et

e

et

e

o
e

A1ES

FILE HANDLING FOR AL
ams and David Spencer
rticies

S the considerable topic
Pandiing in Basic

The ability to store data for
T sequent access and manipu

sare now ready

CREATING A DATA FILE
s Create &

ofrrite a simple program to
B L imtaining Enis 1otorgy
tile handliog oy

cREATE

iy 160 INPUTL e
rahai--

ot at 100

S s -

e

v

FILE pay,
FOR AN tng

Going to €

FEATURES

Boxed inthe Carpark
Mutti-Cotumn Printing

BEEBUG Mini-Wimp
REEBUG Education
Disc Spooler Utility
First Course -
Character Contro! (Part 3)
The Master Pages -
Vectoring Around
Referencing the Master 128
Master Hints
Debugging DATA Statements
Workshop -
Using Printers (Part3)
A Flash Utilty
Exploring Assembler (Part 10)
pBRC to IBM Transter Utility

10
12
16
20
24
26

30

4
44
46
47

48
50
53
58

REV\EWS

Conquest 6
Adventure Games 52
Super Dump b1
viewSheet ViewStore 65
REGU LAR ITEMS
Editor's Jottings
News 4
Supp\emen\ 33-40
Magter Hints 46
Points Arising 49
Postbad 67
Hints and Tips 68
BEEBUG Technical - the 188 69
gubscriptions & Back Issues 70
Magazine Disc/Tape Al
HINTS & TIPS
GENERAL MASTER
Neat Listings Talking 10 Edit
High\'\ghling a View Edit Search and
Problem Replace
Disabling the ADFS Qverview Problems

Disc Write Problems

100k 737 is _vour
LeSk car trapped
$or o car park:

5 DA3 1987 v
Move the +CARS’
around until your
and only your
ough

e R
oottt
1T CAN BE DONE . .
1. BEEBUG Mini-Wimp

r Letter

Windows ¢

MWOPEN
nﬂsnﬁ1

9. Boxed in the Carpark

CAR REGISTRATION LETTER 7

')
“ 5 Conquest Reviewed

4. BBCtO |BM File
Transfer

5, File Handling

5. Super pump

JisPLAY DATES FILE

lesex.

Stevenade, Herts.

pedfordshire:

: White :

]se-.mﬁ’\e 0‘\d parn, Hanor Lane, Riselys
aper: 823 =55671

hday: 26th Sel

rendleshan: Near Norwich:

f ‘
below. These Co
of machine ShQWcleanythe vali . mputer System
bl g a”dlf'ﬁiﬁgr?%?;ﬁ?f“s Master (BasiclV) [if] Filing System
throu ‘ be compatibili) o
(nmrr?;}|§i@:%wgﬁateg%gégﬁoi?%e line " Compact (Basic VI) @ - m
Cross shows t ey 1anges will be DFS
distinguish o otal incompatibili needed); a Model B (Basi m
h between Basic ity. Reviews do no asicll) J0T
>l and " - U ModelB (Basicl) . Cassette
Tube Compati
patibility

Electron
E Tu be

LditorS
Jottigs

CONTRIBUTING TO BEEBUG

Most of the articles and programs which we publish in
BEEBUG are contributed by BEEBUG members.
Indeed, many of the best and most interesting
programs which we have published in the past have
originated in this way. We also have a small band of
more regular and experienced contributors,
particularly where reviews are concerned.

We are currently seeking new material for publication
in the magazine. Programs with or without
accompanying explanation, short or long: all are
welcome provided you believe that what you have to
offer matches up to the standard of previously
published material. If you have ideas for a series of
several articles then we would urge you to contact us
first to discuss this before undertaking too much
detailed work.

At the present time we are particularly keen to receive
applications and utilities, but we are always willing to
consider any interesting and novel ideas. We would
also be pleased to hear from any member who has
specific expertise or experience which would be
relevant for writing reviews.

Potential contributors are recommended to send for
our leaflet Notes of Guidance for Contributors, available
on receipt of an A5 SAE. Remember that we do pay
promptly for all material published, and we have now
raised our maximum rate of payment to £50 per page.

Please help us to continue to make BEEBUG the
magazine that you and all other BBC micro owners will
want to read.

VOLUME 6 INDEX

You will find included with this issue a complete index
to volume 6 of BEEBUG. This has been organised to
provide the maximum help when searching for a
previous article. With six complete volumes, our
computerised bibliography Magscan makes even more
sense, and can greatly speed up finding all references
to a particular subject. If you have not been keeping
up-to-date with the monthly Magscan updates on the
magazine discs, a complete volume 6 bibliography is
being included on the magazine disc for this month at
no extra charge. See inside back cover for details.

4

SHOW CANCELLED

As speculated in the last BEEBUG, the Acorn User
show, due to take place at the end of July, has been
postponed until an ‘unspecified date'. The reason for
this sudden change is rather unclear, with neither
Redwood Publishing, publishers of Acorn User, or
Acorn, sponsors of the show, saying very much.
However, it is widely believed that Acorn were
unhappy with the flea-market nature of the show,
something which has increased over the past couple of
years, and would rather see a much more up-market
affair complete with seminars and lectures. It is
thought that Acorn User are working on such a show,
but it is very unlikely that it will occur this year. While
Acorn's point is probably valid, one can't help thinking
that a show with lots of bargain stalls will attract more
people than a more formal gathering. It remains to be
seen whether another organiser, such as Database
Publications, steps in to fill the gap.

ACORN PRICE INCREASES

It now seems almost certain that Acorn will announce
an increase in the price of the Archimedes within the
next few days. It is rumoured that this increase will be
around 15%, putting about £150 on the price of an
A310 with colour monitor. The price rise is attributed
to increasing costs worldwide of certain integrated
circuits used in the Archimedes. In particular, the price
of dynamic RAM chips has increased substantially. It is
not clear if the price of the Master will also rise,
although any further increase in chip prices will make
this almost inevitable. BEEBUG will continue to supply
machines at the old price while stocks last.

SEEING DOUBLE IN VIEW

Tubelink has just released a package that allows two
documents to be edited in the View wordprocessor at
the same time. The package, appropriately called
Double View is 32K long, and is currently available for
the Master and Compact as either two 16K ROMs or as
a ROM image on disc to be loaded into sideways RAM.
A model B and B+ version is promised shortly. Double
View works in conjunction with your existing copy of

Beebug May 1988

View. The disc sells for £39.95 and the ROMs for
£49.95. As well as letting you work on two documents
simultaneously, Double View also offers many other
improvements to View. A complete on-screen help
system using pull-down menus is provided, and it is
possible to cut text from a document into a clip-board,
and then paste it into another document. Facilities are
also provided for faster saving of part documents, and
for the easy importing of spreadsheets from Viewsheet.
Double View is available from Tubelink, PO Box 641,
London NW9 8TF, or credit card orders on 01-205 9393.

ARCHIE PIPEDREAM

Still on the subject of word processors, Colton Software
have just released a version of their Pipedream
combined word processor and spreadsheet for the
Archimedes. Pipedream will be best known to Beeb
users in the form of View Professional (reviewed in
BEEBUG Vol.6 No.4), which is almost identical,
although the software is also available for the IBM PC
and compatibles, and is supplied as standard on the
Cambridge Computer Z88. The idea of Pipedream is
that of a word processor that includes the layout and
functions of a spreadsheet, with some database
features thrown in for good measure. The Archimedes
version of Pipedream cost £113.85 including VAT, and
can be obtained from Colton Software Ltd., Highcroft,
The Avenue, Madingley, Cambridge CB3 8AR, or
phone (0954) 210928.

ON-SITE REPAIRS

Acorn have signed an agreement with Granada
Microcare to provide on-site maintenance for
Archimedes systems. Granada, who are well proven in
the field of computer leasing and on-site backup,
promise an eight hour response to all calls, with a
replacement machine being left if an immediate repair
is not possible. The service contracts, which are
available for the basic computer, mono or colour
monitor, and any accessories, for periods from one to
five years, cover all repair costs, including parts. The
price of cover ranges from £94 per annum for a 300
series Archimedes to over £700 for a 440 with colour

Beebug May 1988

monitor over 5 years. This scheme, which should prove
very attractive to business users, can be handled
through BEEBUG, who will arrange cover as soon as
your payment and machine details are received.

TELETEXT FROM GIS

General
Information
Systems, the
company that
brought us
the Red Box
home security
system, has
struck again,
this time with
a teletext
adaptor for
the model B and Master 128. The GIS teletext receiver
comes in a very smart looking box which is the same
cream colour as the computer's case and carries the
BBC logo and owl. The adaptor is powered from the
computer, the only connections being a lead to the user
port, and a socket for a TV aerial lead. The GIS system
is fully approved by the BBC, replacing the old Acorn
teletext adaptor, and comes with the latest version of
BBC Soft's ATS ROM. Like the rival from Morley, the
GIS unit has a built-in microprocessor, but unlike the
Morley system, full control of all the primitive
operations is still possible. The complete system costs
£149 inclusive, and can be obtained direct from GIS,
Croxton Park, Croxton, Cambridgeshire PE19 4SY.

WORDWISE PLUS 2

Wordwise Plus 2, IFEL's enhanced version of
Wordwise Plus, which was reviewed in BEEBUG Vol.6
No.7, has been reduced in price to just £32.95.
Additionally, for a limited period, IFEL are supplying
free with each Wordwise Plus 2 a fast sorting package.
Existing Wordwise Plus 2 users can buy the sorting
software for a nominal price by contacting IFEL. IFEL
are at 36 Upland Drive, Plymouth, Devon PL6 6BD, or
telephone (07555) 7286.

5

il & <= 0¥ mmX| =

Roger Burg reports on Watford Electronics’
latest enhancements to the Quest Mouse
package.

Product ConQuest

Supplier = Watford Electronics
Jessa House, 250 High St,
Watford, Herts, WD1 2AU.
Tel. (0923) 37774

Price £33.35 inc. VAT

Watford Electronics has released ConQuest, an
add-on to its excellent mode 1 graphics package
Quest Paint, reviewed in BEEBUG Vol.6 No.7.
The package contains a manual, a couple of
information sheets and the new ROM. It also
needs the mouse and ROM from Quest Paint.
Once installed, seven extra drawing features
become available from within Quest. Five of
these features use the Acorn Graphics ROM
directly.

If you have a standard BBC model B you will
need an Acorn Graphics ROM in addition to
the Quest and ConQuest ROMs. A disc system
is also essential. Bearing in mind the number of
ROMs which need to be resident inside the
machine, some kind of ROM expansion board
will also be needed. It is also recommended that
more memory be fitted in the form of sideways
RAM if ConQuest is to be used to its full
potential. Fortunately the Master meets all
these requirements as supplied.

Once installed, Conquest gives the entire Quest
system greater compatibility with different
shadow and sideways RAM boards. On its
own, it provides a font editor. You can enter the
enhanced package either from Quest Paint, as
before, or from ConQuest's font editor using the
command *FONTEDIT or *WFONTEDIT (in the
event of any ROM command clashes).

THE FONT DESIGNER

The new font designer is a first class utility.
Font editors flatter a mouse more than most
programs, and the precision and snappy

6

responsiveness of this one are ideal. It has all
the features which I can think of, except the
ability to display a line of text, and it has a
couple of new features which I haven't seen
before. One of them adds or removes a
complete row or column of pixels. This avoids
the most befuddling and time-wasting job of
balancing a font's proportions. Only the option
to design Quest's brushes rather than its fonts,
is less than idiot-proof.

But Quest's fonts are defined in 16 by 16 pixel
grids, and spacing of characters like "i"s or "w's
is fixed in steps of 16 pixels. As the font editor
necessarily adopts these restrictions, its output

on screen is never more than tolerable.

NEW GRAPHICS FACILITIES

From the font editor, either *(W)PAINT or the
Paint icon lead into Quest Paint. An extra "I/O"
menu now presents the additional RAM and
filing facilities, and further "Global FX" options
are included as descriptive mouse-pointers.
Five of these are called from Acorn's Graphics
ROM: the ellipses, solid or filled option, arcs,
sectors and segments. These are important
facilities, and as I bemoaned the lack of
rotatable ellipses in the earlier review, I must
applaud them here! Acorn's Graphics ROM is
slower than Quest and cannot use all its options
of protected and cycled colours, but this is a
small price to pay.

The two new features which ConQuest
provides operate on the image in the cut-and-
paste window. This can be read from sideways
RAM or from the screen, and it is copied back
to a new position, at any angle or distorted to
any four-sided shape. Both are easy to use.

The implementation of the rotation is
exemplary. One button press establishes the
centre of the destination window, which is
outlined on the screen, varying its angle of
rotation smoothly according to the horizontal
position of the mouse pointer. A second press
can remove the point to reposition it, or begin
plotting the image slowly and thoroughly.

The distortion option is similar except that
drawing the initial four-sided figure is more
prone to errors, and pressing the quit button
undoes all the points, not just the most recent
one. However, ConQuest plots the paste image

Beebug May 1988

to fit the new shape equally thoroughly and
fairly accurately in any four sided figure.

ConQuest does not cope with all quadrilateral
distortions. However it was not intended to
foreshorten "COKE" as it appears wrapped
round the side of a can, nor draw a chess board
receding in perspective. But both routines open
up possibilities for experiment, and even if the
results have to be modified by hand or rejected,
Quest will do either.

THE MANUAL ON USING EXTRA RAM

If you're thinking of buying ConQuest to let
Quest make use of extra RAM, or if you have
more than one filing system already installed,
then go to your dealer and check the manual
first. It is precise and readable and describes the
few incompatibility problems well. In short, the
Graphics ROM, if used with ADFS, takes a little
too much memory on a BBC B, and there is a
problem with level three file servers. The
manual also explains how to avoid problems
which may arise between the Quest system and
other resident firmware. Apart from these
exceptions, Watford Electronics claim that the
Quest system works happily on most
combinations of hardware.

To ensure that ConQuest can use just about any
proprietory RAM extension, a customised RAM
driver routine of up to 64 bytes can be placed in
memory at location &140 to select write access
to your particular RAM board. While
maximum compatibility is always welcome, it
would not be unreasonable to expect a little
more support in this respect.

The typestyle of a manual seldom causes
comment, but the improvement over the Quest

Beebug May 1988

manual's typeface is outstanding. It was
difficult to maintain confidence in a graphics
package whose manual is graphically weak.

CONCLUSIONS

Unless you have a Master, you will need to
purchase the Acorn's Graphics ROM in order to
run ConQuest, and if you want to use its full
potential, you will be advised to install extra
RAM in your machine.

When using the package you will find that
Quest's button presses do not provide all the
options required, and ConQuest's extra
functions slightly increase the complexity of
this, a small consideration, but a nuisance when
you are doing something tricky or important.

The font designer, however good, is but a small
bonus in Quest. If you cannot design a dozen
good letters straight onto the screen you won't
need to design 127 bad ones in the editor. But if
you have other applications - perhaps you want
to design NLQ letters for your own printer
utility - you won't do better than with this
package.

The new graphics features are useful: rotated
ellipses for example, and the window
transformation, both have great imaginative
potential. To say that they add little to Quest
must be understood as a compliment to one of
the best graphics programs about, and not a
slight on ConQuest.

Quest was not written with perspective in
mind. You have to work hard at it to convey
depth, and this is not seriously improved by the
new features. It is also intended as a mode 1
designer, and apparently writes straight to the
screen, which probably accounts for its speed
and reduces the code, but consequently it will
not use spooled files, second processors or
other screen modes. So ConQuest does not do
everything! But then as an add-on it only costs
£33.35, and if you use mode 1 graphics
seriously, and need those useful rotated ellipses
- treat yourself.

NOTE

Please note that ConQuest does not work with very
early versions of Quest. Should you have any
compatibility problems, Watford Electronics will
update your existing Quest ROM to the latest
version for a small handling charge.

7

- i el

ws B0 | X|E |D|A4|
Bocli N o1
gl BiW| T

. :

This is one of those maddeningly simple yet
frustrating games that rapidly becomes
addictive. In this case G.N.Steeper's
version is based on an original game over
40 years old.

This program is an implementation on a
moving-block type of puzzle that came into my
possession over 40 years ago, well before the
days of the microcomputer. The original was
made from cardboard, but I made a more
durable copy from perspex. This has stood the
test of time and came to light again just recently
when I was tidying up. I decided to have a go
at producing a computer version of the puzzle,
and the following listing is the result.

In outline, the object of the game is to 'shuffle’
cars around in a carpark so that you may
extricate your own vehicle (parking problems
are clearly not new). In the original puzzle, the
other vehicles were labelled Rover, Austin,
Hillman, Riley and the like, which now arouses
a touch of nostalgia for these old marques. The
puzzle, though, is just as tantalising.

Type the program in and save it. When run, the
program is quite self-explanatory, as the
operating instructions are always in view. Do
take special care to get the spacing right when
typing in lines 1020 to 1070 as any error here
spoils the presentation of the instructions.
Moving cars around the carpark is no more
complicated than entering the car's registration
letter (in upper case) followed by the cursor
key to indicate the direction of movement.
When you have given the puzzle a fair trial and
begin to doubt your ability to solve it, just press
Escape and the solution will be revealed.
Pressing Shift-Escape will exit from the
program. Have fun.

8

10' REM Program CarPark

20 REM Version B1.0

30 REM Author G.N.Steeper

40 REM BEEBUG May 1988

50 REM Program subject to copyright

100 finish=FALSE:error=FALSE
110 ON ERROR PROCerror: IF finish THEN

120 IF NOT error MODE 1: PROCmenu

130 error=FALSE

140 REPEAT

150 *FX4,1

160 IF JY%=468 PROCEND

170 IF Solve=1 READ M$:IF M$="X" PROCE

180 IF Solve=1 READ Action
190 IF Solve<>1 REPEAT:PRINT TAB(2,29)
"CAR REGISTRATION LETTER ? ";:MS=GETS$:U
NTIL M$>="A" OR MS$<="g"
200 PRINTTAB(28,29) M$;
210 IF M$="A" X%=AX%:Y%=AY%:W=a:D=b:x=
c:y=e:PROCmove : AX$=X% :AY%=Y%
220 IF M$="B" X%=BX%:Y%=BY%:W=a:D=b:x=
c:y=e:PROCmove : BX%=X% :BY%=Y%
230 IF M$="C" X%=CX%:Y%=CY%:W=a:D=b:x=
c:y=e:PROCmove :CX%=X%:CY%=Y%
240 IF M$="D" X%=DX%:Y%=DY%:W=a:D=b:x=
c:y=e:PROCmove :DX%=X%:DY%=Y%
250 IF M$="E" X%=EX%:Y%=EY%:W=a:D=B:x=
c:y=E:PROCmove :EX%=X% :EY%=Y%
260 IF MS="F" X%=FX%:Y%=FY%:W=a:D=B:x=
c:y=E:PROCmove :FX%=X% :FY3=Y%
270 IF M$="G" X%=GX%:Y%=GY%:W=a:D=B:x=
c:y=E:PROCmove : GX%=X% :GY%=Y%
280 IF MS$="H" X%=HX%:Y%=HY%:W=a:D=B:x=
c:y=E:PROCmove : HX%=X% : HY%=Y%
290 IF M$="I" X%=IX%:Y%=IY3%:W=A:D=b:x=
C:y=e:PROCmove : IX%=X%:1Y%=Y%
300 IF M$="J" X%=JX%:Y%=JY%:W=A:D=B:x=
C:y=E:PROCmove : JX%=X%:JY%=Y%
310 UNTIL FALSE
320 ¢
1000 DEF PROCmenu
1010 vpu28,23,28,39,1
1020 PRINT"Block 'J' is yourMotor Car t
rapped in a car park."
1030 PRINT'" Move the 'CARS' around unt
il yourCar and only yourCar goes through
the Exit."
1040 PRINT'" IT CAN BE DONE"
1050 PRINT'"Enter Car Letter as request
ed and use Cursor Keys to move."
1060 PRINT'" A car will not move unles
s space is available."

Beebug May 1988

S S A

1070 PRINT'" ONLY YOUR CAR WILL PASS
THROUGH THE EXIT"

1080 VDU26

1090 PROCsetup

1100 Solve=0

1110 ENDPROC

1120 @

1130 DEF PROCmove

1140 PROCcheck

1150 PROCclear

1160 IF Solve<>1 Action=GET

1170 IF Action=139 AND GOU=0 PROCdraw (0
/M$, X%, Y%, W,D,x,y) : Y$=Y%+108:PROCdraw (2,
M$,X%,Y%,W,D, x,y) :ENDPROC

1180 IF Action=138 AND GOD=0 PROCdraw (0
/M$,X%,Y%,W,D, x,y) : Y$=Y%-108:PROCdraw (2,
MS,X%,Y%,W,D,X,y):ENDPROC

1190 IF Action=137 AND GOR=0 PROCdraw (0
/M$, X%, Y%, W,D, x,y) :X%=X%+120:PROCdraw (2,
M$, X%, Y$, W,D,x,y) :ENDPROC

1200 IF Action=136 AND GOL=0 PROCdraw (0
/M$, X%, Y%, W,D, x,y) :X%=X%-120:PROCdraw (2,
MSIX%IY%IWIDIXIY)

1210 ENDPROC

1220 ¢

1230 DEFPROCcheck

1240 £=16:9=50:h=150

1250 U1=POINT (X%+g, Y%+f) :U2=POINT (X%+h,
Y%+f) : IF Ul=0 AND U2=0 Col=0

1260 D1=POINT (X%+g, Y%-D-g) :D2=POINT (X%+
h,¥%-D-f) : IF D1=0 AND D2=0 Col=0

1270 L1=POINT (X%-f,Y%-g) :L2=POINT (X%-f,
Y%-h) :IF L1=0 AND L2=0 Col=0

1280 R1=POINT (X%+W+f,Y%-g) :R2=POINT (X%+
W+f,Y%-h) : IF R1=0 AND R2=0 Col=0

1290 ENDPROC

1300 ¢

1310 DEFPROCdraw (€ol, S$, X%, Y%,W,D, x,y)
1320 GCOLO, Col

1330 MOVE X%, Y%

1340 PLOT 69,X%+W, Y%

1350 PLOT 85,X%,Y%-D

1360 PLOT 85,X%+W,Y%-D

1370 VDUS5:MOVEX%+x,Y%-y:GCOLO, 0:PRINTSS
:VDU4

1380 ENDPROC

1390 ¢

1400 DEF PROCerror

1410 IF ERR=17 AND INKEY-1 THEN CLS:PRI
NT"Escape pressed at line ";ERL'':finish
=TRUE

1420 IF ERR=17 AND NOT(INKEY-1) THEN So
lve=1:PROCsetup:PRINTTAB(2,29) "SOLUTION
COMING UP"SPC(15) :VDU7:MELA=INKEY (300) :V
DU7:error=TRUE

Move the ‘CARS~”
around until your
Car and only your
Car ?oes

he

thro h
Exit. ®
IT CAN BE DONE

r

rCﬂR REGISTRATION LETTER ?

1430 IF ERR<>17 THEN CLS:REPORT:PRINT ;

" at line ";ERL'':finish=TRUE

1440 ENDPROC
1450 :

1460 DEFPROCsetup

1470 PROCdraw(3,"",0,1000,700,800,0,0)
1480 PROCdraw(1,"",84,932,544,600,0,0)
1490 PROCdraw(0,"",116,904,480,540,0,0)
1500 PROCdraw(3,"",236,360,240,28,0,0)
1510 A=232:a=112:B=208:b=100

1520 C=104:c=40:E=80:e=32

1530 EX%=120:EY%=900

1540 PROCdraw(2,"E",EX%,EY%,a,B,c,E)
1550 JX%=240:JY%=900

1560 PROCdraw(2,"J",JX%,JY%,A,B,b,E)
1570 FX%=480:FY%=900

1580 PROCdraw(2,"E", FX%,FY%,a,B,c,E)
1590 GX%=120:GY%=684

1600 PROCdraw (2, "G",GX%,GY%,a,B,c,E)
1610 IX%=240:1Y%=684

1620 PROCdraw(2,"I",IX%,1Y%,A,b,C,e)
1630 HX%=480:HY%=684

1640 PROCdraw (2, "H",6HX%,HY%,a,B,c,E)
1650 AX%=240:AY%=576

1660 PROCdraw (2, "A",AX%,AY%,a,b,c,e)
1670 BX%=360:BY%=576

1680 PROCdraw(2,"B",BX%,BY%,a,b,c,e)
1690 CX%=120:CY%=468

1700 PROCdraw(2,"C",CX%,CY¥%,a,b,c,e)
1710 DX%=480:DY%=468

1720 PROCdraw(2,"D",DX%,DY%,a,b,c,e)
1730 ENDPROC

1740 :

1750 DEFPROCclear

1760 GOU=1:GOD=1:GOL=1:GOR=1

1770 IF W=a AND Ul=0 GOU=0

1780 IF W=A AND Ul=0 AND U2=0 GOU=0
1790 IF W=a AND D1=0 GOD=0

Continued on page 29

Beebug May 1988

Machine ot 1

MULTI=GOLUTI PRINTING
MULTI=GOLUT PRINTING
MULTI= GOLUTI PRITING

Documents printed in neat columns look
really good, yet this simple layout can often
be difficult to achieve. Jan Stuurman
provides a versatile utility to do just that,
and it may be used with almost any text
file, whatever its source.

