£1.20

FEEEUE

or the BBG

Vol 4 No 1 MAY 1985

Ultracalc 2
Acorn Music 500
Clef Music System
ATPL Symphony
Keyboard.
Island Logic Music
System
Utility ROMs
Books on Graphics

FEATURES

Polar Curves
Mixed Modes Explained
Flowchart Generator
Extended Assembler for
Second Processors
Adventure Games
Making Music (Part 4)
Free Memory Display
Workshop on Sorting
And much more

et

AXI S .

O -

por
%
-

BRITAIN'S LARGEST COMPUTER USER GROUP

MEMBERSHIP EXEEEDS 30,000

P
R e JERE L,

GENERAL CONTENTS

A "0 E S

Editorial
News
LB Music the Easy Way

Gtan The Island Logic Music System Reviewed
at ance MUROM from Beebugsoft

| Polar Curves Explained

Extended Assembler for the 65C02

Music Systems for the Beeb

New Version of Ultracalc

Dynamic Free Memory Display

More ROMs for your Beeb

Flowchart Generator

Adventure Games

BEEBUG Workshop

Making Music on the Beeb (Part 4)

Mixing Modes (Part 2)

Explore the World of Art and Graphics
Two Books Reviewed

Cross Referencer Update

Beginners Start Here
Introducing Machine Code (Part 4)

Postbag

Lunar Bug

PROGRAMS

Polar Curves

Extended Assembler

Free Memory Display

Flowchart Generator

Workshop Procedures

Making Music

Beginners Machine Code Examples
LunarBug

HINTS, TIPS & INFO

Beepless Break

Basic Difference

Uses for Square Brackets
*SPOOL Uses

Bug in Epson MX80
Basic Speed Controversy
Quitting *EXEC

Listing Z80 UNLIST
Compact without tears
Blue Screen in Wordwise
Cassette Soft Labelling
Making Programs Run
on the Second Processor

BEEBUG MAY 1985 Volume-4 Issue 1

LUKRR BUG

Horizental speed
Less than 18 ws

Vertical Speed

Less than 38 a/s

Z = Left jet
% = Right jet
= Main rocket

n.scale?
m.babyde
n.menué
mopuffl

EDITORIAL JOTTINGS

Welcome to Volume 4 of BEEBUG. To mark
the first issue of the new volume we are including a
detailed and practical index to the whole of
volume 3, and a voucher worth up to £3 when
ordering from BEEBUGSOFT. We have also
included two extra items on this month’s magazine
cassette. One is an extremely effective graphics
display, based on the theme of an English country
garden with suitable musical accompaniment. The
second item is a first rate arcade game which has
certainly proved quite addictive with the magazine
staff. In fact, we wouldn’t mind betting that
anyone else would have charged you the cost of
the magazine cassette for this game alone. With
all the other programs from the magazine, the
magazine cassette/disc provides even greater value
for money this month.

Last month we ran out of space for our hint
winners. They were K. Kilmoore (£10) and T.K.
Cowell (£5). This month we have selected as
winners the hints by E. Williams (£10) and B.R.
Hill (£5). More hints and tips will always be
appreciated. Remember too, that there is a special
prize of £15 for any particularly outstanding
hint published.

We are also revising and extending our system
of testing the programs published in the magazine.
In future each program will be marked with a set
of symbols (icons) positively indicating the systems
on which the program will work. The symbols and
their meanings are as follows:-

Basic I I Electron O
Basic II 11 Disc n
Tube 'e' Cassette £

A symbol with a cross over will indicate that the
program will not work for that system, a single line
through a symbol will indicate that the program
will work if modified, while an unmarked symbol
indicates full working. The Electron has also been
included for completeness. We hope to include
these symbols within the menu on the magazine
cassette/disc.

BEEBUG

MAY 1985

Volume-4 Issue 1

4

NEWS

THE MASTER TOUCH

1f you're sick of struggling with
the BBC micros's QWERTY keyboard,
Touchmaster have the thing for you. The
Touchmaster is a graphics tablet with a
resolution of 256 x 256 that can be
used for more than just graphics.
Along with suitable overlays,
Touchmaster can be used as an input
device to replace the keyboard in games
and educational software. The
Touchmaster costs £15¢. Further details
from Touchmaster on 0656-744770.

ALL KEYED UP

An add-on numeric keypad is
available from Softlife, the maker of
the excellent and cheap Softlife Eprom
programmer. The keypad connects to the
user port and comes with driving
software on ROM for £60.25. It features
all the number keys along with Return,
Delete, decimal ©point, and other
goodies. Softlife is on ©223-62117.

INSURANCE

The Micro Repair Club can offer you
peace of mind for £24.95. If the
guarantee on your Beeb (or any other
home computer that you may own as well)
has run out the Micro Repair Club offer
an extended guarantee service for
£24.95 for the first year and £14.95
thereafter. All repairs to your micro
are entirely free while you subscribe
to the club. Further details on
0990-28102.

WATFORD MOVES

Watford Electronics has moved from
its tiny premises in Cardiff Road in
Watford to a spanking new 9000 square

foot building just down the road. The
new WE address is

Watford Electronics,

250 High Street,

watford,
WD1 2AN.
NEW BOOKS
There are a few new books of
special interest to Beeb owners out
recently. The Wordwise Applications
Guide 1is concerned with the old

Wordwise but will still apply in the
most part to Wordwise Plus. It is
written by Paul Beverley and published
by Norwich Computer Services
(9603-621157) for £6.50. The Hackers
Handbook is a guide to that nefarious
nocturnal activity for the uninitiated.
Written by Hugo Cornwall (a pseudonym
we are assured), it 1is published by
Century at £4.95. Everything you always
wanted to know about ROMs but were
afraid to ask is not the title of Bruce
Smith's latest book but could well be.
Actually entitled 'The BBC ROM book',
it is published by Collins at £9.95.

NEW SOFTWARE

There are several new arcade games
in the offing this month. Superior
Software have released a version of
'Tempest' with the approval of the
games originators, Atari. 'Tempest '
costs £9.95 (£11.95 on disc). From A

and F comes 'Orpheus', a Frogger
look-alike, for £6.99 and 'Arabian
Nights' has arrived from Interceptor
for £6.99. 'Combat Lynx' comes to the

BBC micro courtesy of Durrel for £8.95
and on the same lines 'Laser Attack'
(where do they get these clever names

from?) by Viking Software costs a mere
fiver. Even cheaper is 'Kissin Cousins'
from English software at £4.95. Level 9
has another excellent adventure for the
Beeb called 'Emerald Isle'. This will
set you back £6.95. If you want to take

a break from the active role two
packages from Addison-Wesley -
'Tessalator' and 'Graphito' - promise

to boggle your mind with graphics for
£22.95 and £21.95 respectively (£29.95
and £27.95 on disc). Finally you can
relax after all the action with a game
of 'whist' from Dotsoft if you have
£6.50 to spare.

=

BEEBUG

MAY 1985

Volume-4 Issue 1

MUSIC THE EASY WAY

The Island Logic Music System

After the ballyhoo of Island Logic’s outrageous advertising, Steve Ibbs, an enthusiast
of synthesized music and director of his own music studio, gives a more realistic

assessment

i

It is a pity that the rather brash,

somewhat tasteless adverts for the
Island Logic Music System strike a bad
note in this otherwise excellent
software package for the Beeb. The

style continues in the small
introductory leaflet and is a
discordant contrast with the

superbly-written manual.

After using the system for some
time, I can honestly say that it is the
best music software package for the
Beeb, using the internal sound chip,
that I have ever seen. Icons and
windows are used to great effect, and
make it a joy to use. The main manual
is excellent and the graphics are
impressive. The system has 5 major
options, the first of which enables
1-4 part songs (the 4th being
percussion) to be composed, edited and
played, as individual parts or
combined. The screen displays the
voice being edited at the time in
normal stave notation, and the
insertion or deletion of notes/rests is
very easy. Repeats, first/second time
bars, triplets, etc. are all possible,
and a large number of control keys are
available to speed up the process.
Swapping to the other lines to check
alignment is simple, and the volume and
envelope can be modified for each note
if desired.

The second option converts the
keyboard to a quite sophisticated
musical keyboard and part of the screen
shows controls similar to a tape
recorder. A part can be recorded, then
played back whilst the next track is
added. The graphics display indicates
how much 'tape' 1is left, and there
is even a tape counter, fast forward

Music System Control Screen.
and rewind, and a moving metronome
icon. The complete recording can then
be saved, and loaded into both the
editor for modification, and the
printer for a printed score.

The third option allows musical
files to be linked together to produce
lengthy compositions. This option is
only available on the disc version and
enables up to 10 files to be sequenced
together in up to 16 different steps.

H{
| %T

pT

Ml

=:7
N
= 88}

N
KN
H

The Editor.

The 'linker' file can then be saved as
a separate file. A minor criticism here
is that it is impossible to move back
from the 'sequence screen' directly to
the 'file screen'.

The fourth option allows a printout
of the musical files, an example of
which is shown. This 1is of the best
quality I have seen to date, including
even the printout of other systems
costing hundreds of pounds! Any or all
of the ‘parts can be printed in either
high or low (slightly quicker)
resolution mode and the parts can be

BEEBUG

MAY 1985

Volume-4 Issue 1

EERRiiEaT R

aligned or non-aligned, the latter
alternative saving some paper. There
was one problem: as I had set my Epson
RX80 to generate a linefeed character,
rather than trying to remember *FX6
every time, and the dumpout also
generates one, double line-spacing
occurred. There ought to be a choice

available within the program.

The final option allows the pitch

The Linker.

and envelope parameters to be loaded,

altered and saved, with superb The manual is very well illustrated,
graphics. Windows and icons are again with summaries at the back to show all
used extensively and the overall effect the command key functions. It would be
is to make sound creation simple. extremely difficult to improve on this
Frequency modulation is programmable, package without introducing an external
and the sounds thus created can be keyboard or sound production hardware.
saved, then loaded from within the It is extremely 'user-friendly', and
editor or keyboard options. A minor sensible default values are included
improvement would be to enable the everywhere to save unnecessary typing.
sound and envelope graphs to be dumped Excellent, but the advertising copy
on the printer. writer ought to be replaced. =

In accordance with the editorial policy on reviews given in BEEBUG Vol. 3 No. 9, we
present here the main features of MUROM, a music system produced by Beebugsoft.

MUROM

MUROM is the new self-contained 8K ROM from Beebugsoft. It comprises a full screen
Music Editor and Envelope Editor, and comes with a comprehensive manual, reference
card, function key strip, and demo cassette containing over 15 minutes of music.

All four music channels are displayed together allowing easy alignment of the melody
and harmony, and use of Mode 7 enables well in excess of 8000 notes to be stored in
memory at once. Notes may be entered by name, or in piano-keyboard style.

Ten pre-defined envelopes (*PIANO, *FLUTE, etc), and ten pre-defined sounds are
provided on the Rom and may be included within your programs. (*SIREN, *PING, etc).

*PLAY is an interrupt driven command that will play music data in memory and still
enable the computer to be used for any other tasks, such as printing, running
another program, cataloguing a disc etc.

MUROM is priced at £29.00 (before members' discount). For further details please
contact the Software Manager, BEEBUGSOFT, P.O. Box 50, St Albans, Herts.

BEEBUG MAY 1985 Volume-4 Issue 1

POLAR CURVES EXPLAINED

Most of us have some simple understanding of cartesian co-ordinates, which are
essential for exploring the graphics potential of the Beeb. However, some of the most
fascinating displays are best programmed using ‘polar co-ordinates’. Stuart Robinson

explains what it’s all about.

The major difficulty when drawing
curves on the screen of the BBC micro
is actually calculating the
co-ordinates to join up and form the
curve in an efficient manner. Some
curves are ideally suited to the
Cartesian (x,y) system used for the
Beeb screen display but many are not.

Several curves, however, can be
easily ' calculated if a different
co-ordinate system is used - the polar
co-ordinate system. Like the Cartesian
system, the polar co-ordinate system
uses two co-ordinates. The first is the
distance from the origin (R) and the
second the angle (theta) subscribed by
the 1line joining the point to the
origin (called the 'pole') and a base
line (called the 'initial' line).

Just as curves may be expressed as
Cartesian functions, e.g.:

Y = fn(X)

SO can many curves be more simply
expressed as polar functions - a
description of how R changes as theta
varies, e.g.:

R = fn(theta)

Many curves have very simple functions,
when expressed in polar terms, that are
mind bogglingly complex in the
Cartesian system. Some of the more
popular classroom curves are given in
the table with their polar functions.
Try working out the Cartesian
equivalent functions, if you dare!

In each case 'size' is just a scaling
factor. For functions such as the
circle, theta must be measured in
radians.

of course, to use such polar
functions on the Beeb, we run into the
problem that Basic is only designed to
understand Cartesian co-ordinates. We
need a method of converting points
calculated using the polar system to
the Cartesian system needed to plot
them.

CONVERSION

The mathematical formulae which
enable you (or your computer) to
convert from one system to another are
simple.

X
24

R*COS (theta)
R*SIN (theta)

This is easily understood if we use
a little trigonometry on the diagram.

To draw a curve using the polar
co-ordinate system we simply calculate
R for a number of values of theta using
the polar function. These values of
theta and R are then converted to X and

BEEBUG

MAY 1985

Volume-4 Issue 1

HoHHE A

Y co-ordinates using the equations,
above, and the points plotted in the
normal way.

For a simple curve such as a circle
this is perhaps trivial, but with more
complex curves this apparently
roundabout method actually makes Llife
much easier. The program illustrates
the technique. It will draw all of the
curves 1in the table, including roses
and leaves with different numbers of
petals, and also curves known as
Lissajoux figures.

The program offers a choice of
eight different polar curves to be
displayed, and in some cases a choice
of parameters as well. The number of
petals in each rose and leaf depends on
the value of N% in the equation. The
program prompts for a value for N%. In
the equation for leaves try 3, 25 and
45 to produce different patterns.
Lissajoux figures are created by using
the equation for a circle, but the X
and Y co-ordinates are computed using
two different angles. The idea is
difficult to grasp but the effect is
startling. Mathematically speaking
X=R*COS (theta), Y=R*SIN(phi) and the
two angles, theta and phi, are said to
be out of phase. You can also enter
your own equation and size. For example
try theta+SIN(theta) and a size of 100.

PROGRAM NOTES

The main section of the program is
concerned with the selection, from a
simple menu, of the curve function (in
polar form) to be displayed. On
selection a string (curve$) containing

the function is passed to the procedure
PROCdraw along with the position of the
origin on the screen and limits of the
co-ordinates for the most pleasing
effect.

PROCdraw is the heart of the
program and it performs all the real
work calculating the co-ordinates and
drawing the curve. The graphics origin
is moved with VDU29 so that each
display is centralized. The variable
end% determines how many times the
FOR-NEXT loop is executed and is
usually set to 2.5*PI - just over a
full 360 degrees. The exception is the
spiral. The spiral is the only open
curve drawn by the program and the
greater the value of end% the longer
the spiral will be. All of the other
curves are closed curves - that is to
say the start and finish points on the
screen are identical.

For each value of theta, EVAL (in
line 1540) evaluates the equation
contained in curve$ and sets the result
equal to R. The X and Y co-ordinates
are now calculated from R and theta in
line 1560. Phi is calculated as
F%*theta and obviously for curves other
than Lissajoux's F%=1 and so phi=theta.
Finally the points are plotted in line
1570. The first point is plotted with
PLOT 4 (a MOVE statement) and the rest
with PLOT 5 (DRAW).

PROCdraw is a very flexible
procedure but it is far from being the
most efficient procedure for drawing
any one of the curves in the menu. For
use in your own programs you will
probably want to modify it. The major
reward to be gained is one of increased
speed. Much is also to be gained by
experimenting with the program listed,
trying different equations and altering
the parameters of the ones given here.
The program provides an insight into
the fascinating world of computer
geometry and polar curves.

ITION - COMPETITION - COMPETITION - COM

When you've gained a little insight you
might 1like to earn some cash with your
polar curves. We are offering a prize
of £50 for the best function to enter
for option nine in this program. Try
out as many different functions as you

BEEBUG

MAY 1985

Volume-4 Issue 1

9

can think of and pick your favourite.
The prize will go to the one that
produces the most creative and pleasing
effect. Don't forget to include a value
for 'size'. Send your function (one
only please) to the Editorial address
and mark the envelope 'Polar
competition'. Entries must be in by

10th June. Good luck.

10 REM Program Polar Curves

20 REM Version B@.1

3¢ REM Author S. Robinson

40 REM BEEBUG May 1985

50 REM Program subject to copyright

70 ON ERROR GOTO 167@
80 :
100 MODE 1
110 PROCinit
120 REPEAT
130 PROCchoice
140 UNTIL fini%
150 MODE 7
160 END
170 =
1009 DEFPROCinit
101¢ vpU28,0,2,39,0
1020 VvDU24,9;0;1279;920;
193¢ vDU19,1,2;0;19,3,4;9;
194¢ COLOUR@:GCOLY, 2
1050 COLOUR129:GCOL@,131
1060 CLS:CLG
1070 £ini%=FALSE
1080 ENDPROC
1099 :
110¢ DEF PROCchoice
1119 F%=1
1120 PRINT"1.Circle 2.Ellipse 3.Spiral
4.Limacon"
1130 PRINT"5.Roses
id 8.Leaves"
1140 PRINT"9.0wn equation
or @'to quit";
1150 REPEAT
1160 *FX15,0
1176 key$=GET$
1180 UNTIL INSTR("@123456789",key$)<>0
1190 CLS:CLG
1200 IF key$="1" THEN PROCdraw("400",6
40,460,2.5*PI)
1219 IF key$="2" THEN PROCdraw("500/(2
+COS (theta))" ,800,460,2.5*%PI)
1220 IF key$="3" THEN PROCdraw("10*the
ta",640,460,10*PI)
1230 IF keyS$="4" THEN PROCdraw ("2@@* (1
+COS (theta))", 500,460,2.5*PI)
124¢ IF key$="5" THEN N%=FNpetals:PROC
draw ("4@0*COS (N%*theta) ", 640,460,2.5*PI)

6.Li'joux 7.Cardio

Enter No.

1250 IF key$="6" THEN F=FNliss:PROCdra
w("250",640,460,2.5%PI)

1260 IF key$="7" THEN PROCdAraw("120* (1
+6*COS (theta))" ,300,460,2.5%PI)

1279 IF key$="3" THEN N%=FNcontour :PRO
Cdraw("100* (2+SIN (N%*theta))",640,469,2
«5%PI)

1280 IF key$="9" THEN PROCown:PROCdraw
(curve$, 640,460,2.5%PI)

1290 IF key$="@" THEN fini%=TRUE

1300 ENDPROC

1310 :

1320 DEF FNpetals

1330 REPEAT

1340 INPUT"Enter No. of petals and pre
SSaRETURNEVI "3, doe T 878351 12 "L N%

1350 UNTIL (N%-3)*(N%-4)* (N%-7)*(N%-8)
*(N%-11) * (N%-12)=0

1360 IF (N% AND 1) THEN =N% ELSE =N%/2

13 7@

1380 DEF FNliss

1390 REPEAT

1400 INPUT"Enter phase factor and pres
s RETURN"''"1 to 9 ",F3%

1410 UNTIL F%>@ AND F%<10

1420 =F*0.2

1430 :

1440 DEF FNcontour

1450 REPEAT

1460 INPUT"Enter No. of leaves and pre
ss RETURN"''"1 to 50 ",N%

147@ UNTIL N%<51 AND N%>@

1480 =N%

1500 DEF PROCdraw (curve$,X%,Y%,end%)
1510 CLS:CLG

1520 VDU29,X%;Y%;

153¢ FOR theta=@ TO end% STEP PI/50
1540 R%=EVAL (curve$)

1550 phi=F%*theta

1560 X%=R%*COS (theta) : Y$=R%*SIN (phi)
1570 PLOT 4-(theta<>0) ,X%,Y%

1580 NEXT

1590 ENDPROC

1600 :

1610 DEF PROCown

162¢ INPUT"Equation [fn(theta)] "cur

1630 INPUT'"Size "RS
1640 curveS$="("+curveS+") *"+RS
165@ ENDPROC

1670 ON ERROR OFF

1689 MODE 7

1690 IF ERR<>17 REPORT:PRINT " at line
";ERL

170@¢ END

=

BEEBUG

MAY 1985

Volume-4 Issue 1

RN)4 ¢

10

EXTENDED ASSEMBLER FOR THE 65C02

The 65C02 processor used in Acorn’s second processor has an extended instruction set
which is not supported by Basic’s built in assembler. Dominique Willems shows how
the assembler can be extended to overcome this limitation.

