

FEATURES

Instant Listing of Functions and
Procedures
Now C Here
A Cockiall ot 3D Procedures
Video Cassette Cataloguer
Barry Christie Visuals -
A Sprite Animator
First Course -
Character Control
The Master Pages -
Talking to the ADFS (Part 2)
MOS Plus Review
Master Hints
Circuit Analysis (Part ?2)
Exploring Assembler (Part 8)
Workshop -
Using Printers
BEEBUG Education
Patience

il
16
19

24

30

Al
44
46
49
54

58
60

REV\EWS

em Gamma 6
The C Programming Language 15
Master Emulation ROM 28
MOS Plus Review 44
Printer ROMs 47
REGULAR \TEMS

Editors Jotings !
News 4
gypplement 33-40
Master Hints 46
Hints and Tips 67
Postbagd 69
gubscriptions & Back Issues 70
Magazine Disc/Tape Al

GENERAL
\nvisble Calculations Automatic Backup
Colour View Simple Auto-Save
Basic Priority o0 the B+

Power-Up Configuration

Double Steppind

3
) Tape 12
. 123 1 entries

 e-iee | . cocktail of 3D Procedures
. WM L 7

: 22403400
<The Two Ren i

2. Video Cassefte
Cataloguer

3. spme Animator

& 4 Circuit Analysis

: e inked = 7 i ' nce
|| NUMBER of SP"Z S(Lgte57 % : : S)Pﬂﬁe
| paTA table S‘Ze (bytes?
f turo table S1E0 . utes)
E mover size o \ \
et ke | & system Gamme
| copE (LORD/EXEC ; ‘ Revievled
YL
|
ComputerSystem Filing System
‘ b;alowcghes(e show cleariy the vat;% combinations Master (BasiclV) il Aors - - :
" of machine (version of Basic) and ing system for :
each :tﬁm , and Tube compatibility. A single line b el ~ — mﬁ
through a symbol indicates partial working : ‘
(nonnaﬂ};&zst a fe‘w changes will bs needed); a Moe B B t) E Dasoto
cross shows total incompatibility. Reviews do not . e
distinguish between Basic| andI. ModelB(Basic)]l TubeCompatibility

Electron E Tube

-

Lditors
- otrgs

PROGRAMMING IN C

This issue of BEEBUG sees the start of a series of
introductory articles (four to five) which will be
devoted to the programming language C. Given the
amount of recent publicity with regard to this
language, and its availability on the whole of the BBC
micro range, including the Archimedes, this is perhaps
no more than is reasonable. The object of this series is
not to provide a comprehensive text book on C, but to
provide a flavour of C for those who are considering
this language as one which they might wish to use
themselves.

In fact, this obscures a rather more fundamental
question as far as BEEBUG is concerned. In all the time
that we have been supporting the BBC micro (in its
various guises), we have never devoted any part of the
magazine to languages other than Basic and Assembler
(unless in the form of reviews of compilers and
interpreters for languages such as Forth, Prolog,
Pascal, Comal, etc).

So the question is quite simple. Should BEEBUG, in the
future, be prepared to devote further pages to articles
about C and to programs written in C. If it were a
matter of simply increasing the number of pages then
the answer might be easier to find, but if that were the
case then there might well be many other topics which
might warrant some or better coverage in BEEBUG
(hardware projects, for example). And any decision
must be in the best interests of the majority of
BEEBUG members.

If you have views on this subject then we would be
pleased to hear from you (as we would on any topic
related to the magazine). It is not our intention to
initiate major changes, more to determine the direction
which BEEBUG should take in the future.

LOOKING AHEAD WITH BEEBU(

The next issue of BEEBUG will mark the end of volume
six, by which time we shall be looking forward to the
first issue of volume seven. That will be a total of sixty
issues of BEEBUG all told. As usual, we shall be
publishing a complete index to the whole of volume 6,
and this will be distributed free to all members with
the first issue of volume 7 (the May issue).

..News..News..

MICROLINK FOR FREE

Anyone with a 1200/75 baud modem and telephone
connection can try out Microlink's electronic mail
service free of charge using Dial-a-Demo. Simply dial
01-583 1275 and when the >PAD prompt appears just
key CALL 72 followed by Return. When asked to sign
on, key ID MAGI11 (that's three letters and three
digits) and press Return again. The password
DATABASE followed by Return will bring up the
menu. There are four sections to browse through
(communication, information, services and leisure)
each describing a different aspect of the system. For
further information telephone (0625) 878888.

ACCOUNTING FOR THE ARCHIMEDES

Mirerva, of System Delta and System Gamma fame,
has released an entire suite of five Business Accounting
modules for the Archimedes. The programs are fully
integrated with facilities for exporting data to
spreadsheet and graphics programs. No price has yet
been announced. Minerva are on (0392) 37756.

ARCHIMEDES OFF TO A FLYING START

Mitre Software is a company new to the Acorn world
but already well established on PCs and compatibles.
Now Flying Start II, a database package, is available for
the Master 512 and for the Archimedes under the PC
emulator, and a native mode version (for the
Archimedes) is expected to be released shortly. Flying
Start is a program which lets the user create records,
files, lists, reports and labels for later retrieval and
analysis quickly and easily. The package costs £69.95
(inc. VAT) for either system, and can be obtained from
Mitre Software Ltd, International House, 26
Creechurch Lane, London EC3A 5BA or telephone 01-
283 4646.

NEW GAMES FOR THE BEEB

New Games (or nearly new games) are still being
released for the BBC micro. Bug-Byte's Tutankhamun's
Revenge is described as an arcade adventure game
allowing you, in the role of Howard Carter (the English
explorer who discovered the tomb), to explore and
collect treasure. A screen designer is also provided to

Beebug March 1988

add new rooms and pyramids to those already present.
Cost of Tutankhamun's Revenge is £7.95 on dual 40/80
track disc. This new game follows Bug-Byte's release
earlier this year of arcade adventure Plan B2, a sequel
to the best selling Plan B. Plan B2 costs just £2.95 on
cassette.

Play It Again Sam 2 from Superior Software is yet
another games compilation featuring this time Repton
3, Galaforce, Codename:Droid and Crazee Rider. Prices
range from £9.95 for a dual cassette, through £11.95 for
5.25" disc to £14.95 for 3.5" disc. Bug-Byte are on 01-439
0666 and Superior are on (0532) 459453, or try your
local Acorn dealer (BEEBUG keeps plenty of these in
stock).

News..News..News..News..News..

configuration, hardware or software combination, then
Micro Advisory Services may be able to help. For more
information telephone 01-878 7044 or write to the
company at 314 Upper Richmond Road West, London
SW147]N.

HIGH-RES GRAPHICS DUMP

Silicon Vision, producers of Real Time Graphics and
Real Time Solids Modeller, has announced a new high
resolution graphics dump for Epson compatible
printers, called Super-Dump. This achieves a resolution
of 1920x1024 (sic) on most printers. Like the high-res
dump published in BEEBUG (Vol.6 No.6) this works
from spooled files of VDU codes to achieve its aims.
Silicon Vision are at 47 Dudley Gardens, Harrow,
Middx HA2 0DQ, or telephone 01-422 2274.

NO JACK OF ALL TRADES, BUT g PR
DABHAND AT SOME POLYTECHNIC VIDEOTEX
Yet another new product from VIEWSH EET DATABASE

DABS Press has just been released
in the form of ViewSheet and
ViewStore, A Dabhand Guide.
Written by Acorn User Editor
Graham Bell, this mammoth 350
page tome offers to explain all you
are ever likely to want to know
about these two View family
products for the BBC micro and
Master. The book also contains
listings of a number of utility
programs designed to make use of
ViewStore and ViewSheet even
easier.. The book costs just £12.95, from shops or direct
from DABS Press, 76 Gardener Road, Prestwich,
Manchester M25 7HU. Telephone 061-773 2413 for
further information.

HELP FOR USERS

A new service aimed particularly at computer users, as
opposed to programmers, has been established by
Micro Advisory Services of Richmond, London. The
intention is to help BBC micro users to exploit to the
full the potential of their machines in serious and
practical applications. If you are unsure as to the best

Beebug March 1988

VIEWSTORE

e
e
g;
&
g

Oxford Polytechnic is operating an
educational Videotex service
running at 1200/75 baud. The
service offers information on staff
research, educational telesoftware,
curriculum development, primary
education, applications for the
disabled, plus news and comment
on the Polytechnic world. The
Videotex service can be accessed on
Oxford (0865) 819937. For more
information contact the Database
Manager, Computer Education Unit,
Oxford Polytechnic, Lady Spencer-Churchill College,
Wheatley, Oxford OX9 1HX.

FIND OUT ABOUT BARTG

BARTG's (British Amateur Radio Teleprinter Group) latest
quarterly journal (Datcom) has just been published.
BARTG covers all aspects of amateur data
communications (RTTY, Packet, Amtor and FAX) with
UK membership costing £8. Members receive copies of
Datcom four times a year. For more information
contact John and Pat Beedie, GW6MOK and GW6MOJ,
Ffynnonlas, Salem, Llandeilo, Dyfed SA19 7NP.

5

hine

il & &= ¥ mm |

SR -

Geoff Bains casts an eye at Minerva's new
package System Gamma for creating
graphic displays from your database.

When Minerva launched the System Delta
database language/package last year (see
BEEBUG Vol.5 No.4) the one thing missing was
a good way of displaying the data sorted and
searched for. True, the data could be got at
quite easily and used with a Basic program to
draw a graph or chart. However, that relies on
the same programming skills which System
Delta was designed to render unnecessary.
Now Minerva has followed the tradition of
System Delta with a data presentation package
called System Gamma.

+ Systen Ganna +

Current Graph ESIAZHISNNNSNNNNNEN Current Font RITERVE
X value

Label

Again the package is a program-
ming language with a series of star
commands to manipulate data and
create displays on the screen. As
with System Delta, when you
purchase System Gamma you are
not actually told how to use the
programming language. It is not
easy to guess it all either, as there are a great
many star commands (such as *SGOPT,
*SGdefine, *SGxscale, *SGfont, *SGaxis and
*SGgraph), not to mention a myriad
*FX163,18,n commands, which are near to
impossible to fathom without help.

Outline NN

6

All the information to actually program your
own graphics presentation package is contained
in the System Gamma Programmer's Reference
Guide. Unfortunately, as with System Delta
before it, this will set you back a further £19.95.

I can't help feeling this is both a bit of a con and
extremely silly. If the guide is written and
printed, it costs very little more to include it (in
presumably large quantities) with the software.
This habit of Minerva's is not one we should
look to encourage.

Hain Menu

Systen Gamma

mr=0o0

o=

Select Option

The documentation you do receive with System
Gamma is the manual for an application
already written. To be fair, this program does
allow you to
presenmnt
displays of
data entered
by hand or
imported
from ASCII
files, or from
System
Delta, in just
about any
way you
would want.
This = pro-
gram will suit the majority of people as it is.
However, if you want to import data from
something a little more exotic, you will have to
write your own program or modify the ones
given - and we are back to the Programmer's
Reference Guide again.

Data Entry Hode

Y value

e

TorDEDDBIDDD
IEIIIIIETSS
RIS
Sy
A A e SO A O
N A
croorresoos
SIIIITISISS

e e ORI e
O BRI RS IL

Percent WA Labels WM Values NN

Beebug March 1988

System Gamma is supplied in a 32K EPROM
which plugs into a normal 8/16K ROM socket

selected colour and highlighted or not - the way
the highlighting is done depends on the graph

thanks to a small carrier board
of the Computer Concepts
type. The ROM is compatible
with all types of BBC micro
but requires shadow RAM for
extra memory and the
Acornsoft GXR graphics
extension ROM for some of its
fill patterns. These can both be
either built in from the start (as
in the Master) or additional
items to your model B micro.

Press any keu

type but all are
effective.

The type of
graph is also
specified on this
table along with
the font used for
the axis and
entry labels
(normal, small or
thin), and flags
are provided to

Unfortunately, although the programming
language is happy with, say, an Aries board for
shadow RAM and a plug-in GXR ROM, some
of the opening sections of the applications
program are not - they require a little rejigging
to get the program to run. It is not hard to do
but rather defeats the purpose of ready-written
software. In addition, the different on-screen
fonts are not always available with a model B
system.

The applications program provides graphics
displays of any data in a number of different
graph forms. These are simple histogram, '3D'
histogram, pie chart, scatter diagram and line
graph. The whole program is centered around a
rather peculiar menu-and-additional-single-
keypress driven module which will be a
familiar style to existing Minerva software
users.

display an outline, percentages, values and
labels, and are toggled with Ctrl-letter
keypresses. The whole table is easily and

4880
38887

28007

“l L g

8 ST 5 P T DR (IR s taciss s G|
JA FE MA AP MA JU JU AU SE OC NO DE

Press anu key

quickly drawn up for any particular graph
required. This data can then be saved to disc or
altered with the simple and effective

Data for
the graphs
is entered
into a sim-
ple table
providing
for a label
and two
values for
each en-
try. Each

Press any key

editor.

Data can also be 'imported' into the
program from other software (most
likely a database or spreadsheet) as
long as it is in an ASCII file and
takes the form <label>, <x-value>,
<y-value>, <label>, <x-value>, <y-
value>, etc. Many programs can
produce such data, and it is
relatively simple to write a short
Basic program to convert other

entry's section of the resulting graph can now
also be defined in a specified or automatically

Beebug March 1988

software's data to this format or to generate
such data to start with. For System Delta data a

7

special program is provided for stripping the
required data from the Delta index cards.

Once the data is entered it can be instantly
displayed in the type of graph format chosen,
and some further manipulation performed on
the screen. The graph can be changed in size
(and to some extent shape), and shifted around
the screen. It can be printed
out or the screen saved to disc
for further additions later.

For graphs which plot two
values for each entry (scatter
and line, not histogram or pie)
the line of best fit can be
instantly plotted on the graph,
and the equation is given on
the prompt line at the bottom
of the screen. Complete
statistical analysis of each
graph can also be performed
by the program. The minimum, maximum, line
of best fit, mean, standard deviation and
correlation coefficient are also displayed nearly
instantaneously and can be output to a printer
if required.

Several graphs can
be in memory at a
time, and with
more than one the
ability to shrink
graphs and move
them around the
screen becomes a
vital one. More
than one graph e
can be drawn on

the same screen, at
any size or relative position. Again, the
multiple graph screen can be printed or saved
to disc.

Priess any key

For that final touch of professional
presentation, text can be added to the complete
screen in any position inside boxes of various
designs and in the same range of fonts as are
provided for axis labelling. Lines can be drawn

8

I=Information

to divide up the display and graphs boxed and
shaded to give a professional look to the whole
screen. Again the finished screen can be saved
or printed.

Of course, the same set of instructions will often
be used to produce similar graphs from
different sets of data or to update a graph of
cumulative data.
To make this
much easier,
System Gamma
is also provided
with a macro
facility. All the
operations of the
system can be
defined in a
simple program
(which basically
uses the System
Gamma star
command language, without the stars) and the
program saved to disc.

Useful additions such as prompted waits for a
keypress are included, so a
complete 'slide show'
presentation of many graphs
can be put together for near-
automatic display.

There is nothing that System
Gamma does which any
reasonably competent Basic
programmer with a little
elementary geometry
couldn't manage on their
own. However, this package
does it all for you and at a
speed and with a flexibility which are hard to
match.

The lack of inclusion of a real programmer's
manual is a grave omission, but even without it
System Gamma provides a powerful all-
purpose data presentation package which will
prove well worth the price to anyone struggling
with the Beeb for business. B

Beebug March 1988

e T o

INSTANT LISTING
OF FUNCTIONS
AND
PROCEDURES

Graham Crossley has developed a highly
useful and practical utility which allows
any function or procedure in your current
program to be listed simply by referencing
its name. Now you can forget all about line
numbers.

INTRODUCTION

Several 'professional' computers allow function
and procedure definitions within a program to
be listed individually simply by typing the
name of the required section of code after the
LIST command. The utility presented here
allows the BBC computer user to enjoy the
same flexibility as those more expensive
machines when editing and debugging a Basic
program.

USING THE UTILITY
Type in the listing, taking particular care with
the machine code, and then save it away before
running it. If no errors are reported (the
assembled code includes a checksum) you will
be asked if the code is to be saved (using the
name NEWLIST), after which the new list
command is installed. At other times the file
NEWLIST need only be *RUN to install the
utility. In order to list a particular function or
procedure in any program in memory simply
type:

*LINE <fn/proc name> Return
and the desired section of code will be listed
instantly. Function and procedure names may
be abbreviated and ended with a full stop in
which case the first function or procedure
within the program whose name matches the
characters entered will be listed. An error
message is produced if the name entered
cannot be found.

IMPROVEMENT

The best way to use a utility such as this, and
the way that I use it, is to have it residing in
sideways ROM or RAM along with other useful
routines. This makes it permanently available

Beebug March 1988

and immune from Break or Ctrl-Break. Details
of how to achieve this can be found in the
Advanced User guides. Articles describing the
techniques involved have also been published
in BEEBUG (see Vol.5 Nos.2-4 & Vol.6 No.1)

HOW IT WORKS

Use has been made of the *LINE operating
system command which allows the user to pass
a parameter string, in this case the name of a
function or procedure, to a resident machine
code routine. The call is vectored through the
USERV vector at &200/201 the contents of
which are changed to the address of the new
list command. On entry the X and Y registers
point to the address in memory of the
parameter string.

A resident Basic program is searched for a DEF
token (&DD) and a match check carried out
between its name and the name entered at the
keyboard. Should the names not match, the
program is searched for the next DEF token.
Assuming a match is found the line number is
stored and the search continues, this time for
the line where the function or procedure ends.
This will be the occurrence of either:

1. ENDPROC.

2. End of function (=).
3. New DEF statement.
4. End of program.

The start and end line numbers of a desired
function or procedure can easily be found, but
the problem is how to pass these to the Basic
interpreter along with the LIST command. The
solution used here is to force the LIST
command, together. with start/end line
numbers and Return, into the keyboard buffer
as if they had been actually typed in. But what
about the line numbers being in 2 byte format?
These need to be converted to the normal
decimal numbers that would normally be typed
in at the keyboard. This is achieved by counting
the number of 10000s, 1000s, 100s, 10s and 1s in
the original two-byte number, converting the
counts to ASCII codes (count OR &30) and
placing them in the keyboard buffer. The
conversion uses the subtraction method of
counting and is actually used within the Basic
ROM.

10 REM Program FN/PROC Lister 1440 INY:LDX #&00
20 REM Version B1.2 1450 .nameloop
30 REM Author Graham Crossley 1460 LDA (pointer), Y
40 REM BEEBUG March 1988 1470 CMP #&0D:BEQ nextline
50 REM Program subject to copyright 1480 CMP #ASC":":BEQ nextline
60 : 1490 CMP #ASC" (":BEQ nextline
100 MODE 7:0N ERROR GOTO 170 1500 STY temp
110 PROCinitialise 1510 PHA:TXA:TAY:PLA
120 PROCassemble 1520 CMP (command),Y:BNE nextline
130 PROCcheckcode 1530 INY:LDA (command),Y
140 PROCsavecode 1540 CMP #&0D:BEQ chknamelen
150 END 1550 CMP #ASC".":BEQO matchok
160 : 1560 INX:LDY temp:INY:BNE nameloop
170 ON ERROR OFF:MODE 7 1570 -
180 REPORT:PRINT" at line ";ERL 1580 .chknamelen
190 END 1590 LDY temp:INY:LDA (pointer),Y
200 1600 CMP #ASC" ":BEQ matchok
1000 DEF PROCinitialise 1610 CMP #ASC":":BEQ matchok
1010 pointer=&70:length=§72:source=§73 1620 CMP #ASC" (":BEQ matchok
1020 dest=&75:1ine=&77:result=679 1630 CMP #&0D:BNE nextline
1030 temp=&7A:command=&7C:osbyte=4FFF4 1640 ¢
1040 ENDPROC 1650 .matchok
1050 1660 LDY #&02:1DA (pointer),Y
1060 DEF PROCassemble 1670 STA source:STA dest
1070 FOR pass=0 TO 2 STEP 2 1680 DEY:LDA (pointer),Y
1080 P%=&900 1690 STA source+l:STA dest+l
1090 [:OPT pass 1700 :
1100 .setup 1710 .listto
1110 SEI 1720 JSR adjustpointer
1120 LDA #list MOD256:STA &200 1730 BEQ convertsource
1130 LDA #list DIV256:8TA 201 1740 JSR checkfortoken
1140 CLI 1750 BEQ convertsource
1150 .exit 1760 STY temp:LDY #&02
1160 RTS 1770 LDA (pointer),Y:STA dest
1170 1780 DEY:LDA (pointer),Y
1180 .list 1790 STA dest+1:LDY temp
1190 STX command:STY command+l 1800 LDA (pointer),Y
1200 .checkforname 1810 CMP #&E1:BEQ convertsource
1210 LDY #&00:LDA #&0D 1820 CMP #ASC"=":BNE listto
1220 CMP (command),Y:BEQ exit 1830 : '
1230 LDA #&83:JSR osbyte 1840 .convertsource
1240 STX pointer:STY pointer+l 1850 LDA #&15:LDX #&00:JSR osbyte
1250 LDY #&01:LDA (pointer),Y 1860 LDA #&8A:1LDY #ASC"L":JSR osbyte
1260 CMP #&FF:BEQ exit 1870 LDY #ASC".":JSR osbyte
121 1880 LDA source:STA line
1280 .begin 1890 LDA source+l:STA line+l
1290 CLD 1900 JSR convert
1300 JSR checkfortoken 1910 LDA #&8A:LDX #&00
1310 BEQ deffound 1920 1DY #ASC",":J8R osbyte
1320 .nextline 1930 -
1330 JSR adjustpointer 1940 .convertdest
1340 BNE begin 1950 LDA dest:STA line
1350 BRK 1960 LDA dest+1:STA line+l:JSR convert
1360 EQUB 29 1970 LDA #&8A:LDX #&00
1370 EQUS "No such FN/PROC..." 1980 LDY #&0D:JMP osbyte
1380 BRK 1990 :
1390 : 2000 .convert
1400 .deffound 2010 LDX #&04
1410 INY:LDA (pointer),Y 2020 .conl
1420 CMP #ASC" ":BEQ deffound 2030 LDA #&00:STA result:SEC
1430 .checknames 2040 .con2 Continued on page 62
10 Beebug March 1988

i 0| T 6

Fiing 5

@

The language C has been around for some time
now, available for "real computers" like the
IBM, DEC and NCR ranges. Not having any of
these beasties to hand, I was delighted to see
several versions of the language become
available for the humble Beeb. This article is the
first in a series aimed at the experienced BBC
Basic programmer who wants to get to grips
with C. In the next few issues we will develop a
number of programs which will illustrate the
crucial differences between C and BBC Basic.

For more details, the reader is referred to "The
C programming language" by Kernighan and
Ritchie (reviewed elsewhere in this issue). This
book is the standard work on the subject and
was used in the preparation of this series. The
review of Acornsoft C (BEEBUG Vol.6 No.5)
contained background information about
compiled languages, and C in particular, which
I will not reproduce here.

Most of the information in this series applies to
any implementation of C on any machine,
though it is the BEEBUG version I have used to
test out each program. To save space, examples
of C statements are not usually presented in the
context of a complete program, but if you have
access to a C compiler try inserting the
examples in this skeleton (note that C does not
use line numbers):

Beebug March 1988

/* skeleton program for C examples */
/* explanations later *x/
#include <h.stdio>

main () {

/* Insert main routines here x/

}

/* Other functions follow */
A full explanation of the above follows the final
examnple in this article. If you have the BEEBUG
version of C, you will need to use a word
processor to enter the programs. Some
implementations include a built-in editor.

THE BASIC ELEMENTS

Let's look first at some general points regarding
C syntax. A program in C consists of a set of
functions; the top-level or harness function
must be called main. The arguments or
parameters of a function are enclosed in normal
brackets (). Most C statements end with a semi-
colon - exceptions you'll meet this month are
the control flow statements if and while - and
may be grouped together in braces { }.
Comments reside between /* and */. Reserved
words, that is words which are part of the C
language, are written by convention in lower
case.

In C, as in Basic, data may be held in variables.
The first major difference between C and Basic
is that C requires the declaration of all variables
before they are used. Rather than assuming the
data type from the variable's name (e.g.
integer%, string$), the type must be declared,
for example:

int number; /* integer - 16 bits */
char alpha; /* single byte (1 char)*/
float realnumber; /* 32 bits */

In the above, we have declared an integer called
number, which can hold any value between -
32768 and +32767; a single byte called alpha,
which can hold any ASCII character; and a
larger variable called realnumber with a
capacity similar to Basic's real numbers. Much
larger integers may be stored in type long (32
bits). This is not the whole story, but it's quite
enough for now.

11

PROGRAM
CONTROL

A program in C
comprises a set of
functions. All C
programs must
contain a function
called main(); this
may be the only
function in the program or it may call other
functions, which call other functions in turn (or
themselves,recursively), and so on. The
language has no in-built facilities for input and
output, but standard library functions are
provided for such hardware-dependent
activities (for example: scanf(), which is
equivalent to INPUT, and printf(), the analogue
of PRINT). The beginner may like to think of
these as part of the language, as they are
available universally.

As in Basic, control passes from one statement
to the next in sequence, starting with the first
statement in main. Naturally, there are a
number of ways to disrupt this orderly flow,
including if and for. There is also a goto
statement, but don't let me catch you using it in
such a structured language as C!

The if statement looks much like its Basic
counterpart;

if (condition)
statement-1;

else
statement-2;

statement-3;

The condition in brackets is evaluated. If it is
TRUE, statement-1 is executed; if it is FALSE,
statement-2 is executed. In either case control
then passes to statement-3. Several statements
may be grouped together using braces, and
multiple if statements may be nested. A simple
example of an if might be:

byte = getchar();
if (byte >= 32)
printf ("printable");
else
printf ("control character");

getchar() is a library function returning a single
character from the input stream, just as GET$
does in Basic. The function printf() is like the

12

Basic PRINT statement, but rather too
complicated to describe fully in one go. Bear
with me.

FOR LOOPS
The for loop is also similar to the equivalent
Basic construction. An example such as:

10 FOR N% = 29 TO 40 STEP 2
20 PRINT"Aargh!";
30 NEXT

could appear in C as:
int n;
for(n = 29; n <= 40; n = n+2)
printf ("Aargh!");

The bracketed expressions correspond to the
start-value, end-value and step portions of the
Basic FOR statement, but the loop is executed
while the central expression (n <= 40) is true,
and this need not relate to the variables in the
start or end expressions. All three parts are
optional. Note the absence of a NEXT
statement. The loop consists of the statement
following the for. However, several statements
may be grouped in braces thus:

int n,n2;
for(n = 29 ; n <= 40 ; n = n+2) {
n2 = n*n;

printf("$d - Aargh!",
}

The printf function is used in a more complex
form here. The string (in quotes) contains
formatting information about the variable list
which follows; in this case %d specifies a
decimal digit. Key in the above (inserting it into
the main part of the skeleton program, say),
and then try replacing the %d with %o (octal -
base 8), %h (hexadecimal) or %f (floating point).
You'd better change the declaration (int n2; to
float n2;) for the last one.

n2);

WHILE LOOPS

Users of BBC Basic will be familiar with the
REPEAT-UNTIL construction. The nearest
equivalent in C is the do-while statement. An
example:

10 N%=0

20 REPEAT

30 PRINT N%

40 N%=N%+1

50 UNTIL N%>10

Beebug March 1988

’_——,.___44

which becomes in C:

int n = 0;

do{

printf ("%d", n);
n+=1;
}

while(n <= 10);

As you can see in this example, it is possible to
assign values to variables when they are
declared. The last statement, n += 1, is
equivalent to n = n+1. This shorthand is
available for all the arithmetic operators, '+, -,
*'and '/', as well as others we have yet to meet.
Again, note the use of braces to enclose the
body of the loop. Note, too, the semicolon at the
end of the while statement, which distinguishes
the do-while from the true while described
below. As with the Basic original, the loop is
always executed at least once. Replace line 10 in
the Basic program with:

10 N%=12

and the first line of the C example with:
int n = 12;

Despite the fact that n (or N%) starts off
exceeding the terminating value, the loop is still
executed once. If you want to avoid that
possibility, then C offers an alternative form of
the while as in the variation below. Examine
this carefully and you'll see that the loop in the
C program is never executed, because the test
fails before the first pass through the loop.

/* This loop is never executed */
int n = 12;
while(n <= 10){
printf("%d",n);
n+=1;
}

Note the use of braces again to enclose the
statements within the loop. do-while is exactly
equivalent to REPEAT-UNTIL, but is less
useful, and less frequently used than while.

Beebug March 1988

Incrementing and
decrementing
counters is such a
common activity in
C that two special
unary operators, ++
and --, have been
provided. These can
be used either before the variable (prefix) or
after it (postfix), thus:

while (n++ <= 10) means 'test the value of n,
thenadd 1 ton'.

while (++n <= 10) means 'add 1 to n, then test'.

Try using these constructions in the examples
above. Here is another example, this time in the
form of a complete program:

#include <h.stdio> /* compiler directive
- see below */
main ()
{
int n = 10;
while(--n > 0)
{
printf("%d...", n);
}
printf ("LIFTOFF!\n");
}

If you substitute n— for --n you'll once again see
the difference between postfixing and prefixing
the ++ operator.

FUNCTIONS

Functions in C are very like their equivalent in
BBC Basic. Parameters, or arguments, are
passed in brackets. The function itself uses
local copies of the parameters ("call by value"),
and returns a single value. The syntax might
look confusing to a Basic programmer. A
function like printf() may have many
arguments, but returns a meaningless value,
while getchar() has no arguments though the
brackets are still needed, returning a single
character. A function is assumed to return an
integer unless declared otherwise.

13

Variables declared
external to a funct-
ion may be changed
from within a
function by passing
a pointer to the
variable rather than
the variable itself -
similar to the idea of passing an address to a
Basic function. Pointers are an important
feature of C, and we'll cover them in detail
later.

To close this introduction and illustrate the
points covered, we will now write a program to
calculate and print the square and square root
of a number entered by the user.