The utility presented in this article formats any
(spooled) text file into columns, and prints the
result using an Epson FX-80 or compatible
printer. Start by typing in the program, taking
extra care with the assembler sections, and save
it.

MULTI-COLUNN PAGE PRINTER

Enter source filename MULTCOL

Enter pri
(ElitesPi
Print mode: 4

Enter number of columns
Space between columns
Column width (character

Page length (<174)>

When you run the program, it will ask for the
name of the source (text) file to be formatted.
The program then offers a choice of three print
modes: 80 characters per line (cpl) Elite, 96 cpl
Pica, or 132 cpl Condensed. You must then
specify the number of columns, the space
between them (in characters) and the number of
lines per page to be printed. All text lines
output are left-justified, and are split at word
boundaries except when the word is longer
than the width of the column. A Return in the
text signals the end of a line, while the '{'
character may be used to indicate the end of a
column, and similarly the '}' character to mark
the end of a page, although these two special
characters can be changed if desired by altering

10

lines 3570 and 3580. When the program has
finished printing a page it will beep and wait
for the space bar to be pressed, allowing the
paper to be changed if printing on individual
sheets. If you just want to print continuous
sheets without having to press space each time
then remove line 180 from the listing.

The only Epson-specific code is the setting of
the print mode in line 150, and the re-setting of
the printer in line 200. The print mode is
selected in lines 2070-2120. It would not be
difficult to change the program to work with
any other printer that supports the print modes
used, but which uses different codes to select
them.

Almost any text file may be processed by this
utility, whether originated through a word
processor, text editor or any other means. Just
make sure that the text is in pure ASCII format
first (i.e. spool the text out from a word
processor such as Wordwise, or remove any
formatting commands as in View), and away
you go.

10 REM Program MultCol

20 REM Version B1.0

30 REM Author Jan Stuurman

40 REM BEEBUG May 1988
50 REM Program subject to copyright

100 MODE7:HIMEM=PAGE+&1400

110 ON ERROR GOT0900

120 PROCtitle

130 PROCinput

140 PROCassem

150 vpue,1,27,1,33,1,pmode%, 3

160 VDU28,0,24,39,22

170 REPEAT CLS:VDU2:CALL prtpage:VDU1,
13,3,7:*FX15,1

180 IF ?eofflg=0 PRINTTAB (4)CHRS$133"Pr
ess <SPACE> to continue...":IF GET=32

190 UNTIL ?eofflg=&FF

200 CLOSE#S%:VDU2,1,27,1,64,3,26

210 END

220

900 ON ERROR OFF

910 CLOSE#0:VDU3

920 REPORT:PRINT" at line ";ERL

930 END

Beebug May 1988

940 :

1000 DEFPROCtitle

1010 FOR I=0 TO 1:PRINTTAB(3,I)CHR$141C
HR$129CHR$157CHRS$131"MULTI~-COLUMN PAGE P
RINTER "CHRS$156:NEXT

1020 ENDPROC

1030 :

2000 DEFPROCinput LOCALI%

2010 vpU28,0,24,39,5:REPEAT CLS

2020 PRINTCHR$130"Enter source filename
";TAB(25)CHRS131;

2030 INPUT""sf$:S%=OPENINsfS$

2040 IF S%=0 VDU7:PRINTTAB (10)CHR$129"N
O SUCH FILE":I%=INKEY250

2050 UNTIL S%<>0

2060 vDU28,0,24,39,7

2070 REPEAT CLS:PRINTCHR$130"Enter prin
t mode (E/P/C)"

2080 PRINTCHR$130" (Elite/Pica/Condense
d) ";TAB(25,0)CHRS131;

2090 P%=GET AND &5F

2100 UNTIL P%=69 OR P%=80 OR P%=67:PRIN
T CHR$P%':pmode%=-(P$=80)-4* (P%=67)

2110 mlin%=80-16* (P%=80)-52* (P%=67)

2120 PRINT'CHR$134"Print mode:"CHR$133;
pmode%; TAB(15) CHR$134"Characters/line:"
CHR$133;mlin%

2130 VDu28,0,24,39,12

2140 REPEAT CLS:PRINT CHR$130"Enter num
ber of columns";TAB(25)CHRS$131;

2150 INPUT""ncol$%

2160 UNTIL ncol%>0ANDncol%<=mlin%

2170 VDu28,0,24,39,14

2180 REPEAT CLS:PRINTCHR$130"Space betw
een columns";TAB(25) CHR$131;

2190 INPUT""cspc%

2200 UNTIL cspc%>0 AND cspci<=mlin%/(nc
0l1%-1)

2210 cwid%=(mlin%-(ncol%-1)*cspc$) /ncol
%

2220 PRINT'CHR$134"Column width (charac
ters) :"CHR$133; cwid%

2230 mpage%=(&7C00-HIMEM) /mlin%

2240 VvDU28,0,24,39,18

2250 REPEAT CLS:PRINTCHR$130"Page lengt
h (<";mpage%;")";TAB(25)CHRS$131;

2260 INPUT""plen%

2270 UNTIL plen%>0ANDplen%<=mpage%

2280 ENDPROC

2290 :

3000 DEFPROCassem

3010 base=&70:1base=672

3020 bufptr=674:2674=0

3030 eofflg=&75:2&75=0

3040 eopflg=&76:eocflg=677:e01flg=578
3050 col=&79:1in=67A

3060 off=67B:?2&7B=cwid%+cspc%

3070 buffer=&67B

3080, osbget=&FFD7:0swrch=4FFEE
3090 :

3100 FOR pass=0 TO 2 STEP 2:P%=&900
3110 [OPTpass

3120 .prtpage LDA #0:STA eopflg
3130 LDA #HIMEM MOD256:
STA base:STA lbase

3140 LDA #HIMEM DIV256:
STA base+1:STA lbase+l

3150 JSR clearpage

3160 LDA #ncol%:STA col

3170 .columnloop LDA #0:STA eocflg
3180 LDA base:STA lbase:

LDA base+1:STA lbase+l

3190 LDA #plen%:STA lin

3200 .lineloop LDA #0:STA eolflg
3210 JSR makeline

3220 .chkeol LDA eolflg:BNE chkeoc
3230 JSR bufferreset

3240 .chkeoc LDA eocflg:BNE chkeop
3250 CLC:LDA lbase:ADC #mlin%:STA lbase
3260 BCC nocarry:INC lbase+l

3270 .nocarry DEC lin:BNE lineloop
3280 .chkeop LDA eopflg:BNE print
3290 CLC:LDA base:ADC off:STA base
3300 BCC noc:INC base+l

3310 .noc DEC col:BNE columnloop
3320 .print

3330 LDA #HIMEM MOD256:STA base
3340 LDA #HIMEM DIV256:STA base+l
3350 LDX #plen%

3360 .prloopl LDY #0

3370 .prloop2 LDA #1:JSR oswrch
3380 LDA (base),Y:JSR oswrch

3390 INY:CPY #mlin%:BNE prloop2
3400 CLC:LDA base:ADC #mlin%:STA base
3410 BCC pnoc:INC baset+l

3420 .pnoc DEX:BNE prloopl

3430 RTS

3440 :

3450 .clearpage

3460 LDX #plen%

3470 .cloopl LDY #0:LDA #&20

3480 .cloop2 STA (lbase),Y

3490 INY:CPY #mlin%:BNE cloop2
3500 CLC:1LDA lbase:ADC #mlin%:STA lbase
3510 BCC cnoc:INC lbase+l

Continued on page 64

Beebug May 1988

il

e e, ey

Mike Williams and David Spencer
commence a major series of articles on the
considerable topic of file handling in
Basic.

The ability to store data for subsequent access
and manipulation is one of the most important
and commonplace functions of a computer
system, and learning how to write programs to
achieve this is often a major milestone for
anyone developing their programming skills.
Indeed, we feel sure that there are many Basic
programmers who even now still feel that this
subject is too daunting to be mastered. This
series of articles will start right from the
beginning, so no one should feel that they are
excluded.

But these articles are not aimed just at the
beginner. The series will develop a general
understanding of file structures and file
handling techniques which we hope will prove
equally useful to experienced programmers.

CARD INDEX FILES

This month we will start from scratch by
defining some useful terms, and learning some
basic techniques. The simplest form of file is
probably one based on the familiar card index.
Such a file consists of a number of records (or
cards), one for each entry in the file, while each
record is divided into several separate pieces of
information called fields. In a card index, and
indeed in most files, every record in a given file
follows exactly the same format.

Whenever you are going to create a data file,
one of the first things you need to do is to sit
down and decide just what fields each record is
going to contain. It is worth spending some
time on this, whatever type of file organisation
is going to be used, as changing the file
structure (that is the organisation of the file) at
a later stage can be difficult if not impossible.

12

So let's take an example. We will create a file to
contain the names and addresses of friends
with details of their birthdays. Fairly obviously
we need to store the following information
about each person in the file:

FIELD VARIABLE NAME
Name Name$

Address Address$
Telephone Number Phone$

Birthday Date$

Since we will need to refer to these pieces of
information (or fields) within any program we
will use Name$ and Address$ as variable
names for the first two items, but for brevity
Phone$ and Date$ for the last two respectively.
All four fields are here treated as strings.

BASICI
Users of Basic I should note that any occurrence of
OPENUP in programs listed in this series should be
replaced by OPENIN. This is discussed in more detail
in this first article.

CREATING A DATA FILE

We are now ready to write a simple program to
create a file containing this information. The file
handling instructions needed will be explained
using this example.

Program:CREATE

100 MODE 3

110 ON ERROR GOTO 220

120 PRINTTAB(10,1)"CREATE DATES FILE"
130 vDU28,0,24,19,3

140 F=OPENOUT ("DATES")

150 REPEAT

160 INPUTLINE'"Name: " Name$

170 INPUTLINE"Address: " Address$

180 INPUTLINE"Phone number: " Phone$
190 INPUTLINE"Birthday: " Dates$

200 PRINT#F,Name$,Address$,Phone$,Date$
210 UNTIL FALSE

220 IF ERR=17 THEN PRINT''"File DATES C
reated OK"

230 IF ERR<>17 THEN REPORT:PRINT" at 1li
ne ";ERL

240 CLOSE#F:VDU26

250 END

The program selects mode 3 and displays a title
at the top of the screen before defining a text
window. This will contain the dialogue which
ensues as we enter the data, without corrupting
or losing our main heading.

Beebug May 1988

The first file related instruction is in line 140.
Before a file can be used it must be opened ready
for use. In this instance (line 140) we use
OPENOUT (for output from computer to disc),
specifying the name by which the file is to be
known (DATES). OPENOUT checks to see if a
file of the name specified already exists, and if
so deletes it, before creating and opening a file
ready for our use. Because of this, OPENOUT
should only be used when you want to create a
new file.

DISPLAY DATES FILE

Name: Jane Smith
fAddress: 2 Lona Lane
Phone number: 81-233
Birthday: 5th May

Name: John Brown ;

Address: 3 Hyacinth Drive, Stevenage, Herts,
Phone number: 44

Birthday: 24th March

Name: J Whit

Hssﬁess?n?‘e Uideﬂarn Manor Lane, Risely, Bedfordshire,
Phone number: 8234-55677
Birthday: 26th September

row, Middlesex.

]

Har
5944

Hame: Jackg Bailey

Address: 25 Acacia Avenue, Frendlesham, Near Norwich.
Phone number: 8683-55678
Birthday: 18th June

When a file is opened, Basic links it to the
program via a channel, and the number of this
channel (called a channel number or handle) is
returned by OPENOUT, and in our program
assigned to the variable F. Any variable could
be used here, but from now on all references to
the file must use the file handle rather than the
file name.

The REPEAT-UNTIL loop (lines 150 to 210)
prompts for the input of data for each record
and writes it to the file. The use of INPUTLINE
means that data typed in may contain commas,
quotes and the like. The PRINT# instruction in
line 200 is the one which actually sends a
complete record to the file. This uses a modified
form of the normal PRINT statement. The
difference is the reference to the channel
number. We could have written each piece of
data (field) to the file individually, but there is
no real advantage in doing that. It also helps,
for the future, to think even now in terms of
reading and writing complete records.

Beebug May 1988

In any case, the PRINT#F does not actually
send data directly to the disc. Instead, the DFS
(or ADFS) reserves part of its private memory
as a buffer, and places the data in this. When the
buffer is full the filing system copies its
contents to the disc. Therefore, depending on
just how much data you enter for each record,
you may or may not hear the disc drive
operate.

We must have some way of terminating the
REPEAT-UNTIL loop. One solution is to use
some special character or characters to be
entered in response to the Name prompt, but
unless we were to alter the program
substantially we would still have to continue
and enter dummy information (or just press
Return) for the other fields as well. In this short
program we have used Escape to get out of the
loop, and as we have used no procedures or
functions there are no problems. Once all the
records have been entered, the program must
close the file using a CLOSE instruction
(referencing again just the channel number). It
is also worth pointing out that CLOSE#0 will
close all open files, and is useful in immediate
mode for closing any files accidentally left
open. The VDU26 at the end of the program
simply restores the text window to full screen
size.

READING A DATA FILE

Having created our data file, the obvious thing
to do is to write another short program which
will allow us to display or print the contents of
our file. Here is the program to do it.

Program:DISPLAY

100 MODE 3

110 PRINTTAB(10,1)"DISPLAY DATES FILE"
120 vDU28,0,24,79,3

130 F=OPENIN ("DATES")

140 REPEAT

150 INPUT#F,Name$,Address$,Phone$,Date$
160 PRINT'"Name: ";Name$

170 PRINT"Address: ";Address$

180 PRINT"Phone number: ";Phone$

190 PRINT"Birthday: ";Date$

200 UNTIL EQF#F

210 CLOSE#F:VDU26

220 END

13

As you can see, the program we need to read
and display the records in the file is very
similar to the one we used to create it in the
first place. We must open the file before we can
read any records from it. This time we use
OPENIN - input from file (OPENOUT would
delete the existing file and create a new empty
file). We have a similar REPEAT-UNTIL loop,
but we must now read each record from the file
before we can display its contents on the screen.
Reading data from a file uses a variation on
INPUT just as writing to a file uses a variation
on PRINT, again referencing the channel
number.

The major difference concerns the way in which
the REPEAT-UNTIL loop is terminated. We do
not know how many records there are, so we
must just read in records until we reach the end
of the file. Fortunately there is a special
function in Basic to help us with this, the
keyword EOF. This references the channel
number, as do all file handling instructions, and
returns a value of TRUE or FALSE depending
upon whether the end of the file has been
reached or not. Once all the records have been
read and displayed the file is closed.

SIMPLE FILE UPDATING

So far so good, and if all this is new to you then
we hope that you have been pleasantly
surprised at how easy file handling can be. Let's
proceed further. The two programs we have
written so far are fine, but there is one major
drawback. There is no way we can add
additional records to an existing file. Every time
we run the first program the existing file will be
deleted and a new one created. We will now
produce another program which allows an
existing file to have further records added to it.
Here it is.

Program:UPDATE

100 MODE 3

110 PRINTTAB(10,1) "UPDATE DATES FILE"
120 vDu28,0,24,79,3

130 F=QOPENUP ("DATES")

140 REPEAT

150 INPUT#F,Name$,Address$,Phone$,Date$
160 UNTIL EOF#F

170 ON ERROR GOTO 250

14

180 REPEAT
190 INPUTLINE'"Name: " Name$
200 INPUTLINE"Address: " Address$
210 INPUTLINE"Phone number: " Phone$
220 INPUTLINE"Birthday: " Date$
230 PRINTH#F,Name$,Address$,Phone$,Date$
240 UNTIL FALSE
250 IF ERR=17 THEN PRINT'"File DATES Up
dated OK"
260 IF ERR<>17 THEN REPORT:PRINT" at 1i
ne ";ERL
270 CLOSE#F:VDU26
280 END

As you can see, this program is largely just an
amalgamation of our previous two programs.
In order to add new records to our existing file,
we need to find the end of that file. Because we
do not know how many records already exist,
the only way to do this is to start at the
beginning of the file and read through all the
records until we get to the end (this is like the
second program but without displaying the
record contents), and then continue with the
equivalent of the first program to add
additional records as required.

You can think of this process in terms of a
pointer. When a file is opened, a pointer is
placed at the beginning of the file. As records
are added to a file (or read from a file) the
pointer is moved forward through the file.
Depending upon whether we are reading or
writing, the pointer will indicate either the start
of the next record to be read, or the position to
start writing the next record. The concept of a
pointer is important in file handling, and in
future articles we will look at ways of
controlling its position mo1: directly.

OPENING FILES

You should be able to follow our latest program
without too much difficulty. The one important
difference is that the file is opened using
OPENUP - open file for updating (not OPENIN
or OPENOUT). Now much confusion seems to
surround these three statements so we will try
and clarify matters once and for all. According
to the various user guides the three file opening
instructions perform the following functions:

Beebug May 1988

OPENOUT - Open for output to file only.
If the file does not exist, a new one is
created. If a file with the same name
exists it is deleted first and a new one
created. y

OPENIN - Open for input from file only.
If the file does not exist a zero channel
number is returned.

OPENUP - Open a file for input and output.
If the file does not exist a zero channel
number is returned. The one real source
of confusion is that OPENUP does not
exist in Basic I, but the action of
OPENIN in Basic I is identical to
OPENUP in Basic II. As a result, Basic I
users should always replace OPENUP
with OPENIN (in our third program for
example).

When you want to create a new data file use
OPENOUT, but as any existing file with the
same name will be automatically deleted it may
be worth checking first. For example, in our
first program we might replace line 140 with:

140 IF FNcheck("DATES") THEN F=OPENOUT

("DATES") ELSE VDU26:END

1000 DEF FNcheck (filename$)

1010 LOCAL ans$, flag%,F:flag%=FALSE

1020 F=OPENIN (filenames$)

1030 IF F=0 THEN flag%=TRUE ELSE INPUT"
File already exists - replace (Y/N): " a
ns$:flag%=(ans$="Y") : CLOSE#F

1040 =flag%

This function is quite useful and so it has been
written for use with any file name which can be
specified as a parameter. What the function
does is to attempt to open the specified file for
input from disc. If the file already exists a non-
zero channel number will be allocated. This is
detected by the function and the user is asked
whether or not this file should be replaced. The
variable flag% is set TRUE or FALSE as a result.
If, when OPENIN is called, a channel number
of zero is obtained, then no file of that name
exists.

When accessing an existing file, we have a
choice of either OPENIN or OPENUP. often,
you can use OPENUP all the time for this

Beebug May 1988

purpose, but you should be aware of OPENIN
as its more limiting functions can actually
prove useful on occasion. Basic I users should
use OPENIN whenever OPENUP is specified in
Basic II - there is no choice here anyway.

Again, some precautions are still advisable, and
you are recommended to include an extra line
to check that any file you try to access does
exist (you might just have the wrong disc
inserted for example). Simply check that the
channel number is non zero. In the second and
third programs we could add:

135 IF F=0 THEN PRINT"File not found":
VDU26:END

We have now reached the point where we have
three simple but complete file handling
programs, one to create a file, one to display the
contents of the file, and a third to update the
file by adding new records to it. There are, if
you think about it though, two rather obvious
omissions in what we have so far achieved.
There is no facility to remove a record from the
file, nor is there any means of changing or
modifying the contents of any record in the file,
either to correct any mistake we may have
made on entering the data, or just because the
data has changed (change of address for
example).

Unfortunately, neither of these requirements is
as easy to implement as the functions we have
already programmed. We need to be able to
locate any record that we may wish to change,
and to ensure that any amended data is written
back to the file so as to replace the original
record. Record deletion is no easier, because
even if we determine a way to blank out any
record we will be left with 'holes' in our data
file which may well trip up the Display or
Update programs.

We'll tackle both of these problems in the next
issue of BEEBUG, where we will also begin to
examine how we can make all our file handling
much more general so that our programs are
not tied to a particular data file as here. For
now, happy filing. B

15

e (Gl ey

Last month's article touched on C's array
handling facilities and illustrated some of
the concepts with a "limerick-processor”.
This month, as promised, we take a look at
file handling with more about arrays.

Just about the only drawback with the BEEBUG
C package is the lack of an editor. This is OK if
you have a text or word processor, but is a bit
limiting if you don't. I have designed a simple
line editor that works much like the Basic
editor, and embodies the concepts I want to
cover this month. It is, however, quite lengthy
and we'll have to cover it in two chunks, part
this month and part next. The major part, which
is quite long itself, appears at the end of the
article.

FILES
All input and output between a C program and
the real world is done via streams. The keyboard
is an input stream, the VDU screen and printer
output streams. Other streams such as files are
easily established and used much as with BBC
Basic. Let's open a file:

stream in = fopen("c.welcome","r");
This is not a million miles from:

A=OPENIN ("file")
Of course that's not the whole story. stream_in
is a user-defined variable of type FILE. fopen is
a standard function supplied with C. Its
arguments are two strings - the first is the
filename, the second the access mode. This may
be one of "r" (read), "w" (write), or "a" (append),
with or without a trailing "+" which signifies
update, allowing read and write operations
(similar to OPENUP in Basic II). The function
returns a value which is used throughout the
program to specify the stream. If the Spen is
unsuccessful (e.g. file not found, catalogue full,
etc.), a value of NULL is returned.

16

Naturally enough there are functions for
reading from and writing to these streams.
These are not part of the language as such, but
are supplied in the standard library. Here is a
short program to copy a file to the end of
another file:

/** C.FAPPEND **/

/** Copies MYFILE to the end of OUTFILE **/
#include <stdio>

#include <string>

main ()

{

FILE *in, *out;

int ¢;
char infile [] = "MYFILE";
char outfile[] = "OUTFILE";

/* open both files */
if ((in=fopen(infile,"r")) &
(out=fopen (outfile, "a"))){
/** if successful, do the copy **/
while((c=fgetc(in)) != EOF)
fputc(c,out);
fclose(in);
fclose(out);
}
else
printf ("It's all gone wrong!"); }

Here we have defined two pointers *in and
*out, for use as file streams. We have also
defined and initialised two character arrays,
infile and outfile - the compiler calculates the
appropriate size for the array from the initial
strings. An integer ¢ is used to hold the
characters read because the EOF (End Of File)
value is -1, and a variable of type char can
never be negative.

The files are opened during the evaluation of
the if condition. If the output file exists the file
pointer is set to the end of the file. A null value
returned by either occurrence of fopen() (they
are connected by '&', the logical AND) causes
the program to terminate via the else statement,
otherwise the copy proceeds with the while
loop. If the output file doesn't exist it will be
created. Copying stops when the function
fgetc(in) returns EOF, and the files are closed.

We have used three other file access functions;

fgetc(stream) to read the next character,
fputc(integer, stream) to write it and

Beebug May 1988

o e T e I U 0 B o T I S TNt b ot AP vy e Sehe ot

fclose(stream). There are others which will
handle strings and formatted input and output,
but let's walk before we run!

MORE ABOUT ARRAYS

Last month's article dealt with the basic ideas
about arrays and pointers. This month's project
demands an extension of these ideas.

As we said, an array of variable-length strings
is best held as a single character array with an
array of pointers to the beginning of each
string. For our editor, we must be able to insert
text. This can be done by adding new lines to
the end of the text array, but we need more
information about each string in the array - we
must identify the next and previous strings so
that we can control the sequence of lines. To
preserve the analogy with the Basic line editor,
we will also number the lines (in tens,
arbitrarily). The information we require about
each line in our text file is:
- a pointer to this line in the text array;
- the line's "number";
- a pointer to the information about the
previous line;
- a pointer to the information about the next
line.

Thankfully, there is an alternative to the rather
ghastly idea of processing four separate arrays.
It's called a structure, an important and useful
concept in C not found at all in Basic.