As Acorn launched its 6502 second
processor, much fuss was made about the
3 MHZ execution speed and the rather
massive memory available, but what was
kept in the dark, and for no obvious
reason, was the fact that "6502 second
processor" in reality meant a brand new
G655C@2 microprocessor. This new
version of the 6502 contains an
enhanced instruction set which not only
allows faster programs, but also
provides memory saving instructions
(which compact several old ones).

It is surprising to see that Acorn

didn't make use of the advanced
instruction set to develop their
HiBasic interpreter, which instead
still consists of the o0ld 6502

instruction set. It seems that even
higher speeds could be obtained here,
though the original timings are very
satisfactory.

THE NEW INSTRUCTIONS
A brief look first at the enhanced
instructions:

ORA (ZP) AND(ZP) EOR(ZP) ADC(ZP)
STA(ZP) LDA(ZP) CMP(ZP) SBC(ZP)
These do away with loading the

Y-index register with zero. (ZP denotes
a zero page address).

BIT IMM
Allows pre-setting of status
using immediate mode.

flags

BIT ZP,X BIT ABS,X
An extension of the old instruction
using the X index register.

INC A DEC A

An interesting improvement on accum-
ulator addressing - saves clearing the
carry flag and adding or subtracting 1.

JMP (ABS, X)

This new instruction uses indexed
absolute indirect addressing. The
recommended Rockwell syntax for this

is, confusingly, JMP (ABS),X and not

JMP (ABS,X), but as the latter is
logically correct we have used this

mnemonic instead of the standard
Rockwell one. The contents of the
second and third “bytes = of the

instruction are added to X, and the
resulting address contains the jump
address.

And now for the new commands:

BRA REL
At last an unconditional branch!

PHY PLY PHX PLX
Allows TXA:PHA:TYA:PHA to be replaced
with PHX:PHY.

STZ ZP,X STZ ZP STZ ABS STZ ABS,X
STore Zero-value in memory. Replaces
LDA#0:STA memory.

TSB ZP TSB ABS

Logically ORs memory contents with
Accumulator and stores result back in
memory.

TRB ZP TRB ABS

Logically ANDs memory contents with
the inverse of the Accumulator (NOT A)
and stores the result back in memory.
Same as: LDA#value:EOR#255:AND
memory:STA memory.

THE PROGRAM

Since the HiBasic Assembler doesn't
include the new instructions, a method
had to be found to implement them in
user programs. of course the
EQU-operators could be used to put hex
codes directly into memory, but this
would be unprofessional and lacks
clarity. The best way is via a machine
code program which co-operates with the
current Basic interpreter. A major
advantage of Basics residing in second
processors 1is that they exist in RAM,
which provides the possibility to
change values and implement JMP
instructions to other machine code
routines residing in user memory. This
is exactly what the following program
does.

BEEBUG

MAY 1985

Volume-4 Issue 1

1

After typing in the program,
firstly save it as a Basic program, and
then run it. If no errors occur, then
type:

*SAVE ASSEX F686 F7FD for Basic II
*SAVE ASSEX B67D B7FD for HiBasic.

Now you are ready to use the extended
assembler.

The program listed here allows all
of the new instructions to be used in
assembler programs in exactly the same
way as for the existing ones. The
routine works fully independently and
needs only to be executed once by
typing: *ASSEX (or *RUN ASSEX). The
program will load itself at &B67D (or
&F686 for Basic II users). It will then
execute the first part which changes
the appropriate values in the Basic
interpreter area. Since this routine
needs only to be executed once, HIMEM
will be reset to the start of the
actual extension program. In the Basic
II version HIMEM will not be reset
since the program will be located in
the user memory area above the Basic

interpreter (and not normally
accessible) .
The program mainly intercepts

machine code routines in the Basic
interpreter and redirects them to the
extension routine. For example, when a
PLY instruction is encountered, the JMP
instruction to the error message has
been changed to point to the
appropriate routine.

If you want to use the extensions
with Basic 1II active then delete line
1100 and change following the lines:

1020 P%=&F686

1730 ?&F6A5=&9C

1819 DATA &87¢D,&8767,&8712,&870E,
&870F ,&8605,58606,&8746,&8768

1820 DATA &8769,&8775,&8713,&8714,
&87B0,&87B1,&882C,&862B,&8623,
&982A

1830 DATA &876A,&8832,&8782,&8A97,
&879A,&86A8,&F7FD,&F7FE, &87CE,
&8821

This extended assembler should
prove most useful to machine code
programmers using the 6502 second
processor. Perhaps what is needed now
is a corresponding disassembler. Any
offers?

19 REM PROGRAM EXTENDED ASSEMBLER
20 REM VERSION B@.1

30 REM AUTHOR D.WILLEMS
40 REM BEEBUG MAY 1985
50 REM PROGRAM SUBJECT TO COPYRIGHT
60 :
190 MODE3
119 PROCaddress
120 PROCassemble
130 END
140 :
1009 DEFPROCassemble
1010 FORI%=@TO3STEP3
1020 P%=&B67D
1030 [OPTI%
1043 \ ONE TIME EXECUTION PROCEDURE
1050 LDA #&4C:STA A(@):STA A(1):STA A(
2)
1060 LDA #INDEX MOD 256:STA A(3):LDA #
INDEX DIV 256:STA A(4)
1070 LDA #SYNTAX MOD 256:STA A(5) :LDA
#SYNTAX DIV 256:STA A(6)
1080 STA A(7)
1090 LDA #incdec MOD 256:STA A(8) :LDA
#incdec DIV 256:STA A(9)
1100 LDA #LAST MOD 256:STA &6:LDA #LAS
T DIV 256:STA &7 \ RESET HIMEM
1110 LDA #&9C:STA A(10)
1120 LDA #bit MOD 256:STA A(11):LDA #b
it DIV 256:STA A(12)
1130 LDA #jump MOD 256:STA A(13):LDA #
jump DIV 256:STA A(14)
1140 .LAST RTS
1150 \ START ACTUAL EXTENSION
1160 .INDEX AND #&A6:BEQ indexerr:INC
&29:JSR A(15):LDY #2:JMP A(16) \ INTER
CEPTION INDEX ERROR
117¢0 .SYNTAX LDA &3D:CMP #&41:BNE next
:LDA &3E:CMP #&A:BNE next
1180 LDA #&80:LDX #&20@:JMP A(17) \ BR
A EXTENSION
1190 .next LDA &3E:CMP #&41:BNE notl
1209 \ PHY,PLY,PHX,PLX EXTENSION
1210 LDA &3D:CMP #&19:BNE ply
1220 LDA #&5A:BNE endi
1230 .ply CMP #&99:BNE phx
1240 LDA #&7A:BNE endi
1250 .phx CMP #&18:BNE plx
1260 LDA #&DA:BNE endi
1270 .plx CMP #&98:BNE notl
1280 LDA #&FA
1290 .endi STA &29:LDY #1:JMP A(16)
1300 .syntaxerr JMP A(18)
1319 .indexerr EQUB @:EQUB 3:EQUS"Inde
x":EQUB @
1320 \ INC A, DEC A EXTENSION
1330 .incdec LDA &29:CMP #&C6:BNE inc
1340 LDA #&3A:BNE out
1350 .inc CMP #&E6:BNE other

BEEBUG

MAY 1985

Volume-4 Issue 1

1360 LDA #&1A:.out STA &29:JMP A(19) 1619 .indirerr EQUB 0;EQUB 6:EQUS"Indi
1370 .other JSR A(20):JMP A(19) rect":EQUB 9
1380 .not1 LDA &3E:CMP #&52:BNE not2 1620 \ BIT EXTENSION
1399 LDA &3D:CMP #&62:BEQ TSB 1630 .bit LDA &A:STA A(25):LDA &B:STA
1400 CMP #&42:BEQ TRB A(26) :JSR A(22):CMP #&23:BEQ immediate
1419 .not2 LDA &3E:CMP #&4E:BNE syntax 1640 LDA A(25):STA &A:LDA A(26):STA &B
err 1650 LDA #&20:STA &29:LDA #&18:PHA:JMP
1420 LDA &3D:CMP #&9A:BEQ STZ A(27)
1439 JMP A(18) 1660 .immediate LDA #&89:STA &29
1449 .TSB LDA #0:.ret STA &29:JMP A(21 1670 JSR &C@43:IMP A(24)
) \ TSB EXTENSION 1680 \\ JMP EXTENSION
1450 .TRB LDA #&10:BNE ret \ TRB EXTE 1699 .jump CMP #&2C:BNE indexer2:JSR A
NSION (22) :CMP #&58
1460 \ STZ EXTENSION 1709 BNE indexer2:JSR A(22):CMP #&29:B
1479 .STZ JSR A(22) :CMP #&28:BEQ indir NE indexer2
err 1710 LDA #&7C:STA &29:JMP A(23)
1480 DEC &A:JSR A(28):JSR A(22) 1720]NEXTI%
1490 CMP #&2C:BEQ indexSTZ 1730 ?&B69D=&9C
1500 LDA #&64:STA &29:LDA &2B:BNE abso 1749 ENDPROC
lute:JMP A(24) 1750 2
1519 .absolute LDA #&9C:STA &29:JMP A(1760 DEFPROCaddress
23) 1770 DIM A(28)
1520 .indexer2 BNE indexerr 1780 FORS=@TO28:READ A(S) :NEXT
1530 .indexSTZ JSR A(22) 1790 ENDPROC
1540 CMP #&58 1800 :
155¢ BNE indexerr 1819 DATA &BF2F,&BF89,&BF34,&BF30,&BF3
1560 LDA #&74:STA &29 1,&BE26,8BE27,&BF68,&BF8A
1570 LDA &2B:BNE absolutind 1820 DATA &BF8B,&BF97,&BF35,&BF36,&BFD
1580 JMP A(24) 2,&BFD3,&C04E,&BEAC,&BE44 ,&D045
1590 .absolutind LDA #&9E:STA &29 1830 DATA &BF8C,&C054,&BFA4,5&C2B6,&BFB
1600 JMP A(23) C,&BECA,&B7FD,&B7FE,&BFF@,&C043 5=

HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS

BEEPLESS BREAK - James Percival
Hold down Ctrl and Escape while the Break key is pressed and the Beeb wogé%
Beep

BASIC DIFFERENCE - Des Fisher

In Basic I the function LEN(STRS$(4601/100)) will return 5. However, in Basic II
this function gives 11 as the number 4601/109 has not been rounded down but is
treated as 46.0190001.

USES FOR SQUARE BRACKETS - John Blackburn

A left hand square bracket followed by Return - i.e. [<Return> - is a valid
Basic command and returns the current value of P% in hex.

Using CTRL i11 j i i =)

*SPOOL USES - C.T. Marshall

*SPOOL is more versatile than you might think. For example, you could have a
program that had a *SPOOL <filename> at the start, read some character definitions
from DATA statements, and then output the necessary Basic statements to redefine the
character. These would then be in the file ready to redefine the characters at a
later stage just by i he file back in.

BUG IN EPSON MX8@ - Richard Sterry

If you have an Epson MX8@ type 3 (there is some variation even among the type
3s) then you will probably find that if you attempt to select linefeeds of 1/8", and
have set the DIP switches to use a 'slashed' zero, then you will find that it does
not respond to this. The way round this is to use a 9/72" linefeed.

BEEBUG MAY 1985 Volume-4 Issue 1

13

MUSIC SYSTEMS FOR THE BEEB

Reviewed by Geoff Bains, Steve Ibbs and David Reed

The BBC Micro itself has much to offer the music enthusiast but it also forms an ideal
base for the addition of more sophisticated hardware. We look this month at some of
the delights now available to tempt the serious user.

At more than the price of the Beeb,

the Clef Music System has to be
something special. It is. It is a
complete music system with synthesizer,
keyboard, and software ready to plug
into your BBC micro for studio or stage
work.

The normal method of sound
synthesis used on cheap synthesizers is
to produce a waveform rich in
harmonics, like a square wave, and then
filter out the unwanted overtones to
produce the required sound. The Clef
system tackles the problem in a
different way. Sounds are created by
programmable digital oscillators
capable of producing any wave shape. 32
sound generators are available, each
with its own programmable envelope and
keyboard touch sensitivity. Up to 4
sound generators can be assigned to
each voice, giving a minimum of 8-note
polyphony available on the 61 note (5
octave) keyboard included.

Software is provided on both disc
and ROM. Once the software 1is loaded
from disc the keyboard can be played,
and different preset instruments
selected. One problem is that the
keyboard has to be turned off before an
instrument can be changed. 18 different
voices are available using the keys
1-9, and Shift 1-9. I wonder why the
function keys haven't been used?
Nevertheless the default set of sounds
isr nots atitallwibad, . if . aiselittle
unimaginative. Pieces can be recorded
in 'real-time', and then played back
instantly with all dynamic and pedal
variations included. They can then be
stored on disc for later recall.

Selecting 'M' displays the menu
options, the first of which is the
boot-up option. The second enables any
of the sounds to be completely altered
by changing the number of oscillators,
the waveform, the fairly comprehensive
envelope parameters, touch sensitivity,
sustain pedal etc. Any voice with
altered parameters can then be filed as
a new instrument.

The third option involves creating
new sets of instruments, to provide
almost limitless numbers of voices, at
least 1in theory. This sub-menu also
gives a hint of further goodies to
come, because selecting one option (new
table creation) produces the message
'Not yet available', and a return to
the menu!

The fourth option enables
waveforms, the very stuff of voices, to
be manipulated or new ones created,
which can then be filed and loaded as
new waveform sets. There are 16
waveforms stored in the ROM which
cannot be altered, and a further 16
that are modifiable. In addition the 4
'primary' waves of sine, square,
triangle, and sawtooth can be selected

BEEBUG

MAY 1985

Volume-4 Issue 1

14

and added. Error trapping should be
better here, because if a waveform is
selected, stupidly, with an initial
amplitude of @ a 'division-by-zero'
message appears and the program has to
be re-run.

A graphics display of the waveform
is produced and any harmonic up to the
25th with a relative amplitude of 1-100
may be added, with the result
automatically redrawn. The ‘'Analyser'
option enables any waveform to be
analysed to give a listing of the
harmonic content.

The possibilities are badly limited
by the software at present available.
The most glaring omission is that the
system does not give track-on-track
recording with editing facilities,
different voice for each track etc. The
musical possibilities should be
exciting, but aren't, because of the
software limitations. In terms of
hardware I expect a much better finish
for a system at this price. The
wood-grained effect on the cabinet
looks cheap, and doesn't do the concept
justice. The output is in the form of
two jack sockets for connection to a
stereo amp - yes, it's stereo - and the
sound quality is acceptable, but
doesn't match synthesizers in the same
price range. There is too much output
filtering, causing the sound to be
rather muffled and lacking in bite.

The software flows nicely from one
menu to another and a group of children
soon worked it out without the benefit
of the instruction notes, which are
very poor. The musical examples would
also benefit from being played better
and more accurately. The system 1is an
interesting development and one well
worth closer investigation by those
wanting to produce decent musical

sounds with the computer, and who have
developed beyond the internal sound
chip! However, as other similar systems
are bound to come on to the market,
each learning from the mistakes of its
predecessors, Clef will have to update
and improve to stay competitive.

The ATPL Symphony is an add-on
keyboard for the BBC micro that enables
you to really 'play' the internal sound
chip.

The quality of this 49 note (three
octave) keyboard immediately impressed
me, and it makes a smart addition to
the Beeb. It connects to the user port,
and a disc is provided with the
necessary software. The keyboard only
uses the internal sound chip, and that
is obviously its main disadvantage.
Accepting that, it is a nice package,
and well suited for both schools and
home use.

Several sets of sounds are
available, and many more can be created
by the user. Some of the sound effects
are a bit dubious, but the screen
layout is clear and easy to follow. In
addition ATPL provide a superb manual
which explains the nature of sounds and
envelopes in an easily understood way.
Sounds can be saved, but compositions
can't. However, ATPL says that this
option is planned for release in the
near future.

Sounds are held in memory in ten
groups of ten sounds. A group is
selected with the relevant function key
with the shift key and a sound from
that group called up with the function
key alone. The envelope parameters that
make up the sound and a few others such
as the sustain option and the link-up
with the noise channel, are all

—

BEEBUG

MAY 1985

Volume-4 Issue 1

15

provided on screen. These can be easily
edited using only the cursor keys.

New sounds created in this way can
be saved with your own names ready to
be loaded up again later. In this way
you can group together all the sounds
for one musical piece, call up that
group before starting the piece and
select the different sounds as you go.

ATPL supplies a small kit to enable
the computer's audio output to be
connected to a hifi system, surely the
quickest and cheapest way to transform
the sound from mediocre to surprisingly
acceptable. A sustain pedal is another
optional extra and the software is
already tailored to account for this.

The Music 500 is Acorn's latest add

on for the BBC micro and possibly the
most unusual. Launched at the Compec
show in November last year the Music
500 is a programmable high quality
music synthesizer.

Designed by Hybrid Technology Ltd,
and marketed by Acorn, the Music 500 is
the size of a single disc drive and has
its own on-board power supply with
mains switch located at the rear of the
unit. It is connected to the BBC micro
via a 34-way ribbon cable to the 1MHz
bus. The Music 500 unit is designed to

be connected directly to a stereo
amplifier via a standard 5 pin DIN
socket. The front panel of this
synthesizer differs from most others in
as much as there are no knobs to
twiddle, and no music keyboard either.

The Music 500 relies upon the Beeb
for all of its commands which have to
be pre-programmed using its own
language called Ample. The audio output
is very good quality. The sounds are
clear and crisp - a feature the Clef
system could do well to emulate.
Listening to some of the demonstration
programs included on the cassette
provided certainly indicates that the
unit is capable of very varied sounds.
Incidentally there is a tape to disc
transfer program included which allows
you to transfer all of the cassette's
contents to disc if you wish.

There are a total of sixteen
oscillators in the Music 500 each
programmable in a similar way to those
in the Clef system. Initially they are
set up in pairs giving eight separate
voices. However, different config
-urations are possible such as one
incredibly rich voice using all sixteen
channels - something the Clef can't
manage. The channels in a voice can be
offset in pitch from each other, they
can modulate one another using ring,
frequency, or synchronization modu-
lation to allow very complex sounds to
be created. Each channel can be
directed to one of seven stereo
positions to add even more depth to the
sound.