/* c.sqrt calculate the square and */
/* square root of a number */

#include <h.stdio>

main()
{
double n;
double sqrt();
n=0;
printf("give me a number; ");
scanf ("$f", &n);
printf("You entered $%3.0f", n);
printf (" square = $5.0f", n*n);
printf (" root = %2.4f \n", sqrt(n));

}
double sqrt (num)

double num;

{

double wrk,ans;

wrk=ans=num/2.0;

while (wrk > 0.001)
{
ans=(ans+(num/ans))/2.0;
wrk=((num/ans) -ans) ;

if (wrk<0.0)
{
wrk *= -1.0;
}
}
return (ans) ;

}

The first two lines are comments; the next is a
compiler directive, which tells the compiler to
copy in a file called h.stdio (supplied with

14

Beebug C). This contains the input-output
routines we will be using. Then comes our main
routine, in which we declare our variable n and
our function sqrt() as type double (for double
precision), print a message, accept a number
and call the sqrt function. Note the declaration
of the function sqrt as type double. This is
necessary because a function is assumed to
return an integer unless otherwise specified.
The function scanf() returns the number
entered by the user. This function resembles
INPUT in the same way that printf() resembles
PRINT, and the arguments are analogous - first
a control string, then a list of variables. The
argument specifying the destination, &n, is
actually a pointer to the receiving variable. This
is always so with scanf() - and a common
source of program errors!

Three calls to printf() follow, showing how an
expression like n*n or a function returning a
value may replace a variable of the same type
(this is generally true throughout the language).
The \n in the control string causes a newline
character to be printed.

After the brace terminating main(), the sqrt
function is defined. This has an argument,
locally known as num, which must be specified
outside the function braces {}. Within the braces
we define our local variables. The actual
computation is an iteration, and the limit of
accuracy is plus or minus 0.001. Think of the
while loop as a REPEAT-UNTIL construction,
and the logic is easier to follow. The return()
statement at the bottom of the function specifies
the value passed back to main just like the
terminating = of a BBC Basic function.

As it stands, the program will run once and
stop. See if you can tweak it to loop until the
user enters 0, or to deliver the square roots of a
range of numbers (hint: use a for loop, or
while(n++<100)).

Swots among you might like to validate the
input, which must of course be positive. C you
next month!

Beebug March 1988

r——————————i =

THE C PROGRAMMING LANGUAGE

This month we commence a short series on programming in the language 'C'. Anyone who wishes to pursue C
more seriously will need an adequate reference, and the book most often recommended is 'The C Programming
Language' by B.W Kernighan and D.M.Ritchie. Ray Hughes gives a run down of what you can expect
to find in this acclaimed book.

THE C PROGRAMMING

LANGUAGE
by B.W.Kernighan & D.M.Ritchie

published by Prentice Hall
at £23.95 (£22.75 to BEEBUG members).

This is an excellent introduction to the world of
C programming, containing 228 pages of highly
readable information laid out in several distinct
sections.

A TUTORIAL
This is included to enable programmers new to
C to pick up the language as quickly as
ossible. However, as the book says, it is not a
eginner's guide to programming, and its
readers are expected to understand already
such concepts as variables, assignments, loops
and functions etc. It gets into coding straight
away with a good old "Hello world" type
program, which is probably the first piece of
code written in any language by first time
users. Throughout the book, there are also
question and answer sessions to allow the
reader to fully check that he/she understands
the current cﬁapter before moving on to the
next. The tutorial in its 30 odd pages manages
to cover the main core of the language.

LANGUAGE & PROGRAM STRUCTURE
This section of the book deals with the more
complex ideas that need to be covered for a full
understanding of the facilities that can be made
available to the C programmer. This is in fact
the main body of the book and covers in order
the following topics :

Types, Operations and Expressions
(Char, int, float, short, long, double etc)

Contol Flow
(While, wend, for, next, do-while, case, etc)

Functions and Program Structure
(main() recursion, macros etc)

Pointers and Arrays
(pointers, multi-dimensional arrays etc)

Structures
(lookup tables, fields, Unions etc)

Input/Output
(getchar, putchar, scanf, file access etc)

Beebug March 1988

This then ends the main body of the book.
However, the last 85 pages cover other aspects
of the language that serious users will want to
know about. There is a special chapter on the
UNIX system interface, but this may not be of
much use to Acorn machine owners, except
those lucky Archie owners who may one day
get access to UNIX via the proposed ARX
operating system.

Next there is the C reference manual which is a
full and concise description of all keywords etc,
with brief examples of their use. Finally, we
have an excellent index covering all items
mentioned in the preceding pages.

Throughout the book the authors describe and
recommend standard programming techniques,
and extensive use is made of examples to
demonstrate, in articular, structured
programming methods. Many short, and some
not so short programs are listed in the book,
many of which I am sure budding
programmers will take and later modify to their
own requirements.

IN CONCLUSION

Although reviewed many times since it was
first published in 1978, this may be the first
review of K&R read by many BEEBUG readers,
since C has only recently been released for the
Acorn machines. Now nearly a decade old, this
book has remained throughout that time the
most important reference work for C
programmers. It has no equal in what it
attempts to achieve; or the deceptive ease with
which this is accomplished.

Both the Acorn and BEEBUG implementations
of C refer the reader to Kernighan & Ritchie for
a detailed guide to the C language. It is
certainly not a cheap book (although BEEBUG
members are entitled to the usual discount),
and compared to some language manuals
seems quite thin at 228 pages. However, the
information contained within those page is
excellent, and the book really should be
considered an absolute must by any
prospective C pro§rammer who wants to
exploit the language fully. B

15

i i | &>

Cocktail
- of 3D
Procedures

If you have ever wanted to produce 3D wire
frame graphics this program is for you.
David Lowndes Williams offers procedures
to create the 3D equivalents of Basic's
DRAW and MOVE instructions.

Two procedures PROCmove(x,y,z) and
PROCdraw(x,y,z) form the basis of this article,
and provide the 3D equivalents of the MOVE
x,y and DRAW x,y commands in Basic. In order
to explain how they work the chosen 3D
coordinate system needs explaining. Figure 1
shows that the x and y-axes are exactly as they
are normally, i.e. in the plane of the screen. The
z-axis is perpendicular to the screen, i.e. it
appears to go into and out of the screen.
Representing 3D points correctly on the 2D
screen involves some extensive arithmetic in
order to convert each point (x,y,z) to a point
(x,y). The procedures take away this drudgery
by performing all the calculations necessary.

L

Figure 1

I suggest at this stage, that you type in and run
the demonstration program. This draws a 3D
wire-frame projection of a wine glass sitting on
a grid, with an umbrella in it. The program can
be made to view the wine glass from any angle,
and accounts for perspective as well. Lines
1000-1280 contain all the routines that you need

16

to use PROCmove and PROCdraw. Removing
line 1150 will remove perspective, giving a true
isometric representation of the object.

EXPLAINING THE DEMONSTRATION
PROGRAM

Before PROCmove and PROCdraw can be used
to display the object, PROCinitrotation(x,y,z)
must be called (see line 110), the parameters
representing the orientation of the object. The
easiest way to understand this is to run the
demonstration program, and try changing the
values. For example, start with PROC
initrotation (0,0,90) and you will see the glass
standing upright on its base grid. The reason
why the object needs to be rotated by 90
degrees about the z axis to bring it upright, is
because this makes it easier to determine the
coordinates in the position (0,0,0). Now try
PROCinitrotation(0,45,90) which means
"display the object rotated 45 degrees about the
y-axis". You will now see the glass standing on
a rotated grid. If you want to look down on the
glass you should try rotating about the x-axis
by 90 degrees ie 90,0,90. Try it; the base will be
closest to you. Using -90,0,90 puts the umbrella
closest to you. Negative values rotate the object
in the opposite direction. These last two sets of
values give a superb demonstration of
perspective. You should also try them with
PROCperspective in line 1150 removed.

OPERATION OF THE PROCEDURES
PROCmove(x,y,z) and PROCdraw(x,y,z) work
in a similar fashion to the standard MOVE and
DRAW commands, but in '3 dimensions'. The
apparent position of a 3D point on the screen
depends on the rotation set up in PROC
initrotation(x,y,z), and the perspective setting.
PROCrotate, which is called by PROCmove and
PROCdraw, calls PROCperspective(S) at line
1150 where S is the size of the image on the
screen (try values from 300-800 for most
objects). In the example, S is set to 700 at line
110.

I suggest that when drawing your own 3D
designs you initially remove the call to
PROCperspective, and only insert it when your
design is completed. Your drawing will still
look presentable, even if it is not truly in

Beebug March 1988

=

perspective. You will probably find it helpful to
sketch your object on paper first - isometric
graph paper is a great help here.

When designing your own programs using

these procedures, note that the following

variables are used by the procedures:
kmnopqrstuvwxyz

and your programs should not alter them. It is

particularly easy to forget and use the variables

X,y Or Z in your program.

To summarise, just set S to establish the size of
your object, call PROCinitrotation to set its
starting position and from then on use
PROCmove, and PROCdraw to plot it out.
Delete PROCperspective at line 1150 if
perspective is not required, and steer clear of
variables k-z. All the other procedures look
after themselves.

TECHNICAL NOTES - THE PROCEDURES
The program uses the matrix method to
perform the rotation. Assuming we are rotating
the vector

X

y | by an angle of A degrees, then:

x\[cos A -sin A — (newXx
y/\sin A cos A newy
i.e. new x = x*cosA + y*-sinA

new y = x*sinA + y*cosA

It is unnecessary to calculate the sines and
cosines of A repeatedly: we get PROCinitrotate
to do this at the beginning, and store the results

Beebug March 1988

in variables k to s. To perform a rotation, it is
then a simple matter of adding the results of
two multiplications. This is done by
PROCrotate.

Perspective is catered for by remembering that
the z axis is perpendicular to the plane of the
screen. Therefore dividing each x and y
coordinate by z, and applying a scale factor S,
the image will be foreshortened appropriately
depending on whether z is large or small. To
overcome the possibility of z being zero, and
hence a division by zero error occurring, z has
1000 added to it before the scaling takes place.

Having called PROCperspective, 640 is added
to the x, and 512 to the y co-ordinates to put the
model at the centre of the screen.

TECHNICAL NOTES -

THE MAIN PROGRAM

The main program to draw the cocktail glass,
base and umbrella, lies between lines 120 and
320. It uses PROCmove and PROCdraw, after
issuing a PROCinitrotation. The loop from line
180 to 280 calculates points along the vertical
lines of the wine glass. Other loops draw a
circle at the top and bottom of the wine glass,
and an umbrella.

PROGRAMMING YOUR OWN 3D DISPLAY
If you wish to provide the code for your own
object, lines 110 to 330 will need to be replaced.
A suitable example to try yourself is that of the
house shown in figure 2, listing 1 is the
resulting code. You will need a reasonably
good 3D eye for this. but I have kept it simple

17

[

by placing the base of the house on the x-z
plane, allowing many of the y coordinates to be
zero. Having decided on the coordinates of
each of the points, all that remains is to draw
them in the right order. There are many ways to
do this, the one shown in listing 1 is almost
certainly not the one taking the least moves.
Start by loading the wine glass program and
delete lines 110 to 340 inclusive. Now add the
lines given in listing 1. The missing line
numbers are for the insertion of the rotation
routine discussed later.

¥
(-300, 300, 0) A
E
J G
D
1 /c H
LM
/ P X
A K N B
(-300, 0, -200)
z Figure 2
Listing 1
110 s=1000

120 xx=300:yy=200:2z2=200

160 PROCinitrotation(0,0,0)

170 PROCmove (-xx,yy,~zz) :REM D
180 PROCdraw(-xx,0,-zz) :REM A
190 PROCdraw(xx,0,-zz) :REM B
200 PROCdraw(xx,yy,-zz):REM C
210 PROCdraw(-xx,vy,-22) :REM D
220 PROCdraw (-xx,yy+yy/2,0) :REM E
230 PROCdraw (xx,yy+tyy/2,0) :REM F
240 PROCdraw(xx,yy,—zz) :REM C
250 PROCmove (xx,yy+yy/2,0) :REM F

260 PROCdraw (xx,yy,zz) :REM G
2170 PROCdraw(xx, 0,zz) :REM H
280 PROCdraw(xx, 0,-zz) :REM B
290 PROCdraw(xx, 0,+zz) :REM H

300 PROCdraw (-xx, 0,+zz):REM I
310 PROCdraw(-xx, 0,-zz):REM A
320 PROCdraw(-xx, 0,+zz):REM I
330 PROCdraw (—xx,yy,+zz) :REM J
340 PROCdraw (—xx,yy+yy/2,0) :REM E
350 PROCdraw (-xx,yy,+zz) :REM J

360 PROCdraw(xx,yy,zz) :REM G
370 REM Door
380 PROCmove (-xx/6, 0,-zz) :REM K

390 PROCdraw(-xx/6,yy/2,-2z):REM L
400 PROCdraw (+xx/6,yy/2,-zz) :REM M
410 PROCdraw (+xx/6, 0,-2zz) :REM N
440 END

18

Remember that you must not use the variables
k and m - z. Instead, the program uses xx, yy
and zz, setting their sizes in line 90. The
program also starts with PROCrotation(0,0,0) to
keep the image exactly as shown in figure 2.
You may like to put the house-drawing routine
in a loop with say sx, sy and sz changing by 5
degrees each time:

130 FOR sx=0 TO 360 STEP 5

140 sz=sx:sy=sx

150 CLsS

160 PROCinitrotation(sx, sy,sz)

420 Q=INKEY (50)
430 NEXT

I hope that this article provides the basis for
your own 3D displays. Having experimented
you may like to provide procedures that
translate (shift the position of the whole image),
and perhaps shear (scale the coordinates
relative to their position).

Demonstration Program
10 REM Program WineGlass
20 REM Version 2
30 REM Author David Lowndes Williams
40 REM BEEBUG March 1988
50 REM Program subject to copyright

100 MODE1:ON ERROR GOTO 2000

110 $=700:PROCinitrotation(0,0,90)

120 REM GRID BASE FOR GLASS

130 GcoLo, 1

140 FORn%=-400T0400STEP100:PROCmove (-4
00,n%,-400) : PROCdraw (-400,n%, 400) :NEXT

150 FORn%=-400TO400STEP100:PROCmove (-4
00,-400,n%) :PROCdraw (-400, 400, n%) :NEXT

160 REM WINE GLASS

170 GCoOLO, 3

180 FORI=0TO2*PI STEP 0.3

190 sin=SIN(I) :cos=COS (I)

200 PROCmove (-400,200*cos,200*sin)

210 PROCdraw(-315,1175%cos,175%sin)

220 PROCdraw (-350, J0*cos, 30*sin)

230 PROCdraw(-100,15*cos, 15*sin)

240 PROCdraw(-50,100%cos,100*sin)

250 PROCdraw(0,150*cos,150*sin)

260 PROCdraw (50,175*cos,175*sin)

270 PROCdraw(150,160*cos,160*sin)

280 NEXT

290 PROCmove (-400,200,0) :FOR I=0 TO 2*
PI+0.4 STEP 0.4:PROCdraw(-400,200*COS (1)
,200*SIN(I)) :NEXT

Continued on page 62

Beebug March 1988

Flng S ‘mu ‘

[P I

e i

Tired of keeping track of the contents of all
your video cassettes? Let the computer take
the strain with Keith Sumner's cataloguing
program.

This is a novel database application program
which allows the user to keep track of what is
on each video tape, where on the tape each item
is, and how much time remains. The program is
menu driven, allowing the standard database
manipulations of loading, data entry, editing,
searching, browsing, sorting, deleting and
saving, and will also print a label for any
selected cassette.

The program is being published in two parts. In
this issue we will provide the essential facilities
such as the loading, saving, and editing of
video cassette information. Next month we
will continue with the routines which will
allow records to be sorted and a hard copy and
cassette labels to be printed.

The program should first be typed in and saved
to disc or tape. When run, the program presents
the user with a series of options (eleven in total)
together with some program status
information. Each of the possible options is
discussed below. The first time you run the
program you will have no data file to load, so
the only options available to you will be 'data
entry' and 'exit'. If you have the magazine tape
or disc, you can load an example file called
VIDDAT using the menu option 0 (load data).

Enter the name of a previously created file to be
loaded. If data is already present in memory a
warning is given before the loading operation
is allowed to continue. If the program is to be
used on a single density DFS system it is
recommended that each data file be kept on a

Beebug March 1988

separate disc to prevent 'Can't extend' errors
occurring.

The program requires the following
information for each title or record entry.

The tape identification number: a three digit
number (between 000 and 999) which uniquely
identifies the tape to the user and the database
program. Pressing Return brings back the main
menu.

Print Label
Exit

o.
1.
£
3.
4
S.
6
I
8
2

Entries made

B.The tape type: a three digit number relating
to the tape length (120, 180 or 240 minutes).

The tape counter 'begin' and ‘end' numbers:
each a four digit number corresponding to the
video programme start and end points. This
number has a twofold purpose: it allows the
user to locate a recording within a tape, and
allows the program to calculate the duration of
the recording and the time remaining on the
tape (see notes on video recorder calibration).

The video programme category: a three
character abbreviation such as FLM for film,
SPT for sport, HUM for humour, etc. It is up to
you to devise your own mnemonics.

The video programme title: up to eighty
characters. It is advisable to keep titles short if
many titles are to be stored.

This prompts for the number of the tape to be
edited. If the user presses Return at this stage,
control is returned to the menu. Editing allows

19

the user to modify each of the information
fields relating to a particular entry on a tape.
Typing Return simply leaves the particular
field unchanged.

OPTION 3 - SEARCHING
(to be published next month)

OPTION4 - SORTING
(to be published next month)

OPTION 5 - LOOK THROUGH

Allows the user to browse through the contents
of the database. Use the up/down cursor keys
to move forward/backwards through the
datafile. Function key f1 allows the user to
jump to different parts of the data file after
specifying a three digit record number as the
target. Function key fO returns the user to the
main menu.

OPTION 6 - SAVING DATA
By specifying a filename the user can either
create a new file or update an existing one.

OPTION 7- DELETING DATA

This prompts for the number of a tape on which
the delete proc- edure will operate (pressing
Return again returns the user to the main
menu). The rout- ine then allows deletion of
selected titles on a tape, or the complete
removal of the tape number from the data file.
Suitable safety checks to prevent accidental
erasure of entries are included.

OPTION 8 - HARD COPY
(to be published next month)

OPTION 9 - PRINT LABEL
(to be published next month)

CALIBRATION OF VIDEO RECORDER

The program already caters for the three tape
lengths, E-120, E-180, E-240, but you may wish
to calibrate it for improved accuracy. The
calibration process involves recording the tape
counter number at 5 minute intervals through-
out the length of each of the tape types used
(this does take ages!). This information is then
stored in lines 2850 to 2920. The list of data for
each tape type must be terminated by 9999 as
an end-of-data marker.

20

The calibration information for each of the three
tape types enables the time remaining on each
tape and the length of each programme entry to
be calculated.

015
E-240
FLM

1200-4000

Humber

Tupe

Category

Counter
Title

PROGRAM NOTES

There are some important program variables
(set in PROCvars at line 2520) which need to be
mentioned. M% defines the maximum number
of records that are allowed. It is currently and
arbitrarily set at 200. Z% holds the number of
records associated with the most recently
updated data file. MAXENT defines the
maximum number of entries that can be made
on a tape. This is arbitrarily set at 8. M120,
M180 and M240 are the maximum values of the
tape count for each of the three types of tape.
This data is obtained from the calibration
process.

It should be noted that the data entry routine is
such that an exact number of characters must
be entered (with the exception of the film title
which uses a specially written input handler
routine). This routine either accepts solely
numerical data (numbers 0-9) as input or any
alphanumeric character string. The type of
input expected by the routine is flagged by one
of the procedure call arguments. A short beep is
emitted if an incorrect entry is attempted.

The options provided this month will be
sufficient for you to start organising your video
library. The program will be completed next
month with the remainder of the routines
allowing the library to be sorted, hard copy to
be printed, and searches for individual titles
and tapes to be made.

Beebug March 1988

10 REM Program Video Index

20 REM Version B 1.04

30 REM Author Keith Sumner

40 REM BEEBUG March 1988

50 REM Program subject to copyright

100 ON ERROR GOTO 160

110 MODE7:PROCvars

120 REPEAT:PROCmenu:UNTILexit

130 CLs

140 END

150 ¢

1oJ ON ERROR OFF: *FX 4,0

170 MODE 7:REPORT

180 PRINT" at line ";ERL

190 END

200 :

1000 DEFPROCmenu:*FX21,0

1010 FO=0:PROChead (10, cy$+"VIDEO-INDEX"
)
1020 PRINTTAB(0,3)"0. Load data"

1030 PRINT"1. Input data"'"2. Edit data
"

1040 PRINT"3. Search"'"4. Sort"

1050 PRINT"5. Look through"'"6. Save da
ta?

1060 PRINT"7. Delete data"

1070 PRINT"8. Hardcopy"'"9. Print Label
1080 PRINT"E. Exit"

1090 PRINTTAB(18,18)ylS+"Entries made :
";2%

1100 PRINTTAB(18,19)gr$+"Entries left :
"MS-2%

1110 DIM P%-1:PRINTTAB(13,21)cyS$+"Free
memory : ";HIMEM-P%;" bytes"

1120 PRINTTAB(0,14)rd$+"Option No. :4";
1130 REPEAT:K=GET-48:1FK=21 K=10

1140 UNTIL K>=0 AND K<11

1150 IF2%=0 AND K>1 AND K<10 PROCinfo:P
ROCmenu

1160 IFK=0 PROCread ELSEIFK=1 PROCinput
1170 IFK=2 PROCedit

1180 IFK=5 PROClook

1190 IFK=6 PROCsave ELSEIFK=7 PROCkill
1200 IFK=10 exit=TRUE:*FX4,0

1210 ENDPROC

1720 :

1230 DEFPROCinfo

1240 vDUT,12

1250 PRINT''rd$+£f1$+"MEMORY EMPTY"

1260 PROCspace (22) : ENDPROC

1270 :

1280 DEFPROCinput

1290 PROChead (10,gr$+"INPUT")

1300 IF Z%=M3% PRINTrdS$+f1$+"MEMORY FULL
" : PROCspace (22) : ENDPROC

1310 PRINTTAB(3,2) "Number : ";

1320 REPEAT: NS=FNinpt(l,3,0):IF Ns=""
UNTIL TRUE: ENDPROC

1330 e=0:FOR A%=1 TO Z%:IF LEFTS (NS (A%)
,3)=N$ e=e+l

1340 NEXT:PRINTTAB(25,2)"Tape "NSTAB (25
,3):;etl" entries":UNTIL e<>MAXENT

1350 REPEAT: PRINT TAB(5,4)"Type : E-";
1360 1$=FNinpt(1,3,1)

1370 UNTIL INSTR('120 180 240",15)<>0

1380 PRINTTAR(1,6)"Category : ";

1390 C$=FNinpt(0,3,1)

1400 REPEAT: PRINTTAB(2,8)"Counter :":S
PC(2);TAB(12,8);

1410 c$=FNinpt(1,4,1) :UNTIL NOT (FNc (c$)
)
1420 cl1$=FNinpt(1,4,1):IFFNc(cl$) THEN1
440

1430 IFcl$<=c$ THEN1440

1440 REPEAT: Ti$=FNeditor (9) :UNTIL Ti$<
Snn

1450 z%=2%+1

1460 TS (2%)=(Ti$+C$) :NS (2%)=(NS+cS+"-"+
c15+154STRINGS (6, CHRS32))

1470 A%=2%:PROCleft :PROCinput

1480 ENDPROC

1490 :

1500 DEFPROClook

1510 LOCALK%:CLS:PROCcard

1520 PRINTTAB (2, 6)rd$"£0"wh$"- Menu."TA
B(2,7)rd$"£1"wh$"~ Jump."TAB (20, 6) "Recor
dNe. "wis": "

1530 A%=1:REPEAT

1540 PRINTTAB(33,6)SPC(3);TAB(33,6) ;A%

1550 PROCprint:REPEAT:*FX21,0

1560 IFA%=1 SOUND1,-10,200,6:PRINTTAB (3
3,6) 1BOF!

1570 IFA%=Z% SOUND1,-10,230,6:PRINTTAB (
33,6) "ECF"

1580 K%=GET:UNTIL K%=138 OR K%=139 OR K
$=128 OR K%=129

1590 IF K%=129 THEN PROCcalculate

1600 IF K%=138 AND A%<Z% A%=A%+1

1610 IF K%=139 AND A%>1 A%=A%-1

1620 UNTIL K%=128

1630 ENDPROC

1640 :

1650 DEF PROCcalculate

1660 REPEAT

1670 PRINTTAB (2,8)f1lcy"TO"fowh"?2";S
PC(4); :PRINTTAB (10, 8) ; :A%=VALFNinpt (1, 3,
1)

1680 UNTIL A%>0 AND A%<=Z%

1690 PROCclear (0,8,8,16) :PROCclear (0,0,
5,38)

1700 ENDPROC

1710 -

Beebug March 1988

21

1720 DEFPROCsplit

1730 C$=RIGHTS (TS (A%), 3) :R$=MIDS (N$ (A%)
I4I 9)

1740 tS=LEFTS (TS (A%),LENTS (A%)-3)

1750 L$=MIDS (NS (A%),13,3) :DS=RIGHTS (NS (
A%),3)

1760 dS$=MIDS (NS (A%),16,3) :NS=LEFTS (NS (A
%),3)

1770 ENDPROC

1780 :

1790 DEFPROCprint:PROCsplit

1800 IF K<>5 AND FO=0 CLS:PROCcard

1810 PRINTTAB (26, 9)NSTAB(7,10) LSTAB(14,
11)CS$TAB(15,18) -

1820 IFD$<>"***" PRINTTAB(15,18)d$;" mi
ns";SPC(3) ; TAB(15,20)RS; SPC(2) TAB (15, 22)
D$+" mins"+STRINGS (3,CHR$32) :GOT01840

1830 PRINTTAB(15,18) f1$+yl$+d$+wh$+fos+
"mins"TAB(15,20) f1$+y1$+R$+£f0STAB (15, 22)
£15+y1$+D$+fo$+wh$+"mins"

1840 vDU28,12,17,31,13,12:PRINTLEFTS (t$
,79) :VDU26

1850 ENDPROC

1860 :

1870 DEFPROCa

1880 PROCprint:FO=1:PROCspace (2)

1890 ENDPROC

1900 :

1910 DEFFNc(a$) :=(1$="120" AND VALa$>Ml
20 OR 15="180" AND VALa$>M180 OR 15$="240
" ANDVALa$>M240)

1920 DEFPROCspace (Q) : *FX21,0

1930 PRINTTAB(4,Q)"Hit <spacebar> to co
ntinue"; : REPEATUNTILGET=32

1940 PROCclear (0,0Q,0Q, 38) :ENDPROC

1950 :

1960 DEFPROCedit

1970 PROChead (15,yl$+"EDIT")

1980 PRINT''"Tape No. ";:a$=FNinpt (1,3,
0) :IFa$="" ENDPROC

1990 g$="":FOR A%=1 TO 2%

2000 IFa$=LEFTS (NS (A%),3) ANDFO=0 PROCp
rint :FO=A%:ELSE2030

2010 PRINTTAB(0,1)"Is this the required

tape (y/n)";:q$=GET$

2020 IFINSTR("Nn",q$)>0 FO=0 ELSEA%=2%

2030 NEXT:IFFO<>0 A%=FO:PROCedl:ENDPROC

2040 IFg$<>"" FO=1

2050 PROCnomatch:GOTO 1970

2060 ENDPROC

2070 :

2080 DEFPROCedl:PROCsplit

2090 vDU28,0,5,39,0:PROChead (15, y1$+"ED
IT"):VDU26

2100 PRINTTAB(6,2)}"Type : E-";

2110 l$=FNinpt(1,3,0):IFINSTR("lZO 180
240",1$)=0 THEN2100

2120 IF 15="" 1$=L$:PRINT1S

2130 PRINTTAB(2,4)"Tape no. : ";

2140 n$=FNinpt(1,3,0)

2150 IF n$="" n$=N$:PRINTn$

2160 PRINTTAB(3,6)"Counter :"SPC(5);TAB
(13,6);

2170 c$=FNinpt(1,4,0):IFFNc(c$) THEN216
0

2180 IF c$="" cS=LEFTS$ (RS, 4)

2190 REPEAT: REPEAT: PRINTTAB(13;6)cS$"-
";SPC(4) ; TAB(18,6);:cl$=FNinpt (1,4,0)
2200 UNTIL NOT (FNc(c1$))

2210 IF clS="" clS=RIGHTS (RS, 4) :PRINTcl
$
2220 UNTIL c1$>c$

2230 PRINTTAB(2,8)"Category : ";

2240 ca$=FNinpt(0,3,0)

2250 IF ca$="" ca$=C$:PRINTca$

2260 NS (A%)=(nS$+cS+"-"+c15+18)

2270 PROCleft:TS (A%)=t$+ca$

2280 PROCclear(0,2,8,22) :PROCprint

2290 Ti$=FNeditor (1) :IFTi$="" Ti$=t$
2300 TS (A%)=Ti$+ca$

2310 PROCclear (0, 2,5, 38) :PROCclear (0, 6,
8,20) : PROCprint

2320 PRINTTAB(0,3)"Is the edited card n
ow correct (y/n)":q$=GETS

2330 IF g$="N" ORg$="n" PROCedl

2340 ENDPROC

2350

2360 DEFPROCread:*FX21,0

2370 PROChead (4, £1$+y15+"Loading data £
ile")

2380 IF 2%<>0 VDU7:PRINT'"Continue (y/n
) 2":Y$=GETS$:IFINSTR("Nn", Y$)>0 ENDPROC
2390 INPUT'"Filename : "Z$:IFZ$="" ENDP
ROC

2400 2%=1:Z=OPENIN (Z$)

2410 IF 2=0 PRINT"File Not Found":GOTO
2390

2420 PRINT''"Loading"''Z$

2430 REPEAT:INPUT#Z, TS (2%),N$ (2%) :2%=2%
+1 :UNTILEOF#Z:CLOSE#Z

2440 2%=2%-1:ENDPROC

2450 :

2460 DEFPROCsave:PROChead (4, f1$+gr$+"Sa
ving data")

2470 INPUT'"Filename : "Z$:IFz$="" ENDP
ROC

2480 y=1:2=0PENOUT (2$)

2490 REPEAT:PRINT#Z, TS (y) NS (y)

2500 y=y+1:UNTILy>Z%:CLOSE#Z:ENDPROC
2510 :

2520 DEFPROCvars:*FX225,128

2530 2%=0:M%=200:MAXENT=8:exit=FALSE:*T
V255

2540 M120=3238:M180=4295:M240=5518

22

Beebug March 1988

Sl el SR s .

