VOLUME 4 NUMBER 5 - OCTOBER 1985 PRICE £1.20

\{,

| |
RECURSIVE
TREES

FEEEUE

VOLUME 4 NUMBER 5
OCTOBER 1985

GENERAL CONTENTS

3 Editorial Jottings

4 Postbag

5 BEEBUGSOFT Forum
6

-

Glentop’s 3D Graphics System News
Recursive Trees
- 10 Glentop’s 3D Graphics System
3 268215, 12 Dynamic Memory Window
T - 4 15 Boffin — Review and Competition
2 16 Programming with Wordwise Plus (Part 1)
25 19 Hints for Wordwise Plus Users
17 19 Wordwise Help and Prize Competition
| g 20 First Course
& Print Formatting (Part 1)
27 22 Points Arising
13 23 EPROM Programmer Project (Part 2)
36 27 Loan Repayments
i 28 Double Density Disc Filing Systems
Compared
32 BEEBUG Workshop
Text Compression
34 Adventure Games
35 Advanced Disc User Guide Reviewed
36 Further Disc Menu Extensions
38 Data Structures (Part 2)
42 Interfacing the Beeb
Eight Books Reviewed
45 Roulette

Roulette

38

Recursive Trees

PROGRAMS

7 Recursive Trees

[12 Dynamic Memory Window

16 Wordwise Plus Segment Programs
23 EPROM Programmer Driver

27 Loan Repayments

32 Workshop Procedures

36 Disc Menu Extensions

38 Data Structures — examples

45 Roulette Game

HINTS, TIPS & INFO

14 Music System Line Feeds
14 780 Filenames
35 Wordwise Plus Hints
VDU Codes
Sound
Filename Printing
Label Duplication
49 Local Points of Interest
49 Trouble with "FX3
49 Quick Random

Boffin

IHAGE

[ROTAT]

++0 +D
o0 PO =M

+

Glentop’s 3D Graphics System

By Alan Webster and Geoff Bains

Eprom Size=16K.
Eprom Not Blank

Alan's silly ROM

- Save Eprom To File
Program Eprom From File
Display Eprom

- Verify Eprom Against File

- Quit

- 0.S Command

Please Enter Your Choice

Description

cassette file input deno
simple ‘dl(abau mhrngalvr
cu;cm file

0 3‘1 A
E RY DISPLAY
N PROGRAMPER
l HISI FIIIGHIIIH l disc veritier
ES P 03"" ‘ N V HIEE DEMO
EL i

ke GEEHRHHHKE i i
éﬁri‘fﬁ'iuﬂ B

FID HEC“ISWE TREES
PROGRAN COMP!

Fm» i ST ~ Tofal Tiles SB
Which nusbered file

Further Disc Menu Extensions

EPROM Programmer Project

il

EPROM Programmer

Length

Tpace used 6ok

EDITORIAL JOTTINGS

.ast month saw the first article in our new regular
series for newcomers to computing on the Beeb —
First Course. Despite Acorn’s much-publicized
troubles, new BBC micro owners are still to be found
in as large numbers as ever, and BEEBUG intends to
continue to support all Beeb owners, regardless of
experience, as earnestly as we have in the past.

New and established members alike will be
interested in another new magazine feature starting
this month. The software arm of BEEBUG, has been
given a voice in the form of the BEEBUGSOFT Forum.
A page of the magazine has been devoted to bringing
you news of new BEEBUGSOFT products and help
with the old ones.

The recent Acorn User show was well attended
and provided an opportunity for members to see all
these BEEBUGSOFT products demonstrated and to try
them out for themselves. There is a similar
opportunity to view the software and meet the people
behind BEEBUG at the Micro User Show at the
Horticultural Halls in London between November 14th
and 17th.

This month’s magazine cassette/disc contains a
couple of extra items. The full disc benchmark
program is there for members interested in how the
results published in the Double Density Disc Systems
review, in this issue, were obtained. The program
runs on single density systems too, so you may like to
test out your own DFS if you have one.

The second extra on the cassette/disc is a bit
unusual, for BEEBUG at any rate. We have included
one of the demonstration programs from Glentop’s
3D Graphics Development System. This self-contained
program will show you just the kind of sophisticated
three dimensional animation that this package is
capable of. See the back cover for the full details of all
the programs on the magazine cassette/disc.

PROGRAM CLASSIFICATION

All programs in the magazine, and on the
magazine cassette/disc, are marked with the symbols
shown below. An uncrossed symbol indicates full
working, a single line through a symbol shows partial
working (normally some modifications will be
required), and a cross through a symbol indicates a
program that will not work on that system.

Basic I I Electron Q
Basic II 1 Disc [o]
Tube 'e' Cassette =

Model B+ +

eEBob

POSTBAG

SFE
tSB#/}

Logically speaking
Thanks to Peter Lewis
for some interesting
tutorials on the use of
logic (see BEEBUG Vol.4
Nos.2 & 3). Here is a
quirk that puzzled me:
FOR J=0 TO 5:PRINT
, (J MOD 2) :NEXT

This worked OK but not
this extension:

FOR J=@ TO 5:PRINT J,
(J MOD 2);:IF (J MOD2) PR
INT " odd" ELSE PRINT " e
ven" :NEXT

I changed the IF state-
ment to:

IF NOT (J MOD 2) PRINT
" even" ELSE PRINT " odd"
:NEXT

and then to:

IF (J MOD 2) PRINT "
odd":NEXT ELSE PRINT " ev
en" :NEXT

With this, I finally
discovered that the IF
must include its own NEXT
as well as the ELSE.

More tutorials please.
Dennis Kemp

As Dennis Kemp found out,
you can easily run into
problems if you have NEXT
in an IF-THEN-ELSE state-
ment. The same can happen
with REPEAT-UNTIL. It is
best to avoid this
situation altogether by
using a different
programming technique.

For example, in the above
set type$ (0)=" even" and
type$ (1)=" odd". The IF
statement that caused all
the trouble can then be
replaced by:

PRINT type$ (J MOD 2) :NEXT

a

320

A Point of View

Users of View 1.4 may
be interested to know
that they can obtain View
2.1 in exchange for £10
and the 1.4 ROM from
Acornsoft at Cambridge
Technopark, 645 Newmarket
Rd, Cambridge CB5 8PD.
The two revised manuals
"Into View" and "View
Guide" are £2.50 each.
However, View 1.4 users
already have two good
manuals. All we need is a
note of the differences.
The details (with thanks
to BEEBUG) are as
follows:

PRINT, SHEETS and SCREEN
may be used on text in
memory without saving it
first. Just issue the
command without a file
name.

A new stored command, ILJ
(left justify), works in
a similar fashion to RJ
(right justify).

A new command FOLD can be
used with the CHANGE

command. With FOLD on
(FOLD 1) characters being
changed retain their
original case. With FOLD
off (FOLD @) characters

to be changed take on the
case supplied by the user
(e.g. you can now change
'BASIC' to 'Basic',
impossible before.

Joyce Diment

Clarss Distinction

The new Computer Con-
cepts Speech ROM is a
beautiful chip. Within
minutes of installing it,
I was able to produce
quite a long sentence

¢

29 FEB
I98+/}

which was absolutely
intelligible and with
"expression". But then I
thought I had found two
glaring omissions, the
sound for "AW" as in
"awful" or "law", and the
sound for "AH" as in
YtaskY. They give for
these, respectively, "OR"
and "AR", and actually
give examples '"sor" for
"saw" and "clarss" for
"class".

I am not especially
for clarss distinction
but this 1is orful! How-
ever, I find on closer
listening, that they do
indeed pronounce "AR" as
"AH", leaving one obliged
to use an "AH" sound for
"are". One can go too
fah!

Regarding clarity, I
realised that as I knew
what I intended, that was
what I heard when listen-
ing to the result. So I
made a recording of some
longer sentences and ask-
ed a group of blind, or
nearly blind, people to
listen. The general ver-
dict was that they needed
to hear it at least three
times before the meaning
was clear. I was rather
crestfallen as I thought
it was pretty good. Maybe
the speed is just a
little too fast.

M.B.Dearlove

We are hoping to review
this new Computer Con-
cepts ROM in the near
future. The point about
knowing what to expect is
a good one which we will
take up in our review.

==
Beebug October 1985

e

E% ERES B

closely together. Our aims
are similar: to produce,
respectively, the magazine
and the software that will
be of interest to you, the
members.

This useful facility is
covered in the Exmon manual
(see page 26) but many
users seem unaware of it.

QUITTING MASTERFILE

WORDEASE

Welcome to the first
BEEBUGSOFT Forum. We hope
to make this page a regular
feature in BEEBUG magazine
to give us, at BEEBUGSOFT,
a chance to keep you, the
members, up to date on
software developments.

We will also use this
page to answer some of the

questions on BEEBUGSOFT
products that we are most
frequently asked by

members, and to give some
hints and tips about using
BEEBUGSOFT products. If you
wish to raise any points
concerning our products,
ask any questions, or make
any contributions that you
feel would be of interest
to other members, please
write to BEEBUGSOFT Forum
at the Editorial address.

We are always pleased
to receive suggestions and
ideas, and as you will have
seen from last month's
price list, we are happy to

evaluate members programs
and consider them for
inclusion in the next

BEEBUGSOFT catalogue.

WHO ARE BEEBUGSOFT?

BEEBUG Publications and

BEEBUGSOFT are entirely
separate entities, with
separate staff. We are
however, located in the

same offices and often work

Beebug October 1985

At the Acorn User
exhibition we launched our
new WordEase program, a
utility to assist with, and
add to, Wordwise Plus. If
you have any queries on
WordEase, or suggestions
for any further extensions
to Wordwise Plus, we'd be
pleased to hear from you.

PAINTBOX I
OR PAINTMASTER?
Our popular drawing
package, Paintbox II, has

been renamed 'Paintmaster'.
A company called Quantel
has a prior registration of
the name Paintbox, and has

requested that we rename
our program to avoid
possible confusion.

Paintmaster is identical in
every way, except name, to
Paintbox II.

NEW BEEBUG DISCS

We have just increased
our range of BEEBUG blank
discs. We can now offer 4
types of disc to meet your
exact requirements:

ss dd 48TPI ds dd 48TPI
ss dd 96TPI ds dd 96TPI
Unfortunately we have also

had to pass on a small
increase in price. Full
details are on the inside

back cover of BEEBUG.

EXMON II HINT

Exmon II is able to
assemble directly from disc
using files created on a
wordprocessor such as
Wordwise, giving a number
of advantages, including
greater available memory.

When using Masterfile
IT it is essential that you
use option "P" to quit the
program, as described in
the manual. If you press
the Break key you may cause
damage to your data because
files will not have been
updated and closed in a
correct manner.

LICENCES

All BEEBUGSOFT products
are subject to copyright.
Unauthorised copying, apart
from the production of one
backup copy only for use by
the purchaser, is strictly
prohibited. However, we
operate a licensing scheme
to allow schools and
colleges to have access to,

and to produce, multiple
copies of our programs at
special rates. Further
details are available from

the Software Manager at the
St. Albans address.

COMING SOON
We will shortly be
increasing the amount of
software and hardware

available from BEEBUGSOFT.
Watch this space for
further information.

NEW TELEPHONE NUMBER

Please note our
telephone number for order
queries and for technical
enquiries is:

new

St. Albans (0727) 40303.

All telephone orders

should still be placed on
(49481 6666.
=

5

Aries the Ram

Aries Computers, the
first to produce a shadow
RAM board for the Beeb, has

now released a new version
offering 32K extra RAM.
This is 20K screen memory

and 12K sideways RAM, along
the same lines as the B+,
and includes a sideways ROM
socket to take the
controlling ROM. The B-32
board costs £92 from Aries
on $223-862614.

Music Countdown

Hybrid Technology,
designer of the Music 500,
has previewed further
models to extend the range,
for a November release. The
Music 400 is the long-
awaited keyboard, the Music
200 is an interface to the
industry standard MIDI
specification and the Music
109 is a monitor amplifier
offering 4 watts per
channel. The music control
language, Ample, to look
after all of these, is to
appear in new clothing as
the 'Ample Nucleus' in ROM.
Reviews of all coming soon.
Hybrid also has an audio
tape of the Music 50¢ in
action for potential users.
The tape costs £1.95 from
Hybrid on #223-316914.

Keynotes

Two new numeric keypads
have arrived on the Beeb
scene. Keypad from Commer-—
cial products (©#293-30174)
costs £44.95 and connects
in parallel with the main
keyboard and so is totally
compatible with all soft-

ware. It offers the numbers
3-9, decimal point and
Return. The Kenpad costs

News News News News News News.........

£60 from K. Blanchard
(04446-41290), one of the
authors of Acornsoft's
Termulator, and is designed
for use with that ROM. It

plugs into the User Port
and offers ?-9, point,
Return, and four special
function keys.
Multi-Tasking
Multi-Basic is a side-
ways ROM that adds

multi-tasking ability to
your Beeb. Up.. to' 8
background tasks, written
in standard BBC Basic, can
be operative at one time
and triggered by time or
logical conditions. The ROM

also includes several 1/0
control commands for
interfacing enthusiasts.

Multi-Basic costs £34.95
from CMS on 0371-5666.

The Disc Drive’s Friend

BS-DOS is the latest
DFS for the Beeb from CUC.
BS-DOS costs £39.5¢0 and
works alongside any
Acorn-type DFS to provide
several enhancements.
Double sided disc drives
are now configured as
single drives, across the
two surfaces, with up to
256 files. BS-DOS is
compatible with all second
processors (including
Torch) and supports all the
normal OS calls. Further
details from CUC on @1-311
2555,

Space Bits

A self-contained,
simple to use satellite
data receiving and decoding
package 1is available for
the BBC micro. Astrid will

receive, decode, store and
display data from UoSAT 1
and 2. Astrid costs £149

fron MM Microwave on
#751-75455,

Bilbo Il

The infamous Hobbit
adventure from Melbourne
House (§1-940 6064) is now
available in a much
expanded form on disc for
the Beeb. The new Hobbit
has more locations and over

50 graphic screens and
costs £17.95.
More Teletext

Morley Electronics has

released a teletext adaptor

for the Beeb. The Morley
adaptor connects to the
User Port and, along with
the inevitable sideways
ROM, enables your Beeb to
receive all teletext
information and to down

load programs. The tuning
of the receiver is entirely
under software control. The
adaptor with ROM and power
supply costs £100.

The Case for the Beeb

Oak Computers has
launched a new and
impressive looking cabinet
for your BBC micro. Moulded
in 1light grey plastic, the
'Personal Computer' range
has a detached keyboard and
a main cabinet which can
house the main circuit
board, power supply, disc
drives, second processor,
modem, etc. Prices start
from £100. Further details
from Oak on 0274-614167.

=

Beebug October 1985

I_—A‘

o+IIR=C

Recursive Trees

William Godwin uses the
technique of recursion to
produce a veritable forest of
delights.

In the world of home micros the BBC
micro stands out as having one of the most
powerful recursion facilities. This
program exploits this technique to the
full to produce a variety of tree designs.

To create a tree, the various
parameters that define the tree's features
are first edited. These are explained in
full in the program notes section, but
briefly they comprise the tree's height
width and density of branches. To select a
parameter, you move the flashing cursor
across the screen using the left and right
cursor keys. Then you can either type in a
new value for the parameter by first
pressing the space bar, or use the up and
down cursor keys to change the current
digit of the value displayed.

For example, to change the number 10¢
to the number 200, vyou could place the
cursor anywhere underneath the number,
press the space bar and enter the new
value, 200. Alternatively, you could place
the cursor under the digit 1 and press the
cursor up key to alter the digit 1 to a 2.

Each time you alter a parameter, the
basic shape of the tree is drawn. This is
not an exact copy of how the tree will
finally look; it will be much more complex
than this. It is just a rough guide.

When vyou are satisfied with your
parameters, pressing the Return key will
then start the drawing of the tree. If you
get fed up with waiting for a certain tree
to be drawn, as vyou will with one that
involves a recursion,

high level of

pressing the Delete key will halt the
drawing of the tree and allow you to
return to the 'edit mode'.

The trees can take a long time to be
drawn. The time taken is largely dependant
on the value for 'TWIG'. Small values,
such as 8, give very detailed trees that
take a long time. Try larger values until
you are satisfied with the general shape
of the tree.

The trees produced by the program can
be dumped to any Epson-compatible printer
by pressing the Tab key. This initiates
the screen dump routine in PROCgemini. If
you have a printer that is not
Epson-compatible you can insert your own
screen dump routine in the procedure,
PROCgemini and call it appropriately from
line 2180. Alternatively you can call one
of the various screen dumps in ROM from
this 1line (*GDUMP for Printmaster, for
example) and leave out PROCgemini (and
line 130) altogether.

_RECURSION

A recursive routine is one that calls
itself. Obviously such a state of affairs
could go on forever in an endless loop.
The usual implementation of recursion in
BBC Rasic, therefore, is a function or a
procedure that calls itself only if a
particular condition is met. The condition
in the case of this program is the length
of the current branch being drawn. The
drawing process - splitting the current
branch recursively - is repeated until the
branch is smaller than TWIG.

PROGRAM NOTES

The size and shape of the tree is
determined by six parameters:

TWIG This gives the size of the
smallest detail. The tree is
drawn by drawing a smaller
branch on each branch until the
twig size is reached

TREE This gives the height of the

main tree trunk

Beebug October 1985

ANGLE This is the angle at which new
branches grow. A new branch
would grow at right angles to
the previous one if an angle of
90 degrees was stated

This value governs the
thickness of a limb (branch)
This determines approximately
how high up a new branch will
grow

This gives the relative length
of a limb. The maximum value is
999, but high values usually
cause too much recursion

LIMB

HIGH

LONG

10 REM PROGRAM TREE

200 REM VERSION B@.2

30 REM AUTHOR W.GODWIN

40 REM BEEBUG OCTOBER 1985

50 REM PROGRAM SUBJECT TO COPYRIGHT

100 ON ERROR GOTO0214

119 MODE1:PROCintro

120 N%=5:DIM param(N%) ,code%&86

130 IF code%?&85<>&60 PROCgemini

140 F%=6:0Q%=F%

150 FOR J%=0 TON%:READ param(J%) :NEXT

160 J%=0:REPEAT PROCedit

170 PROCtree(tall,twiqg,640,8,trunk,H,u
p,down)

180 *FX15 1

199 IFGET=9 PROCprint

200 UNTIL FALSE

219 ON ERROR OFF:*FX4

220 MODE7:REPORT:PRINT" at line ";ERL

230 END

240 :

1000 DEF PROCedit:*FX4 1

1010 K%=1:Y%=F%-1:VDU22,1:IF FNtest THE
N21¢

1029 PROCdisplay

193¢ REPEAT PRINTTAB (F$*J%+Y%,31);

1040 A%=GET

1050 IFA%=32PRINTTAB (F%$*J%+1,31)">>";:1
NPUTTAB (4,29) "VALUE",K: PROCal ter (K-param
(J%))

1060 IFA%=138PROCalter (-K$%)

1070 IFA%=139PROCalter (K%)

1080 IFA%=136PROCleft

1090 IFA%=137PROCright

1100 UNTILA%=13:VDU22,0:ENDPROC

Mg

1120 DEF PROCalter (X%)param(J%)=param(J
%) +X%

1125 IFFNtest param(J$%)=param(J%)-X%:EN
DPROC

1130 CLS:PROCAisplay:ENDPROC

1140 :

1150 DEF PROCleft

1160 IFK3<1000K3=K3*10:Y%=Y%-1:ENDPROC

1170 IFJI%>07%=J%-1:K%=1:Y%=F%-1

1180 ENDPROC

1199 ¢

1200 DEF PROCright

1210 IFK$>1K$=K3DIV10:Y%=Y%+1 : ENDPROC

1220 J%=(J%+1)MOD (N%+1) :K%=1:Y%=F%-1:EN
DPROC

1230 :

1240 DEF PROCdisplay

1250 PROCtree(tall,tall*tall-1,640,8,tr
unk,H,up,down)

12600 PRINTTAB (@,30)"

LIMB HIGH LONG"

1270 FORI $=0TON%:COLOURI $MOD2+1 : PRINTpa
ram(I%),; :NEXT

1289 ENDPROC

1290 :

1300 DEF FNtest

1310 IFparam(@)<2THEN=TRUE ELSEtwig=par
am (@) *param (@)

1320 theta=PI-RADparam(2) :phi=PI-RADpar
am (3) -theta:CT=COStheta:ST=SINtheta:CP=C
0Sphi : SP=SINphi

1330 H=param(4)*.001:up=param(5)*.001:K
=up*ST

1340 down=K/SP:D=K* (CT/ST+CP/SP) :E=1-H-
D

1350 tall=param(1):trunk=tall/TAN ((thet
atphi) *.5)

1360 IFtall<@ OR E<O OR D<@ OR H<® THEN
=TRUE

1370 IF5@*LNup>LN (twig/tall/tall) THEN=T
RUE

1380 IF5@*LNdown>LN (twig/tall/tall)THEN
=TRUE
1390 =FALSE
1400 :

1419 DEF PROCtree(tall,twiqg,P,Q,trunk,H
,up,down)

TWIG TREE ANGLE

Beebug October 1985

R R N R RN R SRS AN N v S nS.

