FOR THE BBC MICRO

VOLUME 4 NUMBER 6 NOVEMBER 1985 PRICE£1.20
D D
D D
e

HIDDEN LINE REMOVAL
D
D
-

&

% D
D
>

BB

l

Picture Compression

Rotation:10 Elevation:60

Remove hidden lines? (Y/N):

View from (Rotation,Elevation):

Hidden Line Removal

FEEEUE

VOLUME 4 NOVEMBER 6

14
25
41
41
41

NOVEMBER 1985

GENERAL CONTENTS

Editorial Jottings
Postbag
BEEBUGSOFT Forum
News
Build Your Own Database Manager

BEEBUG Filer — a database for all
Compressing Screen Displays
Wordwise Plus Program Compactor
Writing Your Own Compiler (Part 1)
ROM Utilities for All
Programming with Wordwise Plus (Part 2)
Hidden Line Removal
Computer Concepts Speaks Out
BEEBUG Workshop

Virtual Arrays
Viewstore
Programming Sideways RAM and ROM
First Course

Print Formatting (Part 2)
Generating Diagrams and Drawings
Quasimodo

PROGRAMS

BEEBUG Filer
Picture Compression

and Decompression
Wordwise Plus Program Compactor
Basic Compiler (Part 1)
Wordwise Plus Examples
Hidden Line Removal
Workshop Procedures
Programming ROM and RAM
First Course

Print Using Function
Quasimodo Game

HINTS, TIPS & INFO
Filling Up
Easier Bytes
"FX Values
Quick Lines
Default Vector Values

{

4 o on

© Space 24 iy etey
BeRear belts, UG Eiee wind,i=Cent Lock R-Radio, F=Split r seat, S-Sumrt
Nanubacturer Bustin K Wodel Mini ity £ Tupe §

trteas tap 998

Tk 7.5

Woni Nasfarr

SEERRRK | REREEE | KRR
¥ REEREE . RRkk: oo
.15502 ©.21703 ¢

First Course

SRRREEE . RAREEE

LOAD CHARACTER SEY

File name - BGOTHIC

Viewstore

EDITORIAL JOTTINGS

You will again find more helpful information on
BEEBUGSOFT products under the heading
BEEBUGSOFT Forum. This month we give details of
two useful routines to use with Wordease and
Hershey Characters. The code for both new routines
is included on the magazine cassette/disc. We expect
to publish further useful routines for BEEBUGSOFT
programs in this way in the future.

Another BEEBUGSOFT package which has proved
very popular with members since its launch is
Magscan, the disc-based bibliography for all issues of
BEEBUG magazine. When published, Magscan was
complete up to the end of volume 3. Starting with this
issue we shall be including each month on the
magazine cassette/disc, the complete Magscan entry
for that issue. In this way you will be able to keep
your Magscan bibliography up to date as each new
issue appears. To catch up with volume 4, all the
Magscan entries for issues 1 to 5 (first half year) are
available separately on disc.

Another special offer for BEEBUG members is the
Computer Concepts Speech ROM reviewed in this
issue. This is available to members at only £31.00
including VAT and p & p. Full order details in the
supplement.

MICRO USER SHOW

We hope to see as many of you as possible at the
Micro User Show (stand 80) from the 14th to 17th
November at the New Horticultural Hall, London. We
shall not be attending the recently arranged Acorn
User Show the following week. In our view this new
show is unnecessary at this time and not in the best
interests of BBC micro users. Over the last two years
the Micro User Show has established itself as THE pre-
Christmas show for the Beeb.

PROGRAM CLASSIFICATION

All programs in the magazine, and on the
magazine cassette/disc, are marked with the symbols
shown below. An unmarked symbol indicates full
working, a single line through a symbol shows partial
working (normally some modifications will be
required), and a cross through a symbol indicates a
program that will not work on that type of system.
There is also a symbol for the B+ which includes the
128K version.

Basic I I Electron Q
Basic II I Disc o]
Tube 'e' Cassette [ow |

Model B+ +

EEs i

9FE
I98+/

POSTBAG

Q)('E . 06‘

ZSFEB
I98+

SHEILA IN TROUBLE AGAIN EPrOM

B.D.Cocksedges' letter,
which you published in the
August/september issue, has
solved a problem which has
been frustrating me for
some time now ever since I
first tried out the RS423/
cassette programs in the
Advanced User Guide without
success. Also, Amcom's game
"Space Hi-Way", in which
the main section loads via
the RS423 interface, refus-
ed to work. On checking I
found that I too have the
special Acorn chip. So far
all attempts to obtain a
replacement Ferranti chip
have proved unsuccessful.

However, changing the
*FX7,3 and *FX7,4 commands
to *FX7,8 in the A.U.G.
programs enables them to
work perfectly, while
changing the m/c byte in
the Amcom game at &5211 to
&81 (setting bits 3, 4 & 5
to zero) has cured the
loading problem, enabling
me to appreciate this as
one of the best games I
have seen of its type.

D.Kerr Jamieson

Acorn state that they are
unable to exchange chips as
both meet their specifica-
tion, and that any problems
that may arise from using
undefined values are the
responsibility of the soft-
ware writer.

HARDLY SOFTWARE

I am a radio amateur
(G30DA), and it 1is quite
incredible the number of
Beebs being used on the air
for slow scan TV, reception
of Meteosat & RITY as well
as the 'common or garden'
station logbook. I partic-
ularly enjoyed the latest

4

of View

Programmer
and look forward to
follow-up RAM article.

Project
the

The Beeb really seems
the serious machine for the
hobbyist/scientist & educa-
tionalist so I would look
forward to any more soft-
ware/hardware projects in
this field.

Ken Linney
ACORN CLAIM
COMPATIBILITY
Following your table

showing the compatibility

of various ROMs with the B+

in Vol.4 No.3, I list below

the Acornsoft ROMs with

their usability on the B+.
View 1.4 (et

View 2.1 gEa)
Viewsheet ld
ViewStore AARh
LOgO *kkk
BCPL *kkk
Basic Editor' #*#%
Forth Tk
LISP *hkk
Comal iehagri

All the Acornsoft ROMs can
take advantage of the
shadow memory, which is not
generally true of the four
star ROMs in the review.
View 2.1 will work correct-
ly and take advantage of
the extra memory using the
patch routine from Acorn.
Rob Macmillan
Acornsoft

We were perhaps a little
harsh, on reflection, in
our original classification
1.4. The Acornsoft
patch referred to for use

with View 2.1 is included

on this month's magazine
cassette/disc. We can also
provide a photocopy of the
listing on receipt of an A5
SAE (marked VIEW PATCH).

) POSTBAG

now including

ATPL LOVES OPUS

Thank you for your
letter about the incompati-
bility of fitting ATPL's
ROM Board with the OPUS
DDOS in the Beeb. On asking
around my local computer
shops I came across the
suggestion of stacking two
40 pin sockets under the
OPUS DDOS Board. This is
not, as they say, very good
if your Beeb is always on
the move, but I have found
no problems so far.

G.A.Smith

BEEBUGSOFT MAGSCAN

use your Masterfile
and the BEEBUG bibliography
utility Magscan and find

both excellent. I was
wondering whether it was on
the cards for you to
publish in BEEBUG or on

disc a bibliography program
that can be customised to
user requirements.

C.Dunn

There has been considerable
interest in Magscan, and as
detailed in this month's
editorial jottings, we are
a Magscan
update on each magazine
cassette/disc. There is no
reason, in principle why
you should not create other
bibliographies to use with
the same program, though
you are restricted to the
basic Magscan format. For
the best results, you are
recomnended to delete lines
1260 to 1280 and d'lange
line 1290 to read IF 1%>0
AND... Then call your new
datafiles VOL1, VOL2 etc
and use either ,Wcrdwise or
View to prepare ‘entries as
described in the Magscan
manual. .

f 5=

Beebug November 1985

e — e

i
Sy
il

=|=|=

WORDEASE
Canon/Kaga Printer
Codes

One of the attractive
features of Wordease is its
ability to insert printer
codes 1into a Wordwise Plus
file at the touch of a key.
The routines are supplied
with codes for Epson
printers as a default, and
the manual explains how to

insert codes for other
printers.
On this month's

magazine cassette/disc you
will find the necessary
modifications to use this
Wordease routine with the
popular Canon PWI1@88 and
Kaga KP810 printers. Our
thanks to Brian Quentin of
Chelmsford for sending in
this modification.

HERSHEY
CHARACTERS

We must again thank one

of the members - Peter
Miller from Ilford - for
adding a most useful
facility to one of our

products. Peter has sent in
a modification to the
Hershey Characters program
which enables this package
to dynamically load in the
Hershey character data as
and when it is required by
the user's program. This
allows wider choices of
characters and even larger
programs to be written.

Unfortunately, the pro-
gram modifications are too
large to be described here,
but they are included on

this month's magazine
cassette/disc along with
full instructions on their

use. Tube users should set
PAGE to &1900 before using
the modified program.

MAGSCAN

The BEEBUG Bibliography
Disc (Magscan) has proved
to be of great interest and
service to many members.
Thank you for the many
letters that we have
received on the subject.

As sold, the Magscan
disc provides a full index
of BEEBUG hints, tips;
reviews, programs and all
the other articles for
volumes 1, 2 and 3 of the
magazine. It also includes
details on how to update
the disc for volume 4.

Starting with this
issue of BEEBUG, we are
including the index file

for each month's issue of
BEEBUG, on that month's
magazine cassette/disc. You
will find this month's
Magscan index contained in
the file MSCN406.

If you wish to bridge
the gap between the first
three volumes and this
issue, the Magscan entries

for Vol.4 Nos.1-5 are
available on disc from
BEEBUGSOFT at a cost of

£4.50 plus 50p postage.

DOUBLE DENSITY

Every month we receive
a large number of letters
from members who have
purchased a double density
filing system of one make
or another, and who are
disappointed to find that
many commercially produced

Beebug November 1985

programs will not run on

them.

This is often the case,
even in so called 'Acorn
Compatible' modes. Contrary
to popular thought, it is
often nothing to do with
software protection. Fre-
quently users find that any
program using random
access, such as a database,
disc utility program or
spelling checker, will not
run on their double density
system.

Our advice to potential
purchasers of double den-
sity systems would be to
think very carefully before
committing yourself to any
non-standard equipment.

Of all the makes that
we have tested, only the
Watford DDFS 1.53 and Opus
DDOS 3.45 double density
disc systems work fully
with Masterfile. If you
wish to find out more about
double density compat-
ibility with any of our
programs, please telephone

us on the BEEBUGSOFT
hotline - 0727-40303.
EXHIBITIONS

We will be exhibiting
the complete range of
BEEBUGSOFT products at the
London Micro User Show on
the' 14th to 17th “of
November. The show is at
the New Horticultural Hall
in Westminster and BEEBUG-
SOFT will be there to
demonstrate the new range
of BBC products. We look
forward to the opportunity
of meeting members at what
looks like being a most
exciting exhibition.

Please note that this
will be the only exhibition
that we will be attending
before Christmas.

=

5

B DOUBLE PLUS

Acorn has been busy and
released three new products
at the PCW show at Olympia.
First and foremost is the
128K model B+. This is
based on the same circuit
board as the 64K B+ but
with the addition of a 64K
RAM module. The extra RAM
is in the form of four 16K
paged RAM banks. The new
machine has a full 64K
available for Basic and
costs £499. Owners of the
64K B+ can upgrade their
machines to 128K with an
upgrade kit that will cost
in the region of £25.

Owners of the model B
can also now upgrade their
machines to imitate at
least one function of the
B+. The 1770 disc upgrade
kit costs £49.95. The kit
consists of a small circuit
board containing a 1770
disc controller chip, as
used in the B+, instead of
the 8271 that the old Beeb
is designed to take, and a
new DFS which includes
format, 40/80 switching,
and other commands. For a
further £29.95 you can add
the ADFS upgrade kit. This
will give any Beeb fitted
with a 1770 the Advanced
Disc Filing System used in
the ABC micros and the
Electron Plus 3. Acorn, as
ever, is on 0223-214411.

LE WATFORD

Watford Electronics has
a new modem to tempt you
with. Le Modem is a £102
package comprising an
auto-answer, auto-dial,
auto-baud selection multi-
standard modem to connect
to the 1MHz bus, along with
software on ROM to provide
easy access to Prestel, BT
Gold, The Source and other

6

e

international systems, bul-
letin boards, and so on.
Terminal emulation is also
included. Needless to say,
Le modem has not (yet)
received BT approval.

also

Watford has
released a new version of
its ROM expansion board.

The new board holds Jjust
eight ROMs but can also
take eight banks of 16K RAM
to load sideways software
into. Prices start at £44
for just 16K of RAM fitted
and rise to £125 for a
board with the full 128K.
Watford Electronics is on
0923-37774.

NEW BOOKS

The 'BBC Micro and
Electron Book' (£11.95 from
McGraw-Hill) is not going
to turn any Theads for
originality of subject
matter. However, this large
volume does seem to pack in
more everyday data and
useful routines than most
others. Another useful
reference work is the '6502
Reference Guide' from
Melbourne House (£9.95) .
Written for all computers
that use this processor,
the guide contains in-
formation on the timing,
instruction set, addressing
modes, hints, routines, and
lots more.

If the BEEBUG spread-
sheet (Vol.4 No.s 9 and 10)
impressed you but you still
don't know what to do with
one, then 'Computer Spread-
sheets' (£6.95 form BBC
soft) may be the answer.
The book covers small
spreadsheets such as
Ultracalc 2 and also the
more professional Visicalc
and Lotus 1-2-3.

Following on from the
reviews of interfacing
books in BEEBUG Vol.4 No.5)
yet another book on this
subject has appeared.
'Microcomputer interfacing'
from Collins (£8.95) is
aimed mainly at students of
computer science, though,
it contains much to appeal
to any Beeb owner.

NEW SOFTWARE

The software scene
seems to be having a summer
recess at the moment.
However, a few new faces
have appeared. Martech, the
champion of the armchair
sportsman have released
'Geoff Capes Strongman' for
£8.,95. A little different
is 'Zoids' (88.95) also
from Martech - a zap the
aliens game based on the
Tomy Zoid toys. BBC Soft
has released yet another
version of its chess
program. 'White Knight 12'
is an enhanced version of
the game, on disc only, for
£13,25 direct from BBC
Soft. Described as, 'as
epic as the Norse sagas and
as tiresome as any book by

L Ron Hubbard', Silver
Soft has nroduced an
adventure based on the

spoof book 'Bored of the
Rings'. Followers of Fordo,

Aragant, Giblet, and
Grandalf can Jjoin their
quest for £6.95. ==

Beebug November 1985

o+IIQ=C

Build your own
Database Manager
Beebug Filer

— a database for all

Editor Mike Williams launches
an exciting new software project
for all BEEBUG readers in which
he describes how to build your
own flexible database program.

One of the major uses of computers
today 1is the storing of large quantities
of information, and many home micro users
find this an attractive and worthwhile use
for their micro. To match this interest we
are presenting our own BEEBUG database.

Beginning this month, we present a disc
based database system that will meet many
practical needs. We start with the basic
program, showing how to create a simple
database file. Further articles will add
to the basic program to provide selective
retrieval of records, formatted output,
sorting and other facilities. The program
will be entirely in Basic, and we will
show you how to modify and extend the
program to cater better for your own
requirements if you wish.

Of course, a program published in a
magazine cannot hope to provide all the
features and power of commercial packages,
like our own Masterfile and Acornsoft's
ViewStore (reviewed in this issue), but
for those considering purchase, our own
program will provide a useful testbed for
your ideas, before parting with your cash.

THE SOFTWARE PROJECT

The program listed this month is
complete and fully working as far as it
goes. It provides the basic facilities for
creating a database file of vyour choice,
entering, displaying and deleting records.
The program is written so that further

Beebug November 1985

functions can be readily added and
existing functions improved as may seem
desirable for this project. Although we
have planned the additional features to be
added to the program, we would welcome any
feedback or ideas, and the best of these
may be incorporated in a further article.

The database has been designed specifi-
cally for disc systems allowing direct,
rather than just sequential, access to
records. The program is command-driven,
rather than menu-driven. Although menu-
driven programs are very popular, commands
provide much more direct and efficient
ways of controlling an application, once
you have learnt their meanings.

The program is designed for mode 3 to
allow the maximum screen space for
displaying records and other information.
The screen 1is divided up into two main
areas, the principal section for
presenting records and other information,
with four lines reserved at the bottom of
the screen for commands and other user
responses. The initial set of commands and
their functions are as follows:

CREATE Create a new file on disc
OPEN Open an existing file for use
CLOSE Close a file in use

ADD Add a new record to the file
DISPLAY Display records from the file
DELETE Delete a record from the file
END Close any file in use and exit
All commands can be abbreviated to a

minimum of two letters, and may be entered
in upper or lower case. Some comnands can
use parameters as described below.
Parameters must always be separated from
the command (or its abbreviation) by a
single space. All the usual *commands may
be used as well.

FILE MANAGEMENT

The first three commands listed above
are concerned with file management. Both
CREATE and OPEN require a filename to be
specified. When you use CREATE to set up a
new file you will need to specify a file
description as follows:

Number of records

Number of fields per record

Fieldname For each

Fieldwidth field
You will have a chance to either confirm
or reject your file description.

RECORD MANAGEMENT

Records are entered using the ADD
command. An empty record is displayed on
the screen and is filled in field by field
before you confirm whether it is to be
written to disc. All records may be
displayed using the DISPLAY command, or
any individual record displayed by
specifying its record number. Similarly a
record to be deleted is displayed on the
screen so that you can confirm your
action. Deleted records initially remain
in the file and appear as blank records on
the screen. However, when you close the
file or exit from the program, the file is
compacted to lose the deleted records.

Next month we will give a more detailed
description of the file structure and the
program as well as adding further to the
existing program. When you enter the
program please keep to the line numbering
given so that later additions will fit
with no problems.

BASIC I
Basic I users should replace OPENUP by
OPENIN at lines 2860 and 3260.

A e P o o S Y A T ST Bk 0
AP B 5 A e 7 A S

1¢ REM BEEBUG FILER version B1.9
20 REM Author Mike Williams
3¢ REM BEEBUG November 1985
100 MODE3:ON ERROR PROCerror:END
120 PROCsetup:PROCtitle: PROCwindow2
140 REPEAT:PROCcommand:UNTIL exit%
165 PROCclose:VDU26,12:*FX4,0
17¢ END
180 :
100¢ DEF PROCsetup
1020 LOCAL I:exit?%=FALSE:open%=FALSE
1040 maxf=12:X=0:Y=0:*FX4,2
106¢ DIM comS$ (20) ,record$ (maxf) ,fields (
maxf) ,width% (maxf) ,os 40
1080 READ N
11¢0 DATA 7
1120 FOR I=1 TO N:READ com$ (I):NEXT I
1140 DATA CREATE,OPEN,CLOSE,ADD,DISPLAY
1160 DATA DELETE, END
1180 ENDPROC
1200 :
1300 DEF PROCtitle
1320 PRINTTAB (28,1)"B E E B U G EI L
E RII
1340 PRINT STRINGS (84," ")
1360 PRINTTAB (@,20)STRINGS (84," ")
1380 ENDPROC
1490 :
150@ DEF PROCcommand
1520 LOCAL command$,pm$

(o)

ol b g el RIS e R G ORI T, T I

1540 REPEAT

1560 INPUT"-> " command$

1580 C=FNvalidate (command$)

1600 IF C=0 THEN PRINT"Unrecognised com
mand"

1620 UNTIL C

163¢ IF C=1 THEN PROCcreate (pm$)
1640 IF C=2 THEN PROCopen (pm$)
1650 IF C=3 THEN PROCclose

1660 IF C=4 THEN PROCadd (pm$)
1670 IF C=5 THEN PROCdisplay (pm$)
1680 IF C=6 THEN PROCdelete (pm$)
169¢ IF C=7 THEN exit%=TRUE

1870 IF C=99 THEN PROCstar (pm$)

1880 ENDPROC

1899 :

2203 DEF FNvalidate (CS$)

222¢ LOCAL found%,I,P:found?=

2240 FORI=1 TO N

2260 IF (ASC (MIDS (C$,1))AND223)=ASC (MID
S(com$(I),1)) AND (ASC(MIDS (C$,2))AND223
) =ASC (MIDS (com$ (I),2)) THEN found%=I
2280 NEXT I

2300 P=@:IF CS>"" THEN P=INSTR(CS," ")
2320 IF P=@ THEN pm$="" ELSE pm$=MIDS$ (C
$,P+1)

2340 IF ASC (CS)=42 THEN pm$=MIDS (CS,2):
found%=99

2360 =found%

2380 :

25¢@ DEF PROCcreate (p$):LOCAL I

252¢ IF p$="" THEN PRINT"No file given"
: ENDPROC

2540 IF open% THEN PRINT"File already o
pen" : ENDPROC

2560 PROCwindowl :CLS

2580 PRINTTAB (5,0) "Creating file ";p$
2600 PRINTTAB (5,2) "Number of records:":
recn=VAL (FNinput (24,2,4,"."))

2620 PRINTTAB (45,2) "Number of fields:"
2640 REPEAT: f=VAL (FNinput (63,2,2,".")):
UNTIL f<=maxf

2660 FOR I=1 TO f

2680 PRINTTAB (5,3+I)"Field";STRS (I)
2700 PRINTTAB (16,3+I) "Name";

2720 field$ (I)=FNinput (21,3+I1,12,".")
2740 PRINTTAB (45,3+I)"Fieldwidth"

2760 REPEAT:width% (I)=VAL (FNinput (56,3+
1,2,".")):UNTIL width? (I)<=64

278@ NEXT I:PROCwindow?2

2800 IF FNask("Confirm (Y/N): ")>2 THEN
ENDPROC

2820 recs=2*f:FOR I=1 TO f:recs=recs+wi
dth® (I) :NEXT I

2840 PROCoscli ("SAVE "+p$+" @+"+STRS™ (2
56+recn*recs))

2860 rec=1:F=OPENUP (p$) : PTR#F=0: PRINTHF
,rec,recn,recs,f

2880 FOR I=1 TO f:PRINTHF,field$(I),wid
th% (1) :NEXT I:CLOSE#F

Beebug November 1985

2900 PROCwindow] :CLS:PROCwindow?2

292¢ PRINT"File ";p$;" created"

2940 ENDPROC

2960 :

3200 DEF PROCopen (p$) :LOCAL I

3220 IF p$="" THEN PRINT"No file given"
:ENDPROC

3240 IF open% THEN PROCclose

3260 F$=pS$:F=OPENUP (F$)

3280 IF F=@ THEN PRINT"No such file":EN
DPROC ELSE open%=TRUE

3300 PTR#F=0:INPUT#F,rec,recn,recs,f
3320 FOR I=1 TO f:INPUT#F,field$(I),wid
th% (I) :NEXT I

333¢ IF f£>8 THEN L=1 ELSE L=2

3340 PROCheader : ENDPROC

3360 :

3600 DEF PROCadd (ps):LOCAL I

3620 IF NOT open% THEN PRINT"No file op
en" : ENDPROC

3640 PROCwindowl : PROCrecord

3660 PROCinv (1) :PRINTTAB (64,0) "Record:
"+ SPC (4-LEN (STRS (rec))) ; rec: PROCinv (@)
3680 FOR I=1 TO f:record$ (I)=FNinput (13
,L* (I-1)+1,width% (I),".") :NEXT I

3700 PROCwindow2:IF FNask ("Confirm (YN
): ")<3 THEN PTR#F=256+recs* (rec-1) :FOR
I=1 TO f:PRINT#F,recordS$ (I):NEXT I:rec=r
ec+1 : PTR#F=0 : PRINT#F , rec

372¢ PROCwindowl:PROCinv (1) :PRINTTAB (47
,@)SPC (4-LEN (STRS (rec-1))) ; rec-1:PROCinv
(@) : PROCwindow2

3740 ENDPROC

3760 :

4000 DEF FNinput (x,y,w,p$)

4029 LOCAL ch$,c,p:ch$="":p=1

4040 PRINTTAB (x,y) STRINGS (w,p$) :VDU31,x
Y

4060 REPEAT:c=GET

408¢ IF c=127 THEN PROCA ELSE PROCa
4100 UNTIL c=13

4120 ch$=ch$+STRINGS (w-LEN (ch$) ,p$)
4140 =ch$

4160 :

4180 DEF PROCA

4200 IF p>1 THEN VDU8,ASCp$,8:ch$=LEFTS
(chS$,LEN (ch$) -1) :p=p~1

4220 ENDPROC

4240

4260 DEF PROCa

4280 IF p<=w AND c<>13 THEN ch$=ch$+CHR
$(c):VDU c:p=ptl

4309 ENDPROC

4320 :

4500 DEF PROCrecord:LOCAL I

4520 FOR I=1 TO f

4540¢ PRINTTAB (@,L* (I-1)+1) field$ (1) TAB (
13)STRINGS (width% (1) ,".")