A structure is a group of variables which may
be manipulated as a whole. The only operations
allowed on a structure are getting its address
(with '&') and accessing one of its members
(with ->' - of which more later). This is quite
enough though. Here is our structure for the
array of controlling pointers:

struct txtcontrol{

char *ptext; /* pointer to text array */
int linenum; /* the line's "number" */
struct txtcontrol *prev;

struct txtcontrol *next;

H

The structure's name is txtcontrol; it consists of
a character pointer (to identify the start of a line
in the text array), the line's number, and two
pointers to the structure itself (this is perfectly
legal and very useful). To declare our array of

Beebug May 1988

control data we simply write, somewhere after
the definition of the structure:
struct txtcontrol info[1000];

or we could simply have written info[1000]
between the final } and ; of the structure
definition. The structure definition itself does
not reserve any variable space, it simply creates
a new variable type (called txtcontrol in our
example). The declaration of info gives us an
array of variables, each of which has the
defined structure.

Loading the text array from a file is fairly
straightforward - open the file using fopen(),
copy data to a text array using fgetc(), replace
each newline \n with the standard C string
terminator \0 and call insert() to update our
control array and copy the line to the text table
proper. Each line points to, and is pointed to
by, its neighbours. Writing the array to a file,
and editing it in store, are only a little more
complex.

DRIVING THE EDITOR

We need now to start defining our "language" -
the commands or 'verbs' we will recognise and
act on. Firstly a general format must be laid
down. We will be accepting a line from the
keyboard consisting of an editor command and
(possibly) data. Using getstring() to obtain this
line will save reinventing the wheel.

For ease of programming, I have assumed that
the command and the data will be separated by
a space or comma, and have written a function
called split() which divides the entered
command line into two parts - pre-separator
and post-separator. This enables commands of
the form:
LOAD file

to be handled easily. Some commands may
require more than one "argument" - think of the
LIST command in Basic. Here again, split() can
be used to separate the arguments. So our
general syntax will be formalised as:

VERB [<separator>arg[<separator>arg...]]
Here, the square brackets indicate optional
components of the command. A separator is
either a space or a comma.

If we now turn to the insertion of lines and

think of Basic, you can see that a line may be
thought of as a numeric command! Hence if the

1174

"verb" is numeric, the remaining text is to be
inserted at a place appropriate to the numeric
value of the "verb" - remembering that the line
numbers do not form part of the source code. If
split() finds that the first part of a line is
numeric it returns TRUE.

Finally, we turn to the vocabulary. If our editor
is to resemble Basic, we should be able to
LOAD a file, SAVE a file, LIST selected lines,
insert and delete lines, and (because this editor
is itself a program) QUIT. Later on, we can add
a few bells and whistles such as AUTO,
RENUMBER, DELETE, partial SAVE and an
automatic compilation-on-exit.

Each of the above commands can be written as
a separate function, called from main(). All
main will need to do is examine the entered
line and identify which function to call. For the
sake of brevity, main() will only recognise
commands typed in full in upper case and will
not output any error messages. A library
function strncmp(string1, string2, num) is
used, which compares the first num characters
in each string and returns zero ("FALSE") if
they match. To use this in an if statement which
requires a TRUE in the case of a match, I have
used the 'NOT' qualifier '!" (as in !=, 'not equal’)
before each function call.

I've already touched on LOADing a program. If
you examine the code, you'll see that the named
file is copied into a temporary text array,
character by character. Whenever a return
character is found, \0 is substituted and the
function insert() is called. Here we see structure
manipulation for the first time. The function
has a pointer, ptr, which is of type struct
txtcontrol. This can be set to point to any
element in info thus:

struct txtcontrol *ptr,

&info[n];

*ptrl; . ptr =

and from then on, using ptr in a statement will
be identical in effect to using info[n] (until n is
changed!). By incrementing or decrementing
ptr we can access the next or previous element.
These two statement groups are equivalent as
far as ptrl is concerned:

{

n++;

18

ptrl = &info[n];
}

{

ptr++;
ptrl = ptr;
}

Members of a structure are identified thus:

old line = info[n].linenum;
so using our pointer we could say:

old line = *ptr.linenum;
A short form of this last format exists and is
used in preference:

old line = ptr->linenum;
The operator -> consists of a hyphen followed
by the 'greater than' symbol. The operation can
be nested thus:

old line = ptr->next->linenum
if ptr->next is a pointer to the structure of
which linenum is a member.

Now you should be able to follow the code in
the largest function, insert(). The incoming line
number may lie outside the current range -
before the first line or after the last. It may also
replace the first or last line. Under these
conditions only, the variables firstpointer and
firstline, or lastpointer and lastline will need
to be updated.

To insert a line, we scan the control data array
until the right position is found. Then we must
link our new line to its previous and next
neighbours. If we are replacing an existing line,
the old line must be unlinked and the new one
joined up in its place. If the new data is a zero
length string we are deleting a line, so the
previous and next lines are linked together.
Finally, the text is copied into the text array

proper.

Turning to the LIST function, we can see how
the command line is split once again to give the
start and finish line numbers. These are
converted from string format to numeric format
by atoj(), a home-produced version of the
library function atoi() - "ASCII to integer". The
control array is scanned for the first specified
line. You cannnot just run through info by
incrementing a subscript if lines have been
inserted or deleted, so we re-initialise our

Beebug May 1988

e e e ——— e

pointer (in the third portion of the for
statement) by setting it first to firstpointer and
subsequently to ptr->next. We then print
succeeding lines until the second line number is
exceeded. Piece of cake really, isn't it?

The SAVE function essentially LISTs the text to
a file, and the code is correspondingly similar,
except that newline characters (\n) replace
nulls (\0). A partial SAVE would be
disgustingly easy to implement - if you
remember how split() works (returning TRUE
if the first portion is numeric), the start and
finish lines should precede the filename tius:

SAVE 10,300 progptl

SAVE 310,700 progpt2

Well, that just about wraps it up for now. Next
month we'll add some extra facilities to our
editor, and look into the BEEBUG C
compilation and linking processes.

C you around!

NOTE:

For those who do not have access to a C compiler, a
fully compiled version of the editor will be included
on the magazine disc when part 4 of this series is
published in the next issue.

/* elementary line editor */
/* BY D MCSWEENEY (C) 1988 */
/* Beebug C series, part 3 */

#include <stdio>
#include <string>
#define TEXTMAX 8000
fdefine LINEMAX 500

/* *** external variables *** #/
struct txtcontrol{
char *ptext;
struct txtcontrol *prev;
int linenum;
struct txtcontrol *next;
} info[LINEMAX];
struct txtcontrol *firstpointer, *lastpointer;
int firstline, lastline;
FILE *in, *out;
char text [TEXTMAX], *pfree;
int inc = 10;
int lineno;
int nfs; /* next free subscript in info */

char pl[6], p2[6];

/* MAIN */

main () {

char command[5], line[74];
char inline[80];

int result, n;

initialise();
dof{
lineno = 0;

printf ("2 ")
getstring(inline, 80);
if (split (inline, command, line))
lineno=atoj (command) ;
if (lineno > 0)
insert (lineno, line);
if ('strncmp (command, "LOAD",4))
progload(line);
if (!strncmp (command, "SAVE",4))
progsave (line) ;
if (!strnemp (command, "LIST",4)){
split(line,pl,p2);
editcheck (pl,p2) ;
proglist (atoj (pl) ,atoj(p2));
}
} while((strncmp (command, "QUIT", 4)));
printf("That's yer lot!");
}

/* the final version of getstring */
getstring (str, max)
char str(];
int max; |
{
int n=0;
int a;
while((a=getchar()) !'= '\n' && max-- > 0){
if(a == '\b")
if(n > 0)
-
else
n=0;
else
strin++] = a;
}
for(; n<max; n++)
strin] = '\0';
return(n);

}

/* SPLIT */

/* separate command/line no from
the rest of the input line
return TRUE if partl numeric */

split (string, partl, part2)

Continued on page 62

Beebug May 1988

B I I R L R T i D e L R e e e R

19

b (=

THE BEEBUG

)T

(Pt)

If you want to be able to use windows, icons
and pointers, but can't afford to buy an
Archimedes, then this short series from
David James is right up your street.

I have always admired the sophistication of
graphics achieved by packages such as the
AMX mouse and BEEBUG's Icon Master;
however, these all cost money, so I set about
writing my own mode 4 window system in the
form of a sideways ROM image. In this, the first
of three articles, I will present the ROM image
which is used to manipulate the windows and
icons on the screen. Subsequent articles will
provide a screen-based icon designer, which is
itself an example of the use of the Mini-Wimp,
and we will discuss other examples of the use
and application of the Mini-Wimp star
commands.

The ROM image for the Mini-Wimp is just over
25K long, with the rest of the sideways RAM
bank being used as workspace by the program.
The Mini-Wimp will work well on both a
model B or a Master, but in the case of a model
B, at least 16K of sideways RAM is needed. The
Mini-Wimp provides three basic functions:
Window handling; a pointer system; and an
icon plotter, and it makes use of an AMX
mouse if fitted.

ENTERING THE PROGRAM

Because of the length of the original source
code, we are for once publishing the Mini-
Wimp in the form of a hex dump. However, the
source code will be on the BEEBUG monthly
disc, or you can send in an A5 SAE to get a
printed listing. Entering the hex dump is made
easy by the loading and error checking
program in listing 1, which should be entered
and saved first. Before running the loader for
the first time, any file on the disc called

\ s 20 Beebug May 1988

MWROM should be deleted. When run, the
loader presents the current address at the top
left, which will initially be 8000. Each line of the
dump should then be entered, pressing Return
at the end of each line. It is not necessary to
enter the spaces between the groups of
characters, although these will do no harm, and
both the address at the start of each line and the
blank lines should be omitted. So for example,
the first two lines could be entered as:
0000004C2B8082154AA7<Return>
004D494E4957494DCD70<Return>
As each line is entered, the loader checks both
its length and contents, and if there is any error
it will beep, print a message and prompt for the
line again. If Escape or Break is pressed at any
point during entry, the file will be saved up to
the current line, and when the loader is next
run it will detect this and start at where you left
off. Once all the hex dump has been entered,
the loader returns to Basic, and the file
MWROM contains the final ROM image.

10 REM Hex Dump Loader

20 REM By David Spencer

30

40 ON ERROR GOTO 410

50 *KEY10 CLOSE#X%|M*KEY 10(M

60 READ name$,st%,end%

70 DIM B%(9)

80 X%=OPENUP name$:IFX%=0 X%=OPENOUT
name$

90 PTR#X%=EXT#X%

100 S%=(EXT#X%+st%)AND &FFF8

110 REPEAT:REPEAT:REPEAT

120 PRINT;~S%;":";:INPUT "" H$

130 L$="":FORF%=1TOLENHS

140 IFMIDS (HS,F%,1)<>" " L$=LS$+MIDS$ (H$
(F%,1)

150 NEXT

160 IF LEN L$<>20 VDU7:PRINT"Wrong len
gth - Repeat line"

170 UNTIL LEN(L$)=20

180 C%=S%

190 FOR E%=0 TO 9

200 B$=EVAL ("&"+MIDS (LS,E%*2+1,2)

210 C%=FNcrc (C%,B%) :B% (E%)=B%

220 NEXT

230 IF C% VDU7:PRINT"Checksum error -
Repeat line"

240 UNTIL C%=0

250 FORF%=0TO7:BPUT#X%,B% (F%) :NEXT

260 S%=5%+8

270 UNTILS%=end%

280 CLOSE#X%:*KEY 10

290 END

300

310 DEF FNcrc(S%,A%)

320 LOCAL F$%,T%

330 S%=S%EOR A%*256

340 FORF%=1T08

350 T%=0

360 IFS%>&TFFF S§%=S$EOR&810:T%=1
370 S%=(S%*2+T%) AND &FFFF

380 NEXT
390 =S%
400

410 IF ERR=17 THEN CLOSE#X%:PRINT:END
420 REPORT:PRINT" at line ";ERL

430 END

440 DATA "MWROM",&8000, &8B00

MINIWIMP ROM V1.08 <(C> DAJ 1987

M
Mi
Mi
Mi

NNNN E IZ & I O 2T 3

USING THE ROM

The Mini-Wimp ROM image should be loaded
in using *SRLOAD on a Master, or your normal
loader on a model B, and then initialised by
Control-Break. Typing *HELP will list the
ROM's title, while *HELP MW will list the new
star commands now available. The commands
offered by the Mini-Wimp are listed below.

*MWSETUP sets up the system and
must be issued once and for all before any of
the other commands.

*MWKEY selects keyboard control of the

pointer.

*MWSTICK selects a joystick controlled
pointer.

*MWMOUSE causes the pointer

commands to be passed to the AMX Super

Beebug May 1988

ROM, which must be installed in a higher
priority socket.

*MWOPEN <left x, bottom y, right x,
top y> opens a window on the screen. The
parameters are specified in character terms
with the origin (0,0) being at the top left of the
screen. This is the same as when setting up text
windows with VDU28. The screen under the
new window is saved in sideways RAM, the
window border drawn, and the background
cleared. You can open a maximum of three
windows at a time, and each window can be up
to 30 characters wide, (or 31 if one side touches
the edge of the screen).

*MWSHUT closes the last window
opened, restoring the background to its former
state.

*MWICON <0 to 63> prints 1 of the 64
possible icons at the text cursor position. Each
icon consists of four characters which are
printed in a 2 by 2 square. The Mini-Wimp
stores these definitions in memory between
&5000 and &57FF. Therefore, before using
icons, HIMEM should be set to &5000. The
Mini-Wimp prints the icons by redefining
characters 150-153.

*MWDEEF followed by an icon number
and 32 further parameters define one of the 64
icons. The data is in the same form as it would
be to define a normal character. This command
is very cumbersome, and a complete icon
designer and editor using the Mini-Wimp will
be published next month.

*MWSAVE <filename> <start icon> <end
icon> saves to the named file all the icons
between the given start and end numbers. For
example, *MWSAVE ICONS 40 45 will save
icons 40,41,42,43,44 and 45 to a file called
ICONS.

*MWLOAD <filename> <start icon>
performs the opposite to *MWSAVE. The first
parameter is the filename, and the second is the
number of the first icon to be read in. The
number of icons read depends on the length of
the file. For example, *™MWLOAD ICONS 1,
where ICONS is the file from above, will load
inicons 1 to 6.

*MWPOINTER causes a pointer to
appear on the screen. This can then be moved

21

around by using the cursor keys, the joystick, or
an AMX mouse, depending on the option
selected by *MWKEY etc. The command exits
when Copy, the joystick fire button, or a mouse
button is pressed, and returns the pointer's
character position in the Basic variables X% and
Y%. When controlling the pointer from the
keyboard, there are two speeds at which the
pointer moves. You can toggle between these
speeds by pressing the Caps Lock key.

TESTING THE ROM

Once the ROM image has been loaded, it can be
tested as follows: Type MODE 4 followed by
COLOUR 129:COLOUR 0:CLS, which will
select the correct mode and reverse the colours.
Now type *MWSETUP to initialise all the
ROM's workspace. Then fill the screen with
text, using for example *HELP. A sample
window can be opened by typing *MWOPEN

8000:0000 004C 2B80 8215 4AA7 8100:FFA9 0820
8008:004D 494E 4957 494D CD70 8108:FFA9 9820
8010:5020 524F 4D00 2843 40DF 8110:20EE FFA9
8018:2920 3139 3837 2044 3CC7 8118:4CA2 8086
8020:6176 6964 204A 616D 934A 8120:4820 3981
8028:6573 0008 C904 F009 85E9 8128:68AA A578
8030:C909 D003 4COE 8828 9A0A 8130:E477 DOEB
8038:6048 9848 8A48 B1F2 C705 8138:6020 B181
8040:29DF C94D D055 C8B1 3A71 8140:C920 F020
8048:F229 DFC9 57D0 4CC8 9FC5 8148:C90D F018
8050:A200 8478 A478 BD53 809A 8150:C93A BOOE
8058:8AC9 20F0 1D85 77B1 6B7E 8158:8DE8 C8EQ
8060:F229 DFC5 77D0 05C8 69AF 8160:3E81 3860
8068:E84C 5680 8A29 F818 4762 8168:E003 FO1D
8070:6908 AAC9 60F0 244C 3BF8 8170:A58D 858F
8078:5480 B1F2 C90D F007 21CO 8178:858E 4C89
8080:C920 FO03 4C9B 808A 9784 8180:8FA5 8D85
8088:29F8 186A 6AAA BDB3 ATF8 8188:8DA9 00A6
8090:8A85 77BD B48A 8578 8170 8190:6964 BOCE
8098:6C77 0068 AA68 AB868 211B 8198:8EF0 0818
80A0:2860 68AA 68A8 6828 3F73 81A0:CADO F8A6
80A8:A900 60A2 0120 1B81 EBGE 81A8:6901 BOB6
80B0:B009 A200 BDFB 8ACY9 92CE 81B0:60B1 F2C9
80B8:4090 05A2 044C EE87 ABO3 81B8:4CB1 8160
80C0:8575 AS00 8576 A005 2CA9 81C0:81B0 54A5
80C8:0675 2676 88D0 F9A9 BD2B 81C8:8485 7DAS
80D0:5065 7685 76A2 96A0 C57B 81D0:8685 81A2
80D8:00A9 1720 EEFF 8A20 2212 81D8:8583 E8BD
80EQ:EEFF B175 20EE FFC8 F923 81E0:E8BD FB8A
80E8:9829 07D0 F5E8 E09A 0A60 81E8:FB8A 8586
80F0:DOE7 A996 20EE FFA9 0CDC 81F0:B025 A585
80F8:9720 EEFF A90A 20EE BD9D 81F8:A585 38E5
22

10,20,30,10, which should clear the middle of
the screen. Finally, this window can be closed
using *MWSHUT.

TECHNICAL DETAILS

The Mini-Wimp uses memory from &70 to &8F
as general workspace, and also memory from
&5000 to &57FF for the icons. This icon area is
just below mode 4 screen memory. Characters
150 to 153 are re-defined each time an icon is
plotted, and therefore shouldn't be used
elsewhere. Although the program was written
for a model B with sideways RAM, it runs just
as well on the Master 128 and Compact
provided that shadow RAM is not used, due to
the way screen memory is accessed directly.

Next month we bring you an icon designer, which
not only designs icons for the Mini-Wimp, but
also uses the Mini-Wimp system itself.

EEFF 20EE 36FD 8200:16A5 84C9 20BO 10AS5 1538
EEFF A999 C484 8208:86C9 20B0 OAA5 8438 B4EF
0B20 EEFF BF19 8210:E586 9003 4C1C 82A2 A88F
77A2 008A 971C 8218:034C EE87 A683 CAA4 7C88
B010 8578 14F7 8220:8688 A585 38E5 8318 C578
9DFB B8AE8 3B67 8228:6903 8573 A584 38E5 7724
1860 6838 423E 8230:8618 6903 8574 A583 2DCB
A200 B1F2 40CE 8238:D003 EBC6 73A5 85C9 ODEA
C92C F01C B110 8240:27D0 02C6 73A5 86D0 D22E
€930 9012 7464 8248:03C8 C674 A584 CIIF 4841
38E9 3095 DD59 8250:D002 C674 A573 C921 2603
04F0 034C 9E05 8258:BOBD OAOA OA85 7320 A9FB
C88A FOFA 6E67 8260:E783 A687 E003 D005 B492
E002 FOOD AE24 8268:A201 4CEE 87E6 878A 5AA0
A900 858D DCD6 8270:A204 182A CADO FBAA 0213
81A5 8E85 6EDS 8278:A57B 9D2B 8BE8 A57D 8758
8EA9 0085 8FE6 8280:9D2B 8BE8 AS57F 9D2B 1D41
8DF0 0818 3DBD 8288:8BE8 A581 9D2B 8BE8 F2D1
CADO F8A6 76DE 8290:A579 9D2B 8BE8 AS57A 1C12
690A BOC2 7827 8298:9D2B 8BE8 A575 9D2B TE56
8FF0 0818 2F15 82A0:8BE8 A576 9D2B 8BE8 5708
CADO F818 2FFD 82A8:A573 9D2B 8BE8 A574 C4B2
20D0 04C8 C8E9 82B0:9D2B 8BAA A000 B175 AlEB
A204 201B 80C7 82B8:9179 C8C4 73D0 F7A9 20D1
8385 7BA5 5CC5 82C0:4018 6575 8575 AS01 91BE
8585 7FA5 314B 82C8:6576 8576 A573 FOOE 159B
00BD FB8A E818 82D0:1865 7985 79A9 0065 786F
FBBA 8584 6F43 82D8:7A85 7A18 9002 E67A 5B15
8585 E8BD BCF6 82E0:CADO D1A9 1D20 EEFF 5B21
A583 C928 B762 82E8:A900 20EE FF20 EEFF 070D
€928 BO1F 080F 82F0:20EE FF20 EEFF A912 2CF1
83C9 1FB0 6AEF .82F8:20EE FFA9 0020 EEFF E23D

Beebug May 1988

"

