£1.20 4

Features
@ Mixing

BRITAIN’S LARGEST COMPUTER USER GROUP
MEMBERSHIP EXCEEDS 30,000

| RSNSE




EDITORIAL

ACORN RESCUED BY OLIVETTI

As many members will be aware, Acorn were suffering major financial problems until rescued by Olivetti
(Europe’s second largest computer manufacturer) who now have a 49.3% stake in Acorn with an option to
increase this to a controlling 50.1% in the future. The immediate consequences are a further round of
redundancies bringing the total to approximately 120 (out of 450), the reorganization of Acorn into four
new divisions, and the appointment of Dr Alex Reid as Chairman of Acorn Computers with Acorn’s
founders, Chris Curry and Herman Hauser, taking more of a back seat role.

We contacted Acorn to ask them some important questions.
BEEBUG: How do these changes affect Acorn’s future support for the BBC micro?

ACORN: The life of the BBC micro is already assured for at least another four years through the contract
with the BBC, and the deal with Olivetti can only improve future support and development. The BBC micro
will be the central product for the new Education and Training Division (which will also deal with
production) and they will be looking, in particular, at expanding educational sales overseas.

BEEBUG: What truth is there in the rumour that Acorn will effectively pull out of the home market once
the BBC micro ceases to be profitable?

ACORN: As already stated the BBC micro system has a continuing life of at least four years and there are
no plans to ignore the home user market. The Consumer Division will be responsible for the Electron range
and for marketing the BBC micro in the home user market. Development of new products will be actively
pursued.

BEEBUG: What will be the effect to the end user of the reorganization of Acorn into four divisions
(Education & Training, Scientific-& Industrial, Business, Consumer)?

ACORN: Each division will be responsible for marketing within its particular area of interest. It will
produce its own range of products and also market products from other divisions where appropriate. This
reorganization will enable Acorn to focus more clearly and more strongly in each of these prime market
areas.

BEEBUG: How does this reorganization affect Acornsoft?

ACORN: The various sections of Acornsoft will be much more closely related to the appropriate division
within Acorn. “Acornsoft” will remain as the brand name for many of Acorn’s software products.

BEEBUG: What will be the effect on Customer Services?

ACORN: Funtions such as Customer Services will in future be handled by each division. This will take a
time to reorganize but technical queries about the BBC micro, for example, will be dealt with by Education
and Training. It is also expected that dealers will become more specialised in the markets that they support,
in line with Acorn’s four marketing divisions, and become more heavily involved in supporting their
customers.

BEEBUG: What is likely to be the future for Acorn’s ABC range?

ACORN: This will be the responsibility of the new Scientific & Industrial Division. Marketing will benefit
considerably from Olivetti’s world wide experience in this field and there may be some changes in the range
as a result.

BEEBUG: What will happen with future products, such as Communicator and Video Disc?

ACORN: New developments will continue as planned, though within the new divisional framework of
Acorn. Thus interactive video will be within the Education and Training division, and this is already proving
to be a very successful product.

BEEBUG'S FOURTH YEAR OF PUBLICATION

This issue marks the completion of Volume 3 of BEEBUG. We are already working on a host of new
ideas for Volume 4, to offer even more value to members. To mark the first issue we shall, next month, be
including a complete index to Volume 3, a voucher worth up to £3 against BEEBUGSOFT products and
extra programs for the magazine cassette/disc, including a first class arcade game. Extra programs for this
month’s magazine/cassette are a colourful machine code game by Bob Anderson called Cosmonaut, a
special program on artificial intelligence (?) J.M.O’Regan, and the full Spreadsheet program from the March
and April issues.

BEEBUG APRIL 1985 Volume-3 Issue 10



BEEBUG MAGAZINE

GENERAL CONTENTS

2 Editorial
4 News
5 Of Mice and Micros
The AMX Mouse Reviewed
8 Backwards
9 Points Arising
10 Homelink for Homebanking
12 Castle Quest from Micro Power
13 Mixing Modes
19 Logo for the Beeb
23 A Spreadsheet Program (Part 2)
28 BEEBUG Workshop
Searching and Sorting (Part 1)
30 Understanding Disc Formatting
31 AMX Mouse Special Offer and
Competition
32 Making Music on the Beeb (Part 3)
37 Scrabble Reviewed
38 Calculating the length of Programs
40 Basicin Depth
Two Books Reviewed
42 Beginners Start Here
Introducing Machine Code (Part 3)
44 Postbag
46 Brickie Nickie

HINTS, TIPS & INFO PROGRAMS

12 Trouble with *FX138 8 Backwards

18 Real Value of TOP 13 Mixing Modes

36 Bugin Assembler 23 Spreadsheet Program (Part 2)

37 OPENOUT Bug 28 Two Sorting Routines and Demo
39 Small OPENOUT Files 32 Making Music Example

39 Printing HEX Numbers 38 Calculating Program Length

39 OC Troubles in Wordwise 42 Beginners Machine Code Examples
39 Zero Page Corruption 46  Brickie Nickie

41 DATA Remarks

41 Recovering Lost Programs with the Z80
41 Z80 Basic String Bug

45 Correct Integrex Mode 7 Dumps

45 More Commands in Memoplan

45 Centering the Mode 7 Screen

45 Sidewise RAM Benefits

BEEBUG APRIL 1985 Volume-3 Issue 10



WEWS

TV 4 U

Channel 4 Television has started a
new TV series that will interest most
Beeb owners. "4 Computer Buffs" is
screened on Mondays at 5.30pm. The
programme will feature all the popular
home micros with news and features to
reflect the enthusiast's interests.
There is a 'modem corner' for those
interested in  communications and
special emphasis is being put on
programming languages other than Basic.
A lot of free software is being
broadcast in  various forms, all
commissioned from professional software
companies and of a high quality.

Some software is being broadcast
via Channel 4's teletext service -
4-tel - but this is only for the
Spectrum at present. There is also
software broadcast as an audio tone to
accompany the test card for half an
hour on Tuesday mornings. During the
programme a new method of software
broadcasting is being tried. Using a
light pen your computer can read
software from a small section of the TV
screen. Constructional details of the
light pen are given in the programme
itself.

THE PLOT THICKENS

If you're fed up with trying to fit
yet another screen design onto the two
graph paper pages provided at the back
of the User Guide for that purpose,
then Victory Educational has just the
thing for you. The 'Screen plot' is a
re-usable screen designer. With a
graphics grid on one side and a text
grid on the other, you write on it with
special water-soluble (overhead
projector type) pens and then wipe it
all off again when you're through.
Character designing grids are also
provided along with a list of all the
teletext graphics characters. Screen
plot will cost you £11.99 including
post and packing from Victory
Educational on @#705-818635.

CHEAP (ISH) PLOTTERS
The Penman plotter is a novel
plotter that breaks all the price

barriers at £250. It is based on a
turtle design, but is capable of high
quality drawing. The three penned
turtle moves around the paper sensing
its position optically from the paper's
edge. Driving software for the Beeb
costs £25. A more conventional design
comes from Linear Graphics. The
Plotmate flatbed plotter costs £344 and
will handle A4 paper and uses a single
pen. Driving software that intercepts
the Beeb's screen graphics commands and
mirrors their actions on paper is
included. Further details from Penman
on 0903-209981 and Linear Graphics on
0702-541664.

ACORNSOFT GETS DOWN TO BUSINESS
Acornsoft has released a
'demonstration package' called 'Micros
in Business' aimed at providing both an
insight into what microcomputers can do
for the office and also several usable
pieces of software. The package is disc
based and has sections on word
processing, personnel, spreadsheet, and
database. For the most part the
programs are cut down versions of
existing Acornsoft products. The whole
package costs £59.80 from dealers.

NEW SOFTWARE
Proving that a programmer marches

on his stomach, comes Comp-u-cater from
Shumwari. This disc based menu planner
costs £25. Monty Python's Terry Jones'
book 'The Saga Of Erik The Viking' has
now been blessed with an adventure game
version. The game costs £9.95 from
Mosaic and apparently is good enough to
fool even Terry Jones. Equally steeped
in fairy tale is 'Jack and the
Beanstalk' from Superior Software, an
arcade game at a price of £7.95. Also
from Superior come 'Space Pilot' - beat
up a variety of airborne adversaries -
and 'Airlift' - return your compatriots
to the safety of your helicopter base -
both for £7.95. On a similar vein to
the latter Pace offer 'Skyhawk' for
£7.99 (£11.95 on disc) and also
'Sorcery' - an arcade adventure - for
the same price.

=

BEEBUG

APRIL 1985

Volume-3 Issue 10




OF MICE AND MICROS

The AMX Mouse Reviewed

Can the AMX Mouse make an Apple out of the Beeb? Geoff Bains throws away his
Beeb’s keyboard and takes the package out for a test drive.

Product : AMX mouse

Supplier : Advanced Memory Systems,
Green Lane, Appleton,
Warrington, WA4 5NG.
0925-62682

Price £1£89:95

The idea of a friendly computer has
taken a new turn in the past few years.
Apple's Lisa and Macintosh computers
along with the GEM package from
Digital Research. (to be avail-
able on Acorn's ABC) have
brought with them a new
buzz word - the mouse.
A mouse is a device
used on the table top
next to the computer
to control events
on the computer's
screen. Along with
suitable software
this little
rodent claims to
make computers
usable by even
the most computer
illiterate amongst
us. Now AMS have
introduced the BBC micro
to this exclusive ¢lub with
the AMX mouse package.

The AMX mouse doesn't look very
imposing. With the mouse comes a ROM, a
cassette and disc, and two manuals. The
mouse itself is a small black plastic
box with a large metal ball-bearing
mounted in its base. Rolling the mouse
around on the desk top turns the ball
bearing which communicates the mouse's
movement to the computer via the user
port. Three buttons in the front of the
mouse can also be pressed to initiate
actions much like the fire buttons on a
joystick. The whole operation is
managed by the AMX software sitting in
the inevitable sideways ROM.

In many ways the mouse is no more
than a new kind of joystick. You use it

to guide a cursor around on the screen
and press buttons to signify that
you've got where you're going. However,
without actually using one you cannot
imagine how much superior to the
joystick a mouse is. Within minutes of
grabbing the critter you'll find it so
natural to concentrate on the screen
when using your computer and not have
to worry about the keyboard - just as
you would. when using pen and

paper.

Of course the mouse
is only useful
with the right
applications soft-
ware. For Basic
programming or
writing large
amounts of text

the keyboard is the

only viable method
to input your ideas

to the computer - at
the moment  anyway.
However, in some

applications a mouse
transforms a task from
tedious in the extreme to
sheer  pleasure. The most
obvious application for 'mouse
technology' is in. computer aided art
and design. AMS has noticed this too
and has included an excellent design
program - AMX Art - in with the mouse
package. AMX Art embodies all that is
good about using mice.

The first thing to realise when
using AMX Art is that there is only one
reason to ever go near your keyboard
when using this package. That is when
entering file names. Everything else is
controlled with the mouse and the
screen. If you have taken up Apple's
advertised offer of a Macintosh test
drive or otherwise played with the
Macdraw drawing package you will
already know what AMX Art is all about.
AMX art Dblatantly imitates that

BEEBUG

APRIL 1985

Volume-3 Issue 10



2 i ' RS S
OPTIONS FILE TEXT LINE BLACK

RN
St g
St

package, and is all the better for it!

When you first boot up the software
disc (or load the cassette - both are
provided) a screen with several
symbols, or 'Icons', presents itself.
There is a symbol for the art program
amongst them and moving the arrow
shaped cursor, under mouse control, to
the symbol and pressing one of the
mouse buttons loads up AMX Art and sets
it running. So far, so easy.

The AMX Art program itself is all
on a single screen. All control is with
the mouse with options selected from
menus that you 'pull down' from the top
with the cursor. Along the bottom of
the screen is a selection of shading
patterns and up one side a selection of
drawing operations represented by
symbols and another menu of line types.

Drawing is done in the central
region of the screen and is mastered
within a matter of minutes. All you do
is move the cursor with the mouse to
symbol  representing the drawing
operation you want - pencil, eraser,
spray gun, paint roller, etc. - and hit
one of the mouse buttons. The cursor
then changes shape to the symbol you've
selected. Now select the line thickness
you want from the other icon menu at
the side of the screen and start
drawing. You simply move the mouse
around on the desk top and the cursor
mirrors the movements on the screen -
easy and natural. Pressing the mouse
button will leave a line trailing
behind the cursor. If you want to fill
in an area then select the paint
roller, select a shading pattern from
the lower menu (the whole program deals

only with black and white so differing
patterns are used to fill in areas) and
then move the paint roller cursor to
the area and press the button. The area
is quickly filled in, in your selected
pattern.

The menus along the top of the
screen are, apart from their titles,
not normally visible. Moving the cursor
to the title and pressing the button
reveals the menu on top of your
drawing. From these you can load and
save pictures, select type style for
text, change between cassette and disc,
and so on. Once you've made your
selection (with the mouse again),
select the cancel option at the end of
each menu and the menu disappears

leaving your drawing unharmed
underneath.
All this involves a good deal of

moving back and forth across the screen
between picture and menu, and no doubt
sounds very lengthy and tedious. With
any other control mechanism than a
mouse, so it would be, but with the
mouse the co-ordination between hand
and eye, and mouse and screen, is so
quick, easy, and natural that the whole
process is almost as easy as drawing on
paper. Except of course that you don't
have problems with smudging, uneven and
inaccurate shading, blunt pencils, and
the like. Using AMX Art you can easily
produce exact, impressive and even
artistic pictures.

Needless to say, when you've
finished your masterpiece there is an
option (selected with the mouse of
course) to dump the picture to a
printer. Epson compatibles are dealt

OPTIONS  FILE TEXT LINE

BEEBUG APRIL 1985 Volume-3 Issue 10




7

5 oad/S5ave |

Load icon
ilLoad alt.
ave icons

with automatically but your own dump
routine can be incorporated.

The program is not perfect. You can
only draw in black and white on a mode
4 screen. The type styles are limited.
The fill = routine is_ not very
sophisticated and needs several goes at
a mildly complicated shape. Unlike
Macdraw (on the  Apple Macintosh) you
cannot draw a small part of a picture
and then move it around the screen or
copy it to another place. However,
these are comparisons with a package
available on a machine with a 32 bit
processor, 128K of RAM and costing many
times the price of a Beeb. For a BBC
micro program, AMX Art is not just
good, but superb.

The Art program is not all you get
in the mouse package. Also on the
software disc is a character design
program for creating your own icons.
This is the easiest to use of any
character designer 1I've ever seen.
Again this is largely because of the
mouse. These icons, or others already
provided can be used in your own mouse
controlled programs. In the AMX manuals
there are detailed descriptions of how
to incorporate the mouse control
routines in the AMX ROM into your own
programs. The mouse is polled, whenever
it is moved, under interrupts and
registers containing its position and
the state of the buttons are all
updated continuously. There are simple
routines provided in the ROM to read
these registers and make use of several
other features such as moving the icon
cursor around, creating windows,
displaying an icon, adjusting the
sensitivity of the mouse, and so on.

These routines are accessed with
*commands that you can incorporate into
your own Basic program in much the same
way as you might incorporate the
commands available in Computer
Concepts' graphics extension ROM or
BEEBUGSOFT's sprite utilities package.

Okay, so the AMX mouse package
gives you a fancy drawing package and a
method of writing your own programs to
make the most of mouse mania. But what
about all the other tasks that your
Beeb performs? Now you're hooked on
mice how can you squeeze a rodent into
them? Well unfortunately the answer is
usually you can't. The mouse can be
configured so that moving the mouse
replaces the cursor keys, and the mouse
buttons act instead of three keys of
your choice so that you can use the
mouse to a limited extent in other
commercial programs. However, to really
make use of the mouse a program has to
be specially written with the mouse in
mind. All actions must be menu based,
preferably with extensive use of icons
to save the user from having to read
through vast quantities of text. As no
other Beeb software is written in this
way no amount of adaptability of the
mouse really helps.

However, all 1is not lost. AMS do
not plan to make the AMX mouse package
a one off product but more the start of
a new line of products. Already under
way is a desk top manager {as used at
the heart of the Lisa/Macintosh/GEM
systems) giving you calculator, memo
pad, diary, telephone directory, etc.
all under mouse control, for about £25.
A utility disc for the AMX Art package
will provide a =zoom facility and a
teletext page designer for about £15. A
colour Art program is also promised
along with a database and even a
utility to give you pull down menus in
Wordwise. These are destined for summer
release.

If these packages live up to the
standards set by AMX Art then the whole
AMX mouse system looks set to have a
long and popular future. For the moment
the AMX mouse package is worth buying
for AMX Art alone. If you already use a
drawing package of any description, if
you intend to start using one, or even
if you just fancy a fascinating new
toy, then the present AMX mouse package
has to be the best around.

BEEBUG

APRIL 1985

Volume-3 Issue 10



TX3T 2a9AWINDAS

Here is a handy little utility for
fooling your friends. It's a routine to
reverse the text displayed by your BBC.
The program generates a short section
of machine code which has this special
effect on your BBC micro. After typing
the program in, save a copy on disc or
tape BEFORE running, because it will
corrupt itself when run.

- You <can save the machine code
section itself by running the program,
pressing <Escape> when the "Press any
key..." prompt is displayed, and
typing:

*SAVE BACK AQ@ +FF
on a disc system, or

*SAVE BACK D@1 +FF
on a tape system. The machine code can
be re-loaded and executed by:

*RUN BACK

PROGRAM NOTES

The first part of the machine code
'explodes' the character set, redefines
all the characters, and re-vectors the
"write character" operating system
routine (OSWRCH). It exits by executing
a *BASIC, which has the effect of
altering PAGE and HIMEM to take the
enlarged character set and the change
of screen mode into account. The second
part is entered whenever a character is
sent to the screen, and performs
certain actions depending on the
character code.

The text is mirrored in modes @ to
6, i.e a greater than sign '>' becomes
a less than sign '<' and the text
begins from the right hand side of the
screen instead of the left. In mode 7,
because of the special teletext chip,
the characters are not mirrored but
again they start from the right hand
side of the screen.

The value of PAGE is pushed up by
the program because of the space needed
to explode the character set for

If Lewis Caroll had ever written a computer program instead of ‘Alice Through
The Looking Glass’ then maybe this is the program he might have written.
Bill Wilkinson tells you what it’s all about.

> > H ane» "9 B

EE S SO | B | HOMX 1§
| B | A 188 0 0 RS
L ot

cassette users, PAGE will be &1400
(&EQQ+&600) , and most disc users will
find PAGE at &1F@0 (&1900+&600). The
assembled machine code is located (by
line 102¢) at either &D@1 for cassette
systems or &A@0 for disc systems. The
program also resets the Break vector so
that the effect can only be cancelled
by switching off the machine!

10 REM PROGRAM BACK

20 REM VERSION B@.2

30 REM AUTHOR W G T Walker

40 REM BEEBUG APRIL 1985

50 REM PROGRAM SUBJECT TO COPYRIGHT
60 :

100 OSBYTE=&FFF4:0SWORD=&FFF1:0SASCI=

&FFE3

110 OSWRCH=&FFEE:BLOCK=&70
120 PROCassemble
130 PRINT'''"Press any key when ready
ees";:G=GET:*FX247 76
140 A%=248:X%=res MOD 256:CALL&FFF4
150 A%=249:X%=res DIV 256:CALL&FFF4
160 CALL REDEF
170 END
180 :
1009 DEFPROCassemble
1010 FOR PASS=@ TO 3 STEP 3
1020 IF PAGE>&E@Q THEN P%=8&A00 ELSE P%

=&D0@1

1030 [OPT PASS
1040 \Initialisation

re-definition. The new value of PAGE 1050 \Explode character set
will be PAGE+&600 bytes. 80 .for 1060 .REDEF LDA #2@:LDX #6:JSR OSBYTE B
BEEBUG APRIL 1985 Volume-3 Issue 10



1079 \Redefine characters 1450 CPX #0:BEQ INV1

1080 LDA #33:STA BLOCK 1460 \print char and quit

1090 \read char 1470 .I0T JSR IO

1100 .RLOOP1 1480 .REST PLA:TAY:PLA:TAX:LDA ASTORE
1119 LDA #1@:LDX #(BLOCK AND &FF) :LDY 1490 RTS

# (BLOCK DIV &100@) :JSR OSWORD 1500 \delete?

1120 \process char 1510 .INV1 CMP #127:BNE INV2

1130 LDX #8 ;for 8 bytes 1520 LDA #9:JSR IO:LDA #32:JSR IO
1149 .RLOOP2 LDY #8 ;for 8 bits 1530 \backspace and quit

115¢ .RLOOP3 LSR BLOCK,X 1540 .BACKOUT LDA #8:BNE IOT

1160 ROL A 1550 \control code?

1170 DEY:BNE RLOOP3 1560 .INV2 CMP #32:BCS CHOUT

1180 STA BLOCK,X 1570 \tab?

119¢ DEX:BNE RLOOP2 1580 CMP #9:BEQ BACKOUT

1200 \redefine char 1590 \backspace?