4560 NEXT I:ENDPROC

4580 :

Beebug November 1985

4800 DEF PROCdisplay (p$)
4820 LOCAL G,I,start,end,n:n=VAL (p$)
4840 IF NOT open% THEN PRINT"No file op
en": ENDPROC

4860 IF rec<2 THEN PRINT"No records in
file" :ENDPROC

4880 IF n<@ OR n>rec-1 THEN PRINT"No su
ch record":ENDPROC
4900 PROCwindowl: PROCrecord
4920 IF n THEN start=n:end=n ELSE start
=1:end=rec-1
494¢ FOR I=start TO end

4960 PROCdisplayl (I)

4980 IF I<end THEN G=GET

5000@ NEXT I:PROCwindow2

5020 ENDPROC

5040 :

5200 DEF PROCdisplayl (n)

5220 LOCAL I

5240 PROCinv (1) :PRINTTAB (64,0) "Record:
":SPC (4-LEN (STRS (n))) ;n: PROCinv (@)

5260 PTR#F=256+recs* (n-1)

5280 FOR I=1 TO f:INPUT#F,records (I):PR
INTTAB (13,L* (I-1)+1) record$ (I) :NEXT I

530¢ ENDPROC

5320 :

550@ DEF PROCdelete (p$)

5520 LOCAL A,I,n:n=VAL (p$)

554¢ IF NOT open% THEN PRINT"No file op
en" : ENDPROC

5560 IF rec<2 THEN PRINT"No records in
file":ENDPROC

5580 IF n<1l OR n>rec-1 THEN PRINT"No su
ch record":ENDPROC

560¢ PROCwindowl : PROCrecord

5620 PROCdisplayl (n) : PROCwindow2

5640 A=FNask ("Delete (YAN): ")

5660 IF A<3 THEN PTR#F=256+recs* (n-1):F
OR I=1 TO f:PRINT#F,STRINGS (width%(1),".
") :NEXT 1

5680 ENDPROC

5700 :

600@ DEF PROCclose:LOCAL I,J,K

6020 IF NOT open% THEN PRINT"No file op
en" : ENDPROC

6030 IF rec=1 THEN 61690

6040 PRINT"Please wait - closing file "
iFS

6060 J=1:FOR I=1 TO rec-1

6080 PTR#F=256+recs* (I-1)

6109 FOR K=1 TO f:INPUT#F,record$ (K):NE
XT K

6120 IF ASC(record$(1))<>46 THEN J=J+1:
PTR#F=256+recs* (J-2) :FOR K=1 TO f£:PRINT#
F,record$ (K) :NEXT K

6140 NEXT I:rec=J:PTR#F=0:PRINTHF,rec

6160 PRINT"File closed - ";rec-1;" reco
rds in use"

6180 CLOSE#F:open%=FALSE

6200 ENDPROC

— 36

B+IIN=C

o

COMPRESSING
SCREEN DISPLAYS

Screen displays use up much
valuable storage space and, for
cassette users, can be very slow
to save and load. Geoff Bains and
Alan Webster show how
compressing your pictures can
greatly improve matters.

A major problem with the BBC micro is
that its graphics displays take up an
awful lot of memory. Cassette users know
well the hours needed for a 20K screen to
load from tape. Disc users also suffer -
you can only fit four such screens onto a
40 track disc. This is where this pair of
programs will prove useful. The first
program will compress a 20K screen to
around 6K, the exact figure depending on
the picture itself. The second program
consists of a procedure to add to your own
program that loads in the compressed
screen and expands it back to full size.

COMPRESSION

The compression technique
the fact that most pictures have large
areas of the same colour. If an area of
the screen is composed of the same bytes
of data we can more efficiently store it
as the byte and the number of repetitions
of these bytes. This program extends this
idea to account for stippled or striped
areas and stores the screen in the form:

Bytel Byte2 Number of byte pairs

relies on

The compressed data is stored
initially in RAM. This is then saved with
a reload address calculated so that the
data loads into RAM at the bottom of the
screen. This avoids the compressed data
occupying any memory additional to that
required by the expanded picture (20K).

Using the program is simple enough.
Just answer the prompts for the name of
the uncompressed screen and the compressed
data and the program does all the rest.

10

I ————

10 REM PROGRAM SCREEN COMPRESSION
20 REM VERSION B@.1

30 REM AUTHOR GEOFF BAINS

40 REM BEEBUG NOV 1985

50 REM PROGRAM SUBJECT TO COPYRIGHT
60 :

100 MODE 1

11¢ INPUT "Filename of screen"''"to co
mpress ",N$
12¢ INPUT ''"Filename for compressed"'

'“"screen ", CS

130 vDU28,1,25,19,20

14¢ *OPT 1,0

150 AS="LOAD "+NS+" 300¢":PROCoS

160 store%=&2000

170 HIMEM=store%

180 B1%=2&3000:B2%=2&3001 :N%=1

190 FOR 1%=&3002 TO &8000 STEP2

200 D1%=2(1%):D2%=2(I1%+1)

210 ?(I%)=NOT D1%:?(I%+1)=NOT D2%

220 IF D1%<>B1% OR D2%<>B2% OR N%=255
THEN ?(store%)=B1%:?(store%+1)=B2%:?(sto
re%+2)=N%:N%=0:B1%=D1%:B2%=D2%:store%=st
ore%+3

230 N%=N%+1

240 length%=store%-HIMEM

250 NEXT I%

260 *OPT

270 AS="SAVE "+C$+" "+STRSTHIMEM+" +"+
STR$™ (length%)+" 0000 "+STRS™ (&8000-1leng
th%) : PROCos

280 END

290 DEFPROCOs: $&900=AS$:X%=0:Y%=9

300 CALL&FFF7:ENDPROC

DECOMPRESSION

Expanding the compressed data back
into its full picture form is a little
more complicated. The picture is loaded
into position at the end of screen memory
by the machine code equivalent of *LOAD.
The start address of the data 1is found
(as a result of the load operation) and
the decoding proceeds as a simple loop,
poking the expanded data directly into
screen mMemory.

To use the expansion routine
own programs, simply add the procedure,
PROCscreenload onto the end of your
program and call it with the filename of
the compressed data (the name you chose in
the first program to store the data) as
the parameter (see the example in lines
lines 100-120). For example: you could use
this oprocedure in the Jigsaw program
(Vol.4 No.3) to save on time/space to
store the puzzle picture. Compress your
picture and replace line 1580 of Jigsaw
with PROCscreenload(F$) and append the

Beebug November 1985

in your

procedure listed here onto the end of the
program. You will also have to change the
address used for the code (line 10010,
below) to either &JA0@ for a disc system
or &IDPP for a cassette system.

DEGREE OF COMPRESSION

The program will compress most mode 1
screens to around 6K. It will operate on
mode @ and mode 2 screens too, simply by
altering the mode in line

100 of each of the
routines, though as it is
designed for mode 1
screens, the degree of

compression will not be as
great in these cases. 10K
modes are not accomodated
(though they could be) as
the savings are less.

If the compressed data
is too large (from a very
detailed picture, for example) it will be
overwritten by the reconstituted picture
as it is decoded. This is not normally a
problem as such large data is not really
worth using in a compressed form. If a
screen is very detailed, with nearly every
pixel pair different from its neighbour,
the compressed data can get to be bigger
than the original screen!

10 REM PROGRAM SCREEN DECOMPRESSION
20 REM VERSION B@.1

30 REM AUTHOR ALAN WEBSTER

40 REM BEEBUG NOV 1985

50 REM PROGRAM SUBJECT TO COPYRIGHT
60 :

100 MODE 1

PROCscreenload ("filename")

END

130 :

DEF PROCscreenload (N$)
name%=&9900

10020 FOR pass=@TO2STEP2:P%=name%+12
[OPTpass

. load

LDA#&FF:LDY#6:STA pblock,Y
10060 LDX #pblock MOD 256

LDY #pblock DIV 256

LDA #255:JSR &FFDD

JSR subt2:RTS

.pblock

10110 BRK:BRK

JMP@ : IMP@ : JMP@ : JMP@ : JMP@ : BRK
.subt2:LDA &3BE:STA&80

LDA &3BF:STA&81:SEC:LDA &80

Beebug November 1985

10150
10160
10179
1018¢
10190
10200
10210
10220
10230
10240
10250
10260
10279
10280
10290
10300
19310
10320
10330
10340
19350
10360
10370
10380
10399
10400
10419
10420
10430
10440
10450
10460
10470
10480

SBC#3:STA &80:LDA &81 :SBC #0:STA &81
.decode

LDA #0:STA&84:LDA#&30 :STA&BS
. loop

JSR inc2

CIC:LDA &81:CMP #&80:BEQend
LDY#0

LDA (&80) ,Y:STA &8E
INY:LDA (&80) ,Y:STA &8F
INY:LDA (&80) ,Y:TAX

. loop2

LDY#0

LDA&BE:STA (&84) ,Y
INY:LDA&BF:STA (&84) ,Y

JSR inc

DEX :CPX#0:BNE loop2

JMP loop

.end

RTS

.inc

CLC:LDA&84 :ADC#2:STA&84
LDA&8S :ADC#@:STA&85:RTS
<inc2

CLC:LDA&80 :ADC#3: STA&8D
LDA&81 :ADC#0:STA&8]

RTS

] :NEXT pass

?pblock=name%: pblock?1=name?%DIV256
vDU 12,28,1,10,19,2

Sname%=N$

CALL load

VDU26

ENDPROC =)
1"

WOrdWisz
e RIS

Compactor

e th}
compactor is just the utility for
all Wordwise Plus enthusiasts.

Leila Burrell-Davies explains
what it’s all about.

Like Stephen 1Ibbs in the June 1985
edition of BEEBUG (Vol.4 No.2), I am an
enthusiastic user of Wordwise Plus segment
programs. Like him I also have problems
with fitting into memory all the segments
that I want and having any memory left for
text.

The solution I have adopted is to
write my segment programs with plenty of
spaces and REMs and explanatory label
names and then, when they are thoroughly
tested, to compress them into working
versions which are as compact as possible.
I keep the original (full) version in file
F.segname and the working version in file
+.segname. When I want to modify the
program, I go back to the full version,
which is much more readable and easy to
understand.

Needless to say, the compacting is
done with a segment program! It compacts
the program in the currently selected area
of memory by replacing all the keywords
with their minimum abbreviations, deleting
all spaces which are not in quotes,
removing all REMs (except on the first

replacing possibly long
labels with short numeric ones.

explanatory

Because of this method of dealing with
labels you should avoid using any purely
numeric labels if your Wordwise Plus
program is to be compacted. The BEEBUGSOET
compactor in Wordease avoids this problem
as well as offering a decompaction
facility as well.

The keywords and their abbreviations

are stored in a file W.ABBREVS in the
format:
KEYWORD>abbrev.

where the symbol '»' means 'press the Tab
key'. The keywords are ordered by length,
longest first. This is to ensure, for
instance, that REPEAT is replaced by r.
before the AT which it contains is
replaced by 'a'. You will need to enter
this as a Wordwise Plus segment and save
as a separate file.

The hash character (#), has to be
replaced temporarily by a character which
does not occur in the text; @ is used
here., This is because # acts as a wild
card in search strings, so that a search
for CLOSE# will find CLOSE followed by any
character. The compactor checks that the
'@'" character does not appear in the text
to be compacted. If it does you are
requested to replace it temporarily while
compaction takes place.

The program has to do quite a 1lot of
work and is, unfortunately, rather slow.
Because of this, it does prints dots on
the screen while it is running to show the
user that something is happening.

The program will work with a cassette
system so long as the cassette player has
motor control. It should be entered as a
Wordwise Plus segment program and saved as
F.WWH+COMP (or similar). You can then load
and call this program to compact any other
program you write. As a start, you can use

line), removing all blank lines and it to compact itself!
DEFAULTS>def . VARFREE>V, PARAMS>par. PRINT>p.
DISPLAY>di. BOTTOM>b. REPEAT>r . RIGHT>r.
ENDPROC»e. CLOSE@>close@ SELECT>s. SPOOL>sp.
MARKERS>marker . CURSOR>C. BGET@>b. TIMES>t.
OPENOUT>0peno. DELETE>de. BPUT@>bp. UNTIL>u.
PREVIEW»pre. DOLINE>dol. FALSE>fa. WORDS>w.
RECOUNT»rec. DOTHIS>d. CCE$@>gct. CALL>ca.
REPLACE>repl. MARKED>m. GLF$@>glf. CHR$>chr .
SEGMENT>s, OPENIN>OD. OSCLI>O. DOWN>d.,

12 Beebug November 1985

T L - R e el T Oy S S s TS ot D e

REM "Wordwise Plus program compactor"
REM Leila Burrell-Davis, November 1985

REM WS can be changed from @ if
REM required so long as it is also
REM altered in file VS.

CLOSE#@
DELETE MARKERS

REM name of abbreviations file
V$="W.ABBREVS"

REM char which mustn't appear in text
Wszll@ll

CURSOR TOP

FKEY4 ,WS

IF EOT THEN GOTO WSok

vDU7

CLS

PRINT"Special character "+W$+" appears"
PRINT"in your text. Please change it"
PRINT"into something else temporarily."
PRINT

PRINT"Press any key to continue...";
A%=GET

DISPLAY

END

JWSok

REM open file V$

CLS

PRINT"Trying to open "+V§$+" file..."
X%=0OPENIN (V$)

IF X%=0 THEN GOTO nofile

CLS

PRINT"Working ";

REM now change #'s to W$'s because
REM # is wild in replace strings
PRINT".";
CURSOR TOP
REPEAT

FKEY4, "#"

IF EOT THEN GOTO atend

Beebug November 1985

DELETE at

type W$

.atend
until eot

REM make file upper case for matching
REM except in quotes
cursor top
REM in quotes flag
Q%=false
REPEAT
AS=gct$
REM if quote, toggle quote flag
IF AS=chr$34 THEN Q%=Q% EOR &FFFF
REM if eol, set quote flag false in
REM case unbalanced quotes in line
IF AS=chr$13 THEN Q%=false
IF Q% THEN GOTO next
IF A$<"a" OR A$>"z"THEN GOTO next
CURSOR LEFT
SWAP
PRINT".";
.next
UNTIL EOT

REM now replace keywords by abbrevs.
REPEAT
PRINT".";
A$=""
B$=““
REM Get keyword
REPEAT
AS=AS+BS
B$=gcfS#X%
REM lenBS$ will be ¢ when TAB read
REM as it has ASCII value > 127
UNTIL LENBS=0
REM Get abbreviation
B$=gl£S$#X%
CURSOR TOP
REPEAT
REPLACE AS,BS
UNTIL EOT
UNTIL EOF#X%
CLOSE#X%

13

REM get rid of spaces except in quotes
CURSOR TOP
REM in quotes flag
Q%=FALSE
REPEAT
AS=GCTS
REM if quote, toggle quote flag
IF A$=chr$34 THEN Q%=0% EOR &FFFF
REM if eol, set quote flag false in
REM case unbalanced quotes in line
IF A$=chr$13 THEN Q%=FALSE
IF AS$S<O™ " THEN GOTO nextchar
IF Q%=FALSE THEN DELETE LEFT
PRINT".";
.nextchar
UNTIL EOT

REM remove rems unless on first line
REM (first line rem will have been
REM tokenised unless in quotes and
REM lowercase)
PRINDY, M
CURSOR TOP
REPEAT

FIND CHRS13+"rem"

FKEY6 ,CHR$13

DELETE AT
UNTIL EOT

REM remove blank lines
PRINT".";

CURSOR TOP

REPEAT

, Sample of compacted file
pMrying to open 'Y file, Y
X%=0p. (V$)

i.X%=0t.g.5
el

p."Working ";

p. " . ";

c.t.

I.

. fk.4,"#"
i.eott.g.l
de.a.
ty WS
.1
H.eot
Cote.

REPLACE "|R|R","|R"
UNTIL EOT

REM now deal with labels
A%=0
CURSOR TOP
REPEAT
PRINT™. V>
FIND "|R."
IF EOT THEN GOTO nextlabel
CURSOR RIGHT
AS=GLT$
CURSOR TOP
REPEAT
REPLACE A$,"."+STRSA%
IF EOT=FALSE THEN CURSOR RIGHT
UNTIL EOT
CURSOR TOP
FIND "|R"+"."+STR$A%
CURSOR RIGHT
A%=A%+1
.nextlabel
UNTIL EOT

REM now change W$'s back to #'s
PRINT".";
CURSOR TOP
REPEAT
REPLACE W$,"#"
UNTIL EOT

CURSOR TOP
DISPLAY
END

.nofile

REM abbrevs. file not on current drive
vDU 7

VDU 14

PRINT

PRINT"File "+V$+" not found."
PRINT

*CAT

PRINT

PRINT"Press any key ..."
A%=GET

DISPLAY

END

=

HINTS HINTS HINTS HINTS HINTS HINTS HINTS|

FILLING UP - Roger Burg

Using a graphics window and the CLG command is a well known method of filling
rectangles on the screen. However this method will only fill from the top. If you want
to fill from the bottom of the rectangle, for a different effect, define a graphics
window as before then use PLOT85 to draw a very large triangle that encompasses the

whole window.

14

R T . Y T e e o vy AW Ty e 8 oM.

Beebug November 1985

S+IIO=C

Writing your own
compiler art 1)

David Pilling begins a new
series in which he describes the
steps involved in constructing a
compiler.

In this short series ofsarticles, I
will describe how to design and build your
own compiler. This will provide a
practical introduction to those who would
like to try their hand at compiler
writing. In addition, an insight into the
art of compiler construction can help you
to write better programs by understanding
how the computer works. The three articles
will, stage by stage, build up to a
complete working compiler for a useful
subset of Basic.

WHAT IS A COMPILER?

Everyone who has used a micro, will be
familiar with an interpreter. This is a
program which takes 1lines of Basic and
executes them one at a time. A compiler on
the other hand takes an entire program

written in a high 1level language (the
source code) and translates it into a
program in another language (the object
code). The classic example is the

conversion of a Basic program to machine
code. The usual reason for wanting to
translate from one language to another is
to obtain a program which is in a language
closer to that of the processor in the
computer and which will therefore run
faster, often using less memory as well.

Compilers are complicated programs and
there is a certain amount of mythology
attached to them, not least that they are
very difficult to write. Certainly this
was true thirty years ago. In the time
since then, much effort has been put into
finding out how to write compilers, and as
a result, if you stick to certain
principles, it is fairly simple.

Compilers are often assumed to give a
huge increase in run-time speed over using
an interpreter. This is not universally
true. For instance, it takes a finite
amount of time for a 6502 to multiply two
numbers together. No compiler can improve

Beebug November 1985

on this. What the compiler can do, is
remove the time the interpreter takes to
find the locations of the numbers in
memory and the destination of the result.
In addition, compiled programs will often

run faster Jjust because the code is
translated once and not repeatedly
re-interpreted.