1420 P=P-trunk :MOVEP,Q:PROCuptree (trunk
,tall) :PROCdowntree (trunk,-tall)

1430 ENDPROC

1440 :

1450 DEF PROCuptree (X,Y):LOCALU,V,K,F
1460 K=H-RND (1) * (H* (H<E)+E* (E<H)) :F=1-D
=K

1470 IFX*X+Y*Y<twig PROCline(X,Y) :ENDPR
oc

148 PROCline (K*X,K*Y) : PROCturn(CT,ST):
PROCuptree (up*U,up*V)

1490 PROCturn (CP,-SP) : PROCdowntree (down
*J,down*V) : PROCuptree (F*X,F*Y)

15@0¢ ENDPROC

1510 =

1520 DEF PROCdowntree (X,Y):LOCALU,V,K,F
153¢ K=H-RND (1) * (H* (H<E) +E* (E<H)) :F=1-D
=K

1540 IFX*X+Y*Y<twig PROCline(X,Y):ENDPR
oc

155¢ PROCdowntree (F*X,F*Y) : PROCturn (CP,
SP) : PROCuptree (down*U ,down*V)

1560 PROCturn(CT,-ST) : PROCdowntree (up*U
,up*V) : PROCline (K*X,K*Y)

1576 ENDPROC

1580 :

1590 DEF PROCturn(C,S):U=X*C-Y*S:V=X*S+
Y *C : ENDPROC

1600 :

1610 DEF PROCline (X,Y)

1620 IFINKEY (-90) twig=1E6

1630 P=P+X:Q=Q+Y :DRAWP,Q:ENDPROC

1640 DEF PROCintro

165¢ COLOUR2

1660 PRINT'" TREE DESIGNER"

1670 PRINT'"Use the ARROW KEYS to alter
parameters"

1680 PRINT'" or SPACE to enter a va
lue; "

1690 PRINT'" Press RETURN to draw the T
REE"

1709 PRINT'" (then DELETE to escape)"
1710 PRINT'" or TAB to send to pr
inter."

1720 PRINT'" Press SPACE to continue.™'
+ IFGET

1730 ENDPROC
1740 DATASG,990,150,4,100,650
1750 :

1760 DEF PROCgemini

1779 COL=&70:ROWS=&71:LOC=&72:STO=&74:W
R=&FFEE :FX=&FFF4

1780 FORI%=0TO2STEP2:P%=code%: [OPTI%

1799 LDA#2:JSR WR

1800 LDA#27:JSR PR:LDA#65:JSR PR:LDA#8:

1810 LDA#&84:JSR FX:STX LOC:STY LOC+1
1820 LDA#32:STA ROWS

1830 .BEGIN

184¢ LDA#80:STA COL

1850 LDA#27:JSR PR:LDA#76:JSR PR:LDA#12
8:JSR PR:LDA#2:JSR PR

1860 .BLOCK

1870 LDY#7

1880 .FETCH

189¢ LDA (LOC) ,Y:STA STO,Y

1900 DEY:BPL FETCH

1910 LDY#8

1920 .SEND

1930 LDX#7

1940 .PINS

195¢ ASL STO,X:ROR A

1960 DEX:BPL PINS

1970 JSR PR

1980 DEY:BNE SEND

1990 LDA LOC:CLC:ADC#8:STA LOC
2003 BCC NOC

2010 INC LOC+]

2020 .NOC

2(3@ DEC COL:BNE BLOCK

2040 LDA#13:JSR PR

2050 DEC ROWS:BNE BEGIN

2060 LDA#27:JSR PR:LDA#48:JSR PR
2070 LDA#3:JSR WR

2083 RTS

2099 .PR

2100 PHA:LDA#1:JSR WR

2110 PLA:JSR WR:RTS

2120]INEXTI%

213¢ PRINTP%:ENDPROC

2150 DEF PROCprint:*FX3 10
2160 FORI%=0TON%:PRINTparam(I%),;:NEXT:

217 *FX3
2180 CALLcode%:ENDPROC

=

Beebug October 1985

Glentop’s 3D
Graphic
System

Geoff Bains takes a look at a new
versatile graphics development
system that promises to get more
from your Beeb’s screen than you
ever thought possible.

Product : Graphics Development System
Supplier: Glentop Publishers,
Freepost, Barnet,
Herts.
01-441 4130
Price ¢ £25.00

There are many graphics systems on the
market for the BBC micro. These will allow

you to create pictures of varying
complexity on your Beeb's screen and
display them. What all these packages

lack, however, is any real application for
the resulting pictures. All you can do is
to save them to cassette or disc and load
them in again at a later date.

The Graphics Development System from

Glentop Publishers, however, is a
different story. This unique package
allows you to create wireframe

representations of 3D objects on the
screen, manipulate them in a variety of
ways and then to use the resulting images
in Basic or assembler programs to produce
some stunning animated images.

The graphics creation programs are a

This package is exclusively concerned with
wireframe models. There is no block
filling, shading, or even much in the way
of colour. The models are defined as a
series of three-dimensional co-ordinates,
representing each point of the wireframe,
entered into an editor. As well as the
co-ordinates each point is also defined as
a draw or move operation with the colour
and type (solid or dotted) of line used.

The data tables produced by the editor
can be saved onto disc and reloaded for
further editing. Unfortunately there is no
option to insert extra points into the
middle of a data table; these can only go
onto the end. This does mean that
alterations can take up unnecessary extra
table entries.

Once an object's data is entered it
can be viewed on the screen. The program
displays a perspective projection of the
wireframe and allows you to alter the
viewpoint and perspective, and to perform
rotations, scalings, and translations in
three dimensions. The various parameters
are displayed alongside the image and are
altered using the cursor keys.

That's all very well but it doesn't go
very much further than the 3D Rotation
program in BEEBUG Vol.l No.1@. However,
the Graphics Development System doesn't
stop there. Shapes can be rotated about
any of the three axes to form surfaces.
The program to do this is very versatile,
allowing either the lines parallel or
perpendicular to the axis of rotation only
to be created, or both, and the angle
through which the rotation 1is performed
and the step size to be altered at will.
The creation of such 'profiles' is, 1like
all the operations in the Graphics
Development System, extremely fast.

Any wireframe model can be used as a
'macro’ and stretched, translated,
rotated, enlarged in different ways with

little different from many on the market. each result saved. All these new models
‘J (@ \Em :0;:(:': :::25 THAGE
) | % EiH i
ot A =
= L -
. tiBas i
i s
10 Beebug October 1985

R I e e e o S R S e T SO e PR B B D S

~an be then linked together to form a new
creation. In this way complex models can
be built up with the minimum of data
entry. The interlocking rings shown here,
for example, were created by manipulating
a simple diamond shape (five data entries
only!). This was turned about one axis to
give a profile and the resulting ring used
as a macro. This was translated and
rotated to form the two rings which were
then linked together to form the whole
picture.

The only limit to this model creation
is the Beeb's memory. The Graphics
Development System operates perfectly with
the 6502 second processor, however, so
larger models are available with this
connected. The package also has a disc and

orinter dump option allowing you to save
your masterpieces in a more immediate
form.

The model-creation section of the

Graphics Development System is very
effective but it is somewhat eclipsed by
the other half of the package - the

programs to help you make some use of the
models you have created. These consist of
two types. Firstly there are the machine
code routines that can operate on the data
that reoresents the 3D co-ordinates of an
object. These are all bundled together in
one group in a variety of formats for use
with different systems - cassette, disc,
or second processor - and in different
memory positions.

To access these routines there is
provided the beginnings of a Basic program
with procedures already defined to access
the machine code. To display the image of
an object, then, you just load the machine
code, load the data, and run the Basic
program suitably amended to include calls
to the procedures required (PROCgcol,
PROCtrans, PROCrot, PROCproject, etc.).

Objects can be animated 1in this way
and several demonstrations of this are

IMAGE
19025

SCALE

a
[
e
75835
R
I
L]
P
5

animation can be achieved by resorting to
assembler to access the 3D routines rather
than Basic. This again is fairly simple as
it is really just a case of calling up the
routines when needed. However, really fast
animation can be achieved by using another

feature of the Graphics Development
System.
The Beeb's O0S can plot lines on the

screen at the rate of about 9,000 pixels
per second. The Graphics Development

System contains its own line drawing
routines that will draw at a rate of
30,000 pixels a second. Although it has
some restrictions (pixel co-ordinates,

GCOL@ type plotting only, no windows or
redefinable origin, and it will not work
with second processor) the speed
difference can be staggering. A marvellous
Elite-type space craft performs a complex
turning manoeuvre without a suggestion of
flicker in one of the demonstrations. (We
have included this demo on this month's
magazine cassette/disc so you can see the
effect to the full).

All this takes some getting to grips
with. The manual is adequate but better
tutorials could be given. However, if you
are looking for a package that will really
take your Beeb to the limits of graphics
and animation for a reasonable price, then
the Graphics Development System delivers
the goods.

provided on the disc. However, better
Yo 7 \ 1HAGE

fEoTaT]
= 111
soaL

18004

18881

o

Beebug October 1985

S+II0=C

I Dynamic memory
— oisplay——

The BBC micro’s event system
provides Sebastian Lazareno
with a dynamic and fast moving
window onto the Beeb’s inner
workings.

Many readers will appreciate the value
of a static memory dump, giving a snapshot
of the micro's memory, but such a display
does not show changes in RAM as they
occur. This program provides a dynamic
memory window, allowing you to observe the
Beeb's memory in real time while using the
keyboard, running other programs
(including ROMs), or just 'resting'. The
program can also display the contents of
any sideways ROM, and is particularly
useful for monitoring sideways RAM.

PROGRAM ENTRY

Save the program before you run it,
since an error may cause the computer to
hang. Cassette users should alter the
value of 'code' in line 160 to &C90.

USING THE PROGRAM

When you RUN the Basic program you
will be asked for the start address of the
display (i.e. to display zero page, enter
@). The default display start is at PAGE.

The main routine extends through page
9 without intruding into page 10 (Toolkit
workspace) . It displays the contents of 48
bytes of memory in 'dump' format at the
top of a mode 7 screen. You can scroll
through memory using the vertical cursor
keys with Shift (slow) or Ctrl-Shift
(fast). The routine is called 50 times a
second by the ‘'start of vertical sync'
event. According to the Advanced User
Guide (p.288) such routines should not
last more than about 2 milliseconds. This
one takes about 5.2 milliseconds, but
problems are avoided as the full routine
is called by only a proportion of the
events generated.

The number of events per complete
execution is initially set to 5 but can be
altered using Shift along with the
horizontal cursor keys. The ratio is shown
at the bottom of the display, together

12

with the number of events since the last
execution and the display start address.
The whole routine can be turned off using
function key £7 and turned on using f8.
This disables and enables the event
generation.

POSSIBLE USES

1.) ROMS. Look at locations starting at
&8090% and type *HELP: by stopping the
display with Shift+Ctrl you can explore
any of your active ROMs. With a small

modification to the program (see below)
the contents of any sideways ROM or RAM
can be continuously displayed.

2.) Entering a 1line of Basic. Look at

locations &70@ onward (the Basic keyboard
buffer), enter a line of Basic and see the
line being tokenized when you press
Return.

3.) Keyboard entry. Still looking at &700
onward, use the Copy key to enter a few
characters. Note that the characters
entering the buffer are the ones you
copied, and this is still so if Shift or
Ctrl are pressed with Copy. Now look at
&3E@ onward (the keyboard buffer). Note
that when you Copy a character, the code
entering the buffer is that for the Copy
key, rather than the character copied, and
that pressing Shift or Ctrl together with
Copy causes a different code to enter the
buffer. Now look at locations &BEC and &ED

(which contain ‘'current keys pressed'
information) and see that pressing Copy
produces yet another code (the 'INKEY'

code) , which is not affected by pressing
Shift and Ctrl. These observations provide
some clues as to how the Beeb processes
keyboard input, and suggest further
questions.

PROGRAM MODIFICATIONS

The program displays both Teletext
character sets, i.e. ASCII 32-126 and
160-255, so many displayed characters are
ambiguous. To display only the normal set
delete line 670.

Sideways ROMs/RAM can be selected with
the following modifications. Change 'lock’
to 'rom' in lines 390 and 419 and insert
the following lines:

150 rom=base+2:key=base+3:lock=base-1
500 .start LDA rom:STA&FE3%

505 LDA#0:STA&308

1015 LDA&F4:STA&FE30

Beebug October 1985

T e e PO RO S

To inspect your RAM (or ROM), set the
display to start at &8000 and press Shift
with the horizontal cursor keys to select
the required ROM.

As it stands, the routine monopolizes
the event vector. The program could be
modified to save the previous contents of
the vector and exit via a JMP so that any
other user routines using this event can
take their turn.

PROGRAM NOTES

Lines 220-800: checks number of event,
keys pressed, sets up pointers, text
window.

Lines 810-1120: the display routine.

Lines 1130-1220: sets up soft keys.
Clears Dbuffer if necessary using
equivalent of ON ERROR to detect full soft
key buffer. Starts routine by invoking f8.

10 REM PROGRAM MEMWIN
20 REM VERSION B@.7
30 REM AUTHOR S.LAZARENO
40 REM BEEBUG OCT 85
50 REM PROGRAM SUBJECT TO COPYRIGHT
60 :
*FX13,4
110 MODE7
120 PRINT'"Press f7 to turn off, f8 to
turn on"'"SHIFT + vertical cursors = SC
ROLL"'"SHIFTHCTRL+vert. cursors = fast S
CROLL"'"SHIFT+horiz.cursors = change sam
ple rate"
13¢0 ON ERROR GOTO 1600
140 base=&8A:ad=base:INPUT"Start addre
ss &"SS:!ad=EVAL ("&"+S$)

150 key=base+2:lock=base+3

160 line=baset4:code=&8C0: ?key=0:?1ock
=5

170 REM EVENTV points to routine

180 ?&220=code MOD &100:?&221=code DIV
&100

190 FORI%=0TO2STEP2

209 P%=code

210 [OPT I%:PHP:PHA:TXA:PHA:TYA:PHA

220 LDX key:INX \Increment

230 STX key:CPX lock \key,

240 BEQ scrollcheck

250 IDX #240:JMP end \exit if < lock

260 .scrollcheck \is SHIFT or

27¢ LDA &25A:TAX \SHIFT LOCK

280 AND #8:BNE ctrl \pressed?

290 TXA:AND #32

300 BNE start \If so, check

310 .ctrl TXA:AND #&40\for CTRL,set

320 LSR A:BNE scan \acc. to alter

330 LDA #8 \address pointer

Beebug October 1985

20
N 00 19 01 05

Lt e
WiniS s.
Lazareno

13.3.85
5 i
C memory

Press 7 to turn off, 8 to turm on
SHIFT + vertical cursors =

SHIFT+CTRL+vert.
SHIFT+horiz.cursors =

cursors = fast SCROLL
sample rate

Start address %1900
Do

340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510

you want to save the code

.scan LDX &EC
BEQ skip \a cursor

PHA : SEC: TXA \key has been
SBC #128:TAX:PLA \pressed,

CPX #25:BNE right \if so,

DEC lock:JMP start\take

.right CPX #121 \appropriate
BNE up:INC lock \action.

JMP start

.up CPX #57:BNE down

CLC:ADC ad:STA ad

BCC skip:INC ad+l

.skip JMP start

.down CPX #41:BNE start

EOR #&FF:ADC ad::STA ad

BCS start:DEC ad+l
.start LDA #0:STA
LDA #24:STA &309
LDA #39:STA &30A
LDA #8:STA &30B
ORA &D@:STA &DO
LDA #1:STA line
LDY #J:LDX #0:STX key\Print addr.
.loopad:JSR printad \and contents

\Check whether

&308
\Equivalent

\to
\vDu28,9,24,39,8
\Text window set

.loop:LDA (ad),Y \of next 8
JSR printacc \locations,
LDA #32:JSR prinx \first in

INY:ASL line:BCC loop\hex,

ROL line:LDA #131:JSRprinx:INX
TYA:SEC:SBC #8:TAY
.loop2:LDA (ad),Y
CMP #32:BCC dot
CMP #127:BCC pound
CMP #160:BCS next \ Remove this
to prevent display of chars 160 -

\then ASCII
\if possible.

.dot LDA #ASC".":BNE next
.pound:CMP#96 :BNE hash \MODE 7
LDA#35:BNE next \display
.hash CMP#35:BNE under \of
LDA#95:BNE next \these
.under :CMP#95:BNE next \is

LDA #96 \strange

13

750 .next JSR prinx 1220 RTS:]
760 INY:ASL line \Display 8 1230 NEXT
770 BCC loop2:ROL line \locations 1249 CALLinvoke:END
780 CPX #240:BCS end \per line, 1250 DEF FNonerror:pass=P%
799 JMP loopad \6 lines. 1260 FORopt=@TO2STEP2:P%=pass
800 \ 1270 [OPT opt
810 .printhex:AND #&F \Print 1280 LDA&20@2:STA line
8200 CLC:ADC #&30:CMP #&3A\digit in 1290 LDA&2@3:STA linetl
830 BCC prinx:ADC #6 \hex 1300 LDA # (onerr MOD 256):STA &202
840 .prinx:STA &7C00,X \increment 1319 LDA # (onerr DIV 256):STA &203
850 INX:RTS \screen point 1320 BNE setup
er 1330 .onerr:LDA#18:JSR&FFF4
860 \ 1340 .setup:]
870 .printacc:PHA \Print 1350 NEXT:=I%
880 ROR A:ROR A \contents of 1360 :
890 ROR A:ROR A \accumulator 1370 DEFFNturnoff:str$="K.7*FX13,4 M":=
90¢ JSR printhex:PLA \in hex. FNoscli
910 JSR printhex:RTS 1380 ¢
920 \ 1390 DEFFNturnon:str$="K.8M0.7:V.31,0,8
930 .printad:LDA #134:JSR prinx :*FX14,4 M":=FNoscli
940 TYA:CLC:ADC ad:PHA \Print 1400 :
950 LDA ad+1:ADC #0 \2 byte 1410 DEFFNbreak:str$="K.100. M?&220=&"+
960 JSR printacc \address, STRS™ (code MOD256)+":?2&221=&"+STRS™ (code
970 PLA:JSR printacc \increment DIV256)+" M":=FNoscli
980 LDA #135:JSR prinx \screen 1420 :
990 RTS \pointer. 1430 DEFFNoscli
1000 \ 1440 pass=P%:FORopt=0 TO2 STEP2
1010 .end 1450 P%=pass
102¢ LDA #133:JSR prinx \This routine 1460 [OPT opt
1030 LDA #base \executed 1479 LDX# (string MOD256)
1040 JSR printacc \at every 1480 LDY# (string DIV256)
1050 LDA #135:JSR prinx \call: prints 1490 BNEoscli
1060 LDY #0 \the start 1500 .string
107@ .loop:LDA base,Y \address 1510]
108¢ JSR printacc \of the 1520 SP%=str$
109¢ LDA #32:JSR prinx \display, and 1530 P%=P%+LENSP%+1
1100 INY:CPY #4:BNE loop \contents of 1549 [OPT opt
1110 PLA:TAY:PLA:TAX \lock & key 1550 .oscli JSR&FFF7
1120 PLA:PLP:RTS \then exits. 1560]
1130 .invoke 1570 NEXT
1140 OPT FNonerror 1580 =I%
1150 OPT ENturnoff \Set f7 1590 :
1160 OPT FNturnon \Set f8 1600 ON ERROR OFF:MODE 7
1170 OPT FNbreak \Set f10 1619 IF ERR=17 END
1180 LDA line:STA&202 \ON ERROR 1620 REPORT:PRINT" at line ";ERL
1199 LDAlinet+1:STA&203 \OFF 1630 END
1200 LDA#138:LDX#0 \Invoke f8 to
1210 LDY#136:JSR&FFF4 \turn on rout
ine

2

HINTS HINTS HINTS HINTS HINTS HINTS HINTS

MUSIC SYSTEM LINE FEEDS - Allan Woods

Island Logic's Music System was said in our review (BEEBUG Vol.4 No.1) to produce
an extra linefeed at each line on printing out music (if the printer was configured in
the normal way). The @ key switches off this effect but is not documented.

780 FILENAMES - Michael Colley
Filenames starting with character 152 (conceal display in mode 7) operate perfectly
on the unadorned Beeb. They are not recognised with a 780 second processor. =)

14 Beebug October 1985
R R . R N e SR

BOFFIN

Boffin is an exciting new game
from Addictive Games. Geoff
Bains, BEEBUG’s resident ‘boffin’,
dons his white coat and reports on
the game and on an exclusive
BEEBUG competition.

Boffin is the second release for the
BBC micro from Addictive Games and seems
set to follow 'Football Manager' as a
chart topper. The boffin of the title is a
cute little mad professor armed only with
an umbrella and an insatiable desire to
wipe out horseshoes and collect pieces of
laboratory apparatus. The horseshoes and
the bits of glassware are scattered around
the inevitable caverns. You must guide
your boffin around the caverns, destroying
the wunlucky horseshoes and picking up
bonuses in the form of the apparatus.

The caverns are filled with the usual
array of platforms, barbed wire, perilous
drops and trampolines. The latter are
especially effective, giving a beautiful
boing noise and actually flexing when
they're jumped on. The umbrella is not

To celebrate the launch of Roffin,
exclusively for BEEBUG members.

Addictive Games are
Each month Addictive are giving £50 to the highest

just carried for show. It will stop the
professor's fall and can even be used to
pick up the objects.

Also in the caverns, however, is a
superb assortment of suitably evil
creatures - gigantic spiders, giant

puffers, manta bats, etc. The movement of
the spider is excellent, given the size of
it, and the game is better than most when
considering playability. The collision
detection is very good too. You don't die
when you are still inches away from your
foe as happens in many other games. This
is especially important with the spider as
you have to get pretty close to that, at
times, to win.

There is a high score table which
records the number of the game currently
being played and the game comes in two
versions. Boffin I is Beeb only (B and B+)
and boasts 45 caverns. Boffin II has only
(only!) 25 caverns but it is compatible
with both the Beeb and Electron.

Overall, the graphics are good, fast
and smooth and the whole theme makes it
very enjoyable. The mad professor with his
umbrella is a great idea, and as an
example of the Manic Miner type of caverns
game, Boffin shows a wonderful sense of
humour and is strongly recommended.

COMPETITION COMPETITION COMPETITION COMPETITION COMPETITIO

running a competition

scorer in Boffin II. To make things even easier for members there is a special price on
that's £1

the game as well. For BEEBUG members the excellent Boffin costs only £8.95,
off the normal price. Send your high scores to Addictive at:

BEEBUG Competition,
Addictive Games,
7a, Richmond Hill,
Bournemouth,

BH2 6HE.

You must quote your BEEBUG membership
number and include a statement from a
witness. Should you be the top scorer, you
will be expected to reproduce a similar
score at Addictive's offices.

Each month, the winner of the Boffin
High Scores competition will be invited to
Addictive Games to challenge Paul O'Mally,

the author of Boffin, at his own game. The first reader skilful enough to beat him will
win £250 worth of peripherals and add-ons, of his choice, for his computer. The results
of the competition will be published in future issues of BEEBUG. 5=

Beebug October 1985

15

In the first of J
three articles, l
Stephen Ibbs, e

an enthusiast

for the new

Wordwise Plus,

introduces the whole idea of
writing Wordwise Plus programs.

