,0,9,90,0,0,0,0,0,0
2940 DATA 28,40,24,79,0

2950 :

2960 REM data for mode 4

2970 DATA 24,0,0,0,2,255,4,255,3,29,0,

298¢ DATA 28,0,15,39,90
2990 DATA 29,0,90,0,0,24,0,9,0,0,255,4,

3000 DATA 28,0,31,39,16

3020 REM data for mode 5
3030 DATA 24,0,0,0,2,255,4,255,3,29,0,

3040 DATA 28,0,15,19,0
3¢50 DATA 29,0,90,9,9,24,9,9,9,0,255,4,

3060 DATA 28,0,31,19,16

3080 REM data for mode 6

3099 DATA ¢,0,0,0,0,0,0,0,9,9,0,0,0,0
3100 DATA 28,0,12,39,0

3119 DATA 0,90,0,9,9,0,9,9,0,9,0,0,0,0
3120 DATA 28,0,24,39,13

3140 REM data for mode 7

315¢ DATA 0,0,0,9,90,9,0,0,90,9,0,9,0,0
3160 DATA 28,0,12,39,0

317¢ DATA ¢,9,0,0,0,90,9,9,0,9,0,0,0,0

3180 DATA 28.0,24,30 13 =
NEWS NEWS NEWS

WATFORD QUALITY

Yet another ROM from Watford
Electronics promises to make your Epson
FX or RX 80 printer act like the very
popular Kaga and Cannon 'near letter
quality' printers. The latter have the
useful =~ fFacility \Sto.f sprint sintvan
excellent typeface similar ~ to a
typewriter or daisy wheel printer. The
Watford ROM uses the graphics facility
of the less sophisticated, but even
more popular, Epsons to create this
near letter quality printout. The NLQ
ROM costs £18.40 (incl. VAT). Further
details, and maybe, if you ask nicely,
a sample printout from Watford on
(923-40588.

CHEAP COMMS

The price barrier of communications
has been soundly broken by the Unicomm
modem from the company of the same
name. Using established technology and
expecting high sales has enabled

Unicomm to offer its all singing all
dancing modem for only £60. When
combined with a BBC micro ROM (another
£24) this unit will support full auto
dial, auto answer, number store, auto
baud rate scan, and many other advanced
features. Unicomm is on @1-482 1711.

EAGER BEAVER

The Beaver plotter from Linear
Graphics offers your BBC micro
unsurpassed graphics hard copy for the
remarkable price of £516 (incl. VAT).
The Beaver 1is a flat bed plotter and
will take paper up to A4 in size. Two
pens are held in the plotter at any one
time, though these can be easily
changed. Standard roller ball or felt
tip pens are used. The plotter comes
complete with software to intercept all
screen graphics commands and reproduce
them on paper. Linear Graphics can be
contacted on 0286-741322.

BEEBUG JANUARY/FEBRUARY 1985 VYolume-3 Issue 8

38

THREE MUSIC PROGRAMS

Reviewed by E. D. Bebbington

The complexities of using the BBC micro's sound commands for music
deter all but the most ardent virtuoso. Ernest Bebbington looks at a
handful of established packages that help the struggling composer.

Title

: Music
Supplier: BBC Soft (01-588 5577)
Price : £10.00
Rating : *
Title : The Synth
Supplier: Musicsoft (9525-402701)
Price : £8.00
Rating : **
Title : Music Processor
Supplier: Quicksilva (0703-20169)
Price : E14.95
Rating : **xx
MUSIC

BBC Soft's Music package has as its
best feature a very attractive display.
Notes are shown in graphic form as
horizontal bars overlayed onto a music
stave of five lines. When recording a
melody, the computer keyboard is used
as an instrumental keyboard, with the
keys used as though they were piano
keys. The longer a key is pressed, the
longer becomes a horizontal -bar at the
appropriate place on the screen stave,
so far, rather like the 'Piano' program
on the Welcome tape that came free with
your BBC micro.

However, you can edit the music by
moving a T-shaped cursor along the
stave. Notes can be inserted, deleted
or changed. As the music is played
back, the cursor moves along the three
staves and they scroll sideways when it
hits the right edge of the screen, thus
giving an interesting visual image of
the music. Unfortunately only four
pre-set envelopes are available and
there are no commands for altering them
to your own ideas. To my ears these
envelopes lacked the subtlety that is
possible when defining your own.

The BBC Music program 1is the
simplest of the three packages reviewed
here. I would recommend this program
only to those who want a music program
for fun and who do not want to be

bothered by too much
graphic representation of the music
provides an interesting diversion.

detail. The

THE SYNTH

The Synth by Musicsoft is much more
sophisticated. In addition it has one
very useful feature: the music can be
entered in free rhythm and then put
into rhythm by tapping a single key.
This means that you don't have to be
adept at using a keyboard, and that
fast and complex melodies can be
entered with ease.

After entering and putting into
rhythm the notes of one voice, the next
voice can be put into rhythm while the
previous one is being played back,
allowing the timing of the voices to be
matched. It is necessary to record
several dummy notes at the beginning of
the first recorded voice so that the
first notes of each voice can be
aligned. There is a 'tidy' option which
is supposed to correct small
discrepancies of alignment. However,
this altered the rhythm too much,
resulting in music which did not have a
regular pulse.

The Synth provides three music
channels and one noise channel. There
are four octaves and sixteen pre-set
envelopes which can be changed easily.
There 1is enough memory to enter up to

BEEBUG

JANUARY/FEBRUARY 1985
e .

Volume-3 Issue 8

e A S s S B A S e e A S R

39

3,000 notes spread amongst the four
voices. Two rows of keys of the
computer keyboard are used to input the
notes and four self-adhesive stickers
are thoughtfully provided to mark the
keys in the top row which are the gaps
between the groups of 'black' notes.

The idea behind The Synth is a good
one and allows much flexibility and
ease of entering the music, but the
results were not always satisfactory.
It is very tricky to get the voices
into line with each other no matter how
carefully you tap out the rhythm. The
documentation could also be improved.
However, The Synth is a well
thought-out program, even to the point
of providing a means of automatically
copying the cassette to disc - an all
too rare benefit!

MUSIC PROCESSOR

Quicksilva's Music Processor
(Muproc) adopts an interesting
approach. It pretends to be a
synthesizer, a tape recorder and an
editing desk all in one. You are
confronted by a complicated screen of

g —————
1 00 00

ST
BEBEEBE S
NS5

e —

B e
¢ 00 OO

frsenfameanfpmennsd) § RRARUBH RN
1. 00 00

e pwes e 1111122211]
00

2 oo
| s s e 1111312 R220

[& & § wo—————

coloured panels, each of which contains
some information about channels,
envelopes, playback speed and so on.
The computer keyboard becomes a
piano-style keyboard, all four rows of
keys being used. Six octaves and four
channels are available.

There are so many facilities
available with Muproc that I can
mention only a selection. Once all the
commands are familiar, Muproc proves to
be easy to use and very flexible:
envelopes can be specified using only
five parameters and the computer can
even be 'fine-tuned' to allow playing
with other instruments. When the music
is recorded, one voice at a time, the
envelope and amplitude can be altered
for each note. On playback all the
information about the notes is
displayed on the screen panels and a
counter, 1like the one on a tape
recorder, is displayed. The music can
be wound forward and back at any speed
(up to sixty notes per second) and
single-stepped. Once edited, the notes
recorded can be compressed, taking six
bytes each instead of ten, allowing
more notes to be added.