8300:20EE FFA5 8385 81A9 A35F 84B8:FF8A 2910 DOOA A046 7CC3 8670:48A5 7A48 A000 B179 55A6
8308:0085 8220 CF83 A581 45B1 84C0:A2FF CADO FD88 DOF8 6817 8678:9175 C8C4 73D0 F7A9 0BC2
8310:38E9 0485 7BA5 82E9 757B 84C8:A913 20F4 FF20 3685 076E
8318:0085 7CA9 1F38 E584 121D 84D0:A670 A471 20E7 8320 19D9 8680:4018 6575 8575 A901 433F
8320:8581 A900 8582 20CF 4E6D 84D8:0485 2054 8590 D120 4F10 8688:6576 8576 A573 FOOE C71A
8328:83A5 8138 E904 857D 3EBA 84E0:3685 A000 A900 9960 C8BA 8690:1865 7985 79A9 0065 AAEE
8330:A582 E900 857E A585 2B3C 84E8:04C8 C008 DOF8 A670 04D5 8698:7A85 7A18 9002 E67A 8994
8338:8581 E681 A900 8582 9B8D 84F0:8E60 04A4 718C 6404 55AD 86A0:CAD0 D168 857A 6885 A4F9
8340:20CF 83A5 8185 7FA5 FAT71 84F8:A90F A201 A000 20F4 98E2 86A8:79A6 87F0 21A9 1C20 857B
8348:8285 80A9 2038 E586 C8B7 86B0:EEFF A583 20EE FFAS5 C082
8350:8581 A900 8582 20CF CAOC 8500:FF4C A280 A575 48A5 E2AE 86B8:8420 EEFF A585 20EE 4D22
8358:83A5 7B8D FF89 A57C F3FE 8508:7648 A000 B175 99EB E397 86C0:FFA5 8620 EEFF A91E CF07
8360:8D00 8AAS 7D8D 018A 7711 8510:8A19 CBSA 59DB 8A91 9F00 86C8:20EE FF4C A280 A91A 2FD4
8368:A57E 8D02 8AA9 048D A962 8518:75C8 C008 DOOD A938 4Al1l 86D0:20EE FF4C A280 A900 3879
8370:FE89 20D9 83A5 818D 30AE 8520:1865 7585 75A9 0165 E70F 86D8:8572 4CA2 80A9 FF85 CDC7
8378:018A A582 8D02 8AA9 A368 8528:7685 76C0 10D0 DD68 A1DE 86E0:724C A280 A980 8572 05DF
8530:8576 6885 7560 A000 5731 86E8:4CA2 80A2 2120 1B81 9754
8380:058D FE89 20D9 83A5 6B3C 8538:B9EB 8A91 75C8 C008 F644 86F0:9005 A203 4CEE 87A2 E2C3
8388:7F8D FF89 A580 8D00 FB23 8540:D00D A938 1865 7585 CB4B 86F8:00BD FB8A C940 9005 FA51
8390:8A20 D983 A57D 8D01 3AA6 8548:75A9 0165 7685 76C0 5CD1
8398:8AA5 7EBD 028A 20D9 615A 8550:10D0 E560 20C9 85E0 64FC 8700:A204 4CEE 8785 75A9 E897
83A0:83A5 7B8D FF89 AS57C 4FCB 8558:FFD0 06A5 70F0 02C6 E339 8708:0085 7620 DD87 A000 8992
83A8:8D00 8A20 D983 A91C DFO0 8560:7020 E285 EQOFF D008 0686 8710:B9FC 8A91 75C8 C020 OFEC
83B0:20EE FFAS 8320 EEFF 2660 8568:A570 €927 F002 E670 73A2 8718:DOF6 4CA2 8020 B181 DE68
83B8:A584 20EE FFAS 8520 EC29 8570:2097 85E0 FFDO 06A5 0203 8720:A200 A900 9D00 01E8 44E4
83CO:EEFF A586 20EE FFA9 EE86 8578:71F0 02C6 7120 B085 62EE 8728:E012 DOF8 A200 B1F2 9CD3
83C8:0C20 EEFF 4CA2 80A2 825B 8730:9D20 01E8 C8C9 ODFO F070
83D0:0506 8126 82CA DOF9 73C7 8580:EOFF D008 A571 C91E 8B2F 8738:0BC9 20D0 F1CA A90D 07Al
83D8:60A2 00BD FD89 20EE D921 8588:F002 E671 20FB 85EQ 2CAS5 8740:9D20 0160 A203 4CEE 49A1
83E0:FFE8 E006 DOF5 60A9 FRE3 8590:FFF0 0218 6038 60A5 CAEE 8748:8720 1D87 A201 201B A4E6
83E8:0085 75A9 5885 7698 687D 8598:72F0 05A9 C64C 1586 9A02 8750:8190 05A2 034C EE87 FAFA
83F0:F010 A940 1865 7585 0046 85A0:A980 A202 20F4 FFA2 B449 8758:A200 BDFB 8A85 75A9 9AFC
83F8:75RA9 0165 7685 7688 E7A2 85A8:00C0 C090 02A2 FF60 SCFF 8760:0085 7620 DD87 A575 78E2
85B0:A572 F005 A9D6 4C15 1B75 8768:8D02 01A5 768D 0301 C42E
8400:DOF0 8AA8 F010 A908 6B3A 85B8:86A9 80A2 0220 FAFF 57F3 8770:A920 8D00 01A9 018D B320
8408:1865 7585 75A9 0065 6EB6 85C0:A200 C041 B002 A2FF 3531 8778:0101 ASFF A200 A001 2BC3
8410:7685 7688 DOF0 60A9 AB36 85C8:60A5 72F0 05A9 E64C 3C09
8418:0085 8385 86A9 2785 18D3 85D0:1586 A980 A201 20F4 99CE 8780:20DD FF4C A280 201D 76AE
| 8420:85A9 1F85 84A9 FF85 EFF(85D8:FFA2 00CO C090 02A2 5DBO 8788:87A2 0220 1B81 9005 5FDO
8428:72A9 0085 8785 7085 4A92 85E0:FF60 AS572 F005 A986 53B0 8790:A203 4CEE 87A2 00BD CB1E
8430:71A9 8B85 79A9 8B85 3038 85E8:4C15 86A9 B80A2 0120 5584 8798:FBBA 8575 A900 8576 BCEE
| 8438:7A4C A280 A202 201B 1241 85F0:F4FF A200 C041 B002 B028 87A0:20DD 87A5 758D 0A01 4219
[8440:8190 05A2 034C EE87 05F4 85F8:A2FF 60A5 72F0 05A9 6466 87A8:A576 8D0B 01A2 01BD 11BB
8448:A200 BDFB 8ACY 28B0 F6C5 87B0:FB8A 8575 E675 A900 95ES
8450:F285 70E8 BDFB 8ACY 1371 8600:964C 1586 A980 A200 5DA4 87B8:8576 20DD 87A5 758D 855B
8458:1FB0 EB885 714C A280 ACBRO 8608:20F4 FF8A A200 2903 €013 87C0:0E01 A576 8DOF 01A9 C7AB
8460:8677 8478 A004 B177 7949 8610:F002 A2FF 60AA A981 5258 87C8:208D 0001 A901 8D01 1C3F
8468:9900 0188 10F8 A200 0472 8618:A0FF 4CF4 FFA6 87D0 204A 87D0:01A2 00RO 01A9 0020 €277
8470:A001 4CF7 FFA5 72C9 4AE5 8620:05A2 024C EE87 C687 2A0A 87D8:DDFF 4CA2 80A2 0506 B349
8478:80D0 2BA2 EEAO 8920 DFCC 8628:CA8A R204 182A CADO 4C64 87E0:7526 76CA DOF9 A576 816A
8630:FBAA BD2B 8B85 83E8 F960 87E8:1869 5085 7660 A900 221D
8480:6084 A2F3 A089 2060 2083 8638:BD2B 8B85 84E8 BD2B 8ASE 87F0:1869 14CA DOFB AAAO 3B75
8488:84A2 F8A0 8920 6084 598D 8640:8B85 85E8 BD2B 8B85 4FF9 87F8:00BD EF89 9900 01E8 20BA
8490:A200 A0O01 A940 20F1 D12C 8648:86E8 BD2B 8B85 79E8 49C1
8498:FFAD 0401 8570 ADOS 688B 8650:BD2B 8B85 7AE8 BD2B 972E 8800:C8CO 14D0 F468 AA68 D36F
84A0:0185 714C E284 A670 7F46 8658:8B85 75E8 BD2B 8B85 7A93 8808:A868 284C 0001 4898 DBIF
84A8:A471 20E7 8320 0485 B5D1 8660:76E8 BD2B 8B85 73E8 16DC 8810:488A 4820 B181 C90D FD15
84B0:A9CA A200 AOFF 20F4 BC23 8668:BD2B 8B85 74AA A579 7CF4 8818:F02B 29DF C94D D032 1C31

Continued on page 66

Beebug May 1988 23

BEEBUG
Education

Evaluating Educational Software
by Mark K. Sealey

How do you decide which software to buy for
your pupils or students? It is likely that you
will rely to some extent on reviews in
magazines like BEEBUG. But when an
interesting product which hasn't yet been
reviewed comes your way, how do you decide?
How do you interpret the review itself anyway?
This month BEEBUG Education draws on the
strongest points from the many schemes and
checklists offered in recent years to provide a
guide to choosing educational software.

BROAD CRITERIA

To start with, ask yourself what the program or
package does. If this could be done better
without the computer (for instance with pencil
and paper), stop here and save your money.
Although it is true that children are particularly
motivated by the interactive nature of the
computer, there is more and more evidence that
they are also to some extent confused, by some
screen conventions for example, and that this
occurs on more occasions than we perhaps like
to admit.

EQUIPMENT

Next, if you have decided to continue, check
that you have and can use the equipment
configuration required: most publishers make it
very clear which disc format (40 or 80T, single
or double-sided and so on) is required. But
there are so many different Acorn computer
systems that it is easy to overlook the fact that
the software you have your eye on might not
run on the Econet, or may require a second
processor, or sideways RAM.

DOCUMENTATION

Many people would put the quality of any
documentation high on their list of priorities
when evaluating software. If there is no
support when things go wrong or behave
unpredictably, you are very unlikely to be able

24

to make anything like the most out of what you
have bought. Certain publishers (whose
products tend to get reviewed more frequently
in these pages) make a virtue out of clear, well-
presented, attractive documentation; often this
will have a teacher's ideas book and details of
relevant resources to be used alongside the
package. A technical appendix and booklists, as
well as some mention of the Educational
considerations underlying the software, are
other good signs.

WHAT ARE THESE EDUCATIONAL
CONSIDERATIONS?

This is not too difficult a question to answer.
The most important thing is that the approach
of the suite or program is child-centred, and
likely both to appeal to the user and to work
interactively. It is now accepted that we do not
learn by listening, or even just watching, but by
doing. The more the software involves the user
the better.

To this end, it is helpful to know whether the
software in question has actually been trialled
by teachers and children. This fact certainly
makes a difference to professional reviewers in
their assessments. Is it clear that children have
liked it and teachers found it easy to use? Does
the overall personality of the package leave you
with a positive feeling, one of having achieved
something (assuming that you have the chance
to try the suite out)? You would also be looking
closely at the pace and grading of the program.
Does it allow children to fit its use to their
concentration spans? Are the sound, graphics
and animation of a gimmicky type that will
intrude after several sessions, or do they really
add something to the presentation?

In certain cases it will be appropriate to ask if
there are images, language or 'scenes' in the
package which are offensive because of racist,
sexist or class bias. Such images will almost
always patronise the children and are to be
avoided.

You may decide that the software will be too
difficult or too easy for a particular age or
ability range. This might be because of the
language it uses, or it may lack a clear aim
altogether. If not, is the purpose compatible
with your own priorities in the learning
situation? These may concern sharing, co-
operation, ways of recording and so on.

Beebug May 1988

Adventure games, for instance, often invite the
users to work together in solving a particular
problem. If you don't believe in this practice,
the package may not suit.

It is helpful to examine just how the software
fits into your existing curriculum. Does the
package aim to introduce new material, test it,
reinforce it, extend it or allow experimentation
and/or investigation within it? Generally the
latter is to be preferred because there will
probably be greater scope for interaction.

It is also important that the program or
programs leave the user in control. Again,
research has shown that the better software
does not lead pupils thoughtlessly along a
predetermined path, but affords them choices
and options to promote learning at their own
pace.

Whatever the style and rationale behind the
piece of software, it is vital that it enables the
teacher to intervene and help the pupils, and
that it is not so dense that, for example, time is
wasted in learning a batch of unnecessary codes
or spurious passwords. Does the suite permit
adequate preparation and encourage time off
the computer? Is it easy to link with other work
under way and to plan follow-up activities?

EASE OF USE

It is imperative that the design and cueing
systems (the prompts, error messages and input
routines) are easy to follow. However good the
original idea, there is always someone who will
misunderstand an instruction, or forget for
example that Escape interrupts the action. The
better these pupils are catered for, the happier
their experience of using the software is likely
to be. In the cases where the overall layout
(system of menus and sub-menus or icons) is
simple and uncluttered, it is likely that thought
has gone into planning the rest of the package.
Try crashing it and see if the program can cope.
How much is left after Break (and then Shift-
Break or Ctrl-Break) have been pressed?

ROBUSTNESS

This aspect of a program is similar to the
preceding. Bear in mind that it may not only be
you, the specialist software user, who will want
to work with the package. How well are errors
trapped? How good is the feedback for

Beebug May 1988

‘unconventional' responses? Users who are not
familiar with microcomputers must find the
dialogue with the screen as helpful as any
specialist's instructions. Another good sign is
the way in which menus work. If an option is
no longer relevant (because of an earlier choice,
say, not to attach a printer), it might well be
featured less prominently in the list, or better -
disappear altogether. It should certainly be
possible to return to the menu at any time to re-
select and confirm choices.

There is a whole host of other similar points to
watch. Is input permitted in both upper and
lower case? If not, does the program turn off
the Caps Lock? Does it disable Break? Does it,
for instance, allow screen dumps (check that
they work with your printer) to be interrupted
by Escape or something similar? Check
carefully how discs and files are organised. Ask
yourself how easy it is to erase unwanted data,
for instance, from within the program. Many
non-specialist users will not want to learn the
vaguaries of *DELETE <fsp> or *WIPE <fasp>
and the rest. Is there provision for backing up
data conveniently - perhaps also from within
the suite? Is the product itself protected so that
you cannot (legally or easily) make your own
working copy?

FLEXIBILITY

It is arguable that the most successful
educational software is that which allows
teachers and students the greatest degree of
choice in how they use it. For example, an
adventure or simulation which has both its own
scenario and allows you to create one of your
own is preferable. So is one which permits
saving of the game half way through, or where
a secondary file can be opened, so that the
pupil's 'moves' can be studied and/or
diagnosed afterwards. These have more
flexibility than software with a single
unalterable route which must be taken each
time.

CONCLUSIONS

Clearly not all the questions above will be
appropriate to every piece of educational
software. But these are the ones I have found
the most helpful in evaluating software for
pupils and students of all ages. We hope that
you will write to BEEBUG Education with your
own experiences and ideas too. B

25

e e

DIsSC
SPOOILER
UTILITY

Ever wished that your printer output could
be redirected straight into a file on disc or
tape? Derek Floyd has the answer with this
compact and versatile machine code
utility.

There are many programs which direct their
output towards the printer or screen, but not to
disc (or tape). In most situations this is all that
is required. However, I have found several
situations when I would have liked to divert
the output from the printer, and send it to a
disc file instead. The utility presented here will
enable you to do just that.

DATABASES AND SPREADSHEETS
Databases and spreadsheets serve as a perfect
example of this. There are always provisions to
send output to a printer but they allow
comparatively little control over the format of
the output. The output can now be spooled to
disc or tape, and can then be loaded back into a
word processor or text editor, and altered or
even incorporated into another document.

ALTERING AND RELOCATING MACHINE
CODE

Another example can be found in the use of a
disassembler. Altering and relocating a
machine code program is simple enough
providing that you have the source code (the
original assembly language program). If you no
longer have the source code, the machine code
will need to be disassembled, typed in again,
altered, and finally re-assembled. The majority
of disassemblers allow disassembled code to be
displayed on the screen or sent to the printer,
but usually there is no provision to send the
output to a file. Diverting the printer output to
a file will save having to type in all the
assembly language instructions again.

26

AR e e L e Y

DIVERTING THE PRINTER OUTPUT
All the ingredients to redirect the printer
output are available in the BBC's Operating
System. Firstly, there is an FX call to direct the
printer output in one of four directions.

*FX 5,0 Nowhere, a useful dump during
testing.

*FX 5,1 The parallel printer driver, the
default.

*FX 5,2 The serial printer driver.

*FX 5,3 A user defined printer driver.
*FX 5,4 Network printer.

There is also a user defined printer driver
vector, or jump address, that can be used to
point to the new driver, wherever we decide to
put it. The following listing simply assembles a
new machine code driver and saves it to disc.
Once the driver has been loaded, entering
*FX5,3 will divert the printer output to a
specified file.

ENTERING THE PROGRAM

Enter the program paying particular attention
to the assembler part, especially if you are not
familiar with assembly language. Ensure that
you save the program before you run it to
avoid corruption in case of error.

USING THE PROGRAM

The program generates a short machine-code
utility and automatically saves it to disc as
'DISCSPL'. The following information will then
be displayed on the screen.

Disc Spooler saved as 'DISCSPL'
It will operate from PAGE &900
Syntax: DISCSPL <afsp>
File can be closed by 'CLOSE # channel'
Spooler is activated by *FX 5,3'
Spooler is de-activated by:
"FX 5,1' for parallel printers or
"*FX 5,2' for serial printers.

To load the printer driver into memory and

specify the file to which all output is to be

diverted use the following star command:
*DISCSPL <filename>

The utility will generate an error if you do not

Beebug May 1988

-

specify a filename. Make sure that the single

space between the command and the filename

is not omitted. If the file is successfully opened

then this is announced together with the file

channel (or handle) number in hexadecimal:
Spool file opened channel &11

Once a spool file has been opened, it may be
activated with *FX5,3. From this point onward
any output scheduled for the printer will be
spooled to disc. The driver is de-activated by
executing either *FX5,1 or *FX5,2 to restore
your normal driver. Finally, the file should be
closed with the command CLOSE#<channel>.

RECOVERING OUTPUT
The resultant file will be in a standard ASCII
format and may be loaded into most popular
word processors (e.g. Wordwise, View, etc.). If
the file contains Basic or assembly language
instructions then they will need line numbers.
The easiest method of giving them line
numbers is to load the file into a word
processor and insert the word 'AUTO' before
the first instruction. When you save the file
from the word processor make sure that you
spool the text out rather than just saving it (for
View, save the file without rulers or embedded
commands). If you then *EXEC the file from
within Basic, line numbers will be provided
automatically. Should you wish to do more
elaborate things with the file it will be
necessary to write your own program to read
the file in, one line at a time, and deal with it
accordingly. The following program
demonstrates how to read in a file. In this
example the file is simply sent to the printer but
the program could be altered to direct the
contents into another file, perhaps using a
different format.

10 REM SPOOLER

20 REM D.R. Floyd

30 REM May 1988

40 s
100 CLS:VDU2
110 C%=0PENIN ("filenme")
120 REPEAT
130 B%=BGET#C%:VDU1,B%
140 UNTIL EOF#C%
150 VDU3:CLOSE#C%

Beebug May 1988

PROGRAM DESCRIPTION

The program is well structured so it should be
easy to follow for those people familiar with
assembly language. However, the listing is in
such a style that errors should be easy to detect
by anyone. The code can be segregated into
three distinct blocks.

Lines 1160-1500. This routine initialises the
spooler, setting the vectors to point to the new
driver called 'spool'. The channel number is
displayed using a short routine to avoid the
different addresses in Basic I and II.

Lines 1510-1660. This is the new driver, which
is not a printer driver at all, but simply sends
characters to the disc buffer.

Lines 1670-1730. This is the display routine,
which writes messages to the VDU screen. The
message is pointed to by the zero-page address
&80, and is displayed until either a &0D or &00
is found. The message is completed by a
Carriage Return only if the terminator is &0D.
The three messages are inserted into the
assembled code using Basic indirection
operators.

The last three Basic procedures can be
considered as house keeping, and do not affect
the utility itself. The final machine code utility
just fits into one page of memory.

USING THE SPOOLER ON A CASSETTE
SYSTEM

This utility works on tape as well as disc with a
small number of alterations. Firstly, line 1090
should be changed to read &D00 so that the
utility assembles and operates in an area not
normally used by a cassette machine. Similarly,
both occurrences of the number &900 in lines
1930 and 2020 should be changed to &D00.

Secondly, the utility may be run using
*/DISCSPL <filenme>. The command */ is read
by the system as *RUN. This presents a
problem, because the program looks for the
space after DISCSPL to check that a filename
follows. So, the numbers in lines 1180 and 1210

27

should be increased by one to &0709 and 1290 LDA #spool MOD 256:STA &222
&070A to allow for the extra character in the 1300 LDA #spool DIV 256:STA &223
command. 1310 LDA #message MOD 256:STA &80
1320 JSR display:LDA handle%

The only problems that may arise are when A320 158 A: Lok RiLOR HiLSR A
1340 JSR print:LDA handle%:JSR print

g another program uses the same workspace
’ 1 %
namely &70 to &B82 and &900 to &9FF (&D00to | 130 bes o
&DFF for tape). Now any printer output can be 1370 .print

redirected to a file quickly and efficiently. 1380 AND #&0F:ORA #8&30:CMP #&3A
1390 BCC oscall
10 REM Program DISC SPOOLER 1400 .hex CLC:ADC #&07
20 REM Version Bl1.57 1410 .oscall JSR oswrch%
30 REM Author D.R. FLOYD 1420 RTS
40 REM BEEBUG May 1988 1430 .cantopen
50 REM Program Subject to copyright 1440 LDA #error MOD 256:STA &80
60 : 1450 JSR display
100 ON ERROR PROCerror: END 1460 RTS
110 MODE 7 1470 .prompt
120 PROCtitle 1480 LDA #syntax MOD 256:STA &80
130 PROCinitialise 1490 JSR display
140 PROCassemble 1500 RTS
150 PROCautosave 1510 .spool
160 PROCinstructions 1520 CPY #&03:BEQ userprint
170 END 1530 RTS
180 . 1540 .userprint CMP #&00
1000 DEF PROCinitialise 1550 BEQ printok:CMP #&01
1010 osfind% = &FFCE 1560 JSR printok:CLC
1020 osput% = &FFD4 1570 RTS
1030 osnl% = &FFE7 1580 .printok
1040 oswrch% = &FFEE 1590 TXA:PHA:TYA:PHA:LDA #&91
1050 osbyte% = &FFF4 1600 JSR osbyte%:BCS empty:TYA
1060 oscli% = &FFF7 1610 LDY handle%:JSR osput$%
1070 filename% = &0070 1620 .exit
1080 handle% = 0082 1630 PLA:TAY:PLA:TAX:RTS
1090 code$% = &0900 1640 .empty
1100 ENDPROC 1650 LDA #&7B:LDX #&03:JSR osbyte%
1110 ¢ 1660 JMP exit
1120 DEF PROCassemble 1670 .display JSR osnl%:LDY #&0
1130 FOR I%=0 TO 2 STEP 2 1680 .loop
1140 P%=code% 1690 LDA (&80),Y:JSR oswrch%:INY
1150 [OPT 1% 1700 CMP #&0D:BEQ nldrts:CMP #&0
1160 .setup 1710 BEQ drts:JMP loop
1170 LDA #code% DIV 256 1720 .nldrts JSR osnl% ‘L
1180 STA &81:LDA &0708:CMP #&20 1730 .drts RTS
1190 BNE prompt:LDX #&0 1740 .syntax
1200 .floop 1750]
1210 LDA &0709,X:STA filename%,X 1760 $syntax="Syntax: DISCSPL <afsp>"+C
1220 INX:CMP #&0D:BNE floop HR$13
1230 .open 1770 P%=P%+LEN ($syntax) +1 {
1240 LDX #filename% MOD 256 1780 [OPT 1%
1250 LDY #filename% DIV 256 1790 .message
1260 LDA #&80:JSR osfind% 1800]
1270 STA handle%:BEQ cantopen 1810 Smessage="Spool file opened channe
1280 .vectors 1 &"4+CHRS$0
28 Beebug May 1988
[
SR b T e R S R e e e SN X e R NS SN, it o a o L G SRS e P

1820 P%=P%+LEN ($message) +1

1830 | OBT 1%

1840 .error

1850]

1860 Serror="Unable to open file"+CHR$1

1870 P%=P%+LEN(Serror)+1

1880 NEXT I%

1890 ENDPROC

1900 =

1910 DEF PROCautosave

1920 DIM save 30

1930 $save="SAVE DISCSPL 900 "+STRS$~P%+
" 900"

1940 X%=save MOD 256

1950 Y%=save DIV 256

1960 CALL oscli%

1870 *ACCESS DISCSPL L

1980 ENDPROC

1590 ¢

2000 DEF PROCautosave

2010 DIM save 30

2020 $save="SAVE DISCSPL 900 "4STRS$~P%+
" 900“

2030 X%=save MOD 256

2040 Y%=save DIV 256

2050 CALL oscli%

2060 *ACCESS DISCSPL L

2070 ENDPROC

2080 :

2090 DEF PROCinstructions

2100 CLS

2110 PRINT"Disc Spooler saved as 'DISCS

PL'"

2120 PRINT'"It will operate from PAGE &
900"

2130 PRINT'S$syntax

2140 PRINT'"File can be closed by 'CLOS
E # channél'"

2150 PRINT'"Spooler is activated by '*F
X 5, 3 "

2160 PRINT'"Spooler is de-activated by:
2170 PRINT'M "VxBX B, 1' f0r parallel pr
inters or"

2180 BRINT'" '*EX 5,2 for serial. pr
inters.”

2190 ENDPROC

2200 -

2210 DEF PROCtitle

2220 CLS

2230 FOR LA%=2 TO 3:PRINT TAB(13,LA%)CH
R$(141) ;"DISC SPOOLER":NEXT

2240 PRINTTAB(9,7)"Printer output to Di
Sc"

2250 PRINTTAB(14,12)"written by"

2260 PRINTTAB(14,14)"D. R. Floyd"

2270 PRINTTAB(7,21)"Press any key to as
semble"

2280 G=GET

2290 ENDPROC

2300 :

2310 DEF PROCerror

2320 CLS:REPORT:PRINT" at line ";ERL

2330 ENDPROC
B

BOXED IN THE CARPARK (continued from page 9)

1800 IF W=A AND D1=0 AND D2=0 GOD=0

1810 IF D=b AND L1=0 GOL=0

1820 IF D=B AND L1=0 AND L2=0 GOL=0

1830 IF D=b AND R1=0 GOR=0

1840 IF D=B AND R1=0 AND R2=0 GOR=0

1850 IF D1=3 AND W=A AND D=B GOD=0

1860 ENDPROC

1810 ¢

1880 DEFPROCEND

1890 PRINTTAB(2,29)"NOW PRESS SPACE BAR

AND PUT IT BACK":VDU7:Solve=0:M$="J"

1900 REPEAT UNTIL GET=32

1910 PRINTTAB(2,29)SPC(36)

1920 PROCdraw(0,MS$,X%,Y%,W,D,x,y) :Y%=Y%
+108:PROCdraw (2, M$, X%, Y%,W,D, x,y) : PROCAr
aw(3,"",236,360,240,100,0,0) : JX%=X%:JY%=
Y%

1930 ENDPROC

1940 :

1950 DATA D,136,H,138,1,137,8,138,G,137
,C, 139,2,136,6,138,1,136,7,136,B,139,K,1
31,b,138,0,139,6,137,C,137,C,138,1,138,D
v136,D,136 B,136,B,136,6,139,H,139,C,137
,C, 137,A,137,A,137,1,138,D,138,D,137,E,1
38,E,138,0,136,6,139,6,139,H,136,C,139

1950 DATA €,139,A,13] A,139,1,137,1,131
(£,138,8,136,D,139,%,337,B,138,D,136,E,1
39,1,136,1,136,R,138,C,138,2,136,C,138,H
,131,8,131,D0,137,B,139,1,139,A,136,A,136
,6,136,C,136,H,138,E,138,D,137,D,131,B,1
37,B,137,1,139,A,139,C,136,E,136,B,138

1970 DATA B,138,G,138,G,138,F,136,D,139
(B,139,8B,137,6,138,F,138,D,139,D,136,H,1
39,H,139,B,139,B,139,G,137,F,138,F,138,B
,186,B,139,H,138,D,137,B,139 F, 139 F, 133
(E,137,A,137,A,138,1,138,J,138,8,136,B,1
36,D,136,D,136,F,139,H 139 E,139,G,139

1980 DATA A,137,A,137,C,137,C,137,1,138

Beebug May 1988

29

Machine Filng yster |

e i e

month's article
and the ideas on
using string func-
tions to justify
both strings and
numbers. An-
other application
which uses very
similar ideas is in

Control ity
lle an 11’1g.
(part 3) Many filing

_ systems use a
sequence of fixed-
length records

each containing the same number of fixed
length fields. Each piece of data (which is
variable in length) needs to be either left or
right justified (or padded out) within the
appropriate field, depending on whether it is a
string or a number. In fact, many file handling
programs store all data in string format,
converting to and from other formats when
needed. The advantage of this approach is that
the files themselves contain only a single data
type and need just one set of procedures to
handle them correctly. See our new series on
file handling starting in this issue for more
information on this subject.

st
COURSE

Character

CHARACTER SORTING

As a further example of the use of string
functions I thought it would be instructive to
look at a function for ordering the characters
alphabetically within a single string. Thus,
given a string of characters passed as a
parameter, the function is required to return a
string with the same characters ordered
alphabetically. It is the ability of a function to
return a value (or string) that makes that
structure a better choice than a procedure in
this case.