There are now over 20,000 Wordwise
Plus ROMs in use. Perhaps the most
exciting aspect of this ROM is the special
programming language built into it. This
enables routines to be written to control
the word processor. In addition to the
main text area there are ten 'segment'
areas each of which can store text, or
routines which are called by pressing
Shift and one of the red function keys.
The excellent reference manual gives a few
examples but more complex routines can be
easily written once you have a basic grasp
of the language. This short series of
three articles is intended to provide that
initial understanding. Some useful hints
will be given, and the text will be
illustrated with worked examples.

It is first necessary to understand
that the commands of the language can
either be written as a program, in a
segment, or typed directly from the main
menu preceded by a colon. Thus if we
wanted to move the cursor to the bottom of
the text it could be done by executing the
following in a segment:

SELECT TEXT
CURSOR BOTTOM

DISPLAY

or by typing :CURSOR BOTTOM <Return> from
the menu. Any colon command must end with
a <Return> but this will not normally be
shown in these articles. Similarly you
will not normally be reminded that a colon
command must be typed from the menu page.

The ability to issue commands from the
menu is very useful when you are writing
routines. You have absolute control and

16

can check the effect of each command as it
is issued.

HINT: Try issuing commands (except REPEAT
loops etc) one at a time from the menu if
you are having trouble fault-finding.

Probably the most often-used command
is CURSOR, followed by another
instruction. Place some sample text into
the main area, go back to the menu and
type:

:CURSOR BOTTOM
:CURSOR UP 2

:CURSOR LEFT 5

Go back to the text, and you will see just
how precisely the cursor position can be
controlled. When moving it to a particular
position on a line, the CURSOR AT command
is used, thus CURSOR AT 10 will place the
flashing cursor underneath the tenth
character. The only, but important,
problem is with CURSOR AT 39. Because of
the ‘'wrap-around' effect that stops words
being split over lines, a blank area may
be 1left on the right hand edge of a line
on the screen. CURSOR AT 39 places the
cursor under the last actual character
(which may of course be a space or a
Return character) and not necessarily on
the rightmost character position on the
screen.

HINT: CURSOR AT 39 places the flashing
cursor under the last character, whether
at position 39 or not.

As a very simple first example, let us
count how many characters a particular
line has. To do this we will use the GCTS
command (Get Character from Text). The
character 'got' will be the one above the
cursor, and the cursor will then move one
position to the right. Never forget that
final part. This, at different times, can
be both invaluable and a nuisance.

Enter segment @ and type in the
following lines (ending each with Return):

SELECT TEXT
CURSOR AT @
=0
REPEAT
AS=GCT$
A%=A%+]
UNTIL AS=CHRS13
DISPLAY

Beebug October 1985

———-——.—————‘

text area and
characters

Go back to the main
clear it. Type in a line of 34
then press Return and then a few more
characters. Place the cursor anywhere on
the upper line, and press Shift-f@ to run
the segment program. After a brief pause
you will see the cursor move to the start
of the 2nd line. If you now (fraom the
menu) type :PRINT A% the answer 35 (the
count includes the Return at the end of
the line) will be displayed.

What has happened? The cursor has
started from the beginning of the line and
repeatedly placed a GCT$ character into
the variable, AS$, and increased A% by 1.
You can't tell it to stop the loop when it
finds a Return character, as such, but by
finding Return's ASClI code of 13. Hence
the line, UNTIL AS$=CHR$13. If you want to
test this, type :PRINT ASC(AS) from the

menu and you will see the number 13
displayed. Similarly f1 (green embedded
start) is CHR$2 and f2 (white embedded
end) is CHR$7. So 1if you want to count

characters until the cursor encounters the
start of an embedded command, it can be
easily done by changing the line to:

UNTIL AS=CHRS2.

HINT: In situations where you can't use |R
for the Return try CHR$13. Similarly use
CHR$2 for fl instead of |G and CHR$7 for
£2 instead of |W

When the routine finds the Return
character it adds one more to A% (giving
35) then stops. Finally the DISPLAY puts
us back into edit mode.

The technique of collecting characters
using REPEAT-UNTIL loops 1is relatively
slow, but 1is wused time and again in
routines. Try inserting a Z into the upper
line of text, and altering the appropriate
line to UNTIL AS$="Z" (note firstly the
quotation marks, and secondly that if you
use a lower case z it will not work. To
trap either you would put UNTIL A$="Z" OR
A$=“Z“) "

Whilst the above example worked, it
would be extremely tedious to have to type
a Return at the end of every line to be
counted. Fortunately there is a little
known memory location that can spring to
our aid. ?&7E holds the current horizontal
cursor position. Place the cursor anywhere
on a text line, then type (from the menu):

Beebug October 1985

:CURSOR AT 39

:PRINT ?2&7E

and the amount returned will be the actual
final character position, which wmay not
necessarily be 39. This memory location is
extremely useful and is used time and
again. However, it is worth noting that
this is not a very 'legal' method. There
is no guarantee that this location will
have the same function in future issues of
Wordwise Plus.
HINT: Calling ?&7E memory location will
return a value equivalent to the
horizontal position of the cursor.

If you want to see the routine
running, insert the command DISPLAY after
the A$=GCT$ line. You will see the cursor
moving along as it goes through the REPEAT
loop, stopping when it finds the Return.
To slow it down even more add the line IF
GET THEN just above the A%=A%+1. This will
'single-step' the routine. Press the space
bar each time the screen freezes.

HINT: when developing routines, the lines

DISPLAY

IF GET THEN

will allow examination of the cursor
position and the routine's effect so far,
before continuing.

The simple routine discussed so far
could be used to transfer text very slowly
from the main area to, say, segment 7 by
adding a couple more lines so that the
routine looks like this:

SELECT TEXT
REPEAT

AS$=GCTS$

SELECT SEGMENT 7
TYPE AS

SELECT TEXT
UNTIL EOT

CURSOR TOP
DISPLAY

Note the EOT command - 'End of Text',
to end the REPEAT loop - and the CURSOR
TOP command, which restores you to the top
of the text in the main area.

There is, however, another command
associated with getting characters from
text, GLTS (Get Line from Text). This will

17

rlace as many characters as possible into
a variable up to either the first Return
encountered, or until the variable has 255
characters in it. This means that the
transfer of text mentioned above can be
achieved in a fraction of the time using
the following routine:

SELECT TEXT
REPEAT

AS=GLTS

SELECT SEGMENT 7
TYPE AS

SELECT TEXT
UNTIL EOT
DISPLAY

END

If you run this routine, you will find
the resulting text in segment 7 is a
little strange - all the Returns from the

original are missing from the copy. This
is because GLT$ stops at a Return (or
after 255 characters). We can account for

this by inserting the following after the

TYPE A$ line:

IF LEN (A$)<255 THEN TYPE " |R"

If GLT$ stops before 255 it is because
of a Return. A Return is inserted in the
copy (with the |R) if the length of AS$ is
less than 255. The only case where this
might not be accurate would be the very
final 1line of the text. If this was
important the following could be inserted
after the UNTIL EOT line:

SELECT SEGMENT 7
IF LEN (AS)<255 THEN DELETE LEFT

SELECT TEXT

HINT: When using CLT$, remember that it
does not collect the Return -character
which may need to be inserted separately.

As it stands, the transfer will
commence from the current cursor position.
If you want the entire text copied, insert
as the 2nd line:

CURSOR TOP

so now the routine would look like this:

SELECT TEXT
CIJRSOR TOP
REPEAT

AS=GLTS
SELECT SEGMENT 7

18

TYPE AS

IF LEN (AS)<255 THEN TYPE iR
SELECT TEXT

UNTIL EOT

SELECT SEGMENT 7

IF LEN (A$)<255 THEN DELETE LEFT
SELECT TEXT

CURSOR TOP

A$="“

DISPLAY

END

The A$="" 1line 1illustrates good
practice - to empty any string variables
used. This is important, particularly with
the GLT$ command. There are only just over
608 bytes of memory available for
variables, and this amount can be very
quickly filled, in which case the GLTS
command won't work, and the error message
NO $ ROOM will appear. If you experience
this, then you must clear the offending
variables by typing, say, :D$="" from the
menu.

HINT: Always try to clear variables,
particularly $ variables, after use, to
keep memory space empty.

Finally, for this month, let's use the
?&7E location information to delete a
complete line, with the following routine:

SELECT TEXT
CURSOR AT 39
DELETE LEFT ?2&7E

DELETE AT
DISPLAY

The cursor is placed on the rightmost
character and ?&7E returns a value of,
say, 34 so then 34 characters are deleted
to the left of the cursor. The character
above the cursor is still there, so this
is removed with DELETE AT.

As an exercise for next month, you may
like to alter this routine a little. How
could the routine be developed so that,
after deleting the text, the routine
checks to ensure that the two lines now
joined (above and below the line deleted)
are separated by one space? Without this
modification you will find that sometimes
the lines are joined together with either
no space, or two spaces. Think about that
one for now. I will give you the answer in
the next issue.

==
Beebug October 1985

— HINTS —
Wordwme

Plus

useful hints and tips were
discovered. We bring some of
these together here, for expert
and beginner alike.

VDU _CODES

Wordwise Plus accepts VDU codes in a
very similar way to Basic. They may be
strung together in the normal way and used
to print out characters on the screen that
could not otherwise be produced. Try the
following segment program.

CLS

DOTHIS

VDU 129,157,131,141

PRINT "Double height in colour."

TIMES 2

IF GET THEN END

This will clear the screen and print a
double height banner in yellow on a red
background.

VDU 31 can be used to very good effect
in a similar manner to position text on
the screen. VDU31 is equivalent to the
Basic TAB(x,y). For example:

CLS

X%=1

REPEAT

VDU31,X%*3,X%*2,134

PRINT "hello"

X%=X%+2

UNTIL X%>10

IF GET THEN END

However, be very careful not to
execute a VDU 22 (select screen mode)
command from Wordwise Plus. This can cause
all your text and programs to be lost.

During the course
of development of

SOUND
Sounds can be produced from within

Wordwise Plus using the VDU7 (beep)

command. The pitch and duration of the
note can be changed using *FX commands,
213 and 214. For example, to produce a

one-second high-pitched note use:

Beebug October 1985

*FX213,200

*FX214,20

vDU7

To control the pitch or the duration
with a variable, OSCLI must be used:

N%=0

REPEAT

OSCLI"FX213,"+strS$ (N%)

*FX214,2

vDU7

N%=N%+5

UNTIL N%>250

The voice and the amplitude/envelope
of the note can also be changed using
*FX211 and *FX212, respectively. However,
note that you cannot alter envelopes from
within Wordwise Plus so if you select an
envelope (using *FX212) then the envelope
must be defined from Basic before entering
Wordwise Plus.

FILENAME P] NG
To automatically print the last-used
filename within your text, use the

following embedded command:

<f1> PS F$§ <£f2>
Where <f1> is the green code produced by
pressing function key 1. This will print
the filename when the text is either
previewed or printed.

LABEL DUPLICATION

It is easy to duplicate label or
procedure names when writing a long
segment program, with disastrous results.
To avoid a clash, test a proposed name
before using as follows:

Press Escape to leave you in the menu
of the segment containing your development
program

Type :GOTO newname

If the error message, 'No such label'
is produced then the name is okay.
Otherwise it has already been used.

WORDWISE HELP AND PRIZE COMPETITION

The Wordwise Plus language 1is a
fascinating one to use, and we hope that
these hints and the series of articles
that we are currently running tempt you to
experiment with it.

To assist you in your explorations we
have set up a panel of 'experts' who will
try to answer any problems you have with
Wordwise Plus. We will feature a selection
of your questions (with answers!) in
coming issues, and we are offering a prize
of £50 for the most novel Wordwise Plus
program submitted before November 3@th. =z

19

st

course

Print
Formatting
(Part 1)

N

Whether it 1is on the screen or to a
printer, the correct formatting of data
can often seem to be a hit or miss affair.
The solution would seem to be the use of
the special variable @% but a first
reading of the User Guide about this can
be most off-putting. However, the use of

@ has much to offer when properly
understood.
The explanation of format control

using @% on pages 70 and 325 of The User
Guide gives a good introduction to the
facilities available, but it is

incomplete. You will be surprised by some
of the unexpected, and usually
undesirable, formats which crop up. 1In
addition determining the @% value to give
a particular format can be very difficult.

USING @%

The format control variable @% is a
special variable that controls the
printing (or display) of numbers. @% is a

four byte integer similar to the 'resi-
dent' integers A% to Z%. Its value remains
unchanged by running a program or editing,
but it is reset to a default value of &90A
when Break is pressed. (In Basic I this
default value of @% is &AOA. However, this
acts the same as @%=&90A, the first A

Correctly formatting

numbers and text on
the screen often causes

to programming. In the ne
first of two articles on
this subject,]. Pike
looks at the help
provided by BBC Basic.

being interpreted as 9 because it is not
in the permitted range of 1 to 9).
Byte 4 (B4) Byte3(B3) Byte 2(B2) Byte1(B1)
STR$ Type Digits Field width
00 Default 00 General 01-09 Digits 00-FF Width
01 @% 01 Exponential | 01-09 Decimals +1
02 Fixed 00-09 Decimals

20

Each of the four bytes
that make up @% controls a
particular function of
print formatting. These are
shown in the table and will
be considered individually.

problems for newcomers .yr: ;

The Bl byte determines

field width for
printing a number. The
print line is divided into
fields Bl characters wide
into which successive num-
bers are orinted. Numbers
and strings have different
rules governing where they
are printed.

Numbers are printed
right justified in the next
unused field, whereas

strings ignore the fields and are printed
consecutively. For example, with a field
width of 5 (@%=&5):

PRINT 1 2 3

PRINT Il‘l n |I2 n ll3 n

[B
1T 2 3
123

(| denotes the
boundaries) .

(invisible) field

Numbers can be made to print like
strings by using a semi-colon as a
separator. However, the first number is

still printed to be right justified in the
first field. A semi-colon has no effect on
the strings.

PRINT 1;2;3

PRINT ll'l II; Il2 |I; ll3ll

123
123

Similarly, strings can be forced into
the next free field with a comma as a
separator, though they are still left

justified.
numbers.
PRINT 1,2,3
PRIPJT II‘I ll,ll2 II,|I3 n

{1

1 2 3

This has no effect on the

All the numbers can be made to print
as do strings by preceding the whole line
with a semi-colon. Any other separator
following (like a comma) will cancel this

Beebug October 1985

L e S I P e e e e e s S W NS RSl I S e 5

effect. Again, the semi-colon has no
effect on the strings but the comma forces
the last string into the next field.

PRINT ;1 2 3,4

PRINT ; Il‘l n |l2 n ll3ll 7 II4II

123 | l |

123 4

A comma preceding all the items to be
printed is ignored by both numbers and
strings.

PRINT ,1 2 3
PRINT & ll‘{ n |l2 " II3|I

] e]

1 2 3
123

Problems arise when a number uses more
characters in its representation than
there are in the field width. Then the
field is completely filled and the extra
characters overflow into the next field.
Thus even one too many characters causes
all the subsequent printing to be one
field further right. This can cause havoc
when setting out numbers in tables.

One way of preventing this is to use
the TAB command. TAB(X) positions the
cursor X characters along the current line
and accounts for the Return when the line
exceeds the screen width. Numbers
following TAB(X) are printed starting at
position X but can be made to print in the
next field by following TAB(X) with a
comma. Problems can arise with TAB(X) when
X<POS. It 1is better then to use TAB (X,Y)
which moves directly to position X,Y. It
then re-allocates the orint fields
starting at the current position and,
unlike TAB(X), prints the next number
right justified in the first field.

BYTE 4

The B4 byte is of no interest unless
the STRS function is to be used. STR3
converts a number into an equivalent
string of characters. If the B4 byte of @%
is set (B4=1), then the string created
will follow the format currently defined
by the other bytes of @%. If B4 is zero
then the string created will follow the
default format regardless of the current
value of the other @% bytes.

BYTE 3

B3 controls the format in which a
number is printed. A General, Exponential
or Fixed format is used depending on

Beebug October 1985

whether B3 is @, 1 or 2. Values of |
B3 greater than 2 give a general |
format.

st
GENERAL E.g.: 10. ...

The general format aims
reasonable representation of any number.
This 1is the default format. Numbers below
.1 are printed in exponential form.

to give a

EXPONENTIAL E.g.: 1El.
The number is expressed as a multiple
of a power of ten. The first number (the

'mantissa') is the multiple. The number
following the E (the 'exponent') is the
power of ten. 2.3E-1 is therefore

equivalent to @.23.

FIXED E.g.: 10.00.

The number is printed with a specified
number of decimal places and with the
decimal point in a fixed position.

BYTE 2

The B2 byte controls the accuracy to
which the number is printed. In General
and Exponential formats, this Dbyte
controls the maximum number of significant
figures to which a number is printed. In
General format the number of significant
figures is the same as the total number of
digits in the number. In Exponential
format B2 is similarly equal to the number
of digits in the mantissa. In General or
Exponential format values outside the
range 1 to 9 default to 9.

Although B2 influences the length of
the number, it is with the accuracy that
this byte is primarily concerned. When B2
is larger than the number of digits needed
to represent the number then less digits
are printed. For example, for all values
of B2 greater than 2, the number 12.6 is
printed as 12.6 1in General format and
1.26E1 in Exponential format. When B2 is
less than the number of significant
figures the number is truncated. If B2=2,
then 12.6 is printed as 13 or 1.3E1, with
the least significant figure being rounded
as appropriate. If B2=1 then it is not
possible to represent 12.6 in General
format, and it is then printed as 1E1 in
General format and 1.E1 in Exponential
format.

For numbers that are either very large
or very small, the General format reverts
to Exponential. This can cause the number
of characters used to represent the number

21

to be larger than anticipvated. For
example, with the default format
(@%=8&902), we might expect a

st | maximum of 11 characters for any
_course J ymber (9 digits plus the decimal

point and negative sign). However, a very
small negative number will revert to
Exponential format and be printed with
many more (9 significant fiqgures, a
negative sign, the 'E', the exponent and
the sign of the exponent!). It can easily
take up 15 characters.

This can have serious implications
when controlling the positioning of
numbers using the Bl field width byte in,
say, a table. Numbers can easily overflow
their fields.

To cause, say, #.01 to be printed as

#.91 and not as 1E-2 we use the Fixed
format. In Fixed format, B2 controls the
number of decimal places. Unlike General

and Exponential formats, however, trailing

POINTS ARISING POINTS ARISING POINTS ARISING POINTS

zeros are not suppressed in Fixed format.
With B2=2 the number 1 is printed as 1.00.
If the number requires more than 9 decimal
places the number of decimal places
reduces until there are 9 digits, and the
number prints in the default format. As
for the General format, very large numbers
revert to Exponential format, using a
maximum of 14 characters. The range of B2
in Fixed format is @ to 9. B2=0 causes
nunbers to be followed by a decimal point
but no decimal digits!

The correct use of @% will enable you

to deal with Jjust about any situation
requiring the tidy npresentation of
numbers. However, there is a need for a

printing format which is more flexible,
easier to specify, and which cannot
overflow its allotted space. In part 2, we
shall look at a format with these and
other useful properties, similar to the
PRINT USING command to be found in other
versions of Basic. ==

VIEW PRINTER DRIVER GENERATOR (BEEBUG Vol. 4 No.3)

As a result of renumbering,

the 1line numbers

of the '£' patch printed in the

magazine are out by 10 and should be numbered from 1202 to 1208 and not as printed. The

coding itself is quite correct.

PRETTY LIST (BEEBUG Vol.3 No.9)

Mr.N.Smith of Stoke-on-Trent has found that when this utility is used with assembler

programs containing comments following a "/", the text drifts

to the right of the page

or screen. This apparently results when the utility finds a character which corresponds
to a Basic token. Mr.Smith offers the following to prevent this:

205 IF C%=&5C THEN PROCbslash

1670 DEF PROCbslash
1680 REPEAT:C%=?1%

169¢ IF C%=&5C AND ?(I%-4)<>&D PRINT'SPC5;:FOR J%=1 TO S%:PRINT SPC1;:NEXT J%
1700 IF C%<&80 PRINT CHRS (C%); ELSE A%=C%:CALL token

1710 I%=I%+1:UNTIL C%=&D
1720 ENDPROC

ASSEMBLER ARITHMETIC (BEEBUG Vol.3 No.8)
John Bank of Ang's Hotel, Brunei
this program does not correctly handle a

(yes, BEEBUG goes everywhere) has discovered that
Zero
real, nor does it detect division by zero. The problems

if the destination variable is
occur in the two sign routines

result

sigl and sig2, which do not recognise the special format of a floating point zero (five
zero bytes). It can be corrected with the following changes:

2080 .sig]:LDX#4:LDA#@:.detzero:ORAfac],X:DEX:BPLdetzero:TAX:BEQzero

2085 LDA#80:EORfacl-2:AND#&80:EORfacl+1:STAfacl+1:.zero:RTS

2090 .sig2:LDX#4:LDA#0:.detz2:0RAfac2,X:DEX:BPLdetz2:TAX:BEQzero

2095 LDA#&80:EORfac2-2:AND#&80:EORfac2+1:STAfac2+1 :RTS

22

==
Beebug October 1985

———.——————‘

SH+ITN=X

Eprom
Programmer
Project

(Part 2)

Alan Webster and Geoff Bains
continue our project on
constructing an EPROM
programmer by describing the
essential software to program
your own EPROMs.

When you have finished building the
EPROM programmer hardware (described in
the previous issue of BEEBUG) you will
need the following program to use it to
program your own EPROMs. If you have any
sideways software (that you have been
using in sideways RAM, for example) then
you can 'blow' an EPROM with this straight
away. Otherwise you can use the programmer
to copy or study existing ROMs. However,
note that all commercial ROMs are
copyright and should not be copied. We
will be looking at writing your own
sideways software in the next issue.

As the program is fairly lengthy and
it requires 16k of memory space to store
an EPROM in RAM, disc users will need to
set PAGE to &1200 for this program. Type
PAGE=&1200 before you CHAIN the program.