 § found Muproc to be easy to
control, but the use of the computer
keyboard as an instrument was
error-prone. The continuous display of
information about the music on the
screen was very useful. A very flexible
program.

[There was to have been a fourth music
package included in this review -
'Music Editor', from System Software.
Although this was the most easy to use
and gave the best results, it is
unfortunately no longer available. The
good news, however, is that System
Software has not been idle but has just
completed an improved and expanded
version of Music Editor, called 'The
Music System' and published by Island
Logic. Although this package costs a
very hefty £24.95 for the full disc
version and £12.95 for the lesser
cassette version, it offers a vast
range of functions in an easy to use
format. We hope to have a full review
of The Music System for you soon - E4.]

BEEBUGSOFT has also launched its own
music system called MUROM. =)

INTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS

TUBE CORE SAVE

Users of the Tube who are running programs that take a long time to execute may

like to use a *SAVE IMAGE ¢ 8000 (or

B80Y for Hi-Basic) to save the current

variables in their program at intervals during execution in case of a power failure.
If this is done, and then reloaded at a later date, then the program and variables

will all be preserved, and an attempt can be made to salvage data from any disaster. =)

BEEBUG

JANUARY/FEBRUARY 1985

Volume-3 Issue 8

40

BEEBUG

Indirection Operators (Part 2) W@ ?83 8 m@@

by Surac

This month we conclude our two part series on the use of indirection
operators with a look at their use in handling strings and arrays.

Although mentioned briefly at the
start of last month's article, 1 have
left the subject of the $§ (dollar or
string) indirection operator to now as
the use of this operator is a little
different to that of the other two.

As you may have guessed, the $
indirection operator (unlike ! and ?)
deals with strings of characters of
variable length, as opposed to a fixed
number of bytes in memory. Note also
that all indirection operators affect
memory in the same way - it's just the
interpretation put on the values that
is different. In some ways the §$
operator is not as flexible as normal
string variables in Basic as it cannot
cope in the same way with strings that
have a Return (ASCII 13) in them.
However, it does allow for the creation
of some more flexible structures, and
easier passing of strings to the
operating system.

To get going, we'll try out a simple
test program, and then go through it
and examine it in detail. Type in the
program below, run it, and observe the
results.

10 REM EXAM1

20 DIM SPACE 256

30 @%=5

40 $SPACE="INDIRECTION OPERATORS"
50 PRINT S$SPACE

60 FOR 1%=¢ TO LEN $SPACE
70 PRINT SPACE?I%,;

80 NEXT

99 SPACE!4=531323334

100 PRINT

110 PRINT $SPACE

When run, this program will print out a
series of numbers which correspond to
the ASCII values of the characters in
the reserved area of memory (see page
486 onwards in the User Guide for a
list of ASCII values). These will
correspond to the characters assigned
at line 40. Note the '13'; this
corresponds to a Return, and is
unavoidable when using the $ operator.

The reason for the Return is quite
simple, and is due to the way in which
the string is stored. If a string is to
be stored flexibly, then its length is
unlikely to be known in advance, and so
some extra way of signifying this is
needed. Normally strings stored by
Basic have extra bytes associated with
them that are used to determine their
current and maximum length, but strings
stored via indirection operators don't
have any 'extra' such bytes, and so a
specific character is used to terminate
the string (this character being the
Return character, with an ASCII value
of 13). Whenever the $ indirection
operator is used to assign a string to
memory the last character will
automatically be followed by ASCII 13
in memory.

Taking the above example program, we
first allocate an area of memory in
which to store our string (line 20),
and alter the number formatting
variable so that numbers are printed in
a 'field' of five characters (line 30).
Line 40 then stores a string of
characters in memory ready for the
program to access, and line 50

BEEBUG

JANUARY/FEBRUARY 1985

Volume-3 Issue 8

R TR R A N S I ..

?————

41

indicates the printing of a string from
memory. Lines 60 to 80 then loop
printing out the ASCII values of the
characters present in memory,
illustrating incidentally that the
Return is included as part of the
length. Line 90 then puts the ASCII
value of four characters into the
middle of the string, and the next two
lines print a blank line and the string
as it now stands. Note the use of the ?
indirection operator that we discussed
last month.

One use often made of $§ 1is to
provide a more flexible method of
passing strings to the operating system
(normally achieved in Basic with '*'
commands, but made easier for Basic II
users by the inclusion of the new
command OSCLI). The short program below
(although rather contrived) shows the
basic format in which a key would be
defined if its definition was not
explicitly known before the program was
run (as would be the case with the
definitions in the format of *key ...
Work through the program until you
understand it, and then try to write a
short procedure that passes any string
to the operating system.

10 REM EXAM2

20 DIM KEY 40

30 X%=KEY AND 255

40 Y%=KEY DIV 256

5¢ FOR I%=0 TO 9

60 SKEY="KEY "+STRSI%+" "+STRINGS (I
%,STRSI%)

7@ CALL &FFF7 : REM OSCLI

80 PRINT SKEY

90 NEXT
! AND ? FOR ARRAYS

To complete our overview of
indirection operators, we will now look
at a way in which both ? and ! can be
used to implement arrays which are
faster and more flexible than normal
Basic arrays (and in some cases more
sparing on precious memory). The
program below illustrates a one
dimensional array in memory with each
element only one byte in size (and
hence only capable of holding values
from @ to 255). Note the different use
of DIM in line 40 (see the User Guide
page 237 for details on this).

As with the first example, @% is
altered to suit the display produced by
this example. N% is the number of

elements minus one (the counting starts
at zero). All the program does is to
loop round inserting a random byte into
each slot of the 'array'. Note that if
all you need to store is one byte per
element, then an array of the nature
below will save on both memory AND
execution time. Indirection operators
are generally faster than most other
techniques for achieving a given task;
if you want a fast game, use them as
much as possible!

10 REM EXAM3

20 @3=4

30 N%=99

40 DIM MEM% N%

50 FOR I%=0 TO N%
60 MEM3?I%=RND (255)
7@ NEXT

80 FOR I%=@ TO N%
9¢ PRINT MEM%?I%,;
100 NEXT

Example 4 is a little more complex
than the others listed here, and
effectively simulates a 2 dimensional
full integer array directly in memory.
Note the necessity to add one on to the
dimensions at line 40 to cater for the
counting effectively starting at zero,
and not one. The '*4' is to adjust the
number of bytes allocated because we
are dealing with integers, which use
four bytes each.

10 REM EXAM4

20 @%=5

30 N%=15:M%=5

40 DIM MEM% (N%+1)* (M%+1)*4

50 FOR I%=@ TO N%*4 STEP 4

60 FOR J%=0 TO M%*4 STEP 4

70 MEM3! (I%* (N%+1)+J%)=1%+J%¥*256

80 NEXT,

99 FOR I%=@ TO N%*4 STEP 4
100 FOR J%=@ TO M3*4 STEP 4
110 PRINT MEM%! (I%*(N%+1)+J%),;
120 NEXT
130 PRINT
140 NEXT

That's all that we're going to do on
indirection operators here, but keep
reading other articles in BEEBUG to see
actual applications that use
indirection operators. Always bear in
mind that they directly affect memory,
and you can very easily corrupt your
program if you use indirection
operators carelessly. =]

BEEBUG

JANUARY/FEBRUARY 1985

Volume-3 Issue 8

42

QUICKSILVA’S DRUMKIT

Reviewed by Stephen Ibbs

In this review, Steve Ibbs looks at
one of the more specialized music
packages to be produced for the BBC
micro and reports on his findings.