2550 DIMTS (M%),N$ (M%) ,A(MAXENT),BS (4) :*
FX4,1

2560 rd$=CHR$129:gr$=CHR$130:y1$=CHR$13
1:b1$=CHR$132:mg5=CHR$133: cy$=CHRS$134 :wh
$=CHR$135: f1$=CHR$136: f0$=CHR$137

2570 RESTORE2930:FORZ=0TO04:READBS (Z) :NE
XT:ENDPROC

2580 -

2590 DEFPROCswap

2600 Z$=T$ (I%):T$(I%)=T$ (I%+S%) :TS(I%4S
$)=Z5:25=N$ (1%) :N$ (1%)=NS$ (13+5%) :NS (I%+S
%) =2$:F%=TRUE

2610 ENDPROC

2620 DEFPROChead (X,A$) :CLS:PRINTTAB (X)C
HR$141;A$;CHR$135; CHR$S140TAB (X) CHR$141;A
$;CHR$135; CHR$140 : ENDPROC

2610 -

2640 DEFFNinpt (F2,ML, Q)

2650 LOCALB,BS$:a$="":PRINTSPC (ML) ; STRIN
G$ (ML, CHRS8) ;

2660 *FX21,0

2670 REPEAT: BS=GETS:B=ASCBS

2680 IF B=13 THEN IF(Q=1 AND LENa$=ML)
OR(Q=0 AND a$="") OR (Q=0 AND LENa$=ML)
THEN UNTIL TRUE:=a$

2690 IF B=127 AND a$="" THEN UNTIL FALS
E

2700 IF B=127 a$=LEFT$ (a$, LENa$-1) :PRIN
TB$; :UNTIL FALSE

2710 IF LENa$=ML OR B<32 OR B>126 THEN
VDU7: UNTIL FALSE

2720 IF NOT(F2=0 OR B=32 OR (B>=48 AND
B<=57)) VDU7: UNTIL FALSE

2730 PRINTBS; :a$=a$+BS$:UNTIL FALSE

2740 .

2750 DEFFNcalc(a$)

2760 LOCALA%,B%,C%,L%

2770 IF1$="180" RESTORE2880

2780 IF1$="120" RESTORE2860

2790 IF1$="240" RESTORE2910

2800 L%=-1:READA%:REPEAT:READB%

2810 C%=A%:A%=B%:L%=L%+1

2820 UNTIL(VALa$>=C% ANDVALaS$<A%) ORB%=
9999

2830 t=VAL1$-L%*5:ra=5*((VALaS$-C%)/ (A%-
C%))

2840 =INT(t-rat.5)

2850 REM E-120

2860 DATAO,100,200,300,400,502,606,714,
824,937,1053,1172,1296,1422,1552,1687,18
26,1976,2123,2283,2450,2640,2818,3021, 32
38,9999

2870 REM E-180

2880 DATA0,82,165,245,330,415,500,590,6
80,770,860,950,1050,1150,1250,1350,1450,
1550,1650,1765,1815,1985

2890 DATA2100,2230,2350,2475,2600,2750,

2880, 3025, 3180, 3340, 3505, 3680, 3870, 4075,
4295,9999

2900 REM E-240

2910 DATAQ,78,155,235,315,395,475,558,6
40,725,800,895,980,1070,1158,1248,1340,1
430,1525,1620,1715,1810,1910,2012,2115,2
218,2325

2920 DATA2431,2540,2652,2766,2882, 3000,
3123,3250,3375, 3505, 3640, 3780, 3922, 4070,
4222,4380,4546,4720,4900,5094, 5298, 5518,
9999

2930 DATA"Film title ","Section of titl
e ","Tape number ","Film category ", "Min
. time left on a tape "

2940 DEFPROCleft

2950 LOCALQS,C%,V%,ti,to,re,15,tes, t£fS

2960 FOR C%=0 TO MAXENT:A (C%)=0:NEXT:C3%
=0:to=0:1$=MIDS$ (N$ (A%),13,3)

2970 FOR V%=1 TO z%

2980 IF (LEFTS (N$(V%),3)=LEFTS$ (N$(A%),3)
) AND (MIDS (N$(V%),13, 3) <>MIDS (N$ (A%),13,
3)) THENteS=LEFTS (NS (V3),12) : t £S=RIGHTS (
NS (V%) , 3) :NS (V%) =te$+15+t£S

2990 IF (LEFTS (N$(V%),3)=LEFTS (NS (A%),3)
) ANDA%<>VS A(C%)=V%:C%=C%+1

3000 NEXT

3010 ti=ABS (FNcalc (MIDS (N$(A%),4,4))-FN
calc (MIDS (N$ (A%),9,4)))

3020 to=to+ti:q$=RIGHTS ("000"+STRSti,3)

3030 N$ (A%)=LEFTS$ (N$ (A%),15)+q$

3040 FOR V%=0 TO C%-1:to=to+VALMIDS (NS (
A(V%)),16,3) :NEXT

3050 re=VAL(1$)-to:IFre<0 gS="***" EISE
g$=RIGHTS ("000"+STRSre, 3)

3060 N$ (A%)=LEFTS (N$ (A%),18)+g$

3070 FOR V%=0 TO C%-1

3080 N$ (A(V3))=LEFTS (N$(A(V3)),18)+q$

3090 NEXT:ENDPROC

3100 :

3110 DEFPROCnomatch:LOCALQS,Y,SP,G,D

3120 IF FO>0 Q$%=rd$+"NO FURTHER MATCH":
Y=5:5P=3

3130 IF FO=0 Q$=rd$+"NO MATCH FOUND":Y=
20:5p=22

3140 FOR G=0 TO 20:PRINTTAB(0,Y)SPC(38)
TAB (G, Y) Q$: FORD=1T0250 : NEXT : NEXT

3150 PROCspace (SP) :ENDPROC

3160 :

3170 DEFPROCkill:PROChead (11, mg$+"Delet
a)

3180 PRINT''"Tape No. ";:a$=FNinpt (1,3,
0) :IFa$="" ENDPROC

3190 F%=1:ENT=0:ent=0:FORA%=1TOZ%: IFLEF
T$ (N$ (A%),3)=a$ ent=ent+1:A(ent)=A%

3200 NEXT:IFent=0 PROCnomatch:PROCkill:
ENDPROC

Continued on page 68

Beebug March 1988

23

i -gox¢in i e 36 |

ASPRITE ANIMATIR

In his last Visuals column, Barry imple-
ments a Sprite Animator to put life into
sprites created with last month's program.

The program developed last month allows the
creation of multicolour sprites of any size. The
Animator featured here will allow you to move
these sprites around the screen. In fact there are
four programs listed this month, so it may
sound a little complicated. The main program
(listing 1) is the Animator itself. This creates a
block of code which includes moving routines
(in machine code) together with sprite
definition codes. You then create a Basic
program which installs the sprite code created
with the Animator, and which moves your
sprites around by making calls to the sprite
code. An example program is given in listing 2.
But before we see how this works, we will
return to listing 1.

THE ANIMATOR

To get the Animator working, first type in
listing 1, and save away the program. Before
you can run it you will need a datafile (made
from Basic DATA statements) which it will
automatically append to itself. All this data
does is to tell it what mode the sprites are to be
used with, and what the sprite filenames are. So
to run the Animator you need a block of data
similar to that in listing 3. Its structure should
be clear from the REM statements. It should
always start at line 5000, and should give the
required mode, followed by the names of each
sprite to be called. The last item is the word
"END". In our example, we have included ten

mode 4 sprites.

For the purposes of example, listing 4 is a short
program which will actually create the ten
(identical) sprite files. So if you are going to use

24

the Animator with the data block given in
listing 3, you should first run listing 4 to create
the ten sprites - phew! Now we can run the
Animator. It will ask you for the name of your
sprite datafile (the name under which you
saved listing 3). When linking is complete, it
will request a filename under which to save the
compiled sprite mover code. When the job is
done the program will display various data,
and you should note for future use the value of
HIMEM given.

HUMBER of sprites linked =
DPATA table size
INFO table size

(bytes)
(bytes)
{bytes)
(bytes) =
address

CODE mover size
OVERALL length
CODE (LOAD-/EXEC)

SPRITES FROM BASIC

We now turn to the Basic program which will
make use of the mover code. Typically this
might be a game of some sort, or any program
which would benefit from an animated display.
As mentioned above, a sample program is
provided as listing 2. It begins by assigning
mode, and setting HIMEM to &5500 (the value
provided by the Animator when our example
sprite code was generated). This is essential as
the sprite code will be held above HIMEM.
Next (at line 60) is the command which loads in
and installs the sprite code (use the filename
which you previously supplied for saving the
mover code).

The mover code provides the user with three
machine code calls. The call addresses are
always as follows:

Step Sprite &900

Move Sprite &903

Put Sprite &906
Put Sprite (called in line 110) places the sprite at
a particular position on the screen. Before the
call is made, A% should contain the number of
the sprite, and X% and Y% the required co-
ordinates of the sprite (see below).

Beebug March 1988

i

Once a sprite is on the screen, it can be moved
by using the other two calls. To do this you
must first call Step Sprite (line 120) with A%
containing the Sprite number, and X% and Y%
containing the co-ordinate increment required
in each re-drawing of the sprite. Then each time
that you call Move Sprite (line 160) with A%
containing the sprite number (X% and Y% are
not required), the sprite is moved by the
increment defined with Sprite Step. To remove
a sprite at any time, just make a call to Put
Sprite giving the present co-ordinates of the
sprite to be deleted.

To keep the routines fast, the X and Y co-
ordintate ranges are as follows:

Y (all modes) range 0-255
X (modes 0, 1 & 2) range 0-79
X (modes 4 & 5) range 0-39

Position 0,0 corresponds to top left. Space is
very tight this issue, and I must leave you to
experiment with these routines. One last point,
you may wish to use *FX19 before moving any
sprite, to make things smoother - but it will
slow everything down.

[This i the last of our Barry Christie Visuals series, but
we shall continue to cover visual aspects of the Beeb i m

Listing 1
10 REM Program Sprite Animator
20 REM Version B 0.4
30 REM Author Barry Christie
40 REM Beebug March 1988
50 REM Program subject to copyright
60 :
100 MODE 7
110 ON ERROR MODE7:GOTO 2150
120 HIMEM=PAGE+&2000
130 LOMEM=TOP+&400
140 SPTOP=TOP-2
150 PROCspriteinitl
160 PROCspriteinit2
170 PROCspritelink
180 PROCtableslink
190 PROCdetailinfo
200 HIMEM=§7C00:VDU26:PRINTTAB (30,20);
210 END
220
230 DEF PROCspritelink
240 READ spritename$
250 REPEAT
260 print$="Linking sprite '"+spritena
lne$+l‘l e :CLS .

270 PRINT TAB((39-LEN(print$))/2,8)pri
nt$
280 PROCloadsprite
290 READ spritename$
300 UNTIL spritename$="END"
310 !SPTOP=&FF0OD
320 ENDPROC
830 :
340 DEF PROCloadsprite
350 channel=0PENUP (spritename$)
360 sprtmode%=BGET#channel AND &07
370 sprtXwdh%=BGET#channel
380 sprtYwdh%=BGET#channel
390 CLOSE#channel
400 IF sprtmode%=mode% THEN PROCsprite
isvalid ELSE PROCspriteinvalid
410 ENDPROC
420 :
430 DEF PROCspriteisvalid
440 sprtXwdh%=(sprtXwdh% DIV pixbytes$
)— ((sprtXwdh% MOD pixbytes%)<>0)
450 PROCspritedata:PROCspriteinfo:link
$=1ink%+1
460 SOUND £15,-15,100,1:80UND €17,-12,
150,1
470 ENDPROC
480 :
490 DEF PROCspriteinvalid
500 CLS:VDU7
510 PRINT TARBR(4,7)"Error, this is a mo
de ":;sprtmodet;" sprite"
520 PRINT TAB(7,9) "Press <SPACE> to co
ntinue"
530 REPEAT:UNTIL GET=32
540 ENDPROC
bal .
560 DEF PROCspritedata
570 sprtsize%=sprtXwdh%*sprt¥wdh%
580 dataarea%=dataarea%-sprtsize$%
590 OSCLI("LOAD "+spritename$+" "+STR$
~(dataarea%-3))
600 ENDPROC
610
620 DEF PROCspriteinfo
630 infoarea%!&00=dataarea%-offset$%
640 infoarea%?&02=sprtXwdh?%
650 infoarea%?&03=sprtYwdh%
660 infoarea%!&04=0
670 infoarea%=infoarea%+8
680 ENDPROC
680
700 DEF PROCtableslink
710 infosize%=8*1ink%:CLS
720 PRINT TAB(6,6)"Enter sprite mover
filename"
730 PRINT TAB(10,8) >0, ..., <<
<n
740 INPUT TAB(14,8) movername$
750 PROClinkcode (4900, &900)
760 assemble%=dataarea%-infosize%-code
size%

Beebug March 1988

25

770 execaddr%=scrnaddr$- (&7C00-dataare
a%)-infosize%-codesize?

780 PROClinkcode (assemble$%, execaddr$)

790 PROClinkinfo

800 savecode$="SAVE "+movername$+" "+S
TR$~ (assemble%)

810 OSCLI (savecodeS$+" 7C00"+STRINGS (2,
" "{STR$~ (execaddr$)))

820 PRINT TAB(10,10) "<Linkage Complete
d>":VDU7

830 ENDPROC

840 :

850 DEF PROClinkinfo

860 infoarea%$=dataarea%-infosize%

870 FOR info%=0 TO infosize%-1

880 info%?infoarea%=info%?HIMEM

890 NEXT info%

900 ENDPROC

910 :

920 DEF PROClinkcode (codearea$%, coderun
nt)

930 adrlo=&70:adrhi=&71

940 width=&72:depth=673

950 xcord=&74:ycord=&75

960 tempw=&76:tempd=&77

970 temps=&78

980 FOR pass%=4 TO 6 STEP 2

990 P%=coderunn%

1000 O%=codearea%

1010 [OPT pass%

1020 .setupvectors

1030 IDY #&08

1040 .transfervectors .

1050 LDA vectors,Y:STA &900,Y:DEY

1060 BPL transfervectors

1070 RTS

1080 .vectors

1090 EQUB &4C:EQUW steplot

1100 EQUB &4C:EQUW movplot

1110 EQUB &4C:EQUW putplot

1120 .spritenumber

1130 ASL A:ASL A:ASL A

1140 STA temps:TYA:LDY temps

1150 RTS

1160 .steplot

1170 JSR spritenumber

1180 STA infotable+&07,Y:TXA

1190 STA infotablet&06,Y

1200 RTS

1210 .putplot

1220 JSR spritenumber

1230 STA infotable+&05,Y:TXA

1240 STA infotable+&04,Y:JMP plot

1250 .movplot

1260 JSR spritenumber

1270 JSR plot:LDY temps

1280 CLC:LDA infotable+&04,Y:ADC infota
ble+&06,Y:STA infotable+&04,Y

1290 CLC:LDA infotable+&05,Y:ADC infota
ble+&07,Y:STA infotable+&05,Y

1300 .plot

1310 LDA infotable+&00,Y:STA store+s01

1320 LDA infotable+&01,Y:STA store+&02
1330 LDA infotable+&02,Y:STA width
1340 LDA infotable+&03,Y:STA depth
1350 LDA infotable+&04,Y:STA xcord
1360 LDA infotable+&05,Y:STA ycord
1370 LDA depth:STA tempd

1380 .depthloop

1390 JSR calcaddr

1400 LDX #&00:LDY #&00

1410 LDA width:STA tempw

1420 .widthloop

1430 .store

1440 LDA &BEEB,X

1450 EOR (adrlo),Y:STA (adrlo),¥Y:INX
1460 CLC:TYA:ADC #&08:TAY

1470 DEC tempw:BNE widthloop

1480 TXA :CLC:ADC store+&01:STA storets&
01

1490 LDA store+s02:ADC #&00:STA storets
02

1500 INC ycord:DEC tempd:BNE depthloop
1510 RIS

1520 .calcaddr

1530 LDA #&00:STA adrhi

1540 LDA &75 :LSR A:LSR A

1550 AND #&FE:TAY:IDA &74 :ASL A

1560 ASL A:ROL adrhi:ASL A:ROL adrhi
1570 CLC:ADC addrtable+&00,Y:STA adrlo
1580 LDA addrtable+&01,¥Y:ADC adrhi:STA
adrhi

1590 CLC:LDA &75:AND #&07:ADC adrlo:STA
adrlo

1600 LDA adrhi:ADC #&00:STA adrhi

1610 RTS

1620 .addrtable EQUS STRINGS (64,"0")
1630 .infotable

1640]

1650 NEXT pass$%

1660 codesize%=P%-coderunn$

1670 FOR address$%=0 TO 31

1680 ! (0%-64+2*address%)=address%*rowby
tes$+scrnaddr3

1690 NEXT address$%

1700 ENDPROC

1710 ¢

1720 DEF PROCdetailinfo

1730 delay=INKEY (200) :CLS

1740 PRINT "< Various totals relating t
o sprites >

1750 PRINT'" NUMBER of sprites linked
= ";link%

1760 PRINT'" DATA table size (bytes)
= ";&7C00-dataarea%

1770 PRINT'"™ INFO table size (bytes)
= ";1ink%*8

1780 PRINT'" CODE mover size (bytes)
= ";codesize$%

1790 PRINT'" OVERALL length (bytes)
= ";§7C00-dataarea%+link%*8+codesize’
1800 PRINT'" CODE (LOAD/EXEC) address
= &";~execaddr$%

1810 PRINT

26

Beebug March 1988

W i

e i e S T E

B 4

1820 PRINT'TAB(8)"< Set HIMEM to &";~(e
xecaddr® DIV &100)*&100;" ";

1830 ENDPROC

1840 :

1850 DEF PROCspriteinitl

1860 dashes$=" "+STRINGS (38,"=")+" "
1870 colour$=CHR$129+CHRS$157+CHRS135+CH
R$141

1880 titlel$=colour$+"< Multi-Mode Spr
ite Animator > M4CHRS156

1890 title2$=colour$+"By B. Christie -
(C) BEEBUG 1988 "+CHRS$156

1900 PRINT TAB(0,21)dashes$;title2$;tit
le2$;dashes$:VDU30,11,11

1910 PRINT TAB(0,0)dashes$;titlel$;titl
el$;dashes$

1920 vpu28,1,20,38,4

1930 PRINT TAB(3,7)"Enter name of spri
e data file ... @

1940 PRINT TAB(10,9)">>> <<
<n

1950 INPUT TAB(14,9)datafile$

1960 OSCLI ("LOAD "+datafile$+" "+STRS$~(
T0P-2))

1970 CLS:VDU26:RESTORE:READ mode$

1980 titlelS$=colour$+"BEEBUG Mode "+mo
de$+" Sprite Animator "+CHR$156

1990 PRINT TAB(0,0)dashesS$;titlel$;titl
el$;dashes$

2000 vDU28,1,20,38,4

2010 ENDPROC

2020 :

2030 DEF PROCspriteinit2

2040 mode%=VAL (mode$) : 1ink%=0

2050 pixbytes%=2" (3-(mode% MOD 4))

2060 rowbytes%=&140* (2- (mode% DIV 4))
2070 scrnaddr%=&3000+ (mode% DIV 4)*&280

2080 infoarea%=HIMEM

2090 dataarea%=&7C00

2100 offset%=dataarea%-scrnaddr®

2110 ENDPROC

2120 ¢

2130 REM Error handler

2140 erf=FALSE

2150 IF ERR=17 THEN PRINT'"<ESCAPE> pr
essed, linking aborted ...":erf=TRUE
2160 IF ERR=214 THEN PRINT'"<DATA FILE>
t".datafile$;"' not found ...":erf=TRUE
2170 IF ERR=222 THEN PRINT' "<SPRITE> 'V
;spritename$;"' not found ...":erf=TRUE
2180 IF NOT erf THEN REPORT:PRINT" at 1
ine ":ERL

2190 !SPTOP=&FF0OD:CLOSE#0:VDU7,7

2200 END

2210 :

2220 REM Sprite data sub-program

2230 REM is appended after this point
*rkAK

Listing 2
10 REM Complete sprite demo program
20 REM ref .>SprDemo
30 :
40 MODE 4
50 HIMEM=&5500
60 *RUN SPRcode
70 INPUT'"Enter number of sprites (1-
10) "sprites$%
80 stepsprite%=&900:movesprite$=£903:
putsprite$=6906:CLS
90 CLS:VDU23,1,0;0;0;0;
100 FOR I%=0 TO sprites$%-1
110 A%=I%:X%3=I%*2:Y%=I%*8:CALL putspri
ted
120 A%=I%:X%=2-RND (4) :Y%=32-RND(64) :CA
LL stepsprite%
130 NEXT
140 REPEAT
150 FOR I%=0 TO sprites$%-1
160 A%=I%:CALL movesprite%
170 NEXT
180 UNTIL FALSE
KhAkK
Listing 3
5000 REM Data for Animator
5010 REM ref.>DemoData
5020 REM Screen mode
5030 DATA 4
5040 REM filenames of sprites
5050 DATA sprite0,spritel,sprite2
5060 DATA sprite3, sprited, spriteb
5070 DATA sprite6,sprite7, sprite8, sprit
e9
5080 REM End of data marker
5090 DATA END
KRKKK
Listing 4
10 REM Program creates 10 sprites
20 REM For use with mode 4 demo
30 REM ref .>SprMake
40 MODE 7
50 FOR sprite%=0 TO 9
60 RESTORE
70 X=OPENOUT ("sprite"+STRS (sprite%))
80 FOR I%=1 TO 5
90 READ data$
100 FOR J%=1 TO LEN(data$) STEP 2
110 BPUT#X,EVAL ("&"+MID$ (data$, J%,2))
120 NEXT:NEXT
140 CLOSE#X
150 NEXT sprite$
160 PRINT"Sprites created":END
170 :
180 REM demo sprite data
190 DATA "041010"
200 DATA "03CO0OFF01998333C"
205 DATA "711E799EBEFDBEFD"
210 DATA "BE7DB3CD799E7C3E"
215 DATA "3FFC1FF80FF003C0"

Beebug March 1988

27

XX |

MIASTIEIR
ENMIULATION
RO M

In this and next month's issues, Bernard
Hill evaluates two software packages
which offer to turn your Model B into a
Master.

Can you really turn your Model B into a
Master? It's a nice idea, especially if you can
retain your Model B to run all those Master
incompatible games (sorry, programs). MER
from Dabs Press claims to do just that.

Product Master Emulation ROM
Supplier = Dabs Press

76 Gardner Road,
Prestwich,

Manchester M25 7HU.
Tel. 061-773 2413

£19.95 inc VAT - ROM
£14.95 inc VAT - 5.25" disc
£16.95 inc VAT - 3.5" disc

To attempt to turn a model B into a Master
requires more than just software. Additional
hardware, particularly RAM for various
purposes is required as well. MER implements
most of the Master's additional star commands,
but its full potential will only be realised if you
add some of the missing hardware facilities and
this I have covered first in some detail.

Price

The MER software is available in a variety of
formats, and in all cases is accompanied by
extensive documentation. Let's examine then
the extent to which a Model B can be upgraded
to a Master using the MER package and
relevant hardware add-ons.

RAM UPGRADES TO A MASTER

If you could upgrade your Model B (or even
B+) to a Master you would need quite a lot of
extra memory, and this comes in various types:

1. Shadow RAM.

Firstly, you could add shadow RAM to your
Model B (by Aries, Watford or Solidisk). MER
works well with these; in fact it does so by
behaving quite independently, leaving the star
commands which drive your particular shadow
RAM quite intact. There is no attempt to
implement MODE 128 type statements, and
even *SHADOW does not necessarily work
with all shadow RAM boards.

28

2. Sideways RAM.

Secondly, your Model B could have banks of
sideways RAM added, and that's fine too (in
fact MER can handle all the known access
protocols - e.g. from Solidisk, Watford, ATPL,
etc.). What it can't do is handle a mixture of
protocols, for instance a 16K module of Acorn
User RAM sitting alongside an early Solidisk
system, or with an ATPL board. But it works
particularly well with sideways RAM all of one
type, such as the Watford ROM/RAM board, or
the Solidisk TwoMeg 128, and up to 64K can be
accommodated.

3. CMOS RAM.

Thirdly, the Master has CMOS RAM, in which
it keeps its *STATUS/*CONFIGURE options.
MER's implementation here is excellent. If you
have the Solidisk Real Time Clock installed in
your Model B, then MER will use this for its 50
bytes of CMOS RAM just as the Master does. If
not, then you can use the last 50 bytes of a
nominated sideways RAM bank (including the
one occupied by MER itself if you're running a
ROM image) - preferably with battery backing.
Failing this, MER will use bytes &140-&171 of
the 6502 stack. If you have no battery-backed
RAM then, to avoid losing all your configura-
tions at power-down, MER has a *SCONFIG
command which saves all this information to a
disc file, and *LCONFIG will reload it when
you switch on again. Just as on the Master,
these 50 bytes hold options such as loud/quiet
beep, UNPLUGged ROMs, default modes, disc
speeds, printer destinations, Caps Lock status
etc. This all works splendidly and the full range
of *CONFIGURE and *STATUS commands is
implemented, with commands identical to
those in the Master's Operating System.

4. Private RAM.

So far so good. But one final type of RAM
which you can't add to your Model B is Private
RAM: that's the bit of the Master which keeps
PAGE down at &E00, so don't expect MER to
shift PAGE down from &1900. In fact, MER
needs some workspace too, and the Dabs Press
made the decision NOT to use workspace (like
the DFS) which would raise PAGE. Neither
does MER run solely from sideways RAM and
so use its own SWR image as workspace (like
their other product SideWriter). To my mind
that's a great pity, because MER now has to use
other areas, including some of pages 6, 7 and 9
causing workspace clashes with other ROMs
(such as BEEBUG's own Master ROM).

Beebug March 1988

e

\

FACILITIES

So you've got your Master Emulation ROM
installed. Just what have you got you didn't
have before? Briefly put, you have the
commands which are available on the Master
and the Compact. For the first time you can use
*APPEND to supplement *BUILD; *SPOOLON
to supplement *SPOOL; *EX to add to *INFO
(even on DFS, tape and ROM filing systems!);
*CREATE to add to *SAVE; *FREE and *MAP to
add to *CAT on the DFS and *REMOVE to go
with *DELETE. You could fit a 1770 interface to
run the ADFS and yet keep the ADFS
*UNPLUGged to conserve PAGE. You can
allocate sideways RAM as DATA with
*SRDATA or *SRROM, and even call |D if you
have View 3. If you have no Real Time Clock
fitted then *TIME gives one second before the
year 2000, like the Compact.

In fact the whole system FEELS just like a
Master, right down to the "Acorn MOS" prompt
on Break (the "BBC Computer 32K" has gone).
Your Beeb even enters a 'No language'
environment if you *CONFIGURE LANG to a
socket which isn't a language, and the only
difference from a real Master which I have
spotted is, as mentioned above, that shadow
RAM support is left to your shadow support
ROM. And in order to 'disable’ your Master
there's a *MODELB command which
completely kills MER and leaves you with your
old system until powered-up again. The kids
can still run Elite!

TEMPORARY FILING SYSTEMS

But the most impressive implementation is an
almost-complete emulation of the Master's
temporary filing system commands. This may
be nothing new to Master users, but to be able
to *-TAPE-CAT, *-ROM-EX or even *-ADFS-
CDIR without interrupting your DFS working
is quite an eye-opener to me! And *MOVE too?
Many times I have wanted to make a second
copy of a data file on the same disc but under a
new name, and have to resort to *LOAD and re-
*SAVE, but now I've got *MOVE <filel>
<file2>. And if you have got an ADFS, from
ADFS to DFS too - and vice versa - what a joy
(even if it does take an age).

But I dare say you noticed the description
"almost complete". What's missing? Nothing
really, but we do come bang up against that
workspace problem. Perhaps because MER uses

Beebug March 1988

page 9, I've not managed to successfully
*MOVE between tape (or RFS) and disc.
Sometimes the file is corrupt when MOVEJ,
and sometimes it just crashes. LOAD "-TAPE-
name" and reSAVE is fine, however. And
perhaps the most serious drawback I've spotted
is that I can't SAVE and LOAD from View 2.1
(page 7 being used for workspace is naughty as
it really is the property of the current language)
although READ and WRITE are fine. And
anyway View 3 doesn't show this problem.
David Atherton at Dabs Press tells me that they
are looking into these problems.

COMPATIBILITY

The launch of a product like MER (at such a
reasonable price) takes considerable courage for
Dabs Press. Not only do they have to try to
match all of the third party hardware add-ons
but they also have to aim for compatibility with
Master software. Here the issues are perhaps
clearer to see, or at least it is easy to predict
what won't work. First, the Master has a 65C12
processor with extra instructions which the
6502 hasn't, and you can't run machine-code
software which uses those. Secondly, there is
software which needs the extra space, which
the Master's page value of &E00 gives (or
machine code which loads into this area) - that's
out too. And then the Master software may
need some of the workspace which MER uses
(such as View 2.1, and the BEEBUG Master
ROM). Finally, there are some aspects of the
Master OS which can't be emulated, such as the
new OS calls, e.g. OSWRSC at &FFB3 (Bang
goes my Colossus 4 64K version), or ROM
polling. For this reason you can't expect MER to
run all Master software, but Dabs Press claim
that their ROM is compatible with 90-95% of of
what's available.

One final point. If you buy MER, be sure you
have a copy of version 2.01 (it's the one with an
addenda sheet for the manual). If you have
version 1.0, then Dabs will exchange it free of
charge, and David Atherton also assures me
that he operates a money-back guarantee if you
have tried to work MER with some strange
alien hardware and failed. That has to be a very
fair offer.

Next month Bernard Hill takes a look at the
Solidisk Real Time Clock mentioned in this
review and provides some final thoughts on
both products.

29

Character man-
ipulation is a
very important

st part of computer
programming,
COURSE and more exper-

ienced program-
mers will con-
firm that this

forms a major
Character part of many of
Control their programs.

Input, output,
. graphics and file
handling are just
four of the topics which depend heavily on an
ability to process characters. We shall be
looking at the various character handling
functions in BBC Basic, and at how these can be
combined in a number of useful routines.

IN THE BEGINNING

Variables and arrays that are used to store
characters always have names with a '$’
character, names such as date$, word$ and so
on. Similarly, all those Basic functions that
return one or more characters also have names
terminated with a '$' sign. There are also a
number of functions which we shall be looking
at which take one or more characters as their
argument but return a number.

There is, of course, no way that any digital
computer can literally store characters in its
memory. Instead, all characters are assigned a
code value called an ASCII code (ASCII stands
for American Standard Code for Information
Interchange). All computers nowadays use this
code, and you will find the codes detailed in the
back of your User Guide.

Unfortunately, this code has two defects. It was
devised in the USA, hence the inclusion of '#
and '$', and the problems that can arise over the
use of '£. This was not included in the original
code, and hence there is no ASCII standard for
this character. Further, the range of characters
that computers are called upon to handle has
also tended to increase, and this can again
result in problems over the use of non-

s 30

Mike Williams explores a
variety of techniques for use
in the important subject of
character manipulation.

standard(and hence varying)
codes. All BBC micros use the
same set of ASCII codes, and
thus you should encounter no
problems unless you roam
outside the BBC world, such as
in the use of a printer which is intended for use
with a wide variety of different makes of micro.