The program is extremely user
friendly. However, make sure that the
programmer is plugged in correctly before
you start. Accompanying the main menu,
there will be a 'test state' printed. The
'test state' will inform you of an EPROM's
presence in the programmer, if it is blank

or not, and the size and name of any
non-blank EPROM present. This test state
is continuously updated as 1long as the

menu is displayed.

The main menu provides six options:

1. Move the present EPROM contents into
memory and save it to cassette or disc
under the specified filename.

2. Load the specified file into memory
and blow it into EPROM. This takes a
little over 7 minutes for an 8k and

Beebug October 1985

14.5 minutes for a 16k EPROM.

3. Display the EPROM in a 'dump' format.
Press the Shift Key to continue
displaying the EPROM's contents. To
exit: press Escape.

4, Verify the present EPROM against a
file on cassette or disc. This is most
useful to check a programmed EPROM or
a saved EPROM file.

5. Leave the EPROM programmer software.

*

. Execute a command 1line (any *
command) .
To copy an existing ROM or EPROM,

then, all you have to do is to insert the
ROM to be copied, select option 1 to save
the contents to a cassette or disc file,
insert a blank EPROM of the correct size,
and select option 2, entering the filename
used, when prompted. You may like to
verify the resulting EPROM against the

file saved. Use option 4 for this,
entering the filename when asked.
To inspect a ROM or EPROM, insert it

carefully in the programmer, select option
3 and study the dump on the screen at
leisure. Shift displays the next screenful
of the ROM and Escape will return you to
the main menu.

That completes the facilities to
produce your own EPROMs and to study
others. In the next issue of BEEBUG we

will look at how to write the sideways ROM
programs to fill them with.

PROGRAM NOTES
Lines 140 to 160 form the main program
loop. The main procedures are described
below in order of appearance.
PROCinit Set up variables and
define break key to de-
select 21 volts.

PROCmenu De-select 21 volts, print
menu and wait for input.

PROCtest Test size and state of
EPROM. #=not present,
1=blank and 2=not blank.

PROCstar Issue * command.

PROCquit Select mode 7 and end.

PROCassemble Set up the machine code
(see later for a full
description).

PROCsave Save EPROM to file.

PROCersize No EPROM to save.

PROCdispsave(x) If x=0 then move EPROM
into memory and execute
PROCsave. If x=1 then
display EPROM contents.

23

PROCprogram Program EPROM from file
(see later for full
explanation) .

PROCverify Verify EPROM against file.

PROCromt Display title of EPROM.

ASSEMBLER NOTES

PROCassemble sets up the following
variables:
DDRA/DDRB Data Direction Registers at
&FE63 / &FE62.
PCR Peripheral Control Register
at &FE6C.
IORA/IORB Input / Output Registers at

&FE61 and &FE60.
bytes/bytes2 Test State of EPROM buffer.
LO8/HI6 14 bit address stores.

The Input / Output Registers are the
two locations (for ports A and B of the
User VIA) through which data is passed as
input or output, from or (el the
programmer. The Data Direction Registers
control which direction this data is to
go. The Peripheral Control Register is a
general register which has Jjust four
states which concern us here, as follows:

CA2 hi,CB2 lo 1180811180 =¢CE
CA2 hi,€B2 hi 11181118 =&EE
CA2 10,CB2 hi 111011088 =s&C
CA2 10,CB2 lo 11001188 =sC

CA2 is connected to the EPROM's NOT
program line and CB2 to the latch of the
latch chip (see Aug/Seot BEEBUG for more
information on these two lines).

The assembler code can be broken down
into the following subroutines:

1650-1730 Read one byte of data.
1740-1780 Read title of EPROM.
24

1790-1820 Read bytes 0-3 and
&2000-82003. Store in 'bytes'
and 'bytes2'.
bytes=0 EPROM not present.
bytes=&4FFFFFFFF EPROM blank
bytes=bytes2 8k EPROM.
bytes<>bytes2 16k EPROM.
1830-209¢ Display/Move EPROM to memory.
?&76=1 EPROM is read and displayed.
?&76=0 EPROM is read and moved down
into memory.

2250-2430 Program EPROM from the data
in memory.
2440-2450 Wait routine. Provides a delay

of 50ms to program EPROM.

10 REM PROGRAM EPROM PROGRAMMER
20 REM VERSION B1.7

30 REM AUTHOR Alan Webster

4¢ REM BEEBUG OCTOBER 1985

50 REM PROGRAM SUBJECT TO COPYRIGHT
60 :

109 MODE7
110 PROCassemble
1290 PROCinit

130 ON ERROR GOTO 1419
140 REPEAT
15¢ PROCmenu
160 UNTIL @

170 END

1000 DEFPROCinit

1010 OSCOM=67B00:V3=0

1020 *K.10 O.|M?&FE61=-1|M
1030 ENDPROC

1950 DEFPROCmenu:VDU23,1,0;03;0;0;26
1060 2&FE61=255:H%=21:*FX21

1070 PROCtitle:PROCtest:PRINT':*FX200
1080 PRINTCHRS$S131"1 - Save Eprom To Fil
e"'CHR$131"2 - Program Eprom From File"'
CHR$131"3 - Display Eprom"

1090 PRINTCHRS131"4 - Verify Eprom Agai
nst File"'CHRS$131"5 - Quit"

1100 PRINT'CHRS134"* - 0.S Command"''
1110 PRINTCHRS$133"Please Enter Your Cho
ice:®:

1120 GS=INKEYS (5) :H%=H%+1

1138 IF G$="" PROCtest:GOTO1129

1140 G=ASC (GS$)-48:1FG=-6 G=6

1150 IF GK1ORG>6 PROCtest:GOTO112@

1160 VvDU31,26,16:PRINTGS'

1170 ON G GOTO 118¢,1190,1200,1210,1220
,1230

1180 PROCdispsave (§) : ENDPROC

1199 PROCprogram: ENDPROC

1200 PROCdispsave (1) : ENDPROC

1210 PROCverify: ENDPROC

1220 PROCquit:ENDPROC

1230 PROCstar : ENDPROC

Beebug October 1985

R R R ey e e i ey T TS TSR e e

1240 :

1250 DEFPROCtest

1260 CALL mctest:IF !bytes=-1 test=1 EL
SE IF !bytes=0 test=@ ELSE test=2

1270 size=0:IF !bytes=-1 OR !bytes=0 TH
EN 1290

1280 IF !bytes2=!bytes size=&20 ELSE si
ze=&40

1299 PRINTTAB (3,2)CHRS134"Eprom Size=";
size/4;"K. "'TAB(3,3)CHRS$134"Eprom ";

1300 IF test=0 PRINT"Not Present";ELSE
IF test=1 PRINT"Blank";ELSE IF test=2 PR
INT"Not Blank";

1310 PRINTSPC (10);:IF H%>20 H%=0:PROCro
mt

1320 ENDPROC

1330 :

1340 DEFPROCstar

1350 VDU42:INPUTLINE""SOSCOM:X%=0SCOM M
oD 256

1360 Y%=0SCOM DIV 256:CALL &FFF7

1379 PROCkey:*FX200 1

1380 IFHY=ASC ("*") PRINT:GOTO1350@

1399 ENDPROC

1400 :

1413 ON ERROR OFF

1420 CLOSE#0:IF ERR=17 THEN 120

1430 MODE7:*FX200

1440 REPORT:PRINT" at line ";ERL

1450 END

147¢ DEFPROCtitle:CLS

1480 FORF%=1T02:PRINTTAB (J,F%)CHRS129CH
RS$S157CHRS$141CHRS131 "BEEBUG Eprom Program
mer Software "CHR$156:NEXT:PRINTTAB (4,
3)CHRS$147; STRINGS (38,CHRS172)

149¢ PRINTTAB (3)CHR$133"By Alan Webste
r and Geoff Bains"

150¢ vDU28,9d,24,39,6

1519 ENDPROC

1529 :

1530 DEFPROCquit

1540 VDU22,7:END

1550 =

1560 DEFPROCassemble

1570 DDRA=&FE63:DDRB=&FE62

1580 PCR=&FE6C:bytes=&80:bytes2=&84

1590 IORB=&FE60:IORA=&FE6]

1600 LO8=&79:HI6=&71

1610 TEMP=&73

1620 DISPWIDTH=32:Esize=&88

1630 FOR PASS=0 TO 2 STEP2

1640 P%=&7100: [OPT PASS

1650 .read:LDA #&FF

1660 STA DDRA:LDA #&CE

1670 STA PCR:LDA#255:STA DDRB

1680 LDA#192:STA IORA:LDA LO8:STA IORB

1690 LDA #&EE:STA PCR

1700 LDA HI6:AND #&3F:ORA #&40

1710 STA IORA:LDA #@:STA DDRB

Beebug October 1985

By Alan Webster and Geoff Bains

Eprom Size=16K.
Eprom Not Blank

Alan's silly ROM

Save Eprom To File
Program Eprom From File
Display Eprom

Verify Eprom Against File
Quit

- 0.8 Command

Please Enter Your Choice

1720 LDA IORB:STA TEMP
1730 RTS

1740 .title:LDA#0:STA HI6:LDA#9:STA LO8
1750 LDY#38:LDA#32:.ylp:JSR&FFEE:DEY:CP
Y#@:BNE ylp

1760 LDA#31:JSR&FFEE:LDA#1:JSR&FFEE: LDA
#5: ISR&FFEE

1770 LDY#0:.rdlp3:JSR read:BEQ endt:JSR
&FFEE:INC LO8:INY:CPY#38:BNE rdlp3

1780 .endt:RTS

1790 .mctest:LDA#0:STA LO8:STA HI6

1800 LDY#0:.rdlp:JSR read:STA bytes,Y:I
NC LO8

1810 INY:CPY#4:BNE rdlp:LDA#0:STA LO8:L
DA#&20:STA HI6

1820 LDY#0:.rd1p2:JSR read:STA bytes2,Y
:INC LO8:INY:CPY#4:BNE rdlp2:RTS

1830 .getdata:LDA #0

1840 STA &8C:STA &8D:LDA#DISPWIDTH:STA&
8B

1850 LDA &76:BEQ getlp

1860 LDA#12

1870 JSR &FFEE:LDA#14:JSR &FFEE

1880 .getlp:CLC:LDA Esize:CMP &8D:BEQ r
eadend

1890 LDA &76:BEQ over

1900 LDA&SB:CMP#DISPWIDTH:BEQ num

1919 .bck:JSR decit

1920 .over

1930 LDA &B8C:STA LO8

1940 LDA &8D:STA HI6

1950 JSR read

1960 LDA &76:BNE dsp

1970 LDY #0:CLC:LDA &8D:ADC #&30:STA &7
8

1980 LDA &8C:STA &77:LDA TEMP:STA (&77)
,Y

1990 JMP ok2

2000 .dsp:LDA TEMP

2010 CMP #127:BCS dot

2020 CMP #32:BCS ok

2030 .dot:LDA #46

2049 .ok:JSR &FFEE:.ok2

2050 BIT&FF:BMI escp:CLC

25

2060 LDA &B8C:ADC #1:STA &8C

2070 LDA &8D:ADC #@:STA &8D

2080 CLC:CMP #&40:BNE getlp

2090 .readend:LDA#15:JSR&FFEE:RTS

2100 .num:JSR&FFE7:LDA #130:JSR&FFEE
2110 LDA #38:JSR &FFEE

2120 LDA &8D:JSR shift

2130 LDA &8D:AND#&F:JSR disp

2140 LDA &B8C:JSR shift

2150 LDA &8C:AND#&F:JSR disp

2160 LDA #134:JSR &FFEE:JMP bck

2170 .shift:AND#&F@:LSRA:LSRA

2180 LSRA:LSRA

219¢ .disp:CLC:CMP#1@:BCC nmb

2200 CLC:ADC#7: .nmb:ADC#48

2210 JSR &FFEE:.escp:RTS

2220 .decit:SEC:LDA&8B:SBC#1:STA&SB
2230 CMP#0:BNE ret:LDA#DISPWIDTH: STA&SB
2240 .ret:RTS

2250 .program:LDA #0:STA &8C:STA &8D
2260 LDA #255:STA DDRA:STA DDRB

2270 LDA #128:STA IORA:LDA#50:STA&74:ST
A&75:JSR wait

2280 .prglp:LDA #&CE:STA PCR:LDA#134:JS
R&FFEE

2290 LDA #38:JSR &FFEE:LDA &8D:JSR shif
t:LDA &8D:AND#&F:JSR disp:LDA &8C:JSR sh
ift:LDA &BC:AND#&F:JSR disp:LDA#13:JSR&F
FEE

2300 1LDA &8C:STA IORB

2310 LDA #&EE:STA PCR

2320 LDA &8D:AND #&3F:ORA #&80

2330 STA IORA:CLC

2340 LDA &8D:ADC #&30

2350 STA &78:LDA &BC:STA &77

2360 LDA #0:STA &74:LDA #49:STA &75
237¢ LDY #@:LDA (&77),Y:STA IORB

2380 LDA #&EC:STA PCR:JSR wait

2390 LDA #&EE:STA PCR:CLC

2400 LDA &B8C:ADC #1:STA &8C

2410 LDA &8D:ADC #@0:STA &8D

2420 CMP Esize:BNE prglp

2430 RTS

2440 .wait:DEC &74:BNE wait

2450 DEC &75:BNE wait:RTS

2460] :NEXT:ENDPROC

2479 :

2480 DEFPROCsave:IF size=@ PROCersize:E
NDPROC

2499 INPUT'"Filename: "F$

2500 A$="save "+FS+" 3000 +"

2510 G=&100*size:A$=AS+STRS™G

2520 $OSCOM=A$:X%=0SCOM MOD 256

2530 Y%=0SCOM DIV 256:CALL &FFF7

2540 ENDPROC

2550 :

2560 DEFPROCersize

257@ PRINT"?? No Eprom To Save 22":VDU7
:PROCkey

2590 :

2600 DEFPROCdispsave (L%)

2610 2&76=L%

2620 ?Esize=size:CALL getdata

2630 IF L%=0 AND V%=1 ENDPROC

2640 IF L%=0 PROCsave:ENDPROC

2650 PROCkey

2660 ENDPROC

2670 :

2680 DEFPROCprogram

2690 CALL mctest:IF !bytes<>-1 VDU7:END
PROC

2709 VDU12:PRINT 'CHRS131"Filename :";:I
NPUT""FS$S:PRINT' ' : *FX200 1

2710 A%=5:X%=0:Y%=&73

2720 F%$=&7200:SF%=F$

2730 !&7300=F%:CALL &FFDD

2740 1ngth=!&730A AND &FFFF

275¢ IF 1ngth>&4000 PRINT"File too long
""; : PROCkey : ENDPROC

2760 IF 1lngth>&2000 size=&40 ELSE size=
&20

277¢ IF 1ngth=0 PRINT"File Empty";:PROC
key : ENDPROC

2780 DS="LOAD "+FS$+" 3000"

2790 SOSCOM=D$:X%=0:Y%=0SCOM DIV 256
2800 CALL &FFF7:?Esize=size

2810 PRINTCHRS130"Ready To Go (Y/N):"'
2820 REPEAT:S=(GET AND 223)

2830 UNTILS=89 OR S=78

2840 IF S=78 ENDPROC

2850 CALL program

2860 ENDPROC

2870 :

2880 DEFPROCkey

2890 PRINT''CHRS$131"Press Any Key To Re
turn To Menu"; :HY=GET

290¢ ENDPROC

2910 :

2920 DEFPROCverify

2930 V%=1:CLS:PROCdispsave (@)

2940 PRINT 'CHRS$130"Filename:"; : INPUT""F

2950 B%=OPENIN (FS) : E%=0

2960 FORS%=1TO (size*&10@d):PRINTCHRS13;
||&|1; B~ (S%““);

2970 IF BGET#B%<> S%?&2FFF E%=E%+1:PRIN
TCHR$133"Verify Error at &";~ (S%-1)

2980 NEXT:CLOSE#0:V%=0

2990 IF E%=0 PRINT''CHRS134"No Errors."
ELSE PRINT''CHRS129;E%;" Error(s)."
3000 PROCkey

3010 ENDPROC

3029 :

3030 DEFPROCromt

3049 IF test<>2 PRINTTARB (1,5) STRINGS (38
,CHRS$32) ; : ENDPROC

3¢5¢ vpbu3l,1,5

3060 CALL title

2580 ENDPROC 3070 ENDPROC =

26 Beebug October 1985
I I R e s e Py N e e emmat

e+IIn=C

Lrep
repavments

Most of us have to borrow money
from time to time. In the short
program listed here, Sheridan
Williams offers a flexible and
easy alternative to the usually
tortuous calculations.

Many of us, from time to time, find
the need to apply for a loan of some kind.
In many cases we may not be sure how much
to borrow, or what the repayments will be,
or indeed over what period of time the
loan should be repaid. This program takes
all the hard work out of the calculations
involved yet provides great flexibility.

When you run the program, answer the
questions with the figures you have in
mind, or if you're not sure just press
Return. The program will calculate the
missing information, and also display a
table of repayments if requested.

can be considered:
'variable' where the interest is based on
the amount still outstanding, and 'fixed'
where the interest is based on the initial
sum borrowed, as with many personal loans.
In both cases, the program will answer all
those 'what if...' questions, and very
quickly too. However, the figures are only
intended for guidance, though they are
reasonably accurate in most instances.

Two types of loan

14 REM Program REPAY

2 REM Version 1.0B

3¢ REM Author Sheridan Williams

40 REM BEEBUG October 1985

50 REM Program subject to copyright

100 MODE 7:@%=&2020A:VDU14

119 FOR I=1TO2:PRINTTAB (6,1)CHR$131;CH
RS141"Interest repayments'":NEXT

120 vDU28,9,24,39,4,12

13¢ A=FNinput ("Amount borrowed",TRUE,T
RUE)

14¢ R=FNinput ("Repayments" ,A, TRUE)

Beebug October 1985

150 IF A=0 AND R=(THEN 140
160 REPEAT
17@ I=FNinput ("Annual interest rate (%
)" ,FALSE,FALSE)
180 UNTIL I>=0
190 y=FNinput ("Number of years loan to
run",NOT (A=@ OR R=0) ,FALSE)
200 IF (A=0 OR R=@) AND y=0 THEN 190
210 REPEAT
220 n=FNinput ("Number of repayments pe
r year",FALSE,FALSE)
230 UNTIL n>@
240 PRINT"Variable or Fixed: ";
250 REPEAT:type%=GET:UNTIL INSTR ("VVFf
", CHRS (type%))
260 PRINT CHRS (type%AND223):fix%=((typ
e%AND16)=0)
270 nr=y*n:i=1/(100*n):il=i+1
28¢ IF i=@ i2=y*n ELSE i2=(il"nr-1)/(i
*i1%nr)
290 IF fix% i2=nr/(1+I*y/100)
309 PRINT''
319 IF A=0 A=FNamount:PRINT"Amount bor
rowed = £ ";A
320 IF R=0 R=FNrepayment:PRINT"Repayme
nt = £ ";R'"Total repaid = £ ";nr*R
330 IF y=0 y=FNnumberofyears:nr=y*n:PR
INT"Number of years = ";y
340 PRINT'"Table of repayments (Y or N
)? ";:table= (GET AND 223)=89
350 IF NOT table THEN 120
360 VDU12,26:PRINTTAB (4,24)CHRS$130"Pre
ss Shift to continue";:vDU28,0,22,39,4
370 PRINT"Amount borrowed ";A:IF fix%
A=nr*R
380 PRINT SPC4"Payment"SPC2"To pay"SPC
4"Repayment"
390 FOR x=1 TO nr
400 IF fix% N=A-R ELSE N=A*il-R
419 PRINT x,N,A-N
429 IF x MOD n=@ PRINT"
year ";x DIV n;" L
430 A=N:NEXT x:PRINT':REPEAT UNTIL INK
EY (-1) :GOTO120
449 END
1000 DEF FNamount=R*i2
1010 DEF FNrepayment=A/i2
1029 DEF FNnumberofyears
1030 IF R-A*i<@ THEN PRINT"NEVER REPAID
":=10000¢
1042 IF fix% THEN =A/(R-i*A)/n
1850 =LOG (R/(R-A*1i))/(n*LOG (il))
1060 DEF FNinput (text$,flag,£%)
107¢ PRINT text$;:IF flag PRINT" (or Re
tarn) s
1@08@¢ IF £% PRINT" £"; ELSE PRINT" :";
1099 INPUT " " reply
1190 =reply

End of

27

Double
Density

Disc Filing Systems Compared

Much has changed since we first
looked at double density disc
filing systems back in January
1984 (BEEBUG Vol. 2 No. 8). We
asked David Janda to take a
fresh look at the whole issue.

Readers who use the standard Acorn DFS
(or one of its single density rivals) will
be well aware of the limitations that
these DFSs have. There are limited file
numbers, limited total storage capacity
and a lack of speed. A DDFS can, to an
extent, overcome most of these problems.

The most annoying problem of the
existing Acorn DFS is its limit of only 31
files on one side of a disc. DDFSs can
overcame this problem by providing same
form of extended catalogue, offering 62
files, or more. 40 track drives have a
storage capacity of only 100K per disc

surface, and 80 track only 20@K. This can
also be limiting, especially when data
files are used regularly. A DDFS can

provide 60% to 80% more storage per side,
but 'double' density is a bit misleading!

The speed improvement offered by DDFSs
is due to the data being packed more
densely on each track. Whereas an ordinary
DFS stores data at 10 sectors per track, a
DDFS uses 16 or 18 sectors per track. As
it is not possible to control the speed at
which the drive spins, it is necessary to
read/write information that much quicker.

However, readers looking only for a
speed improvement need not buy a DDFS. The
new Acorn DNFS 1.20 provides a dramatic
speed improvement over its predecessor.
Similarly Watford's 62-file catalogue may
be adequate for your needs.

28

The level of difficulty of
installation of a DDFS depends on what
issue board your Beeb has. The DDFS Kkits
all comprise a disc controller board
(DCB), an EPROM containing the DDFS
itself, and various other TTL chips and
header plugs. Fitting a DDFS is similar to
fitting a standard DFS. If you own an
issue three, or earlier, Beeb it may be
necessary to do some soldering.
of the

For the purpose review each

DDFS was tested on a BBC model B (issue
four) with -08 1.2, Basiec I, . and a
sideways ROM board. A 20K Ram card was

also fitted to see 1if there were any
problems as far as space is involved.