Title : Drum Kit

Supplier : Quicksilva
Price 5 £9,95
Rating § Whae

Drum Kit is complementary to the
earlier, acclaimed Music Processor from
Quicksilva (see review elsewhere in
this issue), though this is not at
all essential to the use of Drum Kit.
The program is supplied as a cassette
with a seventeen page booklet well
printed and set out. The cassette is
designed for use with both tape and
disc, and automatically adjusts the
value of PAGE for disc systems.

After this short program the screen
is filled with the QS logo, terrible
music and noises, then the main program
is loaded. The screen changes to show a
moving dot at the top, representing
where we are in the different bars,
with four instruments underneath,
"snare", "bass", "electro" and
"sticks". The demonstration mode shows
what type of sounds and rhythms are
possible, and considering the
limitations of the BBC sound chip, the
effects are amazingly realistic.

Pressing any key stops the
demonstration mode. Now new rhythm
patterns can be entered extremely
easily using the cursor and return
keys. Entire lines of rhythm can be
deleted as well as individual pulses,
and the author is to be congratulated
on the way he has simplified the
manipulation of the patterns. Not many
bars can be displayed on the screen at
any one time, but there is a paging
system whereby long rhythmS can be
entered, one screenful at a time.

Pressing the letter T enables
pulses to be entered in 'real time', by
tapping in the required rhythm from the
keyboard, but this requires care and
patience to get the pulses in exactly
the right place. Pressing Escape

changes the display to the 'Values'
page where the variables 'tempo',
'beats to the bar', 'number of bars',
and the 'start bar' can be adjusted.
The last variable is a flexible means
whereby sections of a long rhythm can
be stored, repositioned, or edited at
will.

In addition the Values page provides
a metronome facility, which replaces
the ‘'sticks' 1line in the rhythm
display, and gives a background bleep
at the start of each bar. When altering
the timing of the other instruments the
program prevents you from altering the
metronome - a nice feature. The volume
of each voice, metronome, and the
accent available on each beat can be
adjusted, and of course the rhythms can
be stored on tape - as program data,
not as audio!

From the values page we can go to an
envelope editor. Even without the drum
kit, this is a nice editor. Each
component value of the SOUND and
ENVELOPE commands can be adjusted, and
pressing the space bar generates the
sound. A 'scratchpad' memory is used to
store the adjusted values, so that
changes don't become permanent until
confirmed.

So how good is it, and how useful?
If your aim is to produce a synthesized
drum machine effect for your band's
latest 'demo' tape, then you are going
to be very disapppointed. If, however,
you have bought it so that you can
experiment with the computers sound
possibilities, and to generate and play
around with rhythmical patterns, then
this program is well worth buying. I
have used it ~with groups of
schoolchildren, and it has proved to be
a useful teaching aid, because they can
visually identify with the sounds they
are hearing. Any mistakes stand out
like a sore thumb on the display.

In conclusion I would recommend the
program as a useful utility, that also
happens to be fun! 5=

BEEBUG

JANUARY/FEBRUARY 1985

Volume-3 Issue 8

43

DIGGER

by Andy Logan

Digger 1is an arcade style game based on the popular home micro game
of 'Monsters' or ‘'Panic!'. It is a challenging one-player game in
which you have to kill the gremlins before they kill you.

The game takes place in the familiar
setting with various walkways made from
brick with several different height
ladders connecting each floor.

At the start you are chased around
the screen by three gremlins which are
lethal to the touch. To kill the
gremlins you must dig a hole in the
floor by pressing the space bar three
times. When a gremlin falls into the
hole you must hit it on the head with
your shovel (by pressing the space bar
again) so that it falls through to the
next floor and dies. As you progress to
the next skill 1level you must dig two
holes, one directly underneath the
other and drop the gremlin through both

in order to kill it. On the third level
the gremlins have to be dropped through
three floors in a row and so on.

To make the game harder, you only
have a limited amount of oxygen which
slowly runs out while you play each
level. Your remaining oxygen supply is
displayed at the foot of the screen and
if it runs out then you suffocate and
the game ends. You start the game with
three lives, and lose a life every time
you are caught by a gremlin.

The keys to use for playing the game
are 'Z' and 'X' for left and right and
'*' and '?' for up and down. The
spacebar is used to dig and to hit the
gremlins on the head.

10 REM PROGRAM DIGGER

20 REM VERSION B@.2

30 REM AUTHOR ANDY LOGAN

40 REM BEEBUG JAN/FEB 1985

50 REM PROGRAM SUBJECT TO COPYRIGHT
60 :

1090 ON ERROR GOTO 3190

119 MODE7:PROCtitle

120 MODE5:PROCstart

130 S%=0:U%=1:H%=3

140 PROCinit:PROCplatform

160 PROCladder : PROCsu

180 TIME=0:REPEAT

209 PROCm:PROCg

210 PROCscore

220 UNTIL DEAD% OR CO%=3

230 IF BON%<=0@ GOT0260

240 IFDEAD% ANDH%<>@ CLEAR:CLS:GOTO140
25¢ IFCO%=3 U%=U%+1:CLEAR:CLS:GOTO140
260 COLOUR3:PRINTTAB (6,18) "GAME OVER"

:FORT=0TO3000 : NEXT: *FX15

270 G=GET:CLEAR:CLS:GOTO 130

BEEBUG

JANUARY/FEBRUARY 1985

Volume-3 Issue 8

44

280 END
294 ¢

1000 DEFPROCtitle

1010 FORA=1 TO2:PRINTTAB(10,A)CHRS141
CHRS$131 CHR$157 CHR$129;"D I G G E R";S
PC (2) CHRS156: NEXT : PRINTTAB (12) CHR$130"b
y Andy Logan"

102@ PRINT'TAB (1) ;CHRS134"Lure the GRE
MLINS into the holes that"'CHR$134"you
dig in the brick-work and knock"'CHR$13
4"them on the head.To kill a Gremlin yo
ull

1930 PRINTCHRS$134"must knock it throug
h at least the"'CHRS$134"sheet number of

levels. Kill all three"'CHR$134"Gremli
ns before the oxygen runs out if"'CHRS1
34"you are to continue."'