Although many books have been written
on the theory of compiler writing, the
object here is to be very practical. As a
result, the implementation of a Basic
compiler (ABC) for the subset of BBC Basic
shown in figure one will be described,
with the first part of the program this
month. The only point of interest about
this subset, is that the WHILE WEND
construct and PEEK and POKE have been
included to show how easy it is to add
features to a language.

FIRST PRINCIPLES

To begin then, the fundamental idea of

a compiler is to translate from one
language to another. The process is
sketched out in figure two. The first

parameter which allows the comparison of
IF THEN ELSE PRINT SIN INKEY

WHILE WEND INPUT COS END

REPEAT UNTIL TAB(X,Y) SQR PEEK

FORTO STEP NEXT VDU RND(X) POKE
DEFPROC PROC ENDPROC MOVE Pl]

GOSUB RETURN DRAW TRUE <,>,>=,<=,<>
GoTo SOUND FALSE ()

All variables are reals. No variable is allowed after NEXT. The
delimiters DEFPROC ENDPROC, FOR NEXT, REPEAT UNTIL, WHILE
WEND must appear in pairs. Procedures may have parameters and
be called recursively.

Figure One: Basic Subset

Source Code
(Basic)

Object Code
'—' Compiler l‘—l (machine code)

Figure Two: Compilation

different compilers, is how many passes
have to be made through the program. One
speaks of a one pass, two pass etc.
compiler. Obviously, there are practicali-
ties involved here. If the source program
is in a file on tape then a compiler that
makes as few passes as possible is needed.
However, the structure of the language to

15

be compiled determines how easy it 1is to
compile programs in a single opass.

It is possible to compile a language
which has been designed appropriately, by
scanning programs from left to right
without ever going backwards. For some
languages such 'backtracking' is essential
and leads to great complications. By
keeping to the single 1left right scan,
things are made much easier. It is no
surprise that BBC Basic can be translated
in just this way.

Given that one is setting out to
compile Basic or another high level
language, it may seem a trivial question
as to what it is to be translated into.
Most people would say machine code. The
problem is that a processor like the 6502
lacks instructions to do almost everything
that one would like. There are no
instructions for handling floating point
variables, for example. This means that
there must be a large group of subroutines
to provide all the facilities compiled
programs need. This is referred to as a
run-time support system. If programs are
compiled directly to machine code, then
for the most part the object code will
consist of calls to these subroutines.
Such a machine code compiler may suffer as
although the programs it produces are fast
they tend often to be very large, because
of the run-time support system.

The compiler described here, produces
6502 machine code and mostly uses the
mathematical routines in the Basic ROM for
its run time system.

COMPILER STRUCTURE

The actual compilation process can be
divided into a number of phases. The
classic design of compiler has three:
lexical analysis, syntax analysis and code
generation. Figure three shows this
structure. Sometimes, these three
processes are carried out by completely
separate programs and the output of the
syntax and lexical analysis parts stored
in an intermediate form. Our compiler will
cope with all three together.

Lexical analysis takes the source
code, and splits it up into the smallest
significant items commonly called tokens
or, appropriately, atoms. The idea is to
protect the syntax analysis part of the
compiler from the unnecessary complexity

16

T s e RSN -

of how programs are stored. To give an
example: the syntax analyser is only
interested in whether the next item from
the source program is a number, not in
constructing it from a string of digits.

Syntax analysis derives the meaning of
the program to be compiled and finally,
acting on the results of the syntax
analysis, the code generation phase
produces the object code. The remaining
item in figure three is the 'symbol
table'. This is a table which is accessed
by all stages of the compiler. It contains
all the objects that the compiler knows

Source Code

Lexical Analysis

Symbol Table Syntax Analysis

\

Code Generation

Object Code

Figure Three: Compiler Structure

about, for example names of variables and
their memory locations.

LEXICAL ANALYSER

Logically therefore, the first piece
of the compiler should consist of the
lexical analyser and symbol tables. What
is needed is a way of holding a piece of
source code and then a procedure which,
each time it is called, returns the next
token from it. In addition, every time the
procedure finds a new object, it should
enter it in the symbol table.

The tokens which can be found in the
source text, comprise keywords, numerical
constants (numbers), string constants,
operators, spaces and identifiers. An
identifier is like the name of a variable
or procedure (an alphanumeric sequence
started by a letter). Such identifiers are
entered in the symbol table. The lexical

Beebug November 1985

analyser, should strip off spaces and
assemble composite operators like <> into
single tokens. This section of the
compiler is listed this month and appears
on the magazine cassette/disc. The other
parts of the compiler will appear
similarly in the following two issues.

PROGRAM NOTES FOR THE LEXICAL ANALYSER

The program to be compiled is entered
between lines 10 and 1008 and terminated
with a STOP statement. The source code
must not contain procedures with the same
names as those in the compiler. Lines 1000
to 1300 form the main compiler program.
PROCB1 and PROCB2 set up the locations of
the routines in ROM which the compiler
uses depending on whether you have Basic I
or II. Only the procedure for your machine
need be typed in. PROCSETUP is, naturally,
concerned with setting up the values of
various variables and dimensioning arrays.

The lexical analyser is PROCLX. It has
the following specification. Every time
PROCLX is called, it sets the variable T%
to the value of the next token. If the
token is a number, the variable N is given
its value. If the token is a string or an
identifier then S$ is set to it. Finally,
if a line number is found N% is given its
value (a line number is what appears after
a GOTO or GOSUB statement). In addition,
SN% is set to the number of any object in
the symbol table.

As well as the straightforward left
right scan of the program at a token
level, we also impose the condition that
the lexical analyser should scan the
characters that compose the source code
program in a single left right scan, and
that the variable A% always contains the
next character to be read. Thus the
lexical analyser has a single token single
character look-ahead.

Anyone familiar with the way that BBC
Basic programs are stored, should have
little difficulty in fulfilling the above
specification. Consider the version of
PROCLX in the listing. This always reads
characters by calling FNCH. The task of
implementing a lexical analyser, is made
rather simpler by the fact that all Basic
keywords are represented in programs by
tokens (a subset of the tokens above) in
the range 128 to 255. So part of the
lexical analysis job has been done. This
means that keywords can give T% the value

Beebug November 1985

of their wusual token. For other things,
token values can be invented. This is done
in lines 1730 and 1740. For example the
combinations <=, >= and <> have tokens
1,2, and 3 and the new keywords WHILE and
WEND the tokens 8 and 9.

On entering PROCLX, the first thing
that is done is to look at the current
value of T%. If this is equal to an end of
line character (line 1950), PROCNL is
called. This procedure sorts out the
problem of getting the next line from the
source text. If T% is equal to the
end-of-program token (i.e. STOP), PROCLX
does nothing and ends. Next, A% is tested
and characters are read until something
which is not a space is met.

At line 1970, FNAL is used to test if
A% is an alphabetical character. If it is,
then it represents the beginning of an
identifier. PROCIG is used to assemble it

into S$. Having done this, the program
looks in 1line 1999 to see 1if the
identifier is one of the new keywords. If

it is, T% is given the appropriate value.

Otherwise, the identifier 1is a variable
name and PROCS is called. Obviously one
could put a big table of new keywords at

this point. Picking out the new keywords
here does mean that they must be
terminated with a space if they are not to
be confused with variables.

PROCS handles the symbol table. The
symbol table consists of the arrays st(),
sa() and stp(). These hold the name of the
object, its address and its type. For
variables, the address is the actual
location where the variable is stored. For
procedures, it would be the address of the
start of the procedure. It is necessary to
keep track of the type of an object so
that, for instance, procedures can be
distinguished from variables of the same
name. If a variable is entered into the
symbol table, then an address in memory is
allocated to it in line 2460.

If A% is not a letter, PROCLX branches
to line 2010 where, if A% is the PROC
token, the procedure name is assembled and
entered in the symbol table. Otherwise,
control branches to line 2040 where four
more types of token are sorted out. If A%
is a number, PROCDNG takes care of
assigning it to N. A double quote value of

A% calls PROCSG into action to get a
constant string. If A% is the BBC Basic
17

line number token, PROCLG retrieves the
line number. Finally, if A% is in none of
the above categories, PROCTG is called.
This checks to see if A% is part of one of
the <, > special sequences and also strips
off any unnecessary colons. T% is given
the appropriate value.

There are a few complications to note
concerning the handling of 1line numbers.

When a line number is found after a GOTO,
it is put as a string into the symbol
table. This is logical, since in the

object code, a line number corresponds to
an address. Secondly, there is another
table, consisting of the arrays lino() and
lina(). These hold 1line numbers and
corresponding object code addresses. Every
time PROCNL is called, it enters the new
line number in lino() and the value of the
location at which code is being written in
lina().

As the source code is scanned, it is
displayed on the screen. This is done by
making use of PROCA which prints the
character value of A% and then gives A%
the value of the next character using
FNCH. A call to a ROM routine makes sure
that keyword tokens are printed properly.

The processes described above are more
general than they may seem. For example,
all conventional languages have very
similar specifications for identifiers.
Therefore, all compilers for these
languages contain a section like that in
the 1listing for handling identifiers. The
same point applies to numerical constants
and so on. The lexical analyser, is
perhaps the simplest part of any compiler,
and as such is not greatly interesting.
However, it provides one of the major
bottlenecks as regards the speed at which
programs are compiled and efficient design
is essential for a fast compiler.

The discipline of always reading
characters via FNCH confers the great
advantage that it is also possible to
compile programs from disc or tape thus
making more memory available for the
object code. To do this the following
lines should be added:

1151 INPUT"FILE TO COMPILE "S$
1152 CH=OPENINS$

1171 CLOSE#CH

1795 7%=0

1910 DEFFNCH:Z%=2%+1:=BGET#CH

18

Disc users will probably find this
modification very useful; tape users will
need patience to use it. Programs must
still be terminated with a STOP statement.

In part two, I -will turn: to ‘the
subject of syntax analysis and present the
next section of the compiler.

19 GOTO100d
1000 REM
1019 REM A BASIC COMPILER
1020 REM VERSION Bl.1
1030 REM D. J. Pilling
104¢ REM BEEBUG November 1985
1050 REM Program subject to copyright
1060 REM
1070 REM:
1080 REM Section #1
1099 REM Lexical Analysis.

1100 MODE7

1110 ns=18:n1=25

1120 himem=&5800

1130 msize=3100

1140 page=himem-msize:HIMEM=page
1150 PROCSETUP:CLS

1160 T%=FNCH:A%=FNCH: PROCLX

117¢ PROCprog: top=P%

1180 PROCFIX

1190 PROCS1

1200 PRINT''"page = ";page

121¢ PRINT"himem = ";himem

1220 PRINT"msize = ";msize

123¢ PRINT"variables ";himem-vmem-5
1240 PRINT"object code ";top-GO
1250 PRINT"source code ";Z%-W3%
1260 PRINT''"execute code (YN)? ";
1270 G%=GET:MODE 7

1280 IF G%=ASC"Y" THEN CALL GO
1290 END

1300 :

1310 DEFFNL (B1%,B2%,B3%)

1320 B3%=B3%*256+B2%-&4040

1330 IFB13MOD&10=0 B3%=B3%+16384:B1%=B1

1340 IFB1%=&44 B1%=64 ELSEIFB1%=&54 B1%
= ELSEIFB1%=&64 B1%=192 ELSEIFB1%=&74 B
1%=128

1350 =B1%+B3%

1360 :

137¢ DEFPROCB1

1380 TK=&B53A:sqx=&A7B7:f2i=&A3F2

1390 A2f=&A2DE: £25=&9ED0 : neg=&ADAJ

1400 1dz=&A691 : sub=&A50B:mul=&A661

1410 div=&A6B8:add=&A50E: 1df=&A3A6

1420 stf=&A37E:cpf=&9A37:sig=6A1CB

1430 six=8&A997:cox=&A98C: pix=&ABFJ

1440 i2f=&A2AF:rnx=&AF53

1450 asc2=&AC5A:ins=&BC17

Beebug November 1985

T T T T L R Ty,

1460 ENDPROC

1470 DEFPROCB2

1480 TK=&B50E:sqx=&A7B7:f2i=6A3E4

1490 A2f=6A2ED: f25=&9EDF :neg=&AD7E

1500 1dz=&A686:sub=&A4FD:mul=&A656

1510 div=&A6AD:add=&A500: 1df=&A3B5

1520 stf=&A38D:cpf=&9A5F:sig=&ATDA

1530 six=&A99B:cox=&A990: pix=&ABCB

1540 12f=&A2BE: rnx=6AF24

1550 asc2=&AC34:ins=&BBFC

1560 ENDPROC

1565 :

1570 DEFPROCSETUP

1580 IF?&8015=50 PROCB2 ELSEPROCBI

1590 PROCruntime

1600 DIM st$ (ns),sa(ns),sto(ns)

1610 DIM lino(nl),lina(nl)

1620 S$=STRINGS (40," "):SS="":NL%=0

1630 for=&E3:to=&B8:step=&88:next=&ED

1640 vdu=&EF:print=&F1:proc=&F2:def=&DD

1650 endproc=&E1:rep=&F5:unt=&FD

1660 goto=&E5:end=&E@: inkey=&A6:if=&E7

1670 else=&8B:1ino=&8D: then=&8C:peek=&A

1680 eg=&3D:gt=&3E:1t=&3C:cls=&DB

1690 1b=&28:rb=&29:tr=&B9:f1=&A3:poke=& B

1709 plus=&2B:minus=&2D:slash=&2F

1710 times=&2A:squote=&27:tab=&8A

1720 dquote=&22:comma=&2C:scol=&3B

1730 col=&3A:spc=32:e0ln=&D:eop=&FA

1740 geg=1:leq=2:neg=3:id=4:1bl=5

1750 const=6:string=7:whi=8:wnd=9

1760 sound=&D4:gosub=&E4: return=&F8

177¢ inp=&E8:sin=&B5:cos=&9B:rnd=6&B3

1780 draw=&DF :move=&EC:sqr=&B6:pi=&AF

1790 Z%=PAGE+? (PAGE+3) : SN%=0: jm=0

1800 X1%=0:X2%=0:Y1%=0:Y2%=0:W3=2%

1810 vmem=himem-5

1820 ENDPROC

183@ DEFPROCS1

1840 X2%=P0S:Y2%=VPOS

185¢ vpu28,9¢,14,39,0,31,X1%,Y1%

1860 ENDPROC

1870 DEFPROCS2

1880 X1%=P0S:Y1%=VPOS

189¢ vpu28,@,24,39,12,31,X2%,Y2%

1900 ENDPROC

1910 DEFFNCH:Z%=2%+1:=2%?-1

1920 DEFPROCA:PROCS1:CALL TK:PROCS2:A%=
FNCH: ENDPROC

1930 DEFPROCLX

1940 IFT%=eop:ENDPROC

1950 IFT%=eoln PROCNL

1960 IFA%=spc:REPEAT PROCA:UNTILA%<>spc

1970 IFNOTFNAL (A%) GOTO02010

1980 PROCIG

1990 IFS$="WHILE"T%=whi ELSEIFS$="WEND"
T%=wnd ELSEIFS$="PEEK"T%=peeck ELSEIFS$="
POKE"T%=poke ELSET%=id:PROCS

200@ ENDPROC

2010 IFA%<>proc GOT02040

Beebug November 1985

2020 T%=A%:PROCA:IFNOTFNAL (A%) T%=0:END
PROC

2030 PROCIG:PROCS: ENDPROC

2040 IF FNDN (A%) PROCDNG ELSEIF A%=dquo
te PROCSG ELSEIF A%=1ino PROCLG ELSEPROC
G

2050 ENDPROC

2060 DEFFNAL (A%) :=(A%>64ANDA%<91)0R (A%>
96ANDA%<123)

2070 DEFFNDN (A%) : = (A%>47ANDA%<58)

2080 DEFPROCLG

2090 N%=FNL (FNCH,FNCH, FNCH)

2100 T%=1ino:A%=FNCH:S$=STRSN%

211@0 PROCS:PROCS1:PRINT;N%; : PROCS2

2120 ENDPROC

2130 DEFPROCIG

2140 S$="":REPEAT:S$=S$+CHR$A%: PROCA:UN
TIL NOT (FNDN (A%)ORFNAL (A%))

215¢ ENDPROC

2160 DEFPROCDNG

217@ S$="":PROCDNGX

2180 IFA%=ASC"."SS$=SS$+".":PROCA: IFFNDN (
A%) PROCDNGX

2190 IFA%<>ASC"E"GOT02220

2200 S$=SS$+"E":PROCA: IFA%=ASC"-"PROCA:S
$=S$+"—"

2210 IFFNDN (A%)PROCDNGX

2220 T%=const:N=VALS$

2230 ENDPROC

2240 DEFPROCDNGX:REPEAT: S$=SS$S+CHRSA%: PR
OCA:UNTIL NOTENDN (A%) : ENDPROC

2250 DEFPROCSG:S$="":PROCA

2260 REPEAT:S$=SS+CHR$A%:PROCS1:VDUA%:P
ROCS2:A%=FNCH:UNTIL A%=dquote ORA%=eoln:
IFA%=eoln PROCERR ELSE PROCA

2279 IFA%=dquote GOT02260

2280 T%=string:ENDPROC

2290 DEFPROCTG

2300 T%=A%:PROCA

2319 IFT%=gt ANDA%=eq T%=geq:PROCA

2320 IFT%=1t ANDA%=eq T%=leq:PROCA

2330 IFT%=1t ANDA%=gt T%=neq:PROCA

2340 IFT%=col ANDA%=col REPEATPROCA:UNT
IL (A%<>col)AND (A%<>spc)

2350 IFT%=col ANDA%=eoln:T%=A%:PROCA

2360 ENDPROC

237¢ DEFPROCNL

2380 LI%=A%*256+FNCH:LL%=FNCH

2390 1ino(NL%)=LI%:lina(NL%)=P%

2490 NL%=NL%+1:PROCS1

2410 PRINT';LI%; TAB(4);:A%=32

2420 PROCS2:ENDPROC

2430 DEFPROCS

2440 SN%=-1:REPEAT SN%=SN%+1

2450 UNTIL (stS(SN%)=S$ AND stp(SN%)=T%
) OR stS$(SN%)=""

2460 IFstS (SN%)="" st$ (SN%)=SS:NS%=NS%+
1:stp(SN%)=T%:IFT%=id sa (SN%)=vmem: vmem=
vmemn-5

2470 ENDPROC =5

19

ROM Utilities

Judging by the number of new
releases, there is still a healthy
market for ROM based utilities.
Geoff Bains and Alan Webster
have been looking at some of
the latest on offer.

Product : Transferom

Supplier : Watford Electronics
250 High Street,
Watford WD1 2AN.
0923-37774

Price : £25.30

Reviewer : Geoff Bains

Product : Advanced Disc Toolkit

Supplier : Advanced Computer Products
6 Ava House, High Street,
Chobham, Surrey.
Telephone 0276-76545

Price : £34.50

Reviewer : Alan Webster

Product : Replay

Supplier : Vine Micros
Marshborough,
Sandwich, CT13 0PG
0304-812276

Price : £35.00

Reviewer : Geoff Bains

Product : NLQ Designer

Supplier : Watford Electronics
250 High Street,
Watford WD1 2AN.
0923-37774

Price i £28.75

Reviewer : Geoff Bains

Product : ROMAS

Supplier : Watford Electronics
250 High Street, Watford.
Telephone 0923-37774

Price : £51.75

Reviewer : Alan Webster

TRANSFEROM from Watford
Transferom is Watford's answer to Vine

Micros' TDROM (see the review in BEEBUG
Vol.4 No.1). Like that ROM, Transferom
will put most of your tape programs

conveniently onto disc.

20

TR e T T e S TR IR e IS .

TRANSFEROM

Run a program from disc.
TRANSFEROM utilities.

Create a new slave disc.

Change TRANSFEROM drive.

Like the TDROM, it is not capable of
transferring every tape program around.
However, it does contain a few extras over
and above TDROM, Files of any length can
be built up. Even the longest adventure
game can be accommodated. If there is no

room left on one disc then you can save
the rest onto another; Transferom looks
after all the details. Another nice

feature of this ROM is that you can change
the name assigned to a game file on disc
after it is created.

The whole package is menu driven and
simple to use. As a tape-to-disc transfer
utility Transferom scores at about the
same level as TDROM, maybe a little
higher. However, with items such as Replay
(see below) around, for not much more, it
is somewhat overshadowed.

ADVANCED DISC TOOLKIT from ACP

Advanced Computer Products (ACP) have
been quietly making a name for themselves
in the Electron market with a number of
quality products including ROM software
and RAM and ROM adaptors. Now they are
branching into the BBC field with a second
processor, DFS, ADFS and Electron
compatible Disc Toolkit.

The toolkit adds over 30 new 'disc'
commands to your Beeb or Electron,
although ACP have fallen into the trap of
filling surplus ROM space with a
miscellany of general command functions.
This is regrettable when you consider the
many other disc commands which users might
have preferred. As Beeb owners will see
from the table, most of these new commands
are similar to those in the Acorn or
Watford DFS, and Computer Concepts' Disc
Doctor. Electron owners who have not

Beebug November 1985

BACKUP MAP
BFIND MDUMP
BUILD MENU
CATALL MEX
DCOMP MFIND
DEX MLOAD
DFIND MOVE
DIRALL MRUN
DUMP ROMS
ENVELOPE SECTORS
FCOMP SETADR
FCOPY SPT
FORM SWAP
FREE TYPE
FSN UNPLUG
KEYL VERIFY
LIST XFER

benefitted from the above products, will

find more to interest them.

Some of the better commands contained
within the ROM are DCOMP which compares
two discs and reports on any differences,
FCOMP which is a verify command to compare
two files, FCOPY to create a renamed copy
of a file, and XFER to transfer a program
between two filing systems.

For a disc toolkit such functions as
an envelope lister, ROM lister, Basic
program string search, function key
lister, and memory dump seem out of place.