WATEORD DDFS 1.53

Existing Watford DFS users will have
no trouble adapting to Watford's DDFS, as
the two products are almost identical in
operation. The lack of any new commands
for the double density version does not
degrade the DDFS in any way - it's still
an excellent product.

The disc controller used is the 1770
(as in the B+) which 1is mounted on the
disc controller board (DCB) with three
other chips and a few discrete components.
Also supplied in the kit are four other
chips and a 16K EPROM containing the DDFS.

Documentation supplied with the kit
included a 112 page spiral bound DFS/DDFS
manual, four page addendum sheet and an A4
sheet of fitting instructions. The
DFS/DDFS manual is written for users of
Watford's DFS and DDFS, and clearly points
out any differences where applicable.

Installing the kit is easy enough if
you know what you're doing. The fitting
instructions lack detail, and there is no
advice on what to do if things go wrong.
That said, the DCB is very well made. The
extended 40 pins which insert into socket
78 are rigidly supported, and a 40 pin
sacrificial socket at the end prevents
damage to the socket.

The DDFS provides 80% more storage
capacity when used in double density mode.
Depending on the number of files selected
(31 or 62), 8.5 or 1K will be used up by
the directory. The extended file option as
well as the density are prompted for when
formatting a disc.

Beebug October 1985

R R R R R e L ARSI ==

As well as offering the standard set
of DFS commands, the Watford DDFS provides
a number of enhancements and additional
commands. Wildcards can be used in *LOAD
and *RENAME. With *LOAD the first file in
the catalogue will be loaded. A very handy
feature is retention of information on the
drive, library, directory, density and
others over a soft Break.

Extra star commands include MLOAD and
MRUN. These enable machine code files to
be loaded over the disc work space. *HELP
FILES displays information on any opened
files, and *HELP SPACE djisplays free disc
space together with the sizes of any
'gaps' on the disc.

In use, Watford's DDFS proved to be
very reliable and no compatibility
problems were encountered. The reason for
this (claims Watford) is an extensive 8271
emulator within the DDFS EPROM which
simulates the single density controller.
In practice this would appear to work
well, as all the protected software ran
without trouble.

UDM DDFS 3.18@

United Disc Memories has had its DDFS
on the market for quite some time. The
product has recently been improved and
offers a number of features not found in
the early versions.

UDM has opted to use the 2793 disc
controller chip and unlike most other
DDFSs only sixteen sectors per track are
used. This means that the double density
storage capacity for a 48 track disc is
160K, and 320K for 80 track.

The DCB is a low profile board which
is supplied with a 40 pin sacrificial
socket. Other parts in the kit include six
chips, a header plug and the DDEFS EPROM.
Also supplied 1is an eight way DIP switch
to set timings for disc access and so on.

UDM also supplied its 190% board for
review. This item is mounted in socket 78
and 1includes two sockets: one for the
standard 8271 controller, and the other
for the DCB. A flying lead with two-way

switch is attached to the 190% board. The
board enables switching between the
standard Acorn DFS and UDM's DDFS thus

giving 188% compatibility.

Beebug October 1985

Installing the DCB and
supporting chips is easy enough,
but the DIP switches require
soldering. One header plug has no
directional notch, and needs some

guesswork as to which way it should be
inserted!
The DDFS can be used in one of three

modes: single density, double density or
double density with multiple catalogues.
The format command requires the drive,
density, track and title to be specified,
and if double density is chosen the user
is asked if extended catalogues are
required.

The effect of selecting the extended
catalogue mode is to create four
catalogues on each side of the disc. Each
catalogue is assigned 63.5K and can store
39 files, thus giving a total of 120
possible files per disc. A special locked
file called &.&&&&&&& 1s automatically
saved to each catalogue when formatting,
and this must not be erased at any cost.

A catalogue 1is selected using the
VOLUME command which is followed by the
drive and volume letter (A to D). A nice
feature is the ability to automatically
save to another catalogue if the current
catalogue 1is full. Loading is facilitated
by searching through each catalogue until
the correct file is found.

LVL DOS 1.01

The LVL DDFS has also been around for
some time. Version 1.01 now includes a
formatter and verifier within the DDFS.

Watford UDM LvL Cumana Opus
Price £97.75 £95 £124.95 £69.95 £99.95
Sectors 10/18 10/16 10/18 10/18 10/18
Maximum files 31/62 31/120 31/62 31 31/248
Max file size disc 255K 255K 255K 252K
Width (mm) 55 60 61 51 45
Length (mm) 79 66 83 81 80
Height (mm) 34 22 27 19 21
Offset (mm) 33 22 42 7 5
Fit with ATPL
ROM board Y N b 4 Y 4
Software
Compatibility 9 9 3 8 6

Note: Maximum files is the number per side of a disc, not per directory.

The offset is the distance the DCB protrudes to the right of the righthand
edge of socket 78.

Nine protected packages were tried on each DDFS. These were Banjax,
Castle Quest, Elite (early version), Jet Power Jack, Labyrinth, Magic
Mushrooms, Rubble Trouble, Sorcery, and The Mine. The figure given is the
number of packages that successfully ran.

When used in its double
density mode, the LVL DDFS
provides 179K and 359K of usable
storage for 40 and 80 track
drives respectively.

The kit contains nine chips, the DCB
and the 16K DDFS EPROM. Documentation was
in the form of a 34 page manual with a
four sided addendum sheet.

Fitting the kit is a 1little tricky.
The DCB is rather large, and inserting it
involves bending (very gently) one of the
power leads. The pins on the DCB are very
weak, and are prone to bending if uneven
pressure is placed on the board when
inserting it. However, finding the right
place to put everything is made easier by
a very clear diagram in the packaging,
which not only shows where each chip
should be inserted, but has the chip
itself stuck to that position - you can't
go wrong!

The DDFS itself does not incorporate
any extra commands (except format and
verify), but does get round the 32 file

problem in a unique way. Instead of
providing 179 or 359K of continuous
storage on one side of the disc, each
surface (or side) is divided into two
drives. This 1is best explained by an

example. A single double-sided disc drive
has drive numbers assigned like this:

capacity less 9.5K for the directory when
used in double density mode. The only
extra command included in the QFS is a

formatter which automatically verifies.

The kit is supplied with six chips as
well as the QFS EPROM. A seventh chip is
attached to the DCB via a flying cable.
The DCB is a low profile board which does
have its disadvantages, as it's very hard
to see if the pins are inserted into the
socket correctly.

The formatter used in the QFS is the
most comprehensive and user friendly I
have ever used. The user is prompted for
the drive to be formatted, the number of
tracks (80, 40, and 35) and the title and
number of the disc. There are options to
format both sides of the disc and to
format further discs without going through
the instructions again. After formatting,
the QFS is able to automatically detect
the density and number of tracks.

In use, Cumana's QFS proved to be very
reliable. It was also one of the fastest,
and practically all the test software ran
without any trouble.

The simplicity of the whole package
makes it very nice to use, yet it could be
improved by allowing for a greater number
of files.

OPUS DDES 3.45

Disc side | single density | double density
Top] 0 4
Bottom 2 2 6

For dual 80 track drives in double
density, eight drives are provided
(numbered @ to 7). This is very strange
but it does mean that there are no extra
commands or extensions for the user to
learn. However, in use the LVL DDFS proved
to be the slowest; and, worst of all, a
lot of software would not run.

CUMANA QFS 2.0

Cumana - well known for their disc
drives - have recently released the new
version of their DDFS, or QFS as they call
it Unlike the other DDFSs reviewed,
Cumana's DDFS does not offer any extra
comnards, ncr does it allow extra files to

be stored, yet it does have its
advantages.
The QFS provides 80% extra storage

30

The DDFS from Opus can best be
described as 'feature packed'. Not only
does it allow for up to 248 files per disc
surface, but it also includes other useful
utilities as well.

The disc controller chip used is the
1776, and 355K of user storage is
provided. The kit consists of two chips,
two header plugs, the DCB, and a 16K DDFS
EPROM.

The DCB fits neatly into socket 78 and
a reinforcing socket ensures rigid
connection. Unlike the others, the Opus
DCB is small and compact. Also worthy of
note is that the majority of the board
faces to the left, so the DCB shouldn't
get in the way of other items (ROM boards,
etc.) fitted in your Beeb.

To achieve the high number of files

possible on one side, the first track is
reserved by the DDFS for catalogue and

Beebug October 1985

e

file information. No catalogue can exceed
31 files, so the Opus DDFS divides the
disc into five lettered volumes when the
disc is formatted in double density mode.

Up to eight volumes may be assigned,
and this is done with the VOLGEN command.
VOLGEN will display the current volume
settings and allow the user to assign or
de-assign any of the eight. However, it is
necessary to *ENABLE before amending
volume as this is a destructive command.

Two commands which I believe are
essential 1in any DDFS are included: these
are *408@ and *DENSITY. The *4080 command
allows 40 track discs to be used in an 80
track drive. The command can be set to on,
off or auto. Unfortunately the default is
off. The *DENSITY command sets the density
that the DDFS software will default to. It
is usually automatically selected (which
is handy), but many protected games
require the density to be set to single,
as this option provides.

To actually 'attach' to a particular
volume, the *DRIVE command is used. *DRIVE
0c, for example, would set the catalogue
to volume C on drive @. The method of
saving/loading to a particular catalogue
is also simple. *LOAD :1G.$.name would
load a file called 'name' from volume G on
drive 1.

however, a couple of
problems with Opus' DDFS. It 1is not
possible to format a disc in double
density mode without the default volumes,

There are,

and, more importantly, a number of
packages failed to operate under this
DDFS.

THE SYSTEMS COMPARED

The table of software tested will give
you some idea as to software compatibility
of the various systems.

As far as file capacity is concerned
Opus wins hands down with an excellent
implementation of the volume handling.
Unlike the UDM DDFS, the extra file
information is ‘'hidden' within the first
track on the disc, and there 1is no way
that a wuser can normally corrupt this
data. However, UDM has managed to maintain
a higher degree of compatibility with the
standard Acorn DFS, even without the 100%
board.

Beebug October 1985

Cumana offers a much simpler,
faster and cheaper system with no
frills, yet a high degree of
compatibility and speed. LVL's
method of implementing double
density 1is very strange, and its price is
high. I don't think it will appeal to many
users.

However, my own choice is Watford's
DDFS. Even though it does not offer any
DDFS like commands and it is only of
average speed, it is reasonably priced and
is packed with features that have been
developed over a long period of time. The
extended catalogue option of 62 files
would fulfil most requirements, and
together with the ability of saving files
of any length (up to disc capacity) is a
big plus in its favour.

THE BENCHMARKS

To put the various DDFSs through their

paces, they were subjected to 13 separate
benchmarks. The 13 benchmarks are a
measure of the time taken to,

respectively, *SAVE and *LOAD 16K, PRINT#
and INPUT# 100 integers, PRINT# and INPUT#
100 reals, PRINT# and INPUT# 100 strings,
PRINT# and INPUT# 100 records, randomly
BPUT# and BGET# 100 bytes, and reverse the
order of the contents of a file.

The mean of all 13 benchmarks is given
in the table for each of the DDFSs, along
with that for Acorn's DFS and DNFS and
Watford's DFS. A full table of all the
benchmark results is available from the
Editorial address on receipt of an SAE.
The benchmark program is included in this
month's magazine cassette/disc.

MEAN BENCHMARK RESULTS

Acorn Watford
0.90 DNFS 1.43

Watford ubm
DDFS 1.53 DDFS 3.10

SD SD SD sD DD SD DD

3219 16.40 18.66 18.27 16.75 1299) 14.27

LvL Cumana Opus
DOS 1.01 QFS 2.0 DDOS 3.05

SD DD SD DD SD DD

19.46 18.88 13.62 1455 1518 14.27

31

o+IIRN=C

Storing large quantities of text rapidly eats up the

Beeb’s limited memory. Surac outlines a technique
that reduces the space needed by nearly half.

This month the Work- between the groups. Once this is done, all
shop 1looks at one way that's left is to find a way of packing
round the Beeb Adven- three 5-bit codes into two bytes. That is
turer's problem of in- exactly what this first program will do.

sufficient memory. If you
want to store a lot of
text, the 25K or so that 1000 DEF PROCpackinit
is normally available 1010 DIM Key$ (1) ,cc% (3)
soon gets used up. There 1020 DIM txtbuf 10000
is, however, a way of 1030 Key$ (9)=

packing text so that you " ABCDEFGHIJKLMNOPQRSTUVWXYZ. ,"
can get up to 50% more in +CHRS (13)
any given space. 1040 Key$S(1)=
" 0123456789%; /-=<>() ' 288 ;:.,"
First, though, a quick +CHRS (13)
resume of how characters 1050 ENDPROC
are stored in the Beeb 2000 DEF FNcode (str$,locn$%)
EE and most other small com- 201¢ LOCAL bitptr%,chcode%,chotr?,
L] puters. Each character is code%,kptr%,lenstrs,ptrs
allocated one of 256 so- 2020 chptr3=1

called ASCII codes in the 2030 lenstr%=LEN (str$)
range @-255, and each 2040 REPEAT

B [1] code fits neatly into an 2050 chcode%=FNcd (MID$ (str$,chptr%, 1))
1 1| 8-bit byte. There is also 2060 code%=code% OR
:: 1] a variable overhead, of chcode%*2” (10-bitptr*5)
[] 1] at least 5 bytes, for 2070 bitptr%=(bitptr3+l) MOD 3
— each string in the Beeb. 2088 chptr¥=chptr+l
Hil EE 2090 IF bitotr%=@ THEN PROCpack
e = This is rather waste- 2100 UNTIL chptr%=lenstr3+2
EE '] ful. If you're only dis- 2110 IF bitptr% THEN PROCpack
EiE playing text, you don't 2120 =locn%¥+ptr$
= 1 need 256 characters and 3000 DEF ENcd(ch$)
Em] can get by with around 301¢ LOCAL cc%
—— —— 60: A-Z, ©#-9, plus some 3020 IF chptr?=lenstr%+l THEN =0
o [T]1 punctuation marks. The 3030 cc%=INSTR (Key$ (kptr%) ,ch$)
Hll } 11 exact mixture depends on 3040 IF cc% THEN =cc%
just what text you have. 3050 kptr%=(kptr%+l) MOD 2
175l 1] Now, 5 bits can store 32 3060 IF INSTR (Key$ (kptr%),ch$) THEN
— different character codes chptr¥=chptr%-1:cc%=31 ELSE
1 1] and there are 3 groups of kptr%= (kptr¥+l) MOD 2:cc%=1
i 111 5 bits in two bytes. 3079 =cc%
] 4009 DEF PROCpack
qj 4010 locn%?ptr%=code? AND &FF
B 1] However, if we limit 4023 locn%? (ptr%+1)=code% DIV &100
11 [T] ourselves to only 39 4030 ptri=ptr%+2
—— —_— characters we can pack 4040 code%=0
1] three into every two 4050 ENDPROC
sl [T] bytes. Unfortunately, 30
= is a bit too limiting, so PROCpackinit sets up the system,
1] wuse 60, split them into reserving a buffer area to hold the
two groups, and allocate compressed data - in this example 10000
a special code to switch bytes, but that's up to you. It also sets

32 Beebug October 1985

up coding strings in Key$ (@) and Key$(1).
The two strings here are good
general-purpose ones, but you can easily
change them to suit your own needs.

Very common punctuation, e.g. space,
comma and Return, appears in each. This
can help the compression, as there is less
need to switch between coding sets. The
common characters are in the same place in
each string. Also, the two strings each
hold a maximum of 3@ characters. Although
we can code 32 different values into 5
bits, zero is reserved to mark the end of
a string while 31 is the shift code.

FNcode() packs str$ into the buffer
starting at location locn%. Line 2060
packs the characters, in threes, into

code¥ with FNcd() extracting the code of
each in turn. If the character is not in
the currently selected coding string, FNcd
checks the other; if it finds it, it sends
back the shift code (31), otherwise it
sets a space. When it reaches the end of
the string, FNcd returns a zero.

As every three characters are coded,
PROCpack puts their coded values into the
buffer. When it reaches the end of str$,
any outstanding codes are also stored. On
exit, FNcode returns the next free address
in the buffer. This suits the best way of
setting up a set of compressed strings, as
in the following pseudo-Basic:

PROCpackinit
P%=address of start of buffer
REPEAT
READ a string to code
P%=FNpack (string,P%)
UNTIL last string coded
*SAVE buffer to tape/disc
END

o ~NoyuUl b W~

Don't try to run that! You could read
the strings to be packed from DATA
statements, the keyboard, or from a tape
or disc file; the last is probably the
most likely. At the end of the process,
your backing store will hold a copy of the
compressed text all ready to be unpacked
by whatever program is going to use it. If
you're writing lots of programs, you'll
probably have a standard compression
program, to use every time you need it.

The unpacking routines will normally be

part of a completely different program
from the one which compressed the data.

Beebug October 1985

Before you run the procedure you

must first have run PROCpackinit and

loaded the compressed data into the

buffer. Then, by calling

PROCdecode () with the start address

of the packed string, the data will

be expanded and displayed on the

screen. I leave you to choose the

best way of identifying the start of

the particular code you need.

5000 DEF PROCdecode (locn$%)

5010 LOCAL cn%,code%,i%,kptr%,ptrs
5029 REPEAT

53¢ PROCunpack

5040 FOR i%=1 TO 3

5050 cn%=cc% (1%)

5060 IF cn%>@ AND cn%<31 THEN
PRINT MIDS$ (Key$ (kptr%) ,cn%,1);

5070 IF cn%=3¢ THEN VDU1@

5080 IF cn%=31 THEN
kptr%= (kptr%+1) MOD 2

5090 NEXT

5160 UNTIL cc%(1)=0 OR cc%(2=@) OR

cc% (3)=0

5110 ENDPROC

6000 DEF PROCunpack

6010 code%=locn%!ptr% AND &FFFF
6020 cc% (1)=code% DIV &400

6030 cc% (2)=(code% AND &3E@) DIV &20
6040 cc%(3)=code% AND &1F

6050 ptr¥=ptr%+2

6060 ENDPROC

PROCdecode makes repeated calls to
PROCunpack, which reads the next two bytes
from the buffer and splits their contents
into the corresponding 5-bit codes in
cc¥ (). The codes are then used to extract
data from Key$ (), shifting between the two
character sets every time the code 31 is
encountered. As soon as the procedure
reaches a zero code it exits as that is
the end-of-string marker used.

The decoding program must have exactly
the same strings in Key$() as the original
packing program. If the strings are
different, the most amazing gibberish may
appear. There is little point in using
these routines unless you need to store a
lot of text. They can never quite reach
the 50% improvement mark, but get very
near if you use a long string which needs
as few shift codes as possible.

A complete demonstration of these routines
is contained on this month's magazine

cassette/disc.
=

33

by Mitch

ADVENTURE GAMES ADVENTURE GAMES

This month, the Dungeon Master
answers a few enquiries from lost
and trapped adventurers.

In the game 'Twin Valley Kingdom' the
instructions hint that 'an old, wise man
may look upon the secret of life that lies
nearby'. The object of the game is to
finish with as much wealth as possible

then solve the last problem - what to do
when you have the maximum amount of
points? I have found the Secret of Life

and now have the maximum score but I can't
find an old, wise man to get him to look
at it. Please can you tell me if there is
such a man and where I can find him.
Dominic Surman-Wells

To have solved all the problems of this
fiendish game and to have found the Secret
of Life must have taken a long time and
means that by now YOU must be pretty old
and wise. It seems likely, therefore, that
no better old, wise man should LOOK AT THE
SECRET than yourself.

ADVENTURE GAMES ADVENTURE GAMES

I can spare a few moments before I
return to feed the dragon. Can you help me
with Sphinx Adventure by Acornsoft.

(a) How do you remove the Jack from the
pit?

(b) How do you cross the Glacier bridge?
(c) How do you get out of the coloured
maze and iron passages?

May your sword never go rusty,

David Barnes

Foolish Mortal, the answer to (a) and (b)
is close at hand - in fact on your hand,
within the Mithril Ring! Only he who wears
the ring may cross the bridge or solve the
problem of the pit. Remember, waving and
rubbing objects is always a good idea.

'But wait!', I hear you moan, 'Where is
this accursed ring?' Did your wise old
mother never tell you that only fairies
wear rings. Go seek the ring in the Fairy

34

King's Grotto, and remember to give him a
nice WAVE,

ADVENTURE GAMES ADVENTURE GAMES

I am blind and play text-only adven-
tures via a speech synthesizer (Votrax
'Type and Talk'). I heartily agree with
your sentiments regarding mazes! Fearful
things, and I am stuck in the Black Maze
in 'Castle of Riddles' by Acornsoft.
Please give me a clue on what to do. I am
sad to hear that more and more adventures
are being written with graphics to give
location descriptions. It means that I
will not be able to play them. I hope that
you find it of interest that blind players
enjoy adventures as much as anyone.

David Calderwood

Happily the 'Castle' mazes all have clever
solutions to their twisty paths. In your
case the answer lies with the Metal Rod.
Like its predecessor in 'Colossal', this
object must be waved. You'll soon have a
solution to your problem which like all
good fairy stories lies somewhere just by
rainbow's end. I should mention that this
game cannot be solved without cheating! It
appears to be impossible to use the rod
for solving the problem of the maze and
the Bear's Sitting Room in the same game.
Unless a clever troll knows differently...

During my travels I have met a number of
blind programmers who have found that the
micro has enabled them to compete at work
and play in a way I never believed
possible.

ADVENTURE GAMES ADVENTURE GAMES

In Bug-Byte's 'Twin Kingdom Valley'
how do you get the master key off the
Dragon in the North Tower of the Castle?

Philip Macilroy

Same way as I get my slippers back from my
Dragon - Smash him with a wooden staff.

ADVENTURE GAMES ADVENTURE GAMES

In Program Power's 'ADVENTURE', how do
you kill the rat? We've tried everything!
R.G. Petersen

I don't really give a hoot about this
problem, but I suggest that you do. Get
yourself near the rat and give a loud
HOOT. This foolishness will call a hungry
owl from the nearby forest to knock the
stuffing out of the rodent. =)

Beebug October 1985

A e I i Ll

The Advanced Disc User Guide is
the latest in a series of highly
acclaimed reference books from
the Cambridge Micro Computer
Centre. James Fletcher has been
taking a look at the latest offering.