1040 PRINT'CHRS$S133"Keys to use are:"'C
HR$130"Z - Left, X - Right, * - Up"'CHR
$13@"? - Down, and SPACE to dig or knoc
k o "

105¢ PRINTTAB(12,22) ;CHR$131"PRESS SPA
CE":REPEAT:UNTIL INKEY-99:ENDPROC

1060 :

1070 DEF PROCinit

1080 IFU%=9 U%=1

1090 CO%=0:0XY%=50+ (U%*30)

1100 IFU%>=4 OXY%=0XY%+150

1110 LA%=FALSE:STILL%=FALSE

1120 DIMA%(20,31) ,E%(5) ,F%(5) ,M$(3) ,PD
$(2) ,PRL$(2) ,BS(2) ,TRAP% (5) ,T%(5) ,DM3 (5
) +SG% (4)

1130 DEAD%=FALSE:R%=0

1140 FORI%=1 TO 3:M$(I%)=CHRS (I%+232):
NEXTI%

1150 LS$S=CHRS$231:P$=CHRS$230

1160 MD$S=CHR$239:PRLS (1) =CHR$232: PRLS (
2)=CHR$237

1170 PD$ (2)=CHR$238:PD$ (1) =CHR$242

1180 GS=CHRS$236:BS (1) =CHR$240:B$ (2) =CH
RS$S241

1190 SPLS$=CHR$243

120@ ENDPROC

1219 :

1220 DEFPROCstart

123¢ vpU19,1,6,0,

1240 vDU23,1,0;0;

125¢ vDU23,230,11
,119

126¢ vDU23,231,129,129,129,255,129,129
+1:285255

127¢ vDU23,232,0,9,0,4,7,4,9,0

1280 vDU23,233,24,24,0,124,190,25,36,34

1290 vDU23,234,24,24,9,62,125,152,36,68

1399 vpU23,235,90,90,66,126,126,36,36,
36

1319 vpu23,236,231,36,60,126,219,126,3
6,60

1320 vpU23,237,9,9,9,

1330 vpU23,238,0,9,9,

9,0
0;0;
9,119,0,238,238,0,119

32,224,32,0,0
2,128,80,32,64

134¢ vDU23,239,0,0,9,0,8,139,139,255
1350 vDU23,240,0,0,9,238,238,0,119,119
136¢ vDpU23,241,0,0,0,0,9,9,119,119
137¢ vDU23,242,0,0,0,0,1,10,4,2

1389 vDU23,243,129,66,36,0,0,36,66,129
1390 A%=@:REM SET HI-SCORE

1409 ENVELOPE1,1,68,10,-127,240,113,14
,126,0,0,-126,126,126

1419 ENVELOPE2,%,80,-110,-50,159,250,1
90,126,9,0,-126,126,126

142¢ ENVELOPE3,1,0,9,9,0,0,0,126,9,0,-
126,126,126

143@ ENDPROC

1440 :

1450 DEF PROCplatform

1460 COLOUR2:CLS

147¢ FORJ%$=5T029 STEP3

1480 FOR I%=0TO 19

1499 PRINTTAB(I%,J%);PS$;:A%(1%,J%)=-1
1500 NEXTI%

1519 NEXTJ%

1520 ENDPROC

1580 2

154@ DEF PROCladder

1550 C%=0

1560 COLOURI

1570 FORJ%=4 TO 25 STEP3

1580 C%=C%+1

1590 IFC%=3 C%=1

1600 FOR L%=J% TO J%+3

1619 IFC%=1 PRINTTAB(2,L%);L$;:A%(2,L%
)=2:PRINTTAB (19,L%) ;L$; :A%(10,L%)=2: PRI
NTTAB(17,L%) ;LS; :A%(17,L%)=2

1620 IFC%=2 PRINTTAB(6,L%);L$;:A%(6,L%
)=2:PRINTTAB(14,L%) ;L$;:A%(14,L%)=2
1630 NEXTL%

1640 NEXTJ%

1650 FORI%=1T08

1660 LX%=(RND(4)*4)-2:LY%=(RND(6)*3)+5
1670 FORJ%=LY% TOLY3%+2

1680 PRINTTAB(LX%,J%);L$;:A%(LX%,J%)=2
1690 NEXTJ%:NEXTI%

1700 ENDPROC

17102

1720 DEF PROCm

1730 IF DEAD% ENDPROC

1740 N%=X%:M%=Y%:W%=B%:Q%=C%

1750 IFINKEY-73 Z%=3:Y%=Y%-1:GOTO1810
1760 IFINKEY-105 Z%=3:Y%=Y%+1:GOTO1810
177¢ IFINKEY-98 Z%=1:X%=X%-1:G0T01810
1780 IFINKEY-67 Z%=2:X%=X%+1:G0OTO1810
1790 IFINKEY-92 PROCdig:ENDPROC

1800 STILL%=TRUE:ENDPROC

1810 STILL%=FALSE

1820 1FZ%=3 ANDA% (X%,Y%)<>2 X%=N%:Y%=M
%: ENDPROC

1830 IFA%(X%,Y%+1)=0 PROCfall :ENDPROC
1840 IFZ%=1 ANDX%<1 X%=1

1850 IFZ%=2 ANDX%>18 X%=18

1860 IFZ%<>3 ANDX%<>1 ANDX%<>18 SOUNDI ,’
y2y 1851

BEEBUG

JANUARY/FEBRUARY 1985

B il 1= ok e S S S TR A T s W= S Wm0, o e ® 0 oo WSes . O) W e e - AN

Volume-3 Issue 8

45

1870 IFZ%=1 B%=X%-1 ELSEIFZ%=2 B%=X%+1

1880 C3=Y%

189¢ PROCprint

1900 IFA%(X%,Y%)=4 ORA%(X%,Y%)=5 ORA%(
X%,Y%+1)=6 ORA%(B%,C%)=4 ORA%(B%,C%)=5
PROCdead

1919 ENDPROC

1920 :

193¢ DEFPROCprint

1940 PROCback (N%,M%)

1950 PROCback (W%,Q%)

1960 COLOUR3:PRINTTAB (X%,Y%) ;MS (2%)

1970 IFZ%=3 ORLA% ENDPROC

1980 COLOUR2:PRINTTAB (B%,C%) ; PRLS (2%)

1999 ENDPROC

2000 :

2010 DEFPROCY

2020 IFDEAD%ENDPROC

2030 R%=R%+1:IFR%>3 R%=1

2040 K%=E% (R%) :L%=F% (R%)

2050 IFDM% (R%)=TRUE: ENDPROC

2060 IFNOTSTILL% SG% (R%)=FALSE

2070 1FTRAP% (R%)ANDTIME-TS (R%)>300 TRA
P% (R%) =FALSE:A% (E% (R%) ,F% (R%)) =-1:COLOU
R2:PRINTTAB (E% (R%) ,F% (R%)) ;PS:F% (R%)=F%
(R%)-1:E% (R%) =E% (R%) +SGN (X%-K%) : GOT0215
¢ ELSEIFTRAP% (R%) : ENDPROC