Overall, though, this is a very handy
utility, combining all the best features
of the DFS's and disc toolkits on the BBC
micro, and at £34.50 for a 16k EPROM with
a host of useful commands represents very
good value for money.

REPLAY from Vine Micros

Replay is a very different kind of
sideways ROM as it includes additional
(and attached) hardware. Replay is a
utility that will allow you to save the
complete status of your Beeb to disc at
any time. This can then be loaded into the
machine again and the program continued
from where you left off.

The prime use for Replay is to
transfer tape programs to disc. First a
special file on a disc is created. Then
Break or Escape 1is pressed and the tape
program (probably a game) is loaded in the

Beebug November 1985

REPLAY System by Vine Micros
o Jned by R.P L Tlett

Tracks:

Drive:
A: BOMBER RUM
B:

C:
D:
E
F

Sectors:

Press appropriate letter to run a
program, or number ;ar a utility -
1) .y t file 2 delet

Lod

<SPACE >
Option 7

normal way. Next you wait until the game
is fully 1loaded and press Replay's own
trigger button. This initiates the saving,

to disc, of the entire contents of the
Beeb's 32K RAM and the status of the
various control chips. Later on, you can

re-enter Replay and choose to reload the
file saved. Replay will then return your
machine to exactly the state it was in
when the button was pressed and you can
play the game.

Replay can save the Beeb's contents
during any program regardless of where it
came from - tape or disc. This means that
any game (or other program) can be
transfered to your own disc. The ROM can
also be used to just freeze a game and it
can display the screen at the time that
the RAM was saved. This makes dumping your
favourite game's screen to the printer an
easy task. You can even edit the file
created on disc to make changes to the
game. Vine Micros supply the relevant data
to make a few changes, such as a blue
background in Elite and infinite lives in
Frak.

The only problem with Replay is the
hardware. Apart from the ROM - along with
with several flying leads - there is the
trigger switch, a circuit board on the end
of a flying lead, a replacement 1link for
switch S21 on the board, and a two header
plugs to jam over the relevant chips in

your BBC. The methods chosen for the
connection of Replay to your machine do
mean that its installation is never
permanent. It also means that the

connections are never very reliable. I'd
be inclined to solder mine into position,
but that's up to you.

21

F:nar- - 65 [LoAb cHARACTER SET
} Start- @
| End - 23

! Width- 24

!

{|File name - GOTHIC

ﬁ*li?@lk MH):)&)

NLQ DESIGNER from Watford

The advent of the Kaga-Taxan (or
Canon) NLQ printers has created a 1lot of
interest amongst all computer users,
especially those with a BBC micro. The
high resolution characters produced by
these machines are a worthy rival to the
traditional daisy wheel printer. However,
these machines also offer the facility of
a downloadable alternative NLQ character
set. To make use of this your printer must
be fitted with a 'PCG RAM' kit - Jjust a
6264 RAM chip. The NLQ Designer ROM from
Watford Electronics is a utility to enable
you to make full use of this facility.

The NLQ Designer is basically a
character designer very similar to those
well known to BBC owners. The NLQ
characters are printed on paper using a
23 x 18 character grid in two passes.
However, NLQ characters are designed on a
12 x 16 grid. The cursor keys move around
the grid and the space bar toggles
individual 'pixels' on and off. They can
be designed on this smaller grid as each
cell represents two pixels offset
horizontally from one another and
overlapping. The vertical discrepancy is
accounted for by the characters with

descenders (such as 'g' and 'p'). These
are printed two pixels lower than the
others.

As a character is defined its various

properties are displayed. These are the
horizontal start and end positions on the
grid, the width (for the proportional
spacing) and whether the character is to
be printed as one with a descender. As a
character is designed the accompanying
characters in 1its group are displayed.
Once designed the entire group of

22

e e L S A R e

characters can be saved to cassette or
disc. Similarly other groups can be loaded
for further editing. Watford provide three
character sets (Bold, Courier, and Gothic)
on the disc accompanying the NLQ Designer
ROM.

For anyone with a Beeb and a
Kaga-Taxan KP810 or Canon PW1080 this ROM

provides a valuable extension to the
already impressive facilities of these
printers.

ROMAS from Watford

ROMAS is a cross assembler and macro
editor that will generate object code for
the Mostek 6502 and 6511, Rockwell 65C0@2,
Zilog Z8 and Z8@, Intel 8085, 8041 and
8048 and Motorola 6809 processors.

ROMAS features a comprehensive screen
editor which works in all 49 and 80 column
modes. The editor is split into two
windows with a status/command window
occupying the first three lines on the
screen and the editor taking up the rest.

In addition to the EPROM, the package
consists of a disc, a comprehensive 160
page A5 manual and function key strip.
ROMAS has to be used in conjunction with a
disc drive as the assembler reads source
code directly from disc. The EPROM
contains the 3 versions of the assembler
that support the 6502, 6511 and 8085
processors. The other 6 are held on disc.

All of the routines in ROMAS are
invoked through * commands. The assembler
is entered using *ASM and the editor is
entered using *EDT or *BEDT. Further
commands available are *LOCATE to relocate
assembled 6502 code, *CLOSE to close all
the currently open files, ¥*INTEL and
*HEXCONV to convert a hex code file into
an INTEL standard hex file, and
*TRANSMIT, *RECEIVE, *DATA and *DOWNLOAD
to set the baud rate of the RS423 and
download files to other machines.

The EPROM contains a useful cross-
referencer (*XREF) while the disc contains
the source code of a 6502 disassembler.

ROMAS 1is certainly a comprehensive
cross assembler and at only £51.75
represents excellent value for the serious
user.

=
Beebug November 1985

Programming with

Stephen Ibbs

programming in lu&
again illustrated with useful
concerning the small routine to delete the
the two lines, now Jjoined together, are

W ;
ordwise
continues his

Wordwise Plus by looking at the
hints and examples.

current line of text (reprinted below).
separated by one space, not two or none as

(part : HH§
series on
role that loops have to pla

Last month a problem was posed
The question was how to extend it so that
can often be the case.

If we imagine three text lines, A, B,
and C, with line B now deleted, then
calling this routine will leave the cursor
underneath the first character of line C.
We need to check if this character, and
the one to its left (the last on line A)
are spaces so the following lines are
added:

CURSOR LEFT

AS=GCT$

BS$=GCT$

CURSOR LEFT

IF AS=" " AND B$=" " THEN DELETE AT
IF AS<O>" " AND BS<>" " THEN TYPE ""
DISPLAY

This places the cursor back underneath
the first character of line C, with A$ and
BS holding the 2 characters. A single
space will have been inserted (to the left
of the cursor), if there was none, or
deleted if there were 2. You may like to
develop this further, to cope with
deleting the top line of a piece of text,
because when deleted, the routine can't
obey the CURSOR LEFT because it will be at
the very start of text (SOT).

Beebug November 1985

HINT: The TYPE command inserts to the LEFT
of the cursor position, the same as when
inserting text when in EDIT mode.

Last month a hint was given about
inserting the DISPLAY command into
routines so that you can see them at work.
Users of Wordwise Plus later than version
1.48 (as most are) have an alternative
command, DISPLAY1l. It is difficult to
explain how this works, the best way being
by the following example loaded into
segment @:

SELECT TEXT
REPFAT
AS=GCT$

DISPLAY
UNTIL AS=CHRS13

Place the cursor within some text,
call the routine and the screen flickers
as the routine repeats itself. Now change
DISPLAY to DISPLAY1 and call rthe routine
again. This time there's no flicker.
DISPLAY1 will not always eliminate flicker
(especially if the screen is being updated
causing the screen to scroll). However, it
is always well worth trying.

HINT: Try DISPLAY1 instead of DISPLAY,
especially when developing routines. It
(usually) avoids screen flicker.

The above routine introduces the
REPEAT-UNTIL commands, very similar to
their Basic counterparts in that the set

of instructions enclosed by them will
repeat until the terminating condition is
met. Quite often this condition will be
the start or end of text (SOT or EOT). A
simple illustration of a loop, also using
the commands so far discussed is given
below. It will join together two
paragraphs separated by one or more blank
lines.

The routine consists of three
sections. The first places the cursor at
the end of the upper of the two 1lines to
be Jjoined together. If it finds a
character at position 39 the cursor is
moved one place to the right. The second
section is the REPEAT-UNTIL loop that
takes a character, checks to see if it is
a space or a Return, then deletes it. Note
that it deletes left, because the cursor
moves one position to the right, as has
been stressed before. The final section is
the same as for the 'delete line' routine

23

- a check to ensure the lines are
separated by one space.

SELECT TEXT

CURSOR AT 39

IF ?&7E=39 THEN CURSOR RIGHT

REPEAT

AS=GCT$

IF A$=CHR$13 OR A$=" " THEN DELETE LEFT
UNTIL AS<>CHRS13 AND ASO" "

CURSOR LEFT 2

AS=GCT$

BS$=GCT$

CURSOR LEFT

IF A$=" " AND BS$=" " THEN DELETE AT

IF AS<O"™ " AND BS<O" " THEN TYPE " "
DISPLAY

This routine could also be developed

further. At the moment it cannot cope if
the upper of the two lines being joined
ends (somewhat unusually) with more than
one space.

Wordwise Plus does not have the
FOR-NEXT commands of Basic. It is possible
to use the REPEAT-UNTIL commands to repeat
a routine, say, five times:

A%=0
REPEAT
(main routine)

A%=A%+]
UNTIL A%=5

However, 1it's more convenient to use
the DOTHIS-TIMES commands which really
speak for themselves. It 1is similar to
REPEAT-UNTIL in that it can 'DOTHIS' until
some criteria has been met, e.g. DOTHIS -
TIMES A%, where A% has been given a value
thus:

DOTHIS
(main routine)

TIMES 5

To illustrate their wuse further, we
will write a very short routine to print
multiple copies of the text. In addition,
this will use the commands PRINT and,
importantly, DEFAULTS. First we must
establish how many copies are wanted, so
the question needs to be presented on the
screen:

CLS
PRINT "How many copies? "

A%=GET-48

24

The CLS is self-explanatory, but it is
worth emphasizing that clearing the screen
like this does NOT destroy any text. The
question is displayed and the third line
will wait for a number to be typed in. It
will react to the first key pressed, so
only single numbers can be inserted. The
GET command returns the ASCII value (just
like Basic), hence the GET-48 so that A%
contains the value we actually want. If we
want the routine to be able to print more
than 9 copies at a time we would have to
use the following:

CLS
PRINT "How many copies? "
A%=VAL (GLKS)

This waits for you to type in the
number, e.g. 25, and doesn't do anything
until Return is pressed. Then A% takes on
the VALue returned by GLK$. The GLKS means
'Get Line From Keyboard' and allows you to
type in up to 255 characters and place it
in a string variable, if required. Note
that neither of these question options has
any error trapping to prevent you typing
in letters, nor a 'YN' check in case you
type in the wrong value.

The routine would then continue with
the lines:

SELECT TEXT
DOTHIS
DEFAULTS

PRINT TEXT
TIMES A%
DISPLAY

Note the DEFAULTS command. This resets
all the formatting commands back to their
original values. If this was omitted, the
second printed copy of the text, assuming
EP was set, would not start at page one
and all your formatting could be upset.

HINT: Don't forget the DEFAULTS command
when using PRINT or PREVIEW, otherwise the
formatting could be upset.

The PRINT command is possibly one of
the most useful Wordwise Plus commands,
because it can be qualified by a second
word, PAGE. So if for example you have a
13 page document and you slightly edit
page 12 it 1is obviously wasteful to
reprint the entire document. Similarly it
is not easy to work out where the markers
should go to just print page 12. What you
can do is go to the menu and type:

Beebug November 1985

:DEFAULTS <Return>
:PRINT PAGE 12 <Return>

and just that page will be printed. Note
again the DEFAULTS command. If you just
want to check what page 12 looks like you
would type PREVIEW instead of PRINT, but
unlike menu option 7, the screen will
immediately clear when the preview has
taken place.

As well as being useful when dealing
with text already in memory, the PRINT and
PREVIEW commands can cope with text on
file, whether disc or tape, by following
the command with FILE and the filename in
quotation marks. Omitting DEFAULTS
deliberately between separate PRINT
statements can be useful if you want to
print related files with the page numbers
continuing in sequence e.g.:

DEFAULTS

PRINT FILE "filename 1"
PRINT FILE "filename 2"
PRINT FILE "filename 3"
DISPLAY

Earlier, the two commands SOT and EOT
were mentioned, and a simple illustration
of how EOT can be used effectively is
given below. When typing in text, it is a
chore to have to press Return twice and
then Tab, to separate each paragraph. It
would be easier to simply insert a little
used character, say '{', wherever a new
paragraph was needed. When all the typing
is finished a routine could be called to
do the job automatically:

SELECT TEXT
CURSOR TOP
REPEAT
FIND ll{ n

TYPE "|R|R|T"
DELETE AT
UNTIL EOT
DISPLAY

CURSOR TOP starts the routine from the
start of the text. We now need to find the

EASIER BYTES - Jonathan Temple
When using VDU commands, or
program space to use -1 instead of 255.

Beebug November 1985

similar,

first occurrence of the symbol, using
FIND, which places the cursor underneath
the {, and then type in the Tab. A Return
is typed in with |R and |T gives the Tab.
Finally, the DELETE AT removes the '{'
from the text. Remember that TYPE inserts
characters to the left of the cursor so
it's still under the {. This routine is
repeated until the end of text. However,
if you run this routine, you will find an
error. An extra Tab has been inserted at
EOT, so to stop this happening we must use
the FALSE command, and modify the fifth
line to:

IF EOT=FALSE THEN TYPE "|R|R|T"

In other words: 'if it isn't the end of
text type in the Tab'.

HINT: When using REPEAT~UNTIL loops, make
sure that you check for the SOT and EOT
otherwise the routine may 'lock-up' and/or

you may get unexpected results.

Wordwise Plus supports procedures.
These work very much as their Basic
counterparts, except that the name is not
defined with DEFPROC. Instead, it is
marked with a full stop. The procedure is
called in the same way as in Basic, so

'PROC start' would call a routine marked
with '.start' and run from there until
ENDPROC, at which point it returns to the

line following the PROC command. When
using procedures, they are usually put
after the end of the main routine to make
'debugging' easier. However, this does
mean that the program end must be marked
with an END command so that the computer
doesn't accidentally run on into a
procedure. Under other circumstances the
END command is entirely optional.

As a problem for next month, have a
look at the chapter-numbering routines
published on page 17 of the June 1985
BEEBUG (Vol.4 No.2) and convert them to a
single routine using procedures. You will
also need to insert questions, as we have
done here, so that the user can select
which 'sub-routine' he wants. ==

it is easier, quicker, and takes up less

=
25

o+IIfN=C

Hidden Line removal

Turn your wireframe displays
into solid-looking 3D objects
with this technique for hidden
line removal from Andrew
Barnes and Simon Cooke.

Representing 3D objects on micros is
usually restricted to wireframe drawings
(see 3D ROTATION, BEEBUG Vol.l No.19).
Wireframe drawings serve their purpose but
can be confusing. An obvious step nearer
to reality would be the removal of hidden
lines. However, the extra complexity of
achieving this 1is usually dismissed as a
task for mainframes.

This program will display a
perspective wireframe projection of any
suitable object from any angle about the
vertical and horizontal axes and then
optionally remove all the hidden lines
from the new display.

USING THE PROGRAM

When run, the program spends a short
time setting itself up to display the
defined object and then the user is

prompted to enter the orientation in which
the object is to be drawn, in the form:
angle of rotation about the object and
angle above the flat plane (both in
degrees). The object is then drawn - first

as a wireframe diagram and then with hidden lines
removed if desired, always with true perspective.

When the hidden line display is being created you

co-ordinates for each point. Then cames
the data to define how these points are
linked to form surfaces. Each surface is
entered as the point numbers, in order
around the edge of the surface, separated
by a hyphen. The data for each surface is
separated by a comma. Note that the
starting and finishing point of the
surface need only be entered once.

A surface may be defined with any
number of points, but to simplify the
program, defined surfaces may not contain
intruding points. However, such surfaces
may still be catered for by entering them
as two or more separate surfaces (which
the program can handle) joined without the
normal joining line (see diagram).

To specify such a join, the hyphen
between the 'missing' 1line's two end
points should be replaced by a full stop.
This process may seem complex but should
be made clearer by an example: The surface
in the diagram could be represented by:

0-1-2. , 7.5-6- , 3-2.0-5.7-4-

When testing or debugging the program it
is a good idea to add a 'DATA END'
statement early on to reduce the amount of
data which the program has to handle and
speed up test runs. The data provided in
the listing here will produce a display of
a house.

ALGORITHM

Taken at its simplest, the program
must draw the faces of an object which lie
at the back first and the ones nearest
last, to conceal the lines which should
not be visible by filling in each face as

Rotation:10 Elevation: 60

can halt the image generation by pressing the Shift
key and move on to the next step using the space bar.
It will soon become obvious how much clearer even a
simple object can become when it is drawn as a solid
in this way. If you want a printout of the display at
any time, Escape will activate the screen dump if one
has been included (line 2890).

DEFINING AN OBJECT

The object is defined in DATA statements at the
end of the program. Lines 2920 and 3000 must be
included in any data, preceeding the point data and
surface data. The first part of the data defines
points on the shape in the form 'X,Y,Z'. Firstly, the
number of points must be given, in line 293¢ (39 in
this example). This should be followed by the X,Y,Z

26

View from (Rotation,Elevation):

m—

Intruding points

it is drawn. The obvious problem is how a
computer can tell where surfaces lie in
relation to the observer and each other in
a useful way, and then decide on the order
in which to draw them. The method
described here roughly follows the pattern
of a recursive sort where 'in front of'
and 'behind' replace 'less than' and
'greater than'.

The algorithm used starts with an
un-ordered list of the surfaces. From this
list a surface is selected such that no
other surface has points both in front and
behind the chosen surface. If this is not
possible, any surface can be chosen, but
each other surface which has points lying
on both sides of the chosen surface has to
be split into two parts, one 'in front'
and one 'behind'. These two new surfaces
replace the original one in the list. The
list is then rearranged to consist of
first those behind the chosen surface,
then the surface itself and those in the
same plane, and finally those 1lying in
front. This is effectively taking the
whole shape and splitting it into two
shapes, one of which is behind the chosen
surface (drawn first) and the other in
front (drawn last). The parts of the list
corresponding to each 'new' shape must now
be sorted using the same method as before.
Since these new shapes can themselves be
split to form new shapes the procedure
lends itself to recursion. The whole
process ends when each new 'shape'
consists of only one surface. The surfaces
are then drawn in the order given by this
sorted list.

PROGRAM NOTES

Main procedures:

PROCgetdata reads the data. Definitions of
points are read into arrays X,Y and Z,
and definitions of surfaces are read
into memory starting from pldef%.

PROCeq calculates coefficients of equat-
ions of planes, in arrays A%,B%,C%,D%.

Beebug November 1985

PROCmc sets up two short machine code
routines, rd and wr, which are used to
quickly access the 'bit compressed'
table (stored in memory arr%) of
relationships between surfaces.

PROCarray sets up the table starting at
arr%. The table is effectively a two
dimensional array with which the
numbers of two surfaces are used to
look up a two bit element determ—
ining their relationship in space.

PROCtransform(th,ph) rotates all points by
th degrees about the vertical axis of
the display and ph degrees about the
horizontal axis, and carries out a
perspective transformation leaving the
resulting co-ordinates in arrays X%
and Y%.

PROCoutline (A%,col%) draws
surface A% in colour, col%.

PROCorder (F%,T%) sorts part of the array
'list' starting at F% and ending at
T%. Using the surfaces between these
limits it selects one and sorts the
other surfaces into those in front and
those behind. It then calls itself
twice to sort out these sub-sections
of the list.

PROCdraw (A%) draws surface A%.

PROCrel (X%,Y%) works out relation between
two surfaces and stores it in an
array.

FNside(A%,B%,D%) returns TRUE if surface
B% is on the side of surface A%
specified in D%.

PROCdivideAbyB (A%,B%) splits surface A% in
two along the plane of surface B%.

FNsplit(pl%,p2%,m,n)
calculates a point which divides the
line between the points pl% and p2% in
the ratio m:n and transforms it.