Finally, to complete the terminology, a series of
characters following one after the other, is
usually called a character string (or just string
for short). But note that a string may contain
only one character, while a 'null' string
containing no characters at all is quite feasible
as we shall find later. If that were not bad
enough, there is also a so-called 'null' character;
it's the one with ASCII code zero, and is
represented in programs as "". You can think of
the null character as the string equivalent of
zero in arithmetic.

LEFT, RIGHT AND CENTRE
Most people begin their exploration of string
manipulation by learning how to use the three
functions LEFT$, MID$ and RIGHT$. As
expected these functions will extract from an
existing string the left, middle or right portions
respectively. For example:

alphabet $="ABCDEFGHI JKLMNOPQRSTUVWXYZ"

AS=LEFTS$ (alphabet$, 8)

B$=MIDS (alphabet$, 9,10)

C$=RIGHTS (alphabet$, 3)
will have the following effects. After assigning
the 26 letters of the alphabet to the string
variable alphabet$, A$ is assigned the first 8
letters (i.e. "ABCDEFGH"), B$ is assigned 10
characters starting at the ninth character (i.e.
"[JKLMNOPQR"), while C$ is assigned the
right-most three characters (i.e. "XYZ"). As with
numbers, the same variable can appear on both
the left and right of an assignment statement.
For example:

B$=LEFT$ (B$, 3)

would result in the original contents of B$
being replaced by the first three characters.

The RIGHT$ function is generally less useful
than the other two. Very often the need is to
extract the righthand part of a string starting
from a particular character, often when the total
length of the string is unknown. One solution is
to use the LEN function to determine the length
of the string thus:
B$=RIGHTS (text$, LEN (text$) -5)

This example results in all the characters of

Beebug March 1988

text$ to the right of character five being
assigned to the variable B$. A neater solution is
to use a shortened version of MID$:
B$=MID$ (text$, 6)

When only one numeric parameter is given
with MID$, then all the characters from that
position onwards are exiracted (in the example,
6 is the starting position, one more than 5). In
practice, most string manipulation uses this
shortened form of the MID$ function, and the
LEFT$ function.

UNTIL OK>0
Many programs have instances where a yes/no
answer is required to some question, and there
are various ways of handling this. In the above
example, the response to the question is
assigned to ans$ (assumed to be a single
character). The INSTR function then searches
the first string specified (the string "YyNn") to
see if it can match the string ans$. If a match is
found then the position of the matching

PLAYING WITH STRING B
Now we know enough to begin to
write some useful routines. One of
the most frequent requirements is to
extract each character of a string in
turn. This can be achieved with a
simple FOR-NEXT loop, as in this
short example:

100 INPUT word$

110 FOR I=1 TO LEN(word$)

120 letter$=MID$ (word$,I,1)

130 PRINT letter$

ASINGSTOKE

SINGSTOKE
BA INGSTOKE
BAS NGSTOKE
BASI GSTOKE
BASIN STOKE
BASING TOKE
BASINGS OKE
BASINGST KE
BASINGSTO E
BASINGSTOK

character is assigned to the variable
OK. If no match is found then zero is
assigned. Putting our two statements
inside a REPEAT-UNTIL loop as
above will mean that the question is
repeatedly asked until one of the
desired letters (YyNn) is input.

Be careful, though, in using the result
of the INSTR function in a logical
way. If you are ever tempted to use
the combination:

NOT INSTR(. . . .
then you are likely to get misleading

140 NEXT I
Line 100 waits for any character string to be
typed in, and the loop will then list each letter
in turn down the screen. Try it and see. Here's
another example. See if you can work out what
this will do before trying it in on your machine:

100 INPUT word$

110 FOR I=1 TO LEN (word$)

120 PRINT LEFTS$ (word$,I)

130 NEXT I
Replace line 120 with:

120 PRINT MIDS$ (word$,I)
In fact the result will look even better if you
change line 120 to:

120 PRINT SPC(I-1);MID$ (word3,I)
These may seem trivial examples, but the
facility to extract and manipulate strings as we
have in these examples is the foundation for
more extensive usage. As a test of your own
ability, try to write a modification of line 120
above which will print any word with each
letter in turn replaced by a space (see
illustration) - answer at the end of this article.

SEARCHING EXAMINATION
One common requirement is to be able to
search a string for the presence of one or more
characters. This is what the INSTR function is
designed to do. For example, we might write:
REPEAT
INPUT"Answer Y or N" ans$
OK=INSTR("YyNn", ans$)

Beebug March 1988

results (see Beginners Start Here Vol.4 No.2).

Another common occurrence is when we need
to check a string for a particular character, for
example:

INPUT"Which option?" option$

ch=INSTR (option$,™/")

IF ch THEN mod$=MID$ (option$,ch+1):

option$=LEFTS$ (option$, ch-1)
Here, we input an option which may or may
not have '/’ followed by further characters
appended at the end. The INSTR function
searches for this character, and if found the
characters following the '/' are assigned to
mod$, and option$ is assigned that part of the
input string to the left of the '/'. Note how the
'/* character itself is dropped altogether.

There are two further examples which are well
worth looking at. Suppose we want to find all
the occurrences of a particular character in a
string. Here is an example:

100 INPUT"Enter any character™ char$

110 INPUT"Enter any string™ string$

120 pos=0

130 REPEAT

140 pos=INSTR(string$, char$,pos+l)

150 IF pos>0 THEN PRINT pos

160 UNTIL pos=0
This uses a variation on the INSTR function in
which a third numeric parameter is included.
This determines the position within the search
string at which the search will commence. To

3

start with pos is set to zero so that the search
starts at the first character (position pos+1). If
the character being searched for is found, then
pos will be assigned the position in which it
occurs, and the next search commences at the
character following that occurrence, hence the
pos+1 (hence the reason why pos has to be set
to zero initially, not one). The REPEAT-UNTIL
loop terminates when no more occurrences of
the specified character are found.

We can use this idea as the basis for a second
type of search, one where we want to find all
the occurrences of more than one (single)
character. Amend the last example with the
following lines:

100 £lags="., ;¢ 2"

105 FOR I=1 TO LEN(flag$)

106 char$=MID$ (flag$,I,1)

170 NEXT I
Now, any string input will be searched for all
the occurrences of each of the characters in
flag$.

VERSATILE INPUT FUNCTION

To conclude this month's article, I want to give
you a more substantial example of character
manipulation in action. In this case it is an
input function. It is often desirable to
implement one's own input function rather
than use the standard INPUT of Basic. It gives
us much greater control over what is
happening, allowing the characters input to be
checked in any way we wish. In this case, the
function, called FNinput, allows a prompt to be
specified as well as a position on the screen
(x,y), the maximum number of characters to be
input (width%), and a so-called 'paint’
character which is used to paint or mark the
data entry field on the screen. I suggest you
type in the listing and try it out before
proceeding any further.

The variable char$ holds each character as it is
typed in, and the variable pos records the
current entry position within the data entry
field. The variable string$, initially set to a null
entry, holds the current form of the complete
input string. Three possibilities are catered for:
if Delete is pressed (ASCII code 127) the last
character is deleted both from the screen and
from the variable string$. If the entry field is
full, a 'bleep' is sounded. Otherwise the
character is displayed and appended to the
variable string$. When Return is pressed the

32

function returns the contents of string$. Line
110 shows a simple call of this function.

For clarity, the coding for the append and
delete functions has been put in a separate
procedure in each case. Note too, the use of two
further string functions. ASC returns the ASCII
code of a character and is useful for dealing
with non-printing characters like Return.
STRINGS$ is a simple way of replicating a
sequence of characters.

Try calling the function with different
parameters. See also if you can modify the
function to accept upper case letters only, or
digits and decimal point only. More on
characters next time.

10 REM Program InputFN
20 REM Author Mike Williams
100 MODE 3
110 Z-FNinput (10,10, "Test Input",10,".")
120 END
1
1000 DEF FNinput (x,y,prompt$,width%, paint
$)
1010 LOCAL string$, pos:strings="":pos-1
1020 PRINTTAB (x,y)prompt$;": ";STRINGS (wi
dth%, paint$)
1030 PRINTTAB (x+LEN (prompt$)+2,y);
1040 REPEAT
1050 char$=GET$
1060 IF ASC(char$)=127 AND pos>1 THEN PRO
Cdelete ELSE IF pos>width% THEN VDU7 ELSE
IF ASC(char$)>=32 AND ASC(char$)<127 THEN
PROCappend
1070 UNTIL ASC(char$)=13
1080 =string$
10980 :
1100 DEF PROCappend
1110 string$=string$+char$
1120 pos=pos+l
1130 PRINT char$:
1140 ENDPROC
1150 :
1160 DEF PROCdelete
1170 VDU8,ASC (paint$),8
1180 string$=LEFTS (string$, LEN (string$)-1
)
1190 pos=pos-1
1200 ENDPROC

Answer to problem:
120 PRINT LEFTS$ (string$,I-1);SPCl;
MIDS (string$, I+1)

Beebug March 1988

- T

N ————— a

———

v

at the W,
Royal Horticultural Hall,
Westminster, London SW1

BBC MICRO

g

ACORN
IN ACTION

A totally new experience for show visitors
g(,‘\' RO 4 \\

b

10am-6pm Saturday May 14

. /Oam-bpm Friday May 13 \
10am-4pm Sunday May 15 \

You’ll find the very latest software and peripherals for the

complete Acorn range at the Electron & BBC Micro User Show.
But this time there’ll be so much more to enjoy.

Acorn In Action will demonstrate some of the truly
amazing projects currently involving the machines . . .

g * A spectacular laser light show

controlled by a BBC Micro.
(Saturday only)

* The research work on the BBC Micro

that has helped to bring new hope

to sufferers of the eye disease

/ glaucoma. (Friday and Sunday)

* A program developed by an
amateur astronomer to locate
distant galaxies. (Saturday and Sunday)

* The Beeb system being used by
doctors at Guy’s Hospital to provide
a breakthrough in the treatment of
arterial disease. (Saturday and Sunday)

M’ watch your own heartbeats

displayed, n e your r
dexterity and hear your own voice
backwards — all courtesy of a BBC
Micro.

Take your seat in the Archimedes D
Theatre run by Acorn’s own experts.

Thirty special i y courses to the
new machine will be held on the hour, every hour
throughout the three days. Price just £1.

a fantastic

it all adds ub . whole family!

 day out for the

Post to: Electron & BBC Micro User Show Tickets, y“"o*' Royal Horticultural Hall Advance ticket orders must
Europa House, Adlington Park, Adlington, giftvywr-ry Westminster be received by Wednesday,
Macclesfield SK10 4NP. 2 London SW1 May 4, 1988.
G May 13-15, 1988
Admission at door: £3 (adults), £2 (under 16s)

Avoid the queues' Get your ticket in advance — and SAVE £1 A HEAD! /

/

Please supply 9 s
\ ___ Adulttickets at £2 (save £1) £ O lenclose a cheque made payable to Database Exhibitions
(Order four adult tickets, = § . - DS
get the fifth FREE!) [J Please debit my Access/Visa Expiry date: 7 /
\ ___ Under 16s tickets at £1 (save £1) £ card no:
(Order four under-16s tickets,
o e ftn FREEN L # T e S
Total £
Signed

C“K—f e tsange | S A355
i =il e
\\\\\ \\\\\ /
e

Beebug Supplement March 1988

PHONE ORDERS: Ring Show Hotline: 0625 879920
PRESTEL ORDERS: Key *89 then 614568383
MICROLINK ORDERS: Mailbox 72:MAG001

Please quote credit card number

and full address

33

/
/

\\

y = Teletext

Personal Ads

Genie Junior £20. BEEBUG Masterfile II £12. Studio 8 £10.
pack 40T £5. Design 40T £8. AMX SuperArt (Master)
£20. AMX MAX £10. CC's Printmaster (Star) ROM £10.
Wigmore House Artist ROM £10. the Hobbit 40/80T £5. CJE's
MFNLQ ROM, standard disc and font disc ‘B’ £22. All originals
with manuals. Also HCR External ROM box for Master £50. Tel.
(0527) 32613.

ViewStore manual, new, £4 post paid. D.Langton, 13 Whitmore
Close, New Southgate, London N11 1PB.

BBC Master 512, Zenith ZVM-1240 high res. amber monitor,
dual DS 40/80T disc drives, a full set of manuals, several utility
ROMs and cartridges. Includes DOS Plus O.S. with GEM Write,
GEM paint and GEM Desktop. Package price £760. Tel. (0334)
77617 eves. or 76161 ext 7164 day.

BBC B issue 7, Cumana 100k drive, Wordwise, Toolkit,
Communicator ROMs plus software, games, books, £300. Tel.
01-669-5087.

WANTED Epson LQ 2500 printer in good condition with sheet
feeder and colour option. Tel. (0745) 825036 eves.

ADI £18, Printmaster £15 new, Spell £35 new, M; 128
SuperArt + MK3 mouse £45 new, Ref. manuals 1 and 2 £20 new,
ISO Pascal £35 new. Tel (0295) 65262.

BEEBUG Vols. 3 & 4, 10 cassettes (£5 per volume), £7.50 the lot.
Tel. (0920) 5406.

Master 512 owner contact required for INFORMATION
EXCHANGE on suitable DOS + software. Tel. (0846) 682187
eves.

Time Warp, Murom, Office Master and Mate. Offers accepted.
Tel. (0923) 224548.

BEEBUG back issues from Vol.1 up to date. All perfect and
complete, £15. Tel. (0602) 231395.

Master 128, £275. 512 co-processor with GEM software and
mouse, £120. Twin DS DD 40/80T disc drives £100. Taxan 620
hi-res colour monitor £200. All in good condition and with
manuals. Plus software, magazines, joysticks, data recorder -
call for prices. Tel. (06282) 5062 eves.

Original ROM software and manuals: Spellmaster £36, ADI
£18, Acornsoft Pascal £35, AMX MK3 mouse & SuperArt
(M128) £45, ViewPlot £15. Tel. (0295) 65262.

Acorn Electron computer with Plus One interface, inc books
(various User guides, 30h Basic, Start programming with the
Electron etc.), power supply and dust cover, £85 the lot. Acom
6502 2nd processor + Hi-Basic ROM £100. BBC B User and
Advanced User Guides, £15 the two. Forth ROM + User Guide
£25, BBC B dust cover £3. Tel. (0909) 565257.

Watford NLQ ROM unused, £20. Tel. (0865) 66426, eves.

BBC B series 7, external ROM/RAM (32k) expansion board in
case with separate PSU. Modem with comms software. Over
£1000 worth of cassette, disc and ROM software, inc View,
Databases, Elite, Trivial Pursuit. Joystick, leads etc. £600 ono.
Tel. (0483) 38285 eves. Master 128, Acorn dual disc drives
(400K) in plinth, Zenith amber monitor. InterWord, InterSheet,
Le Modem, all as new. £550. Tel. (07072) 63617.

WANTED Microwriter complete. Tel. (0752) 701261 daytime,
(0822) 852867 eve.s.

Twin 360k 5.25" full height DS disc drives, boxed,
new/unused. Power and data cables for BBC computer. £69.00
VAT included. Tel. (0734) 479550.

200 cps wide carriage Dot Matrix Printers Serial/Parallel
interface. Friction and Tractor feed. Comprehensive User
Manual. New, unused £99.95 VAT included. Tel. (0734) 479550.

Master Compact with second drive, Microvitec 1451 colour
monitor, RS232 joystick Mertec companion upgrade, Viglen
ROM cartridge adaptor, printer cable. As new, worth £900.
Offers £550. Tel. Oxford 739766.

Spellcheck III ROM package, mint condition, boxed £15. Tel.
01-654-7609.

BBC B, needs attention but works, £150. Opus twin 40/80T
drive £100. Cub 1431 colour itor £100. Print £10,
Master ROM £20, Digimouse £20. Ref. manuals 1&2 £10. 2
Cartridges £5, Acorn User barcode reader £20. Drawer CAD
£20, Program Builder £5, Discmaster £5. Tel. (0205) 68276 after 6

Centronics microprinter P1 with a spare roll of paper, £20.
Acorn NFS 3.6, £5. Tel. (0705) 594845.

Pace Nightingale system for BBC with Autodial, Comstar,
OBBS Bulletin Board, complete with software, cables and
manuals. Practically unused, £90 ono. Tel. Exeter (0392) 34149.

Epson printer FX80, working order. Serial and parallel 1/Fs
£160. Tel. 01-908 4974.

Compact RS 232 kit £15, Fleetstreet Editor BBC B 40T, £20. JUKI
2200 daisywheel typewriter with Centronics interface £100. Tel.
(0635) 62758.

Vine Micros Replay for B+ £15. DiscDoctor £12 inc. p+p. Tel.
(0274) 875217.

BBC Master, Turbo coprocessor, dual 40/80 DS disc drive
fitted in Viglen console, Microvitec 1451 RGB Monitor, Kaga
KP810 printer, AMX mouse. Plus manuals, software, £1000. For
details/offers tel. (0256) 464889.

Selfpowered HCR external ROM/RAM system (for 16
ROMs/RAM) £40. Software at about half price: Help II,
ROMIT, Toolkit+, Sleuth (ROMs); DiscMaster Printwise,
Program Builder, Hershey Characters (80T discs), all from
BEEBUG. Wigmore House Artist (with mouse) ROM and disc.
Bar Code Reader Project, Disc Duplicator, Signwriter, Fontaid,
Tabler Database, Mini Office II, Watford Printer Dumpout I,
Spellmaster (ROMs), light pen. Tel. (027583) 2979.

BBC B, Watford DFS, Basic 2, Wordwise ROM, Seikosha GP100
printer, tape recorder, joystick, maths tutor etc, £250. Tel. 01-
907-2958.

View, ViewStore, Printer driver generator, DiscDoctor, 80
column printer stand. All boxed with manuals £75 the lot. Tel.
01-560-7531.

ViewStore complete with ROM disc + manual £25. Tel. (0903)

i Continued on page 36

s 34

Beebug Supplement March 1988

e

— R

e~

e

BEEBUG FILER
BEEBUG magazine’s own database management system.
Suite of five programs including:

Top-level Menu Selector

* Database Management including Mail-Merge
* Graphics Option

* Home Banking Option

Fast Sort Program

Supplied on dual 40/80 track disc — Instructions g A Bt
and program notes included. St M A L

Price £5.50 plus £1.00 post and packing.

*

*

BEEBUG Sideways RAM Module — see Vol.5 No.7
The cheapest and easiest way of adding sideways

RAM to your Beeb

* Plugs directly into any BBC ROM socket

Construction and software described in magazine

Available as a kit of parts for you to make up
yourself, or ready made

Price £8.95 (kit) £12.95 (ready made)
Post & packing £1.00 in each case

BEEBUG Master Alarm ROM — see Vol.6 No.3

* Automatic clock and date alarm for the Master 128
* Available in ROM for immediate use
* As described in this month’s magazine

Supplied on EPROM
Price £6.45 plus £1.00 post & packing

mmmmmmmmmmmmmmmmmmmmmmmmmm 5.:%

ORDER FORM Please send: Price
51T S S o o SN il Filer Disc. el BT
Addressciiiiiiiii it BEEBUG Sideways RAMKit___ £.........

............................... BEEBUG Sideways RAM Module£.........
............................... BEEBUG Master AlarmROM___£.........
MembershipNumber. Post & Packing____ £
SIGNALUNe - - o c ool oo s e e freel S o s e Total e W

| enclose cheque for £
Please debit my Access/Visa No. gy LN) ATl L1

Send to: BEEBUG Mail Order, Dolphin Place, Holywell Hill, St. Albans, Herts AL1 1EX

Telephone Orders welcome. Tel: (0727) 40303

o

Personal Ads (continued from page 34)

Over 40 tape and disc games for the BBC B from £1, including
Scrabble, Monopoly + Trivial Pursuit. All originals with full
documentation. List from Mr J.Prinner, 10 Moor Park, Millom,
Cumbria LA18 5DX.

For BBC B: Aries B32 + B12 £60. PMS 6502 2nd proc. £50. Acorn
6502 2nd proc. £40. Watford ROM/RAM board £15 (slight
damage). Micro User clock £5. Solidisc DFDC (issue 1) + DFS +
ADFS ROMs £20. Viglen console £7. Various ROMs at £10 each
inc. Acorn DNFS/ADFS/View, BROM, Caretaker. All with
original manuals. Many C10/C15 tapes, 10 for £1. Tel. (0332)
360023 after 6 pm.

APTL Sidewise ROM/RAM board £18. DiscDoctor ROM £8.
Tel. (0482) 811227.

Cumana twin DS 40/80 switchable drives with own PSU £150.
Acorn Z80 second processor with all original software, Cobol,
Nucleus, WP etc, £150. HCR ROM /RAM box for 24 ROMs and
32k RAM, own PSU, no soldering, £60. Prism 1000 Modem +
Micronet software £30. Open Logo on ROMs £30. Tel. (04024)
74633.

Commstar II Communications ROM, Hayes Compatible (Ideal
for Pace Linnet Modem), £10. Tel. (09905) 7689.

Taxan Kaga Supervision II 620 monitor, leads, instructions,
IBM/BBC compatible, VGC, boxed, £190. Akter 40/80T DS disc
drive, VGC, leads, instructions, £75 ono. Masterfile II DFS,
boxed, instructions, £6. ViewStore Version 01 plus manual,
keystrip and reference card, £25. Tel. 01-341-2187.

Philips 12" monitor, choice of BM7502 green or BM 7522
amber, as new £40. Tel. 01-836-5454 ext. 2439 or 01-348-5957.

Acorn second processor, software, little usage, £150.
View /ViewSheet guides £14 the pair. Cumana DSDD 40/80T
disc drive £200. Master guide Pt.1 £10. 50 DS 5.25" discs £35.
SAE with offers please. 7 Low Rd. Port Logan. Tel. 077686260.

Master 128k + Interword ROM as new. Cumana 40T SS disc
drive with power supply. Brother HR5 Printer, joystick, leads,
speech, games & blank discs. Reasonable offers please. Tel.
(021353) 6506 after 6.30 pm.

Aries B12 and B12c adaptor, boxed with instruction manual,
£25. Tel. Hamilton (0698) 458137.

ISO Pascal £35, Micro Prolog £45 and Comal £30 Acornsoft
language ROMs and documentation in original boxes. Acorn
Graphics ROM £15. Minerva System Delta ROM, manual and
Inter/View link £65. Tel. 031 667 4180 eves.

Master 128k with 512k DOS, mouse and GEM software. 80T
twin DSDD drive. 12" Zenith monitor and all necessary cables.
Comprehensive set of manuals inc. Ref.Manual 1&2, View,
ViewSheet and Advanced User Guide. Command, Exmon and
Dumpmaster ROMs. More software (both BBC and MSDOS).
£700. Tel. (0509) 612960 day, (0509) 880183 eves.

BBC Master 128 as new, only £335. Master Reference books,
Part 1 and 2, £10 each. Tel. Bedford (0234) 67067 eves.

Acorn 6502 second processor £90, Watford solderless
ROM/RAM board with 16k RAM and battery backup £25.
BEEBUG ROMit ROM £12, Chalice ROMmaster ROM £7. Tel.
Malvern (06845) 64106.

Viglen 40T disc drive £30. Spellcheck II £8 and Aviator (disc)
£6. Tel. Windsor (0753) 853193.

Acorn Prestel adaptor £50, Cumana dual 80/40T switchable
disc drive, own PSU £80. ACP advanced 1770 DFS £20.
Wordstar Professional for BBC Z80 £85. Tel. (0533) 312661.

Tractor feed for Brother HR-15 printer. Tel. (04022) 50500
daytyme.

BBC model B (issue 7), Watford ROM/RAM board 64k
sideways RAM, Watford 1.44 DFS, Acorn 6502 second
processor, Cumana twin 40/80T drive, Microvitec high-res
colour monitor (1441), cassette drive, mouse, joystick,
Wordwise+, Pagemaker, manuals, software, books, all BEEBUG
mags to date, £700. Tel. (04022) 20305.

Oxford Pascal (v2.1), original ROM + manual £25. Tel. 061439
9665

Software, all original. Disc (model B): Graphic Adventure
Creator £12, Word Perfect W.P. £5, Strike Force Harrier £6.50.
ROM: Wordwise Plus with manuals and typing tutor £30. More
programs on tape for B and Master. Postage included. Tel.
(0388) 767040.

Daisy Step 200 high quality daisy wheel printer, good
condition, 13" platen, ¢/w power and BEEB cables, instruction
book. Offers. Tel. Ludlow (0584) 2596 eves.

Wordwise ROM with cassette and manual. Offers. Tel. (0395)
263638.

BBC B+ 64k with Acorn 1770 DFS, AMX, SuperArt ROM +
mouse and lots of software. Cost £800. Will sell for £275 ono.
Tel. Stretham (035389) 273.

BEEBUGSOFT: PrintWise on disc £16, Hershey Characters disc
£7, Sleuth ROM £16. AMX Paint Pot disc £7. FloppyWise ROM
£15. All with manuals. Tel. (0925) 811420 eves.

Miracle Technology modem WS2000 with DataBeeb
communications ROM and RS423 lead, £40. Tel. (0473) 213907
after 6pm.

BBC B 1.2 OS, Acorn DFS inc. tape recorder + games (tapes
and discs), all manuals £200. Tel. Lincoln (0673) 61163 eves.

BBC BD, View 3.2 and Watford 32k shadow RAM. Dual DS
40/80T drive in plinth. Kaga KX12 hi-res green screen monitor.
All excellent condition. £400 ono. Tel. 01-349-9381.

Master Compact, TV adaptor and printer cable, boxed as new,
some software and books, £260 ono. Tel. Lancaster (0524)
859228.

ROMs boxed with handbooks etc: Oxford Pascal £121,
DiscDoctor £8, System ADE £20. Tandon 40T 100k disc drive
with handbook, utils. disc and leads £35. Advanced User
manual £5, Toolkit 2 tape and manual £5. Immaculate
condition. Tel. (Nottingham) (0602) 392554.

LVL Music keyboard with EchoSoft OrganMaster Software.
Very good condition, plugs into user port on the BBC micro,
only £30. Tel. Colwall (0684) 40220.

Epson RX 80F/T printer with BBC lead, Printmaster ROM and
NLQ ROM £160. Tel. (0934) 513135 eves. or MBX Prestel
934513135.

Epson MX80 FT3 dot matrix printer with manual, stand,
interface lead for BBC B/Master, and PMS Multi-font NTQ
ROM set and manual, £120. Tel Gravesend (0474) 363503.

AMX Pagemaker 2x16k ROMs, 2 discs, not used, £25. Tel.
03406468.

36

Beebug Supplement March 1988

A, S—

e s

9
- T g e
"Nostalgia 52
©f5 Sl =
TR e - —
= e : = o o Al 18 f=
(3] ,5 - N, @]
[V -] ELd
g s
$88 fal|az
Hae L. §§
. B a
Reol | [Ca
ok~
Z -2 > |
©Ew | L
L~ I) U4 ()]
K & eal &
i » o b ~ =
% O hﬁ X £ m
D5

l Remember "Countdown to Doom"? P;ler Kilworth's classic sci-fl adventure ma / a w [>—{

QI e gt s o - s BES |o S50 sl
You are flying through the universe, minding your own business, when a distress m : = Ay 5 Q [
call comes In. "Mayday! The Galapoxi, taking the Ambassador of Regina on an > H >0 8‘
important mission to Fiaxo, has ust crashed on Doom, Rescue needed! Heading m E [3) L} V] =l &)
for Cleft..." As the only person ever to have survived Doom, you steer once more - N

for that dangerous planet. This could be your finest hour. O w = 63}
Or maybe even longer..... o Gb g - o
Sl i bl el AR S E § B E Ty E § ,E
K>/(;{kj4 Tel: (24 hours ACCESS) 0733 244682 = 9 8 0])
@‘P_&kj FREEPOST PO Box 39, Stilton Q g 5 ﬁ % o 5 o
PETERBOROUGH ~ o '] g g
R g8a |
P o |
B E5E k| L
@35 Flle B3 s
H L0 > 2 |
90 ol 13 [H m
o o Iv4 [[0
+= '31 (%) [y
= |
o= o=
e i o
m ’E = 'g o Es z
ADVERTISINGIN | | @ o5 [F|]| [B3 28
0 ‘gﬁ.n () oml €0
BEEBUG 3 &g & 3 g
on]
o o . - E -g [~ © k3
For advertising details, please 8 ; * - g sel 5§
contact o &8 IS 128 34
Q ™ O >
Yolanda Turuelo ¢ H 2
| on - % 3 =
‘ Q
| (0727) 40303 SR b S § LA
" : 0 a4 > R R
| or write to e > o Ofg *
| . o, © 3 N
; Dolphin Place, oo
J . ot
Holywell Hill, "5 z s
(7]
St Albans, E%E 2 % %3%%%
Herts.AL1 1EX « & [F]C [2EEaa
o 2lIA [iEmmm
a8
SR]

BBC USER GROUP INDEX

Over the next few issues we intend publishing a List of BBC User Groups operating in the UK and
Overseas. This list has been updated recently, however we would appreciate any information about
changes or cessation of operation. If you are aware of any User Groups not listed here, please let us

know for the benefit of other members of BEEBUG.

BEDFORDSHIRE

LUTON

Meets on Mondays at Strathmore Av. Methodist
CHURCH HALL from 6.30pm and on Wednesdays
at LUTON COLLEGE room 212 from 6.30pm.

BIRMINGHAM

Meets on the second Tuesday of each month
7.30pm at the Headquarters of the Midland Radio
Society, Unit 5 Henstead House, Henstead Street,
Birmingham 5. Tel. Michael Nyman 021-382-3606

BRISTOL, Yate & Sodbury Computer Club
Meets on alternate Mondays in canteen at
NEWMANS, Station Rd, Yate. Contact Kay Crowe
Chipping Sodbury 317461

BRISTOL
C.A.Hynam, 23 Baugh Gardens Downend, Bristol.
Tel. (0272) 561237 [preferably after 4 p.m]

BRISTOL (SOUTH) and District
B.Boyde-Shaw, BYTE, 7 Riverway, Nailsea,
S.Bristol, Avon BS19 1HZ. Tel: (0272) 851337

BUCKINGHAMSHIRE

Aylesbury Computer Club,

Chris Pyves, 2 Bishop's Walk, Aylesbury, Bucks
HP21 7LF. Tel. (0296) 26347

BUCKINGHAMSHIRE

South Bucks Acorn Computer Club

Contact Colin Mills, 70 Chestnut Lane,
Amersham HP6 6EH. Tel. Amersham 6103.
Meeting 8pm-10pm on 1st Tuesday of the month
at St.Leonards Church Hall, Chesham Bois.