2080 IFSG% (R%)GOTO2100

2090 IFSQGN (X%-K%)=0 ANDINT ((L%-1)/3)=(
L$-1) /3 SG%(R%)=TRUE:IFRND(1)>.5 P%=1 E
LSEP%=-1

2100 IFSG%(R%)ANDA% (K%,L%+SQN (Y%-L%))<
>2 PROCstill:GOTO0215@ ELSEIFSGS% (R%)SG% (
%)=FALSE

2110 IFL%>Y% ANDA% (K%,L%-1)=2 F%(R%)=F
% (R%)-1:GOT02150

2120 IFL%<Y% ANDA% (K%,L%+1)=2 F%(R%)=F
% (R%) +1:G0OT02150

2130 IFINT((L%-1)/3)=(L%-1)/3 E%(R%)=E
% (R%) +SGN (X%-K$%) : GOT021 50

2140 ENDPROC

2150 IFA%(E%(R%) ,F%(R%))=4 ORA% (E%(R%)
+F% (R%)) =5:E% (R%) =K% :F% (R%) =L%: PROChyp:
SOUND@,-15,200,1

2160 IFE% (R%)<0 E% (R%)=0

2170 IFE%(R%)>19 E%(R%)=19

2180 IFA%(E%(R%),F%(R%)+1)=0 F%(R%)=F%
(R%)+1:A% (E% (R%) ,F% (R%)) =6: TRAP% (R%) =TR
UE: :T% (R%) =TIME

2190 IFA%(E%(R%) ,F%(R%))=0 A%(E%(R%),F
% (R%))=4

2200 IFA%(E%(R%) ,F%(R%))=2 A% (E%(R%),F
%(R%))=5

2210 IFA%(K$,L%)=4 PRINTTAB(K%,L$);SPC
1:A% (K%,L%)=0

2220 IFA%(K%,L%)=5:COLOURI : PRINTTAB (K%
,L%) ;L$:A% (K%,L%) =2

2230 COLOUR3:PRINTTAB (E% (R%) ,F% (R%)) ;GS
2240 IF (X%=E%(R%)ANDY%=F% (R%))OR (B%=E%
(R%) ANDC%=F% (R%)) THENPROCdead

2250 ENDPROC

BSBCORE So®
SHEET =
TR TTETORINEOEEET CEENOLEINERE Lee

SEEE SEEEE TIEITEEOSSTRET TECLERETEY
LU0 TEETTELELEEEL LUUIET ENEE e
i{{{{*{{{!ﬁi‘i‘l{!{(TELORE SETENINENR

588 TINESN DEDENE TOCEORERIESE RESS
SEEETEESEEES TUETIENEERINEE LESNEDEENE
EIE PEEEEREIIOUESE SEUESLIRIEEE ES€%
u-z{«ztaiﬁ«: E{{I{C{{{lﬁi’t LEEEEEEREE

LA LR LS L TS ST R TN ETRLELTLNL
il ONVEBEN 2119

2260 :

2270 DEFPROChyp:REPEAT: E$ (R%)=RND(19) :
F% (R%)=(RND(9) *3) +1: UNTILE% (R%) <>X% AND
F% (R%)<>Y% ANDE% (R%)<>B% ANDE% (R%)<>C%
ANDA% (E% (R%) ,F% (R%)) <>4 ANDA% (E% (R%) ,F%
(R%))<>5

2280 ENDPROC

2290 :

2300 DEFPROCstill

2310 IFK%=19 P%=-1:SG% (R%)=FALSE ELSEI
FK%=0 P%=1:SG% (R%) =FALSE

2320 IF (A% (K%+P%,L%)=4 ORA% (K%+P%,L%)=
5) SG% (R%) =FALSE: PROChyp ELSEE$ (R%) =E% (R
%) +P%

2330 ENDPROC

2340 :

2350 DEFPROCsu

2360 DEAD%=0

2370 COLOUR3

2380 FORI%=1 TO3:E%(I1%)=8:NEXTI%

2390 F%(1)=4:F%(2)=13:F%(3)=25

2400 FORI%=1TO3

2410 PRINTTAB(E%(1%) ,F%(1%));GS:A%(E%(
I%) ,F%(1%))=4

2420 NEXTI%

2430 REPEAT:X%=RND(18) :Y%=(RND(8) *3)+1
:UNTILA% (X%,Y%)=0 ANDA% (X%-1,Y%)=0:2%=1
:B%=X%-1:C%=Y%

2440 COLOUR3:PRINTTAB (X%,Y%) ;MS$S (1) :COL
OUR2: PRINTTAB (B%,C%) ; PRLS (1)

2450 COLOUR3:PRINTTAB (3,3);"SHEET ";U%

2460 COLOUR3:FORI%=1TOH%:PRINTTAB(1%,3
1)MS (1) ; :NEXTI%

2470 ENDPROC

2480 :

2490 DEFPROCdead : PRINTTAB (H%,31) ;SPC1;
:H%=H%-1

2500 DEAD%=TRUE

2510 *FX15,0

2520 COLOUR3:SOUND®,3,5,1

2530 PRINTTAB (B%,C%) ;SPC1

2540 PRINTTAB (X%,Y%) ;MDS

2550 ENDPROC

BEEBUG

JANUARY/FEBRUARY 1985

Volume-3 Issue 8

46

2560 :

2570 DEFPROCfall

2580 LA%=TRUE

2599 PROCprint

2600 COLOUR3:LA%=FALSE

2610 REPEAT

2620 COLOUR3:PRINTTAB (X%, Y%) ;M$ (3)
2630 IFA%(X%,Y%)=6 PROCdead

2640 IFA%(X%,Y%)=-1 COLOUR2:PRINTTAB (X
$,Y%) ;P$S ELSEPRINTTAB (X%, Y%) ; SEC1

2650 Y%=Y%+1

2660 UNTILA%(X%,Y%+1)=-1 ORA%(X%,Y%+1)
=7 ORA% (X%,Y%+1)=8 ORDEAD%

2670 IFDEAD% ENDPROC

2680 PRINTTAB(X%,Y%) ;MS (3) :B%$=X%-1:C%=
¥%-1:2%=3

2690 IFA%(X%,Y%)=4 PROCdead

2700 ENDPROC

2710 ¢

2720 DEFPROCdig

2730 IFA%(B%,C%+3)=2 ORA%(B%,C%+1)=0 O
RA% (B%,C%) =2 ORY%=28 ORZ%=3 ORB%=0 ORB%
=19 ENDPROC

2740 COLOUR2:PRINTTAB (B%,C%) ;PDS (Z%) : P
ROCg : IFDEAD% ENDPROC

275@ COLOUR2

2760 IFA%(B%,C%+1)=6 PROCmonstfall :GOT
02819

2770 SOUND@,1,206,1

2780 IFA%(B%,C%+1)=-1 A%(B%,C%+1)=7:PR
INTTAB (B%,C%+1) ;BS (1) :GOT02810

2790 IFA%(B%,C%+1)=7 A% (B%,C%+1)=8:PRI
NTTAB (B%,C%+1) ;BS (2) :GOT02810

2800 IFA%(B%,C%+1)=8 A% (B%,C%+1)=0:PRI
NTTAB (B%,C%+1) ; SPC1

2819 COLOUR2:PRINTTAB (B%,C%) ; PRLS (2%)
2820 ENDPROC

283002

2840 DEFPROCmonstfall

2850 Lv%=1

2860 FORI%=1TO3

2870 IFDM% (I%)GOT02890

2880 IFE%(I%)=B% ANDF%(I%)=C%+1 XX%=E%
(I%):YY%=F%(1%):RR%=1%

2890 NEXTI%

2900 COLOUR2:PRINTTAB (XX%,YY%) ;PS:A% (X
X3, YY%) =-1

2910 YY%=YY%+1:COLOUR3:PRINTTAB (XX%,YY
%) ;GS

2920 REPEAT

2930 IFA%(XX%,YY%)=0 PRINTTAB (XX%,YY%)
;SPC1 ELSEIFA% (XX%,YY%)=6 PRINTTAB (XX%,
YY%);GS$

2940 YYS=YY%+]

2950 PRINTTAB (XX%,YY%) ;G$

2960 IFINT ((YY%-2)/3)=(YY%-2)/3 LV%=LV
3+1

2970 UNTILA% (XX%,YY%+1)=-1 ORA% (XX%,YY
2+1) =7 ORA% (XX%,YY3+1)=8

2980 TRAP$ (RR%)=FALSE

2990 IFLV$>=U% PRINTTAB (XX%,YY%);SPLS:
SOUND@, 3,5,1: PRINTTAB (XX%, YY%) ;SPC1:S%=
S%+(LV%*100) : DM% (RR%) =TRUE:C0%=C0O%+1 EL
SEE% (RR%) =XX%:F% (RR%) =YY%:A% (XX%,YY%)=4
300@ ENDPROC