There are 13 programmable, and
initially preset, waveforms for instant
use along with 13 programmable preset
envelopes. These can all be redesigned
to your own specification. As well as
taking preset designs, the waveforms
and envelopes can be set up ‘on the
fly' while music is playing to give an
effectively infinite variety. Waveforms
are designed either in terms of
harmonic content or 'graphically'. This
latter method can be used along with
the random function to produce pseudo
noise for percussion effects. Envelopes
can also be defined in two ways. Either
a normal ADSR construction can be used
or alternatively a more complex
multi-segment construction of your own
can be initiated. —

BLEBUG

MAY 1985

Volume-4 Issue 1

16

The User Guide that comes with the
Music 500 is rather disappointing. The
glossy cover hides pages printed with a
dot matrix printer. It would seem that
it was put together in somewhat of a
hurry as it has some odd page numbers
while others are blank.

The guide is split into a tutorial
and a reference section. The tutorial
part is very poor. It covers little
ground in a most confusing manner.
However, the reference section contains
a dictionary of Ample words and that is
where a many of the joys of Ample are
to be found hidden.

Ample is a word based language.
That 1is, 'programs' are user defined
words that call up other user defined
or predefined words. Any word can be
called up into a text buffer and edited
in the same way as a Basic program is
edited using the cursor, Delete, and
Copy keys. Advocates of Logo will
recognise this programming method. In
this way a typical music program might
be a single word ('play' in the demos)
which calls up first a series of sound
set up words and then further words
that comprise the actual score. This
hierachical structure allows you to
deal with a complex programming task a
piece at a time.

Scoring in Ample is a simple matter
of naming notes. If the note is to rise
in pitch over the preceeding note a
capital letter is used. If the tune
descends, a lower case letter is used,
though an octave number can be defined
for each note if you prefer. In
addition, the note length and starting
pitches are defined numerically and bar
lines can be added. Ample will, if
asked, check your composition for the
correct number of beats to the bar as
it plays it.

The most powerful aspect of Ample
is its multi-tasking ability. Separate
'players' can be scored individually
and then all set playing together, in
time. You can share one player's task
from the keyboard, as he is playing,
and change his instrument with a few
deft stokes of Ample so that, say, a
couple of foot is cut off his bassoon
(or whatever). This means that you can
experiment with the sound of an

instrument ‘'in situ', in the middle of
a piece.

Ample doesn't stop there either.
The predefined words are all definable
too. So that you could, for example,
redefine the 'bar' word to stress the
first note in every bar. The entire
language is amazingly complex and
versatile. It makes the software
efforts of the Clef system 1look
particularly lame.

Whilst it does take time to get
used to the alien nature (at least to
most Beeb users) of Ample, it is
relatively easy to start producing
simple music using only a smattering of
the commands available. I managed my
first composition (a hymn) using four
part harmony in under a week.

You don't have to be a musician to
appreciate the Music 5@¢@. Indeed BAmple
is a more than a little daunting to
those not experienced in programming.
However , a reasonable knowledge of
music and some idea of the nature of
sound is essential to make the most of
this device. For the struggling artist
with no liking for the computer, Acorn
is soon to bring out a keyboard to
complement the Music 500 and some very
impressive software is promised too.

Meanwhile there is quite enough to
get to grips with in the Music 500
pagkage. For £199 it is difficult: to
imagine a more comprehensive musical
add-on for the BBC micro.

If you are desperate for a
keyboard, software is available from
ATPL to interface its Symphony to
Ample. This will cost you about £15 on
top of the £125 for the Symphony
keyboard. The software is in the form
of a keyboard driver and a demo
program. The demo is fairly limited. It
offers only preset sounds from the
keyboard and some pretty horrendous
rhythm tracks. However the demo is only
that - a demo. What you do with the
interfacing software is really up to
your imagination and your skill using
Ample as a programming language. When
you become proficient at using Ample
and decide that you really want to play
the Music 500, Symphony and Ample
together provide a good vent for your
creative urges. 25

BEEBUG

MAY 1985

Volume-4 Issue 1

17

NEW VERSION OF ULTRACALC

David Otley takes a fresh look at this Spreadsheet package

A new version of the Ultracalc
spreadsheet has now been issued by BBC
Soft which has a number of
improvements. In particular it meets
the two major criticisms made in my
comparative review with Acornsoft's
ViewSheet in BEEBUG Vol.3 No.3.
Firstly, it can now operate in any
screen mode allowing an 80 column
display. Secondly, portions of the
spreadsheet can now be sent to file and

thus be incorporated into a word
processing program. Ultracalc 2 now
represents a highly competitive

spreadsheet program that has a number
of advantages over ViewSheet.

The display changes mean that mode 3
(or mode @) can be used to see the
maximum amount of the spreadsheet at a
time, whilst mode 7 is still available
for spreadsheets requiring the maximum
amount of memory. However, great care
is necessary in changing from mode 7 to
other modes because, if the model is
too big for the available memory in the
new mode, it is completely lost. This
is a serious defect in a professional
spreadsheet program which should really
first check itself whether the
requested mode change is feasible, and
not allow it to be made if there is
insufficient memory available. Other
improvements have been made which allow
inter-column gaps to be supressed on
both the screen display (except in mode
7) and on the printed output.

Output can now be sent to a file as
well as direct to the printer, so that
tables can be prepared for insertion
into documents. This is an important
feature which appears to work
satisfactorily with both View and
Wordwise. In addition, commands can

now be sent directly to the printer to

BEEBUG

MAY 1985

set up appropriate type and line
spacing, albeit in a somewhat
unfriendly manner (e.q. an Epson
printer requires the sequence "/>&0F"
to select condensed print!). The £
sign can also be defined so that it
prints out correctly on a given
printer.

A further feature is that Ultracalc
2 now automatically relocates as HICALC
when used with a 6502 second processor.
Use of a second processor allows the
full memory to be used whatever the
screen mode selected. This relocation
facility gives Ultracalc 2 a worthwhile
advantage over ViewSheet which requires
a different chip for each system. The
manual also claims that Ultracalc can
be used with an Electron, provided that
a ROM board to Acorn specifications is
used. Finally; = Ultracale — 2 .-also
includes a brief HELP facility which
displays a list of the most commonly
used commands.

In conclusion, Ultracalc is now
fully competitive with ViewSheet. It
does not have ViewSheet's screen
windows, but does have variable width
columns. Although significantly slower
both in recalculation times and in
saving models to disc, it has a
somewhat wider range of commands. In
my opinion, it is easier to use because
it does away with the need to refer to
any function keystrip, although some
users may prefer this. Unfortunately,
it is rather more expensive (£80 in
comparison with £60) so, for many users
the choice will be finely balanced.
Both programs represent good value for
money and compare well with those
available on other computers at several
times their cost.

=

Volume-4 Issue 1

OpHHIRA

18

DYNAMIC FREE MEMORY DISPLAY

When developing a program in Basic it is often useful to know just how much memory
is still available at any time. Alan Webster describes a short routine which will display
this information conveniently on the screen and continuously update it for you as well.

There are often occasions when it
is useful to see Jjust how much free
memory is still left in your machine,
both when typing in a program and when

running a program still under
development.
This short utility displays the

amount of free memory left at any time
and updates this information
continually. The routine is useful when

sEtison 34

no REM PROGRAM DEMO
20 REM VERSION BO 1
0 REM AUTHOR ALAN UEBSTER
BEEBUG MAY 1985
50 REM PROGRAM SUBJECT TO COPYRIGHT

“FM=86044+
NI

EW
>10 REM PROGRAM
>20 REM VERSION BO
>30 REM AUTHOR AL AN UEBSTER
>40 REM BEEBUG 198

‘»o REM PROGRAM

> x oo MODE

10 AS mrnm
=170 LEWCAS)
>Ho PRINT LEFTSC(AS, A%

3126 FOR A%

developing programs that
could run out of memory.
The program displays the
words 'FM=&' at the top left
hand corner of the screen, and then
displays the actual free memory in hex.

The routine then displays a number
of spaces after the amount of free
memory at the top of the screen. The
cursor will now alternate between the
current position in your program and
the message at the top of the screen.
On odd occasions, the routine may
interfere with some VDU routines such
as 'clear screen', but this is only a
small problem which can be easily
rectified by typing CLS or VDU12.

Type in the program and save it.
Then run the program and, if no errors
occur, press Return. The free memory
should be displayed at the top of the
screen. If not then check the program
carefully against the printed listing.

SUBJECT TO COPYRIGHT

As soon as the program is
functioning correctly, you can save the
machine code by typing:

*SAVE FREM 900 +110 909 900 (for disc)
*SAVE FREM BO@ +110 BO@ BOJ (for tape)
and re-run the utility at any time by
typing *RUN FREM.

PROGRAM NOTES

Most of the important lines in the
program are followed by comments, but
here is a brief description of each
part.

Lines 1040 Re-program the event vector
to 1080 to point to the start of
our routine. Save the old
vector for 'linking'
event driven routines
and set our routine to

«FM=86001 >
SNEW
>16 REM PROGRAM DEMO
0 REM VERSION BO
o REF AUTHOR

SUBJECT TO COPYRIGHT

'vertical

respond to the

sync' event (event number
4).
Lines 1280 Output the free memory
to 1310 value in 4 byte hex.
Lines 1430 Print out the text
to 1480 following the JSR. It gets
the program counter and
prints the text from there
until it meets a NOP
instruction (&EA in 1line
152¢0. It then JuMPs back to

the NOP instruction. This
is used as a quick way to
output easily any piece of
text.

BEEBUG

MAY 1985

Volume-4 Issue 1

10 REM PROGRAM FREMEM
20 REM VERSION B@.38
30 REM AUTHOR Alan Webster
40 REM BEEBUG MAY 1985
50 REM PROGRAM SUBJECT TO COPYRIGHT
60 :
100 V=&FFEE:F=&FFF4
110 D%=10:*FX13 4
120 PROCfilesys
139 PROCassemble
140 CALLbase
150 CLS:PRINT
160 END
179 ¢
100@ DEFPROCassemble
19010 FOR A=¢ TO 3 STEP 3
1020 P%=base
103¢ [OPT A
1040 LDA&22@:STAbuf
105@ LDA&221:STAbuf+1
vector
1060 LDA#start MOD 256:STA &220
1970 LDA#start DIV 256:STA &221 ; Our
new Event vector
1980 LDA#14:LDX#4:JSRF ;
tical Sync.
1090 LDA#D%:STAbuf+7
1100 .start
111¢ PHA:TYA:PHA:TXA:PHA
1120 LDA#&DA:LDX#0:LDY#255:JSRF ; VDU
queue empty?
1130 TXA:BEQsplit:JMPendit ; If no the
n end routine
1140 .split:LDA#117:JSRF:TXA:AND#&40 ;
Are curor and edit cursor split?
1150 BEQdec:JMPendit:.dec:DECbuf+7
1160 BEQgo:JMPendit:.go:LDA#D%:STAbuf+7
1178 .cryon
1180 LDA&318:STAbuf+2
1190 LDA&319:STAbuf+3 ;
ition
1200 SEC:LDA&4:SBC&2:STAbuf+4
1210 LDA&5:SBC&3:STAbuf+5 ; Calculate
free memory
1220 LDA#31:JSRV:LDA#@:JSRV:JSRV ; Put
cursor at 9,9
1230 JSRtext ; Routine to print text b
etween JSR and NOP instructions

; Get old Event

Event 4 - Ver

Get Cursor pos

1240]

1250 AS$="[FM=&":5P%=AS$

1260 P%=P%+LEN (AS)

1270 [OPT A:NOP

128@ LDAbuf+5:JSRshift

1299 LDAbuf+5:AND #&F:JSR disp

130@ LDAbuf+4:JSRshift

1319 LDAbuf+4:AND #&F:JSR disp ;
t free memory in Hex

1320 LDA#93:JSRV:LDA#32:JSRV:JSRV

1330 JSRV:JSRV

1340 LDA#31:JSRV:LDAbuf+2:JSRV ;
re cursor

1350 LDAbuf+3:JSRV

1360 .endit:PLA:TAX:PLA:TAY:PLA:JMP (b
uf) ; Return from routine

1370 RTS

1389 .disp

13990 CLC:CMP#12:BCC num:CLC

1409 ADC#55:JSRV:RTS ; Value is A-F
1419 .num:ADC#48:JSRV ; Value is 0-9
1420 RTS

1430 .text:PLA:STA&72 ;
om PC until NOP

1440 PLA:STA&73:LDY#0
1450 .text2:INC&72:BNEtext3

1460 INC&73:.text3:LDA(&72),Y

1470 CMP#&EA:BEQtext4:JSRV

1480 JMPtext2:.text4:IMP(&72)

1490 .shift:AND#&F@:LSR A:LSR A ; Get
hi-byte

1509 LSR A:LSR A:JSRAisp:RTS

1510 .buf:IJMP@:IMP@:IMPY ; Quick way o
f reserving 9 bytes!

1520]

1530 NEXT

1540 ENDPROC

1550" 2

1560 DEFPROCfilesys

1570 A%=0:Y%=0

1580 A%=(USR&FFDA)AND&FF@00@ DIV&1 0000

1590 IF A%=0 END

1600 IF A%<3 base=&B@0

1619 IF A%>2 base=&900

1620 ENDPROC

Outpu

Resto

Prints text fr

=

A 2o AR S S T 1 £ TS RGBS O o S ST

HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINT

BASIC SPEED CONTROVERSY - Several members

Contrary to the 'Faster Basic' hint in BEEBUG Vol.3 No.6, a subroutine is not
always faster than a procedure. In fact their relative speeds depend on the program
composition. When a GOSUB is executed the entire program is searched, line by line,
for the destination line number. The locations of procedures are stored by Basic
after the first call to the procedure. Subroutines close to the start of a program
will therefore be found and executed very fast. Procedures are, after their first
call, always accessed in the same time regardless of their position. It is not
possible to say that one method is overall faster than the other.

BEEBUG MAY 1985 Volume-4 Issue 1

20

MORE ROMS FOR YOUR BEEB

We report this month on some of the latest ROMs that you might be tempted to
purchase for your Beeb.

s

The Basic Extensions ROM has been
on sale for about six months now, and
my first impression on receiving it was
one of delight.

The ROM enhances the number of
direct mode commands, and also adds
more instructions to Basic
(instructions that can be used without
using the command line interpreter). It
is supplied with a 44 page A5 booklet
to tell you all about the 39 new
commands .

Some direct mode commands that are
provided include: CONT to continue a
program's execution after an error,
DTOB and BTOD which convert binary to
decimal and vice versa, SECURE which
'locks' your machine until the correct
password is typed, and VIEW which lists
a file from tape or disc without
harming the program in memory.

Some of the Basic

language
enhancements include CASE-ENDCASE,
WHILE-ENDWHILE, WHEN, ENDLOOP, ENDEXIT,
ENDIF and EXITIF for structured
programming perfectionists, FPOP and
GPOP to remove the last FOR-NEXT/RETURN
address off the stack, while SETTEXT,

SETCOLOUR and SETGRAPHICS are all to do
with setting up windows and colours.

The operation of these new features
is somewhat annoying as some of the
abbreviated keywords take over from
original Basic commands, which can
cause frustration. Also, upon running a
Micro Power games disc, we found that
the software would not run properly, if
at all, and had to disable the ROM
beforehand.

Overall, the Basic Extensions
package is worth having if you want the
enhanced structured programming
features, with the added bonus of
various other commands for program
development. The ROM is a good idea
that offers some nice features, but
would have benefitted from more time in
the original design and planning. As it
is, you will need to decide how
important these extensions are for you.

TD ROM 1is an unusual device that
promises to be a boon for disc-using
games fans. The TD stands for 'tape to
disc'. That is what this ROM is all

about. It transfers your cassette
programs to disc ready for near instant
loading. To avoid the wrath of the
software houses, TD ROM also has to be
present in your machine when the game
is loaded back into the machine from
disc for use. In fact, Vine micros
claim that «clever random batch
differences mean that the same TD ROM
that saved the program must be the one
to load it.

BEEBUG

MAY 1985

Volume-4 Issue 1

21

TAPE/DISC ROM from Vine Micros

£c) 1985 Written by R.P.D. Mallett

Searching
Dimc prog filename
SPACETN

Last block loaded

B1 1 :
ock length
Block byte >

Empty block

START TAPE Press SPACE to load

Legal difficulties aside, TD ROM is
certainly simple to use. Typing *TD
summons forth a menu giving you the
choice of loading and running a program
transferred previously, seeing the
comprehensive on screen instructions,
or transferring a new program to disc.

The transferral procedure is also
easy to follow. You can either specify
the number of tape files that make up
the game and leave it to get on with it
or opt to decide which is the last file
when each file is loading.

TD ROM coped well with most games
tried but has no chance with any
software that alters the cassette
filing system in any way. An increasing
number of games are resorting to such
methods of protection - Fortress,
Blitzkrieg, Dune Rider, Starmaze, and
Manic Minor amongst them. More
worryingly the ROM seemed to have an
adverse effect on the efficiency of the
cassette interface. Several programs
(notably Software Invasion games) that
load successfully normally, refused to
load under the auspices of TD ROM for
transfer to disc.

The TD ROM works well within these
limitations. However a more
comprehensive version, though unlikely,
would be preferable.

BEEBUG

MAY 1985

Watford Electronics
EPSON NILQ ROM WVi.O

This is the normal EFSON
dot matrix print.

As you can see, there is
aquite a difference between
this type of printing and
the NLQ printing. NLQ can
also underline and enlarge .

Another feature of NLQ is:
Proportional Spacing!

And you can have them
altogsethexr?

The new NLQ (Near Letter Quality) ROM
is a simple and easy to use ROM which
is intended to provide high quality
printout (almost 1like a diasy-wheel)
from your Epson printer. The three
printers supported are the FX80, RX80
and the FX100.

To access this high quality print,
you need to type two simple commands.
Firstly, *NLQ8J or *NLQ1@0 are used to
set the number of characters per line,
and secondly, to activate the print
routine, you use *NLQTYPE, VDU1,129 or
0C129 (in Wordwise). To use the NLQ
with View you must buy an NLQ driver
from Watford at an additional cost of
£7.50.

The printout from an Epson using
this ROM is, as you can see from the
example, much better than the normal
Epson print. The print quality is now
very close to that of the Kaga Taxan
printer reviewed in BEEBUG Vol.3 No.8.
The printing speed is somewhat slower
than normal, but this is to be expected
as each line is printed in two passes.

Overall, this is a good piece of
firomware that makes good use of the
Epson's printing capability to provide
a performance comparable to that of
more recent printers.

Volume-4 Issue 1

22

You'd be forgiven for thinking that
there are not enough unimplemented
utilities for the Beeb to fill yet
another ROM. However, Software Services
don't agree. Floppywise is a collection
of some 14 utilities, mostly concerned
with discs, and is claimed to work with
any Acorn compatible DFS.

Some of the utilities have a
familiar sound - FORMAT and VERIFY -
and others are variations on a well
known theme - MCOPY will copy more than
one file from disc to disc and RCOPY
will rename and copy a file all in one
operation.

There are some novel ideas too.
CONVERT will change a 40 track disc to
80 tracks, retaining all the data.
AUTOSAVE will automatically save your
program every four minutes as a backup.
ASCII will display the codes for all
the characters available on the Beeb.
Several commands are involved with
protection. You can use Floppywise to
create protected discs and to backup
commercial protected software.