BUCKINGHAMSHIRE

John Haig, 141 Leas Drive, Iver, Bucks. Phone
Iver 654431. Meets bi-monthly at the 'Huntsmoor
Room', Village Hall from 7.30 until 10pm on the
2nd and 4th Thursdays of each month.

CAMBRIDGE

Bottisham Acorn User Group

Contact Peter Rank (Cambridge 812 080) or Gerald
Wilcockson (Saffron Walden 23793).

CHESHIRE

Mid-Cheshire Computer Club

Hold twice monthly meetings (2nd and 4th Fridays)
between September and March, and 1 meeting per
month (2nd Friday) in summer. Meetings held in
‘Winsford's main library and start at 7.30pm. For
further details, call Winsford 53339.

MID-CORNWALL
Mid-Cornwall College of F.E.,
Palace Road, St Austell. Tel. Par 2399 any time.

CUMBRIA

The West Cumbria User Group
Details: P.Majid (0946) 62732 or
K.Purkiss (0946) 66586

DERBYSHIRE

GLOSSOP Computer Group

T.S.Fox (secretary), 4 Park Lane, Little Hayfield,
Stockport, Cheshire SK12 5NW. Tel. (0663) 44260.

ESSEX

Chelmsford BBC Micro User Group

Ian Jefferies, 2 Gernon Close, Broomfield,
Chelmsford, Essex. Tel. 0245 440054

ESSEX

Anyone interested in starting a Beeb User Group in
the ILFORD area? Please contact P.Jones at:

1 de Vere Gardens, Granbrook, Ilford, Essex.

1G1 3EB. or telephone 01-554-9825.

The club will use the facilities of the Computer
department at Forest School, Snaresbrook.

NORTH and MID-ESSEX BBC Users Group
Witham Library, Newland Street, Witham, Essex.
Meets 2nd Thusday and 4th Wednesday of each
month. For details contact either A.Purkiss
(0376) 515609 or D.Watts (0245) 358127.

GLOUCESTER
Laurie Dann, 10 Highbank Park,
Gloucester GL2 9DY. Tel. Gloucester 21245.

HERTFORDSHIRE
HARPENDEN - General User group
contact R.S. Welch on 05827 3398.

38

Beebug Supplement March 1988

O N Z e N e

Rl o] I‘Q "

DRl =R]

HANTS

FAREHAM & PORTSMOUTH

Peter Smith, 5 Barnfield Road, Sheet Petersfield,
Hants. Tel. Petersfield 64059 evenings only
Group meets at 7pm on Tuesdays at the
Portchester Community Centre.

INVERURIE (NORTH EAST SCOTLAND)
Grampian Amateur Computer Society

Meets on Monday evenings. Produces bi-monthly
newsletter. Contact Paul Cuthbertson on (0467)
24030, 18 Morningside Crescent, Blackhall,
Inverurie AB5 9FA, or Bruce Edelsten on (0224)
639911,

IPSWICH
Karl Brandenburg, 19, Oxford Road,
Ipswich IP4 1NL.

KENT
D.D.Singer, 86 Southborough Road, Bromley,
Kent BR1 2EN.

KENT

C. Rutter, Medway Acorn Users group,
St John Fisher School, Ordnance Street,
Chatham ME4 6SG. Tel. Medway 42811

LANCASHIRE
Mr.A.Edwards, 50, Station Rd., Banks, Southport
PR9 8BB.

LANCASHIRE

St. Helens BBC User Group. St Helens ITEC,
Windle Pilkington Centre, Waterloo Street, St.
Helens. Meets 2nd & 4th Thursday of each month.
For Further Details ring John 0744-817787

LIONCOLNSHIRE

BOSTON Acorn Computer Users Club

Contact J.C.Goodwin, BACUC, 245 Church Green
Road, Fishtoft, Boston, Lincolnshire PE21 ORP.
Telephone Tootsoft Enterprises on Boston 57409.

LIVERPOOL

Mersey BBC User Group (MBUG)

Meets twice monthly on first Wednesday of month
at OLD SWAN TECH. COLLEGE, Room C33 from
7.30pm and on third Thursday at BIRKENHEAD
TECH. COLLEGE, first floor Science & Maths dept
from 7.30pm. For more info call Nik Kelly on

051 525 2934]

LONDON - MIDDLESEX

Anyone wishing to start a user group please
contact V.K.Batta, 187 Waye Av., Cranford,
Hounslow, Midx. TW5 9SH

NORTH LONDON BBC Micro Users Group
Ermnest Bebbington 82 Hornsey Lane,
Highgate, London N6 5LU.

Tel: 01-263 6760 (Evenings).

LONDON - WC1

Meetings held on the second Tuesday of each
month at Dept. of Psychology, University College,
26 Bedford Way, London WC1. Tel. 01-387-7050
ext 413 for details and directions.

LONDON (West)
West London Personal Computer Club. Contact
Graham on 01-997 8986, or Neil on 01-997 9437.

MERSEYSIDE

Fred Shaw, Merseyside Micro Group,

14 Albany Avenue, Ecclestone Park, Prescot,
Merseyside L34 2QW.

MIDLANDS (WEST)

Anyone interested in joining or running a
computer enthusiast club? Contact: Simon Doyle,
The Brandon Hall Hotel, Brandon, Nr.Coventry,
Warwickshire CV8 3FW.

MIDLANDS (WEST)
Dudley Area
Roger Luff, Tel. Kingswinford 288721

W.NORFOLK
BBC Micro User Group,
Norfolk college of Arts and Technology,

Tennyson Av, Kings Lynn.

NOTTINGHAM

BBC Micro club. Meets on second Monday of each
month. For details call R Hampton on 254056, or
J.Day on 225660.

OXON

BBC Micro Wantage User Goup

Meets on the 2nd and 4th Mondays of each month,
8pm at the Wantage Civic Hall. Subscriptions:
adults 50p, under 18s 25p, first-timers free.
Contact Steve Cooper on Wantage (02357) 2501.

RUGBY
RASUG, Mr.Nicholas Shaw, 13 Pipewell Close,
Bilton, Rugby. Tel. 0788 811678

SCOTLAND (Central)

Anyone interested in joining a user group in this
area, please contact Mr.D.Davidson, 1 Roxburgh
Place, Larbert, Stirlingshire FK5 4UE.

Tel. (0324) 558692.

SHEFFIELD
ABUG . c/o J.Fryer, 17 Edgedale Rd, Sheffield S7
2BQ.

STAFFORDSHIRE

Contact Mrs. Linda Yeomans,

13 Regent St, Church Gresley,
Burton-Upon-Trent, Staffs DE11 9PL. Tel. {0283)
216445 after 2pm.

To be continued

Beebug Supplement March 1988

39

Business Ads

CHESS EXPERT SYSTEM (Master/B/B+). A complete
disc-based game storage and analysis system with
extensive features and data links to Colossus 4 and White
Knight 12. Supplied with 2000-move openings database,
or optional 37000-move set. Send £1 for demonstration
disc to: Bernard Hill, Hawthorn Bank, Scott's Place,
SELKIRK TD7 4DP.

SHAREMATIC. The best software package for the keen
investor, (runs on BBC Master 128). Free - automatic
updating from Teletext. Free - 500 trading days of data
for 170 shares. Plots, Graphs, Point & Figure, & Oscillator
and more. Only £35. For brochure write to: Citymagic
Associates, Dept BB3, 40 Manor Road, Goldington,
Bedford MK41 9LQ. Tel. (0234) 856050/67067.

EVENTS

The Electron & BBC Micro User Show
New Horticultural Hall
Westminster, London
13-15th May 1988

The Electron & BBC Micro User Show
New Horticultural Hall
Westminster, London
11-13th November 1988

PCW 88 Show
11th Personal Computer World Show
Earls Court, London
14th-18th September 1988

Both BEEBUG and RISC User will have their
own stands at the Micro User show in May.
You are very welcome to visit our stands and
talk with our magazine, sales and
technical staff.

SOME MORE BULLETIN BOARDS

Surrey BB 08832 5932
24 Hours (Surrey)
200/75 300/300
Viewdata/Scrolling
Enterprise BB 0482 868388
10pm-8am (North Humberside)
1200/75, Terminal/
Viewdata

IBBS Nottingham 0602 830231
(Nottingham)
Sat 10am-4pm 1200/75
Sun 10am-4pm 300/300 all ASCII
DCT Database 0384 239944
24 Hours (Dudley)
Prestel compatible
Phantom Viewdata 0226 732140
24 Hours (South Yorkshire)
1200/75
40

Beebug Supplement March 1988

.. L

Tube
&>
=

-2 XeK] e e

nn

THE
MASTER
PAGES

Devoted to the Master
Series Computers

In our Master pages this
month, Lee Calcraft shows
how the ADFS routines
presented in the previous
issue may be combined into
two complete utility
programs. One is a
customised ADFS menu
system, the other a useful
'CATALL' facility.

Dave Somers has been
looking at the Master
Extensions ROM from DABS
Press, and we complete this
section with further hints and
tips specific to the Master
and Compact.

Lee Calcraft concludes his experiments
on the ADFS with the implementation
of two utilities: a customised ADFS
menu and a whole-disc catalogue.

MASTER Last month we explored the use of certain
filing system calls to create three packaged

SERIES procedures which could be used to read
TALKING TO catalogue and other allied information from
THE ADFS an ADFS disc. Here we will put those
(part 2) procedures to work in the implementation

of two utilities. Both require lines 1000

onwards of last month's code, though none
of the lines before 1000 are needed. I suggest therefore that you
load in last month's program, if you have it, and delete the lines
lower than 1000, and save the remainder away for future use.

CUSTOMISED ADFS MENU

With lines 1000 onwards in your machine, type in this month's
listing 1. This will implement a complete ADFS menu. When
the program is run you will see something similar to that in the
accompanying figure. Near the top of the screen are displayed
the current drive number, and directory name and title (all
obtained by calling PROCtitle). Then below that in alphabetical
order is a display of objects in the current directory. Each has a
letter beside it, and all directories are marked in reversed out
text. Pressing a letter corresponding to a directory name causes
that directory to be selected, and the menu to be re-displayed.
If you press a key corresponding to a Basic program, it will be
chained in. At present there are no options for loading text files
into word processors, but this feature is easily added (see later).

Other options cur-

Customised Menu Keys ity e

" Go to root directory ted include star
< Go to the previous directory || commands, and the
v Go up one directory use of cursor keys
0 Select drive 0 totake you fo the
1 Calhot dituet root directory or to
: move up one direc-

Perform star command tory, or to the last
Ctrl@ Quit selected directory.

Beebug March 1988

To change drives,
or change a disc, select the required drive with the "1" or "0"
keys. Finally, Ctrl-@ may be used to quit the menu.

PROGRAM NOTES

The menu is controlled from the short REPEAT loop in lines
130 to 170, which calls 3 procedures. PROCtoppart handles the
top few lines of the menu, including the title, drive and current
directory information. This is obtained by calling PROCtitle.
PROCtoppart also calls PROCfile, the second of last month's
procedures, reading in the names of the objects in the current

41

directory and their total number, fileno. If this
variable is greater than zero, then the main
program loop at line 150 calls PROCreadcat.
This in its turn calls the third of last month's
procedures, PROCcatinfo, to obtain data on
object type (whether each object is a file or
directory), plus load and execution addresses
etc. PROCreadcat is responsible for displaying
each object name in the menu in an orderly
fashion.

Finally the main loop at line 160 calls
PROCchoice to wait for a key press. Key
presses which involve file or directory selection
are handled in the procedure PROCfiledir. This
currently has two possible outcomes, if the
selected object is a directory, then that directory
is selected. Alternatively if the object is a file
whose second byte of its execution address is
&80, then it is assumed that the object is a Basic
program, and it is chained. It is an easy matter
to implement further actions here. For example,
you might check that the load address of the
file is &8000 using:

IF (file%(key-64,1) AND &FFFF)=&8000
and load it into sideways RAM, or that its
execution address is &FFFF using

IF (file%(key-64,2) AND &FFFF)=§FFFF
and load it into Wordwise.

A *CATALL FACILITY

By calling the second and third procedures in a
recursive manner, we can implement a number
of useful utilities. The one covered here will
catalogue the whole of an ADFS disc,
displaying all directories, with nested files
down to the full depth of 127 levels of nesting
permitted on the ADFS. As the program
currently stands, directories are displayed in

42

reversed out text, and each new level of nesting
causes the display to be indented by four
character positions. If you have a disc which
nests below about 15 levels, the display will
wrap around, but if this is a problem, you can
change the indenting factor (the second 4 in line
410 could be reduced to 2, 1 or even 0).

The program centres around the procedure
PROCdispall, called in line 140. This is used
recursively as follows. It begins by calling
PROCfile and, indirectly, PROCcatinfo (the
second and third procedures from last month),
and displays the results as a list of objects in the
current directory. When it encounters a
directory name, it stores its current position in
the array ends% (level), executes a *DIR to the
directory name encountered. It then calls itself
(i.e. PROCdispall calls PROCdispall), and
begins to display the contents of the new
directory, until it encounters another directory
name. This process will repeat each time that a
nested directory is encountered.

As it continues its display of objects, it will
eventually reach the end of the current
directory (i.e. the directory which it is currently
displaying). When this occurs, the procedure
executes *DIR ~ to move up one level, and then
terminates (i.e. with ENDPROC), thus dropping
the program back into the procedure which
called it (i.e. PROCdispall at one level above).
The display then continues from where it left
off until it reaches a new directory, in which
case it makes another recursive call, or it
reaches the end of the current directory, where
it goes back one level. Eventually, the program
"surfaces", and the display is complete.

Even if the program is a little difficult to
describe, it works very effectively, and can be
most useful in finding lost files and so on. It is
also relatively easy to modify to suit other
requirements. For example, it is very easy to
make it print only the names of directories,
should that prove useful. Also without much
trouble it could be used to find a given filename
on a disc. To do this, simply suppress the
display, and insert a line which checks the
current object name (file$(A) in line 430) against
the required filename. The possibilities are
endless, but if you do come up with some
snappy applications of the main routines listed
last month, please drop me a line.

Beebug March 1988

RS R

Listing 1
10 REM Program ADFS Menu
0 REM Version B 1.0F
30 REM Author Lee Calcraft
40 REM BEEBUG March 1988
50 REM Program subject to copyright
60 REM Program requires procs from
70 REM last month (lines 1000-3300)
B0 :
100 ON ERROR GOTO 760
110 MODEO:DIM file$(50),file%(50,4)
120 *FX 4,1
130 REPEAT
140 PROCtoppart
150 IF fileno>0 THEN PROCreadcat
160 PROCchoice
170 UNTIL key=0
180 *FXx4
190 END
200 -
210 DEFPROCtoppart
220 CLS:COLOURO:COLOUR129
230 PRINTTAB(18,0)"C U S TOMI SED
ADFES MENDU"
240 COLOURI1:COLOUR128
250 PROCtitle
260 PROCfile
270 PRINT' "Drive
objects"
280 PRINTtitle$
290 PRINTname$'
300 ENDPROC
30
320 DEFPROCreadcat
330 PROCcatinfo (TRUE)
340 FOR A=1 TO fileno STEP 4
350 FOR B=0 TO 3
360 AB=A+B-1
370 IF AB<fileno PRINTTAB (5+16*B) ; CHRS
(AB+65) SPC1;
380 IF file%(A+B,0)=2 THEN COLOURO:COL
OUR129
390 IF AB<fileno PRINTfile$ (A+B);
400 COLOUR7:COLOUR128
410 NEXT:PRINT':NEXT

®:drive;SPC3; fileno”

420 ENDPROC

430 :

440 DEFPROCchoice

450 IF fileno>0 PRINT TAB(0,31)"Please
make a selection "; ELSE PRINT"No files

460 REPEAT

470 T=FALSE:*FX15

480 key=GET

490 IF key-64>0 AND key-64<=fileno THE
N PROCfiledir:T=TRUE

500 IF key=42 THEN PROCstar:T=TRUE

510 IF key=48 THEN OSCLI ("DIR :0") :T=T
RUE

520 IF key=49 THEN OSCLI("DIR :1"):T=T

530 IF key=139 THEN OSCLI("DIR $"):T=T
540 IF key=136 THEN OSCLI ("BACK") : T=TR

550 IF key=138 THEN OSCLI("DIR ") :T=T
RUE

560 IF key=0 AND INKEY-2 THEN T=TRUE

570 UNTIL T

580 ENDPROC

590 :

600 DEFPROCfiledir

610 *FX4

620 IF file%(key-64,0)=2 THEN OSCLI ("D
IR "+file$ (key-64))

630 IF (file%(key-64,2) AND &FF00)=¢80
00 THEN CHAIN fileS$ (key-64)

640 REM Add further file actions here

650 *FX4,1

660 ENDPROC

670 :

680 DEFPROCstar

690 INPUT"*"command$

700 CLS

710 OSCLI (command$)

720 PRINT'"Press space ";

730 REPEAT UNTIL GET=32

740 ENDPROC

150

760 REPORT:PRINT" at line ";ERL

170 *Fx4

780 END

790 :

% % X % & kK & &

Listing 2
10 REM Program Display all files
20 REM Version B 0.9
30 REM Author Lee Calcraft
40 REM BEEBUG March 1988
50 REM Program subject to copyright
60 REM Program requires procs from
70 REM last month (lines 1000-3300)
80 :
100 ON ERROR GOTO 490
110 MODE3
120 DIM file$(50),file%(50,1),ends% (12

i Continued on page 46

Beebug March 1988

43

e $ X e

Dave Somers takes a look
at MOS Plus from DABS
Press - a utility ROM to
enhance (and correct)
the Master's Operating

MASTER St

SERIES e

MOS Plus Although the Operating
Review System (OS) on the Master

microcomputer is excellent,
it does have a number of
irritating bugs and omiss-
ions. This is where MOS+ from DABS Press
comes in, for it fixes these bugs in OS version
3.10, and adds some very useful additional
commands.

Product MOS Plus

Supplier DABS Press
76 Gardner Road, Prestwich,
Manchester M25 7HU.
Tel. 061-773-2413.

Price £12.95 inc VAT (ROM)

£7.95 inc VAT (5.25" disc)
£9.95 inc VAT (3.5" disc)

It comes in the form of a sideways ROM, and
can be supplied either as a ROM, or on disc for
loading into sideways RAM. An eleven page
A5 instruction manual details its various
facilities. After installing MOS+, the sign-on
message produced by the computer changes
from "Acorn MOS" to "Acorn MOS+" to let you
know that everything is OK.

ENHANCED STAR COMMANDS

A number of enhancements have been made to
some of the star commands, with quite a few of
them as found on the Master Compact. Both
*APPEND and *BUILD will now accept all 256
ASCII characters, rather than the first 128 as
before. When loading data into sideways RAM,
using either SRLOAD or SRWRITE, an optional
"[" parameter can be added to initialise the data.
For SRLOAD, this removes the need to press
Ctrl-Break before an image is recognised by
the Operating System. *UNPLUG can also have
this parameter added, in which case the ROM is
unplugged immediately, by removing its entry
from the ROM information table.

44

*SHOW has been tidied up so that omitting a
key number will cause all the key definitions to
be displayed. For *STATUS, the entries are now
displayed in alphabetical order, and *ROMS
lists Sideways RAM as "RAM", and doesn't
duplicate entries.

To backup discs, you don't have to search for
the Welcome Disc, as MOS Plus comes
complete with the necessary code. *BACKUP
automatically handles both DFS or ADFS
formats, and if required can use sideways RAM
to speed up the process. You can also use it to
backup (on DFS discs) from side :0 to :2 (or :1 to
:3) on separate discs - it automatically prompts
you to change discs.

The *BASIC @ command has been extended so
that the tokeniser will accept text from any
location, and not just from the EDIT's buffer.

NEW STAR COMMANDS

Nine new star commands have been added. For
ADFS users, *DRIVE has been added to allow
DFS software using this command to still work
under the ADFS; *CATALL will catalogue all
the files on the disc; *EXALL is similar to
*CATALL, but performs *EX on all files; *FIND
will search for a specified file (with wild cards
allowed) and display their path if found. A
formatter and verifier are also included.

A command called *SETTIME can be used to
set the date or time or both of them. The syntax
is identical to Basic's TIME$ command. This
will allow the RTC to be modified within other
languages that do not support it, eg Comal. To
complement the sideways RAM handling
commands, *SRKILL will clear out the first 16
bytes of one or more RAM banks.

ALARM CLOCK SYSTEM

Part of the 146818 Real Time Clock contains an
Alarm Clock facility, which is unfortunately not
implemented by the Operating System. MOS
Plus allows you to use this, provided you make
a link on the main circuit board.

*ALARM is used to control the system. If

followed by no parameters, the current setting
will be displayed. The alarm can be configured

Beebug March 1988

L e BN T T A s b

*HELP
MOS+ 1.13 *HELP BASIC
MOSPlus - For list of new commands BASIC keywords listed by
BASIC = For list of BASIC keywords token
View - For help on View commands
Alarm ~ For help on using the Alarm clock
Terminal - For help on Terminal commands
*HELP VIEW <topic>

*HELP MOSPlus

for help on view family
Topics available are :

MOS+ 1.13 b oy

BACKUP <8rcp <dest> (5) (P) (Y) Storeq

BLIST <ob spec> (<format>) Functions

CATALL (<drive>) Highlights

EXALL (<drive>) Sheet

FIND <list spec> (D) (F) Spell

FORMAT <drive> <5 M 1> (¥) (M)

SETTIME <date/time>

SRKILL <bank id>...

VERIFY (<drive>) *HELP ALARM

MOS+ Alarm Clock 1,10

*HELP TERMINAL ALARM
Terminal commands: (Use CTRL-F1 to enter command mode) ALARM <hh:mm:ss>
MODE <number> = Change mode ALARM <H,M, S>
VB <no.> [,<nc.>] - VDU sequence . ALARM ON
TERMINAL - Select ANSI mode ALARM OFF
BBC - Select raw mode ALARM QUIET
GS - Select GS format mode ALARM LOUD
i - Select dumb terminal mode CONFIGURE ALARM QUIET
AWM ON/OFF - Control line wrap >CONFIGURE ALARM LOUD
CKL ON/OFF ~ Control cursor keys
MCL ON/OFF - Enable/Disable Modem control
PROT ON/OFF - Control protection
RFC ON/OFF ~ Enable/Disable receiv§ flow control Examples of *HELP
TFC ON/OFF - Enable/Disable transmit flow control)
WWM ON/OFF ~ Control word wrap Ihsplays

to go off every second, minute, hour, or at a
specific time. When the alarm is triggered, a
beeping noise is made. Its volume can be
adjusted to either low or high, and can be set
permanently in the CMOS RAM, if required.
For machine code users, the alarm can be
trapped by intercepting user event number 9.

MOUSE DRIVER

To avoid having to install a ROM such as AMX,
etc., MOS Plus comes with the mouse driving
code necessary, along with the OSWORD &64
call to access it.

BUG FIXES

With OS 3.10 there were a couple of bugs which
could occasionally cause problems. The
infamous CLOSE#0 bug, where the DFS does
not close files with the correct length in the
event of *CLOSE or CLOSE#0, has now been
fixed; after *EDIT there can be any number of

Beebug March 1988

spaces before the filename; if more than one
filename is specified after *REMOVE, the call
will correctly fail.

When re-setting the CMOS RAM with
R/power-on-reset, the settings now default to
sensible values.

HELP SYSTEM

A series of help texts can be obtained about
MOS Plus itself, the Alarm facility, Basic, View,
and Terminal. This is an excellent aide-
memoire.

FINAL THOUGHTS

MOS Plus is an excellent product. It offers all
those facilities which you are likely to use
without having to resort to the Welcome Disc,
and a few others that are most useful. It has
been well thought out and is a most welcome
addition inside any Master. B}

45

... A

Hints Hints

SIMPLE AUTO-SAVE
Lee Calcraft
The following EXEC file will automatically save
a Basic program under the name stored in a
REM line within the program itself. The format
is similar to that used on the Archimedes and in
the Master ROM. The EXEC file should be
created using a word processor or the Master's
text editor, and could be saved under the name
"S". Once it is installed in your Library
directory, every time you issue the command *5
your currently resident Basic program will be
saved with the name given. The format for the
filename is:

10 REM >filename
The name must immediately follow the ">"
character, and must itself be at the end of a

*| Automatic Program Save

vDU21

P%=PAGE

REPEAT P%=P%+1:C%=?P%:UNTIL C%=ASC(">") OR
P%>PAGE+100

IF C%<>ASC(">")VDU6:P.TAB(10)"*** File name
not found ***":VDU7,21:0S.("FX125") :VDU6
*EX1E, 1

S$=$ (P%+1)

VDU6:P.TAB(3) "SAVING ";S$%

SAVE S$

program line. The only other proviso is that the
">" character must fall within the first 100 bytes
of the program.

The routine displays the name of the file which
it is using for the save, or if it finds no name, it
will beep and report the fact.

AUTOMATIC BACKUP (ADFS)
Lee Calcraft
Whether you are using the Master ROM to
implement an auto-save facility, or the method
described above, you can create an additional
command to back up any program to a separate
drive by altering just one line of the above.
Simply replace the third line from the bottom
(S$=$(P%+1)) with the following:
S$=":1.$.ProgBackup. "+$ (P%$+1)
Now re-save the entire EXEC file under the
name PB (for Program Backup), and every time
that you type *PB the Basic program currently
in memory will be saved to the directory
ProgBackup on drive 1, using the so-called
"incore" filename with the same format as
above. Again the routine will report on its
progress, and will inform the user if no suitable
filename is found.

TALKING TO THE ADFS (continued from page 43)

130 PROCinit

140 PROCdispall

150 END

160 :

170 DEFPROCinit

180 PROCtitle

190 PRINT"WHOLE DISC CATALOGUE"'
200 PRINT"Current directory: "name$
210 level=0

220 FOR A=0 TO 128

230 ends%(A)=1

240 NEXT

250 :

260 DEFPROCdispall

270 back=FALSE

280 PROCfile

290 dir=0
300 IF fileno>=ends%(level) THEN PROCd
ispcat

310 IF dir THEN ends%(level)=A:level=1
evel+1:0SCLI ("DIR "+file$ (A-1)) :PROCdisp
all

320 IF back THEN GOTO 270

330 IF level>0 THEN ends%(level)=l:lev
el=level-1:back=TRUE:OSCLI("DIR "")

340 ENDPROC

350 :

360 DEFPROCdispcat

370 PROCcatinfo (FALSE)

380 A=ends% (level)

390 REPEAT

400 dir=(file%(A,0)=2)

410 PRINTTAB (4+4*level) ;

420 IF dir THEN COLOURO:COLOUR129

430 PRINTfile$ (A);

440 COLOUR128:COLOURT7:PRINT

450 A=A+1

460 UNTIL A>fileno OR dir=TRUE

470 ENDPROC

480 :

490 REPORT:PRINT" at line ";ERL

500 *FX4

510 END

520 :

Beebug March 1988

L

i & < B B w2

NN

If you feel that you are not getting the most
out of your printer, or you can't cope with
the multitude of printer codes, you might
find one of the two ROMs reviewed by Geoff
Bains quite useful.

The skill required to master the Escape codes
used to get the most out of your dot-matrix
printer is quite rightly held by many people to
be on a par with quantum theory. These two
ROMs go some way towards making life with
your printer easier.

PrintROM

Windmill Software
Smock House, Hull Lane,
Terling, Chelmsford,
Essex CM3 2QD.

Tel. (024533) 371

£15.95 (ROM)

£10.95 (SWR)

Product
Supplier

Price

PrintROM is available in ROM or on disc ready
for sideways RAM, and in ten different
versions for different printers. Most of the
printers beloved by Beeb owners are catered for
- Taxan KP810, Epson LX/RX/FX/MX, Canon
PW1080, Centronics GLP, Brother M1009,
Panasonic KXP1080/1, Shinwa CP-80, Juki
5500, MP165 and Star SG-10. However, the
newer 24-pin machines are particularly
noticeable by their absence from this list.

PrintROM is essentially a memory aid. With a
series of star commands of obvious and
memorable names, the most commonly used
(and forgotten) printer code sequences can be
easily sent to your printer. Like all star
commands, these can be issued either in
immediate mode, from within Basic programs
or from Wordwise Plus, Interword and some
other word processing software - either from
the menu or embedded in the text.

The common printing effects are covered. Some
commands are followed with ON or OFF to
select the effect, and others require numbers.
The *CHARSET command used to select the
international character set presents the user
with a mode 7 menu of the nine possibilities
selectable with the cursor keys.

Beebug March 1988

The *CMENU command presents a menu of all
the other commands - handy for leaving any
decision about a document's presentation until
the last minute. However, this menu is
somewhat ruined by not accepting lower case
letters to select the effects. To have to switch to
upper case (mentally or on the keyboard) in a
menu which supposedly saves keypresses is
just silly. In addition, a very useful *LPRINT
command is provided, which prints the
characters following it, and a graphics screen
dump is provided for good measure (the Taxan
dump is a good one but printer dumps are two
a penny these days).

B you are totally baffled by your printer then

PrintROM will help. It has the great advantage
of being model-specific and so requires no
setting up, and for the most part is pretty self-
explanatory. However, a hefty £16 for what
amounts to simple code substitution is not
good value. For my part, I would prefer to
invest a few pence in a list of codes to stick on
the wall above the monitor.

Product
Supplier

Hyperdriver

DABS Press

76 Gardner Road, Prestwich,
Manchester M25 7HU.

Tel. 061-773 2413

£29.95 inc VAT (ROM)
£24.95 inc VAT (SWR)

Price

Hyperdriver is an altogether different story.
This is a cleverly thought out package that
doesn't just substitute for your own mastery of
your printer but augments it. It is of course
much harder in itself to master but is ultimately
worth the time taken. Hyperdriver is for Epson
compatible printers. However, as the vast
majority of printers around today are (at least)
Epson compatible this shouldn't pose too many
problems.