1210 LDA #23:JSR OSWRCH 1600 CMP #8:BNE INV3

1220 LDX #0 1610 LDA #9:BNE IOT

1239 .DFBLK1 LDA BLOCK,X:JSR OSWRCH 1620 \cls?

1240 INX:CPX #9:BMI DFBLKI 163¢ .INV3 CMP #12:BNE INV4

1250 INC BLOCK:BPL RLOOPI 1640 JSR IO:LDA #30

1260 \re-vector OSWRCH 165¢ \home?

1270 .res:LDA &2@E:STA IO+1 1660 .INV4 CMP #30:BNE INV5

1280 LDA &20F:STA IO+2 167@ JSR IO:LDA #10:JSR I0:JMP BACKOUT
1290 LDA #(INV MOD &10@) :STA &20E 1680 \carriage return?

1300 LDA #(INV DIV &100):STA &20F 1690 .INV5 CMP #13:BNE IOT

1319 \select MODE 6 170@ LDA #10:JSR IO:LDA #13:JSR IO
1320 LDA #22:JSR IO:LDA #6:JSR IO 1710 JMP BACKOUT

1330 LDA #12:JSR INV 1720 \print non-control-char

1340 \execute *BASIC to rewrite PAGE a 173¢ .CHOUT JSR IO:LDA #8:JSR IO
nd HIMEM 1740 \read cursor position

1350 LDX #(STR MOD &1@0) 1750 LDA #134:JSR OSBYTE

1360 LDY #(STR DIV &100) 1760 TXA:BNE BACKOUT

1370 JSR &FFF7 177¢ LDA #1@:JSR I0:JSR IO

1380 \alternative OSWRCH 1780 JMP BACKOUT

1390 .INV 179¢ .10 JMP &FFFE

1400 STA ASTORE:TXA:PHA:TYA:PHA 1800 ]

1419 \read VDU queue length 1810 ASTORE=P%:P%=P%+1

1420 LDA #&DA:LDX #@:LDY #255 1820 STR=P%:S$P%="BASIC"+CHRS (13)
1430 JSR OSBYTE 1830 NEXT

144 LDA ASTORE 1840 ENDPROC =

e O 1 3 ST A s A S BB A 10 S M 800 L i NS,
POINTS ARISING

REVIEW OF ROM EXPANSION BOARDS (BEEBUG Vol.3 No.6)

Regrettably a small error of fact arose in compiling the table at the start of
this review. Because of the way the Aries B-12 board is installed, the maximum
number of ROMs that can be accommodated is 12 and not 16 (column CIT). There is also
an additional charge of £5.75 for the adaptor board, required if the Aries B-20

-

memory expansion board is not already fitted.

REVIEW OF PHLOOPY (BEEBUG Vol.3 No.7)
Phi Mag Systems Ltd have advised us that the price of the Phloopy has been
reduced to £117.85 including VAT and post & packing.

=

REVIEW OF SQUASH (in Adventure Games, BEEBUG Vol.3 No.8)
Prices for this program have been reduced to £7.95 (cassette), £9.75 (5" disc) ,
and £11:75 (3% disc)w 55

BEEBUG APRIL 1985 Volume-3 Issue 10



10

HOMELINK FOR HOMEBANKING

The Midland Homebanking system was described in a previous issue of BEEBUG
(Vol. 3 No. 6). David Turner now describes an alternative service being offered Jjointly
by the Nottingham Building Society and the Bank of Scotland.

These notes about the Homelink
on-screen banking service are not
presented as a dispassionate review but
are written from the viewpoint of an
enthusiastic user. However, the author
has no connection with Homelink apart
from being a user, so there is no
commercial motive.

HOMEL THNK Q10 4441008

Bank of Scotland Main Index
white options in ¢ } - Mesbers Only

Account & R iliation

Gtatenen
{23 to Use

Transfer of Funds

Key (3> for Explanation
. €42 to Use

§ rMessages to Bank o
Koy 45> fo 2
(6> to Use

Homelink is not an experiment. It is
a fully developed system run jointly by
the Nottingham Building Society and the
Bank of Scotland. It is not complicated
to use. Once Prestel has been joined
(existing Prestel users obviously
benefit here) running costs are small.
There are no account charges if account
balances are maintained above a
reasonable level and because it is open
at night, work can be done at times
when local phone calls cost only 40p
per hour and Prestel computer time is
free. It enables members to do all the
following (and more) from their
computer keyboards:

1. Call up on screen their Bank of
Scotland or Nottingham Building Society
account statements, with interest shown
up to the current day.

2. Transfer funds, either instantly or
at specified future dates, from the
Building Society to the Bank of
Scotland (transfers in the other
direction occur overnight).

o NOTTINGHAM ——
BUILTING SOCIETY

IHVESTHENT DEMOMBTRATION INDEX
T R S TGRS

i To see your Account Statesent

- 11 Payment

3 To pmy Bank of Scotland VYisa AT
Ch to selé Cwithdrawall
fmfrm&mr to Bank of Scotland

to avw bank account in your

? n to Third Party

8 Direct debit from your bank to
your HBS Homelink A-C.

[ % Homebaoks ey O HL Demo iodex

3. Pay registered bills, credit card
accounts, etc.

4. Buy and sell shares on the stock
market.

5. Apply for mortgages and loans, or
see a current mortgage statement if
they already have one.

6. Send messages (including
confidential ones) to both building

society and bank and receive replies
on-screen.

It goes without saying that security
is of paramount importance in any
banking service. Homel ink is
particularly proud of its system. First
the normal Prestel security system must
be negotiated. Then, before any
transaction involving real money is
allowed, three separate security codes
must be typed in. They do not appear on
the screen as they are typed, but are
replaced by dashes to prevent other
people reading them. The first is the
user's account number. This hardly
counts as security as anyone with
access to the statements and pass-books
could read it. The second item, the
Personal Identification Number (PIN),
is totally under the user's control. It
is not a mere four digit PIN like those
issued by banks for use with cash

BEEBUG

APRIL 1985

Volume-3 Issue 10




11

HOMEL TNK ©:28
Bank of Scotland
Mame 188 SMLTH
Hamp & BB SHITH

felo 10101000 Biatement at SUUREE

dispenser cards, but a code comprising
any mixture of four to ten digits or
letters chosen by the user and then
registered with the Homelink computer.
It can be changed as often as you like
at any time of the night or day. The
third item is a Transaction Number.
This is required to be the next from a
sequence of four-digit random numbers
allocated to the user by the Homelink
computer. When needed, the computer
sends another batch by mail. Each
number is used once only. A
successfully completed transaction is
confirmed by a message frame which
reminds the user to delete the used
number from the list.

It is difficult to think of any way
this system might be beaten, so long as
the PIN is not written down, but as an
added precaution the account is frozen
if three incorrect attempts are made to
access it. Written authority is then
needed to reactivate it. The PIN
selected therefore needs to be
memorable, but not predictable. One's
first wife's maiden name would not be a
good choice!

It is not necessary to own a BBC
Micro to receive the benefits of
Homelink on-screen banking, but Prestel
membership is essential and is normally
applied for at the same time as
Homelink. The system can be used with
lesser micros, or even without a
microcomputer at all with a 'Home Deck'
loaned or bought from NBS. However BBC
Micro owners are already halfway there.
Those already using Prestel and with

HOMEL TNK ©:23 44400880

MBS STaTesenT oF AccounT

33533388
28283 8YHRY"

- ’ :

system of great practical value,
justifying the «cost of a Prestel
subscription on its own.

HOMEL LMK Q:i3 4443 D Op

£“,ﬁifﬂml§“"hztwmﬂirmm? -

Classitied fdverts, Jobline,
Holidemy Comments
Opinion Poll
Hai lbw-r Paging ardd Letters to
Ideas to develop
’:)ntrwv B e menber
borrow the Homelink video)
Gardening O Homelink
Property for Sale
Hotels arnd Restaurants
Pows arvd Weather
Introduction to LinkLine Magazine
for ! .3
Terry's of Redditch
i © HOMEL THIK

The two organizations running it are
very friendly and helpful, and answer
messages promptly. The interest rates
compare well with the best on offer,
yet money invested is instantly
available. The Bank of Scotland account
operates as an ordinary current
account, with a normal cheque book, the
one difference being that interest is
added monthly to credit balances. A
Visa card is available that doubles as
a £50 cheque guarantee card and can be
used to obtain cash. It is not even
necessary to change existing banking
arrangements, as the Band of Scotland
account may be used in parallel.

Information on Homelink can be
obtained from:-

Nottingham Building Society (B),

5/13 Upper Parliament Street,

modest savings that could be switched Nottingham, =5
to NBS can join for nothing. I find the NG1 2BX.
BEEBUG APRIL 1985 Volume-3 Issue 10



12

CASTLE QUEST

Micropower are claiming that their latest release, Castle Quest, is probably the most
challenging game ever released for the BBC micro. Our resident games enthusiast,
Alan Webster, has been following the quest for treasure. Is this the game we’ll all be
playing in 1985?

'Manic Miner' type games are all
the rage at the moment. These are
arcade-style action games where you
have to tackle a set of problems, much
as in an adventure, to reach a final
goal.

'Castle Quest' is probably the most
difficult of these games so far for the
Beeb, and definitely the most
attractive as far as action and
graphics are concerned. It is claimed
to be 'Probably the most challenging
game ever devised for the BBC Micro',
and after a few hours of play I
realised that I was not going to get
very far in a hurry.

The object of the game is to find
the wizard's treasure, hidden in a
castle full of troll's, wicked witches
and spiders. One of the first

challenges you are likely to encounter
is how to escape from a guarded dungeon
armed, apparently, with only a stool.
Guile and deception are the answers

here, rather than any unsubtle
fighting.
e« The game involves negotiating

ladders and walkways and leaping across
voids in true arcade style, whilst at
the same time trying to solve the
puzzles and collect items to 'help you
in your quest to find the treasure.

'Castle Quest' uses thirteen
different keys (a measure of the
complexity of the game?) and also
features so called 'MP4 Scrollerama',
Micro Power's super-smooth 4-direction
scroll.

The packaging is above Micro
Power's usual standard, but even the
disc version did not contain on-screen
instructions.

Micro Power are hoping that this
will be the first of many successful
action/adventure/puzzle type games, but
the most challenging game for the Beeb?
In my opinion the answer is yes, but
some would say that Acornsoft's Elite
was a more challenging game, it all
depends on the sort of game you like.

As a final incentive to buy the
game, Micro Power are betting you £1
that you cannot finish the game within
three month's of purchase. If you do
crack the puzzle within this time, you
not only get your £1, but free entry
into the £500 challenge. For more
information on 'Castle Quest' see your
local dealer. It's well worth it. ==

HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS

TROUBLE WITH *FX138 - P.D. Mercer

Using *FX138 repeatedly to insert more than 31 characters into the keyboard

buffer results in only the first 31 being accepted.

=

BEEBUG

APRIL 1985

Volume-3 Issue 10




13

MIXING MODES

If you thought that it was impossible to have mode 0, mode 1 and mode 2 displays on
the screen at the same time then think again. Ian Hall has come up with an ingenious
program that will allow your programs to mix modes with obvious benefits. Sixteen
colours and 80 column text? It’s all possible now.

This program will mix different
display modes on the screen
simultaneously. Up until now you've
only been able to do that playing
Elite! Of course BEEBUG goes one better
than that by giving you THREE modes at
once. You can mix different modes to
give, say, 80 column text along with 16
colour graphics, or mix different
coloured versions of the same mode to
give, say, a 12 colour mode 1. The
routines can be easily incorporated
into your own programs giving you
little short of a new computer.

THE DEMONSTRATION

The programs are in the form of a
demonstration, parts of which can
easily be adapted and incorporated into
your own programs for your own uses.

To run the demonstration type in
both 1listings and save each before
running it. Save the second program
with the name 'MIXDEMO' as this is
chained from the first using that name.

The demonstration divides the
screen horizontally into three areas
which have moving mode 1, 2, and @
displays, respectively, in them.

It is quite easy to use parts of
these programs in your own Basic
programs to create your own mixed mode
displays. You will need to use all of
the first (MIXMODE) program, with some
alterations, and a short section of the
MIXDEMO program.

The MIXMODE program sets up the
machine code that 1looks after the
display of the three modes
simultaneously, and then chains to the
second program, whether your own or the
demo given here, to create the
displays.

SETTING UP MIXED MODE SCREENS
One section of the MIXMODE program
must be altered to set up the

particular mixture of modes you wish to

display. This is the
PROCsetmodes.

procedure

The three mode sections displayed
are designated (from top to bottom)
section A, section B, and section C.
You should first plan what modes you
wish to appear on the screen and the
size and position of each section. The
mode for each section should be entered
into PROCsetmodes as VDU22 statements
in lines 1130, 117@, and 1214.

You can also enter information such
as the graphics and text windows
required for each section of the screen
(as done in the listing given) or VDU19
colour definitions here.but this is not
essential. More on that later.

At the end of each section
definition (lines 1160, 1200, and 1240)
the information is stored away with a
call to the relevant 'push' routine for
that section.

Finally the two parameters that
decide where the screen is to be split
must be set up. These are held in the
locations delayl and delay2 and must be
set up in line 1250. The following
formulae are used to determine the
approximate values to be placed in

BEEBUG

APRIL 1985

Volume-3 Issue 10



14

delayl and delay2:

!delay1=1725+16300* (ha/1024)
!delay2=1630@* ( (hathb) /1024)

where ha and hb are the heights, in
graphics co-ordinates, of the two top
sections, A and B, respectively in the
mixed mode screen.

Some slight tweeking of these
values may be necessary to get the mode
split in exactly the right position
since there is slight jitter on one
graphics line at the join between two
modes. If you only want a two mode
display then set !delay2 to &FFFF and
do not use pushc or pullc in the
programs. If you want to create a
screen using the 10K modes (4 and 5)
rather than using any of the 20K modes
(¢, 1, and 2) then change line 100 of
the MIXMODE program to MODE 4 and the
PROCsetmodes 1lines to use VDU22,4 and
VDU22,5 as needed.

This completes the customisation of
the MIXMODE program. This should now be
saved.

USING THE MIXED MODE SCREEN

Once each mode area has been
defined by running the first program,
your own program to use the mixed mode
display must include PROCinit from the
MIXDEMO program and a call to that
procedure (line 1190 in the MIXDEMO
program). The mixed mode display is
enabled with 'CALL enable' (this is
done in the MIXDEMO program also in
line 11¢). Once that has also been
called, it is as though you have three
totally separate smaller displays
operating on the same screen at once.
You call each one up with a CALL to the
relevant 'pull” routine. For example,
to print something in the section A
area and then draw a triangle in the
section B area, the following is
performed:

CALL pulla

PRINT "Hello"

CALL pullb
MOVEx1,y1:MOVEx2,y2:PLOT85,x3,y3

If you change any of the section
information, such as window sizes,
current graphics and text cursor
positions, GCOL information etc. when

using any section, this can be stored
as relevant to that section alone with
a CALL to the relevant 'push' routine.
When you next 'pull' that section for

use that information will all be
re-established. So in the next example
the triangle in section A is completed
correctly despite the intervening
section B action because the graphics
cursor position is stored away by the
'CALL pusha'.

CALL pulla

MOVE 10¢,90@:MOVE 200, 9@0
CALL pusha

CALL pullb

MOVE 50@,50@:PRINT "HELLO"
CALL pulla

PLOT 85,150,1000

If you are not changing the section
information (VDU19 colours, windows,
and so on) as you use the mix mode
screen, then the pushing of this
information can be done when setting up
the modes in PROCsetmodes in the
MIXMODE program, to establish start up
conditions for each section. If your
screen comprises different modes it is
recommended that you define text and
graphics windows for each section of
the display and 'push’ this
information in the MIXMODE program. A
whole screen window in a mixed mode
display will operate as normal but text
and graphics that are printed from
within one mode will not be displayed
correctly in the others.

However a  slightly different
application of this program is to
create a screen of three versions of
the same mode, each with different

BEEBUG

APRIL 1985

Volume-3 Issue 10



15

VDU19 colour definitions (giving, say,
a 12 colour mode 1 screen). If you make
use of this facility then you can leave
the windows at their default value of
the entire screen. Text and graphics
can now be placed on the screen as
normal but will appear in the different
colours in the different sections.

Initially you may find it useful to
experiment with the demonstration to
explore the full potential of these
programs.

LOCATING THE CODE

The machine code that controls the
mixed mode display occupies four pages
(&400) of memory and can be placed
where you want it. This is achieved by
using the desired start address as the
passed parameter when calling the
PROClocate() procedure in the MIXMODE
program (line 120) . In the
demonstration the code is placed Jjust
below screen memory. HIMEM is adjusted
so that the code fits immediately above
it (lines 110 and 120). This is
suitable for most Basic applications.

vDU 19

The use of the VDU19 command will
not change logical colour until the
appropriate mode is 'pushed' away. You
can experiment with this by using
Escape to exit from the demonstration
and play with calling the push and pull
routines in immediate mode.

The use of a VDUI9 command may
produce a glitch on the screen but this
can be avoided by using the following
command in place of VDU19,n,m;@; (see
line 1460 of the MIXDEMO program) :

colour?n=m

As with the VDU19 command the
change of logical colour will not take
place until the appropriate push
routine is called.

LIMITATIONS

One limitation of this program is
that, to avoid screen Jjitter, the
system interrupts have to be carefully
controlled. To this end, the analogue
input has been disabled (line 160¢ in
the first program) since this
constantly interrupts the processor.
The ADC inputs can however be read (to

8 bit accuracy) with the following
function. Converting this to a machine
code routine will speed up the
conversion if required:

DEFFNadc (chan$%)

?&FEC@= (chan%-1)AND3

REPEAT UNTIL (?&FBEC@ AND &80)=0
=2&FEC1

This function will directly access
the ADC without the need to interrupt
the processor.

As considerable access is made to
the operating system workspace and to
some SHEILA hardware addresses, for
reasons of speed, operating system
calls are not used. Thus this program
will not operate over the Tube.

Next month Ian Hall describe some of
the ideas and techniques used in these
programs.