The Advanced Disc User Guide, Cambridge
Microcomputer Centre, at £14.95.

rare to find a technical tome
that is written in such an enjoyably
readable style as this 446-page Advanced
Disc User Guide. I found the first few
pages so interesting that I just had to
keep on reading. The introduction claims
that the book is meant to be read from
start to finish, rather than just dipped
into as a reference work. Although you
would need to be very dedicated to read
the whole thing at once, it does make
sense to initially skim right through it
so as to get some idea of the wealth of
'goodies' that it contains.

It is

The word 'Advanced' in the title is
most definitely justified, as some of the
concepts used would only be of use to the
experienced machine code programmer. How-
ever, the book contains such clear and
straightforward explanations of the work-
ings of the BBC micro's disc system that
it would be well worth a place on the
bookshelf of any disc user who wants to
know more about the system than the rather
meagre amount of information he is offered
in Acorn's Disc System User Guide.

The author has succeeded in explaining
the workings of the fairly complex 8271
floppy disc controller chip in a remarkab-
ly clear manner; although much of the
information can be found on the 8271
data sheets it 1is far from easy to work

Beebug October 1985

out what is happening with Jjust the
manufacturer's information, and the book
uses simple but useful operational flow-

charts to help the reader's understanding.

The lengthy but very detailed DFS
memory map will appeal to those who just
have to know what goes where, and the
introduction to the filing system routines
and vectors is cleverly done, with each
description of a low-level DFS call being
accompanied by a fully-documented machine-
code example program. Although commands
such as OSBGET (read a single byte from a
specific file) and OSBPUT (write ditto)
are primarily for internal use by the DFS
and the machine operating system, you can
learn a great deal by using these
functions for yourself.

An excellent example of how to build up
a random access filing system is given,
and the detailed description of a stamp
collection catalogue is ideally suited to
the beginner, with each step being clearly
explained. It is useful to have details of
all the various Acorn DFS error messages,
although I usually find these less than
helpful when something really goes wrong,
and the book gives good advice on error
prevention and data protection.

Some of the disc utilities provided in
the book are both interesting and useful,
and I particularly 1liked the combined
40/80 track formatting program (see also
BEEBUG Vol.4 No.4), and the examples of
disc overlay techniques which apparently
give your computer more memory. The pros
and cons of the Acorn DFS are fully
discussed, and some of the snags of
choosing a non-Acorn DFS are pointed out.
Although these can give significant
advantages, such as unrestricted numbers
of files on each disc, the advice 'regard
alternative filing systems as a risk' ties
in with my own experiences of some of
these products.

All in all then, this is a most useful
and interesting book. Perhaps not for the
absolute beginner, but for anyone who
wants to learn about any aspect of the
BEEB's disc system this book is a must. If
you can raise the £14.95 - buy it ! 55

This book is available on special offer to
BEEBUG members - see price list for

full details.

35

o+ I TR

Further Disc
Menu Extensions

David Andrews’ extended disc
catalogue program, described in
the June issue of BEEBUG (Vol. 4
No. 2), has provoked considerable
feedback. We have put the best of
these ideas together to extend this
useful utility even further.

The extended disc catalogue program in
BEEBUG Vol.4 No.2 provides a menu of your
Basic programs on a disc along with a
short description of each obtained from a
REM statement at the start of each
program. Among the many letters of praise
for this program that we have received are
a number giving further extensions to it.
We have taken the best four ideas and
present them here as separate additions to
the previous program.

New members who have missed the
original program can buy a back issue (see
page 50) or you can obtain a photocopy of
the original article and program by
sending an SAE and 30p to the Editorial
address. Please mark your envelope 'DISCAT
photocopy' .

This article provides three extensions
to the original program:

1. To allow it to recognise Wordwise
and View text files and to load these into
the wordprocessors.

2. To recognise
format discs.

3. To read 62 files on a Watford DFS.

*SWAP (Disc Doctor)

As each part 1is separate, you need
only choose the extensions that you
require. Note that the line numbering of
the extensions assumes that the numbering
of the original program has been left
unaltered. The Wordwise and View
extensions are combined as one, and this
is the extension that we describe first.

WORDWISE and VIEW
To load text into Wordwise and View,
we have to set up a new procedure that

36

will enter the correct wordprocessor and
load the text file in the required manner.
For View, this requires a *WORD to be
executed, followed by 'L abcd' to Load the
text file 'abcd'. For Wordwise the program
needs to execute a *W. command then enter
':N.' into the wordprocessor, so if
Wordwise Plus is in use we will clear the
text from memory (although it is unlikely
that there will be any there) and in
Wordwise this will answer 'N' to the
question 'Old Text (Y/N)'. We then enter
'2' (Load text) and the filename. This
will then 1load your selected text file
into Wordwise.

The following lines are the amendments
and additions required.

240 PTR#N%=4:F%=BGET#N%:IFF%=244 OR
F%=81 OR F%=124 THEN 250 ELSE 370

250 IFF%=244 P%(T%)=1 ELSE IFF%=124
P% (T%)=2 ELSE IF F%=81 P%(T%)=3

260 @%=2:NAMES (T%)=NAMES (Z%)

451 IFP% (£%-1)=2 PROCwwise (1)

452 IFP% (£%-1)=3 PROCwwise(2)

147¢ DEFPROCwwise (z)

1471 IF z=1 THEN 1480

1472 AS$S="*WORD"+CHRS13+"L"+NAMES (£%-1)
+CHRS$13:GOTO 1490

1480 AS="*W."+CHRS13+":N
+NAMES (£%-1) +CHRS13

1490 FORG%=1TOLENAS:Y%=ASC (MIDS (AS,

<"HCHRS13+M2"

G%,1)) :X%=0:A%=138:CALL&FFF4
1491 NEXT
1500 END
The text header that is to appear in
the disc catalogue must conform to
specific guidelines. For Wordwise and

Wordwise Plus, the header must be the
first item in the file and must start with

Hame Description

PN PROGRAM Dynamic Memory Mindow

-CONPRES PROGRAM Text Compression

ISCIIS Duc uhlogue utensmns tut Plrt 3 - Dise Doctor #SNAP.
LDISC Part 2 - Natford 62 files.

i!!" Fiﬂdiﬁ’h?t’mﬂ'ﬁ H!'!B?“ Rivic
Beehusiol forua. Solluare dsoe opments.

gt MR il T

lsu ntaluu; extensions text. Part 1 - Nordwise and View.

ﬁig Mventure ; leaders iueruﬁ
a nnmrassmn techniques.

i b I!ﬁ.‘.‘r'}‘iv'."mﬁs"ﬂf?'
rive otal tles
Mhioh numbered file

meoony

ki
4
i
4

erslnn 1.
g Space used 183k

Beebug October 1985

a green embedded command
(function key 1), followed by two spaces,
then *| and finally your title. This must
all be on the same line and needs a Return
at the end.

start character

For View users, you need to start your
text with a 'DM' (Define Macro) stored
command. Enter this by using Shift + 8 to
edit a command, then type DM followed by
Return. Then type 'QQ' to define your
macro as 'QQ' and follow that immediately
by your heading. Press Return after this
and enter the command 'EM' for End Macro.
This now completes the extensions for the
two Wordprocessors.

DISC DOCTOR *SWAP

The extensions to allow the disc menu
to work with *SWAP catalogues, created
with Computer Concept's Disc Doctor, are
given below. A single disc surface is
treated as two separate discs. After the
program prompts you for the disc to be
catalogued, it will also ask if this is a
*SWAP format disc. If it 1s then
successive catalogues of the disc will
alternately produce the two *SWAP
catalogues on the disc.

225 IFNAMES (Z2%)=
V%=V%+512:GOT0370
385 IF ?BUF%=42 U%=BUF%?1 ELSE U%=32
43@ PRINT"Drive ";D%;" ";CHRSU%;:
IFU%<>32 PRINT" (*SWAP format)";

1020 PRINTTAB (27,8) "Catalogue of
Programs"TAB (27,9) STRINGS (21," ")
TAB (28,11) "Current Drive";SPC(3);
D%;" ";CHRSU%:Y$=""

1030 IFU%<>32 PRINTTAB (28,13) "Swap
Files (Y/N)";SPC(2);:YS$S=GETS:
IFYS="Y" PRINT"Yes"

1935 IFY$="Y" PROCoscli ("SWAP") : ENDPROC
:ELSE PRINTTAB (28,13) "New drive"
SPC (7) ; :drive%=GET-48

To run this program on *SWAP discs,
you must title (using *TITLE) one 'half'’
catalogue with a name starting with '*A'
and the other 'half' with one starting
with '*B'. The extended program must be
saved on both 'halves' of the *SWAP format
disc, drive @. With this amendment, the
program will run with both *SWAP and
standard format discs.

WATFORD DFS 62 FILES
The appropriate amendments and
additions to allow the menu to cope with a

Beebug October 1985

Hame Description

usnﬂe file lnpui demo
simple ‘database’ xn(erogator
cassette file input d

{1
EMEN PHDSIRH FREE IEI'I]RV DISPLHV
PROGRAM EPROM PROGRAMPER
;FHSI FRDERHH t disc verifier

BEES PM nrm ngnmw TREE DEMO

i i H"ggx L rtgsa

MPRES Pmlgmm €Ol

1
1
1
¢
2
2
2
3
1
2
2
‘|
1
1
2
3
2
2

 Total Files 56 Gpace used 6ok
h nunbered file

Watford DFS
follows.

62 file catalogue are as

220 FORZ%=0TOR%-1
360 IFT%=18 OR T%=36 OR T%=54 VDU7:
PRINT'".. Any key to continue ..":
IFGET:VDU11:PRINTSPC (27) :VDU11,11
410 PRINTTAB (32)"Total files "; (R%+S%)
TAB (63) "Space used "; (V¥+500)
DIV1009d; "k"
1980 DIMBUF%&400, readcat&50
1160 ?P%=D%:P%!1=BUF%:P%?5=3:P%?26=&53:
P%?27=0:P%?8=0:P%?9=&24:P%?10=0
1210 S%=0:R%= (BUF%?&105) /8:IF BUF%!&200
=sAAAAAAAA S$= (BUF%?&305) /8
1220 IF R%<1 PRINT''"No Suitable files.
"'"Press any key.":G=GET:RUN
1230 DIMNAMES (R%+S%-1) ,P% (R%+5%-1)
1240 FORZ%=0TOR%-1
1310 NEXT:IF S%=0 THEN 1320
1311 BUF%=BUF%+&200:FORZ%=0TO S%-1
1312 FORY%=0T06:Q%=R%+Z%
1313 NAMES (Q%) =NAMES (Q%
(Y3+8*(2%+1)))
1314 NEXT:G%=BUF%? (Y%+8* (2%+1))
1315 IF G%>127 G%=G%AND&7F
1316 NAMES (Q%) =CHRSG%+". "+NAMES (Q%)
1317 NEXT

) +CHRS (BUF%?

These extensions will allow the menu
to read both 62 file and normal 31 file
catalogues.

With all of these extensions in place,
you now have one of the most comprehensive
menu programs available for the BBC micro.

Many thanks are due to A.R.Webster, David

Andrews, Alan Marshfield, P.J.Swan and
David Graham for suggestions and help in
comniling these additions.
==
37

e+4+IlIn=C

I Looking at
Data structures

(Part 2)

Paul Ganney continues his look
at data structures by describing
how to implement linked lists,
and goes on to discuss the
principles of tree structures.

Last month we investigated the
principles of linked lists and how they
operate. Structures like linked lists are
not available in languages such as Basic,
and so they must be implemented in terms
of arrays. The first program does this,
and provides insertion and deletion
‘facilities as well as the ability to
display the linked list.

REM LINKED LIST DEMO

REM VERSION B@.1

REM AUTHOR P. GANNEY

REM BEEBUG OCTOBER 1985

REM PROGRAM SUBJECT TO COPYRIGHT

MODE 7
vDU23,1,0;0;0;9;
DIM A(1,9)
REM A(4,) IS DATA
REM A(1,) IS POINTER
REM NULL POINTER IS -1
start%=-
free%=0

186 A(1,9)=-1

190 FORI%=0TO8:A (1,I%)=I%+1:NEXT

200

210 REPEAT

220 PROCmenu

230 UNTIL FALSE

240

1000 DEF PROCmenu

1019 PROCheader (1,2,"LINKED LIST")

1020 PRINT'''CHR$133;"Input choice:"''C
HRS133;"1. Insert an item"'CHRS$133;"2. D
elete an item"'CHRS$133;"3. List data"'CH
RS$133; "4, End"

1030 REPEAT:A%=GET-48:UNTILA%>OAND A%<5

104@ IFA%=1 THEN PROCinsert ELSE IF A%=
2 THEN PROCdelete ELSE IF A%=3 THEN PROC
list ELSE CALL!-4

1050 ENDPROC

1060 :

1070 DEF PROCheader (front%,back%,TEXTS)

1080 LOCAL spaces

38

150
160
170

1090 vDU26,12
1100 IF LEN TEXT$>33 THEN spaces=0 FLSE
spaces= (33-LEN (TEXTS))DIV 2

1110 FOR I%=@ TO 1:PRINTTAB (spaces,I%);
CHRS (128+back$) ;CHRS157;CHRS (128+front%)
;CHR$141; TEXTS; " ";CHRS$156 : NEXT

1120 vDU28,0,24,39,3

1130 ENDPROC

1140 :

1150 DEF PROCdelay:TIME=0:REPEAT:UNTIL
TIME>10@: ENDPROC

1160 :

1170 DEF PROCinsert

1180 PROCheader (3,4, "INSERT")

1190 IF free%=-1 THEN VDU7,129:PRINT"LI
ST FULL":PROCdelay:ENDPROC

1200 INPUT"Data item",A(0,free%)

1210 F%=A(1,free%)

1220 IF start%=-1 THEN start%=free%:A (1
,start?)=-1:GOT01310 ELSE IF A(0,free?)
<= A(0,start%) THEN A(1,free%)=start?:st
art¥=free%:GOTO1310

1230 J%=start?

1240 K%=FALSE

1250 REPEAT

1260 1%=A(1,J%)

127¢ IFI%=-1 THEN K%=TRUE ELSE IF A

0,f
ree%)<=A(8,I%) THEN K%=TRUE ELSE J%=I%

(
I

1280 UNTILK%

1290 A(1,free%)=A(1,J%)

1300 A(1,J%)=free%

1310 free%=F%

1320 ENDPROC

1330 :

1340 DEF PROCdelete

1350 PROCheader (5,6, "DELETE")

1360 IF start®=-1 THEN VDU7,129:PRINT"E

MPTY LIST - NOTHING TO DELETE":PROCdelay
:GOTO1450

137¢ INPUT"Data item",D%

1380 I%=start%

1390 J%=-

1400 K%=FALSE

1419 REPEAT

1420 IF I%=-1 K%=TRUE ELSE IF A(@,I%)=D
% THEN K%=TRUE ELSE J%=I%:I%=A(1,I%)

1430 UNTILK%

1440 IF 1%=-1 THEN VDU7,129:PRINT"ITEM
DOES NOT EXIST":PROCdelay ELSE IF J%=-
THEN S%=A(1,start%):A(1,start%)=free%:fr
ee%=start¥:start?®=S% ELSE A(1,J%)=A(1,I%
):A(1,I%)=free%:free%=1%

1450 ENDPROC

1460 :

1470 DEF PROClist

1480 PROCheader (2,3,"LIST")

1490 IF start%=-1 THEN PRINTCHRS130;"EM
PTY LIST":GOTO1554@

1509 I%=start%

1510 REPEAT

Beebug October 1985

i e e e e

1520 PRINTA (@,1%)

1530 1%=A(1,I%)

1540 UNTILI%=-

1550 PRINT''"PRESS SPACE":REPEAT:UNTILG
ET=32:ENDPROC

PROGRAM NOTES
160-190 set up the free space list (at
this stage the entire array).

1170-1320. Insertion. Three 'special
cases' are possible. These are tested for
first and acted upon should one of them
have occurred. Line 1199 checks for free
space. Line 1208 inputs the new item into
the first free space. Line 1220 tests if
the 1list is currently empty (start?=-1),
and if the new item should be placed at
the head of the 1list. Lines 1250-1280
trace through the list until either the
correct place in the list is found or the
end of the 1list is reached. Lines
1299-1319 adjust the pointers as was
described in the first article.

1340-1450. Deletion. The list is first
tested for anything to delete (1360) and
is then traced through (1380-1430) until
either the item is found, or the end of
the 1list is reached. If the item has been
found, then pointers are adjusted so that
the 1item before the one to be deleted now
points to the one after it, and the
deleted item is added to the front of the
free space list, its pointer being
adjusted to point to the previous head of
this list (line 1440).

1470-1550. Listing. Simply traces
through the list. I% is the index (place
in the array) of the item being listed.

After printing the data item (A(0,I%)), I%

is set to the pointer from this item
(A(1,I%)) - the index of the next item.
This continues until 1% = =1, the
terminator.

This version of a linked list,

implemented using a two dimensional array,
will only work for numeric data. For
string data we could use separate arrays
for the data and the pointers.

USING MAIN MEMORY

One disadvantage of large arrays is
that pressing the Break key automatically
clears the array. A better method is to
store the data in main memory (adjusting
HIMEM so that the 0.S. doesn't overwrite
it) using indirection operators (see User

Beebug October 1985

Guide, ©0.409, BEEBUG Vol.3 Nos.7 and 8).
The resident integer variables (also
unaffected by Break) can also assist

further as the pointer variables.

For the purpose of an example, let us
assume that we wish to set up a catalogue,

each record consisting of an eight
character identifier (name) , and an
integer number. This gives us fifteen

bytes per record (8 plus 1 (end-of-string
character) for the identifier, 4 for the
integer, and 2 for the pointer). Thus, to
hold 100 records, we require 1500 (&5DC)
bytes and hence HIMEM must be set at 30244
(&7624) in mode 7. This section of memory
will then be partitioned into the 15-byte
blocks by setting all the pointers so as
to form the free space list. S% and F%

will be used for the start and free space
pointers, respectively.

Note that, although I&7BFE (the
pointer from the last item) is initially
set to -1 (the terminator), all subsequent
tests for terminators are for 255, due to

the nature of the indirection operators.
Note also that the Break key must be
programmed to reset HIMEM whenever

pressed, in order to preserve the data.

The second program shows how a linked
list can be set up in memory and listed.
This isn't a complete program, but a full
routine, equivalent to the first program,
is included on this month's magazine
cassette/disc.

100 MODE7

11¢ vDU23,1,0;0;0

120 HIMEM=&7624:S
MH.=&7624MG. 60M

130 FORI%=&7631 TO &7BEF STEP15:!I%=1%
+2:NEXT: ! I%=~

149 :

1540 DEF PROClist

1550 PROCheader (2,3,"LIST")

1560 LOCAL P%

1570 P%=S%

158¢ vbuU14

1599 PRINTCHRS130; "Press";CHRS136; "Shif
t";CHRS$137; "For next part of list"'

1600 IF P%=255 THEN PRINTCHRS$133;"LIST
EMPTY" ELSE REPEAT:PRINTSP%,P%!9:P%=P%?1
4%256+P%?13:UNTIL P%=255

1619 vDU15

1623 PRINT''"PRESS SPACE":REPEAT:UNTII,
GET=32

1639 ENDPROC

9;
=255:F%=HIMEM: *K. 100

’
<
°

39

BINARY TREES

Another linked data structure 1is the
binary tree. The great advantage of the
binary tree is that the data structure
intrinsically reflects the ordering of the
data stored in it. The binary tree has two
pointers per element (or node), known
respectively as the left and right
pointers. The basic principle 1is that
there exists a central node, called the
root, which is (of course) at the top of
the binary tree. Confused? No need to be,
as the ideas are simple enough, it's just
the terminology muddling matters as usual.

From the root, the binary tree spreads
in two directions, left and right. Those

nodes to the left are ordered before the
root, those to the right after it. Moving
down the binary tree to another node

presents the same picture of two pointers.
It is this feature that makes binary trees

so useful. At any node (position 1in the
binary tree) the structure below this
point is also a binary tree (a

'sub-tree'). A node with no sub-trees is
called a terminal node. The absence of a
sub-tree 1is recorded by a terminator in
the appropriate pointer, in much the same

way as the end of a linked list is
recorded.
/ 32\
21 85
N\ B
7
62
f

73
&\

At this point, an example would be
useful. Consider the insertion of the
number 57 into the purely numeric binary
tree in the figure. The process is as
follows:

1. 57 is greater than 32, so branch

right.

2. 57 is less than 85 so branch left.

3. 57 is less than 62 so branch left.

4. A terminator is reached, so place

the data item 57 here, to the left
of 62.

Again, you may like to try creating a

40

binary tree from the following items (the
first item inserted automatically becomes
the root):

32,854;62;21,73;7.
You should end up with the original binary
tree.

Having established the principles of
inserting an item into a binary tree, what
of deletion? This is actually a thornier
problem than at first may seem to be the
case. The pointer to the deleted node must
be made to point to the left sub-tree of

the deleted node. The right sub-tree of
the deleted node becomes the rightmost
element of the left sub-tree of the
deleted node. If this sounds confusing

(and it is!) follow the process through on
the diagram.

A \ \/
\, A\

EG J L EG

e
/N

POINTER TO H NOW POINTS TO |
1 HAS NO RIGHT POINTER, SO THIS
POINTS TO SUB-TREE, K

DELETE H

Listing the data 1in a binary tree
(often called traversing the binary tree)
is a simple recursive algorithm:

Traverse left sub-tree, if there is

one.

Print node.

Traverse right sub-tree, if there is

one.

As BBC Basic supports recursion, there is
no problem implementing this routine.

Searching for an item in the binary
tree is simply an application of the
insertion principles, testing as we go for
the required item, outputting an 'Item not
found' message if a terminator is reached.