Floppywise is fully tube compatible
and also adopts BEEBUG's letter prefix
option to avoid *command conflict.

Floppywise is useful but not
indispensable. At nearly £30 it is also
pretty expensive. However, if you feel
you need this sort of ROM, Software
Services are offering it for £26.95
(plus £1 pap) to Beebug members.

Dump Out 3 is yet another

screen dump
ROM for the BBC which deals with all
graphics modes (9,1,2,4,5,7 and 8
claims the manual), and incorporates a
fast text only dump.

Dump Out 3 will work with printers
from Seikosha, Epson, NEC, Shinwa, Star
and Tandy and it allows you to use mode
7 as a (chunky) graphics screen, using
two new OSWORD calls within the ROM.
These commands are to read and plot
mode 7 graphics pixels.

vy

At this point in the manual, the
reading becomes rather clouded and
will, I'm sure, put some people off.

The speed of the dump is something
else. It 1is the slowest graphics and
text dump (in machine code) that I have
seen to date. The whole ROM is just a
scaled down version of Computer
Concepts Printmaster, but with mode 7
plotting added.

If you haven't got a printer dump
on ROM, then this is worth considering
along with Printmaster. Check which
features of each ROM suit your needs

best and make your decision on that.

failing of the Beeb when

A major
compared to other home micros these
days 1is 1its Basic editing facilities.

Beebed hopes to right the balance a
little with a full screen editor for
BBC Basic programs.

Beebed bears a striking resemblence
to Wordwise in style and use. Typing
*Beebed puts your machine into edit
mode. A mode 7 screen displays a page
of your program which can be edited by
moving the cursor to the section
requiring attention and just typing in
the corrected version. The function

—p 49

BEEBUG

MAY 1985

Volume-4 Issue 1

FLOWCHART GENERATOR

Flowcharts can provide invaluable aid when developing more complex programs and
also provide a useful form of documentation. Nigel Balchin describes a utility which
harnesses the graphics power of the Beeb to generate flowcharts on the screen for

subsequent printing.

Flowcharts can be a most useful aid

to the development of programs,
particularly more complex ones, and
they also have a role to play in

documenting the structure and logic of
a program once it has been fully
developed and tested. You never Kknow
when you might want to modify an old
program, or correct some unexpected
bug, and without some kind of help it
is all too easy to forget how a program
functions even if totally clear at the
time of writing.

That's where this utility will
prove so handy. It allows a flowchart
to be quickly and easily drawn on the
screen including any text that you want
to include as well. A flowchart can be
saved to cassette or tape for future
reference, and recalled at any time for
further modification or for outputting
to a dot matrix printer.

It would also be quite feasible to
replace the flowchart symbols by others
that can be laid out on a rectangular
grid such as circuit diagrams. See the
program notes for more detail.

USING THE FLOWCHART GENERATOR

The program is entirely in Basic and
should be entered and saved to cassette
or disc as wusual. If you are going to
run the program on a disc system (or
other system with PAGE set higher than
the &E@@ of cassette systems) you will
need to set PAGE to &1200 before
loading and running the program (or use
a suitable move-down routine) .

GRID SIZE

The screen is divided up into a
rectangular grid to assist construction
of a flowchart. You can select the size
of grid required by entering a whole
number in the range 1 to 16 when asked.
The relationship between number and
size of grid is shown in the Table 1.
Intermediate values will will generate

HJ

H

THEA

™,
l_.-'

HHK

L

o H

H.

(HH

Table 1

proportionally equivalent grid sizes.
In practice you will probably find
sizes 2 or 4 the most useful.

The screen will then be cleared and
a cursor (*) displayed to mark the top
lefthand grid position. If you want to
see the grid more clearly, Shift-3 acts
as a toggle switch, drawing and
removing actual grid lines on the
screen. When drawing flowchart symbols
and at other times the grid, if
visible, will be <cleared before
proceeding and then restored after. As
this takes a little time you are
recommended to use the grid lines
sparingly and remove them from the
screen (using Shift-3) before selecting
flowchart symbols or entering text.

DISPLAYING FLOWCHART SYMBOLS

The range of flowchart symbols built
into the program 1is shown in Table 2
(produced using this program). The
symbols are broadly arranged in pairs
using a function key with or without
Shift. A few symbols use the Ctrl key
and a function key. To create a
flowchart, simply use the cursor keys
to move to the desired grid position
and then select the symbol.

At any time, a previously drawn
symbol can be deleted by moving to its
grid position and pressing Delete. Note
that two or more symbols drawn in the
same position simply overlap.

BEEBUG

MAY 1985

Volume-4 Issue 1

24

o L $hift
{5 el o el T wshift D Shapes and
. connectors
2 <> Shift <= available,
23l shift O
4 Use the function
" — sshift — keys and function
keys + Ctrl
5 — whift — + Shift
% — shift —
1 —— iCtel #Shift —>— This is size 2
(R el | sshift
9 ShUE sshift LOAD
Table 2 |
ENTERING TEXT
You enter 'text mode' by pressing
Shift-2 (i.e."). The cursor (*) is

moved to the top lefthand corner of the
screen and can be moved in character
increments with the cursor keys. Text
can be entered anywhere on the screen,
and characters deleted with the Delete
key. This can leave 'holes' in the
flowchart symbols but the damage can be
repaired by redrawing the flowchart
symbol later. The problem can also be
avoided by placing the cursor over the
character to be deleted and retyping
the character. You leave text mode by
pressing either Return or Escape.

SAVING AND LOADING FLOWCHARTS

Saving and loading of flowcharts is
accomplished with f9 and Shift-f9
respectively. In each case simply enter
the relevant filename. Be careful as
the program does not <check for
situations such as overwriting existing
files or seeking non-existent files.
The grid size is saved along with the
flowchart so that when you reload a
screen the grid size is automatically
readjusted if necessary.

PRINTING FLOWCHARTS

Hardcopy output of the displayed
flowchart is selected by pressing the
Copy key. The program assumes that a
suitable screen dump has previously
been loaded at &D@@ and that the entry
point is &D@2 (see line 2440).
Alternatively you could replace this
line by a call to a printer dump (we
used Dumpmaster from BEEBUGSOFT), and
you can similarly print out any
flowcharts previously saved to cassette

or disc. Examples of flowcharts printed
in this way accompany this article.

EXIT FROM THE PROGRAM

You can exit from the program by
pressing Escape. This also gives you
the opportunity of clearing the screen
ready to draw a new flowchart. This
option is also available when you
select printer output.

PROGRAM NOTES

The function keys are set in lines
120 to 140 to generate ASCII codes. The
Ctrl-function key combinations with
values 181, 183 to 187, and 189 are

currently unused and could provide
additional flowchart symbols.
Alternatively, as mentioned earlier,

all the keys could be set to generate
quite different symbols. Each function
key combination is converted to a
number in the range 1 to 30 used in an

ON-GOSUB statement at 1line 1250. In
turn this calls a corresponding
procedure (see lines 1280 to 151¢). By

examining the existing procedures, and
by experimenting a little, you should
not find it too difficult to write some
new procedures or alter existing ones.

All the procedures have names which
make their functions largely self-
explanatory. Note how HIMEM is adjusted
at line 170 to protect the byte
immediately below mode @ screen memory,
used to hold the grid size when saving
and loading screens. This 1is handled
by PROCsaveload (see line 2820 onwards)

which uses the OSCLI call of &FFF7.

10 REM Program FLOWCHT

20 REM Version B2.2

30 REM Author Nigel Balchin

40 REM BEEBUG May 1985

50 REM Program subject to copyright
60 :

100 MODE7

110 ON ERROR GOTO 219

120 *FX225,161

130 *FX226,171

140 *Fx227,181

15¢ vbU23,1,0;0;0;0;

160 PROCtitle:PRINTTAB(5,22)CHRS136CH
R$129"Press the space bar to begin.":RE
PEAT:A%=GET:UNTIL A%=32

170 MODE @:HIMEM=HIMEM-1

180 PROCinitialise:PROCmainloop:MODE7
:PROCresetmachine

BEEBUG

MAY 1985

Volume-4 Issue 1

25

This is a sample size 4,

RAsterisk # acts as the cursor which
is moved using the cursor keys.

To enter TEXT mode enter "

To dump to Printer press COPY

“ [[Proc B]]
To leave TEXT mode use Escape or Return
:’7';; List
T Processed To switch grid on or off enter H.
The grid will be removed before
drawing, text, printing or saving

and loading of files,

Use f9 and Shift-f9 to save and load
floucharts,

190 END

200 :

210 ON ERROR OFF:MODE 7:REPORT:PRINT"
at line ";ERL:PROCresetmachine:END

220 ¢

1000 DEF PROCinitialise

1010 DIM string% 30

1020 *FX4,1

1030 *FX11,0

1040 *FX229,1

1050 GCOL4,@:GCOL4,129:COLOUR@:COLOUR1
29:CLG

1060 PROCsize:finished=FALSE:G%=FALSE
107¢ ENDPROC

1080 :

1090 DEF PROCmainloop:VDUS5S

1100 REPEAT

11190 MOVE GDXP*HS*2,GDYP*HS:PRINT"*"
1120 A%=GET:MOVE GDXP*HS*2,GDYP*HS:PRI
NT"*"

1130 IF A%=27 THEN PROCgridtest:PROCer
rorcheck:GOTO 1260

1140 IF A%=136 THEN GDXP=GDXP-1:IF GDX
P=@THEN GDXP=XMAX

1150 IF A%=137 THEN GDXP=GDXP+1:IF GDX
P>XMAX THEN GDXP=1

1160 IF A%=138 THEN GDYP=GDYP-1:IF GDY
P=@ THEN GDYP=YMAX

1170 IF A%=139 THEN GDYP =GDYP+1:IF &
YP>YMAX THEN GDYP=1

1180 IF A%=127 THEN PROCclear (GDXP,GDY
P)

1190 IF A%=135 THEN PROCdump

1200 IF A%=34 THEN PROCtext

1210 IF A%=35 THEN G%=NOT G%:PROCgrid
1220 IF A%<161 OR A%>190 THEN 1260
1230 XP=GDXP:YP=GDYP:A%=A%-160

1240 PROCgridtest:GCOL@, d: PROCbase (XP,
YP) :VDU 29,XB-HS;YB+FS;

1250 ON A% GOSUB 128¢,1300,1330,1350,1
390,1400,1470,1440,1410,1500,1290,1310,
1340,1360,1380,1370,1480,1450,1420,1510
,1520,1320,1520,1520,1520,1520,1520,146
0,1430,1520,1520:VDU29,0;d; : GCOL4, @: PRO
Cgridtest

1260 UNTIL finished

1270 ENDPROC

1280 PROCstart :RETURN

1299 PROCstop:RETURN

1309 PROCrect :RETURN
1310 PROCprocfn:RETURN

1320 PROCinout :RETURN

1330 PROCdecision("L") : RETURN
1340 PROCdecision("R") : RETURN
135@ PROCtopcon:RETURN
1360 PROCbotcon:RETURN
1378 PROCrightdown:RETURN
1380 PROCrightup:RETURN
1390 PROCleftup:RETURN
1400 PROCleftdown:RETURN
1410 PROCvertical ("U") :RETURN
1420 PROCvertical ("D") : RETURN
1430 PROCvertical ("N") : RETURN
1449 PROChorizontal ("L") : RETURN
1450 PROChorizontal ("R") : RETURN
1460 PROChorizontal ("N") : RETURN
1470 PROClefttee:RETURN
1480 PROCrighttee:RETURN
1499 PROCconnect: RETURN

1509 PROCsaveload ("SAVE") : RETURN

1510 PROCsaveload ("LOAD") : RETURN
1520 RETURN

1540 DEF PROCclear (X,Y) : PROCgridtest
1550 GCOL@, 1:PROCbase (X,Y) :VDU29,XB-HS
; YB+FS; :MOVE HS,NS:MOVE -HS,NS:PLOT 85,
HS,-FS:PLOT 85,-HS,-FS:GCOL4,d: VDU29 a;
@; : PROCgridtest : ENDPROC

1560 :

1570 DEF PROCtext

1580 *FX202,48

1590 *FX12,0

1600 PROCgridtest:XTS=2:YTS=(65*S)MOD
50+10+982: XT=XTS: YT=YTS

1610 REPEAT

1620 MOVE XT,YT:PRINT"*":REPEAT:AS$S=GET
$:UNTIL AS<O>O"":MOVE XT,YT:PRINT"*":A%=A
SC(A8)

1630 IF A%=136 THEN XT=XT-16:IF XT<XTS
THEN XT=XTS

1640 IF A%=137 THEN XT=XT+16:IF XT>125
@ THEN XT=XTS:YT=YT-50:IF YT<50 THEN YT
=YTS

1650 IF A%=138 THEN YT=YT-25:IF YT<50
THEN YT=YTS:IF XT<1234 THEN XT=XT+16:IF
XT>125@ THEN XT=XTS

1660 IF A%=139 THEN YT=YT+25:IF YT>YTS
THEN YT=YTS

1670 IF A% =13 THEN 1710

BEEBUG

MAY 1985

Volume-4 Issue 1

Text can be placed anywhere and
sub or superscripts can be
used.

|

1680 IF A%>31 AND A%<127THEN MOVE XT,Y
T:PRINT CHRS (A%) :XT=XT+16:IF XT>125@0 TH
EN XT=XTS:YT=YT-5@0:IF YT<@ THEN YT=YTS

1690 IF A%<>127THEN1710

1700 MOVE XT,YT:PRINT CHRS (A%) :XT=XT-1
6:1IF XT<@ AND YT<=YTS-5@ THEN YT=YT+50:
XT=1266 ELSE IF XT<@ THEN XT=XTS

1710 UNTIL A%=13 OR A%=27

1720 PROCgridtest

1730 *FX11,0

1740 *FX202,32

1750 ENDPROC

1760 :

177¢ DEF PROCgrid:FOR I%=@ TO YMAX:MOV
E30,HS*I1%+10:PLOT21 ,XMAX*2*HS+30,HS*I %+
10:NEXT:FOR I%=0 TO XMAX:MOVE2*HS*I%+30
,10:PLOT21,2*HS*I%+30, YMAX*HS+1 @ : NEXT

1780 ENDPROC

1790 DEF PROCgridtest:IF G% THEN PROCY
rid

180@ ENDPROC

1810 :

1820 DEF PROCstart:PROCoval :MOVE @,-TS
:DRAW @,-FS:ENDPROC

1830 :

1840 DEF PROCstop:PROCoval :MOVE @,TS:D
RAW @,NS:ENDPROC

1850 :

1860 DEF PROCoval :MOVE -FS,-TS:DRAW FS
,=TS:PROCsemi (1) :DRAW -FS,TS:PROCsemi (2
1) : ENDPROC

1879 :

1880 DEF PROCsemi (CT)

189¢ IF CT=1 THEN XP=FS:YP=@ ELSE XP=-
FS:YP=0

1900 FOR I=CT TO CT+19:DRAW XP+TS*SIN (
RAD (9*I)) , YP-TS*COS (RAD (9*I)) : NEXT

1919 ENDPROC

1930 DEF PROCrect:MOVE @,NS:DRAW @,TS:
DRAW -SS,TS:DRAW -SS,-TS:DRAW SS,-TS:DR
AW SS,TS:DRAW @,TS::MOVE @,-TS:DRAW 0,-
FS: ENDPROC

1949 :

1950 DEF PROCprocfn:PROCrect:MOVE 10-S
S,TS:DRAW 10-SS,-TS:MOVE SS-18,-TS:DRAW

SS-10, TS : ENDPROC

1960 :

1970 DEF PROCinout:MOVE @,NS:DRAW @,TS
:DRAW -FS,TS:DRAW -SS,-TS:DRAW FS,-TS:D
RAW SS,TS:DRAW @,TS:MOVE @,-TS:DRAW @,-
FS:ENDPROC

1980 :

1990 DEF PROCbase (X,Y) : XB=X*HS*2+30:YB
=(Y-1) *HS+10@: ENDPROC

2000 :

2019 DEF PROCdecision(DIRS):MOVE @,NS:
DRAW @,TS:DRAW-SS,J:DRAW @,-TS:DRAW SS,
@:DRAW 0,TS:MOVE @,-TS:DRAW @,-FS

2020@ IF DIR$="R"THEN MOVE SS,@:DRAW HS
+9 ELSE MOVE -SS,@:DRAW -HS,@

2039 ENDPROC

2040 :

2050 DEF PROCtopcon:PROCconnector :MOVE

0,-TS:DRAW @,-FS:ENDPROC

2060 :

2079 DEF PROCbotcon:PROCconnector :MOVE
@,TS:DRAW @,NS:ENDPROC

2080 :

2090 DEF PROCconnector :XP=0:YP=0:MOVE
XP,YP-30*S:FOR I=1 TO 40:DRAW XP+S*30*S
IN(RAD(9*I)) ,YP-S*30*COS (RAD(9*1)) :NEXT
: ENDPROC

2100 :

2119 DEF PROChorizontal (dir$) :MOVE -HS
,@:DRAW HS, 0

2120 IF dir$="N" THEN 2150

2130 MOVE @,-TS:IF dir$="R" THEN DRAW
TS,d ELSE DRAW -TS,@

2140 DRAW @,TS

2150 ENDPROC

2160 :

2170 DEF PROCvertical (dir$) :MOVE @,NS:
DRAW @,-FS

2180 IF dir$="N" THEN 2210

2190 MOVE -TS,d:IF dir$="U" THEN DRAW
¢,TS ELSE DRAW @,-TS

2200 DRAW TS,0

2210 ENDPROC

2220 :

2230 DEF PROCleftup:MOVE -HS,@:DRAW @,
@:DRAW @,NS:ENDPROC

2240 :

2250 DEF PROCleftdown:MOVE -HS,@:DRAW
0,0:DRAW @,-FS:ENDPROC

2260 :

1924 ¢ 2270 DEF PROCrightup:MOVE HS,@:DRAW @,
@:DRAW @,NS:ENDPROC
2280 :
BEEBUG MAY 1985 Volume-4 Issue 1

27

2299 DEF PROCrightdown:MOVE HS,@:DRAW
@,9:DRAW 0,-FS:ENDPROC

2300 :

2319 DEF PROCrighttee:MOVE @,NS:DRAW @
,—FS:MOVE @, @:DRAWHS, d: ENDPROC

2320 :

2330 DEF PROClefttee:MOVE (,NS:DRAW @,
-FS:MOVE @,@:DRAW -HS,d:ENDPROC

2340 :

2350 DEF PROCconnect:IF X<XMAX THEN MO
VE @,-FS:DRAW HS*2,-FS:ENDPROC

2360 :

2370 DEF PROCwait:PRINTTAB(26,0) "Press
space bar to continue":REPEAT:UNTIL GE
T$=" ":ENDPROC

2380 :

2390 DEF PROCAump

2400 PROCgridtest

2419 IF NOT FNyesno (300,1020,"Do you h
ave a printer ready (Y/N) ?") THEN 2440

2420 *FX21,3

2430 CALL&D@2

2440 PROCerrorcheck

2450 ENDPROC

2460 :

2470 DEF PROCerrorcheck

2480 finished=FNyesno (300,1020,"Have y
ou finished (Y/N) 2")

2499 IF finished THEN 2520

2500 IF FNyesno (300,1020,"Clear screen

(Y/N) ?") THEN GCOL@,129:CLG:PROCsize:
GCOL4, 1

2510 PROCgridtest

2520 ENDPROC

25392

2540 DEF FNyesno (X%,Y%,msg$S)

2550 MOVE X%,Y%:PRINT msgS$;

2560 REPEAT:A$=GETS$:UNTIL INSTR("YyNn"

2570 MOVE X%,Y%:PRINT msgs$;

2589 IF AS$="Y" OR AS$="y" THEN =TRUE EL
SE =FALSE

2590 :

2600 DEF PROCresetmachine

2610 *FX4,0

2620 *FX12,0

2630 *FX229,0

2640 *FX225,1

2650 *FX226,128

2660 *FX227,144

2670 VvDU23,1,1;0;0;0;

2680 ENDPROC

2690 :

2700 DEF PROCtitle:FOR I%=0 TO 1:PRINT
TAB(9,1%+5) ;CHRS131CHRS$141;"Flowchart G
enerator" :NEXT: PRINTTAB (18,9) ;CHRS134;"
byll

2719 FOR 1%=0 TO 1:PRINTTAB(10,1%+12);
CHRS131CHR$141;"Nigel J. Balchin":NEXT:
ENDPROC

2720 :

2730 DEF PROCsize:VDU4

2740 REPEAT:CLS:PRINTTAB(5,5)"Enter si
ze please (1 TO 16) and press Return ";
¢ INPUTS:UNTIL S>=1 AND S<=16:5=S/4:CLS:
VDU5: PROCconstants

275@ ENDPROC

2760 :

2770 DEF PROCconstants

2780 XMAX=INT (6/S) : YMAX=INT (19/S) : GDXP
=1:GDYP=YMAX

2790 HS=100*S:TS=30*S:FS=50*S:ES=80*S:
NS=49*S:55=75*S

2800 ENDPROC

2810 :

2820 DEF PROCsaveload (F$) :GCOL4,@:VDU2
9,0;0;

2830 MOVE4(@,1019: INPUT"Filename:" fil
es$

2840 MOVE400,1019:PRINT"Filename:";fil
es$

2850 IF F$="SAVE" THEN ?&2FFF=INT (4*S)
:$string%=F$+CHRS$32+file$+" 2FFF,8000"
ELSE $string%=F$+CHRS$32+file$

2860 X%=string% MOD 256

2870 Y%=string% DIV 256

2880 CALL &FFF7

2890 IF F$="LOAD" THEN S=?&2FFF/4:PROC
constants

2909 ENDPROC =]

HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS

QUITTING *EXEC - Bill Walker

Normally a *EXEC file that runs a series of programs in sequence, as boot files
often do, will still try to run the third program (for example) even after there has

been an error in the second. This can be avoided by incorporating a CLOSE#0
trapping routine in each program. This will close the *EXEC file and halt the

error
process.