10 REM PROGRAM MIXMODE

20 REM VERSION B@.1

30 REM AUTHOR Ian Hall

40 REM BEEBUG APRIL 1985

50 REM PROGRAM SUBJECT TO COPYRIGHT

7@ ON ERROR GOTO 3490
100 MODE @

119 HIMEM=HIMEM-&400
120 PROClocate (HIMEM)
130 PROCassemble

140 PROCsetmodes

150 CHAIN"MIXDEMO"

160 END

BEEBUG

APRIL 1985

Volume-3 Issue 10




16

176 DATAG,0,9,9,9,0,9,0,1,1,1,1,1,1,1 1560 CLI
I]IQIGI]I]IGIGI]I]I212I3I3l2l2l3l3lglll ]570 LDA #]4:LDX #4
20344,5,6,17,8,9,10,11,12,13,14,15 1580 JSR osbyte

180 : 1590 LDA #189:LDX #@:LDY #0

1000 DEFPROClocate (a%) 1600 JSR osbyte

10190 code%=a% :a%=a%+480 1610 LDA &FE6B

1020 vduvara=a%:a%=a%+&A0 1620 BND #&3F

1030 vduvarb=a%:a%=a%+&A0 1630 EOR #&40

1040 vduvarc=a%:a%=a%+&A0 1640 STA &FE6B ,
1050 palette=a%:a%=a%+48 1659 RTS

1060 delayl=a% :a%=a%+4 16690 :

1070 delay2=a% 1670 .event

1080 FOR 1%=0TO47:READ palette?I%:NEXT 1680 PHP

1099 ENDPROC 1699 SEI ‘

1100 : 1700 PHA:TXA:PHA

1110 DEFPROCsetmodes 1710 LDA #0:STA state

1120 *1vg,1 1720 LDA #1000 AND &FF

1130 VvDU22,1:REM MODE 1 1730 STA &FE44

1140 VDU24,279;768;1279;1023; 1740 LDA #1000 DIV &100

115¢ vpbu28,d,7,39,0 1750 STA &FE45

1160 CALL pusha 1760 LDA #10000 AND &FF

1170 vDU22,2:REM MODE 2 1770 STA &FE46

1180 vDU24,79;256;1279;767; 1780 LDA #10000 DIV &100

1199 vpu28,9,23,19,8 1790 STA &FE47

1209 CALL pushb 1800 ROR vduvara+&1d

121¢ VvDU22,@:REM MODE @ 1810 LDA &248:ROR A

1220 VDU24,279;0;1279;255; 1820 ROL vduvara+&10

1230 vpu28,0,31,79,24 1830 ROR vduvarb+&10

1249 CALL pushc 1840 LDA &248:ROR A

125¢ !delay1=5800:!delay2=8150 185@ ROL vduvarb+&10

1260 ENDPROC 1860 ROR vduvarc+&10

1270 : 1870 LDA &248:ROR A

1280 DEFPROCassemble 1880 ROL vduvarc+&10

1290 osbyte=&FFF4 1890 JSR screena

1300 colour=&36F :H%=colour 190@ PLA:TAX:PLA:PLP

1310 oldint=&7@:0ldeve=&72 1919 JMP (oldeve)

1320 vdu=&74 1920 :

1330 templ=&76:temp2=&77 1930 .inter

1340 mask1=&78:mask2=&79 1940 PHP

1350 state=&7A 1950 SEI

1360 ?mask1=&40:?mask2=&02 1960 PHA

1379 ¢ 1970 LDA &FE4D:BPL hop

1380 FOR I%=0 TO 2 STEP 2 1980 BIT mask2:BNE sync

1390 P%=code% 1990 .hop

1400 [OPTI% 2000 LDA &FE6D:BPL ret

1410 : 2010 BIT mask1:BNE change

1420 .enable:.A% 2020 .ret .

1430 LDA &204:STA oldint 2030 PLA:PLP

1440 LDA &205:STA oldint+1 2040 JMP (oldint)

1450 LDA &220@:STA oldeve 2050 :

1460 LDA &221:STA oldeve+l 2060 .sync

1470 LDA #event AND &FF 2070 LDA delayl :STA &FE64

1480 STA &220 2080 LDA delayl+1:STA &FE65

1490 LDA #event DIV &100 2090 LDA #&C0@ :STA &FEGE

1500 STA &221 2100 LDA delay2 :STA &FE66

1510 SEI 2119 LDA delay2+1:STA &FE67

1520 LDA #inter AND &FF 2120 JMP ret

1530 STA &204 2130 :

1540 LDA #inter DIV &100 2140 .change

1550 STA &205 2150 STA &FE6D b

BEEBUG APRIL 1985 Volume-3 Issue 10

R R i L S Bl T o) S O o [ e e~ T e e ) e A TR U= O A A e Al - YT~



7

2160 TXA:PHA 2760 JSR seta

2170 LDA state 2770 JMP push

2180 CMP #0:BEQ stated 2780 .pushb:.C%

2190 CMP #1:BEQ statel 2790 JSR setb

2209 .return 2800 JMP push

221¢ PLA:TAX:PLA:PLP 2810 .pushc:.D%

222¢ JMP (oldint) 2820 JSR setc

2230 : 2830 .push

2240 .stated 2840 LDY #&10

225@ JSR screenb 2850 LDA &248:STA (vdu) ,Y

2260 INC state 2860 INY

227@ JMP return 2870 LDA &249:STA (vdu),Y

2280 .statel 2880 INY

2290 JSR screenc 2890 LDX #0

2309 INC state 290@ .loopl

2310 LDA #&40:STA &FE6E 2910 LDA &D@,X:STA (vdu),Y

2329 JMP return 2920 INY:INX

2330 3 2930 CPX #10:BNE loopl

2340 .screena 2940 LDY #&20:LDX #&0

2350 LDA vduvara+&1@:STA &FE20 2950 .loop2

2360 LDX #15 2960 LDA &300,X:STA (vdu),Y

2379 .l1o3 2970 INY:INX

2380 LDA vduvara,X:STA &FE21 2980 CPX #&8@:BNE loop2

2390 DEX:BPL lo3 2990 LDY #&75

2400 RTS 3000 LDA (vdu),Y:AND #&03

2410 .screenb 3019 ASL A:ASL A:ASL A:ASL A

242¢ LDA vduvarb+&10:STA &FE20 3020 STA templ

2430 LDX #15 3030 LDX #0

2440 .lo2 3040 .loop3

245¢ LDA vduvarb,X:STA &FE21 3050 LDY templ

2460 DEX:BPL lo2 3060 LDA palette,Y

247@ RTS 3070 TAY

2480 .screenc 3080 LDA colour,Y:STA temp2

2490 LDX #15 3090 TXA:TAY

2500 .lol 3100 ASL A:ASL A:ASL A:ASL A

2519 LDA vduvarc,X:STA &FE21 3110 CLe

2520 DEX:BPL lol 3120 ADC temp2

2530 LDA vduvarc+&10:STA &FE20 3130 EOR #&@7

2540 RTS 3140 STA (vdu),Y

25508 315@ INX:INC templ

2560 .seta 3160 CPX #&1@:BNE loop3

2570 LDA #vduvara AND &FF 3170 RTS

2580 STA vdu 3180 :

2590 LDA #vduvara DIV &100 3190 .pulla:.E%

2600 STA vdu+l 3200 JSR seta

2610 RTS 3219 JMP pull

2620 .setb 3220 .pullb:.F%

2630 LDA #vduvarb AND &FF 3230 JSR setb

2640 STA vdu 3240 JMP pull

265@ LDA #vduvarb DIV &100 325¢ .pullc:.G%

2660 STA vdu+l 3260 JSR setc

2670 RTS 3279 .pull

2680 .setc 3280 LDY #&10

2690 LDA #vduvarc AND &FF 3290 LDA (vdu) ,Y:STA &248

2700 STA vdu 3300 INY

2719 LDA #vduvarc DIV &100 3310 LDA (vdu) ,Y:STA &249

2720 STA vdutl 3320 INY

2730 RTS 3330 LDX #0

27409 : 3340 .loop4

2750 .pusha:.B% 3350 LDA (vdu),Y:STA &D@,X >
BEEBUG APRIL 1985

Volume-3 Issue 10




18

3360 INY:INX 1200 CALL pullc

3370 CPX #10:BNE loop4 1219 CLS

3380 LDY #&20 1220 VvDU29,779;128;
3390 LDX #0 123¢ vDU19,1,0;0;
3400 .loop5 1249 vDU23,1,0;0;0;0;
3410 LDA (vdu),Y:STA &300,X 1250 CALL pushc

3420 INY:INX 1260 ENDPROC

3430 CPX #&80:BNE loop5 1279 ¢

1280 DEFPROCdraw

3440 RTS

3450 ] 1290 C%=1:X%=1200:Y%=0:1%=200:K%=1000
3460 NEXT 1300 REPEAT

3470 ENDPROC 1310 CALL pulla

3480 : 1320 Y%=RND (255) :X%=X%+RND (50)

3490 ON ERROR OFF 1330 IF X%>1000 THEN X%=0:COLOUR(C%):P

MODE 7
IF ERR<>17 THEN REPORT:PRINT " at
";ERL

REM PROGRAM MIXMODE DEMO
REM VERSION B@.1
REM AUTHOR Ian Hall

RINT'"MODE 1":GCOL@,3:MOVE1@@@,d:DRAW1Q
0@ ,255:DRAW@ , 255: DRAWD, @

1340 C%=(C%+1)MOD3+1:GCOLYJ,C%

1350 PLOT 85,X%,Y%

1360 CALL pusha

1370 CALL pullb

1380 K%=K%+1:IF K%>70 THEN K%=0:GCOLJ,
7:CLS:MOVE@, @:DRAW 1200, 0:DRAW 120@,511

40 REM BEEBUG APRIL 1985 :DRAW 0,511:DRAW 0,3 :COLOUR (RND (3) +8) : P
50 REM PROGRAM SUBJECT TO COPYRIGHT RINTTAB (@,2) "M" ' Q"' "p" ' WEM 1 1ipn
60 1390 GCOL®,RND (8)-1

100 ON ERROR GOTO 1530 1400 W%=RND (350) +5@: T%=RND (1200-W%) : S%

119

PROCinit:CALL enable

=RND (495) +8

120 PROCsetscreen 1419 MOVE 600 ,256:MOVE T%,S%:PLOT 85,T
130 PROCdraw tWe,S%

140 END 1420 GCOL@,@

150 : 1430 DRAW T%,S%:DRAW 600,256:DRAW T%+W
1000 DEFPROCinit %,5%

1019 enable=A% 1440 CALL pushb

1020 pusha=B%:pushb=C%:pushc=D% 145¢ CALL pullc

1030 pulla=E%:pullb=F%:pullc=G% 1460 I1%=I%+6:IF I%>=120 THEN I%=0:GCOL
1040 colour=H% @,1:MOVE-500,-128:DRAW 50@,-128:DRAW 50
1050 ENDPROC 0,127:DRAW -50@,127:DRAW -500,-128:PRIN
1060 : TTAB(@,1)"MODE @"'"Which is 8@"'"charac
1070 DEFPROCsetscreen ters"'"per line":A%=RND(7) :colour?@=A%
1080 CALL pulla 1470 J%=1%*4

1090 CLS 1480 GCOL3,1:MOVE-J%,-I1%:DRAW-J%, 1%:DR
1100 vDU29,279;768; AWJ%,1%:DRAWJI%, -1%:DRAW-J%,~1%

1119 vDU19, 2,2;0; 1499 CALL pushc

1120 vDU23,1,0;0;0;9; 150@ UNTIL FALSE

11390 PRINTTAB(@,7) 1510 ENDPROC

1140 CALL pusha 1520 2

1150 CALL pullb 1530 ON ERROR OFF

1160 CLS 1540 IF ERR<>17 THEN REPORT:PRINT " at
1170 vDU29,79; 256; line ";ERL

1180 vDU23,1,0;0;0;0; 1550 END

119¢ CALL pushb ==l

HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS

REAL VALUE OF TOP - T.K. Cowell

Although the value of TOP will tell you where your program ends in memory it
won't tell you the limits of the space required for variables when the program is
run. For this, run the program once and type:

DIM T 1:PRINT T
This will return the first free byte above program AND variable storage. =]

BEEBUG APRIL 1985 Volume-3 Issue 10




19

LOGO FOR THE BEEB

Logo is a very different kind of computer language that has for long provoked interest
in the educational world. So far only limited ‘Turtle Graphics’ versions have been
available for the Beeb, but now everything is changing with a full implementation of
this language. And not just one, but four different versions have all been launched
very recently. Mark Sealey, a teacher and enthusiast of Logo, has been finding what
all the fuss is about.

Prices included VAT.

INTRODUCTION

Logo was developed from Lisp by the
American Seymour Papert and others in
the late 1960s specifically for
educational use; until now it has
mainly been used in this country in
schools to allow younger children to
explore mathematical ideas through
programming. The BBC micro has
"suffered" from a variety of half-
versions which excluded all but crude
turtle graphics (hence its popular
association with graphics). In fact
Logo deals in a sophisticated way with
text as well as arithmetic, logic and
data functions.

Logo, like Pascal, does not use
line numbers. Instead a sequence of
commands is built up and tested
line-by-line in 'immediate mode', as it
were. Once you are happy with them,
they may be stored in memory as a
'Procedure', designed to do a short,
self-contained task. Procedures are
then linked, called or nested in the
order in which they will be needed in a
longer program. Subsequently they can
be amended or improved with an
'editor'. The equivalents to Basic's
keywords are 'Primitives', which
usually require an 'input', thus:

To Triangle
REPEAT 3
FD 50 (forward 50)
LT 120 (left turn 120)

'Triangle' has now Jjoined Logo's
repertoire and can be called at will
and as often as needed.

2
?
bd
>
2
3

Four versions of the Logo language
have recently appeared. As detailed
differences between implementations are
highlighted in the tables, emphasis has
been given to the extent to which
children of all ages will find the
versions easy and reliable to use.
After all, these ROMs are largely aimed
at the educational market. High
priority has also been given to overall
user friendliness.

Acornsoft and BBC/OU Logo come with
Extension/Applications discs (available
from the other two suppliers shortly).
The example programs on the Acornsoft
one are particularly impressive.

THE LOGO ENVIRONMENT

Papert conceived of a 'Microworld',
a truly functioning environment in
which the user can think THROUGH the
computer very often using words, rather
than abstruse formulae (as in Basic,
say). His view is of computers and
computer languages as "tools to think
with". As in all successful learning
you explore in small steps from the
familiar to the new. The Logotron
version was most clearly conceived with
this philosophy to the fore.

BEEBUG

APRIL 1985

Volume-3 Issue 10




20

Various features enhance this
aspect of Logo. Sprites, for instance,
are completely programmable coloured
screen objects capable of moving freely
(arcade-like) as fast as the single,
simple arrowhead 'turtle' used to mark
the drawing-nib in Logo graphics.

Logotron's plans for a dedicated
sprite board are the most advanced.
(This should be now be available at

around £13@0 + VAT). Their version also
has a USE command for future interface
options (floor turtles, sprites, robots
etc.)...a healthy policy of development
rather than producing a once and only
'product'; they are also supporting
software written to illustrate
(literally) Logo programs for children
in the "Tilley the Turtle" animated
story series. LSL also have a similar
board under development.

At the =same time, Acornsoft's
version features an EXPLORE command
that returns the distance a floor
turtle has travelled before hitting a
physical object and the facility for
procedures to define (not CALL) other
procedures at run-time. The BBC/OU
version has a DRIVE primitive to move
either floor or screen turtle in
real-time i.e. synchronous with a key
being held down.

Many of the shortcomings (e.g. no
PI) in the two one-chip versions can
often be got around (usually by an 0OS
command) , others less easily so (no
equivalent to Basic's GET in LSL's ).

All four versions provide complete
access to the BBC OS commands, VDU and
Envelope/Sound commands. All will work
with both tape and disc and claim 6502
second processor compatibility (BBC/OU
with disc patch). The turtles are or
will be driven by disc extensions.

GRAPHICS

Acornsoft Logo has the most solid
feel to its screen and has extra help
in that the border changes according to
FENCE, WINDOW and WRAP screen settings,
a very useful way of showing how far
off (or wrapped back onto) the screen
your work is.

The default screen, as in Basic,
allows re-definition of colour, margin,
windows and backgrounds etc. These are
essentially dependent on mode. All
versions work in all modes though
clearly graphics will not be attempted
in 3,6, and 7. The handling of text and
graphics etc. is compared in table 2.

The version supplied by LSL here
began really to show its limitations -
any resetting of the palette was
actually undone after editing,
presumably because the latter is done
in mode 7 and thus resets your
resetting! Unfortunately, all four
versions clear your previous work from
the screen on exit from the editor,
which occupies the whole screen. It is
a pity that you are unable to return
straightaway to the graphics you had on

the

screen.

Despite

a persistent

flicker during much of the graphics

A comparison of the more important plotting, LSL's 1is the only version
features can be found in Table 1. that allows variable graphics/text
Table 1

Features Acorn LSL Logotron BBC/OU
EP(ROM) price inc VAT £69 £67.34 £67.78 £69.95
number of (EP)ROMs 2 1 1 2

Electron compatible yes version promised no no

Econet compatible yes yes — with patch yes —with patch yes

Floor turtles supported (1) Jess/Val/Buggy Jess/Val/Buggy Jess/Val BBC Buggy
Sprites with Graphics ROM 32 board soon 30 board soon no
Number of primitives 150+ 123 160 137

Use of NODES no no yes yes

SAVE & LOAD ascreen yes no no yes

Multiple Turtles yes no no yes
DetectaKey pressed yes no yes yes

SPOOL textonscreentoDisc  no yes yes no
Mathematical notation (2) PRE & IN-fix PRE-fix only PRE & IN-fix PRE & IN-fix
SAVE by Procedures on session both Procedures only both both

(1) Jessop, Valient, BBC Buggy

(2) INFIX notation is “2+5"; PREFIX is "ADD 2 5"

BEEBUG

APRIL 1985

Volume-3 Issue 10



21
Table 2

Graphics Acornsoft LSL Logotron BBC/OU
Redefinable Turtle yes no no yes: easily saved
Fillcommand by changing PLOT style  yes bychanging plotstyle  yes
Variable text windows yes yes: easy onlyusingVDU 24 &28 only using VDU 24 & 2t
Change palette yes: easy onlyusing2commands  only by VDU 19 yes
Different plotting styles yesin avariety of ways no yes yes
Detect a colour at a point yes no yes yes
Builtin Printer Dump yes - on extension disc no no no
Write textin graphics area yes no-exceptby VDU 5 no - exceptby VDU 5 yes but see note (1)
Clear whole screen for text yes no yes yes
REM-type comments allowed  yes yes no no
Upper & lower case accepted  both upperonly upperonly both - see note (1)

(1) There is a bug that prevents one piece of text from overwriting another properly.

windows including split-screens
vertically without resorting to a
VDU24/28 command. To change the

palette with Logotron, it is necessary
to use the VDUI9 command or make a
virtue out of necessity so:

TO SETPAL :A :B

MAKE "A [SE 19 :A :B @ @ 0]
VDU :A

END

There is much in a Logo environment
to favour this building block approach.
Memory permitting, a file of all such
definitions can be created and then
loaded at the start of each session.

Now compare this with the BBC/OU's
COLOUR command with its two parameters.
Most newcomers will prefer this at the
beginning, experimenting with the
intricacies of VDU statements only
later. In this respect the FILL and
PAINT commands of LSL and BBC/OU
respectively must score over their
rivals. The latter is exceptionally
power ful (if slow), being akin to
Basic's PLOT70. Acornsoft's Graphics
ROM (available later this year) is also
designed to interface with their Logo,
increasing flexibility.

LIST PROCESSING

List processing combines string
handling with features of Basic's
arrays, but without the need either to

distinguish between numbers and strings
or dimension beforehand. It permits
lists to be created effectively as
variables and manipulated to exclude,
for instance, all but their last item

output word (last :text)
(reverse butlast :text)
end
would be called with:
print reverse "RECURSION
and would yield:
NOISRUCER

This recursive procedure appears
more fearsome than it is! Don't be put
off by the syntax (vital in exploiting
Logo's precision), and its 1liking for
the ‘'output' command. This invites the
user to break a program down such that
if a procedure returns a result, it is
necessary actually to print it.

And yes, the immensely powerful
technique of recursion - calling a
procedure from within itself - is well

catered for in all versions, but
fastest in Logotron's.
GENERAL FEATURES

Table 3 assesses the editors,
debugging facilities and program

structure etc., but note the following:

1. It is a serious drawback that the
LSL Editor requires lines to be typed
in at the foot of the screen and
entered (ZX81-like) with the Copy key.
Any self-respecting version of Logo
MUST have a proper screen editor. This
does not!

2. Logotron has an excellent 'FIND &
REPLACE' in the editor for text, but
also uses function key f@ to delete a
single character and f1 to delete to
the end of line. If you have typed in a
long line and press the wrong key...

3. The BBC/OU Editor is a very well
intentioned but flawed screen editor

(ba this a word, a nuwber or a
character). Thus Acornsoft's:

To reverse :text

if stext = " [output "]
BEEBUG APRIL 1985

Volume-3 Issue 10




22

Table 3
Features Acornsoft LSL Logotron BBC/OU
Full screen Editor woew () N/A (1) *xx(x) (2) »xx (3)
Redefine Procedure name 2steps very easy inside editor 2 steps
Tracing & Debugging o *hxk * *xx
Trace variables' values yes yes no yes
Program structure: flexibility *HAAR o wan R
Pause with Continue yes no WAIT only PAUSE only
speed (4) o ** P *
LOGO error messages (5) *x(*) - lower *(*) - lower =*x- Upper xx»x - lower

too. It makes excellent use of colour
but being in mode 7 (like LSL's) shows
square brackets [ ] as arrows. There
is also a disconcerting bug: if you
take the TAB key beyond the text on
your line, or move the up/down cursor
keys beyond the edge of the screen, the
text all disappears. It can easily be
recovered but is a shock at first.