Although there are many sort techniques

available, I propose to use one of the simplest
and best known; the bubble sort. This technique

30

series on the use of Basic's string

[Mike Williams concludes this mini-
functions.
1 hope s yon
followed last

‘bubbles’ each item up to
its correct position in the
list. The function to do this
may be written thus:

1000 DEF FNsort (string$)

1010 LOCAL n:n=LEN (string$)

1020 FOR i=n TO 1 STEP -1

1030 FOR j=1 TO i-1

1040 IF MIDS (string$, j, 1) >MIDS (string$,j+1)
THEN string$=LEFTS$ (string$, j-1)
+MID$ (string$, j+1,1)
+MIDS (string$, §,1)
+RIGHTS (string$,n-j-1)

1050 NEXT:NEXT

1060 =string$

The bubble sort, as used in the function,
compares adjacent characters in the string, and
if necessary re-orders them so that 'lower-value'
characters move towards the front of the list, all
done with string functions alone.

The function depends upon the fact that
characters may be compared together just as
with numbers. In fact, it is their ASCII codes
which are compared by Basic, and as we saw
before, the ASCII codes representing the
alphabet are in ascending numeric order. It also
means that any digits will be ordered to appear
before any genuine alphabetic characters, and
that lower case characters will all appear after
upper case ones.

As the program moves through the string, the
character in each position j is compared with
that in position j+1 and the two characters re-
ordered if necessary. On each occasion that this
happens, line 1040 ensures that the existing
string is replaced by a new string consisting of
that part of the original string to the left of the
jth position, plus the character in position j+1,
followed by the character previously in position
j (thus reversing these two characters), and
lastly the remainder of the original string to the
right of position j+1.

All the work is done by the one line, and just
the one string variable is needed for the
purpose. The 'heaviest' character is moved to
the right-hand end of the string, and the
process repeated until all characters are in
order.

Beebug May 1988

e, - Lol SR SR R Bl ot PR A O Cle T PR R S A s LT T S

If you want to try out this function, add the
following lines:

100 MODE 7

110 INPUT"Enter any string: " chars$

120 PRINT FNsort (chars$)

130 END

This will allow you to enter any string (up to
the maximum length of 255 characters allowed
by Basic), and will then print the string with the
characters in alphabetical order. If you add the
following line to the procedure as well you will
be able to see on the screen how the letters are
gradually re-ordered:

1045 PRINTTAB(0,12)string$

There is one point to draw to your attention
here, and that concerns the value of p (say)
when used with string functions in the form:

LEFT$ (string$,p)
In the sort function it is j and j+1 which are
used. What happens if the value of p (or j or
whatever) is out of step with the length of the
string? If you try to extract more characters
than exist all behaves as expected. For example,
consider:

string$="abcdefgh"

PRINT LEFTS$ (string$,p)
IF p=20, for example, then "abcdefgh” will be
displayed. The fact that the string actually
contains fewer characters doesn't matter. If p=0
then again you get what you would expect, no
characters at all. But what if p=-1 or any other
negative number. You might expect that as
with p=0 no characters at all would be
displayed. In fact, the complete string would
once again appear. Basic treats -1 here as a
representation of the positive number 255 (256-
1), as it assumes that the value of p in this
context has to be positive.

Now you might say, at this stage, that using our
example with p=-1 is hardly a sensible thing to
do, and that's right, but when you are
developing a program using string functions
which include variables, this is a quite possible
error that may inadvertently occur, and much
confusion can arise if you are unaware of this
possibility. In our sort example it may not be
entirely clear what the full range of values is
likely to be, or you might have used j-1 and j
rather than j and j+1 to select characters.
Understanding how Basic works can often help
to resolve problems.

Beebug May 1988

CHARACTER INPUT AND OUTPUT

If you want to enter simple character strings
and print them out or display them on screen,
then the standard Basic INPUT and PRINT will
be quite sufficient. Once we start dealing with
individual characters, other instructions
generally prove more useful. GET and GET$
both input a single character, returning its
ASCII code or the character itself. Experienced
users generally find that GET is more useful
than GET$.

Remember that when you use GET or GET$
nothing is echoed on the screen as happens
with INPUT. This can sometimes prove to be
quite useful. Alternatively, characters entered
could be echoed with a different character
altogether, a common practice for password
entry, for example. The simplest way to echo
just a single character on the screen is to use the
VDU command - that's one of the reasons why
GET is preferable to GET$. For example:

char=GET:VDU char
would input one character and echo it on the
screen. If you put instead:

char=GET:VDU char+l
then any character input would be echoed by
the one next in the alphabet, so 'A" would be
echoed by 'B' and so on. Using GET and VDU,
here is a simple password function.

1000 DEF FNcheckpassword (password$)

1010 LOCAL char,pos,string$

1020 pos=1:string$=""

1030 PRINT"Enter password:";

1040 REPEAT

1050 char=GET

1060 IF char=127 and pos>l THEN
vDus, 32, 8:
string$=LEFTS$ (string$, LEN (string$) -1
ELSE string$=string$+CHRS$ (char) :
pos=pos+1:VDU42

1070 UNTIL char=13:PRINT

1080 string$=LEFT$ (string$,pos-2)

1090 =(string$=password$)

Calling this function with:

IF FNcheckpassword ("BEEBUG") THEN . . .
would proceed only if the password prompted
for were "BEEBUG".

The function is fairly simple and makes no
other checks on the characters input or the

31

length of the string entered. It does,
however,respond to the the Delete key (ASCII
127) by outputting the sequence:
<backspace><space><backspace>
That's the function of the VDUS,32,8. At the
* same time the last character is deleted from the
input string. Characters that are accepted are
echoed as asterisks (ASCII 42). The function
bears quite strong similarities to the input
function I gave in the first article in this series
(Vol.6 No.9).

GET and VDU work together quite neatly. Do
remember, though, that VDU (unlike PRINT)
will not automatically output a Carriage
Return/Linefeed sequence at the end of a string
of characters. You will need to provide this
explicitly (VDU13,10).

Another bonus that results from using ASCII
codes with GET, and more particularly with
VDU, is that it becomes quite simple to deal
with non-printing characters, or indeed any
character which cannot be generated from the
keyboard. Such characters are the ones with
codes from 0 (the so-called null character) up to
31. These are the characters that are entered as
Control codes from the keyboard, like Ctrl-N or
Ctrl-B for example. They can be readily output
by a program using VDU14 or VDU2
respectively. All these codes are listed in the
User Guide under the heading of VDU codes. A
good many of them duplicate statements in
Basic like MOVE and DRAW. All in all, both
GET and VDU can prove most useful and
effective for many purposes as your
programming skills develop.

One further single character input function is
INKEY. This is like the GET function (and
likewise INKEY$ is similar to GET$), but it
waits for input for a limited time only. If no
character is entered within the time specified,
then a -1 is returned. GET will wait for ever.

THE EVAL FUNCTION

Finally, I would like to draw your attention to
the EVAL function in BBC Basic. This is an
often misunderstood and little used facility,
and yet it can be extraordinarily powerful. It is
also quite unlike any of the other functions
which I have covered, and really deserves a

32

whole article to itself (see First Course Vol.4
Nos8 & 9 for a much more detailed discussion
of this).

EVAL accepts a single string argument and
attempts to evaluate this as an expression. Thus
if we write:

formulas$="u*t+0.5*a*t*2"

s=EVAL (formula$)

PRINT s
then the formula specified as a string will be
evaluated by the EVAL function using the
current values (in this case) of u, t and a.

One easy to understand application of this
principle is the writing of a program to draw a
graph of a function input by the user, for
example:

100 MODE 0

110 vDU5,29,640;512;

120 INPUT"Give function of x: " £$
130 FOR %=-6.4 TO 6.4 STEP 0.1
140 MOVE 100*x,100*EVAL(£$)

150 PRINT "&";

160 NEXT x

170 END

This is indeed quite crude, but if you run this
short program and enter any reasonable
function of x - for example, try
3*SIN(x)+SIN(3*x) - you should get some kind
of result. Without EVAL there would simply be
no way of entering a formula from the
keyboard for evaluation within a program.

The graph of the function specified will be
plotted with asterisks - you could change this.
The VDU codes at line 100 select text printing at
the graphics cursor and move the graphics
origin to the centre of the screen. A slightly
more elaborate version of this program is
included on the magazine disc/tape. The EVAL
function is capable of very much more that I
have covered here, and really is worth
investigating further to exploit its full power.

This concludes our present discussion of string
functions. Do let me know if you have any
questions arising out of these three articles, or if
there are any other topics you would like to see
covered in future First Course series.

Beebug May 1988

A full implementation producing
the most compact code in the
fastest compilation time, for the

"...the Beebug implementation is superior in

S0 many respects..."

“The Beebug C system is far superior to that

provided by Acorn”

“...the Beebug version has to be the best buy”
A&B COMPUTING FEB 88,

“...Beebug C is about five times faster at

compilation and linking than the Acornsoft
version and produces code at a fraction of
the length.”

BBC Micro and Master series. MICRO USER NOV 87
The Language C is now available from Beebug for all users of

the BBC Micro and Master. Beebug C conforms to, and extends beyond the
Kernighan and Ritchie standard, producing fast, compact code and
supporting full floating point maths. A comprehensive set of library
functions are supplied on disc, conforming to the proposed ISO standard.

Features Include:
+ Runs on a standard 32K BBC model B, B+ or Master 128
+ 40/80Track DFS and ADFS compatible
« Support for Acorn operating system (vdu, osbyte, mode etc.)
+ Powerful command line interpreter with over 20 commands & qualifiers
+ Expandable run-time library on disc containing nearly 100 functions & macros
«+ Full macro-handling facilities
+ Debugging facilities and helpful error messages

Technical Summary BEEBUG Cis
Beebug C is a full implementation of the Kernighan & Ritchie supplied on two 16K
standard. The following is a summary of the full specification. ROMs & a disc.
Expressions: * &, -, !, ~, ++, -, sizeof,->,%, /, %, +,-,>>,<<%, <, (Specify 40/80T)

54080 | && || 2
Assignments: =, 4=, = %, /=, %= 550, <<, &=, A =
Declarations: char (8 bits), int (16 bits), short (8 bits), long (32
bits), float (32 bits), double (32 bits), unsigned,
void, pointer, auto, static, extern, typedef

Members Price

£44.25

Statements: if, while, do, for, switch, case, default, break,
continue, return, goto, struct, union NO“"M.embel’S
Preprocessors: #define, #undef, #redef, #include, #if, #ifdef, Price

#ifndef, #else, #endif, #line, #pragma
nearly 100 library functions, plus a full range of
header files - h.stdio, h.stdlib, h.string, h.ctype etc.

Library:

£59.00

To write C programs you will need a text editor or word-processor such as View, Wordwise, InterWord etc.
Beebug C is supplied with a detailed user guide, however this does not teach C, and a basic
knowledge of the C programming language is assumed. The definitive book on C is The C
Programming Language by Kernighan & Ritchie available from BEEBUG.

Beebug Supplement May 1988 33

Personal Ads

Master 128 £290, Morley EPROM Programmer £22,
Clares Artroom 80 track ADFS. Tel. (04243) 4500.

6502 Acorn Processor and DNFS and HiBasic £120.
Microtec colour monitor £135. Aries B20 and B12 and 16K
RAM £65. Zenith Green Screen Monitor £45. Viglen
cartridge system and 8 cartridges for Master £12. Romit
ROM £15. Acorn/Mirle complete business system (7
Discs) £42. Joystick £5. Watford Mk I ROM board £15.
All internal units can be fitted free if required. Tel. (040
381) 4976.

Epson RX-80 F/T dot matrix printer complete with leads,
instructions and original box. Good condition, very well
made and reliable. £90 ono. Tel. 01-341 2187.

WANTED: 1986 Issues of Micro User. Tel. (0788) 822508.

Cumana 40T drives - pair ¢/w PSU, 50 x 40T SSDD discs
- K125. Tel. (09323) 42991.

Master 128 Turbo, twin double sided drives, replay £550.
Microvitec 1451 monitor £190. Acorn teletext (ATS) £75.
ROM boards, ROMs, books, software, too much to list.
Tel. (0543) 254805 (eves).

Miracle Technology Modem WS2000 with DATABEEB
communications ROM and RS 423 lead £40. Tel. (0473)
213907 (after 6 pm).

Master 65C102 6502 "Turbo" Upgrade, plus Tubelink
"Advanced Basic" ROM and Hibasic87 ROM also
Tubelink utility disc all in original packages with all
manuals. £100. Tel. (0322) 64761 (eves only).

BBC B Issue 7, DFS, ADFS, 3.5" Mitsubishi 80T drive
with PSU, Replay tape/disc ROM, Microvitec 1451AP-DS
med. res colour monitor with TV Tuner, many games,
utilities, FORTH, etc, User and Advanced Guides £450.
Tel. (0327) 704401.

BBC B Series 7, Solidisc DDFS, Microvitec Cub Monitor,
Wordwise+, Paul Beverly's Continuous Processing ROM,
tape recorder together with all manuals, etc. £475 ono.
Tel. (0502) 2277.

D.R. DOS plus manual £15. Mastering DOS Plus £5.
AMX Super Art (Master) with mouse £20. DDCPM £10.
Acorn Prestel adaptor £35. Wordstar Professional for
Acorn 280 £50. Exmon II £10. BEEBUG Vol 1 - Vol 6 £15.
Masterfile II £8. Elite £5. Creative Sound £8. Microtext
£25. Acheton £5. Tel. (0533) 312661.

Electron/BBC games, originals, mostly cassette, £1-£4.
SAE for list. Danny Langton, 13 Whitmore Close, New
Southgate, London, N11 1PB.

34

PMS multi-font NTQ. Two ROM set, utilities disc and
User Guide. For use with and Epson MX80 printer to
give Near Text Quality printing £25. Tel. (0474) 363503.

BBC B Issue 7, 1.2 OS £195 ono. Tel. (0724) 720675.

Solidisk SWRAM 32K and manual. Watford Electronics
double density filing system board and ROM and
manual, also WE DFS ROM. OPUS 40T S/S disc drive
and manual and utilities disc. Cassette software. The
Advanced User Guide for BBC. Z80 2nd processor and
bundled software. Wordwise ROM and manual. Shinwa
CP 80-TI printer, 80 cps, Epson compatible, NLQ mode.
AMX mouse with Super Art, manual, discs, etc (for
Master 128). Offers invited. Tel. (0229) 62566.

Acorn Electron with Turbo driver, Plus 1, Plus 3, ACP
Advanced Sideways RAM, ACP DFS E00, ACP Plus 5
and AMX Mouse, Beebug Toolkit ROM, View,
ViewSheet, Database, Elite, all manuals and books, 25,
3.5" discs with various software. Will split. £300 ono. Tel.
(0480) 61668 (after 6 pm).

32K ROM/RAM board £30. 32K shadow RAM £25. AMX
Mouse and Super Art £40. Advanced Control Panel £12.
Masterfile II £10. Original cassettes and discs £40. Thirty
DS/DD discs (blank) £25. Cassette recorder and Joystick
£15. High res monitor £60. Complete Beebug in covers
£28. Tel. (044282) 4600.

Opus single sided, 40T disc drive without power supply
£65. Tel. (041 942) 7197.

Enigma chip £20 without Viglen cartridge or £23 with
cartridge. Chip only works on BBC or BBC+. All relevant
manuals. All offers welcome. Tel. (0904) 707447.

WANTED: 2 disc drives DS DD, preferably not
Cumana, unboxed without power supply. Willing to pay
£50 each. Tel. (0273) 723467 (eves).

Aries B32 complete with ROM chips and 6502 CPU £65.
Aries B12 with B12c (for use without B32) £25. Viglen
BBC B keyboard case, with 2 metre coiled connector £10.
All inclusive postage and manuals. Tel. (0932) 226076.

AMX Mouse/Super Art £30. BCPL + SAG £6. Dumpout 3
£3. Transfer ROM and cassette including aviator, etc, £5.
Tel. (0502) 82564.

288 with mains adaptor and 128K RAM and 128K
EPROM. New, still in boxes £325. Tel. (0782) 316763
(eves).

Interword with manual £35. Tel. 01-803 6763 (after 6 pm).
Continued on page 36

Beebug May 1988

REALTIME SOLIDS MODELLER . 3D CAD/ANIMATION SYSTEM .

"Realtime Solids takes all the hard work out of truly ARCHIMEDES & BBC VERSIONS
L’Z’;’;ﬁggf ’ngcc; %&gﬁgﬁ%ﬁg%ﬁ& Once again Silicon Vision steals the lead with this incredible

offer. It's true we're offering our international, best-selling
o i g = wireframe 3D Graphics Development System (3D GDS) at
beglnnlngs;;;'ull hidden f"f"’e ;igr'qom’ an incredibly low price. No we haven't gone mad, it's simply
and hardly a trace o ',C our way of introducing you to our unbeatable 3D Solids
- BEEBUG (APRIL '88). Design & Animation Systems.
The complete 3D Solids/Wireframe package for) Tl
architectural design, interior design, engineering design, | 3D GDS is a full blown 3D CAD & Animation system that can

extremely complex shapes from very simple

teaching CDT and 3D geometry, molecular modelling, handle wireframe models of any complexity. The package
mathematical plots, scientific processing and high speed consists of a Design & Animation disc, a database disc to
flicker-free 3D animation. get you started, and a comprehensive 95 page manual. The

standalone animation facilities for the BBC include a unique
Hidden Surface Removal can be performed for full colour 30,000 pixels/sec line generator for high speed flicker-free
realistic solid displays at high speed. The 3D solid images 3D animation - ideal for games & simulations.

can then be incorporated into other art designs.
In the future, you may find that you need a 3D Solid
Supports all plotters including HP-GL, Plotmate, Penman Modelling system for more professional results or more
II, Hewlett Packard, Epson HI-80, Hitachi 672, Watanabe, powerful animation facilities for better effects.
Graphtec, Calcomp, Seckonic, Houston DMP, Roland

and paper sizes from A0 to A4 for professional results. Well, then you'll find no better company to do business with
than Silicon Vision. As Europe's fastest growing CAD
The package consists of a 32k Realtime Graphics software house, there's no-one more capable of satisfying
Language rom, Solids Design disc, Wireframe Design your future needs. In the meantime we offer you 3D GDS
disc, Multi-plotter and printer driver disc, Demonstration with our compliments. Worth over £25 it can now be yours
disc, Applications disc, Database library disc and a fully for only £12.95 (BBC B/ B+/ Master) or £19.95 (Archimedes
comprehensive 150 page manual designed for complete 305 to 440). Super-Plot plotter driver: £15.95 (BBC B/ B+/
beginners and experts alike. Master).

Design facilities include 3D Solid/Wireframe Editors to
design objects with lines and surfaces, create
symmetrical objects by Sweeping or Extruding simple
sections, use objects as building blocks to create more
complex objects which in turn may be used as building
blocks, specify individual surface and line colours for
multi-coloured objects, dynamic 3D viewing in any
graphics screen mode and a Data convertor for
interfacing to other CAD systems and applications.

i
ARSIV
AR A
D

The Solids Realtime Graphics Language (RGL) rom
provides 52 star commands to write your own 3D
applications. The facilities include 3D Rotation, Scaling,

Translation, Perspective and Isometric displays, Orbiting, SUPER-DUMP
3D Turtlegraphics, Geometric processing, unique 35,000

! ’) 1920x1024 Resolution Breakthrough!
pixels/sec line generator (faster than Acorn's 9000/sec) :]
for high speed 3D animation and many more options. Near Plotter Quality hardcopy at a fraction

of the cost.
The Solids RGL is compatible with all the BBC graphics The ultimate printer driver which provides 1920x1024
screen, plotting and colour modes including Shadow resolution for high quality printout as opposed to the
screen and is up to 5 times faster than the original RGL. 640x256 resolution limitation of most printer dumps.
The 32k RGL rom board can be plugged into any 16k rom
socket. Fully compatible with the Realtime Solids Modeller, 3D
GDS and all other CAD packages and applications that can
Minimum requirements: BBC B/keyboard/single drive. produce a VDU text file of a screen image. Images can also
Also compatible with BBC B+, Master series, all versions be scaled, positioned and previewed before printing.
of DFS & DDFS. The system will also take advantage of a
6502 2nd Processor/Turbo or AMX/QUEST Mouse. SUPER-DUMP: £15.95 (BBC B/B+/Master). Enquire for
REALTIME SOLIDS MODELLER: £89.95. Archimedes version.
SPECIAL OFFER TO BEEBUG MEMBERS ONLY (Quote Membership Number when Ordering).

3D CAD/ANIMATION (BBC): £11.95. REALTIME SOLIDS MODELLER SUPER-DUMP (BBC): £14.95,
3D CAD/ANIMATION (Archimedes): £17.95. (BBC): £75. SUPER-PLOT (BBC): £14.95,

SILICON VISION =

All prices are fully inclusive.
Contact your local dealer or order directly by cheque/P.O/A /M /Eurocard from:
at

SILICON VISION LTD, SIGNAL HOUSE, LYON RD, HARROW, MIDDX, HA1 2AG.
Tel: 01-422 2274 or 01-861 2173. Fax: 01-427 5169. Telex: 918266 SIGNAL G.

Beebug Supplement May 1988 35

Personal Ads (Continued from page 34)

BBC B+ 128K (64K S/RAM), includes 1770 DFS, ADFS,
View, GXR, Viglen Dual DS 40/80 drives, books, inc 30
hour Basic, Joystick. Data recorder and all leads. Dust
cover. Many original software titles, eg Elite, Frak,
printer driver generator, Monopoly, Connect Four, etc.
Too much to mention. Over. £2000 worth of software. Tel.
(0707) 872005 with any reasonable offers.

Producer/Engineer with own studio and instruments
requires musician/songwriter for talented female
vocalist. Computer Concepts Wordwise Plus ROM and
manuals in perfect condition. Sensible offers please!
MTR642 mixer, TR606 drum machine, ACES 32-way
patch bay, CUTEC 8Urack mount. Very good condition.
£300 ovno. Tel (0494) 716694 (after 6 pm).

Printer Smith Corona, fast teletext 80 £100 or ono and
BBC Model B with data recorder - with 14 games, Elite,
etc and Joystick £180 ono. BBC manuals £1. Tel. (0753)
75141.

BBC B issue 7, DFS, Cumuna 100K drive, Wordwise,
Toolkit, Communicator ROMs plus software, games,
books £290 or offers for individual items. Tel. 01-699
5087.