LISTING 788 UNLIST - Chang Sing Pang

Owners of the 780 second processor who accidentally make a

6502 Basic file with the DIP utility and then loading

in any

-

Z8¢ Basic program
unlistable with the UNLIST.COM utility can restore it again by converting it to a

the file into the host

processor with the 7Z80 switched off. The program is now listable. 5=

BEEBUG

MAY 1985

Volume-4 Issue 1

28

T o

ADVENTURE GAMES

by Mitch

Acornsoft continue to disturb the
peace of the BEEBUG dungeon with a new
batch of games, which have caused more
than a 1little friction between the
inhabitants.

Enchanted forest

E(h is a slight depression.

You are in an open gras: field. To
the east a wide avenue of trees leads
into the distance, and a road can be
seen in the west: everywhere else you
Ecm only see forest.
As you walk down the avenue, you hear
faint rustlings. Looking back, you see
the trees have closed in behind you.
You are surrounded by gently swaying
silver birches which seem to
position when you're not looking. The
gaps between them somehow close when
you approach. The trees give off a
heavy scent which is almost

. overpowering at times.

At long last a large, disc-based
adventure has arrived. Cassette owners
eat your heart out! This game resides
on two discs which hold the program and
database respectively. Locating all the
data on disc enables this game to have
all the subtleties and power of a
mainframe adventure. Those plutocrats
among you who possess 80 track drives
will be pleased to note that there is a
command to reconfigure the disc to this
format.

The game is text only and although
the instruction sheet mentions the use
of colour somewhere in the game, I have
not yet seen any.

The game is set in a vast cave
system whose tunnels have more twists
and turns than an Editor's mind! Being

an adventurer of the old school, who
scorns map making, I quickly became
lost! The game has a 'Colossal Cave'
feel to it, complete with the iron
grating and black rod. The grating,
however, is not all it initially seems;
and, when waved, the black rod appears
to have no effect. There are 350
locations to explore and 150 objects
and treasures to find. If you are able
to make enough progress you will be
able to get through to the Master's
section of the game (no I haven't!)
Once inside this section there is no
going back! In many of the rooms,
coloured stars are to be found hanging
in mid airy very reminiscent of
Philosopher's Quest. I trust they are
there for a reason and not for the
confusion of brain-weary explorers.

I have spent almost fifteen hours
on Acheton so far and have enjoyed
every minute. There appears to be
little restriction to your movement in
this game, allowing you to wander far
and wide. Vast chambers with curious
rock formations, an underground harbour
swarming with piranhas and a wizard's

garden containing live gnomes, all
blend together in this intriguing
puzzle.

The new policy of Acornsoft is to
provide a Hint and Answer envelope with
all their games. This move has obvious
advantages for Acornsoft but the
temptation to open the envelope can be
overwhelming. In addition to the
envelope, this game will respond to
*HELP commands with a clue number which
may be used to index the hint sheet.

My one critisism is that as the
room descriptions are held on disc, the
drive is constantly being accessed

BEEBUG

MAY 1985

Yolume-4 Issue 1

29

during the game. I am surprised that a
larger batch of descriptions are not
transfered to memory at the same time,
which would have meant many fewer disc
movements and reduced my winces
considerably!

As the disc drive is materializing
in more and more dungeons of late, I
suspect this game will be welcomed with
open arms by many wizards. I have no
reservations about this one; go get it!

>rnsoft on
r

: SW
You can't go in that direction!

:NE

You are in a grey stone room full of
exotic fungi. AN exit leads west.

A rapidly-growing vegetable being is
reaching for your legs with leathery
tentacles!

Some mushrooms lie here

: RUN
EH?

i
As you leave, you hear a despairing
wail.

You are in the purple room.

A jewel-hilted sword is here!

It is thrust into a stone marked 'Whoso
pulleth this sword from out of this
stone is the rightful king ' The
message is overstamped REJECT

Quondam boasts on the box of being
a game for ‘advanced' adventurers. To
prove the obvious foolishness of this
claim I immediately gave the sealed
'Hints and Answers' envelope to the
idiot troll and forbade him to reveal
the contents until I returned
victorious with the final solution.

I hate that troll! 1I've never
realised it before but he has a very
nasty smirk. Anyway, I didn't like the
look of this game from the start, what
kind of an adventure starts with a
maze? You know I was never any good at
mazes! It won't let you save when you

want to, and it even sends the Mafia
round if you upset it!

Having taken an hour to map the
first maze I then met a very
belligerent knight who prevented any
further movement, thus forcing me to
quit.

The game features caves, magic,
dragons and the aforementioned Mafia. A
friendly passing wizard has informed me
that this game is, of course, a skit on
the banking system (of course). You
will quickly find that you may not save
the game whenever you feel like it, as
the gentlemen with the dark glasses and
knuckledusters don't like that!

A sneaky feature of Quondam is that
some commands appear to work first
time, but in fact need to be repeated
several times to achieve the final
effect. There is also a loathsome
custom official who will eat you should
you attempt to pass him with anything
he considers is contraband.

Of course one small peek 1in the
envelope would be all I would need to
complete the game. That's all I need,
one quick peek. I hate that troll!

For those giant-killers who are
currently stuck within a 'Mysterious
Adventure', help is at hand. Channel 8
Software who now market this range has
set up a post and telephone help
service. Either send a S.A.E to Channel
8 Software, 5 Fishergate, Preston,
Lancs or phone #772-562731 for instant
advice.

Remember, if you have any puffs of
magic which might be of use in the
writing or playing of adventures, don't
keep them to yourself - I need all the
help I can get!

=

B D s A AL S R VB SEE SV AT RAPrs.
HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS

COMPACT WITHOUT TEARS - Peter Sewell

You can *COMPACT a disc without losing the program in memory as follows:

MODE 7

PRINT (TOP DIV 256)+1,PAGE DIV 256
(say this gives XXX and YYY)

*FX 180 ,XXX

*COMPACT

*FX 180,YYY

=

BEEBUG

MAY 1985

Volume-4 Issue 1

30

BEEEUE

SEARCHING
AND SORTING (Part 2)

Werlkishe®

By Surac

This month’s Workshop continues the theme of sorting techniques with particular
reference this time to sorting character strings.

Last month we looked at ways of
sorting data and ended up with a couple
of useful PROCedures. As I hinted,
though, there are problems when it
comes to sorting strings.

The snag is the profligate way that
BBC Basic allows space for each
variable to hold the longest string it
has ever held, regardless - of itz
present value. This approach is
appallingly wasteful compared to that
of other computers. Most keep string
space under control and, through a
process known as "garbage collection",
weed out unwanted space. But on the
Beeb, we can have trouble if we try to
sort a string array directly,
particularly if the strings are of
varying size. The strings could easily
rampage through memory, ending up with
the dreaded "No room" error message.

To avoid the problem, sort a set of
pointers to the strings, rather than
the strings themselves. Use a second
array, which eventually holds, in
order, the indices to the strings. For
example, suppose that the 38th string
should be first; the first element in
the pointer array would hold the value
"38", Here is a modified Shell sort to
put a string array into alphabetical
order.

The routine assumes that you have
already DIMmed the array ptr3%() to have
as many elements as "array$()". Line
10020 puts the pointers into numerical
order and sorting starts, using ptr%()
to access the strings. Note how
PROCswap only exchanges pointers and
does not directly affect the strings.

The pointer approach is also useful
when you sort groups of related data.

POINTER SORT
190@@ DEF PROCstrshell (st%,fin%)
10019 LOCAL D%,F%,1%,S%,T%
10020 FOR I%=1 TO (fin%-st%)+1:ptr3(I%)
=1%:NEXT
10030 S%=2"INT (LOG(fin%-st%)/LOG(2))
1004@ REPEAT
10050 T%=fin%-S%
10060 REPEAT

10079 F%=FALSE

10089 FOR I%=st% TO T%

10090 IF array$ (ptr%(I%))>array$(|
ptr% (I%+S%)) THEN PROCswap

10100 NEXT

10110 T%=T%-1

19120 UNTIL NOT F%

10130 S%=S% DIV 2

10140 UNTIL S%=0

10150 ENDPROC

10999 :

11000 DEF PROCswap

11910 D%=ptr% (1%)

11020 ptr%(I%)=ptr? (I%+S%)
11030 ptr% (I1%+S%)=D%
11040 F%=TRUE

11050 ENDPROC

For instance, a list of names and
addresses can be put into order without
manipulating names AND addresses.

So far, though, we have assumed
that all the data is in memory. What if
we need to sort a too-big-to-fit disc
file? The answer is remarkably simple
and obvious (when you know...).

Split the large file into smaller
ones which WILL fit. Sort each small
one and save it back to disc. Then, and
this only works on disc-based systems,
read the data from the small files in
parallel. Select the largest (or
smallest, depending) of the values at

BEEBUG

MAY 1985

Volume-4 Issue 1

31

10000
10010
10020
10030
10040

10050
10060

10080
10090
10100
19199
10200
19210
10220

10230
10240
10250

10260
19270
10390
10400
10410
10420

10440
10450
10460

10470

10480

10490
10500
10519
10590
10600
10610
10620
10630
10640

GIANT FILE SORT
DEF PROCfilsort(srtfile$,nitems$%)
LOCAL F1
F1=0OPENIN srtfile$
PROCsort (nitems% DIV 2,"D.TEMP1")
PROCsort (nitems%- (nitems% DIV 2),
"D.TEMP2")
CLOSE #F1
PROCmerge ("D.TEMP1","D.TEMP2" ,srt
files)
*DELETE D.TEMP1
*DELETE D.TEMP2
ENDPROC

DEF PROCsort(n%,outfil$)

LOCAL i%,£2

FOR i%=1 TO n%:INPUT #F1,array
(i%) :NEXT

PROCshell (1,n%)

£2=0PENOUT outfil$

FOR i%=1 TO n%:PRINT #f2,array
(1%) :NEXT

CLOSE #£f2

ENDPROC

DEF PROCmerge (inl$,in2$,0p$)
LOCAL d1,d2,f1,£f2,£3
£1=OPENIN in1$:f2=OPENIN in2$:
£3=OPENOUT op$
INPUT #£1,d1:INPUT #£2,d2
REPEAT
IF EOF #f1 THEN PROCwrapup (dl,d
2,£2) :GOTO 10500
IF EOF #f2 THEN PROCwrapup (d2,d
1,£1):GOTO 10500
IF d1<d2 THEN PRINT #£3,d1:
INPUT #£f1,d1 ELSE PRINT
#£3,d2: INPUT #£2,d2
UNTIL EOF #f1 AND EOF #f2
CLOSE #f1:CLOSE #f2:CLOSE #£3
ENDPROC

DEF PROCwrapup (d1,d2,£filno)

LOCAL dlval ,d2val

dlval=TRUE:d2val=TRUE

REPEAT
IF NOT dlval AND NOT EOF #filno
THEN REPEAT:PRINT #£3,d2:INPUT
#£filno,d2:UNTIL EOF#filno:PRINT
#£3,d2:d2val=FALSE:GOTO 10679

the start of each small file, and write
it to the large file. Continue like
this, taking the wanted value from
whichever small file holds it, until
they are all empty; the original large
file is then sorted.

It's like splitting a pack of cards
into 4 hands, sorting each hand, and
then taking cards from each hand, in
order, to end up with a sorted pack.
It's usually also faster than trying to
sort a single file.

PROCfilsort starts with the name of
the file to be sorted and the number of
items in it. It calls PROCsort twice,
halving and sorting the file into
D.TEMP1 and D.TEMP2. These 2 files are
merged, overwriting the original file,
and then deleted.

PROCsort reads half the main file
into "array()", which it Shell sorts -
see last month's Workshop for the code.
The sorted data is then written to the
temporary file. NOTE: You will have to
create "array()" with:

DIM array(nitems% DIV 2 + 1)
in the main program. The "+1" allows
for nitems%' being odd.

The 2 sub-files are merged by
repeatedly taking the smaller value
from their tops (we're sorting into
ascending order) and writing it to the
original file. Eventually, we get to
the end of one of the temporary files
while still having data in the other.

At that point, PROCwrapup simply
moves the remaining data from the
non-empty file to the main file. In
doing so, it slots the last item from
the empty sub-file into its correct
place. Line 10650 does the job; it is a
horrible compound IF statement, of
which I am not particularly proud. It
works, however, and saves a lot of
space. The 2 variables "dlval" and
"d2val" are flags which show when data
from each file is used up.

Although I have only used 2

1530 TR ML Cve L T BRI b e | anidcinds, the DFS allows 5 files to be
dlval THEN PRINT #£3,d1: open at any time. ¥ou coulq, therefore,
dlval=FALSE ELSE PRINT #£3,d2: use up to 4 sub-files. This would make
IF NOT EOF #filno THEN INPUT FROwrapap v moCR-ceRples, howewer,
#filno,d2 ELSE d2val=FALSE What would you do if thg original file

10660 UNTIL NOT dlval AND NOT d2val needad hpve than & sub-Elles?

10673 ENDPROC Demonstrations of both sort
procedures are included on this month's
maaazine cassettg/disc.

BEEBUG MAY 1985 Volume-4 Issue 1

=

EHID

32

MAKING MUSIC ON THE BEEB (Part 4)

This month’s music article from the author of ‘‘Making Music on the BBC Micro”’
continues to explore the musical —and not-so-musical — potential of computerised

multi-part tunes.

The performance of a two-, three-
or four-part piece of music on the Beeb
is quite an achievement in itself. If
you have been following this series you
should be well on your way to
programming multi-part tunes - other
than Mozart's Rondo Alla Turca. As with
the book, the ideas and programs
presented in this series of articles
are intended as a springboard for
further experiments of your own. If you
want to rewrite a routine or compact a
piece of code then please do so. You'll
learn more and get more satisfaction by
performing your own experiments on the
routines then by Jjust typing in the
programs and running them - although I
hope you find them entertaining, too.

THE ENVELOPES AS A SYNTHESIZER

One of the simplest ways to begin
your experiments is to increase the
number of envelopes in a piece of
music. Last month's piece only used
three envelopes but if you think of
each envelope as a different instrument
or as a synthesizer setting then you
can greatly alter the performance. As a
simple example: last month's program
used percussive envelopes to give a
piano/harpsichord effect. If* “yon
substitute ENVELOPE2 for ENVELOPE1 and
ENVELOPE3 it will give the piece a more
string-like quality.

MANIPULATING THE MUSIC DATA

Because the music data is stored as
a series of numbers the computer can
manipulate it quite easily. Even if we
can't quite call the results of these
manipulations original, they will
certainly give a new slant to the
piece. We could begin our experiments
with a

simple one-part tune but as we

already have a three-part tune from
last month and as multi-part tunes are
far more interesting to listen to than
single part tunes we will jump straight
in with...

THE AMAZING ONE LINE WONDER COMPOSER

PROGRAM
An interesting mathematical
manipulation is to turn the tune

upside-down. This One Line Wonder will
reverse the pitch of the notes so that
high notes will be played low and low
notes will be played high. Insert this
line into last month's program:

1195 Pitch=77+77-Pitch

77 is the pivot point, the pitch
between the highest and lowest pitches.
It can be found by looking up the
highest and lowest notes of the tune in
the diagram in BEEBUG Vol.3 No.8 p.16
and then finding the note halfway
between the two. You can make the
computer do the work for you by adding
these lines to last month's program:

1 HiP=@:LoP=255
1191 IF Pitch>HiP HiP=Pitch
1102 IF Pitch<LoP LoP=Pitch

When the computer has run through the
data you can print out HiP and LoP in
command mode. The pivot point will be:

(HiP-LoP) /2+LoP

You will sometimes find, as in the case
of Rondo, that the pivot pitch falls
between two notes. The value you use
does not have to be an exact note pitch
and you can experiment by raising and
lowering the value. The duration has

BEEBUG

Volume-4 Issue 1

e e e e e e A e i T T e i I R e < °, e S

33

not been altered which is what makes
the tune sound half-recognisable but
you could apply a similar function to
the duration. Try some of these
expressions in line 1105:

Pitch=Pitch/4*3

Pitch=Pitch/4%*2

Pitch=Pitch/4

Pitch=Pitch/4*5

Pitch=Pitch/4*6

Pitch=Pitch/4*7
If the manipulations becomes too
extreme the pitch will loop over the
top or under the bottom and this starts
to happen in the last example. Try
using algebraic expressions on the
pitch values; you may discover a whole
new method of composition.