4. Much has been written about Logos'
speeds of execution. Logotron scores
too because of its superior rates in
heavily recursive procedures.

5. It is preferable for children to
read lower not upper case text. Imagine
a book ALL IN CAPITAL LETTERS! The Open
University version uses unconventional
punctuation, which I found confusing.

DOCUMENTATION

The BBC/OU (F*% hadesH el a
provisional copy with no illustrations)
was in keeping with their standard of
thoroughness. In common with Acornsoft,
it had an introductory 'tutorial' and a

much more comprehensive reference
section. BBC/OU also includes the best
and longest (30 pages) ‘'hard-line
technical' support section and an
excellent introduction to data-types
contributing  persuasively to the

contention that Logo IS a language for
beginners! Acornsoft has a stand-alone
reference card.

I found Logotron's manual hard to
use because of its high, 'U'-shaped
clip-lock binder, making turning its
loose pages cumbersome. Yet this will
make inclusion of later material as
well as removal of pages to prop up at
the keyboard easier. Swings and
roundabouts again.

LSL, although the least adequate
not even containing an index, was more
obviously written with children in mind
than the others.

BEEBUG

APRIL 1985

Since children could not use the
manuals unaided, it follows that,
initially, someone who can, or who has
experience of computer languages, will
'intervene'. It would thus be a false
economy to claim that the less
comprehensive two versions (LSL and
Logotron) are necessarily any more
accessible. It is impossible to produce
the Logo that satisfied everyone, and
made no concessions to speed for the
sake of completeness. Flexibility thus
counts for a lot more and weighed
heavily in my overall conclusions.

If its speed you're after then at
the top of your list you should put the
single chip version by Logotron, who
have also developed furthest their
plans for future expansion.

If you go for the more 'complete'
version (and I hope I have made it
clear that there is no such thing as a
'full' Logo) then you should consider
Acornsoft, which I confess I also

preferred overall of the four.

Volume-3 Issue 10




Tested on 0.S. 1 2

6502 2nd proc.

Basic 1 & 1

A SPREADSHEET PROGRAM (Part 2)

ADDING PART TWO OF THE PROGRAM
The first i task  isito add the
remaining program listed here to the
basic program published last month.
Type in and save part 2 in the usual
way (you can leave out 1lines 10 to 60
as these are essentially the same as in
part 1). You must also save a temporary
spooled version of part 2. With part
2 already loaded into memory:
1. Type *SPOOL TEMP (or any other
name of your choosing) .
2. Type LIST to list and spool out
the whole of part 2.
3. Type *SPOOL to complete this
stage.

You can now combine parts 1 and 2:

4., Load the original part 1 program.

5. Delete 1lines 3380 to 3480 as
these were only temporary.

6. Type *EXEC TEMP to add part 2.

7. Save the combined program under
a suitable name (we shall refer
to it as SPREADX), but keep
parts 1 and 2 at least until the
new program is fully tested.

8. You now have the complete
SPREADX ready to use.

Should any errors be discovered, edit
your original copy of part 2 and resave
before repeating steps 1 to 8.

ADDITIONAL MENU OPTIONS

MENU OPTION 6 enables a spreadsheet
previously saved to be loaded. You will
find that the program now asks at the
start of any run if an old or a new
spreadsheet is to be used. A new
spreadsheet can be loaded at any time.

MENU OPTION 7 allows you to save a
spreadsheet, often the final action of
a program run. By choosing different
names you can easily save several
different versions of the same
spreadsheet, and using options 6 and 7
switch quickly between them.

MENU OPTION 8 provides hard copy output
of both the specifications and the

We present part two of the BEEBUG Spreadsheet program. This provides the facility
to save and load spreadsheets that you have previously created, and adds more
sophistication and flexibility to the basic program published last month.

spreadsheet as selected by the user.
The printout option can be readily
tailored to your own printer. The
program is set to print columns of 8
characters across an 80 character line
(the values assigned to s% and w% in
line 4950). Any printer control codes
can be included in lines 5100, 5240,
5280 and 5340 to switch special effects
on and off. If a spreadsheet will not
fit the specified number of columns
then it will be split up into two or
more sections printed in sequence.

MENU OPTION 9 enables you to place the
decimal point wherever you wish for any
column of a spreadsheet. You follow the
column letter prompt by the @%
requirement as desired (see User Guide
pages 70 and 327). For example, &20206
gives 2 decimal places in a six
position field (the default is &20006) .

SPECIFICATIONS (Menu Option 4)

Part 2 has added the full amendment
and deletion routines to the basic
spreadsheet  program. Now, amending or
deleting any specification will also
ensure that any resulting calculated
values in the table are also removec.
The amend routine will display any
selected specification for editing
using Copy and the cursor keys.

When making any changes it is
always advisable to show the existing
specs first (option S). When any spec
is deleted, subsequent specs are
renumbered to close the gap. New specs
may be entered at any position by
specifying the appropriate  index
number, and the existing and subsequent
specs will be moved up to make room.
Remember that the order of your
specifications is important in
calculating the right results.

NEW SPECIFICATIONS

Last month's article explained:

1. Single box specs (e.g. AA=AB*AC)
but be careful here for division by
zero which cannot be easily trapped.

BEEBUG

APRIL 1985

Volume-3 Issue 10




24

2. Totalling (e.g. AN=AB;AM).
3. Repeated totalling
(e.g.AN=AB;AM@D) .

The full program additionally allows:

4. Operating on any row or column
with a constant. Suppose row A column A
contains your estimated weekly
expenditure, row B (columns B to M)
the number of weeks in each of the 12
months, and you want columns B to M of
row A to contain the product of box AA
times the number of weeks in each
month. This can be achieved with:

AB.AM=BB*AA
The format AB.AM specifies the columns
B to M inclusive of row A into which

Use Cursor keys to move table

Return to end

are inserted the products of row B
(starting from column B) and the
constant in box AA. Any of the four
operations (+, - *, /) may be
specified and the operation applied to
either a row or a column. In the event
of division by zero, the result is
set to zero.

5. Calculating one row or column
against another using the operations of
+, -, *, or /. For example, column A
(rows A to J) might contain stock
levels for several items, column B
similarly unit prices, and you wish
column C to contain the corresponding
stock values. The specification for
this would be:

AC_JC=AA*AB
This means 'Into boxes AC to JC
inclusive insert the products of AA (to
JA) * AB (to JB)'. The range of columns
is indicated by AC JC (underline NOT
minus) . If you also added the spec:

KC=AC;JC (from last month)
you will produce the total value of the
entire stock in box KC. We could also
add two further specs:

Al 22

n
9

A2 23
A3 6
A4 e
AS 32
A6 47

E

S
e
6
a
8
5
3

A7 26

Use Cursor keys to move table

Return to end

AD.JD=AB*AK

AE_JE=AB+AD
If the current rate of VAT (@.15) is
stored at AK (just for convenience)
this would calculate the VAT on each
item in column D and the total sale
price for each item in column E. Any
division by zero again gives a zero.

ADDITIONAL COMMENTS

Always ensure that any model you
create is of adequate size by using
sufficient rows and columns initially
as these cannot be changed later.

It is not essential when using
ranges of rows or columns in specs that
they should use the same letters, such
as when the values in one column (say A
to J) are multiplied by the values in
another column, and the results
inserted in yet a further column. You
can equally well use any similar number
of consecutive cells. for example
AA JA=BB*CC would insert into column A
(rows A to J) the product of column B
(rows B to K) and column C (rows C to
L). This permits great flexibility.

For example, suppose a spreadsheet
is to show a twelve monthly annual bank
balance. 1I1f, say, row B contains
payments, and row D contains receipts,
then the specification:

FB_FM=DB-BB
would put in row F (columns B to M) the
net receipts. Then, provided that FA
contained the opening balance, the spec

FB_FM=FB+FA
would calculate correctly, month by
month, the balance.

Although using the Spreadsheet
Program may seem complicated at first,

BEEBUG

APRIL 1985

Volume-3 Issue 10



el e e e i o e e e e e e o et o S i e ot “ga )y |

25

00

S3

0. 00
Bal F 100 154 .93

G ©.00 0.00 o

Use Cursor keys to move

Return to end

you will find with practice that
quite complex spreadsheets can be
readily developed. Work through the
examples given, try experimenting
further and you will soon begin to see
why spreadsheets are considered one of
the most useful applications ever to
find its way onto a computer.

SOME PROGRAM NOTES

These notes provide a brief but
useful introduction to some of the more
important attributes of the Spreadsheet
Program as a whole.

MODEL _SIZE

The procedure PROCinit (from line
3240 onwards) sets up the main arrays
used by the program. The three main
arrays (mat, cols and row$) are
dimensioned to the maximum possible
size, but any model is limited to the
size in rows and columns (values of
y% and x% respectively) specified when

that model was first set up. This keeps
calculation to a minimum and also
reduces storage requirements (and time)
when saving and loading spreadsheets.
The number of specifications is limited
to 100 by the dimensioned size of array
Spec$, but this could be increased.

VALIDATION

With part two in operation, every
specification is checked by the
procedure PROCval idate (line 5550
onwards). In principle all checking
takes place here - calculations assume
correct specifications. The procedure
divides specifications into three types

Simple expressions (5590 - 5610)

Summation and

repeated summation (5620 - 5700)

Operations on

rows and columns (5719 - 5750)
The specification to be checked is
stored in a user defined area of memory
(see line 3275) and accessed using
string indirection operators. The level
of checking provided is limited but
could be readily extended.

ERROR TRAPPING

Error trapping (see BEEBUG Workshop
Vol.3 No.9) can cause problems in any
program which makes extensive use of
functions and procedures. Should the
program be terminated prematurely it
will normally be possible to continue
by using the GOTO instruction in
immediate mode as specified on the
screen at the time.

The most likely causes of error are
when saving and loading spreadsheets
(file missing, no room, etc) and when
making calculations (menu option 5) due
to errors or inconsistencies not
detected by the version of PROCvalidate
provided. When developing any spread-
sheet it is best to save copies at
frequent intervals as you proceed.

19 REM Program SPREADX
20 REM Author A.BEEBER
30 REM Version 1.9L/2
40 REM BEEBUG APRIL 1985

50 REM Program subject to Copyright
60 :

199 IFoption%=6 THEN PROCload

200 IFoption%=7 THEN PROCsave

210 IFoption%=8 THEN PROChardcopy

220 IFoption%=9 THEN PROCedit@

1712 PROCvalidate (sp$) 'S

BEEBUG

APRIL 1985

Volume-3 Issue 10




26

1714 IFerror% PRINT"Bad spec.":GOTO178
0

242¢ IFMIDS (Spec$ (K%),3,1)="." THENPRO
Cmul tiply (Spec$ (K3%) ,1) : GOT02499
243¢ IFMIDS (Spec$ (K%),3,1)=" " THENPRO

Cmultiply (Specs$ (K%) ,2) :GOT02490

3275 DIM spc% 20

3280 IF FNcont(@,1,"Is this a new spre
adsheet (Y/N)?2","YN")="N" THEN PROCload
:GOTO 3330

4000 DEFPROCsave

40190 CLS:PRINT"Saving data file"

4020 INPUT"Enter a filename"'" (Max.6 cC
haracters) :"Dfile$

4030 AS$=FNcont (POS,VPOS+1,"Insert data
disc and press Return",CHRS$13)

4040 PRINT"Please wait"

4050 F%=OPENOUT Dfile$

4060 PRINTH#F%,x%,y%

4070 FORI%$=(TO 200

4080 PRINT#F%,Spec$ (I%)

4090 NEXT

4100 FORI%=0TO (y%-1)

4110 FORI%=@TO (x%-1)

4120 PRINT#F%,mat (1%,J%)

4130 NEXT,

4140 FORI%=0TOy%-1:PRINT#F%,rowS (1%):N
EXT

4150 FORI%=0TOx%-1:PRINT#F%,col$(13) ,e
dit%(I%) :NEXT

4160 CLOSE#F%

4170 ENDPROC

4180 :

4190 DEFPROCload

4200 CLS:PRINT"Loading data from file"
4219 INPUT"Enter a filename"'" (Max.6 c
haracters) :"Dfile$

4220 AS=FNcont (POS,VP0OS+1,"Please inse
rt data disc and press Return",CHR$13)
4230 F%=0OPENUP Dfile$

4240 PRINT"Please wait":M%=-1

4250 INPUT#F%,x%,y%

4260 z%=x%*y%:col%=0:rows=0

4279 FORI%=QTO 200

4280 INPUT#F%,Spec$ (1%)

4290 IFSpec$ (I%)="" AND M%<0 M%=I%
4300 NEXT

4310 FORI%=QTO(y%-1)

4320 FORJI%=0TO (x%-1)

4330 INPUT#F%,mat (1%,J%)

4340 NEXT,

4350 FORI%=QPTOy%-1:INPUT#F%,rowsS (I1%) :N
EXT

4360 FORI%=QTOx%-1:INPUT#F%,colS$ (1%),e
dit% (I%) :NEXT

4370 CLOSE#F$%

4380 ENDPROC

4399 :

4409 DEFPROCam

4410 LOCAL I%

4420 CLS:PRINT"Index";SPC6; "Specifications"

4430 REPEAT

4440 REPEAT:I%=FNinput (POS,VPOS,3,"I")
:UNTIL I%<M% AND NOT NUL%

445¢ PRINTTAB (1@,VPOS) ; Specs (1%)

4460 sp$=FNinput (14,VP0S,19,"s")

4470 IF NUL% THEN 4520

4480 PROCvalidate (sp$S)

- 4490 IF error% THEN PRINT"Bad spec.":G

0T04520

45009 PROCclean (Spec$ (1%))

4510 Spec$ (1%)=sp$:PRINT

4520 G$=FNcont(#,19,"Space to continue

- Return to exit",CHR$32+CHRS$13)

4530 UNTIL G$=CHRS13

4540% ENDPROC

4550 =

4560 DEFPROCde

4570 CLS:PRINT"Index"

4580 REPEAT

4590 I1%=FNinput (POS,VPOS,3,"1")

4600 IF NUL% OR I%>M%-1 THEN 4650

461¢ PRINTTAB (10,VPOS) ; Spec$ (I%)

4620 PROCclean (Spec$ (1%))

4630 Specs$ (1%)="":M%=M%-1

4640 FORJ%=I%TOM%:Specs (J%) =SpecS (J%+1
) :NEXT

4650 GS$=FNcont (@,20,"Space to continue

- Return to exit",CHRS$S32+CHRS13)

4660 UNTIL G$=CHRS13

4670 ENDPROC

4680 :

4690 DEFPROCclean (AS)

4700 $(spc%+1)=AS$

4710 V¥=spc%?1-B%:Z2%=spc%?2-B%:wl%=spc
%73

4720 V1%=spc%?4-B%:21%=spc%?5-B%:w2%=1
NSTR (A$,"@")

4730 IFw2%>@THEN PROCrepeat ELSE IFw1%
=460RwW1%=95THENPROCmul ti ELSEmat (V%,2%)
=0

4740 ENDPROC

4750 :

4760 DEFPROCrepeat

4770 wl%=spc%?10-B%

4789 IFZ%=21% THEN V1%=w1%:PROCzerocol

ELSE Z1%=wl%:PROCzerorow

4790 ENDPROC

4800 :

4819 DEFPROCmulti

4820 IF V%=V1% THEN PROCzerorow ELSE P
ROCzerocol

4830 ENDPROC

4840 :

4850 DEFPROCzerocol

4860 FORJ%=V3TOV1%:mat (J%,Z%)=0:NEXT

4870 ENDPROC

4880 :

4890 DEFPROCzerorow
4900 FORK%=Z%T0Z1%:mat (V%,K%)=0:NEXT
4910 ENDPROC

4920 : »

BEEBUG

APRIL 1985

Volume-3 Issue 10



B . e T R 1 1 e e T

- A

27

4939 DEFPROChardcopy

4940 CLS:PRINT"Hard copy"'

4950 C%=0:5%=8:w%=80

4960 PRINT"Enter 1. for details"'SPC6;
"2. for specs"'SEC6;"3. for BOTH"

4970 REPEAT G%=GET:UNTILG%>48AND G%<52
4980 D1%=((w%-6)DIV(s%))-1:D2%=w2DIV24
4990 IFG%=5@THENPROCPr intspecs : ENDPROC
5000 REPEAT

5019 IFD1%<x%-C%THENcc%=D1% ELSEcc%=x%
-C%-1

5¢2¢ PROCprinter (cc%,y%-1)

5030 C%=C%+D1%+1:cc%=x%—-C%-1

5040 UNTIL C%>=x%

5050 IFG%=51THENPROCpr intspecs

5060 ENDPROC

5080 DEF PROCprinter (co%,ro%)

5090 LOCALI%,J%,K%:J%=C%

5100 VDU2:REM Any printer codes here
5110 PRINT'"Spreadsheet ";Dfile$'

5120 FORI%=0TOco%

5130 PRINTTAB (8*I%+9);col$ (I1%+J%);
5140 NEXT:PRINT

515¢ FORI%=0TOco%

5160 PRINTTAB (8*I1%+1@) ;CHRS (B%+I1%+J%);
517@ NEXT:PRINT'SPC1

5180 FORI%=0TOro%

5190 PRINTrowS (I1%);TAB(4);CHRS (B%+1%);
5200 FORK%=@TOco%

5210 @%=(edit$% (C%+K%)AND&FFFF(@)+s%: PRI
NTmat (I%,C%+K%) ;

522¢ NEXT:PRINT

5230 NEXT

52409 VvDU1,12,3:REM any printer codes
525@ ENDPROC

52604

5270 DEF PROCprintspecs

5280 VDU2:REM printer codes here

5290 PRINT'"Specifications ";DfileS'
5300 FORI%=0TOM%-1

5310 J%=24* (13MOD D2%)

5320 PRINTTAB(J%) ;1%;TAB(J%+4) ; SpecS (I
%);

5330 NEXT:PRINT

5340 vDU1,12,3:REM any printer codes
5350 ENDPROC

5360 :

537¢ DEFPROCmultiply (A$,T%)

5380 LOCAL Al1%,A2%,B1%,B2%,C1%,C2%,D1%
,D2%,2$,21$:2$=MID$ (A$,9,1) :21$=""
5390 $(spc%+1)=AS$

5400 Al%=spc%?1-65:A2%=spc%?2-65

5410 B1%=spc%?4-65:B2%=spc%?5-65

5420 C1%=spc%?7-65:C2%=spc%?8-65

5430 D1%=spc%?10-65:D2%=spc%?11-65
5440 IF T%=2 THEN Z1$="+I%"

5450 IF A1%=B1% THEN 5500

5460 FORI%=0TO(B1%-A1%)

5470 IFmat(D1%+1%,D2%)=0 AND ZS$S="/" TH
EN mat (A1%+1%,A2%)=0:G0OT05490

5480 mat (A1%+I%,A2%)=EVAL("mat (C1%+I%,
C2%) "+2$+"mat (D13"+21$+",D2%) ")

5490 NEXT: ENDPROC

5500 FORI%=0TO (B2%-A2%)

5519 IFmat(D1%,D2%+I%)=0 AND Z$="/" TH
ENmat (A1%,A2%+1%)=0:GOT05530

5520 mat(A1%,A2%+I1%)=EVAL("mat(C1%,C2%
+1%)"+2$+"mat (D1%,D2%"+Z15+") ")

5530 NEXT: ENDPROC

5540 :

555¢ DEFPROCval idate (AS)

5560 LOCALix%:$ (spc%+1)=AS:error%=0
5570 IF (spc%?3=460Rspc%?3=95)ANDspc:?6
=61THEN5710

5580 IFspc%?3=61ANDSpc%?6=59THEN5620
5590 IFspc%?3<>61THEN5760

5600 IFspc%?1>ASC (maxrow$) THENS760
5610 IFspc%?2>ASC(maxcol$) THEN5760ELSE
5750

5620 IFFNvall (Sspc%) THENS760

5630 IFLEN (AS)<9THENS5750

5640 IFspc%?9<>64THEN5760

5650 IFspc$%?1=spc%?4THEN5690

5660 IFspc%?2<>spc%?5THEN5760

5670 IFspc%?10>ASC(maxcol$) THENS760
5680 ENDPROC

5690 IFspc%?10@>ASC (maxrow$) THENS760
5709 ENDPROC

5710 IF NOT (spc%?9=470Rspc%?9=450Rspc3
?9=430Rspc%?9=42) THEN5760

5720 IFspc%?10>ASC (maxrowS) THEN5760
5730 IFspc%?11>ASC(maxcol$) THENS760
5740 IFspc%?3=46AND (Spc%?5-spc%?2+spcs
?11) >ASC (maxrow$) THENS5760

5750 ENDPROC

5760 error%=-1:ENDPROC

ST79.