PROCscreendump a call to a screendump
routine (e.g. *GDUMP) inserted at line
2910 is initiated by pressing Escape.

outline of

10 REM Program 3D Hidden line removal
20 REM Version B1.0

30 REM Authors S. Cooke & A. Barnes
40 REM BEEBUG Nov 1985

50 REM Program subject to cooyright

109 MODE4

110 scale=700:dist=200

120 mp3=100:mpl%=100

130 DIMX?% (mp%) ,Y% (mp%)

140 DIMX (mp%) ,Y (mp%) ,Z (mp%)

150 DIMpldefs%500,pp% (mpl%) :pptr%=0:np

160 DIMlist%mpl%,list2%mpl%
170 DIMVrel%mpl%

27

180 DIMegn¥mpl$,col$ (mpl%)
190 s
200 vDU29,640;512;28,0,31,39,29,24,-64
9;-416;639;479;
210 PROCgetdata
220 pnpls%=npls%:pnpts¥=npts?
230 scale=700:dist=200
24@ PROCtransform(30,40)
250 FORA%=@TOnpls%-1:PROCoutline (A%,1)
:NEXT
260 :
270 neg¥=npls%
280 DIMA% (neq%-1) ,B% (neq%-1) ,C% (neq%-1
) ID% (neq%‘])
299 PROCeq
300 DIMarr3mpl?%* (neq%-1)DIV4
310 DIMmc%200
320 PROCmc
330 PROCarray
340 :
350 ONERROR IF FNerror END ELSEGOTO350
360 REPEAT
370 CLS:INPUT"View from (Rotation,Elev
ation) :"rot,elev
380 vpU28,0,0,39,0,12:PRINT;" Rotation
:";rot,"Elevation: ";elev;:VDU28,4,31,39,
29,10
390 npls%=pnpls%:npts¥=pnpts%
400 PROCtransform(rot,elev)
410 CLG
420 FORA%=0TOnpls%-1
430 1ist%?A%=A%:PROCoutline(A%,1)
440 Vrel%?A%=(SGN (A% (A%) *Vx+B% (A%) *Vy+
C% (A%) *Vz+D% (A%)) +1)DIV2
450 NEXT
460 CLS:PRINT"Remove hidden lines? (Y/
N):"; :REPEATAS=GETS$: UNTILAS="N"ORAS="Y":
IFAS="N" GOT0370
470 PRINT''"Please wait"'"(Shift to ha
1lt. Space for next surface)"
480 1t%=npls%
490 TS=0
500 PROCorder (4,npls%)
510 CLG:*FX15
520 FORA%=@TO1t%-1:PROCAraw (list%?A%):
IF INKEY (-1) THEN REPEAT UNTIL GET=32
530 NEXT A%
540 UNTILFALSE
55¢ &
1000 DEF PROCgetdata
1010 PRINTTAB (15) "Please wait"
1020 READptS:IFLEFTS (pt$,10)<>"Point da
ta" STOP
1030 READnpts%
1040 FORA%=0TOnpts%-1:READX (A%) ,Y (A%),Z
(A%) :NEXT
105@0 READpl$:IFLEFTS (pl$,12)<>"Surface
data" STOP
1060 pp% (npls?)=pptr%
1078 C%=0

28

1080 eqn%?npls%=npls$

1099 READpS: IFpS$="END" ENDPROC

1100 REPEAT

1110 pldefs%?pptr3=VALLEFTS (p$, INSTR (p$
+".", """ -1) ipptré=pptr¥+l

1120 REPEATPS=MIDS (p$,2) : UNTILASCP$=ASC
wo "ORASCPs=ASC" . “ORp$=" "

1130 IFASCpS$=ASC"." C%=C%+CRELSEC%=C%+C
%+1

1140 pS$=MID$ (p$,2) :UNTILpS=""

1150 col% (npls%)=C%:npls%=npls%+1:pp%(n
pls%)=pptr%

1160 GOTO197¢

1178 2

1180 DEF PROCeq

1199 FORN%=0TOnpls%-1

1200 p%=pp% (N%)

1210 x%=X (pldefs3?p?) :y%=Y (pldefs%?p%):
2%=7 (pldefs?¥?p3)

1220 A% (N?)= (Y (pldefs??(p%+1))-y3) *(Z (p
1defs%? (p%+2))-2%) - (Y (pldefs$? (p%+2)) -y%
) * (Z (pldefs%? (p%+1)) -2%)

1230 B% (N%)=(Z (pldefs%¥?(p%+1))-z3%) * (X (p
1ldefs%? (p%+2)) -x%) - (Z (pldefs%? (p%+2)) -z%
) * (X (pldefs%? (p%+1)) —x%)

1240 C% (N%)= (X (pldefs%? (p%+1))-x%) * (Y (p
1defs$? (p%+2)) -y%) - (X (pldefs%? (p¥+2)) —x3
) * (Y (pldefs®? (p%+1))-y%)

1250 D% (N%)=-A% (N%) *x%-B% (N%) *y%-C% (N3)
*z%

1260 NEXT

1279 ENDPROC

1280 :

1290 DEFPROCmC

1300 FORpas$=@TO2STEP2:P%=mc%: [OPTpas$

1310 .rxd

1320 LDA&448:STA&70:LDA&449:LSRA:ROR&70
:LSRA:ROR&70:STA&71:LDA&7@:CLC:ADC #arr$%
MOD256: STA&72:LDA&71 : ADC#arr3DIV256: STA&
73:LDY#@:LDA (&72) ,Y:STA&74

1330 LDA&448:AND#3:TAY:LDA&74

1340 CPY#0:BEQrts:.loop:LSRA:LSRA:DEY:B
NEloop:.rts:RTS

1350 .wr

1360 LDA&448:STA&7@:LDA&449:LSRA:ROR&7D
:LSRA:ROR&7@:STA&71:LDA&7d :CLC :ADC#arriM
0D256:STA&72:LDA&71 : ADC#arr3DIV256: STA&T
3:LDY#0:LDA (&72) ,Y:STA&74

1370 LDA#3:STA&7@:LDA&444:STA&T7

1380 LDA&448:AND#3:TAY

1390 CPY#0:BEQmsk:.loop:ASL&7@:ASL&7D:A
SL&71:ASL&71:DEY :BNEloop: .msk

1400 LDA&70:EOR#&FF :AND&74 :ORA&71 :LDY#0
:STA (&72) ,Y:RTS

1410]:NEXT

1420 ENDPROC

1430 :

1440 DEF PROCarray

145@0 FORX%=0TOneq3-1

1460 PRINT;neq%-X%;" ";

1470 PROCeqn (X%)

1480 FORY%=@TOnpls%-1

1490 P3=pp% (Y%) :R¥=X%¥+neq3*Y%:Q%=0

1500 REPEATN%=pldefs%?P%:Q%=Q%0R ((SGN (c
A%*X (N%)+cB3*Y (N%)+cC%*Z (N%) +cD%) +3)MOD3
) :P$=P%+1 : UNTILQ%=30RP%=pp% (Y3+1)

1510 CALLwr

1520 NEXT:NEXT:CLS : ENDPROC

1530 :

1540 DEF PROCrel (X$,Y%)

155¢ LOCALP%,Q%

1560 P%=pp% (Y%)

1570 Q%=0

1580 REPEAT:Q%=Q%0R ((SGNFNeq (pldefs%?P%
) +3)MOD3) : P%=P%+1: UNTILQ%=30RP%=pp% (Y %+1
)

1590 R%=X%+neq%*Y%:CALLwr : ENDPROC

1600 ENDPROC

1610 :

1620 DEFPROCorder (F%,T%)

1630 LOCALT1%

1640 IFF%+1>=T% ENDPROC

1650 E%=F%

1660 REPEATX%=eqn%?(list%?E%) :EX=E%+1

1670 P%=F%:REPEATR%=X%tneq%*1ist%?P%:P%
=P%+1:UNTIL (USRrd AND3)=30RP%=T%

1680 UNTIL (P%=T%AND (USRrd AND3)<>3)ORE%
=T%

1690 FORP%=0TOT%-F%-1:11st2%?P%=1ist%?(
P%+F%) :NEXT

1700 T2%=T%-F%

1710 IF (USRrd AND3)<>3 F1%=F%:T1%=F%+T2
%$:GOTO1770

1720 FORP%=@TOT%-F%-1:Y%=1ist2%?P%:R%=X
stneq3s*Y3

173@ IF (USRrd AND3)=3 PROCAivideAbyB (Y%
,X%) :1ist2%?2T2%=npls¥-1:T2%=T2%+1:1ist2%
?P%=npls%-2

1740 NEXT

1750 F1%=F%:T1%=F%+T2%

1760 FORP%=1t%-T%-1TO@STEP-1:1ist%? (P%+
T1%)=1ist%? (P%+T%) :NEXT: 1t%=1t%+T1%-T%:T
$=T1%

1770 FORP%=QTOT%-F%-1:Y%=1ist2%?P%:R%=X
$tneq?*yY3

178@ IF (USRrd AND3)=Vrel®?X%+1 1list%?F1

Y% :F1%=F1%+1
179@ IF (USRrd AND3)=2-Vrel%?X% T1%=T1%-

Rotation:38

Rotation:30

Plesse wait
CRIFE ¥ hare. space for

1:1ist%?T13=Y%

1800 NEXT

1810 N%=F1%

1820 FORP%=QTOT%-F%-1:Y%=1ist2%?P%:R%=X
Ftneq?*Y$

1830 IF (USRrd AND3)=0 1ist%?N%=Y%:N%=N
+1

1840 NEXT

1850 IFN%$<>T1% STOP

1860 T1%=T1%-1t%:T%=T%-1t%

187¢ IFF1%-F%>1:PROCorder (F%,F1%)

1880 IFT%-T1%>1:PROCorder (1t%+T1%,1t3+T
%)

1890 ENDPROC

1900 :

1910 DEF FNside (A%,B%,D%)

1920 LOCALN%,P%

1930 s%=0

1940 cA%=A% (egqn%?A%) : cB%=B% (eqn%?A%) : cC
$=C% (eqn??A%) :cD%=D% (eqn%?A%)

1950 vS%=SGN (CA%*Vx+cB%*Vy+cC%*Vz+cD%)

1960 N%=pp% (B%)

1970 pS%=SGN (FNeq (pldefs3?N%))

1980 IFvS%=0 vS%=D3%*pS%

1990 IFvS%*pS%=-D%:tt=tt+TIME-t:=FALSE

2000 N%=N%+1:IFN%<pp? (B%+1) GOTO1970

2010 =TRUE

2029 :

2030 DEF PROCdraw (A%)

2040 LOCALCS

2050 GCOL@,1

2060 start%=pldefs%+pp% (A%

2070 X0%=X% (?start?) :YQ%=Y% (?start?) :MO
VEX% (start%?1) ,Y% (start%?1) :MOVEX0%,Y0%

2080 FORZ%=2TOpp% (A%+1)-pp% (A%)-1:PLOT8
5,X% (start%?2%) ,Y% (start%?2%) :MOVEX0%, Y0
% :NEXT

2090 PROCoutline (A%, @) : ENDPROC

2100 DEFPROCoutline (A%,col%):GCOL@,col%

2110 C%=col% (A%)

2120 MOVEX% (pldefs%?pp% (A%)) ,Y% (pldefs?
?pp% (A%)) :FORB%=pp% (A%+1) -1TOpp% (A%) STEP
—-1:PLOT4+ (C3AND1) ,X% (pldefs%?B%) ,Y% (plde
fs%7B%) :C¥=C%DIV2:NEXT

2130 ENDPROC

2140 :

215¢ DEF PROCtransform(th,oh)

2160 Cth=COSRADth:Sth=SINRADth

217¢ Cph=COSRADph:Sph=SINRADph

2180 FORA%=0TOnpts%-1:PROCtrans (A%) :NEX
T

2190 Vz=dist*Cph:Vy=dist*Sph:Vx=Vz*Sth:
Vz=Vz*Cth

2200 ENDPROC

2210 :

2220 DEF PROCtrans (A

2230 721=7 (A%) *Cth+X (

(
)
*

o\

2240 X=-7 (A%) *Sth+X
2250 Y=-71*Sph+Y (A%
2260 7=721*Cph+Y (A%)

29

|
I
1
|
|
|
|
|
|
|
I
|
|
|
|
|
|
{f

2270 S=scale/(dist-2z)

2280 X% (A%)=X*S:Y% (A%)=Y*S

2299 ENDPROC

2300 :

2310 DEF PROCeqn (N%)

2320 cA%=A% (N%) :cB%=B% (N%) :cC3%=C% (N%) :c
D%=D% (N%) : ENDPROC

233012

2340 DEF PROCdivideAbyB (A%,B%)

2350 TIME=0

2360 LOCALN%,M%

2370 Co%=col% (A%) :Cn%=0

2380 PROCeqn (B%)

2390 np%=pp% (A%+1)-pp3 (A%)

2400 ct%=2" (np%-1)

2410 start%=pp% (A%)+pldefs?

2420 nextpt%=pp% (npls?)

2430 ol1%=-1:02%=-1

2440 d2=FNeq (start%?0) :s2=SGNd2

2450 FORN%=0TOnp%-1

2460 M%= (N%+1)MODnp%

2479 dA1=d2:sl1=s2

2480 d2=FNeq (start%?M%) :s2=SGNd2

2499 1Fs1=0 pldefs%?nextpt¥=start¥?N%:C
n%=Cn%+Cn%:nextpt¥=nextpt%+1

2500 pldefs%?nextpt¥=start¥?N%:Cn¥=Cn%+
Cn%- ((Co%ANDct%) <>0) :nextpt¥=nextpt?+1:1
Fs1=0:01%=02%:02%=nextpt%-1

2510 IFsl*s2=-1 pldefs%?nextpt%=FNsplit
(start%?N%, start¥?M%,dl,d2) :Cn¥=Cn%+Cn%:
nextpt¥=nextpt%+1:pldefs%?nextpt¥=pldefs
%? (nextpt%-1) :Cn%=Cn%+Cn%- ((Co3ANDct%) <>
7) :nextpt%=nextpt%+1:01%=02%:02%=nextpt?
-1

2520 Co%=Co%+Co%

2530 NEXT

2540 FORN$=0TOo1 $-pp% (npls?)-1:pldefs??
(nextpt%+N%)=pldefs%? (pp% (npls?) +N%) :NEX

T

2550 FORN%=pp% (npls%)TOnextpt¥-1:pldefs
$N%=pldefs%? (N¥+ol %-pp% (npls?)) :NEXT
256@ Cn%=(Cn3%DIV (2" (nextpt%-02%)))+2" (o
2%-pp% (npls¥)) * (Cn3MOD (2" (nextpt%-02%)))
2570 npls%=npls%+1:pp% (npls%)=pp% (npls?
-1)+02%-01%

2580 col% (npls%-1)=Cn%AND (2" (02%-01%)-1
)

2590 eqn%?(npls%-1)=eqn¥?A%

2600 npls%=npls%+1:pp% (npls%)=nextpt?
2610 Cn%=Cn%DIV (2" (02%-01%))

2620 col% (npls%-1)=Cn%AND (2" (nextpt%-02
%+ol %-pp% (npls%-3))-1)

2630 eqn%?(npls%-1)=eqn%?A%

2640 LOCALX%

2650 FORX%=0TOneq%-1

2660 R%=X%+neq%*A%

2670 Q%= (USRrd AND3):IFQ%<>3:R%¥=X%+neq?%
* (npls%-2) :CALLwr : R¥=R%+neq% :CALLwr : GOTO
2710

30

2680 PROCeqn (X%)

2690 PROCrel (X%,npls%-2)

2709 PROCrel (X%,npls%-1)

2710 NEXT

2720 ENDPROC

2730 »

2740 DEFFNsplit (pl%,p2%,m,n)

2750 X (npts%)=(m*X (p2%)-n*X (p1%)) /(m-n)
276@ Y (npts%)= (m*Y (p2%) -n*Y (p1%))/ (m-n)
2770 7 (npts¥)=(m*Z (p2%)-n*Z (p1%))/ (m-n)
2780 PROCtrans (npts$%)

2790 npts¥=npts%+1:=npts?-1

2800 :

2810 DEFFNeq (P%)

2820 LOCALn:n=cA%*X (P%)+cB%*Y (P%)+cC%*Z
(P%)+cD%: IFABSNK. 1:=0ELSE=n

2830 :

2840 DEFFNerror

2850 IFERR=17 PROCscreendump:=FALSE
2860 REPORT:PRINT;" at line ";ERL:=TRUE
2870 :

2880 DEFPROCscreendump

2890 REM Insert call to screendump here
2900 ENDPROC

2910 :

2920 DATA Point data

2930 DATA39

2940 DATA100,50,40,100,50,-40,50,50 ,-40
,50,508,-25,-50,50,-25,-5@,59,-85,-100,50
,—85,-100,50,40

295¢ DATA100,0,40,100,0,-40,50,0,-40,50
,9,-25,-19,9,-25,-50,0,-85,-100,0,-85,-1
00,0,40,-50,0,40,-10,0,40

2960 DATA-10,30,-25,-50,30,-25,-50,30,4
9,-10,30,49,20,39,40,20,30,80,65,30,80,6
5,30,40

2970 DpATA-75,65,9,75,65,9,75,65,-40,-75
,65,-85,42,40,40

2980 DATA2¢,0,80,65,0,80,65,9,40,20,0,4
[’}

2990 DATA-65,20,40,-65,30,40,-85,30,40,
-85,20,40

3000 DATA Surface data

3010 DATA8-9-10-11,,11-12-17-34,33-8.,3
4-31-32-33,,13-14-15-16-

3¢2¢ DATA6-7-15-14-,5-29-6-14-13-,0-1-9
-8,1-28-2-10-9,2-3-11-10

3¢3¢ DATA13-16-20-19.,13-5-4-19,,3-4-19
-18.,18-12-11-3.

3040 DATA12-17-21-18-,18-19-20-21-

3050 DATA30-22-23-,30-23-24-,30-24-25-,
31-34-22-23-,32-33-25-24-

3060 DATA7-9.30.,30.21,22-,22-34-17-21,
,9.25-30.,0.25-33-8-

3970 DATA7.37-36.20-21.30.,16.35-36,20-
,15.38-35,16-,15.38-37.7-

3080 DATA6-7-26-29-,4-5-29-26-,3-4-26-2
7-,7-26=-27-0-,0-1-28-27-,2-3-27-28-

3099 DATA END

&
Beebug November 1985

COMPUTER CONCEPTS
SPEAKS OUT

% Despite its early
"' promise, speech syn-

thesis still seems often to
be in its infancy on the Beeb.
Now, with the advent of the latest
Speech ROM from Computer
Concepts, the infant is beginning
to talk intelligibly. Alan Webster
answers back.

Product : Speech ROM

Supplier : Computer Concepts, Gaddesden
Place, Hemel Hempstead,
Herts HP2 6EX.
0442-63933

Price 5 £33.35

To be quite honest, I had never been
very impressed with 'computer speech',
until I heard the Acorn speech PHROM, with
good o0ld Kenneth Kendall muttering his
cultured tones at me. That was around two
years ago now, and at that point I thought
that Acorn were on to a winner.
Unfortunately, nothing significant has
really happened since then, other than a
few 'Speech ROMs' which have claimed much,
but often turned out to do little more
than help Doctor Who understand the
Daleks!

To use this new speech ROM on the
Beeb, you need the Texas Instruments
TMS5220 speech synthesis chip as well, to
plug into socket IC99. The TMS5220 is NOT
included in the package, so if you haven't
got Acorn's original speech system (which
contained the TMS5220) then you will need
to buy one of these at an extra cost of
about £10.00.

The speech ROM is activated by first
plugging it into one of the sideways ROM
sockets, and then typing the command *SPON
to initialise it. Once this has been done,
you must press the Break key to allow the
machine to reserve two pages of memory for
the speech ROM's workspace.

Beebug November 1985

There are four commands to control the
speech from your Beeb. The *UTTER command
allows the user to specify one of 24 tones
in which the speech is to be heard, and
the phonemes which are to be pronounced.
The *SING command must be followed by a
pitch (from A-G and from one of three
octaves), and the note length.

*VOICE is wused to set the overall
pitch of the speech, with five settings
from High to Low. *SYNC allows synchroniz-
ation between speech and Basic program.

The vocabulary contains 20 vowel
sounds and 24 consonant sounds, which when
combined can make up a whole word or even
sentences. As an example, consider how to
make the Beeb pronounce the phrase 'one
two three'. You would have to type:

*UTTER<KI> W tu N @ T +00 @ TH R +E

I found it quite easy to build up
phrases, the most difficult part being in
getting the intonation and stresses right.
One small omission was that the package
contains no phoneme editor, to allow you
to create your own sourds.

Editing long sentences can prove
tedious and difficult, so Computer
Concepts provide, in the manual, a short
utility to run in Wordwise-Plus that makes
life a lot easier.

The manual supplied with the ROM is
certainly comprehensive and is laid out
simply and clearly. It starts off by
showing how to initialise the ROM and
gives a few well chosen examples to begin
with. The quality of speech is quite good,
but often only if you know what the
processor is going to say! We tested out
some of the phrases given in the manual on
various members of staff at BEEBUG.
Obvious phrases like 'BBC Microcomputer'
were recognised, but more difficult ones
like 'hot summer', which sounded as though
summer had been spelt 'sunger', were often
incomprehensible.

Overall, the price seems high for what
can be achieved. The results are not
helped either by the relatively poor
quality of the Beeb's internal speaker.
However, speech synthesis seems to be
catching on, and this 1is certainly the

most comprehensive and best 'toolkit' for
speech available at the moment. 5=
31

|
I

T
55

| 0 D Y Y A [0 I M

5 0 505 2 P I A

A 2 e
Jafal ol

i

=l

|

L

T
I

I
[

I TT7

IEEE

|
|

| T T

T S O

32

Virtual Arrays

Running out of space for all those arrays in your
programs? Surac takes a leaf out of the mainframes’
book and explains how arrays can be expanded
beyond the normal memory limitations.

This month, we return
to the theme of the
Beeb's shortage of
memory. In particular,
there is not enough room
for very large arrays,
such as you might want in
a program handling marks
or scores, or in a data-
base. However, if you
have a disc drive, you
can create and use random
access files which, in
some ways, you can use as
slow arrays. These are
called "virtual arrays".

Normally, we think of
disc files as being for
program storage, or as

sequential files. The
latter, which you can
also use with a tape
system, contain data
written in order by a

program and which another
program will read back in
exactly the same order.
However, a disc system
also has the PTR#
command, specifying ex-
actly where in a file an
item of data is to be
written or read. If each
item of data is of a
known size, then we can
go straight to any
particular one. For
instance, if each data
item occupies 20 bytes,
then item 100 is 2000
bytes from the start.

VIRTUAL ARRAYS

Suppose that we want
a virtual array equiv-
alent to Basic's:

DIM array (20@,50)
The first thing 1is to
find how big a file we

need to hold that much data. The array
contains 201*51 (numbering starts at zero,
remember) floating point (FP) numbers.
Since a disc file uses 6 bytes to store an
FP number, that means a total of 201%*51%*6,
or 61506 bytes.

To create the file, we need the hex
equivalent of that number - wuse PRINT
61506 to calculate it. It's &F@42, so:

*SAVE <filename> @ +F@42
will create a file of the correct size. At
this stage, the file actually holds the
contents of most of the Beeb's memory, but
that will be soon overwritten.