BACKWARDS TUNES

With the note data arranged
serially in arrays we can play a tune
backwards by simply reading the data
backwards. Make the following
alterations to last month's program:

680 Ch1=C1:Ch2=C2:Ch3=C3

699 :

700 REPEAT

710 IF ADVAL(-6)>@ AND Ch1>@ Chl1=Chl-
1:SOUNDChan1 (1,Ch1)+1,Chanl (2,Ch1) ,Chan
1(3,Chl1) ,Chanl (4,Ch1) *Tempo

72@ IF ADVAL(-7)>@ AND Ch2>@ Ch2=Ch2-
1:SOUNDChan2 (1,Ch2)+2,Chan2 (2,Ch2) ,Chan
2(3,Ch2) ,Chan2 (4,Ch2) *Tempo

730 IF ADVAL(-8)>@ AND Ch3>@ Ch3=Ch3-
1:SOUNDChan3 (1,Ch3)+3,Chan3 (2,Ch3) ,Chan
3(3,Ch3) ,Chan3 (4,Ch3) *Tempo

740 UNTIL Ch1=0@ AND Ch2=@ AND Ch3=0

To make it sound more 1like a true
backwards recording, change the
percussive envelopes for ones with a
slowish attack and fast release. You
can start experimenting with these:

ENVELOPE1,1,0,0,0,9,9,9,2,-4,0,0,126
/9

ENVELOPE2, 4,0,0,1,1,0,1,6,-32,0,0,12
6,0

Set ENVELOPE3 equal to
Finally, to

ENVELOPE1.
complete the

transformation, add the one line
upside-down routine.

Instead of altering the program as
we have been doing you could include
these variations as separate procedures
and present the user with a menu of
'transformations' to choose from. Once
run, a tune can be played again by
entering:

GOTO 680

CANDIDATES FOR CORRUPTION

Some tunes take to this sort of
treatment much better than others.
Rondo is basically a tune played on
channel 1 with an accompaniment played
on the other two channels. Bach-type
pieces consisting of two or three
interwoven melodic lines will tend to
produce better melodic results. The
transformation of other tunes can often
be quite humerous. One of the most
effective is the upside-down version of
Sousa's Liberty Bell March better known
perhaps as the Monty Python themne,
which is listed in the book.

With these experiments we are just
dabbling on the very fringes of
computer composition but they do
illustrate the power and potential of
the computer in manipulating music
data. Such results as we have achieved
would be, if not impossible by 'hand'
then certainly laborious in the
extreme.

SAVING THE TUNE
If you want to play any music in a
separate program, for example as
background to a graphics display, you
can use the program to check out the
data values, i.e. see the music plays
as it should, and use this SOUND-ready
data in place of the note analysis
routines. The data for a three-channel
piece will be stored in three arrays:
Chanl (4,C1) ,Chan2 (4,C2) ,Chan3(4,C3)

You can save this data to tape or disc
using file handling procedures which
are explained in the User Guide on page

BEEBUG

MAY 1985

Volume-4 Issue 1

34

188. You could read the saved data into
the arrays thus bypassing the note
analysis routines. You could expand
upon this idea by creating a master
program which would load and play any
existing music files previously saved.
You would also need to load relevant
envelopes with the music data which
could be done by *SAVEing and *LOADing
the envelope storage area. Envelope
storage begins at &8CO and each
envelope takes up &19 (16) bytes (only
13 bytes are actually used but the
envelope locations are incremented in
steps of &10). Having defined envelopes
1 to 4, you can save them like this:

*SAVE"ENV4" 8CO+40
They can be loaded again by:
*LOAD"ENV4"

In order to store large amounts of
data, you could utilize byte arrays
(using indirection operators) but I
will leave this sort of development for
interested readers to experiment with.

Another routine is presented here
which will save a music file to tape or
disc. This can be *EXECed back into the
Beeb and saved as a normal program. The
routine calculates the order in which
note data needs to be presented to the
SOUND command in order for the tune to
play in sync. In other words, we can
replace lines 680 to 740 with a simple
read-note-and-play-it routine which
takes its note information directly
from DATA statements without first
needing to analyse it and store it in
an array.

USING THE ROUTINE

Type in the program exactly as it
appears ard save it. Save it also as an
ASCII file by entering:

*SPOOL" SAVER"
LIST
*SPOOL

Load last month's program and add SAVER
to it by entering:

*EXEC" SAVER"
This will merge the two programs. Set
Tempo to the appropriate value - see

line 6. Run the program and you will be
prompted to insert a disc or tape. Do
so and press RETURN. The tune will
play, perhaps somewhat hesitantly, and
a stream of data will scroll up the
screen. When the cursor appears again
you will have a file called TUNE on
tape or disc. Delete all the lines up
to 10000 by entering:

DELETE 1,1440

where 1440 1is the last 1line of the
original program. Reposition the tape
if you're using tape and enter:

*EXEC"TUNE"

Lines of data should scroll up the
screen. If you now run the program the
tune should play in perfect sync. The
routine beginning at line 10000 plays
the data. If you substitute 'SOUND' for
the string 'DATA' in lines 1113, 1118
and 1123 the *SPOOLed programs will
play the tune when run without the need
of lines 10000 to 1008¢. In this case
enter NEW before *EXEC"TUNE". This is
discussed further under Program Notes.

Don't forget, if you save this
program to use later you will have to
include envelope definitions in it
somewhere.

The programs are from Making Music
on the BBC Computer by Ian Waugh,
published by Sunshine Books at £5.95
and used with kind permission of the
publishers.

PROGRAM NOTES

The program cheats a little because
instead of calculating the correct
order of the data by hand - or chip -
as it were, it uses the ADVAL

statements to calculate the correct
spacing of the notes exactly as it does
when playing the tune. However, because
the filing systems themselves require
attention from the operating system,
the ADVAL function may sometimes want

MAY 1985

Volume-4 Issue 1

L acsoletCStON RSB A e e R G A R T Rt Tt it D o e e e e e R e e TR e i i P T AT T

35

to pass notes while the operating
system is not able to give them. This
will happen especially if a channel is
supplied with lots of short notes.

This is why Tempo needs to be
adjusted. It is used to slow down the
playing of a piece so the sound
channels do not empty while waiting for
the filing system to finish with the
0.S. Tape will obviously take longer
than disc but experiments have shown
that Tempo values of 5 for tape and 2
for disc will work for Rondo. Other
tunes may require different values. On
playback, the duration should be
re-adjusted as in line 1007¢. In the
PROCSpool procedures, you can remove
the variable, Tempo, altogether and
control the speed of the piece as we
have done in line 1007¢. If, however,
you substitute SOUND for DATA then you
should ensure that the correct Tempo
value 1is used in the PROCSpool
procedures to produce the absolute note
duration required.

REM PROGRAM 9.3

REM *SPOOL Routine To Put Sound
REM Data Onto TAPE or DISC

REM Include These Lines in

REM PROGRAM 9.2

REM Tempo=2 For DISC, 5 For TAPE
VDU15

OdoO Ul W~

260 Tempo=2

694 Line=5009

695 PRINT"INSERT DISC OR TAPE then RE
TURN"

696 REPEAT:A=GET:UNTIL A=13

697 *SPOOL"TUNE"

710 IF ADVAL(-6)>@ AND Ch1<Cl Ch1=Chl
+1:SOUNDChanl (1,Ch1l)+1,Chanl (2,Chl1) ,Cha
nl(3,Ch1) ,Chanl (4,Ch1) *Tempo : PROCSpool1

720 IF ADVAL(-7)>@ AND Ch2<C2 Ch2=Ch2
+1:SOUNDChan2 (1,Ch2) +2,Chan2 (2,Ch2) ,Cha
n2(3,Ch2) ,Chan2 (4,Ch2) *Tempo : PROCSpool 2

730 IF ADVAL(-8)>@ AND Ch3<C3 Ch3=Ch3
+1:SOUNDChan3 (1,Ch3) +3,Chan3 (2,Ch3) ,Cha
n3(3,Ch3) ,Chan3 (4,Ch3) *Tempo : PROCSpool 3

745 *SPOOL

1 e

1112 DEF PROCSpooll

1113 PRINT;Line;" DATA ";Chanl(1,Chl)+
137, Chan) (2,Ch1) ;" , " Chant (3,Ch1)" "
;Chanl (4,Ch1) *Tempo

1114 Line=Line+10

1115 ENDPROC

1116 3

1117 DEF PROCSpool2

1118 PRINT;Line;" DATA ";Chan2(1,Ch2)+
2008 Chan2 (25Ch21a Y M Chan2(3,Ch2) ", Y
;Chan2 (4,Ch2) *Tempo

1119 Line=Line+10

1120 ENDPROC

3 51721 I

1122 DEF PROCSpool3

1123 PRINT;Line;" DATA ";Chan3(1,Ch3)+
Bt M:Chand (2,603):Y,Y:Chan3 (3,Ch3) ;¥ "
;Chan3 (4,Ch3) *Tempo

1124 Line=Line+10

1125 ENDPROC

1126 :

10000 DATA -1,-1,-1,-1

10010 :

10020 REM These Lines Play the DATA
10030 RESTORES5000

10040 REPEAT

10053 READ Chan,Env,Pitch,Dur

10955 IF Chan=-1 THEN 10080

10060 REM Set Divisor Equal to increase

in Tempo
10078 SOUNDChan,Env,Pitch,Dur/2
10080 UNTIL Chan=-1

B e e e e U R R e S
HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS

BLUE SCREEN IN WORDWISE - E. Williams

Include OS"FX155,36" in Wordwise (1.2 or later) text with a green command before
it and a white command or a Return afterwards and the text will be previewed with a
blue background. As the preview is in mode 3 this both makes the text easier to read
on a colour TV/monitor and the margin and tab settings easier to judge relative to
the edge of the blue screen. =5

CASSETTE SOFT LABELLING - B.R. Hill

You can place a soft label of up to ten characters at any point on your cassette
by typing:

*SAVE "usefulword" 0 0
This saves a very short (!) program with your label as a filename on to the
cassette. This will be displayed in the normal way when you are loading a file or
cataloguing the cassette.

BEEBUG MAY 1985 Volume-4 Issue 1

36

MIXING MODES (Part 2)

Ian Hall explains some of the more advanced and interesting techniques used in his
mixed mode program that we published last month.

Last month's MIXMODE program is
arguably the most advanced utility ever
published by BEEBUG, or any other
magazine for that matter. It gives your
BBC micro three modes on the screen at
once - 16 colours with 80 column text!
This month the author describes just
how it all works.

BEEB GRAPHICS

To display a screenful of text or
graphics your BBC micro has to do two
things. Firstly, the hardware that
takes data from screen memory and
actually displays it must be set up for
the particular mode and, secondly, data
has to be placed into the screen memory
in the correct format for that mode.
The bytes within the screen memory
represent different things in each mode
(see 'Machine Code Graphics', BEEBUG
Vol.2 Nos. 8 to 10). For modes @ and 4
one byte represents 8 pixels, for modes
1 and 5 one byte represents 4 pixels
and for mode 2, one byte represents
only 2 pixels.

On the hardware side, there are two
devices that control the removal of
data from the screen memory and convert
it into a suitable form for display.
These are the 6845 cathode ray tube
controller (CRTC) and the video ULA.
The device that does most of the work
is the CRTC which is responsible for
such things as producing the correct
format for the display, positioning the
cursor, and so on. The ULA determines
such things as the relationship between
logical and physical colours.

The CRTC has 18 registers and the
ULA has two. The CRIC registers are set
up differently for the 20K, 10K and
text only modes. They are, however, the
same for the all the 20K modes (0, 1
and 2). Similarly, they are the same
for both 10K modes (4 and 5). The ULA
registers, however, are different for
each mode. To change between modes @, 1
and-+1 2, therefore, only the ULA
registers have to be changed. The same
goes for modes 4 and 5 .

MODE 1
nopE 1

To put graphics data into screen
memory, the operating system relies on
data stored within certain parts of
memory to determine the format for the
data used. The areas of memory that are
used for this data (referred to as VDU
variables) are between &300 and &37F,
and zero page locations &D@ to &D9.
They contain such data as the current
mode, the current window information,
cursor position, number of bytes per
character and so on. Also of importance
are two of the main system variables
located at &248 and &249. These contain
the data last sent to the video ULA
register. See chapter 11 of the
Advanced User Guide for further details
of this.

HOW MIXMODE WORKS

To understand how the MIXMODE
program of last month works, some
knowledge 1is required of the way a TV
picture is generated. Very simply, the
TV picture is built up on the screen in
a number of horizontal lines from top
to bottom. This process, which is
called a 'raster scan', takes 20ms to
perform and is repeated continuously at
a rate of fifty times a second. During
this process the Video ULA and the CRTC
are sequentially getting data from
screen memory and converting it into a
form to be sent along the cable to your
TV

BEEBUG

MAY 1985

Volume-4 Issue 1

37

MIXMODE operates by effectively
changing the displayed mode (by
altering the ULA registers) during the
raster scan. By changing the displayed
mode in this way, at exactly the same
place in each scan, the screen appears
to be displaying more than one mode. At
the same time as this continual change
of displayed mode 1is occurring, the
program allows the user to select in
which mode graphics data is to be
placed in screen memory. The crucial
factor is the timing of the displayed
mode changes. This timing is undertaken
using the VIA timers and interrupts.

Internally the Beeb generates an
interrupt every time the raster scan
starts at the top of the screen (this
is called the start of vertical sync).
The MIXMODE program uses this interrupt
in conjunction with those generated by
the timer within the User VIA.

THE VIAS
There are two VIA (versatile
interface adaptor) chips in the Beeb -
the internal VIA and the User VIA. Each
is a device with two I/0 ports, four
discrete inputs which can be used for
controlled interrupts to the 6502
processor, a serial register and two
timers. The System VIA uses these
facilities for the speech and sound
system, internal hardware control,
joystick fire buttons, light pen input,
key - pressed interrupt, analogue to
digital conversion interrupt, the
vertical sync interrupt from the video
hardware, and the internal 10@Hz clock.

Within the User VIA, only port A is
used by the system, this being the
printer port. Port B and all the other
functions of the User VIA are free for
the user.

The User VIA timerl can be used to
generate an interrupt after a set
period by loading the 16 bit counter
with a suitable value. The counter must
be loaded with the low byte (at &FE64)
followed by the high byte (at &FE65).
This order ensures that when the high
byte is loaded both bytes are placed
into the counter from the latches at
the same instant, so that you can
guarantee that the counter has the
desired value at the point where the
high byte is loaded).

The interrupt generated when the
timer reaches zero is enabled using the

Interrupt Enable Register (IER) at
&FEGE:

BIT 7 : Set or clear control bit

BIT 6 : timerl

BIT 5 : timer2

BIT, 4.7 €BI1

BIT 3 ¢ CB2

BIT 2 ; SERIAL

BITe1 ¢ CAl

BIPCOe CRD

The appropriate interrupt is
enabled when bits @ to 6 are set to
one. These bits are set by writing a
byte to the IER to set both the
appropriate bit and bit 7 to one (the
interrupt can be disabled by writing a
one to the appropriate bit with bit 7
set to zero). In this case, to enable
the timerl interrupt, &C@ is poked to
&FE6E.

The Interrupt Flag Register (IFR)
has bits @ to 6 related to the same
functions as the IER. Bit 7, however,
is used to indicate if an interrupt was
generated by that particular VIA (ie,
if any of bits @ to 6 are set to one in
both the IER and the IFR then bit 7 is
set) . Therefore, on receiving an
interrupt, the program need only look
at bit 7 first and, if set, the program
can then check to see which of bits @
to 6 have been set. In this case the
check is for bit 6 (timerl) set.

THE PROGRAM

MIXMODE consists, for the main
part, of the machine code program in
lines 1400 to 345@¢. This is divided
into two separate areas with lines 1400
to 2550 handling the interrupts and the
control of the video hardware (which
changes the displayed mode), and lines
2550 to 3450 controlling the VDU
variables and the push and pull
routines which switch between screen
write modes.

CHANGING THE DISPLAYED MODE

The start of vertical sync
interrupt is used to start the set up
of timerl in the User VIA to generate
an interrupt after a period of delayl
and another after delay2. This is done

BEEBUG

MAY 1985

Volume-4 Issue 1

38

by setting the counter to free run mode
(lines 1610 to 1640) and loading delayl
into the counter and delay2 into the
latches (lines 2060 to 2119). In free
run mode, after delayl, the counter is
automatically loaded from the latches
(in this case with delay2) and the
count started. The values of delayl and
delay2 are such that the two interrupts
occur when the raster scan is at the
correct positions down the screen (as
specified by the formula given last
month) .

At these points, the Video ULA
registers are changed to display a
different mode. This change of mode
being performed with routines screena,
screenb and screenc. The section A mode
is set up on receipt of the vertical
sync event, section B on receipt of the
timer interrupt after delayl and
section C is initiated by the interrupt
after delay2. A flag ('state') is used
to identify which mode should be
displayed.

of the two registers within the
video ULA, one controls such things as
number of characters per line (memory
mapped at location &FE20) and is called
the Video Control Register. The second
register defines the palette (the
relation between logical and physical
colours) and is located at &FE21. The
palette control is rather complex and
requires 16 values to be written to
location &FE21. It is recommended that
you read chapter 19 of The Advanced
User Guide if you wish to know more of
this.

CHANGING THE SCREEN WRITE MODE

Selection of the screen write mode
is achieved by placing the VDU
variables for the mode desired into the
correct places in memory.

MIXMODE uses three data areas (at
vduvara, vduvarb and, vduvarc) to store
the VDU variables for the three modes.
The data placed in the Video ULA each
time the screen write mode 1is changed
is obtained from these areas. The data
structure for each of these areas is:

vduvarx : 16 bytes to be
written to the
palette register
of the video ULA

[B s o rg YO i K G

PR T . T T e

THREE WMODES

vduvarx+&10¢ : system variable

&248
vduvarx+&11 : system variable
&249
duvarx+&l2 : vdu variables
&D@ to &D9

vduvarx+&29 : vdu variables
&300 to &37F

when routines pusha, pushb or;
pushc are called the vdu variables are
stored away into the appropriate vduvar
data area. These variables are
re-established by the appropriate pull
routines (called from the MIXDEMO
program, for example) when it is
desired to write to a particular mode.
It is this action that 'fools' the Beeb
into thinking it's in a certain mode
when graphics or text is drawn on the
screen. Hence data is placed into the
screen memory in the right format for
each mode area.

This combination of continually
switching between displayed modes at
precisely the right moment to
synchronize with the raster scan and,
on command, changing the Beeb's
internal idea of which mode is
displayed, creates the illusion of
three modes on the screen at once, each
separately accessible.

This is the breakdown of the
assembly language section of the
MIXMODE program:

LINES : FUNCTION

1000 to 1990 : Initialise machine code
locations

1130 to 1240 : Set up section modes and
windows

BEEBUG

MAY 1985

e B e A e L L e o3 B e B R e L P <Y,

Volume-4 Issue 1

L A e B e e e e e A) i N e i i S T e S i e i o

39

170 : Data used to calculate
values for Video
ULA palette register
1439 to 1560 : Set up interrupt & event

vectors

1580 : Enable vertical sync
event

1600 : Disable ADC

1619 to 1640 : Set up User timerl for

free run mode

1720 to 1790 : Synchronize internal
clock

1800 to 1880 : Set flash bit

1970 to 2010 : Ascertain source of
interrupt

2070 to 2110 : Set up User timerl with
delayl and delay2

2170 to 2190 : Check which mode should

be selected

Change Video ULA

registers

push and pull routines

Save VDU variables

Calculate Video ULA

palette register values

3270 to 3440 : Restore VDU variables

2340 to 2540

.

2560 to 3440
2830 to 2980
2990 to 3160

oe ee e

Resident integers A% to H% are used to
pass machine code addresses to the
application program.

FURTHER NOTES

That 1s the basic operation of the
MIXMODE program. However there are some
further refinements.