5780 DEF FNvall ($spc%)

5790 FORix%=1TO7STEP3

5800 IFspc%?ix%>ASC(maxrow$) OR spc%?i
Xx%<65THENerror%=-1

5810 NEXT

5820 FORix%=2TO8STEP3

5830 IFspc%?ix%>ASC(maxcol$) OR spc%?i
X%<65THENerror%=-1

5840 NEXT

5850 =error%

5860 :

5870 DEFPROCedit@

5880 CLS:PRINT"Editing @%"

5890 PRINTTAB(@,4);"Enter @% column by
column, (@ to end)."

5900 FORI%=QTOx%-1:PRINTCHRS (I1%+65) +"
&"; :A$=FNinput (POS,VP0S,6,"S")

5910 IFAS="@"THENI%=x%:GOT05940

5920 IFNUL% THEN5940

5930 edit%(I%)=EVAL("&"+AS)

5940 NEXT

595¢ ENDPROC

=

BEEBUG

APRIL 1985

Volume-3 Issue 10




28

BEEBUG

SEARCHING
AND SORTING (Part 1)

Werkshe®

By Surac

Searching and sorting are processes fundamental to many applications. Surac looks at

some of the more useful techniques that can make searching and sorting of data faster

and more efficient.

From time to time most programmers
need to sort a list of items into
order. Maybe it's a set of scores, or
perhaps a list of names to be put into
alphabetical sequence. This month I'll
give details of a couple of straight-
forward methods and suggest code which
you could use in your own programs.

First, we'll look at the well-known
and aptly-named "Bubble Sort". Suppose
we must put a list into ascending
order. The bubble sort starts with the
first 2 elements, compares them and, if
needed, swaps them so that the larger
is in position 2. It then compares
elements 2 and 3 and again puts the
larger value into the higher position.

BUBBLE _SORT
10009 DEF PROCbubble (ST%,FIN%)
10010 IF ST%$>=FIN% THEN ENDPROC
10020 LOCAL F%,I%
10030 REPEAT
10049  F%=FALSE
10050  FOR I%=ST% TO FIN%-1

10089  FIN%=FIN%-1
10090  UNTIL NOT F%
10100 ENDPROC

10490:

10500 DEF PROCswap
10510 LOCAL temp

10520 temp=array(I%)
10530 array(I%)=array(I%+1)
10540 array (I%+1)=temp
19550 F%=TRUE

10560 ENDPROC

10060 IF array(I%)>array(I%+1) THEN
PROCswap
10079 NEXT

The sort continues until it reaches
the end of the 1list when, all being
well, the largest element will have
reached the top. It has "bubbled" up
through the 1list. The sort then goes
back to the start and bubbles the
next-largest element up to the second

from top position. So it goes on until
the whole list is sorted.

If there is much swapping to do,
the bubble sort can be painfully slow.
However, as soon as a pass through the
list is made without swapping anything,
the whole lot is then sorted. This
means that, with only a few items out
of place, the sort can be very fast
indeed.

The procedure PROCbubble assumes
that the data to be sorted is in
"array()". Obviously, you should use
your own variable name here. The
routine expects two input parameters:
ST%, which defines the first element of
the array to be sorted, and FIN$ which
defines the last. This means that you
don't have to sort an entire array
every time. For instance, if array()
had 300 elements, PROCbubble (10@,200)
would sort the middle third only. The
procedure makes sure the 1limits are
sensible. The subsidiary procedure
PROCswap swaps two elements when
needed.

After each pass through the array,
we know that the next highest value has
reached its final position; FIN% is
thus reduced by 1 so that we don't
waste time checking the sorted items at
the top of the array. F% shows if there
are any swaps in a pass through the
list, and allows an early exit.

The bubble sort is simple but can
be slow. However, there is a much
faster version known as the 'Shell
Sort' after its originator. This time,
instead of always comparing adjacent
elements, the sort starts by comparing,
and swapping, items which are separated
by some distance. Whenever no swaps
occur in a pass, this distance is
halved and the sorting starts again.

BEEBUG

APRIL 1985

Volume-3 Issue 10



29

The process continues until the gap
is 1, when it is just 1like a bubble
sort. However, by the time it gets
there, the list has already been sorted
into rough order and the whole thing
finishes very quickly. There is another
procedure to do this job.

SHELL _SORT
110009 DEF PROCshell (ST%,FIN%)
11019 IF ST%$>=FIN% THEN ENDPROC
11020 LOCAL F%,1%,5%,T%
11030 S%=2"INT (LOG(FIN%-ST%) /LOG(2))
11040 REPEAT
11950  T%=FIN%-S%
11060  REPEAT

11079 F%=FALSE

11980 FOR I%=ST% TO T%

11090 IF array(I%)>array(I%+S%)
THEN PROCswaps

11100 NEXT

11119 T%=T%-1

11120 UNTIL NOT F%

11130  S%=S% DIV 2
11140  UNTIL S%=0
1115¢0 ENDPROC

11499:

1150¢ DEF PROCswaps
11510 LOCAL temp

11520 temp=array(I%)
11530 array(I%)=array(I%+S%)
11540 array(I%+S%)=temp
11550 F%=TRUE

11560 ENDPROC

misplaced, then use the bubble sort. It
will probably correct them all in a
single pass, whereas the Shell sort
must always have at least one pass at
each gap setting.

Finally, let's have a look at these
two sorts in action with this code:

10 MODE7
20 P%=HIMEM+159
30 PROCfill
40 PRINT TAB(@,1)"Bubble Sort:"
50 TIME=@
60 PROCbubble(1,200)
70 TBUB=TIME
80 CLS
99 PROCfill
100 PRINT TAB(@,1)"Shell Sort: "
110 TIME=Q
120 PROCshell (1,200)
130 TSHL=TIME
140 PRINT TAB(5,18) "Bubble sort: ";
TBUB/100@;" secs"
150 PRINT TAB(5,20) "Shell sort: ";
TSHL/100;" secs"
160 END
990:
1000 DEF PROCfill
1010 FOR I%=1 TO 200
1020  P%?1%=64+RND(26)
1030  NEXT
1040 ENDPROC

You can see its 1links with the
bubble sort. At line 11030, S% is set
to the initial gap value. This must be
a power of 2 (so it can be continually
halved as the sort progresses) and the
line calculates the largest number that
will fit between ST% and FIN%. T% holds
the upper limit of the FOR-NEXT loop;
its start value is set so that the
program does not go outside the array
and, as before, it is decremented on
every pass.

It's hard to say how much better
the Shell sort is than the bubble,
since so much depends on the starting
data. In general terms, though, the
bigger the array, the relatively faster
it is: 200 random elements are sorted
about 4 times quicker, while 500 gives
an advantage of around 7. It is NOT
always quicker though. If you are
certain that only a few - say no more
than 2% - of the items in a list are

Add the two sort routines, changing
every occurence of array (I%) or array
(J%+S%) to P%?1% or P%? (1%+5%)
respectively. Other references to
arrays should similarly be changed.

Run the program and two random
200-element byte arrays are created and
sorted. However, since P% points to
the mode 7 screen memory, the data is
displayed on the screen as characters
which you can see being put into order.
If you increase to, say, 500 bytes
rather than 200, you will see just how
much the sorts slow down.

You can, of course, play all sorts
of variations on this theme. Try
watching the effect of bubble and Shell
sorts of arrays with only one element
misplaced. Try it with everything
starting in reverse order. How would
you change the sorts to give the result
in descending order?

BEEBUG

APRIL 1985

Volume-3 Issue 10




30

UNDERSTANDING DISC

FORMATTING

If you have ever suffered by having to convert between
40 and 80 track drives. then the idea of a switchable
40/80 track unit might seem the answer. James Fletcher
explains clearly exactly what’s going on when you format
a disc and shows why all is not always what it seems.

If you have ever encountered
problems in using the same discs on
standard 40 track disc drives and on
switchable 40/80 track drives then my
experiences should throw some light and
understanding on this vexing situation.

I recently decided that I would
replace my old 40 track Acorn disc
drive unit with a double sided 84 track
twin unit, so as to allow myself much
more storage capacity and much easier
copying from drive to drive. Knowing
that some of my friends still had 40
track drives I made sure that the new
drives were switchable between 40 and
80 tracks, so that I could cope with
all eventualities. I managed to find a
unit with the track-change switches on
the front; many drives have the
switches at the back which makes life
difficult if, like mine, the computer
is built into a console.

Using the new unit was a joy, and it
didn't take long for the contents of
about 40 discs to be copied onto 10
double sided 80  track discs.
However, it was when I next took some
of my original software masterpieces to
work to show off to my friends that
the problems started. Using the new
switchable drives 1 copied some
programs onto 40 track discs suitable
for the drives at work. When these were
put into the 40 track drives the only
response was 'Drive ofaualts 18<% at
00/99', which was annoying, to say the
least. Other drive units were tried
with similar results, and a good
deal of head scratching (mine, not
the drive's!) followed.

The Disc System User Guide proved
as useless as ever, and a detailed
perusal of the official data sheet
for the 8271 disc controller chip
provided only the fascinating

information that my problems were due
to 'bad track' errors. I then started
to delve into the workings of disc
drives and came up with the simple
explanation for my problems.

It turns out that 'standard' ~40¢
track disc drives such as my Acorn
original have read/write heads that

are physically twice as wide as the
heads on 80 track machines, so that
they lay down formatting tracks on the
discs that are twice as wide as those
laid down by the narrower 80 track
diagram  shows what
reasons for

heads. The
happens, and makes the
my difficulties plain.

80 TRACKS

FORMATTED
WITH 80 OR

40 TRACKS
FORMATTED
WITH 40/80

DRIVE
40 TRACKS

“~——FORMATTED

WITH 40 TRACK

DRIVE

When a switchable drive unit is used
in the 40 track mode it is made to
jump two tracks at a time and so
does, of course, write forty tracks,
but these are narrow tracks. If
another narrow-headed (switchable 80
track) drive is used it will be able
to read the 40 tracks without
difficulty. If the disc that is being
used was formatted on a '40 track
narrow' machine, again there will be
no problems, since even if this disc
is read on a '40 track wide' unit
the wide head will read only the
information that has been 1laid down
by the narrow head that went before.

BEEBUG

APRIL 1985

Volume-3 Issue 10



Purists say that even this

situation is undesirable because the NARROW 80 TRACK = ]

wide head will be bound to pick up less HEAD READS ONLY .
. : : NEW DATA

signal information from a narrow track ‘

than from a wide one, and will be WIDE HEAD READS / ‘

therefore more likely to give errors. NEW DATA AND

ORIGINAL DATA

In practice I have never found this to TOGETHER

be a source of problems, although if
you are a wide 40 track drive user

using discs that have been created NARROW TRACK
on anarrow track unit it would FROMA) SO DRIVE I
probably be sensible to make wide
track backups on your own machine. WIDE HEAD
READS ORIGINAL
The real problems, the ones that I LN
encountered , come about when you use a
wide head drive to try to read a disc
that has been written to on a wide head
machine but subsequently written to by
a narrow head. Figure 2 shows the NOE ALk KROM
situation.
The wide head reads both the
wanted narrow track that you have just
recorded and the half of the track's
width that remains from previous write drive unit can read your programs
operations. This means that the head that have been saved using a 40/80
reads a mixture of both old and new track narrow head drive you should copy
signals, which provides your computer them onto a brand new disc that has
with a garbled signal that it never been written to with a wide head.
cannot possibly decipher, so it is not Once a disc has had wide tracks laid
surprising that error messages result. down on it no amount of reformatting
with a narrow head unit will clear the
If you want to be quite sure that tracks completely.
a friend with a 4@ track, wide head =

xSpecial Offer»Gompetition

We are pleased to be able to offer the AMX Mouse package (reviewed earlier in
this issue) to BEEBUG members at a special reduced price. The complete package,
consisting of the mouse, control ROM, AMX Art program, Design program, and manuals,
is available to BEEBUG members only for £79.95 inclusive of postage and packing, and
VAT - a saving of £10 over the usual price. Overseas members should submit the same
amount,as the VAT portion of this price covers the extra postage costs.

All orders for this offer should be sent to the subscription address at High
Wycombe. See the supplement for full ordering details.

COMPETITION

If you fancy an AMX Mouse for absolutely nothing then we have a competition for
you. It is obvious that the AMX Mouse has great potential. What we want you to do is
to come up with an idea that will realise some of that potential. Send us a
description of a program, or even a suite of programs, that you think would bring
out the best in the AMX Mouse. The most imaginative and useful idea will win a
complete AMX Mouse package donated by AMS. Make your description concise but
detailed. Read the review in this issue carefully and try to think of an idea that
really makes use of the mouse's unique features. Your application should do the job
better than is possible without the mouse.

The closing date for entries is the 30th April. Send your ideas to the Editorial
address clearly marking the envelope 'Mouse Competition'.

BEEBUG APRIL 1985 Volume-3 Issue 10



6502 2nd proc.

MAKING MUSIC ON THE BEEB (Part 3)

Now that all the basic ideas have been covered, Ian Waugh starts putting theory into
practice with some of the more interesting musical applications.

This month's music article from the
author of "Making Music on the BBC
Computer" 1looks at a method of
programming multi-part tunes.

Single-part tunes using only one
sound channel are fairly easy to
program. We can use a simple loop such
as this:

19 FOR note=1 TO numberofnotes

20 READ env,pitch,dur

3@ SOUND 1,env,pitch,dur

40 NEXT note

5¢ DATA E1,P1,D1,E1,P2,D2,E3,P3,D3
60 DATA.....etc

Most readers will probably have
experimented along these lines and the
first program to accompany these
articles in BEEBUG Vol.3 No.8 played a
single channel version of Mozart's
Rondo Alla Turca. When we come to
consider playing two, three or all four
channels together we run into the
problem of synchronization or how to
keep the channels together..We saw last
month how the sync command (S) in the
SOUND statement (SOUND &HSFC,A,P,D) can
be used to ensure two or more channels
sourd at exactly the same time. To make
the most of this command we must also
ensure that the note data is presented
to the SOUND statements in a convenient
order. We'll see why now.

QUEUES AND BUFFERS

The BBC micro uses a system of
queues in its handling of sound
information. This is how a program can
seem to 'run ahead' of the SOUND
statements it contains. It can be
demonstrated as follows:

13 FOR N=53 TO 73 STEP 4
2 SOuUND 1,-15,N,10

30 NEXT

40 PRINT "Finished!"

When run, "Finished!" appears on the
screen immediately and the sounds
follow on. As they are playing you can
list the program and even make
alterations to it. Alter line 10 to:

19 FOR N=53 TO 77 STEP 4

and you'll see that this time
"Finished!" doesn't appear until after
the first sound. This is what happens:
when the computer comes across a SOUND
command it puts the note information
into a storage area or buffer. If the
sound generator is empty, i.e. not
playing a note, then a sound is sent to
it from the buffer. When that sound has
completed, another one is taken from
the buffer and all the remaining notes
move up a place. This is known as a
first-in-first-out arrangement and can
be likened to people queuing in a shop.
When the person at the head of the
queue is served everyone else moves up
one position. Newcomers go to the back
of the queue. Basic's job is over once
it has put the information into the
buffer and the program can carry on
while the sound generator processes the
sound information. When the buffer
fills, however, the program is held up
waiting for a free space - and this is
what happens in the last example. There
are actually four buffers, one for each
channel and each can hold five sounds.

THREE-PART TROUBLE

Let's consider a practical
application. We'll use Mozart's Rondo
Alla Turca again, this time we'll
produce a three-channel version. Look
at the notation. If your music theory
is a little shaky you may get some help
from the first article in this series,
mentioned above, although you don't
need to be able to read music to
understand the problem invloved.

BEEBUG

APRIL 1985

Volume-3 Issue 10




e i i s o e e~ o e e e e e e =/ .

33

CHANNEL 1 CHANNEL 3
o BARl/ BAR 2
e T e M Tian SR S B i i . s
o4 e e S S
Sy
® nwgg g
e TR0 ) 1 s ) 8 1
2 " —
BAR 3  CHANNEL 2 pap 4 BAR S BAR 6
gLejerfeer Fef Lfree Lfrer
— i P | S D
(V)] 14 (v 13 (WF;: HEEE (7);;;
e Ul o i el 1 o = $ S -y ! S R
O T 35 T £ 83 (28 B 4 B a8 ¢ #3
e e EEEEES
BAR 7 BAR 8
P L -
S e 1
Hii‘ii — e
WAE MPLED AND RESER
1
hg® | B CHAMNEL 3
) 2 I /"
T et 1 S =3
T

The most obvious arrangement is to
allocate a channel to each of the three
parts. You can see from the figure,
however, that by the time we reach the
end of bar three, 24 notes will have
passed through channel 1 and only eight
through channel 3. If we try to send
the information note for note, channel
1 would play quite merrily while
channel 3's buffer filled with its
longer notes. The program would seize
up when its buffer was full. If the
note lengths of all the parts are
roughly equal, you may be able to get
by with data arranged like this:

DATA Chanl,El1,P1,D1,Chan2,E2,P2,D2
DATA Chanl,E3,P3,D3,Chan2,E4,P4,D4

but not in many instances and you would
certainly find it very restrictive.

USING ARRAYS AND THE ADVAL FUNCTION

The answer is to fill arrays, one
for each channel, with the required
note information. This can be read from
the array when the buffer can take it
without holding up the program. We can
determine how full a buffer is by gsing
the ADVAL function with a negative
argument. This information is hidden

away on page 204 of the User Guide. It
returns the number of free spaces in
ADVAL (-5)

the sound buffers. checks

channel @, ADVAL(-6) checks channel 1,
ADVAL(-7) checks channel 2 and
ADVAL (-8) checks channel 3. Its use can
be demonstrated by inserting this line
in the above examples:

15 PRINT ADVAL(-6)

This prints the number of free spaces
in the buffer and you will see how, as
the program loops, the spaces fill up.
The results returned by the function
can be misleading. Just one sound in
the buffer will return 12 and an empty
channel will return 15. The space in
the buffer available for notes is a
third of these values so you may wish
to divide the number by 3. For our
purposes we only need to know if we can
squeeze another note into the buffer
and for this purpose something along
these lines:

REPEAT

IF ADVAL(-6)>@ THEN SOUND 1,E,P,D
IF ADVAL(-7)>@ THEN SOUND 2,E,P,D
IF ADVAL(-8)>@ THEN SOUND 3,E,P,D
UNTIL finished

will suffice.

ADDING MORE PARAMETERS

You will have noticed in these
examples that I have been using the
variable, E, to represent an envelope
with the implied assumption that each
note could be allocated a different
one. We must specify pitch and duration
and preferably a sync parameter. Adding

envelopes means specifying four
parameters per note, not that this
would be at all difficult, only time

consuming. In practice you will rarely
want to use a different envelope for
each note although using different
envelopes for different sections of the
music is very effective. I usually
program the envelopes separately (see
the program) so cutting down on the
amount of individual data required.

SYNCHRONIZING THE CHANNELS

We also need to specify whether or
not there are any 'special' conditions
attached to the sound such as sync,

BEEBUG

APRIL 1985

Volume-3 Issue 10



34

hold or flush. It aids readability and
debugging if data is entered in lines
of one bar. We don't need to sync every
note but we can conveniently sync notes
at the start of each bar. Sometimes
that may not be possible, for example
if a note is tied or held over from a
previous bar. In such cases the rule is
sync where you can. Actually, tunes
will probably stay fairly well in time
without much sync but, as we saw last
month, if the notes are synced together
we can send Basic off to do something
else while the music is playing. More
about this next month. For the time
being, we can print out the state of
channel 1 by adding this line:

715 PRINT Chanl (1,Ch1)+1 TAB(4)Chanl
(2,Chl) TAB(9)Chanl(3,Chl) TAB(14)Chanl
(4,Chl) *Tempo

If the channels were not synchronized,
the delay between channel 1 and channel
2 caused by Basic taking time out to
process this command would throw the
program out of sync. The program
allows us to give any individual note
an attribute simply by preceding the
note data with the attribute in hex
form, i.e. preceded by "&".