Like PrintROM, Hyperdriver is based on star
commands which substitute for the hard-to-
remember printer Escape codes. Many more
printing effects are also controllable. There is
little your printer can do which isn't covered by
this ROM. The Hyperdriver commands are all
two letter mnemonics. Although this makes the
commands convenient to type, it doesn't help
their memorability. True, they all follow a
logical pattern - *UL for underline, *XU to
cancel underline. *IT for italics, *XI to cancel
italics - but the pattern is the author's and not

47

your own. I would have prefered to see full
commands which could be abbreviated.
However, this is a minor gripe. This command
set, like all others, is soon learnt.

to get the layout right. Now switch on the
'screen effects' and the common printer effects
such as enlarged text, italics, underlined, bold,
superscript and subscript can all be produced

Hyperdriver does
not just stop at
code substitution.
For a start, the
software is much
more 'intelligent’
than PrintROM.
If something is
dangerous or
impossible it says
so. The error mes-
sages are always
clear and appro-
priate. This ROM
has the unusual

as italics,

wmitper-moer Lot ’

L= B &]

As well as making easier many
standard printer effects such of
el s ogecd ,
condensed, emphasised,
Hyperdriver can
also produce text in a pseudo
near letter quality style of print
on standard non-NLQ printers and
screen-style print in the same range of
sizes as you will find
= =

on the screen -
true WYSIWYG.
Of course none
this is ' as
convenient as
using a word
processor which
provides true
WYSIWYG in
the first place
but for View or
Wordwise Plus
users it's a boon.

antd aub OF

Not only can
Hyperdriver
simulate the

| S == N =]

habit of requiring
acknowledgement of all error checks. After
each error message you must press Return to
continue. This does have the advantage that
you cannot miss the error. However, it just gets
tedious after a while. It would be nice to be able
to switch this feature off!

A more useful feature is that Hyperdriver
commands can be strung together into 'macros'.
This both saves on memory space and is very
convenient. The macros can be saved to disc
and loaded back in with simple commands. By
using different sets of macro definitions, a
single document, liberally embedded with
macro calls, can easily be printed in any
number of different ways just by loading up the
required macro definitions first.

All this is fine for users of Wordwise Plus or
Interword, but View and View Professional
users cannot embed commands in their
documents. For them, Hyperdriver includes a
complete View printer driver. The commands
are embedded between the View highlights,
and the driver interprets them to give the
correct control codes to the printer when the
document is printed. Of course that removes
the WYSIWYG nature of View. Wordwise Plus
is not a WYSIWYG word processor to start
with.

But Hyperdriver can even fix this for you. First
the Beeb is switched to 'test print' mode. Now
all attempts to print are redirected to the screen
without the usual reams of wasted paper trying

48

printer on the screen, but it can also print
screen characters (including user defined ones)
on the printer. ‘Graphics print' produces a sort
of continuous text printer dump of characters
on paper. All the same printing effects are there
but in a new font and at different sizes
depending on the screen mode you are in. It's a
nice touch and can be quite useful.

What is certainly useful for owners of older
printers is the NLQ mode. This produces NLQ
print on printers without an NLQ facility with
three passes of the printhead over the paper.
The result is not as fine nor as fast as some NLQ
printers' output and is only available
proportionally spaced. Nevertheless, it is a
useful addition and quite adequate for most
needs.

In many ways Hyperdriver and PrintROM are
just two of kind with the higher price of
Hyperdriver just serving as a deterrent.
However, looking beneath the surface and
considering the way the ROMs treat errors, the
thought that's gone into the way Hyperdriver is
used with word processors and a million other
good design features of Hyperdriver, the far
greater value of this ROM stands out.

Many Beeb users can live in peace with their
printer without assistance from anyone.
However, if you are one of those who feel there
is more to a printer than wading through lists
of Escape codes, Hyperdriver will prove an
ingenious blessing.

Beebug March 1988

R I L e i e T o e T I T e N i G e T e AP g

&|

-2t T)6

CIRCUIT ANALYSIS

Part Two

Colin Attenborough completes his article
on circuit analysis with a routine to
display the results created using last
month's program.

Last month I presented an analysis program
and a simple user-hostile display program.
Here is the complete DISPLAY program. It
reads data written to disc by the analysis
program (the long or the short version), and
presents it in meaningful tabular or graphical
form. If you alter line 260 of last month's
magazine program to read:

260 IF choice%=1 @%=&90A:Z%=0PENIN OF$
:$&900=0F$: CHAIN"Display"
then this month's program Display will be
chained in by it, and the result file will be
passed across. If the display program is run
independently, it will simply ask for the name
of an analysis data file. Note that this trick will
not work on the tube, and the "$&900=0F$"
should be left out of the line, or be adjusted so
as to use a different address. If you are using
the extended version of last month's program,
then you should alter line 450 instead, as
follows:

450 @%=690A:Z%=0PENIN OF$:$&900=0F$:CH
AIN"Disply5"
remembering that the Tube proviso still holds.

Nodes shown thus: @

it

Figure 1. Filter Circuit

Once a suitable datafile has been opened
DISPLAY then prompts the user for a node,
accepting only node numbers existing in the
analysed circuit. If the input node is selected,

Beebug March 1988

the input impedance is calculated at each
frequency after the user has been asked to select
rectangular or polar representation (i.e. real and
imaginary parts of magnitude and phase
angle). For any other selected node, the ratio of
node voltage to input voltage is calculated at
each frequency, both in magnitude (given in
decibels) and in degrees of phase shift.

The information is presented as a table (in
paged mode) and then as a scaled graph with
frequency as the X axis (unless a single
frequency has been used). Data can be read
from the graph by moving a cursor across the X
axis using the left and right cursor keys. To
make the cursor move faster, hold down Shift
as well. The values of the results at the
frequency indicated by the cursor line are
displayed beneath the graph.

® @
\ \ ,(@ Nodes shown thus: @
oo \

1000Q nF
@ l

Figure 2. Wien Bridge Circuit

The user then has the option of seeing the
results again, printing them, changing the
selected node, editing the circuit file, writing a
new circuit file, or re-running the display
program. If a graph dump is selected, the
cursor and the associated display are replaced
by a summary of the limits of the result
quantities. I have assumed that users will call
their own graphics dump at line 3150.

CIRCUIT FILES

Last month I gave a simple circuit diagram and
the corresponding circuit file. To see how other
circuits are handled, we will take a look at a
filter circuit (figure 1) and a Wien bridge
network (figure 2). Their circuit files are
reproduced as figures 3 and 4 respectively, and
generally speaking they follow the pattern
introduced last month, though there are one or
two new features.

49

*FILTER

*Filter Circuit
R1,1,2 50

R2,3,E,50

cl,2,B.625p

C2,3,E, 6250
C3,2,3,32.15p

*a lossy inductor
*0.74 microhenries
*with a Q factor of 20
11,2,3,0.714n, 20
FMIN=10M, FMAX=100M, LOG, STEPS=10
IN=1

Firstly, comments have been introduced. They
must start on a new line, and be preceded by an
asterisk. The analysis program completely
ignores all comments. Secondly, figure 3
contains a lossy inductor; that is to say an
inductor which has a non-inductive element to
its impedance (like all real inductors). This is
represented by the string:
11,2,3,0,74u,20

In other words, inductor L1 lies between nodes
2 and 3. It has an inductance of 0.74 micro
Henries, and a Q factor of 20 (the "Q" factor of a
coil gives a measure of its quality - how near to
an ideal inductor it actually is).

*WIEN

*Wien bridge
R1,1,2,1000
cl,2,3,1000p
R2,3,E, 1000
c2,3,E,1000p
FMIN=100K, FMAX=200K, DF=10K
IN=1

The only other new element also appears in the
filter file. Here the frequency range for analysis
is given as:
FMIN=10M, FMAX=100M, LOG, STEPS=10

This requests an analysis in the range 100-200
MHz. But instead of the linear sweep of last
month's example and of the Wien bridge, a
logarithmic sweep is requested. The
“STEPS=10" means that 10 steps are required in
the given range. While on the subject of
frequency sweeps, if you require analysis at a
single frequency only, then you should replace
the frequency definition line with one such as
the following:

50

" e s e e e Al e g ey IS e L o L

F=10M
which will cause analysis to take place at 10
MHz only.

The analysis program simulates forcing a
current of one ampere into the input terminal
and out of the common terminal of the circuit to
be analysed. It calculates the voltages at all the
nodes by solving N simultaneous equations in
N variables, where N is the number of nodes.
The variables of the equations are in general
complex (unless the circuit contains neither
inductors nor capacitors), so the voltages are
also in general complex. At the end of the
analysis program the real and imaginary parts
of all node voltages are stored to disc, together
with information about the number of
frequencies, type of frequency sweep and
circuit file name.

Mag.(dB) varies -9.97 to -9

(dea% varies 2.26 t;

.54
359.80

. Hz Fmax=280088 Hz
Linear f-scale,steps of 18886 Hz
Circuit MWIEN node

The display program reads data from the disc,
and calculates the ratio of the voltage at the
selected node to the voltage at the input node.
This gives the voltage gain between the input
and the selected node. If the selected node is the
input node, the input node voltage is displayed
as the input impedance.

The program may give errors if there is a very
large ratio between the values of components
used - the capacitors in a quartz crystal's
equivalent circuit, for example. The program
can handle relatively complex circuits with the
following constraints. The number of each type
of element used is limited to 30 (25 in the
magazine disc version) by the size of the arrays
(and by your patience during analysis). The
number of frequency steps is limited to 80.

Beebug March 1988

|

it i P

Lo A Lo sl

W N T W e segs ee e

Some error trapping is provided: if you try to
read a non-existent file, you'll be invited to try
again. If you miss a connection between two
nodes, you get a division by zero error, and can
re-enter Wordwise to correct the circuit file.
This also happens with 'No such variable'
errors, which mean that information is missing
from the circuit file. The program also checks
the lines it reads from the circuit file to make
sure it understands them and that they have the
correct number of parameters.

PROGRAM NOTES

The analysis program will happily read files
written using VIEW as well as those written
with Wordwise, but the VIEW user must
provide different methods of re-entering the
editor.

The program normally reads disc files but if
you have a RAMdisc (e.g. Opus Challenger), it
will speed operation of the program.

ADFS users should alter line 3210 to read:
*CAT O

If you write a BOOT file:

*BASIC

CH."ANALYSE" (adjust name as reqd)
and type *OPT 4,3 then you can just press Shift-
Break to start the analysis process, even from
within Wordwise.

1l

This month's magazine disc contains a version of
the extended analysis program (capable of
analysing circuits containing transistors, OP

amplifiers, FETs, transformers etc.), modified as
described here, together with this month's display ||
program. A number of circuit descriptor files are ||

also included. Additionally there is a text file

describing how to use the extended features.

If readers would like a listing of the extended
version of last month's program (including notes on
its use), they should send an A5 SAE to the editorial

address, with the envelope marked
"Circuit Analysis".

Il

10 REM Program Circuit Display

20 REM Version B 0.5

30 REM Author C.Attenborough

40 REM BEEBUG March 1988

50 REM Program subject to copyright

€0 :

100 ON ERROR CLOSE#0:@%=&96A:MODE7:REP
ORT:PRINT" at line ";ERL:END

110 PROCinit

120 MODE 7

130

IF (!&900 AND &FFFF)<>&2EAF THEN P

ROCofferfiles ELSE filename$=$&900:2%=0P
ENIN filename$:$&900=""

150

160
170
180
190
200
210
220
230

240
250
260
270
280

290
300
310

320
330
340
350
1000
1010

1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1E30
1160
1170
1180
S
1190
1200

1210
1220

1230
1240

lemax$,

140 table%=TRUE:nodeok%=FALSE:polar%=F
IALSE:print$=FALSE : dump$=FALSE

INPUT #2%,CFS,fi,fa,df,in%,st%,nod
steps

PROCchoosenode

IF node%=in% PROCrecpol
vDU23,1,0;0;0;0;

Cis

PRINTTAB(10,12) ;"Please wait...."
PROCreadfile

MODE3:PROCtable

IF print%=FALSE MODE 4:PROCgraphic

:print%=FALSE: dump$=FALSE

MODE7

PROCoptions

IF choice%=1 GOT0220

IF choice%=2 print%=TRUE:GO0T0220
IF choice%=3 AND st%<>1 dump$%=TRUE

:GOT0230

IF choice%=4 THEN $&900=filename$:

GOT0120

IF choice%=5 load$="KEY9 *WORDWISE

|M 2"+CF$+"[M | [":PROCreload

IF choice%=6 load$="KEY9 *WORDWISE

|IM | [":PROCreload

IF choice%=7 CLOSE#0:RUN

CLOSE#0: @%=&90A

END

DEF PROCinit

DIM F(80), result(80,2),RVIN(80),IV

IN(80),RVN(80),IVN(80),result$(2), result
min(2), resultmax (2)

F$="Freq, Hz"
ENDPROC

DEF PROCreadfile

FOR J%=1 TO steps

INPUT #Z%,F (J%)

FOR K%=1 TO nodemax%

INPUT #2%,RV:INPUT #2%,1IV

IF K%=in% RVIN (J%)=RV:IVIN (J%)=IV
IF K%=node% RVN (J%)=RV:IVN(J%)=1IV
NEXT

NEXT

FOR J%=1 TO 2

resultmax (J%)=-1E30:resultmin (J%)=

NEXT
FOR J%=1 TO steps
IF node%=in% PROCrin ELSE PROCtran

FOR K%=1 TO 2
IF result (J%,K%)>resultmax (K%) res

ultmax (K%)=result (J%, K%)

IF result (J%,K%)<resultmin(K%) res

ultmin (K%)=result (J%, K%)

NEXT
NEXT
ENDPROC

Beebug March 1988

51

1250 -

1260 DEF PROCchoosenode

1270 REPEAT

1280 CLS

1290 INPUTTAB(10,12);"What node? "node%
1300 IF node%>0 AND node%<=nodemax% nod
eok%=TRUE

1310 IF nodeok%=FALSE CLS:PRINTTAB (10,1
0) ; "No such node":PRINTTAB(10,12) ; "Press
any key":G%=GET

1320 UNTIL nodeok%=TRUE

1330 ENDPROC

1340 :

1350 DEF PROCrecpol

1360 REPEAT

1370 CLS

1380 PRINTTAB(8,12);"Rectangular or pol
ar? (R/R)"

1390 G$=GET$

1400 UNTIL G$="R" OR G$="r" OR G$="P" O
I G$=npn

1410 IF GS$="P" OR GS$="p" polar%=TRUE
1420 ENDPROC

1450 :

1440 DEF PROCtable

1450 *FX21,0

1460 IF print% VDUZ:PRINT:PRINT" Cir
cuit ":CF5:", node ":node%:PRINT ELSE VD
Ul4

1470 @%=&20205

1480 IF NOT print% VDUZ8,0,1,79,0

1490 PRINTTAB (5);F$;TAB(30);result$(1l);
TAB (60) ;result$ (2)

1500 IF NOT print% VDUZ28,0,23,19,62

1510 FOR J%=1 TO steps

1520 PRINTTAB(5);F(J%);TAB(30);result (J
%,1) ; TAB(60) ; result (J%, 2)

1530 NEXT

1540 PRINT

1550 @%=&90A

1560 IF NOT print% PRINTTAB(34)"Press a
ny key"

1570 VDU15

1580 *FX21,0

1590 IF NOT print$ G%=GET

1600 VvDU3

1610 VDU26

1620 ENDPROC

1630 :

1640 DEF PROCgraphic

1650 nograph%=TRUE

1660 FOR K%=1 TO 2

1670 IF FNconst (K%) PROCnograph ELSE PR
OCannotate:nograph%=FALSE

1680 NEXT

1690 IF nograph%=FALSE PROCaxes

1700 FOR K%=1 TO 2

1710 IF NOT FNconst (K%) PROCgraph

1720 NEXT

1730 IF dump% PROClabel

1740 IF dump%=FALSE AND nograph%=FALSE
PROCcursor

1750 IF nograph%=TRUE PROClabel

1760 IF dump% PROCgdump

1770 ENDPROC

1780 :

1790 DEF FNconst (0%)

1800 IF resultmax(Q%)-resultmin (K%)<=AB
S(0.001*resultmax (Q%)) THEN=TRUE ELSE=FA
LSE

1810 :

1820 DEF PROCnograph

1830 @%=&20205

1840 PRINTTAB(0,25+K%);result$ (K%);" co
nstant at ";resultmax (K%)

1850 @%=&90A

1860 ENDPROC

1870 :

1880 DEF PROCaxes

1890 vDU23,1,0:0;0;0;

1900 xcl%=0:xch%=1279

1910 ycl%=200:ych%=1000

1920 MOVE xcl%,ycl%:DRAW xcl%,ych%

1930 MOVE xcl$%,ycl%:DRAW xch$%,ycl%

1940 DRAW xch$%,ych%

1950 MOVE xcl%,ych%

1960 DRAW xcl%+20,ych%

1970 MOVE xcl%,0.5* (ycl%+ych%)

1980 DRAW xcl1%+20,0.5* (ycl%+ych?%)

1990 MOVE xch%,ych%

2000 DRAW xch%-20,ych%

2010 MOVE xch%,0.5%* (ycl%+ych%)

2020 DRAW xch%-20,0.5* (ycl%+ych%)

2030 dx=(xch%-xcl%)/ (steps-1)

2040 IF steps<2l PROCvertlines

2050 ENDPROC

2060 :

2070 DEF PROCvertlines

2080 FOR J%=2 TO steps

2090 MOVE (J%-1)*dx,ycl%

2100 DRAW (J%-1)*dx,ycl%+50

2110 NEXT

2120 ENDPROC

2130 :

2140 DEF PROCgraph

2150 yscale=(ych%-ycl%)/ (resultmax (K%)-
resultmin (K%))

2160 MOVE xcl%, (result (1,K%)-resultmin(
K%)) *yscaletycl%

2170 FOR J%=2 TO steps

2180 PLOT(16*K%-11) ,xcl%+(J%-1)*dx, (res
ult (J%,K%) -resultmin (K%)) *yscaletycl%

2190 NEXT

2200 ENDPROC

2210

2220 DEF PROCannotate

2230 @%=&20205

2240 PRINTTAB (0,25+K%) ;result$ (K%);" va
ries ";resultmin(K%);" to ";resultmax (K%

)

2250 @%=&90A

2260 ENDPROC

2270 :

2280 DEF PROClabel

52

Beebug March 1988

T = T T Tl > T T o s o I I e cp et Lol I S o S e e LR N P s

2290 IPst%<>1 PRINTTAB(0,28);"Fmin=";fi
{'Hz Fmax=":fa;" Hz"

2300 IF st%=2 PRINTTAB(0,29);"Linear f-
scale,steps of ";df:" Hz"

2310 IF st%=3 PRINTTAB(0,29);"Log f-sca
le,";steps;" steps"

2320 PRINTTAB(0,30):Circuit ":CFS5;:" no
de ";node%

2330 ENDPROC

2340 :

2350 DEF PROCcursor

2360 halfwidth=640/ (steps-1)

2370 PRINTTAB (0, 26) ;SPC(40)

2380 PRINTTAB(0,27);SPC(40)

2390 PRINTTAB(0,26);:"Circuit ":CF5:",no
de ";node%

2400 IF st%=2 PRINTTAB(0,27);"Linear f-
scale, steps of ";df;" Hz"

2410 IF st%=3 PRINTTAB(0,27);"Log f-sca
le, ":steps;” steps’

2420 PRINTTAB(0,28);F$

2430 PRINTTAB(0,29);result$(1l)

2440 PRINTTAB(0,30) ;result$(2)

2450 GCOL 4,0

2460 0ldx%=-10:x%=512:0%=620205

2470 REPEAT

2480 IF INKEY(-1)dx%=16 ELSE dx%=4

2490 IF INKEY(-26) AND x%>xcl%+dx% x%=x
$-dx%

2500 IF INKEY(-122) AND x%<xch% x%=x%+d
x%

2510 IF x%<>o0ldx% MOVE oldx%,ycl%:DRAW
oldx%, ych%:MOVE x%,ycl%:DRAW x%,ych%:old
x%=x%

2520 band%=INT (x%/halfwidth)

2530 index%=INT (band%+1l) DIV 2+1

2540 PRINTTAB(15,28);F (index%)

2550 PRINTTAB(15,29);result (index%,1)

2560 PRINTTAB(15,30);result (index%,2)

2570 PRINTTAB(11,31);"Press SPACE to ex
itll;

2580 UNTIL INKEY (-99)

2590 *FX15 0

2600 @%=&90A

2610 ENDPROC

2620 :

2630 DEF PROCtrans

2640 PROCdiv (RVN(J%),IVN(J%),RVIN(J%),I
VIN (J%))

2650 PROCpolar (RQ,IQ)

2660 result (J%,1)=20*L0G(result (J%,1))

2670 result$(l)="Mag. (dB)":result$(2)="
Angle (deg)"

2680 ENDPROC

2690 :

2700 DEF PROCrin

2710 IF NOT polar$% result (J%,1)=RVIN(J%
) :result (J%,2)=IVIN(J%) :result$(1)="Re 2
in ohms":result$ (2)="Im Zin ohms":ENDPRO
C

2720 PROCpolar (RVIN(J%),IVIN(J%))

2730 result$(1)="Mod Zin ohms":result$ (

2)="Ang Zin deg"

2740 ENDPROC =

2750 :

2760 DEF PROCpolar (RE, IM)

2770 result (J%,1)=SQR(RE*RE+IM*IM)

2780 result (J%,2)=FNang

2790 ENDPROC

2800 :

2810 DEF FNang

2820 IF RE=0 =90*SGN (IM)

2830 ang=DEG (ATN (IM/RE))

2840 IF RE<0 ang=(180+ang)

2850 IF ang <0 ang=ang+360

2860 =ang

28170 -

2880 DEF PROCdiv (RA, IA,RB, IB)

2890 RQ=RA*RB+IA*IB:IQ=IA*RB-IB*RA
2900 DQ=RB*RB+IB*IB

2910 RQ=RQ/DQ:IQ=IQ/DQ

2920 ENDPROC

2930 :

2940 DEF PROCoptions

2950 dump%=FALSE:print%=FALSE: REPEAT
2960 PRINTTAB(5,1)"1 See results again"
2970 PRINTTAB(5,4)"2 Print table"

2980 PRINTTAB(5,7)"3 Dump graph"

2990 PRINTTAB(5,10) "4 Choose another no
de”

3000 PRINTTAB(5,13)"5 Edit this circuit
file"

3010 PRINTTAB(5,16)"6 Create a new circ
nit file’

3020 PRINTTAB(5,19)"7 Display another ©
. file?

3030 PRINTTAB(5,22)"8 oQuit"

3040 G%=GET

3050 choice%=G%-48

3060 UNTIL choice%>0 AND choice%<9

3070 ENDPROC

3080 :

3090 DEF PROCreload

3100 OSCLI load$

3110 A%=138:X%=0:Y%=137:CALL &FFF4:END

3120 ENDPROC

3130 :

3140 DEF PROCgdump

3150 REM Your dump called here

3160 ENDPROC

3170 :

3180 DEF PROCofferfiles

3190 REPEAT

3200 CLS

3210 *CAT
3220 PRINT'"Select circuit analysis fil
e:"

3230 INPUT TAB(20)"0."filename$

3240 filename$="0."+filename$

3250 Z%=OPENIN filename$

3260 IF Z%=0 VDU7:PRINT:PRINTTAB(2);"Fi
le not found. Press any key":G%=GET
3270 UNTIL 2%<>0

3280 ENDPROC

Beebug March 1988

53

e i s

- |

= U =) s 15

/1)
| "\l
/il |

Part 8

A series for complete beginners
to machine code by Lee Calcraft

This month: Searching and look-up tables

A SIMPLE BYTE-SEARCH ROUTINE

This month we continue our discussion of the
use of the CMP instruction with a look at the
problem of searching. We begin with a very
simple byte-search routine. Its function is to
check a list of up to 255 elements to see if a
particular byte is present. We will assume that
the list is held at &A00 onwards, and that its
elements are in no particular order. Essentially
the search routine will need to compare the
target value with each of the elements in turn
until either a match is found, or until the list is
exhausted.

The program in listing 1 achieves this. If you
type it in and run it, you will be asked for a
target value to be searched, and you should
supply any integer between 0 and 255. The
machine code search routine will then be called,
and the result displayed. For the purposes of
the example, the table of values examined by
the program is created with a short Basic
routine at line 300. This places a set of data of
value between 0 and 127 in the table. Thus if
you search for any integer in this range you
should get a match, and not otherwise.

As we look through the listing, you may find it
useful to check through the accompanying flow
chart. The main routine begins at line 130
where the Y register is loaded with the number
of items in the table, and the accumulator is
loaded with with the target value input by the
user. In line 160 the target value is compared
with the first value in the table (CMP
table-1,Y).We have used indexed addressing
for the CMP instruction so as to be able to point
to each element in the table in turn. You will
also notice that we have used table-1 as the base
address rather than table. This is because we are
decrementing the Y register after each failed
comparison, and checking that we have not

54

MR i gl o & "SRRG Pl BB [INUERE e ETR g 7 ety R e T e

table value
with target.

Has index
reached Zero?,

Item not
present

Flow chart for listing 1

reached the end of the list by testing Y for zero
(line 220). Thus the last value of Y for which a
comparison test is made is 1. By using a base
address of table-1 we ensure that the final
element of the table at address table is checked.

There are two exit conditions: if the number of
items in the table is exhausted, or if a match is
found. In the former case we return with zero
in the accumulator (line 210), in the latter the
accumulator is loaded with &FF (line 240). The
Basic program has then to check the contents of
the accumulator on exit in order to display the
result of the search. This is accomplished in line
380:
Z=USR (§900) AND &FF

The USR function is an alternative way of
calling a machine code routine (briefly
introduced in part 5 of the series), and unlike
the CALL statement, it returns a value. This
value is a four-byte word made up of the
contents of the accumulator, X and Y registers
and status register at the time of exif. To obtain
the contents of the accumulator (the lowest byte
of the value returned by USR), we AND this
four-byte word with &FF. The result is then
displayed in line 390.

STRING SEARCH

The second program implements a string
search. Here the user supplies a target string

Beebug March 1988

Listing 1

10 REM Byte Search

20 REM Author Lee Calcraft
30 REM Version B 0.5

50 target=&70:total=&71:table=&A00
60 MODEOQ
70 FOR pass=0 TO 1
80 P%=&900
90 [
100 OPT pass*3
110\ **SIMPLE SEARCH**
120 .main
130 LDY total
140 LDA target
150 .loop \ Byte compare loop
160 CMP table-1,Y\ Compare byte
170 BEQ match \ They match
180 DEY
190 BNE loop
200 .nomatch
210 LDA #0
220 BEQ exit
230 .match
240 LDA #&FF
250 .exit
260 RTS
270 1
280 NEXT
290 :
300 FOR A=0 TO 255
310 table?A=A/2
320 NEXT
330 :
340 2total=255
350 REPEAT
360 INPUT"Search for value "value
370 ?target=value
380 z=USR(&900) AND &FF
390 IF z>0 PRINT"Item present" ELSE PR
INT"Item not present":VDU7
400 UNTIL FALSE

\ Check for table end

\ Indicate failure

\ Indicate success

value zero, immediately following the carriage
return associated witlZ the last word in the
table. Lines 440 to 500 of the program are used
to set up the table. For our example, I have used
an alphabetical sequence, although this
particular search makes no assumption about
the order of the words supplied.

If you run the program, you may enter any
word at the prompt, and you will be informed
whether it is present in the list or not. As you
will observe, the search is not case sensitive.
This is achieved by operating on the user input
characters with AND #&DF. This is achieved in
line 200 of the program, and forces each
character of the user-supplied string into upper
case. The technique assumes that only
alphabetic characters will be input. You can see
how it works if you type the following three
lines:

PRINT ASC("A")

PRINT ASC("a")

PRINT ASC("a") AND &DF
You will see that the first and last results are the
same.

which is matched against a list of words. Again
the program indicates whether a match was or
was not found by loading the accumulator with
&FF or 0 respectively. Because we are matching
complete words, rather than single bytes, the
routine is a little more complex than the search
discussed above. But the approach is essentially
similar in that it uses the LDA and CMP
instructions to repeatedly compare single bytes.

In the present search program we will assume
that the table of words uses the carriage return
character (&0D) as an end of word marker, and
that the end of the table is indicated by a byte of

Beebug March 1988

Listing 2
10 REM String Search
20 REM Author Lee Calcraft
30 REM Version B 1.0A
40 :
50 word=&B00:table=&A00
60 MODEOQ
70 FOR pass=0 TO 1
80 P%=&900
90 [
100 OPT pass*3
1IN **STRING SEARCH**
120 .main
130 LDY #&FF
140 .nextword \ New word start
150 LDX #&FF
160 .letter \ New letter start
170 INX
180 INY
190 LDA word, X
200 AND #&DF
210 CMP table,Y
220 BNE newword
230 CcMP #13
240 BNE letter
250 LDA #&FF \ Indicate success
260 JMP end
210
280 .newword

Force upper case
Make comparison
No match

Whole word match?

s

Find start of

=

55

290 DEY

300 .newloop

310 INY

320 LDA table,Y

330 CMP #13

340 BNE newloop

350 LDA table+l,Y \ Check ahead for

360 BNE nextword \ Table end marker

370 LDA #0 \ Table end so

380 .end \ search fails

390 RIS

400]

410 NEXT

420 :

430 z=0

440 REPEAT

450 READ Z$

460 PRINTZS

470 $(table+z)=2%

480 Q=LEN(Z$)+1:Z=2+Q

490 UNTIL Q=1

500 Z?(table-1)=0

S10

520 REPEAT

530 INPUT"Word to be searched "word$

540 S$word=word$

550 Z=USR(&900) AND &FF

560 IF Z>0 PRINT"Item present” ELSE PR
INT"Item not present":VDU7

570 UNTIL FALSE

580 ¢

590 DATA POSIT,POSITION,POSITIVE,POSIT
RON, POSNET, POSOLOGY, POSS, POSSE, POSSESS

600 DATA POSSET,POSSIBLE,POSSIE,POSSUM
,POST, POSTAGE, POSTAL, POSTEEN, POSTER,

\ next word

HOW THE PROGRAM WORKS

As with the last program, the table of data is
held from &A00 onwards, and we have again
restricted the size of the table to a maximum of
255 characters. This keeps the coding a little
simpler than it would otherwise be. Again we
have used Y as an index to the table, and this
time we also need an index to the current test
character in the target word, since we must test
for the presence of the target word a single
character at a time.

The program begins by loading the two index
registers X and Y with &FF. We have not
loaded them with 0, as one might have
expected, because it is convenient to have the
INX and INY instructions which move to the
next character, at the start of the main loop.

56

Thus by loading them with &FF and
incrementing them by one, we ensure that both
start with the value zero. Line 190 then loads in
the first character of the target string, which is
forced into upper case. The result is
immediately compared to the first character in
the table. If the two match, a test is carried out
on one of the two matching characters to see if
it is a word terminator (CMP #13 in line 230). If
so, it means that two complete words have
matched (after successive character matches),
and the program ends. Otherwise it proceeds to
test the next pair of characters.