3019 :

3020 DEFPROCscore

303¢ COLOUR3:PRINTTAB(3,1);"SCORE ";S%
3040 BON%=0XY%- (INT (TIME/100))

3050 IFBON%<=99 PRINTTAB(15,31);SPC1;
3060 IFBON$<=9 PRINTTAB(14,31);SEC1;
3070 PRINTTAB(6,31);"OXYGEN ";BON%;
3080 IFBON%<=@ PROCdead

3090 ENDPROC

3100 :

3119 DEFPROCback (BX%,BY%)

3120 IFA%(BX%,BY%)=0 PRINTTAB (BX%,BY%)
7 SPC1: ENDPROC

3130 IFA%(BX%,BY%)=2 COLOUR1:PRINTTAB (
BX%,BY%) ; LS: ENDPROC

3140 1IFA% (BX%,BY%)=-1 COLOUR2:PRINTTAB
(BX%,BY%) ; P$: ENDPROC

3150 IFA%(BX%,BY%)=7 COLOUR2:PRINTTAB (
BX%,BY%) ;BS (1) : ENDPROC

3160 IFA%(BX%,BY%)=8 COLOUR2:PRINTTAB (
BX%,BY%) ;BS (2) : ENDPROC

3170 ENDPROC

3180 :

3190 ON ERROR OFF

3200 MODE 7

321@ IF ERR=17 END

3220 REPORT:PRINT" at line ";ERL

3230 END

=

INTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS

LOCAL PARAMETERS - D. Morgan

When passing parameters to a procedure,
also memory locations. For example:

DEF PROCtest (!A%)

LOCAL $X LOCAL !Z
are both valid. Note that the two 'types' being 'localled' are both valid Basic
types, an integer (4 bytes) and a string (a variable number of bytes). To use ?A%
would cause unpredictable results, as Basic does not fully cater for a 'single byte'

type. =

not only can you 'local' variables, but

DEF PROCoscli (Soscli%)

BEEBUG JANUARY/FEBRUARY 1985 Volume-3 Issue 8
SR e e O L e UL o - S LY B BT P S L T e A= oot e N

47

RED ALERT

by Alan Barratt and David Green

If chess is too time consuming,
draughts too predictable, then

solitaire too anti-social and

try this simple to learn yet

challenging and decidedly unpredictable board game.

RED ALERT is a game of Scandinavian
origin for two players. It is played on
a six by six square board. Players take
turns to place one counter at a time
onto the board.

One player has pale blue counters
and the other yellow. You are not
allowed to place a counter directly on
top of an opponent's counter but you
can, and indeed should, build up on
your own.

Each square has a critical mass.
This value 1is the number of adjacent
squares (horizontal and vertical) which
the square has. This means that the
critical masses are as follows:

Corner squares ... 2
Edge squares 3
Inner squares 4

Once the number of counters on any
square reaches that square's critical
mass the square ‘'explodes' and the
counters disperse, one onto each
adjacent horizontal and vertical
square, leaving the original square now
empty. This is the way to capture your
opponent's counters: arrange an
explosion next to an occupied square.
Any counters on these adjacent squares
become your own, and remain on these
squares.

When well into a game, with several
counters across the board, exploding
one square can lead to a chain reaction
that spreads right across the board.
This gives Red Alert TES
unpredictability and challenge. It is
quite possible to be down to two or
three counters with your opponent
having fifty, and then see him wiped
out with a single, clever, move.

The winner 1s the player who
eliminates all his opponent's counters.
Alternatively, the game may be played
for a fixed number of moves, the winner

Co X asemnm 7

being the player with the most counters
at that stage. A counter is placed by
designating the column and row
positions. These both count from the
bottom left hand corner of the board.
The total number of counters on the
board is displayed at the bottom of the
screen at all times.

Red Alert makes colourful use of the
BBC micro's mode 2 display. If you only
have a black and white TV or monitor,
the counters are shaped differently so
that you can tell your own from your
opponent's. Players with disc systems
should set PAGE to &110¢ before loading
and running this program.

10 REM Program Red Alert
20 REM Version B@.1
30 REM Authors Alan Barratt

40 REM & David Green
50 REM BEEBUG Jan/Feb 1985
60 REM Program subject to copyright

80 ON ERROR GOTO 267¢

100 MODE 7

119 PROCinstr

120 MODE 2

130 PROCsetup

140 PROCscreen

15¢ PROCgame

160 PROCfinish

170 IF Z<3 THEN RUN

BEEBUG

JANUARY/FEBRUARY 1985

Volume-3 Issue 8

180 END

190 :

100¢ DEF PROCgame

1010 REPEAT

1020 Z=Z+1:21=3-Z:B=B+1:C2=0

1030 VDU19,4,4;0;

1049 COLOUR 128:CLS

1050 PRINT TAB(1,1) PLAYERS(Z MOD2)
1060 COLOUR 7

1070 PRINT TAB(13,1)"Total"TAB(15,3);B
-1

1080 FOR I=1 TO 2

1099 PRINTTAB(3*I-2,1+42*I);COS$(I);
1100 *FX15,0

1110 REPEAT

1120 XY$ (I)=GETS

1130 UNTIL ASC(XY$(I))>48 AND ASC (XYS$(
T))£55

1140 PRINT XYS(I)

115¢ SOUND1,-15,220,4

1160 PROCwait(@.1)

1170 NEXT I

1180 X%=VAL (XY$ (1)) : Y3=VAL(XYS$(2))
1190 IF new$ (X%,Y%)=X0$(Z1) PROCsorry:
GOTO1050 ELSE news (X%,Y%)=X0$ (Z) :new (X%
+Y%) =new (X%,Y%)+1

1200 REPEAT

1210 C1=0:C3=0:C4=0

1220 FOR X%=1 TO 6

1230 FOR Y%=1 TO 6

1240 IF NOT (new$ (X%,Y%)=01d$ (X%,Y%) AN
D new(X%,Y%)=01d (X%,Y%)) PROCplot (X%,Y%
1 2)

1250 IF C2<2 AND new(X%,Y%)>=D(X%,Y%)
PROCupdate

1260 IF new$(X%,Y%)=X0$(21) C3=1:C4=1
1270 NEXT Y%

1280 NEXT X%

1290 IF C4=@ C2=C2+1 ELSE IF C2=3 Cl1=0
1300 UNTIL Cl1=0:2=2-Z

1310 UNTIL C3=¢ AND B>1

1320 ENDPROC

1330 :

1340 DEF PROCsetup

1350 DIM new(6,6) ,01d(6,6) ,news(6,6) ,0
1d$(6,6) ,D(6,6)

1360 DIM XO0$(2) ,0X$(2,3) ,PLAYERS (1) ,CO
$(2) ,XY$(2)

1370 PLAYERS (@) =CHR$17+CHRS6+"Blue"
1380 PLAYERS (1) =CHRS$17+CHRS3+"Yellow"
1390 VDU24,0;224;1215;1023;

1400 vDU28,0,31,18,25

1410 VDU23,224,&FF, &FF, &FF, &FF, &FF , &FF
,&FF ,&FF

1429 vDU23,225,&F0,&F0,&F0,&F0,&F0,&F0
,&F0,&F0

1430 vDU23,1,0;0;0;0;