It's time to put the theory into
practice. After entering and running
the program you can replay the tune by
entering GOTO 680 rather than wait for
it to analyse the data again. You can
also alter Tempo in command mode at
this time (see 1line 260). The book
contains data and information for
playing a further 24 bars of Rondo.

ENTERING YOUR OWN TUNES

If you're wondering why most
printed examples of computer programmed
music are based on the classics and not
Boy George, Duran Duran or Tom Dolby
the main reason is probably one of
copyright. However, with this program
you should be able to play many other
3-part tunes by inserting new data and
altering the variables Cl1, C2 and C3.
Alter the assignment of Env, too.

An easy mistake to make is to
insert wrong C1, C2 or C3 values which
will cause a channel to fill with
another channel's notes. You could add
more error checks (than those provided
in  PROCAnalyseNote) by inserting a
termination character at the end of the
data: so for example, if Note$ read a
"*" and N did not equal C1 you would
know the data was incorrect or Cl1 had
the wrong value.

From this program it should be
fairly easy to add a rhythm track using
channel 0.

The figure and program are from
Making Music on the BBC Computer by Ian
Waugh, published by Sunshine Books at
£5.95 and used with kind permission of
the publishers.

PROGRAM NOTES

The number of notes in each channel
is assigned to the variables Cl1, C2 and
C3. These numbers need to be accessed
several times during the course of the
program so if you insert new data you
need only alter these values once. The
arrays at lines 200 to 220 are
DIMensioned to hold information about
each note.

The next section analyses the data
and puts the resulting figures into the
arrays as can be seen in lines 350,
370, 399 and 400. The process is
repeated once for each channel.
Although some clever programming could
probably reduce the length of the code
I have kept it this way to aid
understanding. It is also easy to
substitute new tune information and
generally customise the program to your
own needs. As the process is exactly
the same for each channel we will only
look at channel 1 in detail.

The FOR/NEXT loop between lines 330
and 410 runs through the data, once for
each note. The' first  call dis to

PROCChan which ‘'cautiously' examines
the first data item. If this begins
with an ampersand (&) it knows it's a

BEEBUG

APRIL 1985

Volume-3 Issue 10




35

channel instruction and evaluates the
string with EVAL to produce the channel
attribute, Chan. It then proceeds to
read Note$ and Duration. Otherwise, it
assumes Note$ is a note and reads
Duration. In this case Chan is set to
@. This method of assigning attributes
saves us having to enter an attribute
for every note. We only enter one if we
need one, making sure to precede it
with an ampersand. Line 360 is my way
of programming envelope changes: it's
quick and simple.

PROCAnalyseNote has one difference
to the version in the first part of
this series in BEEBUG Vol.3 No.8 and
that is in the way it handles a rest.
If Note$ 1is an "R" Env is set to @ in
line 360 and the "R" is just used to
exit from the analysis procedure. Pitch
is arbitrarily set to 255. It shouldn't
be heard but if it is you know
something's gone wrong.

At the completion of these sections
the arrays will be filled with data the
SOUND command can work on directly
although we can still modify them if we
wish. The next routine plays the tune.

Chl, Ch2 and Ch3 count the number
of notes sent to each channel and the
routine ends when all the notes have
been sent - see line 740. The REPEAT
loop between lines 700 and 740 does the
work. Again, the principle for each
channel is the same so we will only
look at channel 1. First, the buffer is
checked to see if it has space for
another note and Chl is compared to CI
to see if channel 1 has had its
allotted notes. If there is space and
there are more notes to come Chl is
incremented and used to access the data
in the Chanl array. It is at this point
that the channel number is added
(although it could also have been added
in line 350). Here also, the duration
is multiplied by the variable, Tempo.

Note that the program 1listing
contains many comment lines (REM
statements) to assist understanding,
though these can be omitted when typing
the program in.

10 REM PROGRAM MUSIC9.2

2@ REM VERSION B@.1

30 REM AUTHOR I.Waugh

40 REM BEEBUG APRIL 1985

50 REM PROGRAM SUBJECT TO COPYRIGHT

60 :

100 REM Cl=Number of Notes for

110 REM Channel 1 etc

120 C1=46:C2=30:C3=29

1305

140 REM 1st Subscript Refers to:

150 REM 1 - Channel Number/Attributes

160 REM 2 - Envelope Number

170 REM 3 - Pitch Value

180 REM 4 - Duration

190 :

200 DIM Chanl (4,C1)

210 DIM Chan2(4,C2)

220 DIM Chan3(4,C3)

230.%

240 Scale$=" C C# D D¢ E F F# G
G# A A# B"

250 Key=1

260 Tempo=1

270 :

280 ENVELOPE1,1,0,0,9,0,0,0,126,-2,0,
-5,126,100

290 ENVELOPE2,4,0,9,1,1,0,1,63,-1,0,-
10,126,100

3009 ENVELOPE3,1,0,0,0,0,9,0,126,-4,-1
,—4,126,100

319 :

32¢ REM Channel 1

330 FOR N=1 TO C1

340 PROCChan

350 Chanl (1,N)=Chan

360 IF Note$="R" Env=@ ELSE IF N=5 OR
N=11 OR N=25 OR N=3@ OR N=36 OR N=42 E
nv=2 ELSE Env=1

37@ Chanl (2,N)=Env

380 PROCAnalyseNote

39¢ Chanl (3,N)=Pitch

400 Chanl (4,N)=Duration

410 NEXT N

42@0 PRINT"Channel 1 Complete"

430 :

440 REM Channel 2

450 FOR N=1 TO C2

460 PROCChan

470 Chan2 (1,N)=Chan

480 IF NoteS$="R" Env=@ ELSE Env=3

490 Chan2 (2,N)=Env

500 PROCAnalyseNote

51@ Chan2(3,N)=Pitch >

BEEBUG

APRIL 1985

Volume-3 Issue 10



52¢ Chan2(4,N)=Duration
530 NEXT N
54¢ PRINT"Channel 2 Complete"
550 :
560 REM Channel 3
57@ FOR N=1 TO C3
580 PROCChan
590 Chan3 (1,N)=Chan
600 IF Note$="R" Env=@g ELSE Env=1
610 Chan3(2,N)=Env
620 PROCAnalyseNote
630 Chan3(3,N)=Pitch
640 Chan3(4,N)=Duration
650 NEXT N
660 PRINT"Channel 3 Complete"
670 3
680 Ch1=0:Ch2=0:Ch3=0
690 :
700 REPEAT
719 IF ADVAL(-6)>@ AND Ch1<C1 Chl1=Chl
+1:SOUNDChan1 (1,Ch1)+1,Chanl (2,Chl1) ,Cha
nl(3,Ch1) ,Chanl (4,Ch1) *Tempo
720 IF ADVAL(-7)>@ AND Ch2<C2 Ch2=Ch2
+1:SOUNDChan2 (1,Ch2)+2,Chan2 (2,Ch2) ,Cha
n2(3,Ch2) ,Chan2 (4,Ch2) *Tempo
730 IF ADVAL(-8)>@ AND Ch3<C3 Ch3=Ch3
+1:SOUNDChan3 (1,Ch3) +3,Chan3 (2,Ch3) ,Cha
n3(3,Ch3) ,Chan3 (4,Ch3) *Tempo
740 UNTIL Ch1=C1 AND Ch2=C2 AND Ch3=C3
750 &
760 END
779 :
100@ DEF PROCChan
1010 READ Note$:IF LEFTS (Note$,1)="&"
Chan=EVAL (Note$) :READ Note$,Duration EL
SE Chan=@:READ Duration
1020 ENDPROC
1030 :
1040 DEF PROCAnalyseNote
1950 IF Note$="R" Pitch=255:ENDPROC
1060 IF LEN(Note$)<2 OR LEN(Note$)>3 T
HEN PRINT"ERROR IN DATA ";Note$:PRINT"N
ote Number ";N:STOP
1070 IF LEN(Note$)=2 THEN NoteNameS$S=LE
FTS (Note$,1) ELSE NoteName$=LEFTS (Note$
12)

1080 Octave=VAL (RIGHTS (Note$,1))

1090 Pitch=Key+INSTR (Scale$,NoteName$)
/3*4+ (Octave-1) *48

1100 IF Pitch<@ OR Pitch>255 THEN PRIN
T"ERROR IN PITCH DATA ";Note$;" Pitch =
";Pitch:PRINT"Note Number ";N:STOP
1110 ENDPROC .

1120 :

1130 REM Channel 1

1140 DATA &200,B2,2,A2,2,G#2,2,A2,2
1150 DATA &20¢,C3,4,R,4,D3,2,C3,2,B2,2
;319

1160 DATA &200,E3,4,R,4,F3,2,E3,2,D#3,
2,83,2

1170 DATA &200,B3,2,A3,2,G#3,2,A3,2,B3
+2,23,2,G#3,2,A3,2

1180 DATA &2¢@,C4,8,A3,4,C4,2,G3,1,A3,1
1190 DATA &200,B3,4,A3,4,

G324,33,2,G3,
1,A3,1
1200 DATA &200,B3,4,A3,4,G3,4,A3,2,G3,
1,A3,1

1210 DATA &200,B3,4,A3,4,G3,4,F#3,4
1220 DATA &200,E3,8
1230 :
1249 REM Channel 2
1250 DATA &209,R,8
1260 DATA &200¢,A1,4,C
1270 DATA &200¢,A1,4,C
1280 DATA &200,A1,4,C
1290 DATA &200,A1,4,C
1300 DATA &200,E1,4,B
1310 DATA &200,E1,4,B
1320 DATA &200,E1,4,B
1330 DATA &200,E1,8
1340 :
1350 REM Channel 3
1360 DATA &200,R,8
1370 DATA &200,R,
1380 DATA &200,R,
1390 DATA &200,R,
1400 DATA &200,R,
1410 DATA &200,R,
R,
R,
R,

=N NN N

1420 DATA &200,
1430 DATA &20@,
1440 DATA &200,

B e 5 e 0 Y R B 1 DD RGeS L SRS WIS SN
HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS

BUG IN ASSEMBLER - R.J. Head

If you assign a zero page address to a variable, for use in a two pass assembler
section of a program (eg. message=&80) you should assign it at the beginning of the
assembler or in the Basic section of the program preceeding the assembler. This is
because on the first pass the assembler assumes all addresses require a two byte
address whereas a zero page address only requires one byte. Although the assembler

'realizes' that a single byte zero page address is required on the second pass, all
branch instructions in the program will vector wrong because of the assembler's
initial miscalculation.

=
BEEBUG APRIL 1985 Volume-3 Issue 10



37

SCRABBLE FOR THE BEEB

A new game from Leisure Genius
Scrabble enthusiast Ian Tresman tries his s_kill against a new computer version of this popular game.

Love it or hate it, Scrabble ranks with
chess, backgammon, and bridge, as one
of the classic games of strategy.

Both disc and tape versions are now
available for the BBC micro from
Leisure Genius though there is no real
difference between the two. Tape
loading time is about 5 minutes during
which time a mode 7 screen depicting
the Scrabble board is displayed.

The option to play up to four hands is
presented, any number of which can be
played by the computer with a skill
level from 1 to 4; in a two-handed
game, this averages 16@ and 320 points
respectively.

Finally you are given the opportunity
to look at the computer's rack during
play, and see its best move while it is
thinking. This is very enlightening,
especially to the novice, who will be
able to glean many useful strategic
tips),

Response time from the computer is in
the order of twenty to forty seconds
and is well inside the British

Tournament limit of two minutes. During
a game this is not enforced.

A function key is provided to randomly
juggle the letters in your rack. And
there are also keys to allow you to
either pass, or change some of the
letters in your hand.

The majority of players will find that
Scrabble plays a very competitive game.
Its 8000 word dictionary is culled from
the Scrabble players' bible: Chambers
20th Century Dictionary, New Edition.
Interestingly, the choice of words has
been deliberately chosen so as to give
a 'fairer' game.

Computer Scrabble would play better if
it had a more extensive two-letter word
vocabulary. I discovered that the
built-in dictionary only uses 40 of the
possible 91 allowed two-lettered words.
I would have liked to have seen the use
on the higher skill levels of
favourites such as: ai, ee, jo, ka, sh,
yu, and zo.

The BBC machine is clearly at a memory
disadvantage compared to the Apple and
Spectrum versions of Scrabble whose 48K
memory allowed 9100 and 11000 word
vocabularies respectively, and,
high-resolution displays. During the
games I have played to date, I have
been challenged as to the validity of
some very basic words: largest, pigeon,
menace, and moon. I was also curious
about the computer making a plural of
'ozone', but this checked out alright.

Scrabble is a worthwhile long-awaited
addition for the BBC microcomputer. It
will not mind if you take thirty
minutes a move, nor if you sneak and
find from the dictionary that
seven-letter word which you knew
existed all along.

=

HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS

OPENOUT BUG

Writing to an existing random access file that is write protected will generate
an error but will also flush the buffer resulting in the first 256 characters of the

output data in memory being lost.

=

BEEBUG

APRIL 1985

S

Volume-3 Issue 10




38

CALCULATING THE LENGTH OF PROGRAMS

The major drawback of Basic programming on the Beeb is the limited memory
available. When memory space is at a premium, you need to know just how much is
taken up by your program. Graham Crow describes a short utility which will calculate
the length of all or part of any of your programs.

This short utility will tell you how
long your program is, in bytes of
memory, so that you know exactly how
much room you have left for data. The
utility will also calculate the memory
space taken up by a section of your
program, even a single line. This is
useful when calculating how much room
you will save by removing a section of
program, before you do it.

The utility is presented here as two
functions (FNbytes and FNaddress),
suitable to add onto the end of a
program, along with a short
demonstration program. This just
prompts you for two line numbers and
then prints the inclusive length of the
program between these lines.

If one of the line numbers entered
does not exist in the program, or the
second number is smaller than the
first, the program will halt with a
short error message to tell you of the
problem. You can measure the length of
a single line by entering the same line
number for each prompt.

When you use the functions in your
own programs they are called, either in
immediate mode or from within the
program with

PRINT FNbytes (A,B)
or
L=FNbytes (A,B)

where A is the first line number and B
the second. The function returns the
length of program between them.

When you have typed in the functions
and checked that they work with the
demonstration program, delete the lines
10 to 150 and 10320 to 10378 and then

Now they can be added to your own
programs at any time with  *EXEC
(filename) , as long as the highest line
number in your own program is not
greater than 10000.

PROGRAM NOTES

The short demonstration prograr
between lines 90 and 140 simply prompts
the wuser for two line numbers and uses
these parameters for the call to the
function, FNbytes, at line 120.

FNbytes itself calls a second
function, FNaddress. This searches your
program to find the address in memory
of a program line. To understand the
workings of both functions you need to
know how Basic stores program lines in
memory .

As well as the ASCII characters and
Basic keyword tokens that make up a
program line, the line number and the
length of the line are also included.
Each line is stored in the following
form:

(&0D) (line no. high byte) (line no.
low byte) (line  length) (first
character) ... (last character)

In addition, following the last line
of the program there is:

(&@D) (&FF)

FNbytes finds the address of the
start and finish lines, using

FNaddress, and then adds together the
line lengths of each line between them.

10 REM PROGRAM BYTE LENGTH
20 REM VERSION B@.1

save the function definitions 30 REM AUTHOR G.M.CROW

themselves with: 40 REM BEEBUG APRIL 1985
*SPOOL (filename) 50 REM PROGRAM SUBJECT TO COPYRIGHT
LIST 60 :
*SPOOL 70 ON ERROR GOTO 10330

BEEBUG APRIL 1985 Volume-3 Issue 10

R e e R o e N e e D I e 1 A



39

80 : 10130 =bytes

99 MODE 7 10140 :

100 INPUT TAB(8,10)"1st line No. ",L1 10150 DEF FNaddress (target)

110 INPUT TAB(8,12)"2nd line No. ",L2 10160 LOCAL low,high,none,address,add,l

120 L=FNbytes (L1,L2) ine

130 PRINT TAB(8,15)"length = ";L;" by 10170 low=PAGE:high=TOP:none=FALSE
tes" 10180 REM Use binary search method

140 END 10190 REPEAT

150 : 10200 address=INT (low+ ( (high-1low) /2))
10000 DEF FNbytes (startline,endline) 10210 add=address
10010 LOCAL address,startaddress,endadd 10220 REM Work back to start of line
ress,bytes 10230 REPEAT add=add-1:UNTIL 2add=13
10020 IF startlinedendline THEN PRINT " 10240 REM but line length could be 13
Error in lines":STOP 10250 I1F?(add-3)=13 THEN add=add-3
10039 REM Find address of start & end 1 10260 line=(add?1)*256+add?2
ines 10270 IF line>target THEN high=address
10049 startaddress=FNaddress (startline) 10280 IF line<target THEN low=address
:endaddress=FNaddress (endline) 10290 IF high-low<2 THEN none=TRUE
10050 address=startaddress:bytes=0 10300 UNTIL line=target OR none
10060 REM Use line length byte to count 10310 IF none THEN PRINT"No such line":
10070 REPEAT STOP ELSE =add
10080 bytes=bytes+address?3 10320 :
10090 address=address+? (address+3) 10339 MODE 7
10100 UNTIL address>endaddress 10340 ON ERROR OFF
10110 REM Add 2 bytes if last line 10350 IF ERR=17 THEN END
10120 IF address?1=&FF THEN bytes=bytes 10360 REPORT:PRINT " at line ";ERL
+2 1037¢ END =)

R e R T B S ) S S e R 4 ST
HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINT

SMALL OPENOUT FILES - A. McDonald

The operating system defaults to a length of 16K for random access files.
Shorter files, less wasteful on disc space, can be created by saving a dumy file of
the required length first and then accessing the file with OPENUP.

SAVE "name" 0000 +00FF
This creates a file only 256 bytes long. =]

PRINTING HEX NUMBERS - K. Kilmoore

To assign a string a number in hexadecimal notation the tilde (™) sign is used
but in a different manner to that used when printing out the number. The following
will print out the value of N in hexadecimal notation.

HEX$=STRS™ (N)

PRINT HEXS ==

OC TROUBLES IN WORDWISE

The OC (output code) embedded command in Wordwise can cause problems if more
than about 20 codes are output in one line, as for example when a lot of
subscripting is needed in a mathematical expression. The other commands affecting
paging and justification can be corrupted. ==

ZERO PAGE CORRUPTION - Bill Walker

Although the Basic ROM does not use zero page locations &70 to &8F, the same
does not go for many other ROMs. View (1.4) for example uses &84 and &85 whenever it
is called upon by the operating system, i.e. whenever an unrecognized *command is
issued from within ANOTHER ROM in a machine containing the View ROM. This means that
a program using these locations to store data that issues, say, a disc filing system
command (such as *CAT) could (depending on the order of the ROMs in the machine)
corrupt the data. =]

BEEBUG APRIL 1985 Volume-3 Issue 10



_—_———_——j

40

BASIC IN DEPTH

Following the highly successful Advanced User Guide to the BBC micro’s operating
system ROM, two books have appeared recently claiming to do the same for the
Beeb’s Basic Rom. Alan Dickinson has been dipping into these two books and now

reports.

Most of us will have wondered what
makes the Beeb tick, (apart from the
motor relay!), and perhaps puzzled over
the hidden secrets of the Basic ROM
chip. Brave souls who attempt machine
code programming usually run into the
problems of needing to handle floating
point numbers, or perhaps require a
random number generator, and would
dearly love to know how Acorn managed
it. Now there are two books available
that help to answer all these
questions.

Both books are specifically aimed
at Basic I and Basic II users and are
not suitable for HiBasic, USBasic (in
Beebs for the USA), or any subsequent
releases of BBC Basic. In addition both
books really require some knowledge of
machine code programming before they
start to make much sense.

../ uf
ASIC ROM
BASIC o

~ USER GUIDE

THE ADVANCED
BASIC ROM
USER GUIDE

FORTHE BBC

. - L e
This is a spiral bound 182 page
volume, in the style of the Advanced

User Guide from the same publishers.
It's a neat layout, but one which seems
to incorporate liberal quantities of
expensive white space.