3" disc drive in tandem with a 5.25" disc drive and
nineteen 3" discs. Tel. (0606) 3589 (eves).

Disc drives: dual DS40/80 and psu £160, single S540 £40,
Solidisk 256K 4 Meg £60, DFDC and ADFS £40, Viglen
BBC console £35, Speech upgrade £20, View 3.0
£40,Viewsheet £25, GXR (B) £20, Wordwise £15, BBC psu
£40, Drive psu £25, Prism 1000 modem and Watford
Modem 84 ROM £40. Tel. 01-903 5881.

Printer Microline 80, dot matrix, tractor and friction
drive £100. Interword, boxed with instructions £35.
Solidisk 128K sideways RAM with disc £25. Tel. (0672)
810625 (eves).

BBC/Master software. ACP £20. Comal £24. Master
cartridges 1/2 price. Numerous books. Voltmace
Joysticks max £10. Basic Editor £15. Many others, all
original. Tel. (0295) 65262.

Viewsheet, Viewstore, System Delta Card Index,
Mailshot and Reporter, Gemini Office Master, all with
manuals and also the System Delta programmers
reference book. Acorn Prestel Adaptor (no software),
Cumana 40 track 100K discdrive with PSU. Other books.
All open to offer. Tel. (0707) 50568.

Kaga high resolution green monitor, Watford 32K
ROM/RAM board, Joysticks, Sweetalker, complete
bound Beebug, games, books and magazines £150 or
separate. Tel. (044 282) 4600.

Business Ads

THE ELEMENTS OF CHEMISTRY (C) This ‘chemical blockbusters' using the periodic table will test your
knowledge of chemistry interactively, exhaustively, and enjoyably. A game for two players: supplied on disk for the
BBC Master Series (specify 5" or 3.5").

*includes over 300 m/c and single answer questions.

*first class revision aid for *GCSE/ A level.

Price £15.00. Order from: New-Life Software, 7 Fulmar Close, Bradwell, Gt Yarmouth, NORFOLK, NR31 8JG.

MESSAGE MASTER for bulletin board users. Help
reduce lengthy phone calls by preparing messages off-
line and then transmitting them error free to the bulletin
board(s) of your choice. Messages can be written with a
wordprocessor like View or Wordwise, or using the
editor provided. Once a message has been written it can
be saved away onto disk for further editing or
transmission. Only £8!

SCREEN COMPRESSOR. Compress/Decompress
graphics screens within a second using this program.
Ideal for title pages and demonstration programs.
Complete with instructions for use within your own
programs. Only £5!

Send SAE for details or cheque/PO to
TurboSoft, 9 The Headland, East Goscote, Leicester,
LE7 8QT.

BEEB-PLANNER, Version 8, CPA program, Time Analyse 250 Activities, calculates project cost, three calendars,
various reports, uses sideways RAM, £39.95. E] Sheffield, 8 Langdon Close, Camberely, Surrey, GU15 1AQ.
Send SAE for details.

36

Beebug May 1988

TRAINING COURSES
A New Service From BEEBUG

We are currently planning a range of one day courses to be offered to BEEBUG and RISC User members. These courses can
be tailored to suit individual needs, as well as the needs of groups from business or education. Courses can be held at St
Albans, your own home or your business premises, and charges will vary accordingly. Courses will be aimed at three levels
to suit everyone from the complete beginner to the professional who wishes to gain experience quickly in a particular area.

If you would be likely to take advantage of any such courses, it would help us considerably if you would indicate (using the
form below, or by letter or postcard) those areas of interest, and the level. We can only offer those courses for which there is

sufficient demand.

NOVICE | INTERMEDIATE

The Archimedes

EXPERT

Preferred venue:
Your Home D

The Master/Compact

Your Business Premises D

Upgrading

St Albans D

Peripherals

Econet

The 'C' Language

Basic Language

Assembly Language

Wordprocessors

Spreadsheets

Databases

Completing this form does not commit you to attending

Other (Please specify)

an;/ courses. The information is for statistical purposes
only. You will be sent more specific details later.

BBC USER GROUP INDEX (continued from Vol.6 No.10)

WEST GERMANY
GERACUS - German Acorn User Club.
Contact Roul Sebastian John, Wasserstrasse 475,
4630 Bochum 1, West Germany.

HONG KONG
'BBC Micro Computer Users Informal Liaison
Group.' Contacts: R Lumb (5-921985) P Monger (3-
7217585)

Acorn Computer Users Society of Hong Kong
Meet on the first Wednesday of each month at the
Brainchild Computer Centre, Far East finance
centre at 7.30 p.m. Contact the society at P.O.Box
13330, Central Post Office, Hong Kong.

NEW ZEALAND
BBC-Acorn Computer User Group of NZ.
PO Box 9592, Wellington, New Zealand.

B.M.Wilkinson, Einstein Scientific, 177 Willis
Street, PO Box 27138, Wellington, New Zealand.
Tel: 851-055.

NORWAY
Oivind Grennes, BBC Norway, O-INFORM,
Postboks 716, 3191 HORTEN, Norway.

PAKISTAN
Anyone interested in forming a BBC User group in

Beebug Supplement April 1988

Karachi Contact Capt. Z.A.Kidvai on Karachi
540986.

REPUBLIC OF SOUTH AFRICA
BBC User Group of Pretoria. P.O. Box 32798,
Glenstantia 0100, South Africa

Pretoria BBC User Group, Contact: Stan Miller,
P.O.Box 117, Montana, 0151 Pretoria, Rep.of
S.Africa.

The Durban BBC User Group, P.O.Box 148,
Umhlanga Rocks, 4320, South Africa. All enquiries
to the secretary, Frank Calboutin.

Tygerberg BBC User Group (Tygerberg) For
Electron, BBC and Master. R.P.Donovan
(Secretary) 16 Bakker Street, Welgemoed, Bellville,
7530 South Africa. Tel: 021-953 2210

ZAMBIA
BBC User Group. Contact J.Maurice Brown. For
enquiries in or near Zambia: c¢/o Britsh High
Commission, P.O. Box 50050, Lusaka. FOR
enquiries from UK: c/o F.C.O. (Lusaka), King
Charles Street, London. SW1A 2AH.

ZIMBABWE

Green Screen Club
P.0.Box U.A.393, Union Avenue, Harare, Zimbabwe

37

RISC USER

The Archimedes Support Group

Our new Risc User magazine has now had six successful issues and is enjoying the largest circulation of
any magazine devoted to the Archimedes. The list of members seeking support from the Risc User group is
growing rapidly and at present we believe that it includes over half of the Archimedes owners.

Existing Beebug members, interested in the new range of Acorn micros, may either transfer their
membership to the new magazine or extend their subscription to include both magazines. A joint
subscription will enable you to keep completely up-to-date with all innovations and the latest information
from Acorn and other suppliers on the complete range of BBC micros. RISC User has a massive amount to
offer, particularly at this time while documentation on the Archimedes is still limited.

Here are some of the topics covered in the first six issues of RISC User:

OFF-THE-SHELF
A look at some of the

e roducts available now
INTELLIGENT AUTO- BAsICV P for t(r:1e Archimedes
CONFIGURE
A program which reconfigures
your machine tq sui} any particular BBC TO ARM ARCHIMEDES VISUALS
application. SOFTWARE The Mandelbrot Set
CONVERSION
A Fractal Pattern Generator
A WINDOW ON THE And more short Basic
ARCHIMEDES BEEB TO routines producing stunning
An introduction to the ARCHIMEDES visual effects.
Archimedes WIMP LINK
environment for Basic
programmers. 3D G',RAPH'CS,
A series of basic INTRODUCING
LOGISTIX FOR THE programs creating ARM
SOUND AND MUSIC ARCHIMEDES and manipulating ASSEMBLER
How to use the A major spreadsheet 3D objects. A series
Archimedes sound reviewed. dedicated to ARM :
system. GETTING THE machine code.
RISC USER ARCHIMEDES ON-LINE .
MEMORY EDITOR A survey of comms ARI(;I;IAMSgES |
A utility fcg:lslltmg user packages. Aok atthe pe
emulator. !

Don't delay - Phone your instructions now on (0727) 40303

As a member of BEEBUG you may extend your subscription to include RISC User for only £8.50
(overseas see below).

SUBSCRIPTION DETAILS
Destination Additional Cost

UK,BFPO &Ch Is £ 8.50

Rest of Europe and Eire £13.00
Middle East £15.00
Americas and Africa £17.00

Elsewhere £19.00

I wish to receive both BEEBUG and RISC User. Lenclosea chequefor £.......... or alternatively
I authorise you to debit myACCESS/Visa/Connect account: / / / /
Sl l g L Expiry Date: / /

Send to: RISC User, Dolphin Place, Holywell Hill, St Albans, Herts AL1 1EX, or telephone (0727) 40303

38 Beebug Supplement May 1988

"Nostalgia

REAL TIME

CONTROL APPLICATIONS

From Paul r;ray Ltd

For School, Business, Home or
Laboratory

S P / 1) E F,) The Software

Fifty additional keywords expanding BASIC's control over the User
Port, Serial Port and keyboard by invoking BASIC procedures from
external events.

Foreground/Background processing
ROM/RAM combination takes no memory
Leaves BASIC programs unaffected
Easy to install with no sokdering

— FROM £65 —

Eight configurable input/output lines
Status indicators for each line
Outputs rated at 2A, 5 to 30V DC

You are flying through the universs, minding your own business, when a distress Opto-isolated and fused for safety

call comes In. "Mayday! The Galapoxi, taking the Ambassador of Regina on an
Important mission to Flaxo, has just crashed on Doom, Rescue needed! Heading Fully compallbls g SHioeH

Remember “"Countdown to Doom"? Peter Kilworth's classic sci-fl adventure may
well have been the first gam ever fought. Well, RETURN TO DOOM - Part 2 of
his Doom trilogy- Is now available from Topologika:

for Cleft...” As the only person ever to have survived Doom, you steer once more Comprehensive manual including driver utilities
you
for that dangerous planet. This could be your finest hour. Ideal for driving motors, lamps, sensors elc.
Or maybe even longer..... — ONLY£79 —
As tough as Countdown - but a different sort of challenge - RETURN TO DOOM Is Prices inclusive of VAT, Please add £3 for pap,

sure to bring back memorles. £12.95 inc disc, manual,VAT and P&P.

We also supply a tull range of industrial digital, analogue and

e
8;«;\&(4j Tel: (24 hours ACCESS) 0733 244682 serial cards for use with SPIDER. For more information on any
0pPQ FREEPOST PO Box 39, Stilton Paul Fray product please telephone (0223) 66529

PETERBOROUGH
sty (Trade Enquiries Welcome)

R R eull Fray. Lid, Willowsralt, Histoh) Rosd, .Cambridge! C84.300

CHEER L SEAL 'nTYPE @

WE'VE gOt you * Protective keyboard cover
through which you can type.
COVEFE d 1 * 24hr dust/spill cover
* Removable, washable,
re-usable.
* Can be custom-made for any
keyboard. Ring for details.

Ring or Write for our FREE catalogue

Re-Inking Service £1.90 Prices are fully incl. IS
Ring for fransporter SAE Cheques/P.O. payable to:
DMP re-Inking kit £10.00

VDU Screen KADOR
(Colour/Mono)€14.50 Unitd
Mouse Mat ..§5.95 Pontcynon Ind. Est.
Abercynon

Dust Covers
(Colour/Mono) . .£7.50

Plonker Box .£4.99

Dexefte Copy Holder £6.00 EREE re-ink with

Chigor Ups Mg 875, Oem over S5
ADVERTISING IN BEEBUG

For advertising details, please contact Yolanda Turuelo on (0727) 40303,

Mid. Glam.CF45 4EP
Tel: 0443 740281

or write to Dolphin Place, Holywell Hill,
St Albans Herts. AL1 1EX

i
BEEBUG Discs - The Ultimate in Quality #
& Reliability

Single Sided 40T Only
Double D i , ;
50 ou DeisctsanSIty 235-60

Dgg%leo Sidgd Only
a - .
50 Density Biscs 239-90

50 discs with free lockable storage bock

Our Guarantee

Prices shown are members prices Welcontdeant

. offer a lifetime data
and include VAT. guarantee andy will replace any disc
with which you encounter problems.
: We have found that the standard of
BhEE}?UhG discs arfe m?nufaCturEd to uality control at the factory makes
the highest specifications and are this necessity very rare.
fully guaranteed.
40 Track Single Sided 80 Track Double Sided
Double Density Quad Density
Members Order Members Order
Price Price Code Price Price Code
10 £9.37 £8.90 0657 10 £10.42 £9.90 0660
25 £93.00 £91.85 0661 I5FE L £96.90 £94.90 0664
50 £37.50 £35.60 0665 500 £49.00 £39.90 0668
Please sendme ___ () (stock code)att. (unitprice) | [
1 Please send me qty stock code) at unit price ACERNNA
: UK post 10 £1, 25/50 £3.75. Overseas send same price inc. UK post & VAT IL:}E:J L;Jl LJ@ :
: I enclose a cheque for £ /Please debit my Access/Visa card £ Hglp 1;}1 Haiif,’ :
1 St. Albans, 1
B g R ik Expiry date: I | Herts. 1
I L. | | L] ; AL11EX I
| Name Memb No. |
! Address T (0727) 40303 |
1 1
| I
o o o e s e o e e e e e e e e e e e e e e e e o o o o o o
40 Beebug Supplement May 1988

R N e L i ohi, Sl oh e e o Y SRS ST e B e 00

L

nn

THE
MASTER
PAGES

Devoted to the Master
Series Computers

This month's Master pages
provide a detailed
examination of the use of
extended vectors, the method
by which programs may call
routines residing in sideways
RAM or ROM. Claus Alsted
explains all. In addition we
have included a review of the
long awaited Advanced
Reference Manual for the
Master, published not by
Acom as expected but by
Watford Electronics. Finally
we have included some
further hints and tips
specially for Master and
Compact users.

We would still welcome more
contributions for publication
in future Master pages.

Beebug May 1988

In this article, Claus Alsted, explains
how to call routines stored in sideways
RAM, and presents a utility to assist
the process.

m

Many people are put off using sideways

MASTER RAM because of the problems of accessing
SERIES it, but with a simple trick all these are
resolved. In BEEBUG Vol.6 No.1, Bernard

VECTORING Hill showed how to use extended vectors
AROUND when writing programs to run from

sideways RAM. This article goes one stage
further and shows how any routine in
sideways RAM can be called via an
extended vector. This will allow, for example, a lengthy machine
code program to be loaded into sideways RAM and then called
from Basic.

The key to the technique presented here is the way in which the
MOS calls routines in sideways RAM (or ROM), and we shall
look at this stage by stage. This is demonstrated in a short
example program, and a further utility is included to assist in
the use of this technique in your own programs.

HOW THE MOS CALLS SIDEWAYS SOFTWARE

Firstly, when an operating system routine is called, either
overtly, such as with JSR &FFEE (OSWRCH) to print a character,
or covertly, as when an event is generated, the MOS reads the
address from a vector in page 2 of memory, and jumps to that
location. For example, on a standard Master 128, the vector for
OSWRCH is at locations &20E and &20F. The contents of these
two locations is &E822, which is the address in the MOS of the
write character routine. Finally the MOS jumps to this routine.

This method of indirecting through a vector will not work if the
routine to be called is in the sideways ROM/RAM area, because
in such cases the appropriate ROM must be paged in first. To
overcome this the MOS uses a special calling technique called
double indirection. Firstly, the vector in page 2 is changed to
point to a routine in the MOS ROM between &FF00 and &FF4E.
This routine then reads the address to be called, and its ROM
number, from a 3 byte 'Extended Vector' in page &D. Finally the
MOS pages in the ROM and calls the routine.

There are 27 vectors in all, numbered from 0 to 26, the vector
number being used to determine the address of the page 2
vector, the address of the &FF00 routine, and the address of the
page &D extended vector. For vector number 'X', its page 2
vector is held in the two bytes starting at &200+2*X, the
extending routine is at &FF00+3*X, and finally the extended
vector is held in the three bytes from &D9F+3*X onwards. For
example, the OSWRCH vector, which is called WRCHYV, is
vector number 7, which means that the main vector is at &20E

41

and &20F, the extending routine is at &FF15,
and the extended vector at &DB4 - &DBé6.

The best way of calling your own machine code
routine residing in sideways RAM is to set one
of the unused extended vectors in page &D to
point to the routine, and then call the routine by
calling the appropriate address in page &FF.
For example, if the address of a machine code
routine in sideways RAM was stored in the
extended vector at locations &DDB - &DDD,
which is the keyboard vector, then the routine
could be called from Basic by CALL &FF3C. An
example of this is given in listing 1, which
assembles a short piece of code to print a
message, copies it to sideways RAM, and then
calls the routine through an extended vector.

CHOOSING EXTENDED VECTORS

The problem with using this technique is in
choosing which extended vector to use. If you
use a vector that has already been extended by
a sideways ROM for its own use, then as soon
as that vector is changed, the computer will
crash. Which vectors are used by ROMs inside
the computer depends very much on the ROMs
installed, although on a Master the filing
system vectors will always be extended. Listing
2 is a machine code utility that will list out the
contents of each vector, so that you can see if it
is extended. When run, the program saves a
machine code program to disc under the name
'VECTOR'. Once the code is assembled, typing
*VECTOR will list all the vectors along with
their contents. Alternatively, the command can
be followed by a vector name or number to list
information on one particular vector. For
example, *VECTOR CNP or *VECTOR 23, both
of which produce the same results.

The display produced by *VECTOR consists of
eight items for each vector. The first two are the
vector number, mentioned earlier, and the
vector name. The next two are the address of
the vector in page 2, and its current contents.
Then comes the address of the extended routine
in page &FF, and the address of the extended
vector in page &D. Finally, the display shows
the current value of the extended vector,
including the ROM number to which it points.

The best way of telling if a vector is extended or

not is to look at the value of its main vector in
page 2. If this is between &FF00 and &FF4E

42

then the vector is being used in extended mode,
and you shouldn't use it yourself. Any other
value means that the operating system isn't
using that vector in its extended form, meaning
that it can be used freely by your own program.
The only exception to this is the FSC vector.
Because of the way the operating systems
handles temporary filing systems, this vector
appears not to be extended, while in fact it
always is.

By using *VECTOR to find out the current state
of the vectors, it should be very easy to choose
which extended vector is best used to call a
routine in sideways ROM or RAM.

Listing 1
10 REM Program Extended Vector Demo
20 REM Version B1.0
30 REM Author Claus Alsted
40 REM BEEBUG May 1988
50 REM Program subject to copyright

100 PROCassemble

120 REM Copv code to SRAM
130 *SRWRITE 900 A00 9234 5

150 REM Setup extended vector
160 ?&DDB=&9234 MOD &100
170 ?&DDC=69234 DIV &100
180 2&DDD=5 : REM Sram bank 5

200 REM Call routine
210 PRINT'

220 CALL &FF3C

230 END

1000 DEFPROCassemble

1010 osasci = &FFE3

1020 FOR pass%=4 TO 7 STEP 3
1030 P%=8&9234 : 0%=&900

[OPT pass%

1050 LDX #0

1060 .loop

1070 LDA text,X:BEQ done
1080 JSR osasci:INX:JMP loop
.done

1100 RIS

‘text

1130 EQUS "Hello World": EQUB 13
1140 EQUB 0

1150]

1160 NEXT

1170 ENDPROC

Beebug May 1988

.-___-.I-

Listing 2

10
20
30
40
50
60
100
110
120
130

REM Program Vector Lister

REM Version B1.0

REM Author Claus Alsted

REM BEEBUG May 1988

REM Program subject to copyright

ON ERROR GOT0180

DIM code 1000

PROCassemble

PRINT'"Press Space to save machine

code”

140
150

REPEAT UNTIL GET=32
OSCLI ("SAVE VECTOR "+STR$~code+"

"+STRS~0%+" 410 410")

160

END

i

180 ON ERROR OFF: IF ERR<>17 REPORT:PR

INT" at line ":ER]

190

END

200 :

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100

1240
1250
1260
1270
1280
1290
1300
1310
1320
1330

DEF PROCassemble
gsinit=6FFC2:gsread=&FFC5
0sargs=&FFDA:osasci=&FFE3
osnewl=4FFE7:0swrch=4¢FFEE
temp=670:ptr=¢71
buff=£73:1len=677

FOR pass=4 TO 7 STEP 3

0% = code:P% = &410

[OPT pass

LDX#&F2: LDY#0: LDA#1l: JSR osargs
LDY#0: JSR gsinit: BNE oneonly
JMP listall

.oneonly

JSR gsread: CMP #ASC"0": BCC notno
CMP #ASC"9"+1: BCS notno

AND #&F: STA temp: JSR gsread
BCC more

JMP nok

.more

CMP #ASC"9"+1:BCS syntax

CMP #ASC"0":BCC syntax

AND #&F:PHA

LDA temp:ASL A:ASL A:ADC temp
ASL A:STA temp:PLA:ADC temp
STA temp:BRA nok

.notno

STA buff:LDX #1

.rdnam JSR gsread:BCS namend
STA buff,X:INX:BRA rdnam
.namend

STX len:LDA#vtab MOD &100:STA ptr
LDA#vtab DIV §&100:STA ptr+l
CLR temp

qxtv

1360
1370
1380
1390
1400
1410
v
1420
1430
1440
1450
1460
)"
1470
1480
1490
1500
1510
1520
:EQUB
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650

CPY len:BEQ nok

LDA (ptr),Y:CMP buff,Y:BNE trynext
INY:CMP #4:BEQ nok:BRA nxtv2
.trynext

INC temp

LDA ptr:CLC:ADC #4:STA ptr:BCC nxt

INC ptr+l:BRA nxtv

.syntax
BRK:EQUB &DC
EQUS "Syntax: VECTOR (<no.>|<name>

EQUB 0

.nok

LDX temp:CPX #27:BCC nok2

.nferr

BRK:EQUB 0:EQUS "Vector not found"”
0

.nok2

JSR header:BRA vlist

.listall

JSR header:LDX #0
.1liall2

PHX:JSR vlist:PLX
INX:CPX #27:BNE liall?2
RTS

.header
JSR txtprt
EQUS "## Name Vadd Value OSadd Xad

d Value Rom"

1660
1670
1680
1690

EQUB 13
EQUS STRINGS (39, "-")
EQUB 13

NOP :RTS

1700 :

1710
1720
1730

.vlist
PHX:TXA:LDX #0
.vlist2 CMP #10:BCC vlist3:SBC#10:

INX:BRA vlist?2

1740 .vlist3 PHA:LDA #ASC" ":CPX #0:BEQ
vlist4

1750 TXA:ORA #&30

1760 .vlist4 JSR oswrch:PLA:ORA#&30:JSR
oswrch

1770 JSR spprt:PLA:PHA:ASL A:ASL A:TAX:
1DY #3

1780 .vlist5 LDA vtab,X:JSR oswrch

1790
1800
1810
1820

INX:DEY:BPL vlist5:JSR spampprt
LDA #ASC"2":JSR oswrch
PLA:PHA:ASL A:TAX:JSR hexprt

JSR spampprt :LDA &201,X:JSR hexprt

1340 LDY #0:LDA (ptr),Y:BEQ nferr 1830 LDA &200,X:JSR hexprt
1350 .nxtvl Continued on page 46
Beebug May 1988 43

Peter Rochford reports
on the latest public-
ation to provide support
for Master users, The
Advanced Reference

MASTER Manual from Watford
SERIES Electronics, priced at
£19.
REFERENCING
THE MASTER [When the BBC Master was

128 first released some two
years ago, there was much
justifiable criticism over Acorn's decision to
issue only a fairly basic Welcome Guide with
the machine and charge for the additional
reference manuals. The additional manuals
were to comprise three volumes, Part 1, Part 2
and an Advanced Reference Guide.

Part 1 and 2 appeared after several months, and
satisfied the immediate needs of many who had
bought a Master and wanted to get the best out
of their machine. However, others like myself,
still considered that much of the detailed
information required by programmers and
hardware designers was not available in either
of these manuals.

During the last two years, no advanced guide
to the Master has been available, Acorn having
failed to release the third manual. Recent
months have seen the release of an updated
version of the old Advanced User Guide, (the
new one containing extra information on the
Master), and a book from Dabs Press called
The Master Operating System. Both of these
books were reviewed in BEEBUG Vol.6 No.6.