Before you can use the virtual array,
you must open the file for reading and
writing using F%=OPENIN ("filename") in
Basic I, or F%=OPENUP ("filename") in Basic

II. Once the file is open, you can write
to and read from it with the following
routines:

Virtual Array Routines

10000 DEF PROCwritearray
(fileno%,x%,y%,value)

10010 LOCAL posn%
10020 posn%= (x3*Ydim$+y%) *6
10030 PTR#fileno%=posn%
10040 PRINT#fileno%,value
10050 ENDPROC

11000 DEF FNreadarray

(fileno%,x%,y%)
11910 LOCAL posn$%,value
11020 posn%= (x3*Ydim%+y%) *6
11030 PTR#fileno%=posn%
11040 INPUT#fileno%,value
11050 =value

Using these routines,

array(nl,n2)=value is:
PROCwritearray (F%,nl,n2,value)

and value=array(nl,n2) is duplicated by:
value=FNreadarray (F%,nl,n2)

Both cases assume that F% holds the

channel number set by OPENIN/UP. If you've

used another variable, pass that to the

procedure and function.

Beebug November 1985

the equivalent of

The keys to the routines are lines
10020 and 11020, which calculate the
positions of the appropriate items in the
file. The PTR# statement then sets up to
read or write that value. The calculations
use the global variable "Ydim%", which
holds the number of items along the Y-axis
(second dimension) of the virtual array.
Set this variable to the correct value -
in the example, it is 51 (9-50).

DATABASE FILES

As an alternative, you may want to
hold database information. Suppose you run
a club and need, say, data about the
members' names, addresses, membership
numbers and scores in a club competition.
It's too much to hold in RAM but you need
to get to any item. This is a perfect
application for a random-access file.

First, work out how big the file must
be. These files only work if every record
is the same size - without that, you
cannot calculate where any particular
record 1is. Let's allow 20 characters for
the name, an address of three 2@-character
fields and an 8-character postcode, plus
an integer membership number and FP score.

The DFS stores strings in their length
plus 2 bytes, integers in 5 bytes and FP
numbers in 6 (see page 328 of the User
Guide). Each record thus has 7 fields and
occupies (4*22+10+5+6), i.e. 111, bytes.
If we have 200 members, we need a file of
22200 (&56B8) bytes, so create a file for
our use with:

*SAVE D.MEMFILE @ +56B8

Once that's done, OPENIN/UP the file
and try the database routines. The
procedures are similar to the ones for
virtual arrays, but transfer data from and
to global variables such as "name$" and
"membno%". In practice, of course, you
would use your own variables. In use, set

"reclen?" to the size of each record (111
in this case). Thus, to get the 32nd
record use:

PROCreadfile(F%,32,111)

Note FNpad and FNdepad. The first

forces a string to a fixed size by either
truncating it or adding spaces to it,
while the second strips trailing spaces
from a string. They ensure that all the

records are the same size.

Beebug November 1985

Database Routines

12000 DEF PROCsavefile
, (fileno%, index$%, reclen%)

12010 LOCAL posn%

12020 posn%=index%*reclen%

12030 PTR#fileno%=posn%

12040 PRINT#£ileno%,FNpad (name$, 20) ,

' ~ FNpad (addl$,20) ,FNpad (add2$,20) ,
~ FNpad (add3$,20) ,FNpad (pcode$, 8) ,

membno%, score
12050 ENDPROC

13000 DEF PROCreadfile
 (fileno%, index%,reclen%)

13010 LOCAL posn%

13020 posn%=index%*reclen%

13030 PTR#fileno%=posn%

13040 INPUT#fileno%,name$,addls,
add2$,add3$,pcode$,

; membno%, score

13050 name$=FNdepad$ (name$)

13060 addl$=FNdepad (addl1$)

13070 add2$=FNdepad (add2$)

13080 add3$=FNdepad (add3$)

lg?% pcodesmFNdepad (pcode$)

13100

20000 DEF FNpad(str$,len%)

20010 LOCAL strlen%

20020 strlen%=LEN (str$)

20030 IF strlen%<len% THEN str$=str$
+STRINGS ((len%-strlen3)," ")
ELSE str$=LEFTS (str$,len%)

20040 =str$

21000 DEF FNdepad (str$)

21010 str$=strS+™ "

21020 REPEAT

21036 str$=LEFTS (str$,LEN (str$)-1)
21040 UNTIL RIGHTS (str$,1)<o" "

21050 =str$

Inevitably, the routines above, and
modifications of them, are very much
slower than in-memory arrays, hardly
surprising when you consider how hard the
disc drive is working. For instance, in
the first case, random virtual array
elements are written at about 1 per sec
and read at 2 per sec. Overall throughput,
though, is much faster when the records
are addressed in order.

Note, because the DFS uses a part of
memory for disc transfers, some virtual

array or database accesses may be
satisfied from this buffer area and
require no physical disc access at that
time. EEE

33

Acornsoft claims that the
latest release in the View
family sets new standards
for database packages on
the Beeb. Peter Rochford
has been investigating
and reports with some
enthusiasm.

-

Product : ViewStore Database
: Manager
Supplier : Acornsoft,

645 Newmarket Road,
Cambridge CB35 8PD.
Tel: 0223-214411

Price : £58.90

After a
finally released the database manager we

long wait, Acornsoft has
all knew must eventually arrive to
complete the View 'family'.

Like the word processor (View) and the
spreadsheet (ViewSheet), ViewStore is
supplied on a ROM to be plugged into one
of the paged ROM sockets on the BBC micro.

It comes in the usual smart Acornsoft
packaging complete with a 115 page manual,
reference card, keystrip, utilities disc
and fitting instructions.

ViewStore is a random access database
and as such will not work with the
cassette filing system. It will, however,
operate with the DFS, NFS and the new
ADFS. The ability to operate with the ADFS
means that it can also be used with Acorn
Winchester hard disc drives and should
also work on an Electron with Plus 3. I
should point out that ViewStore does not
work very well with the old Acorn @.9 DFS
and Acornsoft advise the fitting of the
latest Acorn DNFS 1.2.

Apart from working with the standard
model B BBC computer and the model B+,
ViewStore will work with the 6502 second
processor and with shadow RAM boards such
as the Aries B-20 and new B-32.

Maximum file size in ViewStore is a

staggering 4096 megabytes! In reality, the
maximum file size is dictated by the drive

34

Cambndge Technopark,

connected to the computer. With the
standard Acorn DFS, ViewStore has the
drawback of only being able to utilize one
disc surface for a datafile. This is
unlike, say, Starbase or Datagem where
multiple disc surfaces may be used as one
continuous file. Using the ADFS with a
double sided drive, however, will allow up
to 720K. A Winchester gives between 10 and
30 megabytes.

Leaving aside this drawback of file
size with the DFS, the rest of the speci-
fication of ViewStore reads like no other
database yet released for the BBC micro.

Maximum record size is 60K in theory, but
limited by the screen mode that you choose
to operate in. Yes, ViewStore will operate
in any of the BBC's screen modes.

The maximum number of fields allowed
is 254, and the maximum field size is 239
characters. Unlike other databases I have
used, ViewStore operates both with the
usual card layout and a spreadsheet layout
too.

In spreadsheet layout, the screen
scrolls sideways field-by-field, and
up-and-down from record to record using
the cursor keys. The displayed width of
each field can be set by the user so
although the field may be up to 239
characters, you can arrange to display
only the part you generally need to see.
Thus more fields can be accommodated on
the screen at one time. Should you need to
see the rest of the characters in the
field, ViewStore has the unusual facility
of letting you scroll the field window
back and forth.

Each field can be given a title or
referred to by number. Should you name the
field you are restricted to 15 characters
but this is no problem as ViewStore allows
you to enter a description of the contents
of the field at the time you set up the
database. This can be up to 79 characters
long and is displayed at the top of the
screen as you move from field to field.

each field can be
alphanumeric, textual, numeric, date or
American date. Data input validation is
defined by the user when setting up the
database, and as well as distinguishing
between text, numerical data and date, the
user can specify high and low limits to be
entered in a field. Furthermore, a list of

Beebug November 1985

The data in

the permitted entries in the field can be
specified too.

In card layout mode, the screen
displays the maximum number of records

that will fit. The design of the card
layout is determined by the user and is
effected by a system of marking and
placing, using the cursor keys.

ViewStore is entered by typing *STORE
which takes you to the command screen as
in View and ViewSheet. The various files
used in ViewStore are kept in certain
directories and via the PREFIX command you
can tell ViewStore which drives they are
stored on.

To create a new database, a utility
called SETUP is used. This puts a blank
data file and format file onto the disc.
When loaded into ViewStore you go to the
edit mode and then enter the details for
the format of the database and the header.
This determines the layout of the database
as regards fields, indexes, key width for
sorting, and data validation. After this
has been done you can enter your data.

One of the benefits of having separate
format and datafiles, as in ViewStore, is
that you may create as many format files
as you require to operate on one set of
data.

Your datafiles can also be changed in
ViewStore, with the CONVERT utility. This
allows the size of a datafile to be
increased or decreased and permits the
size of each record within that file to be
changed also.

The IMPORT utility is designed to
convert datafiles from other databases so
that they can be read into ViewStore. This
is an excellent idea and 1in practice
worked with all the files I attempted to
convert from other databases provided they
were in ASCII format.

Searching for records in ViewStore is
done using index files. Each field can
only be searched if it has its own index
file created. ViewStore allows up to 9
indexes which are continually updated, and
as many read-only as you require. The
read-only type are updated by the INDEX
utility whilst the updateable ones are
done automatically as records in the

Beebug November 1985

L speciiication and price |

database are changed or added.

Apart from indexed searching, View-
Store has a utility called SELECT to
create subsets of data. SELECT can be used
on any number of fields with AND, OR and
arithmetic operators also available. As
with many of the other operations in
ViewStore, leading and trailing wildcards
may be used too.

After the records have been selected,
they can be sorted, again on any number of
fields and with a key length of up to 250
characters. In use, I found the sorting in
ViewStore very fast indeed.

Subsets created by SELECT can be
CONVERTed into datafiles if required and
can also be used with the other utilities
in ViewStore.

Outputting the data from ViewStore can
be done to a SPOOL file or sent to a
printer. The REPORT utility can give you a
simple listing or one whose format is
user-defined. User-defined reports can be

made very complex with totalling and
subtotalling of numeric fields, and
calculations done using number registers.

The results can be sent to a linking file
and read into ViewSheet if desired. The
report can be in spreadsheet or card type
layout with text added, printer codes,
headers and page numbering.

Other forms of output from ViewStore
are via the other utilities supplied.
LABEL will print labels for mailing lists
etc., while MACRO produces macros for use
with View and LINK will extract numeric
data for reading into ViewSheet.

35

Indexed by entry
£=El ot Lock, ReRadio, F<Sp1it r seat,$-Sunef

Type §

Cap 998

ank

Ree 17.2

clurer Ay

tin R Kodel Kini Maytair

The manual supplied with ViewStore is
very comprehensive but requires careful
study. There is an example database called
CARS provided on the utilities disc, and a
large proportion of the manual is given
over to working with this to illustrate
all the features of ViewStore.

what is an extremely sophisticated and
powerful database, and unlike any other I
have used on the BBC micro.

ViewStore's one major drawback is its
ability to utilize only one disc surface
for a datafile, but then I blame the Acorn
DFS in this respect for not allowing
configuring of more than one disc surface,
and for being only single-density [An ADFS
upgrade is now available for the model B -
see News page].

Any other criticisms of ViewStore must
be regarded as nit-picking. Within the
constraints of the BBC's memory and filing
system, Mark Colton has produced a
remarkable piece of software and at £58.90
inc. VAT, it is excellent value for money.

ViewStore 1is not the simplest of
database packages to understand and some
time and effort will be needed to

appreciate fully what it is capable of.
Despite that, there is no doubt in my mind
that this is now the definitive database

VERDICT package for the BBC micro and the one that
In the space of this review I have all others will be judged against in the
really only outlined the main features of future. =5
AN BEEBUG FILER
6220 :

2000¢ DEF FNask (msg$)

20020 LOCAL A:PRINT msg$;

20040 REPEAT:A=INSTR ("YyNn" ,GETS) :UNTIL
A:IF A>2 THEN PRINT"N" ELSE PRINT"Y"
20060 =A

20089 :

20209 DEF PROCheader

2022¢ PROCwindowl :CLS

20240 IF open% THEN PROCinv (1) :PRINT STR
INGS (80," ") :PRINTTAB (5,0)"File: "F$;TAB
(28,0) "Number of records: "SPC(4-LEN (STR
S(rec-1)));rec-1:PROCinv ()

20260 PROCwindow?2: ENDPROC

20280

20400
20420
20440
20460
20480 :
20600 DEF PROCinv (on)

20620 IF on THEN COLOUR®:COLOUR129 ELSE
COLOUR1 :COLOUR128

DEF PROCwindowl :IFw=2 X=POS:Y=VPOS
vDU28,9,19,79,3:w=1:ENDPROC

DEF PROCwindow2:VDU28,4,24,79,21
VDU31,X,Y:w=2:ENDPROC

36

20640 ENDPROC

20660 :

30000 DEF PROCstar (p$)

30010 PROCwindowl :CLS:PROCoscli (p$) : PROC
window2

30020 PRINT"Press any key to continue";
30030 G=GET:PROCheader:PRINT

30040 ENDPROC

30050 :

30060
30070
30080
30090
30100 :
31000 DEF PROCerror

31010 IF ERR=17 THEN PROCwindow2:PRINT"C
ommand aborted":GOTO 140

DEF PROCoscli (Sos)

LOCAL X%,Y%

X%=0s:Y%=0s DIV 256:CALL &FFF7
ENDPROC

3192@ ON ERROR OFF

31030 PROCwindow2

31040 REPORT:PRINT" at ";ERL
3105@¢ PROCclose:VDU26:*FX4,0
31060 ENDPROC

=
Beebug November 1985

B4+IID=E

Programming
sideways

Following our project on
constructing an EPROM
programmer, J.P. Jakubovics
describes a utility for converting
your machine code programs to
sideways ROM or RAM.

With more and more users having
sideways ROM expansion boards, many of
them fitted with RAM, it is useful, as
well as interesting, to write your own
'sideways' software. To help such users,
and as a follow up to our recent articles
on building your own EPROM programmer
(BEEBUG Vol.4 Nos.4 and 5), we present two
programs to help aspiring ROM programmers
get started. The first program, in machine
code, is a skeleton ROM program which only
needs your own routines to be added. The
second program can be used to test the
code before 'blowing' it into an EPROM -
only needed by users who have no sideways
RAM.

HOW ROM SOFTWARE WORKS

There are two kinds of ROMs - language
ROMs and service ROMs. Language ROMs are
self-contained programs such as
programming languages, wordprocessors,
databases, etc. Service ROMs are
collections of machine code routines that
can be called, usually with a '* command',
from within a language. We are only
concerned here with the latter type of
ROM. More information on ROMs can be found
in the Advanced User Guide, page 317.

When the operating system encounters a
* command, either directly typed in from
the keyboard, or from a program, it passes
it to each ROM in turn. Each ROM then
decides whether to respond to the command
or to ignore it. There are two important
forms of * commands a ROM may encounter.
It may be a command name after the '*',
which may be followed by one or more
arguments (such as, for example, the
filename that follows *LOAD or *SAVE), or

Beebug November 1985

it may be *HELP optionally followed by a
name. The ROM can distinguish between the
two cases as, on entry to the ROM, the
accumulator contains 4 or 9 according to
whether a general or HELP command has been
encountered. The memory location
containing the beginning of the command is
pointed to by locations &F2 and &F3
together with the Y register, so that
LDA (&F2),Y can access the first character
of the command, and the rest of the
command may similarly be read by
incrementing the Y register. It will
already be apparent that the ROM has to
contain quite a lot of machine code just
to enable it to decode commands, before it
can even begin to respond to them.

A DESCRIPTION OF PROGRAM 1
Program 1 is a universal ROM header:

it contains all the code needed for the
ROM to respond to commands, including
*HELP, and it needs nothing more than the
actual text of the help messages and the
machine code routines to be appended to it
- any number of these up to 26. The header
enables the ROM to respond to commands
consisting of a single letter after the
'*', such as *A, *B, etc., with no full
stop. No distinction is made between upper
and lower case, and this 1is why the
maximum number of routines this ROM
program can accommodate is 26, It is
unlikely that these commands will conflict
with any commercial ROM software. If you
have any other ROM that does respond to a
single letter command, you should avoid
using that letter in your own ROM. (For
example the BEEBUGSOFT HELP ROM responds
to *H).
e em——

1 REM PROGRAM 1

2 REM VERSION B@.1

3 REM AUTHOR J.P.JAKUBOVICS

4 REM BEEBUG NOVEMBER

5 REM PROGRAM SUBJECT TO COPYRIGHT

62

10 MODE7

20 DIM help% (25) ,com% (25)

30 assemb%=&5C00

40 dest%=&8000

50 os%=dest%-assemb%

60 FOR I%=@ TO 25

70 help? (I3)=-0s%

80 com? (I1%)=-0s%

90 NEXT
100 title$="MYROM"
110 version$="1.00"
120 year$="1985"
130 author$="J.P.Jakubovics"

140 FOR 1I%=0 TO 2 STEP 2

150 P%=assemb%

160 [OPT I%

170 .start% BRK

180 BRK

190 BRK

200 JMP service%tos%

210 OPT FNequs (CHRS (&82)+CHRS (offpoint
E—ﬁtirt%)+CHR$1+tit1e$+CHR$0+“ "+version
)

220 .offpoint% BRK

230 OPT FNequs (" (C) "+year$+" "+author$

240 BRK

250 .genhelp% OPT FNequw (&D@D)

260 OPT FNequs ("HELP available on:"+CH
R$13)

270 .helptable%

280]

290 FOR J%=0 TO 25

300 [OPT 1%

310 OPT FNequw ((help% (J%)+0s%) AND &FF
FF)

320]

33@ NEXT

340 [OPT I%

350 .comtable%

360]

370 FOR J%=0 TO 25

389 [OPT I%

399 OPT FNequw ((com? (J%)+0s%) AND &FFF
F)

400]

410 NEXT

420 [OPT I%

430 .service% PHP

440 PHA

450 TXA

460 PHA

470 TYA

480 PHA

490 LDA &6F

500 PHA

510 LDA &6E

520 PHA

530 TSX

54¢ LDY &103,X

550 STY &6F

560 LDA &105,X

570 STA &6E

580 CLD

590 LDX #4

600 .save6% LDA &69,X

610 PHA

620 DEX

630 BNE save6%

640 LDA &6E

650 CMP #9

660 BNE nothelp$%

670 JMP help%+os%

38

680

700
o
720
739
740
750

779
780

.nothelp? CMP #4

BEQ

command?®

.norespexit?® LDX #&FA
.rest6% PLA

STA
INX
BNE
PLA
TAY
PLA
TAX
PLA
PLP
RTS

&70,X

rest6%

.command% JSR stripspaces%+os$

AND
cMp
BCC
CMP
BCS
SEC
SBC
ASL
TAX
LDA
BEQ
STA
LDA
CMP
BNE
STY

#&DF

#65
norespexit$
#91
norespexit?%

#65
A

comtable%+os%+1,X
norespexit?%

&6B

(&F2),Y

#13

notcr%

&6D

.comjump% STA &6C

LDA
STA
LDA

JMP

comtable%+os?,X

&6

&6E

&6F

(pull6%+os%-1) DIV 256
(pull6%+os%-1) MOD 256
&6D

&6C
(&62)

.notcr% CMP #32

BEQ
JMP

space?
norespexit%+os%

.space% JSR stripspaces%+os$

JMP

comjump$+os%

.help% JSR stripspaces%+os$%

CMP

#13

BNE helpname%

LDX
JSR

#0
&FFE7

wrtitle% LDA start%+os%+9,X

cMP

#40

BEQ endtitle$%

JSR
INX

&FFE3

Beebug November 1985

T T T o T e T T B Lo N L N R .

1280 BNE wrtitle%

1299 .endtitle% JSR &FFE7
1300 JMP norespexit?+os%
1310 .helpname% AND #&DF
1320 CMP #65

1330 BCS compz?

1340 JMP norespexit%®
1350 .compz% CMP #91

1360 BCC alpha%

1370 JMP norespexit%+os%
1380 .alpha% STA &6C
1390 LDA (&F2),Y

1400 CMP #32

1410 BEQ checkchar%

1420 CMP #13

1430 BNE longer%

1440 .checkchar% LDA &6C
1450 SEC

1460 SBC #65

1479 ASL A

1480 TAX

1499 LDA helptable%+os3+1,X
1500 BNE comexists$

1510 JMP norespexit?+os%
1520 .comexists% STA &6B
1539 LDA helptable%+os%,X
1540 STA &6A

155¢ LDY #?

1560 JSR mode7%+0s%

1570 LDA #42

1580 JSR &FFEE

1590 LDA &6C

1600 JSR &FFEE

1610 .nextchar% LDA (&6A),Y
1620 BEQ ecomhelp?%

1630 JSR &FFE3

1640 INY

1650 BNE nextchar$%

1660 INC &6B

1670 BNE nextchar%®

1680 .ecomhelp% JSR &FFE7
1690 .respexit% LDX #&FA
1700 .restore6% PLA

1710 STA &70,X

1720 INX

1730 BNE restore6%

1740 PLA

1750 TAY

1760 PLA

1770 TAX

1780 PLA

1790 LDA #2

1806 PLP

1810 RTS

1820 .longer% LDA &6C
1830 LDX #0

1840 CMP start%+os%+9,X
1850 BEQ clonger%

1860 JMP norespexit%+os%
1870 .clonger% INX

Beebug November 1985

LDA (&F2),Y

CcMP #46

BEQ fstop$%

P #32

BEQ elonger%

cMP #13

BEQ elonger%

AND #&DF

CMP start%tos%+9,X

BEQ nlonger%

JMP norespexit?+os%

.fstop% LDA start%+tos%+9,X
BNE wrhelp%

JMP norespexit%+tos%
.nlonger% INY

BNE clonger%

.elonger% LDA start%+os%+9,X
BEQ wrhelp%

JMP norespexit%+os%
.wrhelp% LDX #0

JSR mode7%+0s%

.nextwr® LDA start%t+os%+9,X
CMP #40

BEQ endname?