The book contains a brief
description of compilers and
interpreters, and an explanation of the
numbering systems used within BBC
Basic, but is mainly concerned with
describing 69 subroutines contained
within the Basic ROM.

The routines are grouped according
to the type of data that they handle,
integer, floating point, conversions,
trigonometry, and random number
functions. Each section consists of
some introductory text, a summary list
of the routines, a detailed description
of each routine, (one routine per
page), and a simple demonstration
example of wusing it. An approximate
timing is given for each routine, which
must be invaluable information  for
anyone seeking to optimise Basic
programs. For example, I was amazed to
find that the SIN routine typically
takes 15,000 microseconds, whilst TAN
consumes 41,000.

The book is completed by a Basic
memory map, notes on timings, a small
section on trigonometric methods, and a
very informative section concerning
linkage of large machine code programs.

This 359 page paperback is one of

the first books from yet another
Cambridge publishing company. It is

BEEBUG

APRIL 1985

Volume-3 Issue 10



e e e e e SR e R i s b ey e

1

without
a welcome

crammed with information
appearing cluttered, and
addition to the library.

The early chapters of the book are
concerned with the architecture of the
BBC Basic system, including discussion
on how Basic handles data types,
tokenizes programs, and implements
control structures such as procedures,
loops, and ON controls. Assemblers and
disassemblers, overlaying procedures,
adding new commands to Basic, and error
trapping are all covered in detail in
the first 160 pages, whilst the
remainder of the book contains details
of some 80 ROM routines, a very full
description of Basic error codes, and a
set of tables covering Basic memory
maps, token values, etc.

The book contains a wealth of

an excellent compromise between being
an informative readable guide and a
useful reference book.

Neither of these books is for the
beginner, and neither of them is
suitable as an introduction to the
mysteries of assembly language
programming. Both are interesting and
informative; Colin Pharo's book is
particularly good for its explanation
of trigonometry and program 1linkage,
but on the whole I prefer the more
expensive book by Mark Plumbley. This,
I feel, represents excellent value for
money, and is likely to be of more
interest to all those who are not
simply

inner

experts in machine code, but
want to know more about the
workings of BBC Basic.

programs, a disassembler, a partial
renumber utility, and a 'bad program'
recovery routine, though it must be
said that none of these are dazzlingly
original to BEEBUG readers. The book is

INTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS

DATA REMARKS - A. Roberts

Although REM statements can be added into DATA statements, a comma in ‘the REM
statement will delimit the REM and re-enable the DATA. For example in the following
program the value assigned to the variable Z is 10 and not 3 as you'd expect:

10 READ X,Y,Z

20 DATA 1,2:REM a remark with a comma,10

30 DATA 3 =]

RECOVERING LOST PROGRAMS WITH Z8@ - Chang Sing Pang

Z80 owners who lose programs by switching over to CP/M without saving their work
first can recover the program by creating a dummy file with:

SAVE @ <filename>
and then load the dummy file with:

<filename>
The program can then be recovered simply with OLD. =)

280 BASIC STRING BUG - Chang Sing Pang

In 780 Basic on the 780 second processor (unlike 6502 Basic), strings held on
disc are considered to end at the first Return. So the following program will only
display the first half of the string.

10 AS$="first"+CHRS$13+CHRS1g+"second"

2() C=OPENUP"BUG"

30 PRINT#C,AS

40 PTR#C=0

5@ INPUT#C,BS$

60 PRINT BS

70 CLOSE#C =)
BEEBUG APRIL 1985 Yolume-3 Issue 10

SRS R e W g T et By ERen e o et el B e e e = - T e e e S ey <SS,



42

e,

B
EGIMVH-B‘ INTRODUCING

MACHINE CODE

(Part 3)

In the last
article, I gave
you a little
exercise in which
line 140 of Program
7 was to be changed
to LDX #0. When you
decrement X by one
on the first pass
through the print-
ing loop, the value
in X becomes 255
and does not become
zero until another
255 passes through
the loop have
occurred. The end

result is that 256
characters are
printed on the
screen.

I also said that
the fastest method
of loop counting
was to count
downwards rather
than upwards. First of all, to count
upwards you can increment (add one to)
the X or Y registers wusing the
instructions 'INX' or 'INY'. To detect
the loop exit condition, we need to
introduce a COMPARE instruction, in
which a 'pretend' subtraction takes
place between the comparison value and
the value in the register, without
affecting the value in that register.
CMP #40 would compare the value in the
Accumulator with 40 and the
instructions CPX #40 and CPY #40 would
compare the contents of the X and Y
registers with 40. This is illustrated
in the two examples below. In example
2, 40 is subtracted from the contents
of the X register at line 130 without
affecting its contents. If the result
of this pretend subtraction is ZERO
then the branch no longer occurs.

This month Gordon Weston continues his series on machine code for
I N beginners by looking at further ideas on loops, and describes how to store

and retrieve simple lists of numbers.

120 DEX 120 INX
130 BNE loop 130 CPX #40
140 BNE loop

As you can see, both examples loop
forty times, but example 2 is one
instruction longer. .ore importantly,
because that extra instruction is in a
loop that is used forty times, then the
program is effectively forty
instructions longer.

Now we are ready for some new ideas
and we can make a start by entering
program 5 from the last article
(repeated below) .

Program 5
10 MODE7
20 DIM code 109
30 FOR I%=@ TO 3 STEP 3:P%=code
40 [
5¢ OPT I%

500 ]

510 NEXT

520 CLS:CALL start
5309 END

Now the CMP instruction can be very
useful if we want a loop that will
continue until a particular condition
occurs, rather like a REPEAT-UNTIL loop
in Basic. Insert these assembly lines
with the skeleton (Program 5) to
produce Program 8 and run the program.

Part Program 8

T 100 .start
120 .loop
130 JSR &FFE@
140 CMP#13
150 BNE round
160 RTS
170 .round
220 JSR &FFEE
250 JMP loop

This program will display on the
screen all text typed in at the
keyboard until terminated by a Return.
Line 130 reads the next character from

Example 1 Example 2
100 LDX #40 100 LDX #0
110 .loop 110 .loop
BEEBUG APRIL 1985

A e R e S .

Volume-3 Issue 10




e T e e B e e e e e R e P L

43

the keyboard and the ASCII value of the
key ©pressed is stored in the
Accumulator for line 220 to print to
the screen. The 'JMP loop' instruction
at line 250 forces the program to
restart at line 120 and the only way to
escape from this loop is at line 144.
Here, the contents of the Accumulator
are compared with 13, which is the
ASCII value for the Return key. If the
contents of the Accumulator are NOT
EQUAL to 13, then the program branches
round line 160 to line 17@0. If the
contents of the Accumulator EQUAL 13
then the program reaches 'RTS' at line
160 and returns to Basic.

Besides deciding if a number is
equal to that stored in a register, you
can also decide if a number is greater
than, or smaller than that stored in a
register. We use two new instructions
called 'BCC' (Branch if Carry Clear)
and 'BCS' (Branch if Carry Set) where
the term 'CARRY' refers to one of the
FLAGS in the 8 bit status register.
Rather than going into detail at this
stage, it 1is better to select which
branch instruction you need from the
following rules.

After CMP #data....(with Accumulator)
a BCC branch occurs if A < data
a BCS branch occurs if A > data

or if A = data

Suppose we want to restrict the
input from the keyboard to numerical
keys only. We have to know their ASCII
values and if you refer to page 486 of
the User Guide you will see that number
keys are in the range ASCII code 48 to
ASCII code 57. We want to branch back
to the start if the Accumulator value
is less than 48, and also branch back
to the start if the Accumulator value
is equal to, or greater than, 58.

You can enter these additional lines
to Program 8 and run the program which
then only allows numerical characters
to be printed to screen.

Since this is a simple input
routine, the next thing to consider is
how to store what is being entered. To
make a better demonstration we will use
part of the screen memory to store our
input. The Mode 7 screen takes 1000
bytes from address &7C00 to &7FE7 and
the address &7E58 refers to the
position 16 lines down on the left hand
side of the screen (don't worry how
these addresses are calculated - they
are just convenient for this example).

Model A users with 16K of memory
will need to change these addresses
from &7C00 to &3C0Q@, &7FE7 to &3FE7 and
&7E58 to &3ES58.

Add line 230 STA &7E58 (STore the
contents of the Accumulator in address
&7E58) and every time a number key is
pressed, that number, besides being
printed at the top of the screen in the
normal way, will also overwrite the
existing number printed half way down
the screen as it is stored in the
screen area of memory.

This storage instruction uses the
same address in memory all the time. A
more flexible storage instruction takes
the form STA &7E58,X where the contents
of the Accumulator are stored at the
address &7E58+X. In other words, if X=0
the Accumulator is stored at address
&7E58, but if X=1 then the Accumulator
is stored at address &7E59 and so on.
In assembler this is the way to store a
series of wvalues at consecutive
addresses, just as in an array in
Basic. STA &7E58,Y works in the same
way .

Enter the new lines 110, 230 and 240
to form Program 9 below. Each time a
valid character is stored at 1line 230
the X register is incremented in
preparation for storing the next valid
character.

Part program 9

180 CMP #48 100 .start
190 BCC loop 119 LDX #0
200 CMP #58 120 .loop
210 BCS loop 130 JSR &FFE@
140 CMP #13
Obviously, these lines would reject the 150 BNE round
value 13 which is why CMP #13 and RTS 160 RTS
appear earlier in the program loop. 17¢ . round p:

BEEBUG

APRIL 1985

Volume-3 Issue 10




44

180 CMP #48

190 BCC loop
200 CMP #58

219 BCS loop
220 JSR &FFEE
230 STA &7ES58,X
240 INX

250 JMP loop

Try entering more than 256 numbers
and you will find that although
printing continues in the top half of
the screen, in the bottom half of the
screen the new numbers  start
overwriting existing numbers because
the value in X has changed from 255
back to @ and is now counting upwards
again. Program 9 is only a simple

demonstration model as it lacks the
facility to 1limit the number of
characters input, it does not allow
editing of the stored input data and
does not give any warning when mistakes
are made, but it does show a useful
technique in action. Note that storing
values directly in the screen memory
area is a fast technique often used in
games and other machine code programs,
but is not generally accepted as good
programming practice (hence the need
for changes by model A users).

The final part of this short series
on machine code for beginners will
appear in the next issue of BEEBUG.

Q)QEB(,&
29 FEB
|98+/

BOXING CLEVER

I have enclosed a very simple Break
key 'guard'. It consists simply of a
piece of card cut to size (3" long by
1" high), folded and sellotaped to form
an open box shape. This then sits over
the Break key (or any other same size
key) to guard against accidental
operation. I find this most useful when
playing games.

POSTBAG

Philip Baum

LEAP IN THE DARK

I wonder if you are aware that there
is a small error in the "“Cartoon
Calendar" program in BEEBUG Vol.3 No.7.
This excellent program as listed does
not correctly take into account the
extra day in leap years. The fault is,
of course, in 1line 1310 which should
read:

1310 Day=Fdays%+3+Leap%
(note the '+' instead of '-').

D.Shaul

POSTBAG

%‘EBU@
29 Feb
)

MUSIC MAESTRO PLEASE

I was surprised to read in the
December issue of BEEBUG, a review by
Steve 1Ibbs of a book I bought two
months previously. The title is 'Making
Music on the Beeb' by Ian Waugh. As a
newcomer to computing a quick glance at
the book had convinced me that it was
way above my head. I was pleased to
read what was actually in the book. Mr
Ibbs made it sound quite interesting
even if he did prefer the other book he
reviewed.

I started to read the book with
renewed interest, and have now tried
out some of the programs and various
sound effects, truly amazing! Thank you
Mr Ibbs for opening my eyes.

Charles Harvey

KENNETH KENDAL'S HICCUPS

Some months ago I had fitted
(professionally) the Acorn PHROM speech
system, and at first all was well but
alas my poor old Kenneth Kendal has got
the hiccups. When switching on my
machine from cold and using the speech
system, all words are correctly
reproduced except 'G' and 'GOOD' (words
201 and 202). These are produced with a
hiccup at the end which mysteriously
clears itself after the machine has
been on for about 15 minutes. Please
advise me if the PHROM is faulty or
have I got to knit it a little woollen

BEEBUG

APRIL 1985

Volume-3 Issue 10

I R e e e I .



jumper to keep it warm so poor Kenneth
doesn't get the flu.

A.Bonser

A CAUTIONARY TALE

: — I purchased a well known make of
SOMETHING NEW ON THE MENU disc drive in July. It went wrong in

Did you know that the new DFS November and was returned (a round trip
(1.2), that is part of the second of 40 miles). It was collected in
processor DNFS chip, will not allow December (another 40 miles) but did not
your MENU program (BEEBUG Vol.2 No.4) work! The boss had been ill, and so the
to work correctly? Acorn, in their repair had not been checked.... The
infinite wisdom decided to change the item was returned yet again and I am
addresses where the information on the still waiting for it to be properly
file is stored, and didn't actually repaired. Moral - always ask if
tell anyone. The solution is simple - equipment has been checked both when
just change line 700 to read: you buy and when repaired, and by the

700 base=&70:01d=&BC:length=&C0O retailer and not just by the factory.

Nick Clark Don Maskell

“

Q

CORRECT INTEGREX MODE 7 DUMPS - J.A.Allmond

The Integrex Colourjet printer can dump mode 7 screens correctly (despite the
remarks in the review in BEEBUG Vol.3 No.8) if the American character set is
selected with the DIP switches or by selecting this character set by software using
vDu1,27,82,1 before the dump and reseting to the English character set with
vDU1,27,114 afterwards.

MORE COMMANDS IN MEMOPLAN - A.A.N. Ewing

Owners of the 780 second processor with Memoplan can access two extra menus not
mentioned in the manual using CTRL-X and CTRL-X-X. These menus contain most of the
commands available from the functions keys but obtainable with a single letter from
the menu - useful if you lose the key strip!

CENTRING THE MODE 7 SCREEN - C. Walker

Centring text lines with an odd number of characters can be tricky in mode 7,
especially if the left side of the screen is filled with control codes. Entering
VDU23;0,2,52;0;0;0; shifts the whole display one character to the left. The effect
is cancelled simply with any MODE command.

SIDEWISE RAM BENEFITS - Martin Parr

If you want some sideways RAM to play around with but cannot afford the very
expensive 6264 chips needed for the 'Sidewise' board, you can use an inexpensive
6116 chip instead. This will only give you 2K of sideways RAM, but that may be
enough for experimenting. You will need to carefully bend pins 24 and 21 on the
chip out at right angles and solder about two inches of fine insulated wire to each.
Now place the chip in the lower end of the RAM socket (i.e. chip pin 1 in socket
position 3 and insert the wire from pin 24 into socket position 28 and that from pin
21 into position 27.

BEEBUG APRIL 1985 Volume-3 Issue 10




46

BRICKIE NICKIE BRICKIE NICKIE BRICKIE NICKIE BRICKIE NICKIE BRICKIE NICKIE BRICKIE NICK

Master the lifts and moving platforms, avoid the falling bricks (or kick them out of the
way) and escape from one hazardous world to the next in this most unusal game from

Benedict Freeman.

'Brickie Nickie' is a small guy
trapped in a generator room. His life
will soon end if he can't get to the
exit quickly. Can you help him to
survive?

Navigate the lifts and walkways and
get past the brick walls, picking up
acorns as you go, to gain the highest
possible score. You will also have to
avoid the bricks which fall from above,
loosely aimed at your current position.
The quicker you finish a sheet, the
higher the score, but kicking the
bricks away loses you points.

Your man is able to climb up and
down one level at a time, and if he is
confronted by a brick wall, then
kicking the wall will dislodge the
brick on or below his own level. As you
will find out when you play the game,
you will need some of the bricks as
stepping stones to get from one catwalk
to another - so don't kick them all
away.

You start from the 'S' box and must
reach the end box marked 'E' before the
generator overheats and explodes
(imminent explosion is indicated by a
beeping sound). If you complete this
task then you go on to the next screen,
and so on until you lose three lives.

If the generator explodes, you will
lose a life, or if a brick falls on
your head (as it will do on numerous
occasions when you first start to play)
you will also have to apply for
resurrection.

The keys to use are: 'Z' and 'X' for
left and right, '*' and '?' for up and
down and 'Shift' and ']' for kick right
and kick left. The ']' key is situated
between the '*' and 'Return' Kkeys.

These keys are given when you run the
program.

If you are running this program on a
disc system then PAGE must first be set
to &1200, but remember not to press
Break as this corrupts the program.

PROGRAM NOTES

Because of the calculated RESTORE at
line 1020, you will notice that there
is agap at the end of the program
between lines 2620 and 500@. The data
at the end of the listing MUST start at
line 5000 and MUST follow the line
numbering specifically.

The two keys to kick left and right
are defined in 1lines 19¢ and 20@, and
the other keys are defined in the data
statement at line 1420. The method used
here is to read a negative inkey value
from the data statement (-98 is for
'Z') and if the relevant key is being
pressed then add the next two values
from the data list to the X and Y
co-ordinates of your man.

BEEBUG

APRIL 1985

Volume-3 Issue 10

T R e e T L IOl e S SO - e o P .




R
-_— -
R
- s
st MBS
===

R
L X __&.J
el HREREY VR
L] g s
e awsesy SSIENE SRRED
R m .- . (3
e i WP e WO i P i

47

\\*‘%

FUNCTION AND PROCEDURE LIST

screen/ Reads the variables and
screendetails/ game layout and display
print layout on screen.

pos Tests for brick to kick.

newpos Checks for key pressed
and updates X and Y.
move Moves the man on the
screen.
block Positions and draws
random bricks on screen.
~dish Move and draw platform.
lift Move and draw lift.
init Prints the instructions.
init2 Sets up the variables.
check Check for next screen.
end Check for end of game.
chars Sets up the user-defined
characters.
kick Kick the brick.