If on the other hand the two characters do not
match, the program branches to newword at line
280. The purpose of this routine is to move
along the table to the start of the next word, so
that the comparison routine can be called again.
When this check is being made, a special look
ahead test must be performed to check for the
end of table marker. This is performed in line
350. If the end of the table has been reached, the
program terminates with zero in the
accumulator, indicating a failed search.

In order to make this program work with a
search table larger than 255 characters, we
would need to use indirect indexed addressing
(introduced in part 4 of the series). In this case,
the compare instruction would take the form:
CMP (base),Y

The location base would initially contain the
address of the start of the table, but each time Y
reached the value zero, after the INY
instruction, the top byte of the 16-bit address
stored at base +1 would be incremented by 1.
This would mean that the routine could be used
with tables as large as the 6502's 64K memory
map will allow.

LOOK-UP TABLES

So far in our discussion of searching
techniques, we have been concerned only with
discovering whether or not a target byte or
word is present in a data table. In many
applications however, the result of a tabular
search will be a value or address. In this case
the table of data is referred to as a look-up
table, for obvious reasons. Many examples
spring to mind. A telephone book program
might return with a telephone number on
finding a surname match in its table, or more
technically, a SIN table would return with the
SIN of the target value. Or to take a final
example, every time that you issue a star
command at the computer, a very similar

Beebug March 1988

B el O e) e, P e e e G i~ e oy R e Rl S g R B e e s T, S

matching
process
takes place.
Here the
look-up
value which
the search
routine re-
turns will be
the address
of the rou-
tine corres-
ponding to
the star
command
issued.

But before discussing this kind of look-up, I
want to mention a very smart look-up
technique which can be used in certain circum-
stances, and which avoids the necessity for
searching altogether. Essentially, it uses the
address offset of each item in the table as an
index to the table's contents. Thus for example,
if we were to create a look-up table for SIN
values from 0 to 180 degrees, we could use the
following in Basic:

FOR A=0 TO 180

A?base=250*SIN(A*PI/180)

NEXT
This will place an integer corresponding to
250*SIN(A) at location base+A (where A is in
degrees). To find the scaled SIN of N degrees, a
piece of machine code would only need to
perform:

LDY N

LDA base,Y
This works without the need for any searching
because we have arranged the table so that the
scaled value of SIN(10) is in location base+10
and so on.

Of course, where data cannot be indexed in this
very convenient way, we are forced to perform
a search before the data corresponding to the
target item can be looked-up. In such cases
there are usually two ways of storing the data
to be returned. It can either be embedded in the
search table, adjacent to the item to which it
refers, or it can be kept in a separate table
linked to the first. The advantage of the first
method is that each search item is held next to
the look-up item, but the disadvantage is that
the search routine must continually skip
around the look-up data at the end of each
search item. In the following we will add a

Beebug March 1988

number of lines to the string search program
above to allow it to perform a look-up function
similar to that found in ROM software for
interpreting star commands. We will use
separate command and address tables.

To achieve this, just add the lines given in
listing 3 to those of listing 2. When you run the
program you will now see that each of the
words in the table, which can be thought of as a
command table, is displayed with an index
number. Index numbers are given as even
numbers only, since they will be used to index
a two-byte address, as we shall see in a
moment. The result of each positive search now
includes a display of the index number for the
target word. If we were using this code to
interpret star commands, the table would be
replaced by a list of command names, and the
index returned whenever a match was achieved
would be used to jump (using the JMP
instruction) to the corresponding piece of code.

Listing 3
35 REM With look-up index
50 word=&B00:table=&A00:count=&70
125 LDA #0:STA count
345 INC count:INC count
430 Z=0:N=0
460 PRINT N SPC8 2$
465 N=N+2
565 IF Z>0 PRINT"Index=";?count

To make this work you would need to set up a
jump table somewhere in memory, say at
address base, and fill it with 16-bit addresses for
the code for each star command. Then the
following would do the trick:

382BEQ quit

383LDY count

384LDA base,y:STA &80

385LDA base+l,y:STA &81

386JMP (&80)

388.quit
This would execute an RTS (line 390) if no
match were found, otherwise &80 and &81 are
loaded with the look-up address, and an
indirect jump is performed. This has the
following effect: "Jump to the address made up
from the two bytes stored at the following
adjacent locations: &80 and &81".

Next month we will be returning to some pure

arithmetic, and will take a look at routines for
performing multiplication and division. B

57

-t [s

[E34

(£)

In this series of workshops Sheridan Williams explains how to make the
most of the effects that your printer can produce. Necessarily the first
article in the series is rather elementary, however future articles will
cover FX3 and FX5, DIP switch settings, in-built printer buffers,
configuration at power-on and more.

There are, of course, many
dozens of popular printers,
all quite easy to connect to
the BBC micro, Master or
Compact. Fortunately for
once, everything shown in
this series will work
equally well on all Acorn'’s
micros, including the
Archimedes.

Epson printers, and the so-
called Epson-compatible
printers, are by far the most
common category of
printer. It therefore makes
sense to concentrate on this
range. However, for those
with printers that are not
Epson-compatible, this
orkshop will show how
to control these too. For
those with daisywheel
printers, the only effects
that you can get are:
underlining, backspace
(hence overprinting), Tabs,
number of characters per
inch, and lines per inch,
and on some printers -
reverse paper feed. You
cannot change the style of
the characters (without
changing the daisy wheel),
nor are sophisticated
graphics available. This
series will, however, show
how to obtain those effects
that are relevant to
daisywheel printers.

CONTROLLING THE
PRINTER WITH BASIC
BBC Basic has three VDU
commands that are of
direct interest to us for
printer control:

VDUT1 - sends the next
character to the printer only.
VDU2 - enables the printer.
VDUS3 - disables the printer.

After issuing a VDU?2 instruction all output
normally sent to the screen, will be directed to
the printer as well (in a later article we will
cover how to send output solely to the printer).
Try this example:

10 FOR i=1 TO 10

20 IF i MOD 2=0 THEN VDU2

30 PRINT 4:;% ";

40 VDU3

50 NEXT
This program will print the numbers 1 to 10 on
the screen, but only the even numbers will be
sent to the printer. Notice how (in line 40) a
VDUS3 is executed even when in some cases a
VDU?2 has not previously been issued. This
does not matter at all.

GLOSSARY
ASCII is the American Standard Code for Information
Interchange. The most popular code for representing
characters on microcomputers. See this month's First
Course for more information on the subject.

In order to implement all the special effects
offered by the printer we need to understand
the use of VDU1. You should note however,
that VDU1 will not work until a VDU2 has
been issued previously. Once VDU2 has been
given, the printer stays active and all
subsequent PRINT and VDU statements send
their output to both screen and printer. If you
wish characters to be sent only to the printer,
VDUT1 is what you want. Note however, that
VDUL1 is different, and needs to be given
before each character that is sent to the printer.

VDUT simply sends the next character directly
to the printer without displaying it on the
screen, and we need this for issuing the special
characters 0 to 31 inclusive, whose effect on the
screen might be disastrous. For example,
character 12 would clear the screen if sent with
PRINT CHR$12 or VDU 12, both of which
have the same effect. To restrict its effect to the
printer (and not the screen), we issue VDU1,12
which sends character 12 to the printer only
where it does the next best thing to clearing the
screen and activates a form feed. Make sure
your printer is switched on, is on-line, and has

Beebug March 1988

paper in it. Now try:

VDU2

VDU1,12

VvDU3
Alternatively, this can all be combined into one
statement:

vbu2,1,12,3
Note how VDU commands may be strung
together. After issuing this you will see a sheet
of paper turned up on the printer.

Certain codes like 12 - FF (form feed), 13
- CR (carriage return), 10 - LF (line feed), are
universal, and will hence have the same effect
on all printers. Others like 15 (which in the
table of ASCII codes is known as SI), are
printer dependent. On Epson compatibles,
character 15 switches the printer into
condensed c{)rinting mode (17 characters per
inch instead of the normal 10 ch/in); on the
NEC PC-8023B-C printer you will need to send
two characters to achieve the same result,
namely 27 and 69.

From now on all printer codes will be given
using VDU commands, and it will be assumed
that a VDU2 has been given at some earlier
point in the program. For example, to print in
condensed mode on an Epson compatible
printer you must issue VDU1,15, on the NEC
PC-8023B-C you would issue VDU1,27,1,69.
Notice how each printer code must be prefixed
with 1. Can you see the difference between
VDU1,27,1,69 and VDU1,27,69. If not try the
latter and you will see that the letter E appears
on the screen. This is because 69 is the ASCII
code for the letter E, and as VDUI sends one
character to the printer only, when you omit
the 1 the 'E' gets sent to the screen as well.

Before continuing, it is essential that you can
read and interpret the instructions given in the
manual. So turn to the page on Condensed or
Compressed printing, or Changing the
font/character size. You must remember that
the manuals are written for users of machines
other than the Acorn range, and if they said
"For condensed print use VDU1,15" this would
be of no use to non-Acorn users. To quote from
the TAXAN KP-810 manual:

SI

Condensed Mode Setting

Code: <OF>H <15>10

BASIC Syntax: CHR$(&HF); CHR$(15);
This is followed by a list of conditions which
should be read, as it is here that the differences
between printers often lie. For example, on
some printers the chosen effect is cancelled
when a new line is turned up, on others it

Beebug March 1988

| 20 DC4 NK SN

remains in force. Most manuals then go on and
§ive various examples, which in most cases are

ar from clear, simply because they assume
non-BBC Basic.

The most important information to extract
from the headings in the manual is the
characters to send to obtain a particular effect.
You might as well use the base 10 values, as
there is nothing to be gained from using the
hexadecimal values prefixed of suffixed with
an H. These decimal numbers may appear on
their own, as in <15> or as Basic syntax as in
CHRS$(15); in either case it is the number 15
that is required.

Armed with the knowledge that we can send
the characters 0 to 127 to the printer, and that
characters 32-127 produce the ordinary
Frintable characters, we are apparently only
eft with characters 0-31 to achieve all the
possible special effects. As there are many
more than 32 special effects, how are these
obtained? The answer is by means of Escape
sequences.

Character 27 is the standard ASCII code for the
Escape character. This is the character adopted
by printer manufacturers to signal that there is
a special sequence about to follow. For
example, to produce underlined text the
printer requires the sequence 27,45,1. To cancel
this, the printer requires the sequence 27,45,0.
Using the VDUI statement this equates as
follows:

27,45,1 becomes VDU1,27,1,45,1,1

27,45,0 becomes VDU1,27,1,45,1,0
Be careful: it is very easy to forget to prefix the
final 1 with a 1. %ry the following on your
printer:

10 vDU2 20 PRINT"Ordinary, ";

30 vbul,27,1,45,1,1:PRINT"Underlined";

40 vDU1,27,1,45,1,0:PRINT" Normal"

50 vDU3

Figure 1 is a table of the ASCII codes from 0 to
31 together with the standard abbreviations
used to indicate them in some printer manuals.

s G (IS 0 e TR R M
0 NUL SH SX EX ET EQ AK BEL BS HT
10 LF VI FF -CR /80,81 DB, DCl /DC2 DC3
EB CAN EM 5B ESC --> <—

Fig. 1

(i e

In part two we will complete the single
character codes, and cover the most common
requirements of printers, namely underlining,
enlarged, bold, italics, £ and characters. B

59

BEEBUG

4

2l
By Mark K. Sealey

This month in Beebug Education I want to look
at some of the ways that the Acorn family of
computers has been used in language
development with ptapils of all ages. The aim is
to give teachers already familiar with other uses
of the micro, such as maths and science, some
pointers as to the way they might expand these,
and to assess the likelihood of success in the
light of accepted learning theory.

Suites or individual programs in this area fall
into one or more of four categories. Each of
these will be discussed, some suggested uses
outlined, and a new example of the most
worthwhile will be briefly examined.

Firstly, word processing is by now such a
common use of the BBC micro that attention is
readily drawn to the more specialist
applications. These include both the
simplification of editing techniques, for
instance, to cater for Special Needs, as well as
those packages (usually ROMs) that reproduce
a non-standard character set such as Hebrew,
Russian or one with a high concentration of
scientific symbols (see also the review of Word
Power in BEEBUG Vol.6 No.8).

Product
Supplier

Vue-Scientific
Intelligent Machines Ltd.
66 Browning Road,
Bushwood Estate,
London E11 3AR.

£37.50 (Draft Quality)
£49.95 (Letter Quality)

Vue-Scientific is a well produced, user-friendly
text processing ROM that will reproduce Greek,
scientific and mathematical characters on the
screen in either mode 0 or 4. It also allows
normal script (like this) to appear at the same
time. Once you have edited, formatted and
previewed your text, you can print it out. This
will either be in draft mode - which is perfectly
good, as in the illustration below - or near letter
quality, but you must have an Epson (or
compatible) printer.

Prices

60

I found the variety of normal word-processing
commands available quite adequate. Wordwise
users will feel at home too. Markers, Find and
Replace, word-counts etc. are all possible, using
the function keys. Superscript and subscript are
easy to obtain as well. This good package (with
equally good documentation) should be a boon
to anyone in a secondary school, or a college or
university maths or science department, who
needs to produce documents, essays or lecture
notes using these symbols.

The chemical equations are composed as follows:

CH_ + 50
8 2

+
CH4 202

+ +
3C02 4H20
> + 2H
CUZ 2 20

The Navier-Stokes difflréntial equations are:

2 2
p(.-2+u35+v_33]-_92+ (3_5+Bix]+x
M dy2? dy?z

Product

'Prompt' and 'Writer'
Supplier

Micro Electronics Support Unit
Unit 6,

Advanced Technology Building,
Sir William Lyons Road,
Science Park,

University of Warwick,
Coventry CV4 7EZ.

£3.00 (inc VAT) for one pack
containing both.

Price

At that price, how could you fail? MESU's best
efforts have gone into upgrading these two
excellent starter word-processors, Prompt being
just that little bit easier to use than Writer. The
use of menus and colour is admirable, the
display a model of clarity and the
documentation outstanding. True, these are
aimed at Special Needs, and those involved in
the development of the package are experts in
that field, yet there is a versatility and flexibility
that should make this suite a standard for
children in infant, special schools and adult
literacy classes. It includes utilities, support
materials (such as A4 and A3 Concept
Keyboard overlays and support of Votrax and
Namal Speech input devices) as well as useful
suggestions in the manual.

Secondly, there are those programs designed to
sponsor some activity where language is
important. One of the most influential, and still
most popular classics, is Podd (from A.SK. -
take a look if you've not already seen it). Its
success lies in the educational theory behind it.

Beebug March 1988

N e O el T R R e Ml A L S et M e =

Instead of expecting children to respond in one
way only to a given stimulus or cue, it
encourages child-centred exploration,

now surpassed psychology of stimulus-
response. They frequently fail to distinguish at
all between spoken and written language,

recognizing that there are as
many ways of reacting to a
situation as there are children!
When all is said and done, the
major pedagogical texts agree
that language is concerned with
meaning. Chopping it up into
artificial components cannot
work: it needs to be used. Such
open-endedness is also the
strength of the latest offering
from Topologika, "Giant Killer".

Giant Killer
Topologika
P.O. Box 39,
Stilton,

Product
Supplier

AMATHS adventure
Tor ages 1016 sdult

which is a distinction that all
specialists assert to be vital.

Lastly there are programs written
to allow practice in (mostly)
European modern languages.
Unless they can claim to surround
the user with a consistent "mirco-
world" or predictable
environment of Spanish, German
or whatever, there is the danger
that there will be continual
reference back to English.

I stand by the contention that
only when the user is fully in
control and able to determine
where a program is going, can

Peterborough PE7 3RL.
£16 (B, B+ and Master)
£18 (Compact) excl. VAT

This is the very best of its kind. Although most
of the activities are mathematical ones, it is the
co-operation and discussion by a group of
children that actively enhances the quality of
work being done. Here, a superior and very
well thought out adventure (loosely based on
the infamous beanstalk) encourages progress
through all sorts of puzzling and worthwhile
locations and situations. Maps are particularly
important, and there are exemplary
worksheets, children's and teachers' notes to go
with it. If you haven't used this type of program
with pupils before, this is as good a place to
start as any.

Many teachers and educational
users have long believed that
almost any activity that promotes
focused discussion will lead to
enhanced learning, since the
accommodation and assimilation
of new ideas can be accelerated
by articulating them. For this
reason, you may judge how
much the software that you use
actually promotes discussion on
and off the computer.

Price

Thirdly there are those programs
that aim to teach a particular
aspect of language such as

spelling or grammar. These are the least

satisfactory in my opinion. This is because they

often rely on memory for their success, or
employ methods of reinforcement based on the

Beebug March 1988

using the computer be superior to not using it.
I'll end on a positive note with a superb
example of the second activity identified
earlier. Let your imagination go; fulfill your
wildest dreams; spend time off the machine
planning. Manage and run a pop-group!

Product Tycoon

Supplier Cambridge Micro Software
The Edinburgh Building,
Shaftsbury Road,
Cambridge CB2 3RU.

Price £27.50 (excl. VAT) for B, B+ or

Master with double disc drive

This too, is exemplary. The game is of the
adventure type - with a healthy mix of simu-
lation. You choose a personality
for yourself and then a job; guide
the groug you have chosen
through the hurly-burly of the
entertainment world. If you are
lucky, you'll meet and use lots of
ideas and different registers of
vocabulary on the way. The aims
of the program are quite clearly
set out in the front of the
attractive notes that go with these
discs. The subject-matter will be
appealing to many pupils of 14
and upwards, at whom the
package is aimed, and because
that real environment in which
things behave as you would
expect is achieved from the outset, taking part
with all the attendant decisions is pleasurable.
There is no drilling, no wrong guesses and no
expected answers. As a result, it works. B

61

INSTANT LISTING OF FUNCTIONS AND PROCEDURES (continued from page 10)

2050 LDA line:SBC tablelo, X
2060 TAY:LDA line+l:SBC tablehi,X
2070 BCC buffer:STA line+l:STY line
2080 INC result:BNE con2

2090 .buffer

2100 STX temp:LDA result

2110 ORA #&30

2120 TAY:LDX #&00:LDA #&8A
2130 JSR osbyte:LDX temp

2140 DEX:BPL conl:RTS

2150, ¢

2160 .adjustpointer

2170 LDA pointer:CLC

2180 ADC length:STA pointer
2190 BCC checkend:INC pointer+l
2200 .checkend

2210 LDY #&01:LDA (pointer),Y
2220 CMP #&FF:RTS

22301%

2240 .checkfortoken

2250 LDY #&03:LDA (pointer),Y
2260 STA length

2276 .loop

2280 INY:LDA (pointer),Y

2290 CMP #ASC" ":BEQ loop

2300 CMP #&DD:RTS

2310 °®

2320 .tablelo

2330 EQUD &E8640A01

2340 EQUB &10

2350 .tablehi

2360 EQUD &03000000

2370 EQUB &27

2380 1 -

2390 NEXT .

2400 ENDPROC

2410 :

2420 DEF PROCsavecode

2430 PRINT"Save code ? (Y/N)"

2440 IF FNyn THEN OSCLI"SAVE NEWLIST 9
00 "+STR$~P%

2450 CALL &900

2460 ENDPROC

2470 ¢

2480 DEF PROCcheckcode

2490 T%=0

2500 FOR N%=&900 TO P%-1

2510 T%=T%+?N%:NEXT

2520 IF T%<>&AB53 PRINT"Checksum Error.
...Re-check listing":END

2530 ENDPROC

2540 ¢

2550 DEF FNyn

2560 *FX21,0

2570 REPEAT:a$=GET$

2580 UNTIL INSTR("YyNn",a$)

2590 IFa$="N"ORa$="n" THEN=FALSE

2600 =TRUE

‘A COCKTAIL OF 3D PROCEDURES (continued from page 18)

300 PROCmove (150,160,0) :FOR I=0 TO 2*P
I+0.4 STEP 0.4:PROCdraw (150,160*C0OS(I),1
60*SIN(I)) :NEXT

310 REM UMBRELLA

320 GCOLO,2:vDU19,2,5,0,0,0:PROCmove (-
100,0,0) :PROCdraw (500,250, 0) : FORI=0TO2*P
I STEP 0.4:PROCmove (500,250, 0) : PROCdraw (
300,200+200*COS (I),200*SIN(I)) :NEXT

330 END

340 :

1000 DEF PROCinitrotation(X,Y,Z)

1010 LOCALa,b,c

1020 a=RADZ:p=COS (a) :q=SIN(a) :r=-q:s=p
1030 b=RADY:t=COS (b) :u=SIN(b) :v=—u:w=t
1040 c=RADX:k=COS (c) :m=SIN(c) :n=-m:o=k
1050 ENDPROC

1060 :

1070 DEF PROCrotate

1080 LOCALxs,ys

1090 xs=x

1100 x=(xs*p)+(y*r) :y=(xs*q)+(y*s)
1110 xs=x

1120 x=(xs*t)+(z*v) :z=(xs*u)+ (z*w)
1130 ys=y

1140 y=(ys*k)+(z*n) :z=(ys*m)+(z*o)

1150 PROCperspective (S)

1160 x=x+640:y=y+512

1170 ENDPROC

1180 :

1190 DEF PROCperspective (S)

1200 z=z+1000

1210 x=(S*x)/z

1220 y=(S*y)/z

1230 ENDPROC

1240 :

1250 DEF PROCmove (x,y,z)

1260 PROCrotate:MOVEx,y:ENDPROC

1290 %

1280 DEF PROCdraw(x,y,z)

1290 PROCrotate:DRAWx,y:ENDPROC

1300 :

2000 IF ERR=17 END ELSE REPORT:PRINT" a
t line ";ERL

2010 IF ERR=18 PRINT'"Probably in PROCp
erspective, if all else fails remove the
call to this procedure at line 1150."
2020 END

a3

62

Beebug March 1988

B e S U e e e e S S S S O S e e B e T T

[ing System

e-YE [fis %

-'———_——‘———'————

nﬁvw
) 4L «JJ)

The game has been split into two separate
programs so that it will work on the model B as
well as on the Master. Unfortunately the listing
still needs to be rather compact, so try not to
insert too many spaces when typing it in. Type
in the two listings and save them seperately to
tape or disc. Be sure to call the second program
PAT2' so that it will be chained correctly by the
first. When both listings have been entered and
saved, run the first program. If PAGE is above
&E00 you will have to wait while the entire
program is moved down automatically to
&E00. The cards will then be shuffled ready to
start.

Initially the cards are laid out in seven columns,
the number of cards in each column increasing
from one to seven. Only the first card in each
column is exposed, the others are laid face
down. The exposed cards are laid on the first
'face down' card in the row above.

The ultimate object of the game is to assemble
four stacks, one for each suit, with all the cards
in order from the Ace upwards. Each stack
must therefore be started by putting out any
exposed Ace. Subsequent cards of the same
suit, in ascending order, are put out as they
come to the bottom of the columns. To expose
the hidden cards, cards may be moved from
one column to another, provided that they are
in decending order, with red cards on black,
and black on red. Groups of cards, in black-red-
black sequence and in decending order, can be
moved in blocks from one column to another.

When no further moves can be made, the deck

of 24 remaining cards may be used. The deck is
placed face down on the table. Three cards are

Beebug March 1988

turned over at a time, the third being exposed.
If this card can be put out, either to the stacks or
to the columns, this should be done. Rules of
sequence and colour still apply. Once the
exposed card on the pack has been removed,
the card that was underneath it and now
exposed may be used. If this card cannot be
used, another three cards may be turned over
and the third card exposed in the normal
manner. When the deck has been turned
completely, the bottom card is put on the top of
the deck and the process repeated until no
further moves can be made in three cycles of
the deck.

elect mo:
8 }or dec:eturn end

Colum(lto?))s for deck.

The rules may seem a little daunting when
written down but, as ever, the easiest way of
becoming familiar with the game is to play
it. All moves are checked for validity, aces are
automatically sent to stacks, stacks are removed
from the table when the King is reached, and
the computer will detect when it is not possible
to finish the game.

The cards are easily moved around the table
using single key presses in most cases. The
computer will ask you the column from which
cards are to be moved, the number of cards to
be moved, and the destination column. You
will also be given the option of shuffling the
pack and using the exposed card. Everything
else is completely automated.

This is a good old game of Patience, very well
implemented on the micro, and you are sure to
be impressed at just how often you go and play
it. Why, next time you might well win.

63

=

Listing 1
10 REM Program Patience Loader
20 REM Version B1.09
30 REM Author P.B. Coaker
40 REM BEEBUG March 1988
50 REM Program subject to copyright
6l ¢
100 PROCchar
110 PROCassemble
120 CHAIN"pPAT2"
130 END
140 :
1000 DEFPROCassemble:FORI%$=0TO2 STEP2:P
%=&A00
1010 [OPTI%
1020 PHA:LDA#10:LDX#&70:LDY#0:JSR&FFF1
1030 .start:PLA:BNE rotate:JMP print
1040 .rotate:PHA:LDY#0
1050 .loopl:LDX#8:LDA#0
1060 .loop2:ASL A:CLC:ASL&70,X:BCC loop
3:ADC#0
1070 .loop3:DEX:BNE loop2:STA&79,Y:INY:
CPY #8:BNE loopl:LDX#0
1080 .loop4:LDA&79,X:STA&71,X:INX:CPX#8
:BNE loop4:PLA:SEC:SBC #1:PHA:JMP start
1090 .print:LDA #23:JSR &FFEE:LDA #254:
JSR &FFEE:LDX#0
1100 .repeat:LDA &71,X:JSR &FFEE:INX:CP
X #8:BNE repeat:LDA #254:JSR &FFEE:RTS
1110]
1120 NEXT:ENDPROC
1130 DEFPROCchar:VDU23,230,204,204,51,5
1,204,204,51,51:vDU23,231,8,28,62,127, 62
,28,8,0:VDU23,232,54,127,127,127,62,28,8
,0:VDU23,233,8,28,28,107,127,107,8,28:VD
U23,234,8,28,62,127,127,127,28,62
1140 vDu23,235,1,38,3,1,7,15,15, 31 :wD0U23
,236,0,128,128,192,192,224,224,240:VDU23
,231,31,15,18,1,1,3,3,1:VDU23,218,740,72
4,224,192, 192 ,1°8,128,0
1150 VvDU23,239,24,124,126,255,255,255,2
h5,255:VDU23,240,48,124, 752,264,254, 2514,
254,254:yDU23 241,255,1271,1717,63,31,15,17
,3:VDU23, 242, 254,252,252, 248, 240,224,192
,128
1160 VDUZ3,743,3,7,15,15,15,17,59 125:VD
U23,244,178,192 274,274,274, 192,184 124;
ypu23,245,255,255,255,125,57,1,3,7:Vbu23
,246,254,254,254,124,56,0,128,192
1170 vbu23 2471,1,3,1,15,15,131 31,63V
23,248,0,128,192,224,224,240,240,248:VDU
23,249,63,63,31,31,13,1, 3,7:VvbU23 250,24
8,248,240,240,96,0,128,192
1180 ENDPROC

* * % * %

Listing 2
10 REM Program Patience
20 REM Version B1.05
30 REM Author P.B. Coaker
40 REM BEEBUG March 1988
50 REM Program subject to copyright
6l ¢

100 MODE 7:PROCoff

110 IF PAGE>&E00 GOTO 1980

120 ON ERROR MODE 7:REPORT:PRINT " at
line ";ERL:END

130 DIM P 52:DIM CL 164:DIM S 4:DIM CN

8:DIM L 8:DIM D 24:SH=FALSE

140 REPEAT

150 A$="A23456789TJQK" :B$="0123456789"
:ES=STRINGS (40, "*") :ES="":G%=0:NN%=21:U=
FALSE

160 FORI%=1 TO 52:P?I%=I1%:NEXT:PROCshu
ffle

170 MODEL:PROCoff:PROCtable:PROClayout

180 FORC%=1TO7:PROCace (C%) :NEXT

190 REPEAT:PROCselect:IF F%=9 OR (M3%=0
ANDF%>0) GOT0230

200 IFF%=0 PROCover:GOT0230

210 PROCmove

220 IFNN%=0 U=TRUE:PROCauto:GOT0230

230 UNTIL F%=90RNO%=52

240 IFNO%=52 ES$=" Well done! You moved

out all the cards "

250 MODE7:PRINTTAB ((40-LENES)/2,1) ;ES$:
FORI%=1TO2:PRINTTAB (14, 2+1%) ;CHR$141; "RE
SULTS. " : NEXT

260 PRINTTAB(6,6);"Cards still in deck

:";FNp (ND%+CN?8) ;TAB (6, 7) ; 'Cards put to

stacks :';FNp (NO%);TAB(9,8);"Stacks com
pleted :";FNp(NB%)

270 PRINTTAB(1,12);"Do you want anothe
r game? "::UNTIL FNno

280 CLS

290 END

300 :

1000 DEFPROCtable:VDU28,0,31,39,30:VDU2
4,0;70;1279;1023; :vDU19,2,2,0,0,0:GCOLO,
130:CLG:CLS:GCOLO, 0:VDU5:PROCoff:FOR I%=
1 TO 1:MOVE125*1%-71,1017:PRINTSTRS (15%) :
NEXT:MOVE1083, 361 : PRINT"Deck.":GCOL0,2:V
DU4 : ENDPROC

1010 DEFPROCcard (C%,R%,V%) :IF C%>0 AND

%<8 AND R%<1 ENDPROC

1020 IFC%=0 X%=1155+125%* (R%>2)ELSE IF C
%=8 X%=1030:Y%=85 ELSE X%=125*C%-110

1030 IFC%=0 Y%=539+(R%-1)MOD2*227 ELSE
IF C%=8 Y%=85ELSE Y%=812-50*R%

1040 IFV%>128 V%=V%-256

1050 MOVEX%-5,Y%-5:DRAWX%-5, Y%+217:PLOT
85,X%4115,Y%+217:DRAWXS+115,¥%-5:PLOTES,
X%-5,Y%-5:1FV%=0 THENENDPROC

1060 GCOLO,3:MOVE X%,Y%:DRAWX%,Y%+212:P
LOT85,X%+110,Y%+212 :DRAWX%+110, Y$:PLOT85

64

Beebug March 1988

R, . The A T T L W e S TP SR S T L O R D L e M) it BT

,X%,Y%:IFV%<0 THENPROCpattern:ENDPROC

1070 GCOL 0,-((V%-1)DIV13<=1)

1080 W%=V&MOD13:I1FW%=0 W%=13

1090 VDU5:PROCoff

1100 t=(V%-1)DIV13:MOVEX$+10,Y%+208:PRI
NTMIDS (A$, W%, 1) :MOVEX%+76, Y$+208 : PRINTCH
RS (231+t) :MOVEX%+31, Y$+138: PRINTCHRS (235
+4* (t));CHRS (236+4* (t)) :MOVEX%+31,Y%+106
:PRINTCHRS (237+4* (t)) ; CHRS (238+4* (t))
1110 A%=2:MOVEX%+10, Y%+36:2&70=231+ (V%—
1)DIV13:CALL &AQ00:MOVEX$+76,Y%+36:2870=A
SCMIDS (A$,W%,1) :CALL &A00:GCOL0,2:VDU4:E
NDPROC