JSR &FFEE

INX

BNE nextwr$%

.endname?¥ JSR copychars%+os%
JSR copychars%+os%

LDX #0

.nextcom?¥ LDA helptable%+os%+1,X

BEQ skiphelp$%
TXA

LSR A

CLC

ADC #65

JSR &FFEE

JSR &FFE7
.skiphelp% INX
INX

CPX #54

BNE nextcom?®

JMP respexit%+os%
.stripspaces?% LDA (&F2),Y
INY

P #32

BEQ stripspaces$%
STY &6D

RTS

.pull6® PLA

STA &6F

PLA

STA &6E

JMP respexit%+os%
.mode7% LDA #22
JSR &FFEE

LDA #7

JSR &FFEE

RTS

.copychars% LDA start%+os%+9,X

39

2480 BEQ endcopy%

249¢ JSR &FFE3

2500 INX

2510 BNE copychars%

2520 .endcopy% INX

2530 RTS

2540 .help% (ASC ("L")-65) OPT FNequs (CHR
$13+CHRS13+"Programs"+CHR$129+" £0"+CHR$1
35+"for paged listing.")

255¢ BRK

2560 .jltext% OPT FNequs ("K.@*FX230,1|M
| 'k7 [M|N| 11 |M|O*FX230,0 |M")

2570 OPT FNequb(13)

2580 .com3 (ASC ("L")-65) LDX #((jltext%+
0s%) MOD 256)

2590 LDY #((jltext¥+os%) DIV 256)

2600 JSR &FFF7

2610 RTS

9740 \

9750 \...Insert new routines here

9768 \

977@ .endcode%

9780]

9790 NEXT

980% PRINT"Help address table starts at
&"; “helptable?;"."

9810 PRINT"Routine address table starts
at &"; “comtable%;"."

9820 PRINT"First free byte after m/c: &
"; “"endcode%;"."

9830 END

9840 :

9850 DEFFNequb (byte%)

9860 ?P%=byte%

9870 P%=P%+1

9880 =1%

9890 :

990¢ DEFFNequw (word$%)

9910 ?P%=word% MOD 256

9920 P%?1=word% DIV 256

9930 P%=P%+2

9940 =1%

9950 :

9960 DEFFNequs (string$)

9970 $P%=string$

9980 P%=P%+LEN (string$)

9990 =I%

The program as it stands has only one
routine appended to it, to illustrate how
this is done. The routine runs from line
2540 to 2610 with the *HELP text first at
line 2540, It performs the simple task of
setting function key @ to list Basic
programs in paged mode. The command used
for this is *L. It will also respond
correctly to the various forms of *HELP
commands. Typing just *HELP (or *H.)
displays the names of all ROMs in the
machine, including this ROM. Its name is

40

detzrmined by the string assigned to the
variable 'title$' in line 100, i.e.
'MYROM'. The title can be changed, but it
should be made up of letters only. If you
now type *HELP MYROM (or any abbreviation
down to *H.M.), you will get the complete
copyright message as made up from lines
100 to 130 and a list of the commands that
the ROM understands, at present only 'L'.
You can then type *H.L, and you will see
an explanation of the command *L as given
in line 2540.

USING THE PROGRAM IN SIDEWAYS RAM

Type in and load Program 1, alter line
30 to read: 30 assemb%=&8000 (enables
direct assembly into sideways RAM), and
save it. Run the program and press the
Break key when assembly has finished. Type
'OLD' to regain your Basic program, and
then you are ready to test the machine
code by typing the various forms of *HELP,
or *L followed by key f@. Once the program
works correctly in RAM, you can change
line 30 back to its original state (set
assemb? to &5COP) and run the orogram
again. Then *SAVE the machine code from
address &5C@0@ up to address &7BFF (using
'*SAVE code 5C@@ 7BFF'). Subsequently,
this code can be *LOADed back into
sideways RAM at &8000 using *LOAD code
8000.

1 REM PROGRAM 2
2 REM VERSION B@.1
3 REM AUTHOR J.P.JAKUBOVICS
4 REM BEEBUG NOVEMBER 1985
5 REM PROGRAM SUBJECT TO COPYRIGHT
6:
10 DIM str% 255
20 REPEAT
3@ INPUT LINE Sstr%
4¢ IF MIDS (Sstr%,2,2)="H." THEN A%=9:
D%=str%+3 ELSE A%=4:D%=str%+]
50 Y%=0
60 ?&F2=D% MOD 256
79 ?&F3=D% DIV 256
80 CALL &5C03
90 UNTIL FALSE

TESTING THE SIDEWAYS ROM CODE

Type in both Program 1 and Program 2
and save them to tape or disc.

Load Program 1 and change the value of
dest¥ in line 49 from &8%08 to &5CA¢ and
then run the program. Now type PAGE=&5000,
followed by NEW, and load and run Program
2. In response to the question mark, enter
any command to which the ROM program

Beebug November 1985

should respond, although as it's really in
RAM *H, will only display the name of this
ROM program., Note however that, for
simplicity, Program 2 will only accept the
abbreviation *H., not the full command
name *HELP, If you are satisfied that the
program works, press Break and then type
OLD. Then alter dest% in line 40 back to
&8000, run the program and *SAVE the
machine code from &5C0@0 to &7BFF.

Whether you have paged RAM or not, you
could now blow the machine code into an
EPROM, though of course it will only be
worth doing that when a few more routines
have been added.

ADDING ROUTINES TO THE PROGRAM

New routines, including the
corresponding help messages, can now be
added. New instructions should be typed
with line numbers 2620 onwards. To insert
a help message, use the function FNequs,
as on line 2540, or for Basic II users
just EQUS. The end of the message should
be marked with a BRK instruction. The
message should not include the command
name, as this 1is automatically printed
out. The routine must terminate with an
RTS instruction. In order for the help
message and the routine to be recognised,
they must be correctly labelled. For a
routine that responds to *A, the beginning
of the help message must be labelled
'.help% (@)' and the entry point of the
routine (i.e. the first instruction to be
executed) must be labelled '.com%(9)'. If
the command is to be *B, the labels should
be '.help%(1)' and '.com%(1)', and so on.
In fact, the help messages and routines

can be in any order from line 2620
onwards, provided they are correctly
labelled and terminated (with BRK and RTS
respectively) .

The code in Program 1 can even decode
commands that have one or more arguments.
When execution reaches the entry point of
any routine appended to the header, the
accumulator will contain the ASCII code of
the first non-space character that follows
the command, and the Y register together
with &F2 will point to the next character
after that. If the accumulator contains
any character other than a carriage return
(&0D), then there is at least one argument
after the command. From then on, it is up
to your routine to identify the arguments
and respond to them as appropriate.

A NOTE ON MEMORY USAGE

The routines appended to the header
may use any memory location without
interfering with the working of the
header. However, if you are not careful in
the way your routines use memory
locations, you may find that your ROM
software interferes with other ROMs in the
machine. You can safely use &6A-&6F in all
circumstances, because these locations are
protected by the header. If you need more
workspace, then save its contents on the
stack at the beginning of your routine,
and restore it again just before exiting.
Don't, for example, assume that locations
&70-88F are always safe to use. This is so
only if you call your routines from Basic.
If you want to call them from other
languages, such as Wordwise, then &70-&8F
may not be freely available.

il

*FX VALUES - Eric Pope

To find the current values assigned to FX calls 166 to 255 use PRINT? (n+400)
the FX number concerned. E.g. at switch on, PRINT?(610) will produce the value

n is

where

zero as sound is enabled (*FX210,0) at switch on.

QUICK LINES - Roger Burg

Horizontal lines can be produced three times faster than the usual DRAW by clearing
a graphics window of zero height. Note, however, that you must not try this with lines

that protrude beyond the screen boundaries.

DEFAULT VECTOR VALUES - Geoff Smith

To find the default values of the various indirection vectors used by the Operating

System, the following function can be used.

oldval=V%! (!&FFB7-&200)AND &FFFF

where V% is the address of the vector required in the range &200 to &235.

Beebug November 1985

2 d

st

course

Print
Formatting

(part 2)

@% variable.

When printing numbers across the page
or in a table, we often want to print the
numbers compactly and also ensure that
they cannot overflow their allotted space.
Last month we looked at the formats
available for printing numbers using @%.
This is a special variable in BBC Basic
which can be used to produce a variety of

print formats. The disadvantage of all
these formats is that the number can
overflow its field for some values of that
number. This has serious implications in a
table of numbers because all the
subsequent numbers along the row are

pushed out of position.

We can overcome this difficulty by
defining the following set of properties
for a new format to supplement those
available using @%.

(1) Numbers are represented
specified number of characters.

using a

(2) Numbers requiring less characters in
their representation than the number
specified have spaces added to the left of
the number until (1) is satisfied.

(3) The decimal point position can be
fixed and numbers are rounded if they need
to be truncated.

(4) Numbers which cannot be represented

with the fixed decimal point position are
represented if possible with the decimal

42

e e e

Following last month’s
discussion on the
printing of numbers,
J.Pike introduces a
‘PRINT USING’ of
command, much easier
to use than Basic’s own

point to the right of the
specified position.

(5) Numbers which still
cannot be represented cause
asterisks (or some other
overflow symbol) to Dbe
printed.

A further property
that the format needs is
that it must be easy to
remember and to program.
That 1is, the format needs
to be defined either as an
extension to @% or to use a
simple self-evident system
specification. The
system most suited to fixed
length numbers is one
similar to the PRINT USING
instruction used in some
other versions of Basic. In
such a system, for example,
a five character number with two decimal
places is defined by using the string
Wk k! or similar.

The new format is introduced into BBC
Basic as the function FNUSING listed below
(extra spaces have been added here to
improve readability):

9000 DEF FNUSING (format$,number)
9010 LOCAL numb$,space$,D%,L%,@%
9020 numb$=STRS (number)
9039 IF number>? AND ASC (format$)=45
THEN space$=CHRS$32:
format$=MIDS$ (format$,2)
L%=LEN (format$)
D%=INSTR (format$+CHRS$32,".")
IF D% THEN @%= (66048+L%~D%)*256
ELSE number=INT (number+.5)
IF INSTR (numb$,"E")
THEN =spaceS$+format$
IF INSTR (numbS+"."," ") >L%+1
THEN =space$+format$
format$=numb$
IF LEN (format$)>L%
THEN =space$+LEFTS (format$,L%)
=gpace$+RIGHTS (STRINGS (L%," ")
+format$,L%)

9040
9050
9060
9079
9080

9090
9199

9110

This function implements the format
properties given above by returning a
string of 1length LEN(format$), which
contains the number formatted as defined
by format$. The number may thus be made to
occupy an exact position on the page (or
screen) by preceding it with a TaB

Beebug November 1985

CRERRER L BEEAKE |

SRERERR | RERRER
. . RERKER
30

367 .26

. 7353.45

.8 28249 .0 39548.6

. 151930, 212702,

. 5B3654. 817116,
g 3139035 43

1143963
50 6152510

REERRE

command. For example the command:

PRINT TAB(18) FNUSING ("** . **" number)

will print number with characters in
positions 18 to 22 and no other.

Note that by making @% a local
variable (in line 9018 of the function

definition), any value already assigned to
@% remains unaffected when using the
function. In 1line 9030 a useful extra
feature is introduced into the format. By
preceding the format string in format$
with a negative sign, the number when
printed is preceded by a space for
positive numbers and a negative sign for
negative numbers. Without this option the
maximum positive number which can be
represented numerically has 10 times the
magnitude of the largest negative number
because the negative sign replaces the

most significant digit. Line 9040 sets L%
to the string length of format$. After
this, the string length of FNUSING is now

given by LEN (space$+format$) .

The variable D% is set to one more
than the number of digits in front of the

decimal point. However, 1if format$ does
not contain a decimal ©point (e.qg.
format$="***" for a 3 digit integer) then
D% is set to zero. The extra space added
to format$ here is to avoid any
possibility of incurring the fatal INSTR
bug described on page 281 of the User

Guide. Line 9060 ensures the appropriate
rounding of the number, either by setting
@% to a fixed format or rounding integer
formats directly. Lines 9070 and 9080 set
FNUSING=format$ if the number cannot be
represented, returning the format

Beebug November 1985

definition string instead of a number. The
character representing a digit in format$
does not have to be *., Other characters
can be wused, which permits some control
over the overflow display. Note, however,
that the sign of the number will still be
correctly indicated if the first character
of format$ is given as a negative sign.
Lines 9090 and 9100 set up numbers when
the decimal point has to be put to the
right of the specified position, leaving
line 9110 to format the numbers which are
in range.

A typical integer
format$ might be "***" which would print
numbers in the range -99.5 to 999.4999 as
integers, or alternatively format$="-***"
which prints numbers in the range -999.5
to 999.4999 as integers. For decimal
numbers format$="** **" prints numbers in
the range -9.995 to 99.9949 using 2
decimal places, -99.95 to 999.9499 using 1
decimal place, =999.5 to 9999.4999 using
the decimal point as the fifth character
and -9999.5 to 99999.4999 as a 5 digit
integer. Numbers outside this range are
printed as the string format$, that is as

Thk *x!
. .

format string for

If we set format$=" " then all the
numbers print as before except that
numbers which try to overflow the allotted
space are now indicated by a single point.
A more novel use of this facility is given
by format$="-01.E3" which gives a value to
FNUSING of 1000 or -1000 to numbers
outside this range. In addition,
format$="-.***" yhere the decimal point is
to the left of all the asterisks, gives
numbers with the maximum accuracy within
the space available (but preceded here by
a single space or negative sign). Using
this format definition, 8 columns of
numbers can be printed across the screen
(in 40 character modes). For example:

100
110

number=1,/2"10

REPEAT

120 number=1.2*number

13¢ PRINT ENUSING ("-.***" number);
140 UNTIL number>1.0E10

Using a function like FNUSING will
make all your formatting much easier to
follow. It also shows how defining your
own function actually makes programming
much easier. Why not try out FNUSING in
some of your own programs?

=

43

Generating
Diagrams
and
Drawings

Scorning the drawing
board, Geoff Bains tries
out two software packages
to produce tidy and accur-
ate diagrams on his Beeb.

No-one can have failed to notice the
potential of computers for CAD and other
drawing operations. Whereas full technical
drawings are really beyond the BBC micro,
this computer can excel in the production
of diagrams.

For these purposes, a 'diagram' is a
drawing made up of specialized symbols
arranged on, and connected to, horizontal
and vertical lines. Unlike a 'picture'
there are no circles or arcs, excepting
those contained within the symbols. The
classic example 1is an electrical circuit
diagram. However, flowcharts and arch-
itects' plans, for example, also fit into
this category. Because of the constric-
tions, diagrams are not easily produced
using 'normal' Beeb drawing packages.
However, there are a few packages
especially written for this purpose -
BEEBUGSOFT's Design, for example. Here we
look at two that prove to be a boon to
anyone wanting neat and accurate diagrams.

Product : Cirkwik
Supplier : Datapen Microtechnology Ltd.
Kingsclere Road, Overton,
Hampshire RG25 3]B.
0256-770488
Price : £24.95 (disc only)
This diagram package is primarily

intended for use with Datapen's light pen
(costing £25). However, it will also work
with the Marconi trackerball (about £60).

There are three main functions to the
package. Firstly, there is a symbol
designer to create your specialized

symbols. Cirkwik limits these to 16 by 16
pixels in size but, as you can use 640

44

different symbols in one diagram you are
not restricted from making up big symbols
from several parts. However, any letters
needed must also be specially defined.

Cirkwik is clearly intended for
circuit diagram production and several
electronics symbols are supplied on the
disc. You can create your own easily
enough using the symbol editor. This is
very much like the numerous character
definers available for the Beeb. The light
pen is moved across a large 16 x 16 grid
and individual pixels toggled on or off.
The whole package is only concerned with
two colours, so, although this editor is
very simple it is reasonably effective.

The second part of the package is the
diagram editor. A single diagram comprises
up to eight mode 4 screens, each created
and accessed separately and Jjoined
together at the printing stage. Across the
top of the screen is a menu. This allows
you to toggle (using the 1light pen)
between drawing lines and placing symbols
on the diagram. Lines are drawn much in
the same way as they are on any Beeb
drawing program, by 'rubber-banding'.

However, the difference here is that the
final, fixed, 1line is only printed
horizontally or vertically. Stray lines

are juggled into place by the program.

The symbols, too, are positioned onto
the diagram using the menu at the top of
the screen to select the desired symbol

I [
o 5
ﬂ‘%n ! ? jnl iu ":3 in ’ 3 101
k2 u]‘ F E H

4y

131
22800810370

4952
LA ey
LIRSS 137 Wiz RECETVER

Part of a ‘Diagram’ diagram.

Beebug November 1985

from those you have designed earlier.
Alternatively you can design as you go, as
the symbol designer is available, without
the loss of your diagram, at any time.

The positioning of the symbols and
lines 1is achieved with the light pen in a
rather peculiar manner. The light pen
circuitry in the Beeb can only resolve the
pen's position to one character width
accuracy. To accurately align the symbols
and lines on the diagram using the light
pen, first the symbol/line is roughly
aligned and the pen button pressed. Then
the pen is moved in the direction that the
symbol/line needs to go and the symbol is
slowly dragged into position. A final
press of the pen button fixes it there.

The final part of the package 1is the
printer driver. The package is designed
for Epson compatible printers but there is
the facility to insert the relevant codes
for a different printer.

Overall the Cirkwik package does
provide a reasonably comprehensive diagram
producing facility. However, the mixture
of the use of lightpen and keyboard and
the inherent inaccuracy of the lightpen
(even with 'dragging') mean that this
package is never too easy to use and
positively frustrating at times.

Product : Diagram
Supplier : Pineapple Software
39 Brownlea Gardens,
Seven Kings, Ilford, Essex.
Price : £25 (disc only. Includes
version for sideways RAM.)
Pineapple's Diagram is a similar
package to Cirkwik but vastly more

sophisticated and friendly. The diagrams
are displayed and edited in mode #. A
single diagram can contain up to 39
screens. As if this wasn't enough you can
scroll around the whole diagram and edit
any screenful you want. This makes lining
up the various sections of the diagram
much easier.

Like Cirkwik, Diagram has a symbol
editor for symbols up to 32 x 24 pixels in
size. There 1is no limit to the number of
symbols allowed with each diagram,
excepting that these must comprise no more
than 128 character blocks (8 x 8) in
total. However, the ability to transfer
symbols, either individually or in groups,

Beebug November 1985

from one diagram to another means that
this restriction does not normally worry
too much. The symbol editor is again
fairly standard. The cursor keys are used
to move around the grid of pixels. The
space bar fills a pixel and Shift empties
it. A nice feature is the ability to wipe
the whole symbol if wanted.

Creating and editing diagrams is also
much easier with Diagram. A full mode 9
screen is used. A symbol menu covers a
small section at the bottom but this can
be removed if you want to draw something
in this area. Symbols are placed on the
screen by selecting the desired symbol
from the menu, moving the cursor to the
required position and pressing Return.
Simple. Alphabetic characters are
positioned in a similar way but the
alphabetic keys on the keyboard are used
to actuate them with no loss of special

symbols.

Lines are drawn in a very strange but
highly versatile way. When put into line
mode the cursor will leave a trail as it
is moved across the screen. This restricts
the lines to character positions but then
this 1is what diagrams are all about - the
drawing following a grid pattern. If the
space bar 1is pressed, as a line crosses
another, then a blob is left at the
junction to show, for example, wires in a
circuit diagram joined and not just
crossing. The lines are made up of symbols
too. The first 16 symbols are
ready-defined as horizontal, vertical,
crossed, 3joined, and bent lines, with and
without joining blobs. These are
automatically printed as needed as the
cursor is moved around the screen in line
drawing mode. The advantage of having the
line made up of characters is that these
can be altered so that 1line drawing
produces, say, double lines.

Diagram also has an Fpson
facility and the ability to produce
further codes. Any of the 39 screens can
be printed in various sizes. This is done
not as a screen dump but directly from the
character information stored on disc.

printing

Diagram does take a little getting
used to, as do all full packages. However,
after a few practices it is a joy to use.
Everything is menu driven and it almost
seems to take care of itself. Full marks
for an excellent product. ==

45

o+IIO=C

- held in lines 2840-2890, with four
Quas.modo numbers for each screen. The first
number represents the type of screen
where:
Jonathon Temple rings the 0 - is a flat wall;
changes with this colourful — XEpLetente tHEret)

:
2 - is it with ro nd
eleven screen game for the BBC Sekitie A o, Al ey

micro.
The next three numbers represent
Quasimodo's sweetheart, Princess the chance of an arrow, rope and
Esmeralda, has been imprisoned 1in the boulder appearing respectively. If @,
wicked Baron's fortress. Can you, it will not appear on that screen.
Quasimodo the hunchback, save her from
the Baron's evil clutches? The chance is decided using
RND (<number in data>). If this is equal
Before being re-united with your to 1 a new arrow or boulder is made to
love you have to tackle eleven screens, appear. So that the arrows and boulders
but what with those cruel guards come at the same time and position at
throwing rocks and arrows at you and each go, making it easier to plan a
those tricky swinging ropes it's going route through each screen, the RND
to be difficult. function is seeded using
RND (-<number>). This means that the
You guide Quasimodo using the Z and numbers produced will be the same every
X keys for left and right, and Return game.
to jump. You can 'freeze' the game by
oressing Ctrl. Pressing Shift will However, if Quasimodo should reach
restart it again. Esmeralda, when he starts again the
seed (the variable RS%) for RND is
Quasimodo has the usual computer changed, which means that in some of
character's quota of three lives, one the screens the player will have to
of which he will lose each time he learn a new route.

misjudges a jump or is hit by a rock or
arrow - all common occurrences when you
first begin to play.