10 REM PROGRAM BRICKIE
20 REM VERSION B¢.3
30 REM AUTHOR B.FREEMAN
40 REM BEEBUG APRIL 1985
50 REM PROGRAM SUBJECT TO COPYRIGHT
60 :
100 ON ERROR GOTO 2580
110 HS%=1000:PROCchars
120 REPEAT:PROCinit
130 MODE2:VDU23,1,0;0;0;0;
140 REPEAT:CLS:CLG
150 BX%=0:BY%=0:NBY%=0:NBX%=0
160 PROCinit2:PROCscreen
170 PROCscreendetails:TIME=0
180 REPEAT: PROCmove
19¢ IFINKEY-1 kright=FALSE:PROCkick
200 IFINKEY-89 kright=TRUE:PROCkick
210 PROClift:PROCdish:PROCblock
220 screen=FALSE: PROCcheck
23¢ IF TIME>1100@@ SOUND1,-15,1500,1
24Q IF TIME>13000 dead=TRUE
250 VDU17,3:PRINTTAB(2,1);1lives;TAB(8
1) ;S%;CHR$32;TAB(17,1) ; level
260 UNTIL dead OR screen
270 IFscreen S%=S%+10000-TIME:FORI=10
@TO20@STEP10@:SOUND1,-15,1,3:NEXT:S%=S%+
(500* (level-1))
280 IF NOT screen PROCend
290 UNTIL new:UNTILFALSE

BRICKIE NICKIE BRICKIE NICKIE BRICKIE NICKIE BRICKIE NICKIE BRICKIE NICKIE BRICKIE NICK

300 END
310 :

1000 DEFPROCscreen

1010 IFlevel=5THENlevel=1

1020 RESTORE (5000+ (level*80)-80)

1030 READX%,Y%,ENX%,ENY%,EXX%,EXY%,FS%
,FX,FY,FT,L%,D%,LX%,LY%,1lmax,lmin,DX%,D
Y% ,dmax ,dmin,GX%,GY%

1040 NX%=X%:NY%=Y%

1050 REPEAT

1060 READA%,B%,C%,T%:PROCprint

1070 UNTILC%=0

1080 ENDPROC

1090 :

1100 DEFPROCscreendetails

111¢ vpoU17,1,31,X%,Y%,man2%,11,8,man%,
17,2,31,ENX%,ENY%,EN3,EN4,8,8,11,EN1,EN
2,17,1,31,EXX%,EXY%,EX3,EX4,8,8,11,EX1,
EX2,17,2,31,GX%,GY%,G3,G4,8,8,11,G1,G2

1120 vDU 17,4

1130 IFL%VDU31,LX%,LY%,L,L1

1140 IFD%VDU31,DX%,DY%,L,L1

115¢ vpUl17,11,31,FX,FY,F13,FT4,8,8,11.
FT1,FT2

1160 MOVE@, 950 : DRAW128@ , 950

117¢ vDU 17,6:PRINTTAB(@,0d) "LIVES sC
ORE LEVEL"

1180 ENDPROC

1190 :

1200 DEFPROCprint

1219 vDU31,A%,B%

122¢ IFT%=0VDU17,0

1230 IFT%=10RT%=2VDU17,5

1249 IFT$>2VDU17,7

1250 IFT%=3THENT%=2

1260 IFT%<4THENPRINTSTRINGS (C%,CHRS (25
5-T%))

1270 IFT%=4PRINTSTRINGS (C% ,CHR$girdbl+
CHRSgirdb2)

1280 IFT%$=70RT%$=8THENVDUdisc,discl

1299 IFT%=10VDU17,6:PRINTSTRINGS (C%,CH
R$girdbl+CHRSgirdb2)

1300 IFT%=9THENVDU17,6: PRINTSTRINGS (C%
+CHR$B)

1310 ENDPROC

13203

1330 DEFFNpos (X,Y)

1340 =POINT (X*64+24, (31-Y) *32+28)

1350 :

1360 DEFPROCnewpos

1370 RESTORE1420 L

BEEBUG

APRIL 1985

Volume-3 Issue 10




48

1380 FORI=1TO4:READAB%,CX%,CY%

1390 IFINKEY (AB%)NX%=NX%+CX%:NY3=NY%+C
Y%

1400 NEXT

1410 IFX%=NX%ANDNY%=Y%-1THENNY%=NY%+1

142¢ pATA-98,-1,0,-67,1,8,-105,0,1,-73
+9,-1

1430 ENDPROC

14490 :

1450 DEFPROCmove

1460 NX%=X%:NY%=Y%:PROCnewpos

1470 IFNX%=X%ANDNY$%=Y3$THENENDPROC

1480 IFNX%<@ORNX%>19ENDPROC

1490 A%=FNpos (NX%,NY%) :B%=FNpos (NX%,NY
%-1) : IF (A%<>0) OR (B$<>@ANDB%<>3) ENDPROC
1509 IFFNpos (NX$%,NY%+1)=0THENENDPROC

1519 vDU31,X%,Y%,17,0,man%,11,8,man2%,
31,NX%,NY%,17,1,man2%,11,8,man%

1520 X%=NX%:Y%=NY%:SOUND1,-11,3,1

1530 ENDPROC

1540 :

1550 DEFPROCblock

1560 IFNOTblock BX%=X%+RND(5)-2:BY%=3:
block=TRUE: IFBX%<=30RBX%>=18BX%=3:VDU31
,BX%,BY%,17,6,B:ENDPROC

1570 NBY%=BY%+1

1580 IFX%=BX3%ANDNBY%=Y%-1THENdead=TRUE
:ENDPROC

1590 IF ((BX%=DX%0RBX%=DX%+1)ANDNBY%=DY
%) OR ( (BX$=LX%ORBX%=LX%+1) ) ANDNBY%=LY%TH
ENblock=FALSE:VDU31,BX%,BY%,17,0,B

1600 IFFNpos (BX%,NBY%) <>@block=FALSE:E
NDPROCELSEVDU31 ,BX%,BY%,17,0,B

1610 BY%=NBY%

162¢ vDU31,BX%,BY%,17,6,B

1630 ENDPROC

1640 :

1650 DEFPROCdish

1660 IFdrightTHENNDX%=DX%+1ELSENDX%=DX
%=1

167¢ IFNDX%=dmaxORNDX%=dmin dright=NOT
dright: ENDPROC

1680 IF (X%=DX%0RX%=DX%+1)ANDY%=DY%~1TH
ENdman=TRUEELSEdman=FALSE

169¢ vpU31,DX%,DY%,17,0,L,L1,31,NDX%,D
Y%,17,4,L,L1:DX%=NDX%

1700 IFdmanvDU17,0,31,X%,Y%,man2%,11,8
,man%: ELSEENDPROC

1710 IFdrightTHENX%=X%+1ELSEX%=X%-1
172¢ vDU31,X%,Y%,17,1,man2%,11,8,man%
1730 ENDPROC

1740 :

1750 DEFPROClift

1760 IFlup NLY%=LY%-1ELSENLY%=LY%+1
1770 IFNLY%=1minORNLY%=Imax lup=NOTlup
: ENDPROC

1780 IF (X%=LX%0RX%=LX%+1)ANDY%=LY%-1TH
ENlman=TRUE:VDU17,0,31,X%,Y%,man%,11,8,
man2%: ELSElman=FALSE

179¢ vpU31,LX%,LY%,17,4,L,L1

1800 LY%=NLY%

1810 IF1upTHENIFlman Y%=Y%-1ELSEIFlman
THENY%=Y%+1

182¢ vbu31l,LX%,LY%,17,4,L,L1

1839 IFlmanvDU31,X%,Y%,17,1,man2%,11,8
,man%

1840 ENDPROC

1850 :

1860 DEFPROCinit2

1870 screen=FALSE

1880 ENVELOPE1,1,5,5,-10,30,30,30,50,0
/9,1,100,100

1890 newlevel=level+1

1909 1up=TRUE:dright=TRUE

1910 man%=241:man2%=242

1920 EN1=227:EN2=228:EN3=229:EN4=230

1930 EX1=231:EX2=232:EX3=233:EX4=234

1940 G1=243:G2=244:G3=245:G4=246

1950 L=235:L1=236

1960 FT1=237:FT2=238:FT3=239:FT4=240

1970 lman=FALSE:dman=FALSE

1980 block=FALSE

1990 B=253

2000 dead=FALSE

2010 girdbl1=225:girdb2=226

2020 fruit=FALSE

2030 ENDPROC

2040 :

2050 DEFPROCinit:IF S%>HS% HS%=S%

2060 VDU22,7:PRINTTAB (@,1)CHRS129"Scor
e:";CHRS$130;S%; TAB (20) CHRS129"Hi-Score:
";CHRS130;HS%

2070 FORA=5TO06:PRINTTAB (6,A)CHRS131CHR
S$157CHR$129CHRS141"Brickie Nickie "CH
R$156: NEXT

2089 PRINTTAB(9,8)CHRS1 30"by B.Freema

n."'''CHR$134TAB (5) "Keys to use:"
2090 PRINT''CHRS$S133TAB(7)"Z - Left X
- Right"'CHR$133TAB(7)"* - Up 2

Down"'CHR$133TAB(3) "SHIFT - Kick ] -
Kick"'CHR$133TAB(11) "Left Right"
2100 PRINT'''TAB(4)CHR$134"Press Any K
ey to Start.";

2110 G=GET

2120 lives=3:new=FALSE:S%=0:1level=1
2130 ENDPROC

2140 :

2150 DEFPROCcheck

2160 IFNOTfruitAND (X$=FXORX%=FX+1)ANDY
$=FYTHENS%=S%+1000:VDU17,d, 31 +EX,FY,PT3
.FT4,8,8,11.FT1,FT2,17,1,31,X%,Y%,man2%
,11,8,man%: fruit=TRUE: SOUND1,1,10,20
2170 IF (X%=EXX%-10RX%=EXX%+1)ANDY%=EXY
3THENlevel=level+1:screen=TRUE

218@ ENDPROC

2199 :

2200 DEFPROCend

2210 *FX15,1

2220 lives=lives-1

2230 PRINTTAB(2,1);lives

BEEBUG APRIL 1985 Volume-3 Issue 10

PR N R - o R R R o = ETITRCR SRS RS T o S e



2249 SOUND @,-15,5,10:IFlives=0 N$=" G
AME OVER " :FORI3=QT0200@:NEXT:FORI=1TOL
EN(NS) : PRINTTAB (4+1,14)MIDS (NS,I,1) :FOR
I12=1T020@:NEXT:SOUND1,-15,1I*2@,1:NEXT:n
ew=TRUE: *FX21

225¢ IFlives=0 I=INKEY (200)

2260 ENDPROC

2270 3

2280 DEFPROCchars

229¢ vDU23,254,255,66,36,24,24,36,66,2
554VDU23,225,255;2,4;8,16,32,64,255

2309 vpuU23,226,255,64,32,16,8,4,2,255:
VDu23,227,127,128,128,135,132,132,132,1
35:VDU23,228,254,1,,1,241,;1,1;1,241 :VDU2
3,255,9,9,9,9¢,9,9,0,0

2319 vDU23,229,128,128,128,135,128,128
+ 128, 1273VDU23, 28U, ikl 7,240 , 1,1, 152
54:VDU23,231,127,128,128,135,132,132,13
2,135:vDU23,232,254,1,1,225,1;1,1,129

2320 VDU23,233,132,132,132,135,128,128
»128,127:VDU23,234,1,1,1;225,1,1,1,254

2330 VDU23,235;63,127;255,255,255,255,
127,63:VDU23,236,252,254,255,255,255,25
5,254,252:VDU023,237,0,9,9,1,3,3,9,6:VDU
23,238,0,0,128,192,224,224,128,32

2340 vDU23,239,7,3,1,1,1,2,4,8:VDU23,2
409,96,192,128,0,9,0,0,0:VDU23,241,60,66
,66,66,60,24,189,189:VDU23,242,189,189,
60,60,20,20,20,54

235@ vDU23,253,254,254,0,246,246,246,0
,254:VDU23,243,16,3,34,6,4,68,4,63:VDU2
3,244,16,192,72,96,32,36,32,255:VDU23,2
45,32,35,36,36236,36,35,63

2360 VDU, 23,246,.1,,225,1,1,225,33,225,2
55

237@ ENDPROC

2380 :

2390 DEFPROCkick

2400 IFkright KX=X%+1ELSE KX=X%-1

2410 KY=Y%+1

2420 OX=KX:0Y=KY-1

2430 BT=FNpos (0X,0Y-1)

2440 found=FALSE

2450 REPEAT

2460 IFFNpos (KX,KY)=0found=TRUE

2470 KY=Ky-1

2489 UNTILfound

2490 KY=KY+2

2500 IFFNpos (KX,KY)<>6ENDPROC

2510 IF FNpos (0X,0Y)<>6 AND FNpos (0X,0
Y+1)<>6 ENDPROC ELSE VDU 31,0X,0Y,32

2520 FORI=1 TO 10@@:NEXT

2530 VDU31,KX,KY,32

254¢ IF BT=6 VDU31,0X,0Y,17,6,B

255@0 IF S%>10 S%=5%-10

2560 ENDPROC

257073

2583 ON ERROR OFF

2590 MODE7:IF ERR=17 END

2600 REPORT:PRINT" at line ";ERL
2610 END

2620 : 7

50¢¢ DATA17,28,18,28,18,7,1,18,15,1,-1
.~1,0,30,7,30,8,8,15,7,4,11

50190 DATA2,30,18,1,2,16,5,4,17,16,3,1
5020 DATA2,8,6,1,16,8,4,2,10,14,7,1,16
A15,2,1

5070 DATAG,d,d,0

5080 DATA4,6,2,6,17,24,1,18,13,1,-1,-1
,9,29,30,13,9,14,16,8,5,21

5099 DATAG,31,9,4,2,14,7,1,18,14,2,1,2
,29,1,10

5100 DATA1S,29,4,2,15,28,4,2,15,27,4,2
,15,26,4,2

511¢ DATA15,29,4,2,15,28,4,2,15,27,4,2
,15,26,4,2,14,25,6,3

5120 DATAT,11;3;142;7,2,476,8;2,1,5,12
22,9;413,24

513¢ DATA17,14,1,9,17,15,1,9

5140 DATA9,29,4,1,12,27,1,4,2,4,6,1

515¢ DATAG,d,d,0

5160 DATA12,6,15,6,18,22,1,0,6,1,-1,-1
,6,21423,12,3,7,1818,9

517¢ DATA12,4,3,4,11,7,4,10,0,7,2,1,12
.8,2,9,14,8,2,9

5180 DATA®,4,2,1,12,9,2,9,14,9,2,9,12,
1¢,2,9,14,10,2,9

5199 DATA12,11,4,9,12,12,4,9,8,13,10,1
4,22.2,1,3,24,1,18

5200 DATA2,25,12,1,12,24,6,1,15.23,2,1
9,15,7,2,9,1217,2,9;15,8.1.9

521¢ DATA15,9,1,9,15,18,1,9

5230 DATAQ,0,0,0

5240 DATA3,12,1,12,18;7:1,2,26,1,~1,-1
o14,10,7:26,5,13, 413557

5250 DATA1,10,4,1,1,13,4,1,18,5,2,1,16
,8,2,4,16,25,4,1,12,25,1,4

5260 DATA19,23,1,4,8,24,2,1,6,25,2,1,1
227:5;1

5320 DATAG,0,0,0

=

BEEBUG

APRIL 1985

Volume-3 Issue 10




PROGRAMS AND ARTICLES

IF YOU WRITE TO US

All programs and articles used are paid
for at up to £40 per page, but please
give us warning of anything substantial
that you intend to write. In the case
of material longer than a page, we
would prefer this to be submitted on
cassette or disc in machine readable
form using "Wordwise", "View",
"Minitext Editor" or other means. If
you use cassette, please include a
backup copy at 360 baud.

BACK ISSUES (Members only)

All back issues are kept in print (from
Bpril 1982) priced as follows:
Individual copies:
Volume 1 - £0.80
Volume 2 - £0.90
Volume 3 - £1.00
Volume 1 set (10 issues) £7
Volume 2 set (10 issues) £8
Please add cost of post and packing as

HINTS

shown: There are prizes of £5 and £10 for the
No t:)f DESTINATION best hints each month, plus one of £15
copies UK Europe Elsewhere for a  hint or tip deemed to be

exceptionally good.

1 0.30 9.70 1.50

Please send all editorial material to

2 - 15 .50 1.50 4.70 the editorial address below. If you
6= 19 1.00 3.00 5.50 require a reply it is essential to
1 - 20 1.50 4.00 7.00

quote your membership number and
enclose an SAE.

All overseas items are sent airmail
(please send a sterling cheque). We
will accept official UK orders but
please note that there will be a £l
handling charge for orders under £10

Bditorial Address

BEEBUG

that require an invoice. Note that PO Box 50
there is no VAT on magazines. StH:lbans
rts

This offer is for members only, so it
is ESSENTIAL to quote your membership
number with your order. Please note
that the BEEBUG Reference Card and
BEEBUG supplements are not supplied
with back issues.

Subscriptions &
Software Address

BEEBUG

PO BOX 109
High Wycombe
Bucks HP1@ 8HQ

SUBSCRIPTIONS

Hotline for queries and software orders

Send all applications for membership,
subscription renewals, and subscription
queries to the subscriptions address.

St.Albans (0727) 60263
Manned Mon-Fri 9am-4.3@pm

MEMBERSHIP COSTS:
U.K.

£6.40 for 6 months (5 issues)

£11.90 for 1 year (10 issues)

24hr Answerphone Service for Access
orders, and subscriptions

Eire and Europe
Membership £18 for 1 year.
Middle East £21
Americas and Africa £23
Elsewhere £25
Payment in Sterling essential.

Penn (049481) 6666

If you require members' discount on
software it is essential to quote your
membership number and claim the
discount when ordering.

BEEBUG MAGAZINE is produced by BEEBUG Publications Ltd.

Editor: Mike Williams.

Assistant Editor: Geoff Bains. Production Editor: Phyllida Vanstone.

Technical Assistant: Alan Webster.

Secretary: Debbie Sinfield

Managing Editor: Lee Calcraft.

Thanks are due to Sheridan Williams, Adrian Calcraft, John Yale, and Tim Powys-Lybbe
for assistance with this issue.

All rights reserved. No part of this publication may be reproduced without prior

written permission of the Publisher. The Publisher cannot accept any responsibility,

whatsoever for errors in articles, programs, or advertisements published. The

opinions expressed on the pages of this journal are those of the authors and do not ;

necessarily represent those of the Publisher, BEEBUG Publications Limited. 1
BEEBUG Publications Ltd (c) 1985.

BEEBUG APRIL 1985 Volume-3 Issue 10

W et O T T g e L I R iy



fif

High Quality Low Priced Discs

Backed by The Reputation of BEEBUG

k

e e g

| 10S/S D/D Discs - £13.90 10 D/S D/D Discs — £19.40 |
| 25S/S D/D Discs — £33.45 25 D/S D/D Discs — £46.95 |
| 50S/S D/D Discs — £59.30 50 D/S D/D Discs — £87.05 |

All Prices Include Storage Box, VAT and Delivery to Your Home (UK).

All discs are 100% indi\/idually tested, supplied with hub ring as standard, and
guaranteed error free. They are ideal for use on the BBC Micro and have performed
perfectly in extensive tests at BEEBUG over many months.

Orders for 25 or 50 are delivered in strong plastic storage boxes with four dividers.
Orders for 10 are sent in smaller hinged plastic library cases.

We are also able to offer the empty storage container, which holds up to 50 discs for
£10 including VAT and post.

1 :
Please use the order form enclosed ‘ %% % % % % i

or order directly from: [ ;
BEEBUGSOFT, P.0. Box 109, T %%%E
High Wycombe, Bucks HP 10 8HQ. | e



THE BEEBUG MAGAZINE
ON DISC AND CASSETTE

The programs featured each month in the BEEBUG magazine are now available to members on disc and
cassette.

Each month we will produce a disc and cassette containing all of the programs included in that month’'s
issue of BEEBUG. Both the disc and the cassette will display a full menu allowing the selection of
individual programs and the disc will incorporate a special program allowing it to be read by both 40
and 80 track disc drives. Details ef the programs included in this month’s magazine cassette and disc
are given below.

Magazine cassettes are priced at £3.00 and discs at £4.75.
SEE BELOW FOR FULL ORDERING INFORMATION.

This Month's Programs Include:

Mixing Modes, a utility and demonstration program showing how to mix modes on the same screen;
the complete BEEBUG Spreadsheet Program (combines parts 1 and R); a program for playing multi-
part music from our series ‘Making Music on the Beeb’; Backwards, a short fun program for our
April issue; machine code examples from our ‘Beginners’ series; a utility for calculating the length
of all or part of a program; two sorting routines and demonstration program from this month'’s
BEEBUG Workshop: Brickie Nickie, a highly attractive multi-screen game; and two extra items, a
clever artificial intelligence program to keep you all guessing and a super machine code arcade
game called Cosmonaut.

MAGAZINE DISC/CASSETTE SUBSCRIPTION

Subscription to the magazine cassette and disc is also available to members and offers the added
advantage of regularly receiving the programs at the same time as the magazine, but under separate
cover.

Subcription is offered either for a period of 6 months (5 issues) or 1 year (10 issues) and may be
backdated if required (The first magazine cassette available is Vol 1 No. 10; the first disc available is
Vol 3 No. 1.)

MAGAZINE CASSETTE SUBSCRIPTION RATES
6 MONTHS (5 issues) UK &17.00 INC. .. Overseas £20.00 (No VAT payable)
1 YEAR (10 issues) UK £33.00 INC. .. Overseas £39.00 (No VAT payable)

MAGAZINE DISC SUBSCRIPTION RATES
6 MONTHS (5 discs) UK £25.50 INC. .. Overseas £30.00 (No VAT payable)
1 YEAR (10 discs) UK &£50.00 INC. .. Overseas £56.00 (No VAT payable)

CASSETTE TO DISC SUBSCRIPTION TRANSFER
If you are currently subscribing to the BEEBUG magazine cassette and would prefer to receive the
remainder of your subscription on disc, it is possible to transfer the subscription. Because of the
differénce between the cassette and disc prices, there will be an extra £1.70 to pay for each remaining
issue of the subscription. Please calculate the amount due and enclose with your order.

ORDERING INFORMATION

Please send your order to the address below and include a sterling cheque. Postage is included in
subscription rates but please add 50p for the first item and 30p for each subsequent item when ordering
individual discs or cassettes in the UK. Overseas orders please send the same amount to include the
extra post but not VAT. )
SEND TO:

BEEBUGSOFT, PO BOX 109, HIGH WYCOMBE, BUCKS, HP10 8HQ

00 S R B S T B
Printed in England by Staples Printers St Albans Limited at The Priory Press ISSN 0263 -7561