1120 DEFPROClayout :K%=0:FORR%=1TO7 : FORC
=R$TO7 :K%=K%+1:V3=P?K%: IFC3>R3THENVS=-V

1130 CL?(20* (C%-1) +R%)=V%:PROCcard (C%,R
%,V%) :NEXT:CN?R%=R% : L?R%=0 : NEXT :NS%=0:NO
%=0:NB%=0:ND%=24:FORI%=1T024:D? (25-1%) =P

I1%+28) :NEXT:CN?8=0:PROCdeck:L?8=0: ENDP

1140 DEFPROCdeck:X%=1155:Y%=85:IFND%>0T
HENGCOLO, 3

1150 MOVEX%, Y%:DRAWX%+110,Y%:PLOT85, X%+
110,Y%+212:DRAWX%,Y%4212:PLOT85,X%, Y5 IF
ND%>0THENPROCpattern

1160 IFCN?8>0 PROCcard(8,0,CL? (140+CN?8
)) : ENDPROC ELSEPROCcard(8,0,0) :ENDPROC
1170 DEFPROCpattern:VDUS5:PROCoff:GCOLO,
1:FORL%=1TO6:MOVEX%+8, Y$+10+32*L% : FORJ%=
1TO3:PRINTCHRS (230) ; : NEXT : PRINT : NEXT : GCO
L0, 2:VDU4 : ENDPROC

1180 DEFPROCace (C%) : CH=FALSE:IFCN2C%=0
THENENDPROC ELSEV%=CL? (20* (C%-1) +CN?2C%) :
IFV$MOD13=1 THENNS$%=NS%+1:PROCstack (NS%,
C%) :CH=TRUE:V%=CL? (20* (C%-1) +CN2C%)

1190 IF CH AND CN2C%>0 PROConset (C%) :PR
OCace (C%) :ENDPROC ELSE ENDPROC

1200 DEFPROCstack (N%,C%) : VM%=CL? (20* (C%
-1) +CN?C%) :CL? (20* (C%-1) +CN?C%) =0:PROCca
rd (C%, CN?C%-L?C%, 0) : CN?C%=CN2C%-1:n%=CN?
C%-L?C%: IFn%>0ANDn%<128THENV%=CL? (20* (C%
-1) +CN2C%) : PROCcard (C%, n%, V3+256* (V$>127
))

1210 PROCcard (0,N%, VM%) : S?N%=VM$%

1220 IF (S?N%)MOD13=0 PROCbox (N%)

1230 IF CN?C%>0ANDC%<8 PROCturn (C$%)
1240 NO%=NO%+1:PROCace (C%) :PROConset (C%
) : ENDPROC

1250 DEFPROCbox (N%) :PROCcard(0,N%,-1):I
FN%<NS% THENFORJ%=N%TONS%-1:S52J%=S? (J%+1
) :PROCcard (0, J%+1, 0) :PROCcard(0,J%, S2J%)
:NEXT

1260 S?NS%=0:PROCcard(0,NS%,0) :NS%=NS%-
1:NB%=NB%+1 : ENDPROC

1270 DEFPROCturn (C%) : IF CN?2C%=0 OR C%=8
ENDPROC

1280 V%=CL?(20* (C%-1)+CN2C%) : IFV$>127 N
N%=NN%-1:V%=256-V%:CL? (20* (C%-1) +CN?C%) =

for deck turn, o e

ielect sove: Column(ito?);8 for deck.
% to end g

V%:PROCcard (C%, CN?2C%-L?C%, V%)

1290 ENDPROC

1300 DEFPROCany:VDU7:COLOURL:PRINT" Hit
any key.";:Z$=GET$:COLOUR3:CLS : ENDPROC

1310 DEFPROCselect

1320 PRINT"Select move: Column(lto7);8
for deck."'"0 for deck turn, 9 to end ga
me."; :REPEAT : F$=INSTR (B$, GETS) : UNTILF%>0
:F%=F%-1:PRINTSTRS (F%) : IF F%=9 PRINT"Are
you sure you wish to stop! ";:IF FNno G
OTO 1320

1330 IFF%=0 ENDPROC

1340 IFF%=9 ES$=" Game abandoned.":ENDPR
0c

1350 IFF%=8 AND CN?28=0 PRINT"No cards e
xposed in deck.":PROCany :M%=0:ENDPROC

1360 IFCN?F%=0 PRINT"No cards in column

"; STRS (F%) : PROCany : M3=0 : ENDPROC

1370 PROCbottom(1) :IF F%=8 M%=1:GOT0140
0

1380 PRINT"Number of cards to move ";:I
NPUT, M% : IFM$>CN?F$THENPRINT"Only ";STRS (
CN?F%) ;" cards in column ";STRS (F$); :PRO
Cany : PROCbottom(3) :M%=0

1390 IFM%=0 ENDPROC

1400 PROCtop (1) : PROCcheckl : ENDPROC

1410 DEFPROCbottom(c$%) : VDUS5:PROCoff:GCO
L0, c%:IFF%=8THENX%=1069:Y%=117 ELSEX%=12
5*F%-63:Y%=844-50* (CN?F%-L?F%)

1420 MOVEXS%, Y%:PRINTCHRS (124) :VDU4:GCOL
0, 2: ENDPROC

1430 DEFPROCtop (c%) :VDU5:PROCoff:GCOLO,
c%:IFF$=8THENX%=1069:Y%=297 ELSEX%=125*F
%-63:Y%=974-50* (CN?F%-L?F%-M3)

1440 MOVEX%, Y%:PRINTCHRS (124) :VDU4:GCOL
0, 2:ENDPROC

1450 DEFPROCcheckl : IFM%=1THENENDPROC
1460 I%=0:REPEAT:I%=I%+1:J%=CL? (20* (F%-
1) +CN?F%-1I%) :UNTILI%=M%-10RJ%>128

1470 IF J%>128 PRINT"You cannot move tu
rned cards.":PROCany ELSE ENDPROC

1480 PROCbottom(3) :PROCtop (3) :M%=0:ENDP
ROC

Beebug March 1988

65

1490 DEFPROCmove:PRINT"Move cards where
¢ Enter column (1-7)"'"0 to stack; 8 or
9 to abort move."; :REPEAT:T%=INSTR(B$,GE
T$) :UNTILT%>0:T%=T%-1:PRINTSTRS (T%)

1500 IFT%>7 PROCbottom(3) :PROCtop (3) :M3%
=0 : ENDPROC

1510 IFT%=0 PROCcheck2 ELSE PROCcheck3

1520 IFM%=0 ENDPROC

1530 IFF%=8 G%=0

1540 IFT%=0 PROCstack (N%, F%) : ENDPROC

1550 FOR I%=1 TO M%:N%=CN?F%+1-I%:PROCc
ard (F%,N%-L?F%, 0) : IFN%-L?F%>1 AND N%-L?F
%$<128 PROCcard(F%,N%-L?F%-1,CL? (20* (F%-1
) tN%-1))

1560 NF%=20* (F%-1)+N%:NT%$=20* (T%-1)+CN?
T%+M%+1-1%:CL?NT%=CL?NF%:CL?NF%=0:NEXT:F
ORI%=1TOM%:PROCcard (T%, CN?T%-L2T%+I%,CL?
(20* (T%-1) +CN?T%+1%)) :NEXT :CN?T%=CN?T$+M
%:CN?F%=CN?F%-M$%:PROCturn (F%) : PROCace (F%
) :PROCoffset (T%) : PROConset (F%) : ENDPROC

1570 DEFPROCcheck2:IFM%>1THENPRINT"Only

one card may be stacked at a time!":PRO
Cany :M%=1

1580 N%=0:REPEAT:N%=N%+1:V%=CL? (20* (F%-
1) +CN?F%) : UNTILV%-1=S?N%ORN%=NS%: IFV3-1=
S?N%THENENDPROC

1590 IF NOT U PRINT"No stack can receiv
e this card.":PROCany

1600 PROCbottom(3) :PROCtop (3) :M%=0: ENDP
ROC

1610 DEFPROCcheck3:V%=CL? (20* (F%-1)+CN?
F%-M%+1) : IFCN?T%=0ANDV$MOD13=0 THEN ENDP
ROC ELSE IFCN?T%=0PRINT"Only Kings may b
e put in blank columns.":PROCany:PROCbot
tom(3) :PROCtop (3) :M%=0:ENDPROC

1620 J%=CL? (20* (T%-1)+CN?T%) : IF (V3-1)MO
D13=(J%-1)MOD13-1 ANDABS ((V%-1)DIV26-(J%
-1)DIV26)=1 ENDPROC

1630 IF(V%-1)MOD13<>(J%-1)MOD13-1 PRINT
"Column ";STRS(T%):" not in numerical or
der.":PROCany:PROCbottom(3) :PROCtop (3) :M
%$=0:ENDPROC

1640 PRINT"Column ";STR$(T%);" not in "
; :COLOUR131:FORI%=1T02:COLOURL : PRINT"R";
:COLOURO : PRINT"B"; : NEXT : COLOUR128 : COLOUR
3:PRINT" sequence.":PROCany:PROCbottom (3
) :PROCtop (3) :M%=0: ENDPROC

1650 DEFPROCoffset (C%) : IFC%=8 THENENDPR
oc

1660 IF CN?C%-L?C%<18 ENDPROC ELSE L?C%
=CN?C%-12:PROCcol (C%) : ENDPROC

1670 DEFPROConset (C%) : IF L?C%=0 OR CN2C
%=0 THEN ENDPROC

1680 IFCN2?C%-L?C%>10 ENDPROC

1690 N%=CN?C%-12:IFN%<0 THENN%=0

1700 L?C%=N%:PROCcol (C%) : ENDPROC

1710 DEFPROCcol (C%) :MOVE125*C%-117,70:D
RAW125*C%+8, 70: PLOT85,125*C%+8, 988 : DRAW1
25*C%-117,988:P10185,125%C%-117, 70: IFCN?
C%=0 ENDPROC ELSEFORI%=1TOCN?C%-L?C%:V%=

CL? (20* (C3-1) +I%+L?C%) : IFV$>128THENVS=V$
~256

1720 PROCcard (C%,1%,V3%) :NEXT:IFL?C%=0TH
ENPROCmark (C%, 2) : ENDPROC ELSE PROCmark (C
%,1) :ENDPROC

1730 DEFPROCmark (C%,c%) :VDU5:GCOLO, c%:M
OVE125*C%-107,1017:PRINT"*" :MOVE125*C%~3
5,1017:PRINT"*" :GCOLO, 2: VDU4 : ENDPROC

1740 DEFFNno:REPEAT:VDU7:Z=INSTR ("YyNn"
,GET$) :UNTILZ>0:IF Z>2 THEN PRINT"No.":=
TRUE ELSEPRINT"Yes.":=FALSE

1750 DEFFNp (N%) :=RIGHTS (STRINGS (3, CHR$3
2) +STRS (N%) , 3)

1760 DEFPROCover:IF ND%+CN?8=0 PRINT"No

cards left in deck.":PROCany:ENDPROC

1770 IF ND%=0 T%=CL?141:CL?141=0:FOR I%
=2 TO CN?8:D?I1%=CL?(142+CN?8-1%):CL?(142
+CN?8-1%)=0:NEXT:D?1=T%:ND%=CN?8:CN?8=0:
PROCdeck:G%=G%+1:IFG%=4 E$=" No progress

after turning pack.":F%=9:ENDPROC

1780 IFND%>3 NT%=3 ELSE NT3%=ND%

1790 FOR I%=1 TO NT%:CL?(141+CN?8)=D?ND
%:D?ND%=0:ND%=ND%-1:CN?8=CN28+1 : PROCdeck
:NEXT:PROCace (8) : ENDPROC

1800 DEFPROCauto:COLOURL:PRINT"AUTOMATI
C FINISH, :COLOURS:VDU!, 1,]

1810 I%=0:CH=FALSE:REPEAT:I%=I%+1:IFCN?
I1%=0 GOT01840

1820 M%=1:F%=I%:T%=0:PROCcheck2:IFM%=0
GOT01840

1830 PROCstack (N%,F%) :G%=0:CH=TRUE

1840 UNTILI%=

1850 IF CH GOTO 1810

1860 IFND%+CN?8=0 ENDPROC ELSEIFCN?8=0
GOT01890

1870 M%=1:F%=8:T%=0:PROCcheck2:IFM%=0 G
0T01890

1880 PROCstack (N%,8) :G%=0:G0T01810

1890 PROCover:IF CH GOTO 1850 ELSE1870

1900 DEFPROCshuffle:IFSH THENCLS:PRINT"
Is pack to be shuffled? ";:IFFNno ENDPRO
c

1910 CLS:FORI%=1TO2:PRINTTAB (9,104I%);C
HR$129;CHR$141;CHR$136; "SHUFFLING. " : NEXT
:X%=RND (-TIME)

1920 FORI%=52T02 STEP-1:X%=RND(I%) : IFX%
<I$THENT%=P?X%:FORJ%=X%TOI%-1:P?J%=P? (J%
+1) :NEXT:P?1%=T%

1930 NEXT:SH=TRUE:CLS:ENDPROC

1940 DEF PROCoff

1950 Vb 23,1,0:0:0;0;

1960 ENDPROC

1970 REM Relocation code

1980 CLS:PRINTTAB(5,10);"Relocating pro
gram.":VDUZ21

1990 T$=HIMEM:*KEYO*TAPE|MD%=PAGE-&E00:
FORI%=PAGE TOT% STEP4:! (I%-D%)=!I%:NEXT:
? (T%-D%)=255:PAGE=&E00 | MOLD | MVDU6 : RUN | M

2000 *FX138,0,128

66

Beebug March 19

88

AR R e A e AW RN L Sl gt R Wb | [S s By 01 g e T e SR A VR I

TS%HIN

/W?“ qz”ﬁ/@ W
ALCULATIONS letter 'b' represents the
an Bishop physical colour that you want.
When arranging large A complete list of physical

spreadsheets with Computer
Concepts' Intersheet, it is often
convenient to hide interme-
diate calculations so that they
are not displayed with the rest
of the results.

To hide such calculations, use
the hold facility (/H) to place
blank rows or columns over
them. It is then possible to
reduce the column width to
three characters. This will
replace the intermediate
calculations with blank rows
or columns. Remember to
answer YES to the question
'Print held lines ?' when the
sheet is to be printed.

COLOUR VIEW
dson
Although the original View
guide explains how to
redefine the foreground and
background colours in View
(all modes except 7), no
mention is made of it in the
documentation supplied with
the Master, and in any case the
technique is often overlooked.
The foreground and back-
ground colours can only be
changed from within
Command mode. The format
of the command is as follows:
Ctrl-S followed by ab000
where 'a’ represents a logical
colour in the selected mode
(foreground or background).
For example, in the commonly
used mode 3, 'a' would be 0 to
change the background, 1 to
change the foreground. The

Graeme Davi

Beebug March 1988

colours can be found in your
User Guide. For example, to
change the background in
mode 3 to blue (colour 4) type:
Ctrl-S 04000.

BASIC PRIORITY ON THE B+

Neil Stephens

On the BBC model B machines
and the Master series the
language which the machine
enters upon a Reset or power-
up can be easily defined,
either by physically changing
the order in which the ROMS
are plugged in for the former,
or by using the *CONFIGURE
LANGUAGE command with
the latter. Unfortunately
neither of these two methods
can be used on the BBC B+
because the *CONFIGURE
command is not implemented,
while Basic and the Operating
System are both contained in
the same chip.

Fortunately Acorn have
provided a link to alter the
logical ROM position which
Basic occupies. Altering link
$13 into the North position
will make Basic resume the
lowest priority position. The
first language ROM encoun-
tered in a high priority socket
will then be entered upon
power-up.

POWER-UP CONFIGURATION
Brian Stein

Towards the righthand front
corner of the keyboard PCB
there is provision for an eight-

T5.HINTS

U

way DIP switch to be fitted. If
the switch has not already
been installed, one can be
obtained from most electronic
shops (inc. BEEBUG) and
soldered in relatively easily.
This switch determines
various options set upon
power-up or after a Break.

As you look at the bank of
switches they are numbered 0
to 7 from right to left. Switches
0, 1 and 2 determine the screen
mode, and this is represented
by an inverted binary value
between 0 and 7 (i.e. 101
would select screen mode 2).
A switch in the up position
represents 1, in the down
position 0. Switch 3 reverses
the effect of pressing Break
and Shift-Break. In this
condition the computer will
boot the disc in the drive upon
power-up. Switches 4 and 5
effect the disc drive speeds.
These settings were covered in
last months Hints and Tips
page. The last two switches, 6
and 7, are not used.

DOUBLE ST

I

Mi
For those people using 1770
disc interfaces, the *DRIVE
command has been extended
so that forty or eighty tracks
may be specified. This means
that forty track discs may be
read on eighty track drives
without the use of a hardware
switch. The format of the
command is:

ky Harford

*DRIVE n t
where n is the drive number
and t is 40 or 80.

67

VIDEO CASSETTE CATALOGUER (continued from page 23)

3210 PROChead (11, mg$+"Delete") :PRINT'"N
0. of entries on card ";a$;" = "rent

3220 PRINT'"Do you wish to :"

3230 PRINT'"1. Delete tape number."

3240 PRINT"2. Delete all titles on a ta
pe.":*FX15,0

3250 IF ent>1 PRINT'"3. Delete a select
ed title on a tape."

3260 PRINT''"Action : ";:del-GET-48:1IF(
ent>1 AND(del<l ORdel>3)) OR(ent<2 AND(d
el<l ORdel>2)) THEN3210

3270 IF del=3 ent=1

3280 FOR A%=1 TO Z%:IFLEFTS$ (NS (A%),3)=a
$ PROCprint:ELSE3320

3290 ENT=ENT+1

3300 IF ENT<>ent AND del<3 PROCspace (2)
:GOT03320

3310 PROCdel

3320 NEXT

3330 IF F%=1 ORdel<3 ENDPROC

3340 FOR A%=] TO Z%:IFLEFTS (NS (A%),3)=a
$ FO=A%

3350 NEXT:A%=FO0:PROCleft :ENDPROC

3360 :

3370 DEFPROCdown

3380 FOR G%=1 TO Z%-A%:T$ (G3+A%-1)=T$ (G
%$+A%) :NS (G%+A%-1) =N$ (G%+A%) :NEXT

3390 2%=2%-1:ENDPROC

3400 DEFPROCcard

3410 PRINTTAB(1,23)CHRS$148+STRINGS (32,C
HR$163) TAB (1, 9) CHR$148+STRINGS (21, CHRS$24
0)

3420 X%=10:REPEAT

3430 VDU31,1,X%,148,53,185,31,32,X%,148
,234

3440 X%=X%+1:UNTILX%>22

34b0 VDU3I,22,9,62,31,22,8,148,62,31,33
,9,237,31,32,8,237,31,23, 7, 148: PRINTSTRI
NG$ (8,CHR$240)

3460 VDURI,25,9,185,32,32,32,148

3470 PRINTTAB(4,10)cy$+"E-"TAB(4,11)"Ca
tegory :'TAB(4,13)"Title :"TAB(5,18)Dur
ation :"TAB(6,20)"Counter :"TAB(4,22)"7i
me left :"

3480 ENDPROC

3490 DEFPROCclear (c,d, e, f)

3500 LOCALT

3510 FORT=d
TOe:PRINTTAB (c, T) SPC(f) :NEXT : ENDPROC

3520 :

3530 DEFPROCdel

3540 IF del=1 f$="tape" ELSEf$="title"

3550 PRINTTAB(O0,3)"Is this the ":£5.F |
O"TAB(0,4) "be deleted (y/n) 2":Y$=GETS$

3560 IFINSTR("Nn",6Y$)>0 ENDPROC

3570 PRINT"Sure ?";:YS=GETS:IFINSTR("Nn
",Y$)>0 ENDPROC

3580 fi=1:FO=1

3590 IFdel=2 fi=2:N$(A(1))=a$+STRINGS (4
,CHR$32) +"-"+STRINGS (4, CHRS$32) +L$+"000"+
LS:TS (A(1))=STRINGS (4,CHRS$32) : IFent=1 GO
T03630

3600 FOR F=ent TO fi STEP-1

3610 IFdel<3 A%=A(F)

3620 PROCdown:NEXT:F%=0

3630 ENDPROC

3640 :

3650 DEFFNeditor (J)

3660 PRINTTAB(4,J+1)"Title : ";

3670 IF K=2 i$=LEFTS$ (£t$+STRINGS (80, CHRS
32),80) ELSEi$=STRINGS (80,CHRS$32)

3680 FOR X=1 TO 4:PRINTTAB (12, J+X)"<"SP
c201>n

3690 IF K=2 PRINTTAB (13, J+X)MIDS (t$, (X-
1)%2041,20)

3700 NEXT

3710 PRINTTAB(2,J+6) "CTRL-L = CLS"TAB(2
,J+7)"£0 = insert/over"

3720 X=1:Y=1:over=FALSE:tog$=f15+yl1$+"1
NSERT"+wh$+fo$

3730 REPEAT:PRINTTAB(3,J+5) togSTAB (X+12
,YH0);:7FX21,0

3740 A=GET:IFA=128 VDU7:over=NOTover
3750 IFover tog$=fl$+gr$+"OVER"+wh$+fo$
ELSEtog$=Ff1$+yl$+"INSERT"+wh$+£o$

3760 IFA=12 PROCclear(13,1+J,4+J,20):1i$
=STRINGS (80," ")

3770 IFA=136 X=X-1:I1FX=0 ANDY>1 X=20:Y=
Y-1 ELSEIF X=0 ANDY=1 X=1

3780 IFA=137 X=X+1:IFX=21 ANDY<4 X=1:Y=
Y+1 ELSEIF X=21 ANDY=4 X=20

3790 IFA=139 ANDY>1 Y=Y-1

3800 IFA=138 ANDY<4 Y=Y+1

3810 IFA>31 ANDA<123 PROCadd:PROCpri
3820 IFA=127 PROCde:PROCpri

3830 UNTILA-13:I1Fi$=STRINGS (80,CHRS32)
i$=" n

3840 =i$

3850 :

3860 DEFPROCpri

3870 FOR X%=0 TO 3:PRINTTAB(13,X%+J+1)M
IDS (i$,X%*20+1, 20) :NEXT : ENDPROC

3880 :

3890 DEFPROCadd

3900 temp$=LEFTS$(i$, (Y-1)*20+X-1) :tem$=
RIGHTS (i$,80- (Y-1) *20-X+1+over) : iS=LEFT$
(temp$+CHRSA+tem$, 80) : X=X+1:IFX=21 ANDY<
4 X=1:Y=Y+1 ELSEIF X=21 ANDY=4 X=20

3910 ENDPROC

68

R e e oy N e L] TR Sl O aea ([e T e ML e e TR T A

Beebug March 1988

1.0ck

s

MASTERING THE KEYWORD
GENERATOR
Having recently upgraded
from a B to a Master, I found
that the Keyword Generator
program (BEEBUG Vol.3
No.6) only produced garbage.
I was able to determine that
the following alteration to line
370 enabled the program to
work as before. I trust this
program may be of help to
others who use this program
to ease the tedium of inputting
Basic programs.
370 LDA#&56:STA&B0:LDA#&84:
STA&81:LDY#0

B.P.Weller

We are always interested in
publishing amendments to older
BEEBUG programs to enable
them to run on the Master and
Compact.

SINGLE KEY AUTO-SAVE
Although I do not want to
detract from the merits of the
Auto-Save utility in BEEBUG
Vol.6é No.2, I find the
following single key press
even more useful, particularly
if I am called away from the
machine in a hurry. The only
rule is that the first line of the
program under development
should be a REM statement
with one space followed only
by a five letter name and a one
digit number plus a space, or a
two digit number.

The key (f0) then inserts the
next number into line one of
the program, saves it under

Beebug March 1988

2217

that name and number, and
also saves a copy under the
name LAST. In the 'BOOT file
of my development disc I
arrange to LOAD"LAST"
which immediately puts me
back into business when I can
get back to the computer. I
think your readers would find
this useful.
*K.0$ (PA.+11)=STRS (VALS (PA.
+11)+1) |[Msave$=LE.$ (PA.+6),
7) |MSA.save$|MSA."LAST" |MP.
$(PA.+5) M

Francis W.Aries

DISC MANAGER BUG
I have been using the disc
Manager from Vol.5 No.4 for
some time and have found it
extremely useful. Unfortuan-
ately there is a bug in the
Rename option if an attempt is
made to rename a file on other
than drive 0 . The problem can
be overcome by changing line
2670 to read:
2670PROCOS ("RENAME :"+DS+"
"+name$ (n)+":"+D$+" . "+a$:na
me$ (n)=a$:ENDPROC

D.G.Beecham

It was only intended that
Rename should work with drive
0, so this is a useful improve-
ment.

IMPROVED KEYSTRIPS

With reference to Tony
Briselden's letter in Vol.6 No.5
I would like to suggest the
following additional changes
to the Keystrip Generator
(Vol.6 No.4). This amendment
prints the legends in double

5)POSTBAG

strike (line 2145), and the
keystrip title in double-width
characters (lines 1825 and
1835) on an Epson compatible
printer. Add the following
lines:
1825vDU27,64,14,27,69,27,71
1835vDU27,106,12,27, 64,27,

51,24
2145VDU27, 71

D.J.L.van den Bergh

MS-DOS TO BEEB

I'would like to suggest an idea
for a program to be published
in BEEBUG, one which I think
may be of general interest to
BEEBUG readers. Many of us
who work in offices and
elsewhere have access to PCs
or similar during business
hours using discs formatted to
MS-DOS standard. My plea is
for a program which would
enable my BBC B to read a PC
disc so that wordprocessor
text could be transferred to my
Wordwise at home.

Similarly, after amending the
text at home, I would like to
re-write the file back to a disc
in PC format for use back in
the office.

John Tupper

We have investigated the
possibility of this and it certainly
seems feasible. Even now one of
our freelance contributors is
working away to produce just
such a utility which we hope to
publish in the April issue of
BEEBUG or soon after.

69

renewds,

= gend applications for memberstip
address below- membership fees, indudind eas, S|
cques)onaUKbalk.mnbeﬁmay also { !oNSCUsefa!aspedal .
BEEBUG SUBSCR\P N RA BEEBUG & RISC USER
€715 & months (5 issues) UK only
£14.50 1 year (10 iss! K, BFPO chl £23.00
£20.00 est of E & Eire £33.00
£25.00 Middle East £40.00
£27.00 s & Africa £44.00
00 Elsewhere £48.00
SSUE PR\CES Al overseas items are sent
aimail. We will official UK b
orders for subscripionS and badk
issues, but pledse note that there
will be @ ¢1 handling charge for
orders under £10 which requiré !
an invoi that there iS {
VAT in magazines: i

D PACKING
cost of p&P-

STING OF F NS & PROCEDURES -
speeds UP the listing of named tunctions and

procedures.
NOW C HERE-2 complete program in C to start oft our

new introductory series.
COCKTAIL OF 3D PROCEDURES . two complete
programs 1o demonstrate how to draw 3D objects-
VIDEO CASSE TALO UER- 2 database
application to catalogue all your video cassettes.
ARRY CHR\ST\EV\SUALS

SPRITE ANIMATOR - 8 total of four programs 10
animate the sprites created last month. Cockt ail of 3D Procedures
FIRST COURS!

CHARACTER CONTROL - 8 program lustrating the
use of Basics otring functions for flexible input.

THE MASTER SERIES
TALKING TO THE ADFS (Pant 2) - two complete

programs 1o provide & customised ADFS menu, @
o 1)

S.
PATIENCE - @ most otfective and addictive ‘i"%‘éﬁ‘a’é‘éﬁ‘i»&%‘,“ﬁ“%%‘:?\.’s‘?‘.ﬁf,,'""“'
imp\ememaﬂ'\on of one of the oldest and most popular

i Patience

3 ame.
MAGSCAN - Bibliography for this issue of BEEBUG.

All this for £3 (casse\te), £4.75 (5" &3.5" disc) + 50P p&p-
Back issues (525" disc since Vol.3 No.1, 35" disC since Vol.5 No.1, tapes since Vol.1 No.10) available at the same prices.
S

LR W
UK ONLY O\IERSEAS \
\ SéUBSCRlPT\ON RATES 5" DisC 3.5" Disc cassefte 5" Disc 3.5" Disc Cassette \
6 mont 5 |ssues £25.50 £25.50 £17.00 £30.00 £30.00 £20.00 \

12 months (10 |ssues) g £50.00 £33.00 £56.00 £56.00 £39.00 |

Prices aré inclusive of VAT and postage as appiicabia. Sterling only pleasé \
el

o i o gy
Cassette subscriptions can be commuted 10 5.25" 35" disC subscription on receipt of £1.70
per issué of the subscription \eft to run. Al subscriptions and individual orders 10-

BEEBUG, Dolphin place, Ho ywell Hily, st.Albans, Herts. AL1 1EX.

| [BEEBUG Discs - The Utinate in Qualty & Relaily
| PRICES‘REDUCED!

Single Sided 40T QOnly

50 Double Density £35-60

Discs

Double Sided Only

S0 wraud aqq 9g

=]
=)

O ERREEEERRREERE R E R E R EEE

Our Guarantee

We confidently offer a lifetime data
guarantee and will replace any disc
with which you encounter problems.
We have found that the standard of
quality control at the factory makes
this necessity very rare.

50 discs with free lockable storage bock

Prices shown are members prices
and include VAT.

BEEBUG discs are manufactured to
the highest specifications and are
fully guaranteed.

R EEREEERERERE

|

EEREEEREEEEEEEE

| R R PR P e e e e e el e el el)
5 40 Track Single Sided 80 Track Double Sided
% Double Density Quad Density
x Members Order Members Order
Price Price Code Price Price Code
10 £9.37 £8.90 0657 10 £10.42 £9.90 0660
1, 05 £923.00 £21.85 0661 25 £26.20 £24.90 0664
g 50 £37.50 £35.60 0665 50 £42.00 £39.90 0668
|

| Please send me (qty) (stock code) at £ (unit price)

‘ i
1 UK post 10£1, 25/50 £3.75. Overseas send same price inc. UK post & VAT

I

11 enclose a cheque for £ /Please debit my Access/Visa card £

l T 1 1 1 T T U U T T i j . i~

1 [—lr poiy l paclf i I T ot] | (BRI J_I F-Xplry date: D:

y Memb No.

w
e e e S S - ——
——