To complete a screen, Quasimodo
must jump up to the bell rope and ring
the bell. He is then awarded a bonus,
the size of which depends on the
current screen and how long it took him
to complete it. After the 11th screen
Quasimodo gets to meet his princess for
one brief moment (Ahhh...) and then
he's whisked away back to the start to
try again.

Entering the program is
straightforward enough - just type it
in and away you go. Disc users, Jumping is achieved by having two
however, will need to miss out any arrays, A%(6) and B%(6), the data for
unnecessary spaces and the which is in lines 2820-2830. A
instructions, or set PAGE to &1200 variable, J%, is decreased as Quasimodo
(type PAGE=&1200) before loading the leaps through the air, and this is used
program - if you choose the latter to obtain two values from these arrays
course remember not to press Break as which are then added to Quasimodo's X
this will corrupt the program. and Y co-ordinates. By changing the
values in these two lines it would be
PROGRAM NOTES possible to get Quasimodo to Jjump
The data for the eleven screens is further - useful for cheats!
46 Beebug November 1985

B B N N T R R e U S O T i .

A useful procedure included in the
program is PROCtriple, which when
called with PROCtriple(X,Y,C,A$) will
print the string A$ at tab position X,Y
in colour @ in triple-height
characters. local variables are used
for this procedure, so it can be lifted
straight out and used in your own
programs.

The chiming sound wused when
Quasimodo rings a bell is taken from
Ian Waugh's excellent series of
articles, 'Making Music on the Beeb'
(BEEBUG Vol.3 No.8 to Vol.4 No.2).

g

10 REM PROGRAM QUASIMODO

20 REM VERSION B1.4

30 REM AUTHOR J. Temple

40 REM BEEBUG NOVEMBER 1985

50 REM PROGRAM SUBJECT TO COPYRIGHT

60 :

19@ *Tv 255

110 ON ERROR GOTO 2930

12¢ MODE 1

130 PROCinst

140 PROCchars

15¢ PROCinit

160 REPEAT

170 L%=3:5%=0:K%=1:RS%=3

180 REPEAT

1990 MODE 2

200 PROCscreen

210 REPEAT

220 PROCman

230 IF F% PROCrope

240 IF P% PROCarrow

25@ IF M% PROCboulder

260 UNTIL E%

270 IF E%=1 L%=L%-1:SOUND @,1,508,1 ELS
E PROCbonus

280 UNTIL L%=0

290 IF L%=0 PROCkilled

Beebug November 1985

300 UNTIL FALSE

310

109¢ DEFPROCman

1019 2%=2%-5:VDU 4,31,6,@

1020 IF 7%>-1 PRINT ;7%;" e

1030 VDU 5:A%=X%:B%=Y%:C%=V%:D%=W%

1040 IF INKEY-2 REPEAT UNTIL INKEY-1

105¢ IF INKEY-74 IF J%+JF%=0 J%=6:N%= (I
NKEY-98) - (INKEY-67) : SOUND 1,1,18,5

1060 JF%=0:IF J% PROCjump:ENDPROC

1070 IF F% IF X%=G%-32 GOTO 1110

1080 IF INKEY-98 IFX3>0 X%=X%-32:W%=W%
EOR 3:SOUND 18,-19,5@,1:IF V<231 V=23
1:W%=233

1090 IF INKEY-67 IFX%<1216 X%=X%+32:W%=
W% EOR 7:SOUND 18,-14,50,1:IF V%<>232 V%
=232:W%=235

1190 IF POINT (X%,Y%-64)=0 IF POINT (X%+5
6,Y%-64)=0 E%=1:F%=0

1119 IF D%<>W% GCOL3,6:MOVE A%,B%:VDU C
%,10,8,D%:MOVE X%,Y%:VDU V%,10,8,Ws

1120 IF D%=W% FOR N=1 TO 30:NEXT

1130 ENDPROC

1140 :

1150 DEFPROC jump

1160 X¥=X%+A% (J%) *N2:Y%=Y%
1170 IF X%=@ IF N%=-1 N%=0
1180 IF X%=1216 IF N%=1 N%=0

1190 J%=J%-1:GCOL 3,6:MOVE A%,B%

1200 VDU C%,10,8,D%:MOVE X%,Y%

1219 vDU V$%,10,8,W%:IF J%=0 JF%=1

1220 1IF X%=1216 IF Y%=668 E%=2

1230 ENDPROC

1249 :

1250 DEFPROCrope

1260 GCOL 3,7:MOVE 640 ,896:DRAW G%,604
1270 G%=G%+H%:IF G%=320 OR G%=960 H%=-H

1280 GCOL 3,7:MOVE 640,896 :DRAW G%,604
1290 IF J%=0 IF ABS (G%-X%)<65 IF ABS (69
-Y%)<65 GCOL3,6:MOVE X%,Y%:VDU V%,14,8,
W%:X%=G%-32:MOVE X%,Y%:VDU V%,10,8,W%
1300 ENDPROC

1310 ¢

1320 DEFPROCarrow

1330 IF R%=0 GOTO 1400

1340 IF ABS (Q%-X%)<33 IF ABS (604-Y%)<33
E%=1

1350 GCOL 3,3:MOVE Q%,604:VDU 226

1360 Q%=Q%-32:MOVE Q%,604:VDU 226

1370 IF Q%<-32 R%=0

1380 IF ABS (Q%-X%)<33 IF ABS (h04-Y%)<33
E%=1

1390 ENDPROC

1400 IF RND(P%)=1 Q%=1216:R%=1:GCOL 3,3
:MOVE 1216,604:VDU 226

141@ ENDPROC

1429 :

1430 DEFPROChoulder

47

1449 IF U%=0 GOTO 1510

1450 IF ABS (T%-X%)<33 IF ABS (672-Y%)<33
E%=1

1460 GCOL 3,6:MOVE T%,672:VDU 227

1470 T%=T%+64:MOVE T%,672:VDU 227

1480 IF T%>1216 U%=0

1490 IF ABS (T%-X%)<33 IF ABS (672-Y%)<33
E%=1

1500 ENDPROC

1519 IF RND (M%)=1 T%$=0:U%=1:GCOL 3,6:M0
VE @,672:VDU 227

152¢ ENDPROC

1538 s

1540 DEFPROCkilled

155¢ vDU 4,28,2,26,17,20,12

1560 PROCtriple(3,1,2,"GAME OVER")

1570 PRINTTAB(1,5) "Press Spacebar"

1580 REPEAT UNTIL GET=32

1590 ENDPROC

1600 :

1610 DEFPROCbonus

162@ SOUND 2,2,81,16:S0UND 2,2,81,16
1630 FOR N=1 TO 300:NEXT:IF 7%<0 z%=0
1640 vDU 4,28,2,26,17,20,12

1650 K%=K%+1:5%=S%+72%

1660 IF K%=12 PROCcongrats:ENDPROC

1670 PROCtriple(2,1,3,"BONUS = "+STRS (Z
%))

1680 TIME=0:REPEAT UNTIL TIME>200

1690 ENDPROC

1709 :

171@¢ DEFPROCcongrats

1720 K%=1:VDU 26,12:IF RS%=3 L%=L%+1
1730 PROCscreen

1740 VDU' 4,28,2,26,17,16,12

1750 PROCtriple(3,1,3,"WELL DONE !")
1760 VDU 26,5,18,3,5,25,4,960;636;231,1
2,8,239,18,3,6

1770 FOR X%=@ TO 864 STEP 16

1780 MOVE X%,636:VDU V%,10,8,Ws

1799 W%=W% EOR 7:MOVE X%+16,636

1800 VDU V%,14,8,W%:FOR N=1 TO 40

1810 NEXT,:PLOT 69,928,616

1820 RESTORE 2900:N=81:*FX 15,0

1830 FOR T=1 TO 1@:READ A,D:N=N+A

1840 SounND 1,-15,N,D:SOUND 2,-10,N+48,D
1850 NEXT:TIME=0

1860 REPEAT UNTIL TIME>20@:VDU 4

187¢ PROCtriple(4,21,2,"Now try again")
1880 COLOUR 5:PRINTTAB (7,25) "<SPACE>"
1890 REPEAT UNTIL GET=32:RS%=RS%+1

1909 ENDPROC

1910 :

1920 DEFPROCtriple(X,Y,C,AS)

193¢ LOCAL A%,N%,X%,Y%

1940 X%=&70:Y%=0:A%=10:COLOUR C

1950 FOR N%=1 TO LEN (AS)

1960 ?&70=ASC (MIDS (AS$,N%)) :CALL &FFF1
1970 vDU23,253,2&71,2&71,2&71,2&72,2&72
s °&72,2873,26&73

1980 VvDU23,254,?&73,?&74,2&74,2&74,2&75
,2&75,2&75,2&76

199¢ vDU23,255,?&76,?&76,2&77,2&77,2&77
,?&78,2&78,2&78

200¢ vDU 31,X+N%-1,Y,253,10,8,254,19,8,
255

2010 NEXT

202@ ENDPROC

2030 :

2040 DEFPROCscore (N%)

2050 S%=s%+N%:vDU 4,17,7,31,6,1

2060 PRINT LEFTS ("00000",5-LEN (STRS (S%)
)) +STRS (S%)

207@ VDU 5

20890 ENDPROC

2090 :

2100 DEFPROCscreen

2119 VDUl 4,17,1,17,135

2120 FOR Y%=14 TO 28

2130 PRINTTAB (@,Y%) STRINGS (29 ,CHRS (237
+Y3MOD2))

2140 NEXT:VDU 17,128:RESTORE 2840

2150 FOR N%=1 TO K%

2160 READ V%,P%,F%,M%:NEXT

2170 IF V%=1 PROCturrets

2180 IF V$=2 OR V%=3 PROCpit

219¢ IF Vv%=3 VDU 31,5,14,225,31,8,14,22
5,31 ,11,14;225,31,14,14,225

2200 7%=K%*100+400:PRINTTAB (@,) "BONUS:
WeTAB (@,1)"SCORE: "

2210 COLOUR7:PRINTTAB (6,9);2%;TAB (2,26)
"SCREEN: " ;K%

2220 COLOUR6:IFL%>1 FOR X%=15 TO L%*2+1
1 STEP 2:VDU 31,X%,0,232,10,8,235:NEXT
2230 PROCscore (@) :D=RND (-RS%)

2240 X%=0:Y%=636:V%=232:W%=235

2250 E%=FALSE:J%=FALSE:JF%=FALSE

2260 R%=FALSE:U%=FALSE:G%=320:H%=32
227¢ VDU 18,0,6,25,4,1248;636;25,5,1248
»888:18,3,3,25,4,1216;928;228,10,8,229,1
8,3,6,25,4,X%;Y%;V%,10,8,W%,23;10,32;0;0
H/H

2280 IF F% GCOL3,7:MOVE 640,896:DRAW G%
,604

Beebug November 1985

2290 ENDPROC

2300 :

2310 DEFPROCturrets

23200 PRINTTAB (4,14)GS$;TAB (9,14)GS$; TAB (1
4,14)Gs

2330 FOR X%=376 TO 1016 STEP 320

2349 vDU 25,4,X%;568;25,0,0;-92;25,81,-
32;0;25,8,0;648;25,81,32;32;

2350 NEXT

2360 ENDPROC

2370 :

2380 DEFPROCpit

2390 FOR X%=3 TO 15 STEP 2

240¢0 PRINTTAB (X%,14)GS; :NEXT

2419 vDU 25,4,1080;568;25,0,0;-92;25,81
+=32;0;25,9,9;60;25,81,32;32;

2420 ENDPROC

2440 DEFPROCinit

2450 DIM A% (6) ,B% (6)

2460 FOR N%=1 TO 6

247¢ READ A% (N%),B% (N%) :NEXT:RS%=3

2480 GS=STRINGS (3," "+CHRS1@+CHRS8+CHR

249¢ ENDPROC

2510 DEFPROCinst
2520 vDU17,134@,28,19,5,28,1,12,26
2530 PROCtriple(11,2,1,"Q UA S IMO D

2549 vpu19,3,6;0;17,128,17,3,31,4,8
255@ PRINT" 1In this version of the wel
1-known"' "arcade game you must guide Qua
simodo"' "through the eleven screens to h
is"'"sweetheart, Princess Esmeralda."'
2560 PRINT" Our hero must avoid the ar
rows and"'"rocks the cruel guards are th
rowing at"'"him, and use the ropes to sw
ing across"'"the dangerous gaps."'

Beebug November 1985

257¢ PRINT" You should use the Z and X
keys to"'"move left and right, and <Ret
urn> to"'"jump. To complete each screen
Quasimodo™'"must jump up to the bell rop
e and ring"'"the bell."'

2580 PRINT" <Ctrl> can be used to free
ze the game"'"until <Shift> is pressed."
Ll

2590 COLOUR2:PRINT'TAB (5) "Press the SPA
CE BAR to play..."

2600 REPEAT UNTIL GET=32

2610 ENDPROC

2620 :

2630 DEFPROCchars

264¢ VDU23,225,-1,-1,-1,239,193,0,0,0
2650 vpU23,226,33,66,-1,66,33,0,0,0
2660 vDU23,227,60,94,182,175,187,183,94
,60

2670 VDU23,228,24,36,24,44,44,44,94,94
2680 VDU23,229,94,-1,129,126,0,0,0,0
2690 VDU23,230,60,172,92,24,56,60,62,12

2700 vDU23,231,56,124,76,38,194,70,60,2

2710 vDU23,232,28,62,50,100,67,98, 60,24
2720 VDU23,233,60,118,118,110,60,24,24,

2730 vDU23,234,60,110,118,118,60,24,60,
2746 VDU23,235,60,110,110,118,60,24,24,
2750 VDU23,236,60,110,118,118,60,24,60,

2760 VDU28,237,=8 ,~3,23=3 =3 3 31
2770 VDU23,238,223,223,223,223,223,223,

2780 ENVELOPE 1,133,8,4,8,3,1,1,126,9,0
,-10,126,0

2799 ENVELOPE 2,4,0,8,9,0,0,0,126,-1,-1
,-1,80,0

2800 ENDPROC

2810 :

2820 DATA @,-16,32,-16,32,-16

2830 DATA 32,16,32,16,0,16

2840 DATA ¢,2,0,9,1,0,0,0

2850 DATA 2,0,1,0,3,0,0,0

2860 DATA ¢,2,0,4,1,2,0,0

2870 DATA 2,99,1,0,3,0,0,2

2880 DATA 1,5,0,2,2,99,1,2

2890 DATA 3,10,0,2

2900 DATA ©,4,8,4,8,4,4,4,8,8,-12,8
2910 DATA 4,8,-12,8,8,8,-16,8

2924 3

2930 MODE7:PRINT'':REPORT

2940 PRINT " at line ";ERL

2950 END =

49

BEEBUG MAGAZINE is produced
by BEEBUG Publications Ltd.
Editor: Mike Williams

Assistant Editor: Geoff Bains
Production Editor: Phyllida Vanstone
Assistant Production Editor:
Yolanda Turuelo

Technical Assistant: Alan Webster
Secretary: Debbie Sinfield
Managing Editor: Lee Calcraft
Additional thanks are due to
Sheridan Williams, Adrian Calcraft,
John Yale and Tim Powys-Lybbe.
All rights reserved. No part of this
publication may be reproduced
without prior written permission of
the Publisher. The Publisher cannot
accept any responsibility, whatso-
ever for errors in articles, programs,
or advertisements published. The
opinions expressed on the pages of
this journal are those of the authors
and do not necessarily represent
those of the Publisher, BEEBUG
Publications Limited.

BEEBUG Publications Ltd (c) 1985
Editorial Address
BEEBUG
PO BOX 50,

Holywell Hill,

St. Albans ALl 3YS

CONTRIBUTING TO BEEBUG
PROGRAMS AND ARTICLES

We are always seeking good quality
articles and programs for publica-
tion in BEEBUG. All contributions
used are paid for at up to £40 per
page, but please give us warning of
anything substantial that you
intend to write. A leaflet, ‘Notes
of Guidance for Contributors’ is
available on receipt of an A5 (or
larger) SAE.

In the case of material longer than
a page, we would prefer this to be
submitted on cassette or disc in

machine readable form using
“Wordwise’’, “View'', or other
means, but please ensure an

adequate written description of
your contribution is also included.
If you use cassette, please include a
backup copy at 300 baud.

HINTS

There are prizes of £5 and £10 for
the best hints each month, plus one
of £15 for a hint or tip deemed to
be exceptionally good.

Please send all editorial material to
the editorial address above. If you
require a reply it is essential to
quote your membership number
and enclose an SAE.

SUBSCRIPTIONS

Send all applications for membership, subscription renewals, subscription
queries and orders for back issues to the subscriptions address.

MEMBERSHIP SUBSCRIPTION RATES

£ 6.40 6 months (5 issues) UK ONLY
£11.90 UK - 1 year (10 issues)

£18 Europe,

£23 Americas & Africa,

BACK ISSUES
(Members only)

£21 Middle East
£25 Elsewhere

Vol Single Volume sets
issues (10 issues)
1 90p £8
2 £1 £9
3 £1.20 £11
4 £1.20 =
Please add the cost of post and packing as shown:
Each
First subsequent
DESTINATION issue issue
UK 30p 10p
Europe T0p 20p
Elsewhere £1.50 50p

All overseas items are sent airmail (please send a sterling cheque). We will
accept official UK orders but please note that there will be a £1 handling
charge for orders under £10 that require an invoice. Note that there is no
VAT on magazines.

Back issues are for members only, so it is ESSENTIAL to quote your
membership number with your order. Please note that the BEEBUG
Reference Card and BEEBUG supplements are not supplied with back
issues.

Subscriptions, Back Issues &
Software Address

BEEBUG
PO BOX 109
St. Johns Road
High Wycombe HP10 8NP

Hotline for queries and software orders

St. Albans (0727) 40303
Manned Mon-Fri 9am-4.30pm

24hr Answerphone Service for Access and
Barclaycard orders, and subscriptions
Penn (049481) 6666

If you require members’ discount on software it is essential to quote
your membership number and claim the discount when ordering.

DYNAMIC DISCS

TESTED BY BEEBUG

BEEBUG, the largest independent
computer ucer group in the UK, offer
100% tested discs supplied by one of Britain's

1

di . P
g disc turers.

Orders for
25 are
delivered
in strong
plastic
Storage
box

with 4 dividers.

Orders for

10 discs are
sent in

black plastic
library cases.

urExactRequire
i 48 TP[DOUBLE DENSI’I$em
D,
/D £14.99 10 pss D/D £20.50

/S D/ " &
25 §/8 /D £34 90 25 [S D £46 20
/& / 9, . i
50 S/8 D/D £5 30 50 D/s D/D £82 40

m

10 s/s pp
" £20.50 10 i
% 58 DD peeuy 25 DS D/D £91.99

/S D/D £8249 | 5,

D/S D/D £49.99
D/S DD go359

Orders for
50 are

delivered
. All prices j \
"; str_on g include Storage Box, vaT and delj
plastic o 1YY to your door (1
uitable for BR - . K)
Storage including Atari ac.,ﬁl'c" © and all other ¢y i
box - ommodore, TPUters using 5) inch di
Ully Guarangeeq _ T e disey

with 4 dividers.

lisc Not o
Manufacturers, nly by Beebug py¢ by one of the UK,
S top

We regret that we have These discs are the best. Official orders are
had to pass on a slight Please use the enclosed welcome.

increase in the price of order form and order
from our usual address. Barclaycard and Access
telephone 0494 81 6666

our discs, but we are

now able to offer awider =~ BEEBUG PO BOX 109
St. Johns Road Further information

range to meet your exact
requirements. High Wycombe HP10 8NP. telephone 0727 60263

Magazine Cassette/Disc

Quasimodo
] SE2HHE 428%e g 8

DISC CONTENTS ® T
RECURSIVE TREES — displays for the armchair gardener oS e :.:.:.:.:1:.;;:“‘ Esis l‘#
DYNAMIC MEMORY WINDOW — an eye into your Beeb as T:,:,:,:,:,:.:.:.:,:.:.:,:,:,:,:“:,:111:
ficuas e pevhne S EREER prn
WORDWISE PLUS EXAMPLES — segment programs from s o A A 1 o B B B U) e 0§
the series
LOAN REPAYMENT — calculate how much you owe Rotationt3e Elevakiton:29

EPROM PROGRAMMER DRIVER — blow your own
WORKSHOP PROCEDURES — text compression

DISC MENU EXTENSIONS — the complete disc menu
program with all the extensions

DATA STRUCTURES — linked lists and binary trees
ROULETTE — spin the wheel and break the bank
EXTRA FEATURES THIS MONTH

DISC BENCHMARKS — test out your drives with the
program used for the DDFS review

3D GRAPHICS SYSTEM DEMO — a fast moving display

from Glentop’s graphics package

BEEBUG FILER

e

Addressi.... 33 Mhitehill Crescent,
Address2..... Clophill,

Addressd... Bedford

Pe M4 20K

 BEEBUG Filer

VAL NN A VLT

All this for £3.00 (cass) £4.75 (disc) +50p p&p.
Back issues (disc since Vol. 3 No. 1, cass since Vol. 1 No. 10) available at the

same prices.
Subscription rates ' DISC CASS DISC CASY
UK UK O’seas O’seas
6 months (5 issues) £25 &17 £30 £20
12 months (10 issues) £50 £33 £56 £3Y

Prices are inclusive of VAT and postage as applicable. Sterling only please.

Cassette subscriptions can be commuted to disc subscription on receipt of
£1.70 per issue of the subscription left to run.

All subscription and individual orders to
BEEBUG, PO BOX 109, St. Johns Road, High Wycombe HP10 8NP

Printed in England. DCL 11532

Hidden Line Removal

BTy |