1440 FOR X%=1 TO 2

1450 FOR Y%=1 TO 3

1460 READ A,B

1470 OX$ (X%, Y%)=CHRSA+CHRSB

1480 NEXT Y%

1490 NEXT X%

1508 COS$(1)="Column?":COS(2)="Row?"
1510 XO$ (1)="X":X0$ (2)="0ld"

1520 FOR X%=1 TO 6

1530 FOR Y%=1 TO 6

71540 READ D(X%,Y%)

1550 new$ (X%,Y3)=" ":0ld$ (X%,Y3)=" "
1560 NEXT Y%

1570 NEXT X%

1580 B=0:Z=0

1590 GCOL@,135:CLG

1600 PROCalert

1619 ENDPROC

1620 :

1630 DEF PROCwait (new)

1640 TIME=0

1650 REPEAT UNTIL TIME > 5@*new

1660 ENDPROC

1670 :

1680 DEF PROCsorry

1690 SOUND1,-15,112,5

170¢ SOUND1,-15,100,10

1719 SOUND1,-15,96,1

172@ SOUND1,-15,100,10

1730 COLOUR 12:PRINT TAB(11,3);"Not"TA
B(11,5) "Allowed"

1740 COLOUR @:PROCwait (4):CLS

1750 ENDPROC

1760 :

1770 DEF PROCclear (X%,Y%)

1780 vDUS5

1790 GCOL@, 4

1800 FORE%=1TO3

1810 MOVE (X%*3-2) *64,252+ (Y¥*4-4+E%) *32
182@ PRINT CHRS224+CHRS$224

1830 NEXT

1840 VvDU4

1850 ENDPROC

1860 :

1870 DEF PROCscreen

1880 vDU19,7,11;0;19,4,11;0;

189¢ VvDU23,1,0;0;0;3;

BEEBUG

JANUARY/FEBRUARY 1985

Volume-3 Issue 8

49

1908 FOR X%=1 TO 6

1910 FOR Y%=1 TO 6

192¢ PROCclear (X%,Y%)

1930 NEXT Y%

1940 NEXT X%

1950 vDU19,4,4;0;19,7,7;09;

19640 ENDPROC

1979 :

1980 DEF PROCplot (X%,Y%,Z)

1990 PROCclear (X%,Y%)

2000 IF new$S (X%,Y%)<>" " VDU5:GCOLd, 3*
Z:FOR E%=1 TO 3:MOVE (X%*3-2) *64,252+ (Y%
*4-4+4E%) *32: PRINT OXS$(Z,4-E%) :NEXT E%:M
OVE (X%*3-3) *64,252+ (Y%*4-2) *32: GCOLY, 7:
PRINT" ";new(X%,Y%):VDU4

2010 old(X%,Y%)=new(X%,Y%)

2920 o0ld$ (X%, Y%)=news (X%,Y%)

2063@ C1=1

2040 ENDPROC

2050 :

2060 DEF PROCupdate

2070 VvDU19,4,1;0;:PROCalert

2080 IF X%<>6 news$ (X%+1,Y%)=new$ (X%, Y%
) :new (X%+1,Y%) =new (X%+1,Y%) +1

2090 IF X%<>1 news (X%-1,Y%) =news$ (X%,Y%
) :new (X%-1,Y%) =new (X%-1,Y%) +1

2100 IF Y%<>6 news$ (X%,Y%+1)=news (X%, Y%
) tnew (X%,Y%+1) =new (X%, Y%+1) +1

2110 IF Y%<>1 new$ (X%,Y%-1)=news (X%, Y%
) :new (X%,Y%-1) =new (X%,Y%-1) +1

2120 new(X%,Y%)=new(X%,Y%)-D(X%,Y%)

2130 old(X%,Y%)=10

2140 IF new(X%,Y%)=0 new$ (X%,Y%)=" "

2150 PROCsmash (X%,Y%)

2160 PROCplot (X%,Y%,2)

2170 ENDPROC

2180 :

2190 DEF PROCsmash (X%,Y%)

2209 VDUS

2219 PROCwait (1)

2220 FOR Q%=5 TO 255 STEP 50

2230 GCOL@,RND(15)

2240 VDU23,240,RND(Q%) ,RND(Q%) ,RND (Q%)
,RND (Q%) ,RND (Q%) ,RND (Q%) , RND (Q%) ,RND (Q%)

2250 FORE$%=1T03

2260 MOVE (X%*3-2)*64,252+(Y%$*4-4+E%) *3
2: PRINTCHRS$240+CHR$240

2279 NEXT E%

2280 NEXT Q%

2290 VvDU4

2300 PROCclear (X%,Y%)

2310 ENDPROC

2320

2330 DEF PROCalert f

2340 ENVELOPE1,1,4,-4,4,10,20,10,127,1
27,9,0,127,126

235¢ SOUND1,1,100,30

2360 COLOUR 139:CLS:COLOUR 12

237¢ PRINTTAB(1,3);"Red Aler t"

2380 ENDPROC

2390 :

2400 DEF PROCfinish

2419 COLOUR 132:CLS

2429 SOUND1,-15,124,25

243@ COLOUR12:PRINT TAB(3,1)"The Winne
r!ll

2440 COLOUR @:PRINT TAB(4,3)"Score ";
B;

2450 COLOUR 7:PRINT TAB(4,5)"Press bar
(LY

’

2460 *FX15,1

2479 I=GET:CLS

2480 PRINTTAB(2,2)"Another game ?";

2490 REPEAT Z=INSTR("YyNn",GETS) :UNTIL

Z<>0

2500 ENDPROC

2510

2520 DEF PROCinstr

2530 VDU23,1;0;0;0;9;

2540 PRINTTAB(9,1)CHRS$S129;CHR$157; TAB (
18) CHR$156

2550 PRINTTAB (9, 2)CHRS$129;CHRS157;CHRS
135;™ RED ALERT | N CHRS156

2560 PRINTTAB(9,3)CHR$129;CHRS157; TAB (
18) CHRS$156

2570 PRINT TAB(3,7)CHRS$131;"Capture yo
ur opponents squares by" ' CHRS$131;"'ex
ploding' your own."

2580 PRINT TAB(3,10)CHRS131;"The first

player to wipe out all" ' CHR$131;"tra
ce of his opponent wins the game."

2590 PRINT TAB(3,13)CHRS$131;"The criti
cal mass of the squares" ' CHR$131;"var
ies around the board:"

2600 PRINT TAB(7,17)CHR$130;"Corner sq
BATEGS s vend

261@ PRINT TAB(7,19)CHRS130;"Edge squa
XOS . veveass Sh
2620 PRINT TAB(7,21)CHRS$130;"Inner squ
BIES i is

2630 PRINT TAB(6,24)"PRESS SPACE BAR T
O START";

2640 REPEAT UNTIL GET=32
265@ ENDPROC
2660 :

2679 ON ERROR OFF
2680 MODE 7
2690 IF ERR<>17 REPORT:PRINT" at line
NaERL
2700 END
2710 :

27200 DATR=225,225,32,225,224,225,224,2
25,32,225,224,225
2730 DATA 2:3,3,;3,372;3,4,4,4:4,3,3,4,
4,4,4,3,3,4,4,4,4,3,3,4,4,4,4,3,2,3,3,3
3,2

=

BEEBUG

JANUARY/FEBRUARY 1985

Volume-3 Issue 8

IF YOU WRITE TO US

BACK ISSUES (Members only)

All back issues are kept in print (from
April 1982) priced as follows:
Individual copies:
Volume 1 - £0.80¢
Volume 2 - £0.99¢
Volume 3 - £1.00
Volume 1 set (10 issues) £7
Volume 2 set (10 issues) £8
Please add cost of post and packing as shown:
No of DESTINATION
copies UK Europe Elsewhere

9.30 @.70 1.50
2 5 9.50 1.50 4.70
6 - 10 1.00 3.00 5.50
11 - 20 1.50 4.00 7.00
All overseas items are sent airmail (please send
a sterling cheque). We will accept official UK
orders but please note that there will be a £1
handling charge for orders under £10 that require
an invoice. Note that there is no VAT on
magazines.