CONTROL OF SYSTEM INTERRUPTS

The time taken for each graphics
line to be drawn is a mere 64 micro
seconds (about forty 6502
instructions). Therefore, any small
delays in initiating the timerl will
mean that the place where the modes
change will vary and a considerable
amount of "jitter" may occur on the
screen. For this reason, the system
interrupts have to be controlled such
that they do not affect the point at
which timerl is set up.

During normal operation, only three
interrupts are occurring constantly.
These are the start of vertical sync,
100Hz internal clock and, end of ADC
conversion. Unfortunately, these
interrupts are all running
asynchronously and it 1is this that
could cause uncertainty in the point at
which the timer is set up. As mentioned
in the previous article, the ADC is

disabled but the same cannot be done
for the internal clock as this causes
the machine to lock up. Instead, the
100Hz clock 1is sychronized to the
vertical sync which occurs at a
frequency of b5@Hz. This is done by
resetting timerl of the System VIA
(which controls the 100Hz clock) every
vertical sync such that it produces two
interrupts every vertical sync (lines
1720 to 179¢). This implements the
100Hz clock but the accuracy is
affected slightly.

With the interrupts controlled in
this way jitter is confined to one
graphics 1line only. The effects of not
controlling the interrupts can be seen
by removing line 1580 and lines 1720 to
1790.

It should be noted that use of
other Beeb functions which use
interrupts (such as the RS423 or the
speech processor) within your programs
will affect this jitter.

FLASHING COLOURS

Under normal operation the least
significant bit of location &248 is
toggled to control the flash of logical
colours 8 to 15. The Video ULA is
updated constantly from this location.
When running MIXMODE, the Video ULA is
not updated from location &248 but from
the vduvarx data areas. For this
reason, the appropriate location within
the data areas is updated every
vertical sync (lines 1809 to 188¢) and
therefore, as you have seen from the
demo program, full flashing colours are
supported.

ULA REGISTER CHANGES

The Video ULA registers are changed
with routines screena, screenb and
screenc. Two actions are performed in
these routines; one being the loading
of the Video Control Register and the
other the writing of the 16 values to
the palette register. The order in
which these two things are done
produces different effects on the
graphics line at the join of two modes
(screenc 1is different to a and b). The
effect will vary depending on the modes
each side of the split, and some trial
and error may be required to get the
order right for any particular
combination of modes. 5=

BEEBUG

MAY 1985

Volume-4 Issue 1

40

EXPLORE THE WORLD OF ART AND GRAPHICS

Books about the Beeb’s graphics are commonplace but the books reviewed here
looked to be something rather special. Colin Cohen has been looking at them with

interest and now reports.

This 1is no beginners book, indeed
even the adequate programmer not up in
maths will not have an easy time of it,
grasping the programs, but not the
maths behind them. There are few

concessions to the debutante in
graphics (or in anything else) and the
basic ground-work more or less stops
with the explanation that the Beeb's
graphic co-ordinates remain constant in
all modes with the pixel (picture
element) changing in size. This is
certainly a very substantial compendium
copiously filled with programs,
diagrams and illustrations, including
16 pages of full colour plates. All
aspects of computer graphics are
covered here quite comprehensively,
with major sections on two and three
dimensional graphics.

A significant part of the book is
devoted to tesselations and other
repeating patterns. These are shown
nested and in hierarchies, creating
patterns which can be scaled,
re-oriented, repeated and
re-positioned. The main text is
accompanied by a very substantial
number of program listings to
illustrate many of the concepts, and as
the maths becomes more complex copious
diagrams are introduced to demonstrate
some of the concepts of movement, area

and colour. Many of the listings and
illustrations relate to Graphito,
Tesselator and an earlier program, The
Electronic Colouring Book [Graphito and
Tesselator are two new graphics
packages by Addison-Wesley which we
hope to review shortly]. The book is
probably definitive, it 1is certainly
packed with ideas and information, but
no-one could accuse it of being
user-friendly!

Soft Computing by Brian Reffin-Smith,
Addison-Wesley, 208 pages £10.95.

If McGregor and Watt tell you how,
Reffin-Smith tells you why. Tutor in
Computing at the Royal College of Art
and himself a maker of computer-based
art and design works, he has produced a
stimulating book; if you liked 'Zen and
the Art of Motorcycle Maintenance',
then this is for you. If on the other
hand you want a down-to-earth factual

introduction to computer graphics, then
look elsewhere. Starting at the back,
you will find a glossary, and some
useful nuggets in 'Outlines for courses
on the use of computers in art and
design'. Working towards the front,

you'll find interviews with five
artists working in the field and
accounts of the work of some nine more.
Elsewhere there are excellent
descriptions and explanations of what
is actually going on - what a computer

BEEBUG

MAY 1985

Volume-4 Issue 1

41

is and does; but this is not where
Reffin-Smith's heart lies. His work is
an apologia for soft computing, which
he sees as a qualitative activity, to
do with art. To avoid its being lumped
in with the trivia known as 'computer
art' he has coined the word 'meta'.
Soft computing is qualitative,
conceptual , highly complex,
multi-referential, probably political.
He teases the reader: what's really
going on is always in the next
paragraph, the next level down. That's
how it really is, with different levels
of metaphor instead of one true
description.

He examines our notions of what is
a work -of art, and of creativity,
suggesting how it is possible to handle
values and qualitative data with a
computer. Not at all an easy book, but
one which raises a number of
interesting ideas.

As a production the book is
disappointing: the exotic cover
tantalizes like a come-on computer game
package: inside the covers is grey
text, interspersed with correction
lines which have the weight of
sub-heads, diagrams apparently off the
backs of envelopes and eleven stingy

little
larger than 65mm x 95mm.

colour reproductions, none

All three authors are university
lecturers. One used to tell children to
'Do as I say, not as I do', but in the
case of these two books it may be
easier to do as they do, rather than as
they say, and judge the worth of the
authors by the Beeb programs that they
have written - McGregor and Watt for
Addison-Wesley and Brian Reffin-Smith
for BBC Publications.

=

CROSS REFERENCER UPDATE

While in use at the BEEBUG office, it became apparent that the Cross Referencer
program as listed in the magazine (BEEBUG Vol.3 Vol.6) did not correctly handle all
the information it should when dealing with large Basic programs. The author, Ian
Gooding, has investigated the problem and come up with the following amendments to
the original program (note the use of underline characters). Cassette users will
also find motor control is almost essential when using this program. We hope this
now clears up any problems that may have arisen in the use of the original version.

279 count%=0
370 CLOSE #@:MODE 7:PROCreport

1430 def%=FALSE: fnc?%=FALSE:quote%=FALSE:gos%=FALSE

1680 fnc%=(?1%=&A74)

1720 UNTIL j%>eline% OR NOT (FNletter (?j%) OR ?j%=ASC("£") OR ?3%=ASC("_") OR
FNdigit(?3%))

1820 IF quote% OR NOT (FNletter (?i%) AND ?i%<>ASC("£") AND ?i%<>ASC(" ")) THEN GOTO
1890

1860 UNTIL i%?eline% OR NOT (FNletter (?i

?i%=ASC(" "))

2060 P%=denumb: [OPT 2
2130]

) OR FNdigit(?i%) OR 2i%=ASC("£") OR

3010 LOCAL p%,i%,end%,a$:p%=!! (ref%+4) :a$=STRINGS (6," ")

3040 i%=2:end%=FALSE
37709 CLOSE#0:END

=

BEEBUG

MAY 1985

Volume-4 Issue 1

INTRODUCING
MACHINE CODE

(Part 4)

Program 5
19 MODE7

20 DIM code 10¢

This month Gordon Weston concludes his introduction to machine code for
beginners by looking at the use of zero page and does simple arithmetic.

In the last
article, 1 intro-
duced a simple
input routine which
was capable of
storing 256 input
characters using

the instruction STA
&7E58,X where &7ES58
was the start
address of a block
of 256 consecutive
addresses and the
value in X pointed
to the address we
wanted in' =" that
block. We can also
use this type of
instruction with
the X or Y register
to copy up to 256
characters from one
part of memory to
another. First
enter our standard
program 5:

3¢ FOR I%=0 TO 3 STEP 3:P%=code

49 [
5@ OPT I%

500]
519 NEXT

520 CLS:CALL start

53@ END

Now enter these
run the program.

Part Program 10
100 .start

150 LDY #0@

160 .loop

170 LDA &7A00,Y
STA &7C00,Y
INY

BNE loop
RTS

assembly lines and

This program will transfer 256 bytes
of memory, starting from address &7A00,
into mode 7 screen memory, which starts
at &7C00. When the program is run
nothing significant appears on the
screen because we have not loaded
anything into memory for the routine to
copy. Type in immediate mode:

FOR I%=0 TO 255:I1%?&7A00=65:NEXT

which loads the number 65 into the 256
locations in memory starting at address
&7AQ0 (See User Guide p.409 onwards),
run the program again, and a block of
256 A's should now appear at the top of
the screen. If you now type:

CLS <Return>
which clears the screen and thus sets
all of mode 7 screen memory to zero,
and then:

CALL start <Return>
it will have the same effect as running
the program because 'start' is a Basic
variable set up in line 100 to contain
the start address of the assembled
machine.

The instruction LDA &7A00,Y has a
limitation because the address &7A00
(or whatever is used) cannot be readily
changed by the program. There is a more
flexible instruction, which overcomes
this limitation, in the form:

LDA (&79),Y

where the address within the brackets
in the instruction tells the micro-
processor where the address it wants is
stored. The address &79 (actually
&0070) is called a ZERO PAGE address
because its first byte is zero. Zero
page is the very first page of memory.
The BBC micro operating system reserves
sixteen of these valuable =zero page
addresses (&70 to &8F) for your own
use. The instruction in the form LDA
(&79) ,Y only works in zero page and
only with the Y register.

BEEBUG

MAY 1985

Volume-4 Issue 1

43

Alter line 170 to LDA (&79),Y and
add these new lines before running the
program again:

110 LDA #00
120 STA &70
130 LDA #&7A
140 STA &71

These extra lines store the address
&7A00 in zero page location &70. If you
look at the way the address &7A00 is
stored in lines 110 to 140 you will see
that the least significant byte (LSB)
or low byte of the address, which is
&P0, is loaded into address &70 and the
most significant byte (MSB) or high
byte of the address, which is &73, is
loaded into the address &71 which is
where the microprocessor expects to
find it. A memory address is always
stored as two bytes with the 1low byte
first and the high byte second. This
program writes 256 A's on the screen as
before, but the most important point is
that by adding a few lines in the
program to change the address stored in
addresses &70 and &71, a new section of
memory could be displayed on the
screen. To make full use of this new
instruction you will also have to learn
to add and subtract in order to alter
the address stored in addresses &70 and
&71.

Adding is done in the accumulator
which can only store one byte at a
time. To add one two byte number to
another two byte number you load the
accumulator with the LSB (least
significant byte) of the first number
and use the instruction ADC (ADd with
Carry) to add the 'LSB' of the second
number. Then store the contents of the
accumulator, which is the result,
safely back in memory. You then do
exactly the same with the MSB's (most
significant bytes).

There is a slight snag which occurs
when the result of two bytes added
together exceeds 255, the maximum
number that the accumulator can hold.
When this happens a flag, called the
'Carry' flag, is set anmd the
instruction ADC (ADd with Carry) takes
this flag into account when the next
two bytes are added together. For this
reason you must always clear the carry
flag using the instruction 'CLC' before
starting an addition routine. You

should be able to see the pattern of
the routine in Program 11 below.

Subtraction follows the same pattern
except that you set the carry flag
using 'SEC' before the routine and use
the instruction 'SBC' for subtracting
with carry. The techniques for addition
and subtraction are very much like the
manual techniques we all learnt at
school, with a ‘'carry' from tens to
units and so on. In binary arithmetic,
of course, a carry is always 1 or 9.

The number of instructions is now
increasing and to make the part
programs more compact we will now use
more than one statement on a line,
separated by colons, which the
assembler still recognises as does
Basic. As with Basic, this can make
programs more difficult to read, and
should not be overdone. Delete 1lines
110 to 210 in Program 18, enter the new
lines 110 to 200 below and run the new

program:

Part Program 11
100 .start
110 LDA #0:STA &70
120 LDA #&7C:STA &71
130 LDY #0:LDX #20
140 .loop
150 LDA #255:STA (&70),Y
160 CLC
17¢ LDA &70:ADC #41:STA &70
180 LDA &71:ADC #0:STA &71
190 DEX:BNE loop
200 RTS

This new program displays a diagonal
line of squares (ASCII 255) on the mode
7 screen. Lines 110 and 120 1load the
first screen address in addresses &70
and &71, and the addition routine to
change this screen address is in lines
160 to 180. Notice that although each
line on the screen consists of 40
characters, we are adding 41 to the
screen address at line 170 which gives
a staircase effect when we print ASCII
character 255 at line 150.

Although 1line 180 seems to be just
adding zero to the most significant
byte it is also adding in the carry
flag in case it has been set. The
accumulator has to be reloaded at line
150 each time because the accumulator
has been used in the adding routine.

BEEBUG

MAY 1985

Volume-4 Issue 1

44

The Y register remains at zero and the
X register is wused as a loop counter
which is rather wasteful because we can
produce the same result with just the Y
register by entering the lines below:

130 LDY#0
170 LDA &7@0:ADC #40:STA &70
190 INY:CPY #20:BNE loop

This concludes our brief intro-
duction to machine code under the

heading of 'Beginners Start Here'. If
your interest has been aroused, then
there are many books on this subject,
such as that by Ian Birnbaum reviewed
in BEEBUG Vol.3 No.6. Although this is
the last article in this particular
series, we shall be publishing further
instructional articles on the use of
machine code in future issues of
BEEBUG. %

Q)Q'E : (/6‘

SFE

=) POSTBAG

MORE HASTE LESS SPEED

Reading the recent articles in
BEEBUG (Vol.3 Nos.7 & 8) about
indirection operators reminded me of my
experience with the "?" operator. I
wanted to speed up a program SO
I converted integer variables with
values in the range @ to 255 to use
single bytes of =zero page memory
accessed by the "?" operator.

However, far from speeding up the
program it actually slowed it down
slightly. I'm at a loss to explain
this; it seems to me that altering one
byte of memory should be faster than
altering the 4 bytes in a Basic integer
variable.

Lorcan Mongey

PUTTING THE PLUS IN WORDWISE

I swapped Wordwise for Wordwise Plus
not long ago and was very pleased to
read the review of Wordwise Plus in the
March issue (BEEBUG Vol.3 No.9).

Please can we have some listings of
programs to use in Wordwise Plus to

‘b("EB 06‘

29 FEB
I98+/

help your many readers who do a lot of
word processing.

POSTBAG

Frederic Haas

R

ELITE AT LAST

I purchased a double density disc
interface with a 1.4 DDFS and disc
Elite would not run. On phoning Watford
I was told that I did not have the
latest version of the DDFS but that
with version 1.5 Elite should be OK.
Send £5 etc... I did, it was and the
kids were happy.

I have generally 1little success in
transferring tape programs to disc, so
decided to buy Watford Electronics'
"Disc Executor". To my surprise this
would not run correctly. On phoning
Watford I was told that it would not
work with a Watford DDFS. So be warned,
there is no guarantee that a Watford
DDFS will run even Watford software

R.K.Greenwood

=

BEEBUG

MAY 1985

Volume-4 Issue 1

ot SRR e Y o T

45

LUNARBUG

Some of the more faithful of BEEBUG readers may remember the popular ‘Lunar
Lander’ programs of yesteryear with their origins on mini and mainframe computers.
Alan Dickinson has updated this theme with a new version to delight young and old

alike.

LunarBug is a good old fashioned
computer game that requires you to
navigate your space craft to a safe
landing on the moon's surface. The game
features good graphics and provides a
serious challenge to the player. You
have to land your craft before the fuel
runs out (there isn't a lot of it to
start with) and at a certain speed. If
you find that you are constantly
running out of fuel then you can change
the initial setting of the fuel at line
2720 to make the game easier. If you
change the variable F% to 8000 then
this will give you twice as much fuel.

The craft has to be landed with a
vertical speed of less than 30 m/s and
a horizontal speed of less than 19 m/s
in either direction (at a certain

£8 B 22AX 9IS

‘-ﬁ -

T e

.
g

/, b 4 S
’///// AP AN

— i
-~ S & . et e
DA el b

height these are diplayed at the bottom
of the screen for greater convenience) .
The acceptable landing speeds can be
changed by altering the two values -30
and 10 at line 3030. The keys 'Z' and
'X' fire the left jet and right jets
respectively, and the '/' key fires the
main rocket.

The program itself is very well
structured, to make it fast, and it is
well documented with plenty of remarks
included within the code.

You can reduce the amount of typing
needed to enter this program by
omitting the program's introductory
scene. To do this leave out 1line 170
and lines 1120 to 1600. This means
though that every game will start
automatically.

The program runs slightly faster
over the tube, but there are no other
significant differences.

To run this program on a machine
fitted with a disc system, or any
machine with PAGE greater than &1200,
you must type: PAGE=&1200 before
loading and running the program.