Now, finally, the long awaited Advanced
Reference Guide for the Master has been
published and interestingly enough, not by
Acorn. Instead, Acorn gave permission to
publish the 288 page spiral-bound book to
Watford Electronics, a company who are well-
known to the majority of Beeb users as a major
supplier of Acorn equipment, and also as
designers and manufacturers of numerous add-
ons and software packages for the BBC micros.

44

The front cover of the book is very similar to
that of the manuals already published by Acorn
for the Master series, with the same picture of
the Master and the large M logo, while the back
cover carries a picture of Watford Electronics'
premises, lest you forget who the publishers
are. The layout and general design of the book
also follows closely the same pattern as the
Acorn manuals, although much thicker paper is
used, probably to make the book appear longer.

MACHINE ARCHITECTURE

The book kicks off with a look at the machine
architecture of the Master. This is a general
overview describing the various sections of the
Master's hardware and their functions.

What follows after this is a fairly detailed
description of the circuitry of the Master.
Included at the back of the book are copies of
two circuit diagrams supplied by Acorn
Computers. The material in both of these first
two chapters will be familiar to anyone who
has read the Acorn service manual for the
Master.

The next few chapters take a look at memory
organisation, the keyboard controller, the
screen display, the real-time clock, the user
port, serial port, peripheral bus controller and
the IMHz bus. For those who have always
wanted to gain access to the alarm function of
the real-time clock, there is a very informative
section devoted to this, but be warned that it is
only of use to those who have good machine
code knowledge.

The chapter on the machine operating system
mercifully has not been padded out with all the
FX calls that already appear in Part 1 of the
Acorn manuals. It is a relatively small section of
the book, but does contain detailed information
on the address map and explains how to extend
the MOS.

DUAL PROCESSOR SYSTEMS

Dual processor systems are covered in great
depth, and for me this is one of the highlights of
the book. Tube architecture, tube protocols,

Beebug May 1988

e i P e e E

operating system usage and operating system
calls are all covered. The 6502, Z80 and 80186
second processors are all covered in detail, and
I found the section on the 80186 most
interesting and informative.

The sections on the disc filing

As

far as I am concerned this is just padding

out the book.

CONCLUSIONS

Well, should you buy this book or not? A lot
depends on where your particular interest lies
in relation to your Master. The book definitely

contains a lot of information

systems occupy only a few
pages, these being given over
mainly to describing the track
format of the DFS, ADFS and
CP/M. Quite rightly, the book
points out that Acorn's Master
Reference Manual Part 1 already
contains much detailed
information on the two main
disc filing systems.

the B

The final few chapters of the
book are devoted to the
network filing system (ANFS),
the Terminal Emulator, the Editor and a
description of the View and ViewSheet formats.

APPENDICES

The last 120 pages of the book are split into
eight appendices (i.e nearly half its length). The
first three of these deal with the functional
differences between the various Acorn BBC
machines. These are excellent and will be
extremely useful to those who need a quick
reference guide when writing software and
wish to make it portable across the whole range
of machines.

Appendix 4 covers differences between the
ANFS and the older NFS, while appendix 5
looks at the changes introduced in Basic IV.

Appendices 6 and 7 will be of most use to
hardware designers as they cover PCB selection
links, test points and the cartridge interface.

The final appendix is a bit of a disappointment
as it takes up 67 pages of the book to list the
65C12 instruction set. The codes are already
listed in the Acorn manuals, and elsewhere,
and to take up one page for each code is silly.

Beebug May 1988

ADVANC]
R?FERENCE MANUAL

ED

about the hardware of the
machine. The opening chapters
are particularly detailed in this
area, but throughout the book
too, there is much information
on this subject.

Software writers will find the
book useful as well though,
with plenty of material to
interest them. However,
because of the nature of most of
this material, a competent
knowledge of machine code

programming is essential to make use of it.

How does the new book compare with the
other two referred to earlier? There is certainly
some duplication of information that also
appears in both the Acorn Reference manuals
and the New Advanced User Guide. In fact, it is
rather difficult to compare this book with the
New Advanced User Guide (NAUG) and indeed
Dabs Press' Master Operating System. The Dabs
book certainly has more detailed information

on

the MOS as one would expect. The NAUG,

however, covers many more areas than the
Advanced Reference Manual and I think that it
has greater appeal to a wider number of Master
users as a general reference manual.

At

the end of the day it is best to sum up by

saying that The Advanced Reference Manual will
appeal to hardware designers, software writers
who need very detailed information, and those
who just have an unquenchable thirst for
knowledge about their Master. I found it a
fascinating book to browse through and there is
certainly plenty of in-depth information in it
which has not until now been generally
available to the public. However, I do feel that
the book is over priced for what it offers.

45

MHints

H]Hints

H‘Hints

TALKING TO EDIT

Peter Smith

Most people know how to transfer a Basic
program into EDIT and back again by typing
EDIT from Basic, and then pressing Shift-f4 and
typing BASIC to return. To allow this to work,
both Basic and Edit have a special feature for
transferring data between each other, and this
could be used in your own programs.

If, when Basic is invoked by *BASIC, the
command is followed by an '@, (i.e. *BASIC @),
then the Basic ROM will take the address in
memory locations 0 and 1 as a pointer, and read
the ASCII text from that address onwards,
transferring it into its buffer, just as if it had
been typed at the keyboard. For example, if
ASC-PROG is a Basic program saved in ASCII
format, then an alternative to using *EXEC to
load it is to use instead:

*LOAD ASC-PROG EO00

10=¢E00: *BASIC @
and the program will be read in by Basic.

EDIT SEARCH AND REPLACE
Jane Fletcher
While on the subject of Edit, here are two useful
search and replace sequences for editing Basic
programs:

$* ~4/$<Return>
will strip the line numbers from a Basic
program, while:

| J/<Return>
will strip out the linefeeds added to each line
when a listing is spooled to a file.

OVERVIEW PROBLEMS

David Spencer

Some members have written to say that the
Keeper in Acorn's Overview , which is used to
allow different View packages to be used
simultaneously, clashes with certain other
ROMs. The reason for this is that the Keeper
claims the command line vector, as do some
other ROMs. The solution is simply to unplug
either Overview or the offending ROM, using
*UNPLUG.

VECTORING AROUND (continued from 43)

1840 JSR spampprt:LDA #&FF:JSR hexprt
1850 PLA:STA temp:TXA:ADC temp:STA temp
1860 JSR hexprt:JSR spampprt

1870 LDA #ASC"D":JSR oswrch

1880 LDA temp:CLC:ADC #&9F:STA temp:TAX
1890 JSR hexprt:JSR spampprt

1900 LDA &D01,X:JSR hexprt

1910 LDA &D00,X:JSR hexprt

1920 JSR spprt:JSR spprt

1930 LDA &D02,X:JSR hexprt2

1940 JMP osnewl

1950 .spprt

1960 LDA #ASC"™ ":JMP oswrch

1970 .spampprt

1980 JSR spprt

1990 LDA #ASC"&":JMP oswrch

2000 .hexprt

2010 PHA:LSR A:LSR A:LSR A:LSR A:JSR he
xprt2

2020 PLA:AND #&F

2030 .hexprt2

2040 ORA #&30:CMP #&3A:BCC hexprt3:ADC
#6

2050 .hexprt3

2060 JMP oswrch

2070 .txtprt

2080 PLA:STA ptr:PLA:STA ptr+l:BRA txtp
3

2090 .txtprt2

2100 JSR osasci

2110 .txtprt3

2120 INC ptr:BNE txtprt4:INC ptr+l

2130 .txtprcd

2140 LDA (ptr):BPL txtprt2:JMP (ptr)
2150 .vtab

2160 EQUS "USERBRK IRQ1IRQ2CLI BYTEWORD
WRCH"

2170 EQUS "RDCHFILEARGSBGETBPUTGBPBF IND
1s0 1

2180 EQUS "EVNTUPRTENETVDU KEY INS REM
cNe "

2190 EQUS "IND1IND2IND3"

2200 EQUB 0

2210 INEXT

2220 ENDPROC

46

Beebug May 1988

——.—_—_——_——————-—-—*

e D e |

T R R R R R N T R i R el L R e R

DEBUGGING
DATA
STATEMENTS

Peter Osborn describes his simple
technique for checking the many DATA
statements often found in magazine
listings, including some of those in
BEEBUG.

When a BBC Basic program containing many
DATA statements, each with many data items,
is typed into the micro from a listing, it is easy
to make mistakes. The short program,
COMMAS, listed here is a utility designed to
help with pin-pointing any faulty DATA lines.

The output of the program is a list of the line
numbers of the DATA statements, and the
number of data items contained in each. Once
this has been obtained, a comparison with the
original listing will help to show up any
discrepancies.

USING THE PROGRAM

Type in the program and save before trying it
out. When run, it prompts for the name of the
target program. Once this has been entered, the
target program will be scanned, and output to
screen and printer (if enabled) will follow.

PROGRAM NOTES

The target program is loaded at a suitable
address (loadaddr%) with an OSFILE call. The
end address of the loaded program is calculated
from information in the OSFILE block, and a
pointer to the start of the first line (pointer%) is
initialised.

The REPEAT-UNTIL loop takes each line in
turn and examines it for the presence of the
token for the DATA statement, &DC (User

Guide page 483). If it is found, PROCcount is
entered. This counts the number of commas

Beebug May 1988

(ASCII &2C) present, and at the end of the line
outputs the current line number and the
number of data items apparently found
(commas+1). Then pointer% is set to the start of
the next line of the target program, and the
process repeated until the end address of the
file is reached.

10

20

30

40

50

60

100

110

120

130

140

150
addr$%

160 INPUT"Input the name of the file:
" As

170 $filename%=A$

180 X%=670:Y%=0:A%=255:CALL osfile

190 pointer%=loadaddr%

200 endaddr$%=loadaddr%+256*block%?&B+b
lock%?&A-3

210 REPEAT

220 eoln%=pointer%+pointer%?3-1

230 FOR J%=pointer%+4 TO eoln%

240 IF ?J%=&DC THEN PROCcount (J%) :J%=e
oln%

250

260

REM Program COMMAS

REM Version B1.3

REM Author Peter Osborn

REM BEEBUG May 1988

REM Program subject to copyright

MODE 7:VDU 15

ON ERROR GOTO 300
filename%=&C00:0sfile=&FFDD
loadaddr%=PAGE+&500
block%=&70:block%?6=0
!block%=filename%:! (block%+2)=1oad

NEXT J%
pointer%=pointer%+pointer$?3
270 UNTIL pointer%$>endaddr$%
280 END
290 :
300 ON ERROR OFF :CLOSE#0
310 REPORT:PRINT" at line ";ERL
320 END
330 :
1000 DEF PROCcount (J%)
1010 LOCAL I%,commas$
1020 FOR I%=J%+1 TO eoln%-1
1030 IF ?I1%=&2C THEN commas%=commas$+l
1040 NEXT I%
1050 PRINT 256*pointer$%?1l+pointer%?2;SP
Cl;commas%+1
1060 ENDPROC

B

47

P

In this, the final Workshop dealing with printers, we shall cover the use
of *FX3 and *FX5, and delve into the printer itself to explain how to
configure it to print in different character sets.

Inside every printer is a bank
of DIP (dual in parallel)
switches. There may even be
two or three such banks of
DIP switches, the number
depending upon the
complexity of the printer.
Each switch will be
numbered for simplicity and
will have two settings, on or
off. To gain access to the
bank of switches you must
either remove a panel (as
with the Epson FX80) or
remove the top of the printer
(as with some Taxan
printers). The most common
features that these switches
control are:

disabled temporarily you should do this in
software e.g. the KP815 code is 27,56 whilst
27,57 enables it. The page length switch must be
set according to the paper being used. The
choice is usually between 11 and 12 inch paper.
The automatic line feed switch determines
whether a Line Feed will be performed every
time a Carriage Return character is received.
The *FX6 command performs much the same
function in software. We would recommend
that this feature is disabled so that the software
can decide whether a Line Feed is to be
performed or not. Many printers provide a
choice of two alternative characters for the
number zero. In one form it will have a slash
through it, in the other it won't. Set this switch
according to your own taste.

Practically all modern printers incorporate
some resident RAM. If this is the case with your

an d gage len%ﬂ:{t i3 printer, there will be a switch that will
v 0] Lol Gl determine whether this RAM is to be used to
] . The input buffer.

store new character definitions, or whether it is
to be used as a printer buffer. Many people do
not realise that they can configure their printer
to use a buffer by the mere setting of a switch,
which is usually set for character definitions. If
this is the case, altering this switch will activate
the buffer. If you are interested in defining new
characters to download to the printer, refer to
the article Epson Character Definer in BEEBUG
Vol.6 No.6.

Slashed zero.
. Automatic line feed.
. Character set.

DR
ELE il ed
QUR LN R

TLE
mooE

T

il

A detailed account of each
feature will be given in your
manual (look in the index
under 'DIP switches'). There
is a detector in most printers
that will determine when
there is no more paper. One
of the DIP switches will
decide whether the printer
should stop printing or not
when the paper has run out.
Although disabling this
facility may allow you to
print right to the bottom of a
sheet of paper, you may well
run the danger of getting ink
on the roller. For this reason
it is wise to keep this facility
enabled. Should it need to be

L

SEaEEDnE
1 i L]

EaE

Most dot matrix printers support more than
one character set, the one in use being selected
by up to three DIP switches. The different
character sets are much the same as the default,
but with variations on half a dozen or so
characters. For example, if your printer is
configured for the American character set it will
print a hash sign instead of a pound character
on receipt of the character Shift-3 (ASCII 35).
The exact differences, and the character sets
available, will be described in some detail in
your printer manual. Note that the other

It EnnE
mniEl PR EEREEEEE

EeEE e

48 Beebug May 1988

e e R R A i SN N P B b i e ey £ R o i i el Sl

character sets can be software selected, so you
can still print a pound character even with the
DIP switches set to the American character set.

There are, of course, many other features that
can be selected from the switches such as NLQ,
disable bell etc, but these tend to be very
'printer specific' and-a description of their use is
best left to the appropriate printer manual.
Finally, make sure that the printer is turned off
before altering any of the switch settings
because these are read only when the printer is
turned on. Altering the switches while the
printer is powered up will have no effect.

USING *FX3 AND *FX5

These two commands control the output
streams to which data is sent by the computer.
Because of the large variety of printers
available, provision has been made for the use
of both parallel and serial printers. The four
output streams available are the screen, the
RS423 port, the printer and spool. The *FX3
command must be followed by a single value
specifying the output stream. The most useful
values are in the range 0 to 11 (values 16
through to 27 do the same as 0 to 11 but turn

Value Printer Screen RS423
0 enabled on off
1 enabled on on
2 enabled off off
3 enabled off on
4 off on off
5 off on on
6 off off off
7 off off on
8 on on off
9 on on on
10 on off off
11 on off on

VIDEO CATALOGUER (Vol.6 Nos.9 and 10)

Points Arising....Points Arising....Points Arising....Points Arising...

spool off) and allow data to be sent to all or any
of the output streams as shown in the table.

Note that the printer may be on, off, or just
enabled. If the printer is on, data will be sent to
it irrespective of whether a VDU2 has been
issued or not. However, if it is 'enabled’ data
will be sent to it only if a VDU2 (Ctrl-B) has
been issued. A useful combination is *FX3,10.
This will send data purely to the printer. If you
are printing a document using lots of control
codes, this is an easy way of making sure that
these codes do not go to the screen where they
could have unpredictable results. With this
command there is no need to issue any VDU2
or VDU1 commands, but you will need to issue
*FX3,0 to restore output to the normal default
of screen only when printing is finished.

The *FX5 command deals purely with the
printer output stream. There are four possible
values in the range 0 to 3. *FX5,1 and *FX5,2
select output to the printer (parallel) or serial
ports respectively. *FX5,3 selects a user
supplied printer driver. For more details refer
to the article 'Disc Spooler Utility' in this issue
of BEEBUG. The *FX5,0 command selects a
‘printer sink’ where characters are simply 'lost'.
This avoids wasting paper when testing
programs that output their data to the printer,
or where a printer is temporarily unavailable.
The Beeb will not then 'hang' waiting for the
printer to go 'on line'.

That concludes this series of Workshops on the
use of printers. You should now be able to use
most of the facilities that your printer offers
from within Basic or any word processor.
Equally important, you should now be able to
extract the relevant commands for any function
from your printer manual, and use these in
your own programs.

Unfortunately the three additional lines included under points arising last month were incorrectly
numbered to fit in with part two. To correct this, change lines 3930, 3940 and 3950 to read 3915,

3916 and 3917 respectively.

Beebug May 1988

B
49

@&

Machine

e < T eS|

If you find the BBC's flashing colours
limited and not particularly useful, read
how Colin Reynolds' utility transforms this
situation, and provides a useful tool for
animation.

Have you ever wished to use a flashing colour
that was not black & white, red & cyan, or one
of the other defaults? The flashing colour
combinations and rates on the BBC micro are
very basic, and users may find these limiting.
This program extends flashing colours to a level
where they can produce some really interesting
effects if used imaginatively.

5 - Period of 2nd colour (50ths of a
second)

6 - Counter (usually 1)

7 - Flag (usually 0)

The sixth value can nearly always be set to 1 for
each colour defined. It is however possible, by
changing this value, to get special effects, as
described in the second example below. The
flag is used to keep track of which colour is
selected, and can always be left as 0.

To re-define another logical colour just add
another DATA statement with the information
in it as described above. The example in the
program will re-define logical colour 1 (selected
by COLOUR 1 or GCOL 0,1 etc.) to flash
between colours 1 & 7 (red & white), with red
selected for 1 second (50/50 ths) and white for
0.4 seconds (20/50 ths). When the program is
run, it will set up the new colours, and these
can then be disabled with *FX13,4, and
subsequently re-enabled with *FX14,4 from

within your own program.
TIME 1/50 SECOND PROGRAM NOTES
COLOUR 0 70 8% The program uses the start of vertical sync
1 RED BLUE event, which is enabled by *FX14,4, to generate
2 BLACK RED an event 50 times a second. For each logical
colour defined, a counter is decremented each
time the event occurs. Once this reaches zero
the next colour is selected and the counter is
Colour/Time Chart Example 1 loaded with the 'on’ time of the new colour.
The program allows the user to re-
define any of the logical colours to flash | coLour TIME 1/50 SECOND
between any two of the physical colours = 0 X000 T 100 LM M ek
at any rate. You can even switch ? = YELLO‘:LIU';C S
between two physical flashing colours. i’ [veo [veiow [eve
HOW TO USE THE PROGRAM 3 | rep T vewow [ere
Each logical colour is re-defined by 4 | rmeo T vewow [erc
seven values. To use the program, after 2 /] meo [veiiow Tere
you have typed it in and saved it, you ORESET
will need to specify suitable values in

DATA statements between lines 800
and 990. The meaning of these values is:

1 - Logical colour to be defined.

2 - 1st physical colour.

3 - 2nd physical colour.

4 - Period of 1st colour (50ths of a
second)

50

Colour/Time Chart Example 2

As the program is so short (80 bytes), it can be
fitted, together with enough data to re-define
all 16 colours, into 200 bytes of memory. This
means that it could be assembled, say, in the
serial buffer at &900, and *SAVEed as a block of
memory.

Beebug May 1988

e i s S e st F b R, SRS R ISl B B e D o e R e R

T AR e T e N N T M e

SCREEN DESIGNS 130 P%=PROG%
If you wish, you can define colours so that as 140 [OPT C
one goes off another comes on, and so simple 150 .start
animation can be produced. This is illustrated 160 PHP:PHA:TXA:PHA:TYA:PHA
in the examples below. To help you design 170 LDX #§00
these colours it is best to draw time/colour 180 .loop
charts,‘ and these are included for each of t}'le 190 LDA sto,X:CMP #&FF:BEQ exit
following examples. To use the examples, in 200 DEC sto+5,X:BNE next
f}a\ich Case.lotahd in thelthlg ma;nfprogran} and 210 TXA:CLC:ADC Sto+6,X:TAY
en type in the example lines before running. 220 LDA sto+3,Y:STA sto+5,X
Example 1. 230 LDA sto+6,X:EOR #&01:STA sto+6,X
600 MODE 2 240 LDA sto,X:STA spc

250 LDA stotl,Y:STA spctl
260 TXA:PHA

270 LDX #(spc AND 255)
280 LDY #(spc DIV 256)

610 COLOUR 1:PRINT TAB(5,10);"BEEBUG"
620 COLOUR 2:PRINT TAB(8,13);"BEEBUG"
630 COLOUR 7:END

228 gigz ; (l)i 8 218 290 LDA #&0C:JSR OSWORD
o Ry fande 300 PLA:TAX
_Afxamplez 310 .next
600 MODE2 320 TXA:CLC:ADC #&07:TAX
610 FOR I=0 TO 15:GCOL 0, (I MOD 5)+1 330 JMP loop
620 PLOT 4,640,0:PLOT 5,1*80,900 340 .exit
630 NEXT:END 350 PLA:TAY:PLA:TAX:PLA:PLP
800 DATA 0,4,0,250,10,1,0 360 RTS
810 DATA 1,1,3,50,50,1,0 370 1
820 DATA 2,1,3,50,50,21,0 380 spc=P%
830 DATA 3,1,3,50,50,41,0 390 $spc=STRINGS (5,CHRS0)
840 DATA 4,1,3,50,50,61,0 400 P%=P%+6
850 ‘DATA 5,1;3,50,50,81,0 410 sto=P%
420 RESTORE
In colours 2 to 5 of the last example, the start 430 REPEAT
counter (the 6th value in the data statement) 440 READ A%
has been set to a value other than 1. This'means 450 ?P%=A%:P3=P%+1
that although all the colours have the same 460 UNTIL A%=255
flash rate, the flashing is staggered because of 470 NEXT
the different starting values. There is a lot of 480 ?6220=PROG% AND 255

490 ?&221=PROG% DIV 256

scope for experimentation here.
500 *FX 14,4

10 REM Program Multi Flash 510 ¢
20 REM Version Bl.2 860 DATA 1,1,71,50,20,1,1
30 REM Author Colin Reynolds 990 DATA 255 B

40 REM BEEBUG May 1988

50 REM Program subject to copyright
60 ¢

100 DIM PROG% 200

110 OSWORD=&FFF1 . '
120 FOR €=0 TO 3 STEP 3 flashing colours.

This month's magazine disc contains an
extended demonstration, illustrating some of
the effects that can be achieved with the new

Beebug May 1988 51

Wrenching the controls to port caused the ship
to keel over and drop sickeningly out of the
purple rain-clouds. Glancing at the orward
view-screen, I could make out the far mountain
range piercing the shroud of the perpetual
thunderstorm. The deeper hued purple of the
cratered plain rushed skyward as the retro-
rockets cut in, causing the ship's hull to
shudder uncontrollably. Spying a small clearing
lying at the foot of a large rock-strewn defile, I
kicked the rudder and applied lateral thrust
until the ship grudgingly lurched into the
shadow of the overhang. With a final roar of
triumph the engine cut and allowed the
support struts to sink into the purple sands of
Doom. I had returned.

FEEAE u)f){r

Product RETURN TO DOOM
Supplier = Topologika

P.O. Box 39,

Stilton PE7 3RL.

Tel. 0733-244682
Price £12.95 inc. VAT (disc only)

Having previously survived the acid rain of the
planet Doom, only a fool would return, but
who could ignore the distress signal of the
space cruiser Galapoxi? The ship was carrying
the Earth's Ambassador to Flux, and somehow
it had been forced down over the dreaded
planet. In the short time available before your
ship is destroyed by the metal-rotting rain you
must overcome the obstacles and rescue the
Ambassador from her captors.

In this sequel to Countdown to Doom, Peter
Killworth has managed to squeeze a quart of
fun and puzzles into the BBC's pint of memory.
Peter has again disregarded the opportunity to
include an over-clever command parser, and
instead opted for small answers to big puzzles.
You will find that in general, dropping,
throwing and waving are the order of the day
without any superfluous subtleties. However,
this does not mean that things are any the
easier for the player as the problems are as
convoluted as ever.

52

\DVENTURE GAMES b; Mitch ADVENTURE GAM

To tighten the screw, the game appears to
include more than a few red herrings. Inserting
objects which have no purpose is one way of
confusing the player, but Peter has taken the
dishonourable step one stage further. By
permitting the player to use a useless object in
what appears to be a useful manoeuvre, he
thereby convinces the player that the object is
bona fide, but in fact takes him further up the
creek. In addition, the game is required to be
played in the correct sequence of moves, as
failure to arrive at a certain location within a set
number of moves will also seal your fate.