All these features are implemented in
the following demonstration program:

10 REM PROGRAM BINARY TREE DEMO

20 REM VERSION B@.1

30 REM AUTHOR P, GANNEY

40 REM BEEBUG OCTOBER 1985

5@ REM PROGRAM SUBJECT TO COPYRIGHT

Beebug October 1985

R e e e e e S IR U B BB

60 :
100 MODE3
119 ON ERROR REPORT:END
120 PROCsetup
130 REPEAT
140 option%=FNmenu
150 IF option%=1 THEN PROCinsert
160 IF option%=2 THEN PROCdelete
170 IF option%=3 THEN PROCsearch
180 IF option%=4 THEN PROClist
199 UNTIL option%=5
20¢ MODE 3:END
1000 DEF PROCsetup
1010 LOCAL i%
1020 DIM data$ (109) ,left? (100) ,right% (1
00)
1030 root%=-1:free%=0
1040 FOR i%=0 TO 100
1050 left% (i%)=-1:right% (i%)=-1
1060 NEXT i%
1970 PRINTTAB (31,2) "BINARY TREE DEMO"
19809 vpU28,0,24,79,4
1096 ENDPROC
1160 :
1110 DEF FNmenu
1120 LOCAL option%:CLS
1130 PRINTTAB(10,2)"1. Insert new item"
1140 PRINTTAB (10,4)"2. Delete item"
1150 PRINTTAB(19,6)"3. Search for item"
1160 PRINTTAB(10,8)"4. List all items"
1170 PRINTTAB(10,10)"5. Exit"
1180 PRINTTAB (19,14) "Enter your choice"

1190 REPEAT:option%=GET:UNTIL INSTR ("12
345" ,CHRS (option%))

1260 =option%-48

1218 2

1220 DEF PROCinsert

123¢ LOCAL D$:CLS

1240 IF free%>100 THEN PRINT'"Tree full
.":GOTO 1330

125¢ INPUT''"Enter new data string (max
6 characters): " D$

1260 IF root%=-1 THEN root%=free%:GOTO
1300

1278 found%=FNsearch (D$)

1280 IF found%>-1 THEN PRINT'DS$;" alrea
dy exists in position ";found%:GOTO 1320

1290 IF turn$="L" THEN left$% (lasturn%)=
free% ELSE right% (lasturn%)=free?

1300 data$ (free%)=D$: freet=free%+l

1319 PRINT'D$;" now entered"

1320 PRINT'"Press any key to continue":
key%=GET

1330 ENDPROC

1349 :

1350 DEF PROCdelete

1360 LOCAL found%,P%:P%=root%:CLS

137¢ IF P%=-1 THEN PRINT'"Tree empty":G
OTO 1490

Beebug October 1985

1380 INPUT''"Enter data string: " D$

1390 found%=FNsearch (D$)

1400 IF found%=-1 THEN PRINT'"Not found
":GOTO 1499

1419 IF found%=root% THEN root%=left% (r
oot%) :GOTO 1430

1420 IF turn$="L" THEN left% (lasturn%)=
left% (found%) ELSE right% (lasturn%)=left
% (found%)

1430 P%=left?% (found%)

1440 IF root%=-1 THEN root%=right% (foun
d%) :GOTO 1480

1450 IF P%=-1 THEN left% (lasturn®)=righ
t% (found%) : GOTO 1480

1460 REPEAT: last%=P%:P%=right% (P%) :UNTI
L P%=-

1470 right% (last%)=right% (found%)

1480 PRINT'DS;" now deleted"

1499 PRINT'"Press any key to continue":
key%=GET

150@ ENDPROC

1519 :

1520 DEF PROCsearch

1530 LOCAL found%,P%:P%=root%:CLS

1540 IF P%=-1 THEN PRINT'"Tree empty":G
0TO1580

155@ INPUT''"Enter search string: " D$

1560 found%=FNsearch (D$) :PRINT' D$;
157¢ IF found%>-1 THEN PRINT" found in
position ";found% ELSE PRINT " not found
n

1580 PRINT'"Press any key to continue":
key%=GET

159¢ ENDPROC

1600 :

1610 DEF FNsearch (D$)

1620 LOCAL found%,P%: found%=FALSE:P%=ro
ot%

1630 REPEAT

1640 IF DS$=data$ (P%) THEN found%=TRUE E
LSE lasturn%=P%:IF D$<data$ (P%) THEN P%=
left% (P%) : turn$="L" ELSE P%=right% (P%):t
urn$="R"

1650 UNTIL P%=-1 OR found$%

1660 =P%

1670 :

1680 DEF PROClist

1690 CLS:IF root%=-1 THEN PRINT"Tree em
pty" ELSE PROClistl (root%)

1700 PRINT'"Press any key to continue":
key%=GET

1719 ENDPROC

1728

1730 DEF PROClist1 (start%)

1740 IF left%(start%)<>-1 THEN PROClist
1 (left? (start?))

1750 PRINT data$ (start$)

1760 IF right$% (start%)<>-1 THEN PROClis
t1 (right® (start%))

177@ ENDPROC ‘-JE

41

Interfacing
the BEEB

Eight books reviewed

With our EPROM Programmer
Project we thought it timely to
take a look at some of the many
books now available on inter-
facing the Beeb. Geoff Bains has
been doing all the reading.

When the BBC Micro was first launched
it was much vaunted as having great
potential for laboratory work and computer
control. The same is true today. Some of
that potential has been fulfilled by
commercial devices but most is left up to
the user with an interest in electronics
and skill with a soldering iron.

To help out would-be DIY enthusiasts
to construct their dreams, several books
have come onto the market. All of these

comprise three broad subjects: theory,
constructional details, and supporting
software. However, the relative

proportions of these varies enormously, as
do the topics for construction, the depth
of discussion, and the skill levels
assumed of the reader.

Sensing and Control Projects for the BBC
micro by Thomas Nunns. £5.95 from Micro
Books.

This book is the simplest of all those
reviewed here. The book is divided between
projects for the analogue port and those

™
DIY robotics
andsensors L
withthe BBC computar | lg
INTERAC s e e jg
Eal

the

MICROCOMPUTH

for the user port. The most complex (and
appealing) of the ten projects covered is
a slot car controller using simple relays
and driver chips. The other projects are
the 1like of LED traffic 1lights and
measuring light levels.

Although the projects are, to say the
least, uninspiring, the strength of this
book is its constructional details. No
soldering is required. Everything either
screws or clips together. Large lettering,
large diagrams and many sections on 'what
to do if it doesn't work' mean that this
book is ideal for older children or those
who have never seen a piece of wire, let
alone a chip, before.

Micro Interfacing Circuits Book 1 and 2 by
R.A.Penfold. £2.25 from Babani.

These two slim volumes are the
opposite extreme from the previous book.
There is next to no constructional details

here, nor supporting software either.
However, the books cover a wide range of
topics - everything from powering LEDs to

audio digital filters - and they are meant
for other micros as well as the Beeb.

Only the circuits are provided along
with a very brief explanation of their
workings and pinouts of the various chips
and transistors used. Babani books are a
well known sight in component shops and

their style is pretty uniform, so if you
have never come across a Babani
electronics book before, the chances are
that these are not going to be

introductory enough for you anyway.

DIY Robotics and Sensors with the BBC
micro by John Billingsley. £6.95 from
Sunshine Books.

This book is one of the more
specialist tomes. The first half is given

over to the run of the mill light pens and
even

irelay drivers, a DIY joystick! The

INTERFACING PROJECTS
FOR THE BBC MICRO =
BRUCE SMITH

— "torfacing
HARDWAR "ot
PROJECT

second half is where the rather grandiose
title takes over. It is mainly devoted to
the control of stepper motors.

I get the impression that this book
was written in a rush. There is a lot of
theoretical background given and even
'experiments' to prove the fundamental
operation of stepper motors. The result is
an averaged sized book with an awful lot
that you don't actually want. The
diagrams, too, are just rough sketches. If
you are a dedicated electronics fan with a
desire to get into robotics, then this
book could provide a starting point.
However, don't expect too much in the way
of in-depth constructional details. This
book really just maps out the terrain.

Interfacing and Control on the BBC micro

by R, Johnson, C. Procter, and A,
Reglinski. £9.95 from NEC.
This book is essentially a text book

for followers of the relevant NEC course.
However, it is sold in 'normal' bookshops
and so could well tempt the would-be
interfacer. Although the book 1is fairly
comprehensive it would not be recommended
for most readers.

For a start all the projects are not
DIY boards but based around a ready-made
circuit board marketed by the NEC. In
addition, the book IS a text book and the
style does not encourage enthusiasm for
the subject. It is also filled with
questions and answers which are not really
applicable outside the course. That said,
the book does offer a reasonable grounding
in the use of the Beeb's analogue and VIA
ports. However, at nearly £10 the price
alone is going to put many off.

Interfacing the BBC microcomputer by B.
Bannister and M. Whitehead. £7.5¢ from
Macmillan.

Macmillan's Beeb interfacing book can

vmosvH Il

Beebug October 1985

best be described as one for those well
familiar with building their own
electronics gadgets but have not yet tried
this in the computer field.

The book starts off with a detailed
description of the facilities available.
There is a chapter on the user port and
one on the 1MHz bus, and one on the
handling of analogue data. It is only by
page 78 that 'some applications' are
discussed. These are not so much
applications as an extension of the theory
with mention of some specific components.
No real constructional details are given;
it is assumed the reader knows all about
that kind of stuff already.

By the time page 103 comes along the
applications are all finished and we are
back with the theory in the form of the
appendices. These mainly give pages and
pages of data sheets from various chip
manufacturers. For a near-expert in
electronics, unfamiliar with the operation
and architecture of a microcomputer, this
book would no doubt go down well. However,
if you intend to actually build something
after reading this, and you have not
wielded a soldering iron that much before,
let alone designed your own circuit
boards, you are likely to be disappointed.

Interfacing the BBC microcomputer by Colin
Opie. £8.95 from McGraw-Hill.

Colin Opie's book follows Messrs
Bannister's and Whitehead's in more than
just title. It too has large sections at
the front (about two thirds of the 200
page book) devoted to the explanation of
the detailed operation of the user port,
1MHz bus, and the Beeb in general.
However, this time the whole is written in
a manner that, for me, was a lot more
acceptable and encouraging.

Once the hardware projects (the
'experimental hardware') is reached it

DR R
INTERFACING PROJECTS
FOR THE BBC MICRO

transpires that it is all based around
circuit boards that can be purchased,
ready made or in kit form, separately

(from Watford Electronics). Granted the
orinted circuit board layouts are given at
the end of the book, but it is unlikely
that most potential buyers of this book
will have the skill or the inclination to
start messing around, making their own.

The hardware is advisedly called
'experimental'. There is little in the way
of applications here. The boards are
potentially very useful but nothing is
really said on what and how they could be
usefully applied.

Again this is a Dbook for those
already knowledgeable in the field. As a
reference work for the electronics
hobbyist the friendly style and excellent
explanations of the theory of the Beeb's
ports it is recommended, but the lack of
real application and home appeal spoils
the book's chances for most of us.

BBC Hardware Projects by Don Thommasson.
£8.95 from Melbourne House.

Keeping the best for last, this is one
of the two books in this bunch that can
really start you off on an interesting and
enlightening foray into the world of
electronics.

The book starts off with a theory
section. This only lasts for a quarter of
the book's 20% or so pages but manages to
reveal enough of the workings of the Beeb
to keep you going for the rest of the
book.

Then there is the constructional
section. The range of projects is not very
inspired but all are laid out on
stripboard and SO are eminently
attemptable by the average Beeb owner. You
don't have to be an electrical engineer to
manage these.

The projects cover interfacing to the

analogue and user ports. There is a light-
detector, voltmeter, relay-driver, mains
power controller, numeric keypad, and
others. Although these may not seem to be
great advances in the field of computer
control, you do at least leave this book
with a feeling that these things are
actually possible; even you could achieve
this.

The book does, however, fall down a
little on the meagre supporting software.
This is a pity as the combination of the
excellent Beeb operating system and its
interfacing abilities make the system
ideal for this kind of thing. Only give
half the story and you only have half the
fun.

Interfacing Projects for the BBC micro by
Bruce Smith. £6.95 from Addison-Wesley.

Like the previous book this one is a
practical work. Some theory is given at
the start (including a classic padding
chapter on hex and binary!) but you soon
get into the meat of the projects. These
cover a good range - from light pen to
EPROM Programmer (yes, other's have done
it too!). Each project is accompanied by
an adequate description of how the circuit
works, a clear stripboard layout diagram,
reasonable constructional details, and
plentiful supporting software.

It 1is difficult to know why this book
pleases as it does. The presentation is
not very good. It 1is short (only 130
pages), the diagrams are more in the line
of sketches and the program listings faint
in places. However, please it does. The
style is light enough to communicate the

author's enthusiasm for the subject and
yet it still remains very informative.
There 1is 1little here for the absolute

beginner, but then the book is not aimed
at them. If you have a little experience
with a soldering iron (or even a lot) you
will not go far wrong with this one.

=

BEEBUG now keeps a wide variety of BBC micro related books available for
mail order. Please send an SAE for a booklist to:

BEEBUG BOOK LIST, P.0.BOX 50, HOLYWELL HILL, ST ALBANS, HERTS AL1 1EX.

Beebug October 1985

o+IlIn=Z

Roulette

: 3z
4 26 135,
4 39 4
1z 121
.28 o
re 25
29 17
i8 ,, 34
22 . ; P
2 . 27
31 ; ;“4 . £ - 13
14 26
20 4 | ' 11
i . 3e
33 8
1654, 1923

Gambling into the night on the
tables of Monte Carlo is no more
than a dream (or nightmare) for
most of us. Richard Pearce brings
it all to life with his accurate and
colourful implementation.

Can you break the bank at Monte Carlo?
Can vyou turn £50¢ into £5,000,000 or will
you lose your shirt on the world's most
famous gambling table?

Roulette 1is a one-player game, that
runs in mode 1, giving a good display of
the betting table and roulette wheel. At
the start of the game you are given £500
to gamble, and you can place one or more
bets with each bet not exceeding £100,000
or the amount of money you have remaining.
Your aim is to amass a total of £5M and
'break the bank', although as with real
life roulette, this is not easy!

When run, the program presents the
betting table and a list of options. These
options allow you to place bets, and both
view and spin the wheel. Please note that
when you have completed your bet or bets,
you should then select the option to spin
the wheel. A brief description of the bets
and their odds now follows.

Beebug October 1985

Name Description Odds

(the following bets can include 0)

En Plein Single Number 35-1

A Cheval Two Numbers (adjacent) on 17-1
the table, with vertical
or horizontal. Zero can be
coupled with 1, 2 or 3.

Trans- Horizontal row of 3 numbers 11-1
versale with @ being combined

Plein with any two of 1,2 or 3

Carre Block of four numbers 8-1

(The following cannot include 0)

Sixaine Two adjacent horizontal rows 5-1
Colonne Vertical column of twelve 2-1
Douxaine Either the first, second or 2-1
third dozen numbers, i.e.
1-12, 13-24 or 25-36
Deux Two dozen. Either numbers 1-2
Douxaine 1-24 or 13-36. You must bet

an even amount.

Because of the length of this program
and the fact that it runs in mode 1, disc
users or anyone who has page set to
greater than &E@¥ will have to move the
program down before running. This can be
achieved by using the move down routine

published in BEEBUG Vol.3 No.5 or by
adding the following lines to your
program:

1 IF PA.<&E01 THEN 10

2 *K.0 *T|MF.A%=0TO (TOP-PA.)S.4
:A%!SE00=A%|PA. :N. |MPA.=&E00 |M
O. |MDEL.®,4 |MRUN [M

3 *FX138,0,128

4 END

Please take care when typing the
program into your computer that no extra
spaces are inserted because the program
could run out of memory as a result.

10 REM PROGRAM ROULETTE

20 REM VERSION B@.1

30 REM AUTHOR R.PEARCE

40 REM BEEBUG OCTOBER 85

50 REM PROGRAM SUBJECT TO COPYRIGHT

7@ ONERRORGOTO190
80 MODE1 : PROCsetup

90 REPEAT:CLS

199 vDU19,2,2,0,0,9

119 vDU23,1,0;0;0;0;

120 PROCgame:VDU4,17,3

130 CLS: IFK%=@GOTO150ELSESOUND1,2,4,50
:PRINTTAB (5,10) "YOU HAVE BROKEN THE BANK
I"TAB (9,16) "Pretty clever-huh!"TAB (9,18)
"How about lending me"

45

149 PRINT TAB (9,20)"ten quid till Tues
day?":GOTO179

150 PRINTTAB (7,11)"YOU HAVE NO MONEY L
EFT!":FORI%=30TOJSTEP-1:SOUND1,4,1%,2:NE
XT:PRINTTAB (4,14) "You're a pretty awful
gambler"TAB (4,16) "aren't you? I wouldn't

advise"

160 PRINTTAB (4,18) "taking your life sa
vings to":COLOUR2:PRINTTAB (4,20) "Monte C
arlo!"

17¢ COLOUR1:PRINTTAB (6,24) "Do you want

another game?":REPEAT:F%=GET:UNTILF%=78
ORF%=89

180 UNTILF%=78:COLOUR3:END

190 MODE6:REPORT:PRINT" at line ";ERL

209 END

219 2

220 PRINTTAB (5,3);"EN PLEIN":PRINTTAB (
2,4);"Single Number"

230 PROCbet:vDU28,23,31,39,10

240 REPEAT:CLS

25¢ INPUTTAB (1,1)"What number?"L%:UNTI
LL%<37

260 Q%=Q%-B%:IFL%=N%H%=1

270 PROCwin (35) : RETURN

280 :

290 PRINTTAB (5,3);"A CHEVAL":PRINTTAB (
4,4);"Two numbers"

300 PROCbet

319 PROCnumber

32¢ vbpu28,23,31,39,16

330 IFL%=0GOTO0360

340 REPEAT:CLS

350 INPUTTAB (1,1)"What is the sec
ond number?"Hi%:UNTILHi%=L%+10RHi%=L%+3:
GOTO370¢

360 REPEAT:CLS:INPUTTAB(1,1)"What is t
he second number?"Hi%:UNTILHi%>@AND
H1%<4:G0T0380

370 IFL3%MOD3=@ANDHi%=L%+1GOTO310

380 Q%=Q%-B%:IFL%=N%ORHi%=N%H%=1

399 PROCwin (17) :RETURN

400 :

410 PRINTTAB (3,3);"TRANSVERSALE

PLEIN":PRINTTAB (2,5) ; "Horizontal row"

420 PROCbet

43¢ PROCnumber

449 TFL%=0GOT048%9

450 IFL3MOD3<>10RL%>34GOT0430

460 Q%=0Q%-B%:IFN%>L%-1ANDN%<L%+3H%=

47@ PROCwin (11) :RETURN

480 vDbU28,23,31,39,15:REPEAT:CLS

490 INPUTTAB (1,2)"What is the 2nd num
ber?"L1%:UNTILL1%<3

509 vbu28,23,31,39,19:REPEAT:CLS

519 INPUTTAB(1,2)"What is the 3rd num
ber?"L2%

52@ UNTILL2%<4ANDL2%>L1%

530 Q%=0Q%-B%:IFL%=N20RL1%=N3ORL2%=N%H%
=1

46

[,
=g
[
q.]
[T
=]
el el

540 PROCwin (11) :RETURN

550 s

560 PRINTTAB (6,3) ; "CARRE":PRINTTAB (2,4
);"Block of four"

570 PROCbet

580 PROCnumber : IFL%=0GOT0620

599 IFL$MOD3=@ORL%>32GOT0589

600 Q%=0%-B%:IFL%=N%0RL%+1=N%ORL%+3=N%
ORL%+4=N%H%=1

610 PROCwin (8) :RETURN

620 Q%=Q%-B%:IFN%<4H%=

630 PROCwin (8) :RETURN

640 :

650 PRINTTAB (5,3) ; "SIXAINE" : PRINTTAB (1
+4);"Two horiz. rows"

660 PROCbet :REPEAT

670 PROCnumber :UNTILLSMOD3=1ANDL%<32

680 Q%=0Q%-B%:IFN%>L%-1ANDN%<LS+6 H%=

69¢ PROCwin (5) : RETURN

700 :

71@ PRINTTAB (5,3) ; "COLONNE" : PRINTTAB (1
+4) ;"Vertical column"

72 PROCbet :REPEAT

730 PROCnumber : UNTILL%>@ANDL %<4

740 Q%=Q%-B%:FORI%=QTO11:IFL%+ (3*I%)=N

3 H3=1

Beebug October 1985

75¢ NEXT:PROCwin (2) :RETURN

760 :

779 PRINTTAB (5,3) ; "DOUXAINE" : PRINTTAB (
6,4) ;"Dozen"

780 PROChet :REPEAT

79¢ PROCnumber :UNTILLSMOD12=1ANDL%<26

800 03=0%-B%:IFN3>LS-1ANDNS<LE+12 H%=1

810 PROCwin (2) :RETURN

820 :

830 PRINTTAB (1,3);"DEUX DOUXAINES":PRI
NTTAB (3,4) ; "Two dozen"

840 PROCbet : IFB¥MOD2=1B%=B%-1

850 REPEAT

860 PROCnumber :UNTILL%MOD12=1ANDL%<14

870 Q%=0Q%-B%:IFN%>L%-1ANDN%<L%+24H%=
880 PROCwin (#.5) :RETURN

909 PRINTTAB (3, 3) ; "PASSE/MANQUE" : PRINT
TAB (4,4) ;"High/low"

910 PROCbet :REPEAT

92¢ PRINTTAB (1,6);"Press key for ch
oice (PM)"

930 L%=GET:UNTILL%=770RL%=80

949 IFN%=(QGOTO0970¢

950 H%=0:0%=0%-B%: IFN%<19ANDL%=770RN%>
18ANDL%=80H%=1

960 PROCwin (1) :RETURN

9703 PROC@:IFN1%=0:RETURN

980 H%=0:Q0%=0%-B%:IFN1%<19ANDL%=770RN1
%>18ANDL%=80H%=

99¢ PROCwin (@) :RETURN

1009 :

1010 PRINTTAB (2,3);"PAIR/IMPAIR":PRINTT
AB(3,4);"Even/odd"

1920 PROCbet :REPEAT

1033 PRINTTAB(1,6);"Press key for oh
oice (P/I)"

1040 L%=GET:UNTILL%=730RL%=80

1050 IFN%=0GOTO1089

1060 H%=0:0%=Q%-B%: IFL¥MOD2=N%MOD2H%=1

1070 PROCwin (1) : RETURN

1080 PROC@:IFNT%=0:RETURN

1090 H%=0:0%=0%-B%: IFL%MOD2=N1%MOD2H%=1

1109 PROCwin () :RETURN

1119 :