BEEBUG

MAY 1985

Volume-4 Issue 1

OOoHHID

46

220
1000
1919
1020
1030
1040
1050
1060
1070
1080
1090
1100
11190
1120
1130
1140
1150
1160
1170
1180
1190
1200
1219
1220

REM PROGRAM LUNAR

REM VERSION B@.2

REM AUTHOR ALAN DICKINSON

REM BEEBUG MAY 1985

REM PROGRAM SUBJECT TO COPYRIGHT
DIM b 9:o0sword=&FFF1

ON ERROR MODE7:PROCabend

MODE1

PROCdefines

REPEAT

PROCpallette

PROCintro

PROClandscape

PROCmission

TIME=0:REPEAT UNTIL TIME>333
UNTIL FALSE

DEFPROCabend

ON ERROR OFF

*EX15

REPORT: PRINT" at line ";ERL
IF ERR=17 END
com$="L."+STRS (ERL) +CHR$13
FOR i=1 TO LEN (com$)
X%=0:Y%=ASC (MID$ (com$,1i,1))
A%=&8A:CALL &FFF4

NEXT

END

DEFPROCintro

CLS:GCOL@, 1
MOVE30@, 500 :MOVE20d, 400
PLOT85,400,400

GCOL@, 2:MOVE160,400:MOVE443,400
PLOT85,160,200: PLOT35,440,200
GCOL@, 1

MOVE24@, 200 :MOVE363J, 200
PLOT85,220,100: PLOT85,380,100
GCOL®@, 3

MOVE 16¢,300:PLOT1,-32,-16:PLOT1,

@,64:PLOT1,32,-16

1230

MOVE 44¢,300:PLOT1,32,-16:PLOT1,0

,64:PLOT1,-32,-16

1240

MOVE208, 20¢: DRAW132, 60

LUNAR BUG

tal speed
Less than 18 m/s

Vertical Speed
Less than 38 acs

Z = Left jet
X = Right jet
Main rocket

1390 COLOUR1

1409 PRINT"CONTROLS :"'
1410 COLOUR3
142¢ PRINT" 2
1430 PRINT" X
1440 PRINT" /
1450 COLOUR2
1460 PRINTTAB(@,28)"Fire MAIN ROCKET"'
'"to start mission";

1470 *FX15

1480 GCOL3,3

1490 REPEAT

1500 IF INKEY-98 MOVE96,332:VDU5,249,8
,249,4:S0UNDO,-10,4,1

1519 IF INKEY-67 MOVE472,332:VDU5,249,
8,249,4:50UNDY,-10,4,1

1520 UNTIL INKEY-195

1530 vbu28,9,31,19,0

1540 FOR j%=1 TO 16

155¢ SOUND@,-10,4,6

1560 MOVE272,6@:VDU5,249,249,4

1570 PRINTTAB(@,31);:VDU1%,10

1580 NEXT

1590 ENDPRQC

1600 :

1619 DEFPROCprint2 (AS)

1620 LOCAL X%,Y%,A%,3%,k%

1630 A%=&A:X%=b MOD256:Y%=b DIV256
1640 FOR j%=1 TO LEN(AS)

Left jet"'
Right jet"!
Main rocket"

1250 MOVE392,200:DRAW468, 60 1650 ?b=ASC (MIDS (AS,3%,1))
1260 MOVE1@0,60:DRAW164,60 1660 CALL osword
1279 MOVE436,60:DRAWS03, 60 16760 VDU23,224,b21 ,b71,b72,022,b23,523
1280 vDU28,20,31,39,0 024,024,23,225,b25,b75,b26,b26,b?7,b?7
1290 COLOUR@:COLOUR13@ /b?8,b?8,224,10,8,225,11
1300 PRINTSPC(209) ; 1680 NEXT
1310 PROCPrint2(Y L UMNAR BUG ™ 1690 ENDPROC
1329 PRINT'SPC(2@) :COLOUR128:COLOUR] 1709 :
1330 PRINT'"LAND ON ANY SITE :"' 1719 DEFPROCpallette
1340 COLOUR3 1720 VDU20
1350 PRINT" Horizontal speed"' 1730 vbU19,2,6,0,0,0
1360 PRINT" Less than 10 m/s"'' 1740 vDU19,1,5,0,9,0
1370 PRINT" Vertical Speed"' 1750 vDU19,3,3,0,0,0
1380 PRINT" Less than 30 m/s"'' 1760 VDU23;8202;0;0; 0;
BEEBUG MAY 1985 Volume-4 Issue 1

a7
RN A
1770 ENDPROC
1780 :
1790 DEFPROCdefines
1800 vDU23,255,96,240,240,96,144,144,0
1819 vpu23,254,90,9,9,9,60,60,60,60
1820 vpu23,253,0,9,9,9,126,126,126,126
1839 vDU23,252,192,248,255,248,192,0,0
%)
’
1840 vpU23,251,0,0,24,60,126,219,0,0
1850 vpu23,25¢,3,7,15,7,3,9,0,0
1860 vDU23,249,85,17¢,85,170,85,174,85
, 170
1870 ENDPROC
1880 :
1890 DEFPROClandscape
190¢ VDU26:CLS
1910 = 2330 REM Landing silos
1920 REM Console 2340 REM
193¢0 REM 2350 =
1940 : 2360 PROCtunnel (RND (100)+100@,128,16)
195¢ GCOL @,1 237¢ PROCtunnel (RND (80)+110¢,-700,28)
1960 MOVE788,718:MOVE788,1023 2380 PROCtunnel (RND(150)+3503,0,12)
1970 PLOT85,1279,718:PLOT85,1279,1923 2399 :
1980 GCOL@,d 2400 REM Baseline
1996 MOVES8@@d, 739 :MOVE8YJ, 1015 2419 REM
2009 PLOT85,1267,730:PLOT85,1267,1315 2420 :
2019 COLOURI1 2430 GCoL @,1
2020 PRINTTAB(27,1);"Alt";TAB(27,3);"V 2440 MOVE @,100:MOVEQ, 88
«Sp.";TAB(27,5) ;"H.Sp."" 7 TRB (27 ,7) ; "Fuel 2450 PLOT85,1279,100:PLOT85,1279,88
& 2460 ENDPROC
2030 : 2479 :
2040 REM rough terrain 2489 : Carve tunnels in mountain
2050 REM 2499 : and terminate with hangar.
2060 : 2500 :
2070 GCOL @,2 2510 DEFPROCtunnel (X%,A%,W$)
2080 X%=-50 2520 GCOL 0,0
2090 REPEAT 2530 MOVE X%,100
2100 x%=X%+RND(199) : IF x%>650 x%=650 2540 MOVE X%+A%,1000
2110 z%=x%+RND(199) : IF 2%>650 2%=650 255@ PLOT 85,X%+W%,100
2120 Y%=RND(200)+110 2560 PLOT 85,X%+A%+ (3*W%) ,1000
2130 IF x%>450 Y$=RND (450)+400 2570 MOVE X%-24,100
2140 IF x%<200 Y%=RND(350)+500 2580 MOVE X%-24,124
2150 MOVE X%, 100:MOVEx%,100 2590 PLOT 85,X%+24,100
2160 PLOT 85,x%,Y% 2600 PLOT 85,X%+24,124
217¢ PLOT 85,z%,100 2610 ENDPROC
2180 X%=x% 2620 :
2190 UNTIL z%=650 2639 : Control handed over to
2209 PLOT 85,800,100 2640 : pilot with module on
2210 : 2650 : final approach course.
2220 REM Beacon 2660 :
2230 REM 2670 DEFPROCmission
2240 : 2680 X%=5000:x%=X% DIV10?
2250 MOVE 812,100:DRAW 812,160 2690 Y%=80000J+RND (20000) :y%=Y% DIV100
2260 : 2700 PROCimage
2270 REM Steep mountainside 2710 DX%=50:DY%=-
2280 REM 2720 F%=4000 :REM fuel
2290 : 2730 B%=TRUE :REM beacon
2309 MOVE 90@,100:MOVE 1279,100 2740 G%=-1 :REM gravity
2319 PLOT 85,1279,RND(100)+700 2750 C%=FALSE:REM end condition
2320 : 2760 T%=0:TIME=0

BEEBUG

MAY 1985

Volume-4 Issue 1

48

2779 :

2780
2799
2800
2810
2820
2830
2840
2850
2860

2870 :

2880
2890
2900
29190
2920
2930
II;

2940
2950
2960
2970
2980
2990
3000
3019
3029

’
3030

REPEAT

HE%=0

IFF%>0 IFINKEY-67 PROCside(-1)
IFF%>@ IFINKEY-98 PROCside (+1)
DX%=DX%+HF'%

VE%=-1

IFF%>0 IFINKEY-105 PROCfire
DY%=DY3%+VF'%

PROCimage

X%=X%+DX%:x%=X% DIV100Q
Y3=Y%+DY%:y%=Y% DIV100

P%=POINT (x%,y%)

PROCimage

IFY%<25000 PRINTTAB (26,30) ;-DY%;"

IFX%<0 OR X%>12790@ C%=TRUE
IFY3<10100 C%=TRUE

IFP%=2 C3%=TRUE

IFTIME>T% PROCtimeout

UNTIL C%

PROCtimeout

PRINTTAB (31,30) "TIME ";T% DIV10d;

IFX3%<0 OR X%>127900 PROCabort ELS

E IFP%=2 PROCcrash ELSE IFDY%<-30 OR AB
S (DX%)>10 PROCcrash ELSEPROClanded

3040
3059
3060
3070
3080
3090
3100
3110

3120 :

3130
3140
3150
3160
3179
3180
3190
3200
3210

3229 :

3230
3240
3250
3260
3279
3280

3290 :
3300 :

3310
3320
3330

ENDPROC

: draw/erase module image

: at screen position x%,y%
DEFPROCimage

VDU25, 4,x%-8;y%+20;18,4,0,5,255,4
ENDPROC

: fire lateral rockets

DEFPROCside (D%)

GCOL3, 1:MOVEx%$-16-16*D%,y%+24
VDU5,2514D%, 8
HF%=D%:F%=F%-1:SOUND&10,-19,5,5
VDU251+D%, 4

ENDPROC

fire main rocket

DEFPROCfire
GCOL3,1:MOVEx%-16,y%:VDU5, 251 ,8
%=2:F%=F%-8:SOUND&10,-10,5,4
VDU251,4
ENDPROC

update console display

DEFPROCt imeout
T%=TIME+100

3349
3350
3360

sTAB (33,30 =DY3 ;"

COLOUR3
SOUND 1,-12,100,1
PRINTTAB (33,1) ;Y% DIV1@9@-190g;" "

BeTAB (3, 5)ioue ¢

JIAB(B3 T mael 0.

3370

IFF%<1 PRINTTAB(33,7);"EMPTY";:EL

SEIFF%<50@ PRINTTAB(31,30)"LOW FUEL";

3380
3390
3400
3419
3420
3430
3440
3450
3460
3470
3480
3490
3500
3510
3520
3530
3540
3550
3560
3570
3580
3590
3600
3610
3620
3639
36490
3650
3660
3670
3680
rap?"
3690
3700
||l
3719
3729
3730

COLOUR1
PRINTTAB (25, 26) ;CHRS (254+B%) ;
B%=NOT B%

ENDPROC

: Crashes can be caused by
: hitting the mountain, or
: landing too fast.

DEFPROCcrash

SOUND &0010,-15,4,2
vDU19,0,12,0,9,0
vDul9,3,9,9,0,0

FOR i%=1 TO 30

MOVE x%,y%

GCOL @,RND (4)

DRAW RND (1279) ,10@+RND (700)
SOUND @,-15,4+RND(2) ,2
NEXT i%

FOR I%=1 TO 40

SOUND 1,-15,3*I%,1
NEXT I%

PROCpallette

R%=RND (8)

IF R%=1 R$="No Survivors"

IF R%=2 R$="Another crater..."

IF R$="Wreckage over 2 Km"
IF R$="Expensive repairs"

IE RS="00PS, s ¢ sioisie’s 2

IF R$="Anybody fancy some sc

oA
nou

o Ul W

o° o o o\ o

1}

o]

e
I

R$="Did somebody sneeze?"
R$="Another Monday mornin

o D
povs g'\lo
@ ~J

PRINT TAB(1,30);RS$;
ENDPROC

: Mission is aborted when
: shuttle travels out of
: side of landscape
DEFPROCabort

FOR j%=1 TO 10

FOR k%=1 TO 2

COLOUR k%
PRINTTAB (1,30) "Mission Aborted";
SOUND 1,-15,100+k%*32,2
FOR 1%=1 TO 1000Q:NEXT
NEXT

NEXT

ENDPROC

BEEBUG

MAY 1985

Volume-4 Issue 1

49

3880 :

3890 : Module is landed when
3909 : altitude is <101, and
3919 : touchdown speed is <30
3920 : vertically, and <10 in
3930 : either direction horiz.
3940 :

395¢ DEFPROClanded

3960 R%=-DY%

3979 RS$="K-E-R-T-H-U-M-P"

3980 IF R%>28 R$="C-R-U-N-C-H"
3990 IF R%<2¢ R$="T-H-U-D"

4000 IF R%<15 R$="B-U-M-P"

4019 IF R%<1¢ RS$="Touchdown"
4020 IF R%<5 R$="Great Landing"
4030 PRINTTAB(1,30);RS;

4040 FOR I%=1 TO 100 STEP 4

4¢5¢ SOuUND 1,-15,1%,3

4060 SOUND 2,-15,1%+20,2

4070 SOUND 3,-15,I%+32,1

4080 NEXT

4090 FOR i%=1 TO 5

410@ PRINTTAB(1,30)"REFUELLING";SPC(6)
4110 FOR j%=15¢0 TO 200 STEP 5
4120 SOUND1,-15,3%,1

4130 NEXT
4140 PRINT TAB(1,30);SPC(10)
4150 FOR j%=200 TO 150 STEP-5

4160 SOUND1,-15,3%,1

4170 NEXT

4180 NEXT

4199 PRINT TAB(1,30)"EMERGENCY TAKEOFE"
4200 IFx%<250 idx=-1.5:dx=.5

4210 1Fx%>250 ANDx%<500 idx=0:dx=.33
4220 IFx%>500 ANDx%<1000 idx=1.5:dx=.42
4230 IFx%>1900 idx=5:dx=.2

4240 :

4250 x=x%:y=y%:dy=7

4260 REPEAT

4270 PROCimage

4280 x=x-idx

4290 IF y>650 idx=idx+dx

4300 y=y+dy

4319 x%=x:y%=y:PROCimage

4320 SOUND@,-15,4,1

4330 SOUND1,-15,y% DIV9,1

4340 UNTIL x<@

4350 PRINTTAB(1,3@) "MISSION ACCOMPLISH

ED"
=

4360 ENDPROC

22 .

keys are used to good effect to scroll
back and forth through your program,
move directly to the top, the bottom,
or a particular 1line, delete whole
line, and so on. Beebed only actually
makes the correction when Return is
pressed so you can alter an entire page
and then change your mind with the
'undo' key and everything is back to
square one.

Pressing Escape, like Wordwise, gives
you the main menu from which programs
can be loaded and saved, sections of
program moved around, deleted,
renumbered , and searched for ithe
occurrence of any string. These
features are all thoroughly idiot
proofed and have such options as
remembering the last name you gave to a
file with the option to use it again.

The only slight niggle with Beebed
is that, despite its 1likeness to
Wordwise, Shift with a cursor key moves

c> J & 0 Software 83

Load section

Save section

Move section

Copy section
Delete section
Renumber program
Search

Search and replace

Enter your choice
New program C(Y/N>7?7 Y
GROT_

you one page up or down the program and
Ctrl with a cursor key moves to the top
or bottom - the exact opposite to
Wordwise. Most confusing! However, this
is merely a niggle that does not
blemish an otherwise excellent, if a
little expensive, product. w5

R L R B R N S R e SV S
HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS

MAKING PROGRAMS RUN ON THE SECOND PROCESSOR - R.J.J. Orton

Many programs will run on the 6502 second processor despite first appearances if
the value of PAGE is set to what the program expects. BEEBUGSOFT's Masterfile, for

example, will run perfectly if PAGE is first set to &E00 or &190@

(not needed for

Masterfile II). Although this gains little memory, the gain in speed is worthwhile.

BEEBUG

MAY 1985

Volume-4 Issue 1

BEEBUG MAGAZINE is produced
by BEEBUG Publications Ltd.
Editor: Mike Williams

Assistant Editor: Geoff Bains
Production Editor: Phyllida Vanstone
Technical Assistant: Alan Webster
Secretary: Debbie Sinfield
Managing Editor: Lee Calcraft
Additional thanks are due to
Sheridan Williams, Adrian Calcraft,
John Yale and Tim Powys-Lybbe.
All rights reserved. No part of this
publication may be reproduced
without prior written permission of
the Publisher. The Publisher cannot
accept any responsibility, whatso-
ever for errors in articles, programs,
or advertisements published. The
opinions expressed on the pages of
this journal are those of the authors
and do not necessarily represent
those of the Publisher, BEEBUG
Publications Limited.

BEEBUG Publications Ltd (c) 1985
Editorial Address
BEEBUG
PO BOX 50
St. Albans
Herts.
CONTRIBUTING TO BEEBUG
PROGRAMS AND ARTICLES

We are always seeking good quality
articles and programs for publica-
tion in BEEBUG. All contributions
used are paid for at up to £40 per
page, but please give us warning of
anything substantial that you
intend to write. A leaflet, ‘Notes
of Guidance for Contributors’ is
available on receipt of an A5 (or
larger) SAE.

In the case of material longer than
a page, we would prefer this to be
submitted on cassette or disc in

machine readable form using
“Wordwise”, “View', or other
means, but please ensure an

adequate written description of
your contribution is also included.
If you use cassette, please include a
backup copy at 300 baud.

HINTS
There are prizes of £5 and £10 for
the best hints each month, plus one
of £15 for a hint or tip deemed to
be exceptionally good.

Please send all editorial material to
the editorial address below. If you
require a reply it is essential to
quote your membership number
and enclose an SAE.

SUBSCRIPTIONS
Send all applications for membership, subscription renewals, subscription
queries and orders for back issues to the subscriptions address.

MEMBERSHIP SUBSCRIPTION RATES

£ 6.40 6 months (5 issues) UK ONLY
£11.90 UK - 1 year (10 issues)

£18 Europe,

£23 Americas & Africa,

BACK ISSUES
(Members only)

£21 Middle East
£25 Elsewhere

L s

Please add the cost of post and packing as shown:

All overseas items are sent airmail (please send a sterling cheque). We will
accept official UK orders but please note that there will be a £1 handling
charge for orders under £10 that require an invoice. Note that there is no
VAT on magazines.

Back issues are for members only, so it is ESSENTIAL to quote your
membership number with your order. Please note that the BEEBUG
Reference Card and BEEBUG supplements are not supplied with back
issues.

Subscriptions, Back Issues &
Software Address

BEEBUG
PO BOX 109
High Wycombe
Bucks. HP10 8HQ

Hotline for queries and software orders

St. Albans (0727) 60263
Manned Mon-Fri 9am-4.30pm

24hr Answerphone Service for Access and
Barclaycard orders, and subscriptions
Penn (049481) 6666

If you require members’ discount on software it is essential to quote
your membership number and claim the discount when ordering.

MAY 1985 Volume-4 Issue 1

High Quality Low Priced Discs

Backed by The Reputation of BEEBUG

10 S/S D/D Discs — £13.90 10 D/S D/D Discs — £19.40
25 S/S D/D Discs — £33.45 25 D/S D/D Discs — £46.95
50 S/S D/D Discs — £59.30 50 D/S D/D Discs — £87.05

All Prices Include Storage Box, VAT and Delivery to Your Home (UK).

All discs are 100% individually tested, supplied with hub ring as standard, and
guaranteed error free. They are ideal for use on the BBC Micro and have performed
perfectly in extensive tests at BEEBUG over many months.

Orders for 25 or 50 are delivered in strong plastic storage boxes with four dividers.
Orders for 10 are sent in smaller hinged plastic library cases.

We are also able to offer the empty storage container, which holds up to 50 discs for
£10 including VAT and post.

Please use the order form enclosed %%%%%%

or order directly from:
BEEBUGSOEFT, P.O. Box 109, %%EE
High Wycombe, Bucks HP 10 8HQ.

Magazine Gassette/Disc

MAY 1985 CASSETTE
DISC CONTENT

POLAR CURVES in 57 varieties

EXTENDED ASSEMBLER for second processors

FREE MEMORY DISPLAY for all Basic programmers
FLOWCHART GENERATOR with hardcopy output
WORKSHOP PROCEDURES - String Sort and File Sort
MAKING MUSIC - the latest additions

BEGINNERS EXAMPLES on using machine code

LUNAR BUG - a classic game with a new twist
EXTRA FEATURES THIS MONTH

SCRUMPY - colourful, smooth, fast-moving, addictive, action-packed -
what more can we say about this first rate arcade game?

ENGLISH COUNTRY GARDEN LUKAR BUG

- A detailed and colourful display, to show off the graphics

capability of the Beeb, and all with appropriate music.
Worizontal speed

Less than 18 ars
Usrticel Speed

Less than 38 ars

Lett jet

Right et

Main rocket

All this for £3.00 (cass) £4.75 (disc) + 50p p&p.
Back issues (disc since Vol.3 No.1l, cass since Vol.l No.1@) available at the same prices.

Subscription rates DISC CASS DIsC CASS
UK UK O'seas O'seas

6 months (5 issues) £25 £17 £39 £20

12 months (10 issues) £5¢ £33 £56 £39

Prices are inclusive of VAT and postage as applicable. Sterling only please.

Cassette subscriptions can be commuted to disc subscriptions on receipt of £1.79 per issue
of the subscription left to run.

All subscriptions and individual orders to
BEEBUGSOFT, PO Box 109, High Wycombe, Bucks, HP1¢ BNP.

Printed in England by Staples Printers St Albans Limited at The Priory Press ISSN 0263 -756!