This offer is for members only, so it is
ESSENTIAL to quote your membership number with
your order. Please note that the BEEBUG Reference
Card and BEEBUG supplements are not supplied with
back issues.

SUBSCRIPTIONS

Send all applications for membership,
subscription renewals, and subscription queries
to the subscriptions address.

MEMBERSHIP COSTS:
U.K.
£6.40 for 6 months (5 issues)
£11.90 for 1 year (10 issues)

Eire and Europe
Membership £18 for 1 year.
Middle East £21
Americas and Africa £23
Elsewhere £25
Payment in Sterling essential.

PROGRAMS AND ARTICLES

All programs and articles used are paid for at
around £25 per page, but please give us warning
of anything substantial that you intend to write.
In the case of material longer than a page, we
would prefer this to be submitted on cassette or
disc in machine readable form using "Wordwise",
"View", "Minitext Editor" or other means. If you
use cassette, please include a backup copy at 300
baud.

HINTS
There are prizes of £5 and £10 for the best hints
each month, plus one of £15 for a hint or tip
deemed to be exceptionally good.

Please send all editorial material to the
editorial address below. If you require a reply
it is essential to quote your membership number
and enclose an SAE.

Editorial Address

BEEBUG
PO Box 50
St Albans

Herts

Subscriptions &
Software Address

BEEBUG
PO BOX 109
High Wycombe
Bucks HP1@ 8HQ

Hotline for queries and software orders

St.Albans (0727) 60263
Manned Mon-Fri 9am-4.30¢pm

24hr Answerphone Service for Access and
Barclaycard orders, and subscriptions

Penn (049481) 6666
If you require members' discount on software it

is essential to quote your membership number and
claim the discount when ordering.

BEEBUG MAGAZINE is produced by BEEBUG Publications Ltd.

Bditor: Mike Williams.

Assistant Editor: Geoff Bains. Production Editor: Phyllida Vanstone.
Technical Assistants: David Fell and Alan Webster.

Managing Editor: Lee Calcraft.

Thanks are due to Sheridan Williams, Adrian Calcraft, Matthew Rapier, John Yale, and
Tim Powys-Lybbe for assistance with this issue.

All rights reserved. No part of this publication may be reproduced without prior
written permission of the Publisher. The Publisher cannot accept any responsibility,
whatsoever for errors in articles, programs, or advertisements published. The
opinions expressed on the pages of this journal are those of the authors and do not
necessarily represent those of the Publisher, BEEBUG Publications Limited.

BEEBUG

JANUARY/FEBRUARY 1985

BEEBUG Publications Ltd (c) 1985

Volume-3 Issue 8

High Quality Low Priced Discs

Backed by The Reputation of BEEBUG

10 S/S D/D Discs — £13.90 10 D/S D/D Discs — £19.40
25 S/S D/D Discs — £33.45 25 D/S D/D Discs — £46.95
50 S/S D/D Discs — £569.30 50 D/S D/D Discs — £87.05

All Prices Include Storage Box, VAT and Delivery to Your Home (UK).

All discs are 100% individually tested, supplied with hub ring as standard, and
guaranteed error free. They are ideal for use on the BBC Micro and have performed
perfectly in extensive tests at BEEBUG over many months.

Orders for 25 or 50 are delivered in strong plastic storage boxes with four dividers.
Orders for 10 are sent in smaller hinged plastic library cases.

We are also able to offer the empty storage container, which holds up to 50 discs for
£10 including VAT and post.

Please use the order form enclosed %% % % % %

or order directly from:
BEEBUGSOFT, P.O. Box 108, %%EE
High Wycombe, Bucks HP 10 8HQ.

THE BEEBUG MAGAZINE
ON DISC AND CASSETTE

The programs featured each month in the BEEBUG magazine are now available to members on disc and
cassette.

Each month we will produce a disc and cassette containing all of the programs included in that month’s
issue of BEEBUG. Both the disc and the cassette will display a full menu allowing the selection of
individual programs and the disc will incorporate a special program allowing it to be read by both 40
and 80 track disc drives. Details of the programs included in this month’s magazine cassette and disc
are given below.

Magazine cassettes are priced at £3.00 and discs at £4.75.
SEE BELOW FOR FULL ORDERING INFORMATION.

This Month’s Programs Include:

A colourful and graphical 3D Surfaces display, a program for Making Music on the Beeb, a gractical
routine to Disable the Break Key, easy to use Assembler Arithmetic routines, four BEEBUG
Workshop examples of indirection operators, a fast moving game of monsters called Digger, a Split
Screen Utility providing dual windows on the screen, a very original and thought provoking game
named Red Alert and an extra utility for Basic programmers, Crunch, a program that really squeezes
the last ounce of memory space from your programs.

MAGAZINE DISC/CASSETTE SUBSCRIPTION

Subscription to the magazine cassette and disc is also available to members and offers the added

advantage of regularly receiving the programs at the same time as the magazine, but under separate
cover.

Subcription is offered either for a period of 8 months (5 issues) or 1 year (10 issues) and may be
backdated if required (The first magazine cassette available is Vol 1 No. 10; the first disc available is
Vol 3 No. 1.)

MAGAZINE CASSETTE SUBSCRIPTION RATES

6 MONTHS (5 igsues) UK &17.00 INC. .. Overseas £20.00 (No VAT payable)
1 YEAR {10 issues) UK £33.00 INC. .. Overseas £39.00 (No VAT payable)

MAGAZINE DISC SUBSCRIPTION RATES

6 MONTHS (5 discs) UK £R8.50 INC. .. Overseas £30.00 (No VAT payable)
1 YEAR (10 discs) UK £50.00 INC. .. Overseas £56.00 (No VAT payable)

CASSETTE TO DISC SUBSCRIPTION TRANSFER

If you are currently subscribing to the BEEBUG magazine cassette and would prefer to receive the
remainder of your subscription on disc, it is possible to transfer the subscription. Because of the
difference between the cassette and disc prices, there will be an extra £1.70 to pay for each remaining
issue of the subscription. Please calculate the amount due and enclose with your order.

ORDERING INFORMATION

Please send your order to the address below and include a sterling cheque. Postage is included in
subscription rates but please add 50p for the first item and 30p for each subsequent item when ordering
individual discs or cassettes in the UK. Overseas orders please send the same amount to include the
extra post but not VAT.
SEND TO:

BEEBUGSOFT, PO BOX 109, HIGH WYCOMBE, BUCKS, HP10 8HQ

Printed in England by Staples Printers St Albans Limited at The Priory Press. ISSN 0263 -7561