1120 PRINTTAB (4,3) ; "NOIR/ROUGE" : PRINTTA
B(4,4);"Black/red"

113¢ PROCbet :REPEAT

1140 PRINTTAB(1,6);"Press key for ch
oice (N/R)"

1150 L%=GET:UNTILL%=780RL%=82

1160 IFN%=0GOTO1199

1170 H%=0:0%=0%-B%:RESTORE1830:FORI%=1T
ON%:READE% : NEXT: IFE%=0ANDL%=780RE%=1ANDL
%=82H%=

1180 PROCwin (1) :RETURN

1199 PROCQ:IFN1%=0:RETURN

1200 H%=0:0%=Q%-B%:RESTORE183@:FORI?=1T
ON1%:READE% :NEXT : IFE%=0ANDL%=780RE%=1AND
L%=82H%=1

Beebug October 1985

12130 PROCwin (@) : RETURN
1229 =
1230 PROCwheel
1240 MOVE835,100:PRINT"PRESS SPACE TO":
MOVE835,65: PRINT"RETURN TO MENU":IFGET
125@¢ PROCtable:PROClist
850 REPEAT
860 PROCnumber :UNTILL3MOD12=1ANDL%<14
870 Q%=0%-B%:IFN%>L%-1ANDN3<L%+24H%=1
887 PROCwin (@.5) :RETURN
890 :
900 PRINTTAB (3,3);"PASSE/MANQUE" :PRINT
TAB (4,4) ;"High/low"
919 PROCbet :REPEAT
92¢ PRINTTAB(1,6);"Press key for ch
oice (PM)"
939 L%=GET:UNTILL%=770RL%=80
940 IFN%=0GOTO970
950 H%=0:Q%=Q%-B%: IFN%<19ANDL%=770RN%>
18ANDL%=80H%=1
960 PROCwin (1) :RETURN
970 PROC@:IFN1%=0:RETURN
980 H%=0:Q%=Q%-B%:IFN1%<19ANDL%=770RN1
%>18ANDL%=80H%=1
99¢ PROCwin (@) :RETURN
1000 :
1010 PRINTTAB (2,3) ;"PAIR/IMPAIR":PRINTT
AB(3,4) ;"Even/odd"
1920 PROCbet :REPEAT
1039 PRINTTAB (1,6);"Press key for ch
oice (P/I)"
1049 L%=GET:UNTILL%=730RL%=80
1950 IFN%=@GOTO1080
1063 H%=0:0%=Q%-B%: IFL$MOD2=N%MOD2H%=
1073 PROCwin (1) :RETURN
1083 PROC@:IFN1%=0:RETURN
1090 H%=0:Q0%=Q%-B%: IFL3MOD2=N1%MOD2H%=1
118¢ PROCwin (@) :RETURN
1119 :
1120 PRINTTAB (4,3) ; "NOIR/ROUGE" : PRINTTA
B(4,4);"Black/red"
1139 PROCbet :REPEAT
1140 PRINTTAB (1,6);"Press key for ch
oice (N/R)"™
1150 L3=GET:UNTILL%=780RL%=82
1160 IFN%=@GOTO1190
1170 H%=0:0%=Q%-B%:RESTORE1830:FORI%=1T
ON%:READE% :NEXT: IFE%=0ANDL%=780RE%=1ANDL
%=82H%=1
1180 PROCwin (1) :RETURN
1199 PROC@:IFN1%=0:RETURN
1200 H%=0:Q0%=Q%-B%:RESTORE183@:FORI%=1T
ON1%:READE% :NEXT: IFE%=0ANDL%=780RE%=1AND
L%=82H%=1
1219 PROCwin (@) :RETURN
1229 :
1230 PROCwheel
1249 MOVE835,10@:PRINT"PRESS SPACE TO":
MOVE835,65:PRINT"RETURN TO MENU":IFGET
1250 PROCtable:PROClist

47

1260 RETURN

1280 DEFPROCwheel

1290 VDU5:VDU26:CLS :MOVE50@, 500

1300 FORF%=QTO36:MOVES1% (F%) ,C1% (F%)
1310 IFF%=@GCOL@,1

1320 IFF$MOD2=0GCOL@, 1 ELSEGCOL®,d

1330 IFF%=36GCOL@,2:F%=-1

1340 PLOT85,S1% (F%+1),C1% (F%+1)

1350 IFF%=-1F%=36

1360 MOVES@@,50@ : NEXT

137@ RESTORE1870:FORF%=0T036

1380 MOVES2% (F%) ,C2% (F$%) :READAS:GCOLJ, 3
:PRINTAS :NEXT

1390 ENDPROC

1400 :

1419 DEFPROCtable

1420 CLS:CLG:VDU5:GCOLJ,2

143¢ MOVE®,0:MOVE@, 1024 :PLOT85,736,1024
:MOVE736,0:PLOT85,0,0

1440 GCOL®,3

1450 FORI%=0@TO3:MOVE32,928- (I%*256) :DRA
W704,928- (1%*256) :NEXT

1460 FORI%=0TO1:MOVE32+ (I1%*672) ,96 :DRAW
32+ (I%*672) ,928:NEXT:FORI%=0@TO1 :MOVE224+
(I1%*288) ,96:DRAW224+ (1%3*288) ,992:NEXT
1470 FORI%=QTO12:MOVE224,992-(I%*64) :DR
AW512,992- (1%*64) :NEXT

1480 MOVE32,96:DRAW704,96

1490 FORI%=@TO1:MOVE320+ (1%*96) ,160:DRA
W320+ (I1%*%96) , 928 :NEXT :FORI$=@TO1 : FORI =0
TO1:MOVE96+ (1%*64) + (J%*480) ,96 :DRAWI6+ (I
$*64)+(J%*480) , 160 :NEXT : NEXT

1500 FORI%=@TO1:MOVE128+ (1%*48¢) ,224:MO
VE128+ (1%*480) ,352:GCOL@,I1%:PLOT85,64+ (I
$*480) ,288:NEXT:FORI%=@TO1 :MOVE128+ (I1%*4
80) ,224 :MOVE128+ (1%*480) ,352:GCOL@,I%:PL
0T85,192+ (I1%*480) ,288 :NEXT

1510 MOVE352,976:GCOL@,?: PRINT"0"

1520 D%=1:RESTORE1830

153¢ FORI%=@TO2:FORJI%=0TO2:DS=STRS (D%) :
MOVE256+ (J%*96) ,912- (I1%*64) : READE% : GCOL#
,E2:PRINTDS :D%=D%+1 : NEXT: NEXT

154¢ FORI%=3TO11:FORJ%=@TO2:DS$=STRS (D%)
:MOVE240+ (J%*96) ,912- (I1%*64) :READE% : GCOL
#,E%:PRINTDS :D%=D%+1 :NEXT : NEXT

155¢ RESTORE182@ :FORI%=0TO2:MOVE48+ (I1%*
64) ,140:GCOL®,?:READBS: PRINTBS :MOVE656- (
1%*64) ,140:PRINTBS : NEXT

1560 RESTORE1840:FORI%=0TO13:MOVE8%,896
- (I%*32) :GCOL@,@:READC%: PRINTCHRS (C%) :MO
VE624,896- (1%*32) :READC%: PRINTCHRS (C%) :N
EXT

1570 RESTORE185@:FORI%=9TO5:MOVE144,896
- (I%*32) :GCOL@,?:READD% : PRINTCHRS (D%) :MO
VE563,896— (1%*32) :READD%: PRINTCHRS (D%) :N
EXT

1580 ENDPROC

1590 @

1600 DEFPROCspin

48

1610 J%=RND (3)

1620 FORI%=1TORND (5) :FORF%=0T036 : Po%=PO
INT (5% (F'%) ,C% (F%)) :GCOL@, 3:MOVESS (F%) ,C%
(F%) :vDU255:SOUND@,1,6,1:GCOL@,Po%:MOVES
% (F%) ,C% (F%) : VDU255 : NEXT : NEXT

1630 FORI%=1TOJ%:FORF%=0TO36:Po%=POINT (
5% (F3%) ,C% (F%)) :GCOL@, 3:MOVESS (F%) ,C% (F3)
:VDU255:SOUND@,1,6,1:TIME=0:REPEAT : UNTIL,
TIME=I%A2:GCOL0,PO%:MOVES%(F%),C%(%) :VD
U255 :NEXT: NEXT

1640 C%=-2:RESTORE1870 :REPEAT: READHS:C%
=C%+1 :UNTILH%=N%

1650 FORF%=0TOC%:P0o%=POINT (S% (F%),C% (F%
)) :GCOL@, 3:MOVES$ (F%) ,C% (F%) :VDU255: SOUN
D#,1,6,1:TIME=0:REPEAT : UNTILTIME=1%"2:GC
OL@ ,P0o% :MOVESS (F%) ,C% (F%) : VDU255 : NEXT

1660 GCOL®,3:MOVESS (F%) ,C% (F%) :VDU255

1673 ENDPROC

1680 :

1690 DEFPROCball

1700 PROCspin

1710 IFN%>@ORN%=0ANDZ%=0GOTO1760

1720 N%=N1%

1730 MOVES35,100:PRINT"PRESS SPACE TO":
MOVE935,65: PRINT"RESPIN" : REPEAT : UNTILGET
=32:GCOL@,2:MOVES (F%) ,C% (F%) :VDU255

1749 vDU28,26,31,39,28:VDU4:CLS:VDU5

1750 PROCspin

1760 PROCwinlose:ENDPROC

1778 =

1780 DEFPROCwinlose

1790 IFX%>KSMOVES5J,90@ : PRINT"YOU HAVE
LOST" :MOVE950,85@ : PRINT"£"; %$-K%:SOUND1,
4,20,10:S0UND1,4,5,20:ELSE MOVE90J, 900: P
RINT"YOU HAVE WON":MOVE95(,85@:PRINT"£";
K%-X%:SOUND1,4,95,2:SOUND1,4,115,2: SOUND
1,4,130,2:S0UND1,4,15@,30

1800 MOVE835,100:PRINT"PRESS SPACE TO":
MOVE935,65: PRINT"CONT INUE" : REPEAT : UNTILI
NKEY (1)=32:ENDPROC

1810 :

1820 DATA P,M,D

1830 DATA 1,0,1,0,1
el oPy 1505081 ;8,1 50

’

1840 DATA 49,49,57,32,32,220,220,32,32,
49,51,56,54,32,32,32,32,73,808,77,65,80,7
B,65,82,773,32. 82

1850 DaTA 80,77,65,65,83,78,83,81,69,85
+32,69

1860 DATA SINGLE NUMBER, TWO NUMBERS ,HOR
IZ. ROW,SQUARE,TWO ROWS,COLUMN,DOZEN,TWO

DOZEN,HIGH/LOW,EVEN/ODD,BLACK/RED,SEE W
HEEL,SPIN BALL

1870 DATA 32,15,19,4,21,2,25,17,34,6,27
+13,36,11,30,8,23,19,5,24,16,33,1,20,14,
31,9,22,18,29,7,28,12,35,3,26,0

1880 :

1890 DEFPROClist

1900 vpu28,23,31,39,0:VDU4:CLS

Beebug October 1985

1919 COLOUR2:PRINTTAB (2,@) ; "CHOOSE YOUR
BET" :COLOUR1 :PRINTTARB (1,2) ; "KEY BET"

1920 COLOUR3:FORI%=1TO13:PRINTTAB (1,I%+
3)CHRS (I%+64) : NEXT

1930 RESTORE1860:FORI%=1TO13:READGS: PRI
NTTAB (4,1%+3) ;GS:NEXT

1940 PRINTTAB (1,20); "Money remaining

E"0%

1950 ENDPROC

1960 :

197¢ DEFPROCmenu:PROClist

1980 IFQ%=0ENDPROC

1990 REPEAT:A%=GET-64:UNTILA%>0ANDA%2<14

2000 CLS:COLOURI

2010 ON A% GOSUB220,290,410,560,650,71¢
,779,830,900,1010,1120,1230,2030

2020 IFSpin%=1ENDPROC ELSEGOTO1980

2030 Spin%=1:RETURN

2040 =

2050 DEFPROCbet

2060 vDU28,23,31,39,6:CLS

2070 COLOUR3:REPEAT:CLS

2080 PRINTTAB(1,13);"Money remaining

EII;Q%

2099 INPUTTAB(1,1)"How much do you wan
t to bet? £"B%:UNTILB%<1000@31ANDQS
-B%>-1

2100 ENDPROC

2119 :

2120 DEFPROCnumber

2130 vpu28,23,31,39,10:CLS

2140 REPEAT:CLS

2150 INPUTTAB (1,1)"What is the low

est number your bet is to cover",L%
:UNTILL%<36

2160 H%=0:ENDPROC

2170 :

2180 DEFPROCgame

2190 K%=500:REPEAT:Q%=K%:X%=K%:Z2%=0
2200 Spin%=0:N%= (37)-1

2210 PROCtable:PROCmenu

2220 SOUND1,3,108,25

2230 PROCwheel:PROCball
224¢ UNTILK%>5*10"60RK%=0
225¢ ENDPROC

2270 DEFPROCO

2280 IFZ%=1ENDPROC

2290 N1%= (37)-1

2300 IFN1%=0K%=K%-B%:0Q%=Q%-B%:PROClist
2310 72%=1

2320 ENDPROC

2330 :

2340(DEFPROCwin (W)

2350 IFH%=1K%=K%+ (W*B%) ELSEK%=K%-B%
2360 PROClist:ENDPROC

2370 :

2380 DEFPROCsetup

239¢ VvDU23,255,48,120,252,252,120,48,0;
2490 vpu23,220,16,8,9,60,6,62,102,62
2419 ENVELOPE1,1,9,9,9,6,3,3,127,-5,-5,
-5,100,60

2420 ENVELOPE2,2,6,0,9,255,0,0,126,9,9,
-126,126,126

2430 ENVELOPE3,5,16,12,8,2,1,1,1¢,-10,0
,~10,200,100

2440 ENVELOPE4,3,0,9,9,9,0,9,127,-10,-5
1=2,120,120

2450 PRINTTAB (8,11)"PLEASE WAIT A FEW S
ECONDS"

2460 DIMS%(36),C%(36),51%(36),C1%(36),S
2% (36) ,C2% (36)

2470 F%=0:FORA=0TO360STEP360 /37

2480 FORA=0TO360STEP360,/37

2490 S% (F%)=370*SIN (RAD (A+5))+484:51% (F
%) =5@@*SIN (RAD (A)) +500:52% (F%) =46@*SIN (R
AD (A+5))+473

2500 C% (F%)=370*COS (RAD (A+5))+516:C1% (F
%) =50@0@*COS (RAD (A)) +500:C2% (F%) =46@*COS (R
AD (A+4))+515

2510 F%=F%+1:NEXT

2520 ENDPROC =]

LOCAL POINTS OF INTEREST

The keyword LOCAL, followed by one or more variable names, inside a procedure will
create local versions of those variables, only accessible inside that procedure.
However, if another procedure is called from within the first procedure then the local
definitions are good for that second procedure too.

TROUBLE WITH *FX3 - Martin Abernethy

If *FX3,8 is used to select output stream to a printer then VDUl should not be used
to send control codes to the printer as all the 1's are sent as well. If, after a
*FX3,8, VDU2 (or Ctrl-B) is also used to enable the printer then a VDUl not only sends
the 1 but the following code twice!

QUICK RANDOM - Roger Burg

RND (X) is comparatively slow in BBC Basic. About twice the speed is the pseudo
random function TIME MOD X.

Beebug October 1985 49

BEEBUG MAGAZINE is produced
by BEEBUG Publications Ltd.
Editor: Mike Williams
Assistant Editor: Geoff Bains
Production Editor: Phyllida Vanstone
Technical Assistant: Alan Webster
Secretary: Debbie Sinfield
Managing Editor: Lee Calcraft
Additional thanks are due to
Sheridan Williams, Adrian Calcraft,
John Yale and Tim Powys-Lybbe.
All rights reserved. No part of this
publication may be reproduced
without prior written permission of
the Publisher. The Publisher cannot
accept any responsibility, whatso-
ever for errors in articles, programs,
or advertisements published. The
opinions expressed on the pages of
this journal are those of the authors
and do not necessarily represent
those of the Publisher, BEEBUG
Publications Limited.
BEEBUG Publications Ltd (c) 1985
Editorial Address
BEEBUG
PO BOX 50,
Hollywell Hill,
St. Albans AL1 1EX
CONTRIBUTING TO BEEBUG
PROGRAMS AND ARTICLES

We are always seeking good quality
articles and programs for publica-
tion in BEEBUG. All contributions
used are paid for at up to £40 per
page, but please give us warning of
anything substantial that you
intend to write. A leaflet, ‘Notes
of Guidance for Contributors’ is
available on receipt of an A5 (or
larger) SAE.

In the case of material longer than
a page, we would prefer this to be
submitted on cassette or disc in

machine readable form using
“Wordwise'’, ‘“View'', or other
means, but please ensure an

adequate written description of
your contribution is also included.
If you use cassette, please include a
backup copy at 300 baud.

HINTS
There are prizes of £5 and £10 for
the best hints each month, plus one
of £15 for a hint or tip deemed to
be exceptionally good.

Please send all editorial material to
the editorial address below. If you
require a reply it is essential to
quote your membership number
and enclose an SAE.

SUBSCRIPTIONS

Send all applications for membership, subscription renewals, subscription
queries and orders for back issues to the subscriptions address.

MEMBERSHIP SUBSCRIPTION RATES

£ 6.40 6 months (5 issues) UK ONLY
£11.90 UK -1 year (10 issues)

£18 Europe,

£23 Americas & Africa,

BACK ISSUES

£21 Middle East
£25 Elsewhere

(Members only)
Vol Single Volume sets
issues (10 issues)
1 90p £8
2 £1 £9
3 £1.20 £11
4 £1.20 -

Please add the cost of post and packing as shown:

Each
First subsequent
DESTINATION issue issue
UK 30p 10p
Europe 10p 20p
Elsewhere £1.50 50p

All overseas items are sent airmail (please send a sterling cheque). We will
accept official UK orders but please note that there will be a £1 handling
charge for orders under £10 that require an invoice. Note that there is no
VAT on magazines.

Back issues are for members only, so it is ESSENTIAL to quote your
membership number with your order. Please note that the BEEBUG
Reference Card and BEEBUG supplements are not supplied with back
issues.

Subscriptions, Back Issues &
Software Address

BEEBUG
PO BOX 109
St. Johns Road
High Wycombe HP10 8NP

Hotline for queries and software orders

St. Albans (0727) 40303
Manned Mon-Fri 9am-4.30pm

24hr Answerphone Service for Access and
Barclaycard orders, and subscriptions
Penn (049481) 6666

If you require members’ discount on software it is essential to quote
your membership number and claim the discount when ordering.

DYN

AMIC DISC§

Orders for

10 discs are
sent in

black plastic
library cases.

Orders for
50 are
delivered
in strong
plastic
Storage
box

with 4 dividers.

BEEBUG, the largest independent
computer user group in the UK, offer
100% tested discs supplied by one of Britain’s
leading disc manufacturers.

Orders for
25 are
delivered
in strong
plastic
Storage
box

with 4 dividers.

0 D/s D/D £20.50

) .90 > D/
L 25 D/s D/D £46.20

/D
£59.30 50 D/s D/D £82.40
96 TP| DO :
N UBLE !
10 S D/D £20.50 i
25 $/8 D/D £46.20

10 pss D/D £21.99
25 Dp/s D/D £49.99
50 /s D/D £93.50

Al prices include Storage B, X,
0X,

VA i
T and dehvery to your door (UK)

Suitable for gp 1€ro and 4}, 'er computerg ng
Suitable f BB MCo, <:)l oth, i usin,
! S

Bl
Vi inch diseg

!-‘Aully Guammeed -

isc Manufactyrers ey

b/Beebjgb tby one of he 0
Ut by one of ¢ UK’s ¢
op

We regret that we have
had to pass on a slight
increase in the price of

our discs, but we are
now able to offer a wider
range to meet your exact
requirements.

These discs are the best. Official orders are
Please use the enclosed welcome.

order form and order

from our usual address. Barclaycard and Access
BEEBUG PO BOX 109 telephone 0494 81 6666
St. Johns Road Further information
High Wycombe HP10 8NP. telephone 0727 60263

OCTOBER 1985 CASSETTE

DISC CONTENTS

RECURSIVE TREES — displays for the armchair gardener
DYNAMIC MEMORY WINDOW — an eye into your Beeb as
it runs your programs

WORDWISE PLUS EXAMPLES — segment programs from
the series

LOAN REPAYMENT — calculate how much you owe
EPROM PROGRAMMER DRIVER — blow your own
WORKSHOP PROCEDURES — text compression
DISC MENU EXTENSIONS — the complete disc menu
program with all the extensions

DATA STRUCTURES — linked lists and binary trees !
ROULETTE — spin the wheel and break the bank g o

EXTRA FEATURES THIS MONTH 31 13
DISC BENCHMARKS — test out your drives with the C o
program used for the DDFS review 1 28

3D GRAPHICS SYSTEM DEMO — a fast moving display

from Glentop’s graphics package

By Alan Webster and Geoff Bains

Eprom Size=16K
Eprom Not Blank

Alan's silly ROM

- Save Eprom To File

- 0.S Command

Please Enter Your Choice

All this for £3.00 (cass) £4.75 (disc) +50p p&p.
Back issues (disc since Vol. 3 No. 1, cass since Vol. 1 No. 10) available at the

same prices.
Subscription rates DISC CASS DISC CASS
UK UK . Orseas O’seas
6 months (5 issues) £25 £17 £30 £20
12 months (10 issues) £50 £33 296 %39

Prices are inclusive of VAT and postage as applicable. Sterling only please.

Cassette subscriptions can be commuted to disc subscription on receipt of
£1.70 per issue of the subscription left to run.

All subscription and individual orders to
BEEBUG, PO BOX 109, St. Johns Road, High Wycombe HP10 8NP

Printed in England. DCL 10532