The game does not permit you to EXAMINE
objects, and this I personally find annoying. I
have heard and appreciate Peter's argument
that such fripperies are not required, but I don't
agree. With a disc-based database to which this
game has access, there is the space to provide a
more friendly interface between the player and
the adventure. If I am holding an object such as
a computer and the game does not understand
EXAMINE COMPUTER, SWITCH ON
COMPUTER or USE COMPUTER I start to get
resentful. I realise that if I bide my time, sooner
or later in the game there will arrive a time
where the appropriate use of the object in
question will become more obvious, but before
that happens a novice player will have stamped
the obdurate machine into a pile of silicon chips
with frustration.

Return to Doom contains all the humour you
would expect from Peter, and again his
'engineering bent' lends credibility to the
puzzles. There is a Montypython who will
squeeze you, a Grobbler who will gobble you,
and a Stereo Rock monster who will grind you
up. For the faint-hearted a built-in hint facility
has been included from which you may request
a series of increasingly obvious clues to any
problem. It should be mentioned that the game
does contain a bug which surfaces if you
should die at certain locations. On being asked
if you wish to start a new game, the program
crashes with a 'NOT FOUND' message if you

Continued on page 66
Beebug May 1988

R oL TS PR SOV A S0 PSS Y 2 AR R SN i T e b O RS T R N LA | D e

e -] i =l

]

ASSEMBILER

Part 10

A series for beginners
to machine code by Lee Calcraft

This month: Integer Division

DEDUCING AN ALGORITHM

Last month we tackled the problem of
multiplication in assembler. Division, I am
afraid, is no easier - though as with
multiplication, dividing by powers of two is
extremely easy. To divide an integer by 2, just
shift it right by one place. To divide by 4, shift
by two places, and so on. But for a general
purpose division routine, our best bet is to
begin by taking a look at longhand division, to
see the exact process involved.

Take for example the number 325 divided by
14. In longhand this will take the following
form:

023 Quotient
14| 325 Dividend

3
14
0

32

Divisor

2

Remainder 3

Here we begin by taking the first digit of the
dividend ¢3), and trying to divide the divisor
into it. It will not go, so we place a zero as the
leftmost digit of the quotient. The next digit of
the dividend (2) is taken down and placed

Beebug May 1988

beside the first digit, making 32. We again see
how many times 14 will divide into it. The
answer this time is 2, so we insert a 2 as the
second digit of the quotient. 2x14 is then
subtracted from the 32, and the remainder (4) is
used as the top digit of the partial dividend for
the next division. This time the final digit of the
dividend (5) gives a final partial dividend of 45.
The result of this division is 3, and this takes its
place as the final digit of the quotient. Finally
we subtract 3x14 from the partial dividend to
give the remainder. The final result is thus 23,
with a remainder of 3.

What happens in binary arithmetic is very
similar, except that we never need to see how
many times the divisor will divide into the
partial dividend: we need only see if it can or
cannot be subtracted from it (because we are
dealing with binary numbers, the partial
dividend must be less than twice the divisor).
To establish the basis for an integer division
algorithm, we will try dividing 110110 by 101
(i.e. 54 divided by 5).

001010
101|110110
101
001
Tkt
101
10
100
101

The first step is to attempt to subtract the
divisor (101) from the top bit of the dividend. It
will not go, so we place a 0 in the top bit of the
quotient, and tack on the next bit of the
dividend. This partial dividend (11) is still too
small, so we repeat the process. This gives us a
partial dividend of 110. The divisor can be
subtracted from this, so we perform the
subtraction, and the remainder (1) drops down
to take its place as the top part of the next
partial dividend, and we place a 1 in the next
position of the quotient.

We repeat this process until we have made the
attempted subtraction a total of n times, where
n is the number of bits in the dividend. The

53

result is 001010 with a remainder of 100; or in
decimal terms, 54/5 gives 10 with a remainder
of 4.

We can now establish five main steps in the
division process, and I can do no better than to
quote Leo Scanlon's extremely succinct
presentation of them in his 6502 Software
Design.

1. Shift the quotient left (initially zero) to provide a
(least significant) bit position for the next quotient digit.

2. Shift the dividend left, so that another bit from the
partial dividend is tested.

3. Compare the divisor to the partial dividend.

4. If the divisor is less than or equal to the partial
dividend, subtract the divisor from the partial dividend and
enter a 1 in the quotient.

5. If any digits remain in the dividend, return to step 1.

AN INTEGER
DIVISION

PROGRAM

A program to
implement
these steps is
given in
listing 1. When it is run, it will request a
dividend and divisor in the range 1 to 255, and
will perform the division, and display the
result. It works as follows. The dividend and
divisor are held in RAM at &70 and &71, and

Dividend (1-255)>
Divisor (1-255>
Resul t=

Remainder=

Dividend <(1-255)>

54

Listing 1
10 REM Integer divide
20 REM Author Lee Calcraft
30 REM Version B 0.6
40
50 dividend=&70:divisor=&71
60 quotient=&72:remainder=§73
70 MODE7
80 FOR pass=0 TO 1
90 P%=&900
100 [
110 OPT pass*3
120 LDA #0
130 LDX #8
140 .next
150 ASL quotient
160 ASL dividend
170 ROL A
180 CMP divisor
190 BCC skip
200 SBC divisor
210 INC quotient
220 .skip
230 DEX
240 BNE next
250 STA remainder
260 RTS
210 1
280 NEXT
290
300 REPEAT
310 INPUT'"Dividend (1-255) ? "divid
320 INPUT"Divisor (1-255) ? "divis
330 ?divisor=divis:?dividend=divid
340 CALL &900
350 PRINT"Result= "?quotient
360 PRINT"Remainder= "?remainder
370 UNTIL FALSE

the partial dividend will be held in the
accumulator. This is zeroed at the start (line
120), and the X register, which will hold the
loop count, is set to 8. The quotient and the
dividend are then both shifted one position to
the left. The dividend must be shifted last,
because the purpose of shifting it is to transfer
its top bit to the carry flag. The accumulator is
then rotated left (line 170), and as you may
remember from last month, this causes the
carry flag to be placed in bit zero of the
accumulator, and thus forms the first bit of the
partial dividend.

Beebug May 1988

B s b e e S R SR R NP o SR T ot (S S Sl S s P i L P ST e SRS

The instruction CMP divisor is then
encountered in line 180. This is central to the
whole process, since it checks whether the
divisor will divide into the partial dividend. If
it will not, then the next couple of lines are
skipped. These actually subtract the divisor
from the partial dividend (SBC divisor in line
200), leaving the remainder in the accumulator
as the top part of the next partial dividend. The
quotient is then incremented. This just places a
one at the appropriate position in the quotient
if division took place.

Now the loop counter is decremented (line 230),
and the loop repeated until all 8 bits have been
processed. Just before the routine terminates,
the contents of the accumulator (which must of
course hold the final remainder), are saved to
remainder at &73.

Considering all that is involved, the routine is
extremely short. But Scanlon has spotted a way
to shorten it still further, and slightly increase
its speed. He stores both dividend and quotient
at the same location in RAM. This saves a shift
operation at each of the routine's 8 cycles, and
takes advantage of the fact that as the quotient
builds up in RAM from the right, so the
dividend is shifted out to the left.

AN INTEGER DIVISION SIMULATOR

Because of the complexity of the division
algorithm outlined above, I have included a
second listing which provides a demonstration
of the process in action. It is written in Basic,
and displays the various registers and their
contents, together with the state of the carry
flag during an 8 bit division. To use the
program, type it in, and save it away. When it is
run it will request the input of a dividend and
divisor, and will then move into display mode.
All the major registers will be displayed, and
text indicating each step in the process will
appear at the foot of the screen. At each press of
the space bar, another step will be performed,
and its effect will be seen on the display. This
continues until the full 8 bits have been

Beebug May 1988

INTEGER DIVISION SINULM;OR

241 divided by 7
Guotient 00000100 t 3
11110001 00010000
00000001 °

111

Press space bar _

processed, and the quotient register contains
the result of the division, with the remainder in
the accumulator.

Next month we move on to an altogether different
topic: The 6502's stack, and the use of subroutines.

Listing 2
10 REM Program Division Simulator
20 REM Version B 0.9
30 REM Author Lee Calcraft
40 REM BEEBUG May 1988
50 REM Program subject to copyright
60 :
100 MODE7
110 PROCinit
120 REPEAT
130 PROCsetup
140 PROCdivide
150 UNTIL FALSE
160 :
1000 DEFPROCinit
1010 X1=0:X2=11:X3=22:X4=31
1020 Y$=CHR$131:C$=CHR$134
1030 PRINT TAB(5,1) YSCHR$141"INTEGER DI
VISION SIMULATOR"
1040 PRINT TAB(5,2) YSCHR$141"INTEGER DI
VISION SIMULATOR"
1050 ENDPROC
1060 :
1070 DEFPROCsetup
1080 quot=0:partd=0
1090 vpu28,0,23,39,3:CLS
1100 INPUT TAB(O,8)"Dividend (1-255) ",
divid
1110 INPUT TAB(0,12)"Divisor
,divis

(1-255) *

55

1120 CLS:VDU26 1510 DEFPROCputbin (no,X,Y, suppress, fast
1130 PRINTTAB(X1,6)C$;divid;" divided b)
y ":;divis 1520 PRINTTAB(X,Y);
1140 PRINTTAB (X1, 9)CS$"Quotient"y$ 1530 FOR n=7 TO 0 STEP -1
1150 PRINTTAB(X1,12)C$"Dividend"Y$ TAB (1540 IF NOT fast THEN Z=INKEY(10)
X3)C$"Shifted"y$ 1550 bit=no DIV 2%n
1160 PRINTTAB(X1,15)C$"Part div"yY$ TAB(1560 IF bit>0 OR n=0 suppress=FALSE
X3)C$"Carry"ys 1570 IF bit=0 AND suppress=TRUE THEN bi
1170 PRINTTAB(X1,18)CS$"Divisor"Y$ =-16
1180 PROCputbin (quot, X2, 9, FALSE, TRUE) 1580 VDU bit+48
1190 PROCputbin(divid,X2,12,FALSE,TRUE) 1590 no=no MOD 2*n
1200 PROCputbin (divid, X4, 12, FALSE, TRUE) 1600 NEXT
1210 PROCputbin(0,X2,15,FALSE, TRUE) 1610 ENDPROC
1220 PROCputbin (divis,X2,18, TRUE, TRUE) 1620 :
1230 ENDPROC 1630 DEFPROCwait
1240 : 1640 *FX15
1250 DEFPROCdivide 1650 PRINTTAB(5,23)Y$"Press space bar "
1260 FOR count=7 TO 0 STEP -1
1270 RESTORE 1660 REPEAT UNTIL GET=32
1280 PRINTTAB(X3,9)CS"Bit";SPC8 Y$;coun 1670 ENDPROC
£ 1680 :
1290 PROCtext :PROCwait 1690 DEFFNshift (param)
1300 quot=FNshift (quot) 1700 result=param*2
1310 PROCputbin (quot,X2,9,FALSE,FALSE) 1710 carry=(result>255)
1320 PROCtext :PROCwait 1720 =result AND 255
1330 divid=FNshift (divid) 1730 :
1340 PRINTTAB(X4,15) ;ABS (carry) 1740 DEFFNrotate (param)
1350 PROCputbin(divid,X4,12,FALSE,FALSE 1750 =-carry+FNshift (param)
) 1760 :
1360 PROCtext:PROCwait 1770 DEFPROCtext
1370 partd=FNrotate (partd) 1780 READ AS
1380 PROCputbin (partd, X2, 15, FALSE, FALSE 1790 PRINTTAB (0,21);SPC40;
) 1800 PRINTTAB (0,21)CSAS
1390 PRINTTAB (X4,15)"0" 1810 ENDPROC
1400 PROCtext:PROCwait 1820 ¢
1410 IFpartd>=divis THEN success=TRUE:P 1830 DATA Shift quotient ready for next
ROCtext :READAS : quot=quot+1 :partd=partd-d bit
ivis ELSE success=FALSE:READAS:PROCtext : 1840 DATA Shift dividend (Top bit into
READAS : READAS Carry)
1420 PROCwait 1850 DATA Rotate part div (Shift & pick
1430 IF success THEN PROCtext:PROCwait: up carry)
PROCputbin (quot, X2, 9, FALSE, TRUE) : PROCtex 1860 DATA Compare part div to divisor
t:PROCwait :PROCputbin (partd, X2, 15, FALSE, 1870 DATA Comparison succeeds
TRUE) 1880 DATA Comparison fails
1440 IFcount=0 THEN READAS 1890 DATA So increment quotient
1450 PROCtext :PROCwait 1900 DATA and put remainder into part d
1460 NEXT iv
1470 PROCtext :PROCwait :PROCtext :PROCwai 1910 DATA Repeat for next bit
L 1920 DATA Division complete
1480 SOUND 1,-15,50,2:PROCtext :PROCwait 1930 DATA Quotient holds the result
1490 ENDPROC 1940 DATA Remainder in partial dividend
1500 1950 DATA Press space for new division

56 Beebug May 1988

i £ e O s e R R IR 8 e e R e T

it - p¥mmx e

SEIHE
DYME

Turn your dot-matrix printer into a plotter
and produce 'super' graphics dumps with
this unique package. Geoff Bains reports.

Product Super Dump

Supplier Silicon Vision
Signal House, Lyon Road,
Harrow, HA1 2AG.
Tel. 01-422 2274

Price £15.95 inc VAT and p&p

Another printer dump at this stage in the Beeb's
development has to have something pretty
special to commend it. True to form, Silicon
Vision's dump is both unusual in its operation
and quite unique in its resulting printouts. the
only other product which can compete at all is
Design Dynamics Mode-00 Dump (see
BEEBUG Vol.6 No.2).

When you've created a 3D masterpiece with
Silicon Vision Realtime Solids system (see the
review in this issue) the last thing you want
from a hard copy printout is the usual
smudged, sketch of a dump from your trusty
Epson. Of course, it would be nice to use a
plotter but that's way beyond most people's
budget. Super Dump effectively turns your
ordinary dot-matrix printer into a plotter.

Like a plotter, it doesn't dump the screen image
but instead uses the series of VDU commands
(MOVE, DRAW, etc.) that go to make up the
picture. The VDU commands are taken from a
disc file and the software translates them into a
high resolution image on paper. However, it
won't print just one image line at a time like a
plotter. It produces the image in horizontal
sections like a 'normal' dump.

Not being tied to the screen means the
resolution of the dump is not limited to the
640x256 which can be displayed on the Beeb, it
isn't even limited to the 1280x1024 which the
Beeb's screen co-ordinate system uses. In fact,
the dump can be done in one of three
resolutions - 640x256 (mode 0), 640x512 and a

Beebug May 1988

staggering 1920x1024. That's about 240 dots to
the inch - almost laser printer resolution.

To produce this kind of resolution on paper,
your printer must be up to it in the first place.
Firstly, the printer must be Epson compatible
and support a quadruple density graphics
mode (which gives the 1920 dots across eight
inch paper). However, the vast majority of
printers can manage this. Certainly any dot-
matrix printer bought today should cope.
Secondly, a good ribbon is always helpful when
producing high quality images.

The program is menu based; it allows the image
to be scaled in either the X or Y directions and
the graphics origin to be moved as well.

S s N
C

g
e N eSS

4

It's not only the Realtime Solids package which
will benefit from Super Dump. Any picture
which can be drawn on the Beeb's screen can be
printed. You simply insert a *SPOOL
<filename> into the drawing program before
the drawing starts and a *SPOOL after it
finishes to create a file of VDU commands. Of
course, the picture must be drawn without any
text or breaks to scroll or change the screen.
However, most picture drawing programs can
at least be altered to produce a suitable file.

Dumping pictures from commercial software is
more difficult as the *SPOOL commands cannot
usually be inserted into the program. Dumping
from screen dump files is out of the question.
Nevertheless, within these limitations, Super
Dump is a marvellous piece of software. At last
you can produce graphics printouts which
genuinely look like their screen equivalents.

57

il cXnd R 6 >

TS-D0S

TRHISHEAS
(2]

In this article Bernard Hill presents the
second of two utilities to provide a means
of transferring files between the Beeb and
PC micros.

In last month's article we produced a program
that would copy files from a disc formatted on
an IBM PC to one formatted on a Beeb
(provided that the Beeb has a 1770 disc
interface). This second article introduces a
program to reverse that process, i.e. to copy
files from DFS format to MS-DOS*, which can
then be read on your IBM PC (or Amstrad, or
whatever). Again your machine must be fitted
with a 1770 disc interface.

Before setting out, however, we had better clear
the air on a potential problem for 80-track disc
users. If you are using a standard 40-track 360K
DOS format disc then this will have been
formatted using a 40-track drive so the tracks
will be wider than those on your 80-track BBC
system. This may give rise to read errors when
you attempt to read them on your PC's 40-track
drives. This is an unavoidable hardware
problem (familiar to users of both AT's and
PC's) which cannot be completely overcome by
software. In order to minimise this problem I
have found it useful to save a file twice (the
program will automatically use different
names). For some reason my drives give better
results when the files are on lower-numbered
tracks, so use an empty MS-DOS disc.

If problems persist with your hardware
combination then you will have no option other
than to use 40-track drives on your BBC
machine (as you will find recommended on
commercially available transfer packages).

My failure rate on 80-track drives seems to be
about one error in every 250K transferred, so I
have been able to use my BBC at home to talk

58

to my MS-DOS machine at work quite reliably
for some weeks now.

CUSTOMISING

To convert the program for use with your
system you may need to alter some of the
parameters at the beginning of the program (for
details see last month's article).

a. Line 140 contains a speed specification; use a
value 0 to 3, 0 is the fastest, 3 the slowest drive
speed.

b. The MS-DOS disc is assumed to be in drive 1
and the BBC disc in drive 0. If you have a single
drive only, set D=0 in line 160 and switch discs
when the program requests it.

c. Line 170 is set for 80-track drives. If you are
using 40-track then change this line to read
track80=FALSE.

d. The end-of-line and end-of-file conventions
are different in MS-DOS and DFS. If you are
transferring ASCII files then set asc%=TRUE in
line 150, but if you are transferring binary data
files then set asc%=FALSE. Furthermore, if
your ASCII files are View files then you will
need to set View%=TRUE, but if your files are
spooled from any other BBC wordprocessor
(such as Wordwise or EDIT) then set
View%=FALSE. This is because View
distinguishes between hard spaces (ASCII 32)
and soft (ASCII 26) and we will need to convert
to ASCII 32 for the PC.

RUNNING THE PROGRAM

When the program runs, it reads the MS-DOS
directory and evaluates the free space on the
disc. This may take a second or two, but
eventually the menu is displayed. Options are
available to catalogue the MS-DOS disc, issue a
star command such as *DRIVE, *DIR or *CAT
to see your BBC disc, delete a file on the MS-
DOS disc (to make room for any files you wish
to transfer) or, of course, to transfer a file. The
file will be saved with a name which is the
same as the BBC's but with the MS-DOS
extension ".BBC". Should a file of this name
already exist on the MS-DOS disc then it will be

Beebug May 1988

R A e T e e e o e e R o G I S et v s

saved with an extension of ".BBD" (and ".BBE"
if that exists, etc.). Since a "." is not allowed in
MS-DOS names then it is not possible to copy
from directory X by giving a filename of
"X.<file>". Instead issue *DIR X and use the

short name.

If you are using a Master then the date/time
stamp on the MS-DOS disc file will be taken
from the system clock, otherwise it will be set to
the MS-DOS default of 1-01-80. To remain
consistent with last month's utility, provisions
have been included to read/write the 720K
discs supported by the Archimedes under the
PC Emulator.

*MS-DOS Is a registered trade mark of the MicroSoft Corporation. I

We hope that the combination of this excellent utility,
along with the one published last month, will provide a
quick and easy way of transferring files between the two
machines. We are already finding them invaluable here at
BEEBUG.

10 REM Program BBC to IBM transfer

20 REM Version B1.7
30 REM Author Bernard Hill
40 REM Beebug May 1988

50 REM Program

60 :

100 ON ERROR GOTO 610

110 MODE7

120 bufsiz=8*1024

130 DIM buf% bufsiz,fat 2048,dir 3584

140 speed=0

150 asc%=TRUE:View%=TRUE

160 D=1

170 track80=TRUE

180 A%=0:X%=1:A%=(USR&FFF4 DIV 256) AN
D &FF:Master=A%>2

190 c$=STRINGS$(13," ")+CHR$134

200 M=112:DIMsiz%(M),cl%(M),NS$(M),F M+

subject to copyright

210 FOR i=0 TO 112 STEP 4:F!i=-1:NEXT

220 LS$="":PROCswitch("D0OS")

230 PROCinitpc(Master)

240 PROCsetradr (fat) :PROCgetsec (1)

250 d2=fat?21=4F9

260 IF d2 THEN track80=FALSE:dirsec=8
ELSE dirsec=6

270 ns=fat!19 AND &FFFF

280 IF ns<>720 AND ns<>1440 THEN PRINT
"Not DOS format disc":END

290 IF fat?21=g¢F9 THEN maxclus=714 ELS
E maxclus=355
300 PROCswitch ("DOS")
310 PROCtitle:PROCdirfat2
320 dosfree=FNdosfree
330 REPEAT:REPEAT:PROCdosfree (dosfree)
340 £=0
350 CLS:PRINT''TAB(13)CHR$133"OPTIONS:
360 PRINT''"
370 PRINT'"
380 PRINT'" =,
ssue * command”
390 PRINT'" <filename>";TAB(16);CHRS1
34;"Transfer file to DOS"
400 PRINT'" RETURN/Escape";TAB(16);CH
R$129"End program"
410 PRINT'':INPUT" Option : "f5
420 IF ASC£$=94 THEN PROCdelete:IF nf=
0 OR n=0 THEN 500
430 IF f$="" THEN MODE7:END
440 IF ASCf$=63 THEN PROCdosdir:PROCke
y:GOTO 500
450 IF ASCf$=42 THEN PROCswitch ("BBC")
:0SCLI (£$) :PROCkey : GOTO 500
460 IF nf=112 THEN PRINT'TAB(10)"DOS D
irectory full”:PROCkey:GOTO 500
470 IF INSTR(£S,".") THEN PRINT'"?h et
not allowed in filename":PROCkey:GOTO 5
00
480 PROCswitch ("BBC")
490 f=0PENINfS:IF f=0 THEN PRINT "File
not found":PROCkey
500 UNTIL £<>0 : size=EXT#f
510 IF size>dosfree THEN PRINT'"
enought room on DOS disc”:PROCkey
520 UNTIL size<dosfree
530 PROCadddir(f$) :ptr%=0:S%=0
540 PROCswitch("BBC")
550 REPEAT PROCxfer (BGET#f) :UNTIL EOF#

2";08; "DOS Directory”
AM:c$;"Delete a DOS file"
...":TAB(16) ;CHRS134,"1

Not

560 IF asc% THEN PROCxfer (26)
570 PROCxferbuff:PROCputclus (free, &FFF

580 CLOSE#f:dir! (32*ifn+28)=S%

590 PROCdirfatback :RUN

600 :

610 CLOSE #0

620 IF ERR<>17 THEN MODE7:REPORT:PRINT
" at line "ERL:END

630 PRINT:END

640 :

1000 DEFPROCxfer (B%)

Beebug May 1988

59

1010 IF B%=26 THEN IF asc% THEN IF View
% THEN B%=32

1020 IF B%>126 THEN IF asc% THEN ENDPRO
e

1030 buf%?ptr%=B%:S5%=5%+1:ptr¥=ptrs+l

1040 IF ptr%=bufsiz THEN PROCxferbuff

1050 IF B%=13 THEN IF asc% THEN PROCxfe
r(10)

1060 ENDPROC

1070 DEFPROCxferbuff:s=PTR#f:CLOSE#f

1080 PROCswitch ("DOS")

1090 IF ptr%<bufsiz THEN FOR I%=ptr% TO
bufsiz:buf%?1%=0:NEXT

1100 FOR i=0 TO (ptr%-1) DIV 1024

1110 IF NOT first THEN last=free:free=F
Nnextfreeclus:PROCputclus (last, free) :PRO
Cputclus (free, &FFF)

1120 first=FALSE:sec=FNsecno (free)

1130 PROCsetwadr (buf%+1024*i)

1140 PROCputsec (sec) :PROCputsec(sec+l)

1150 NEXT:PROCswitch ("BBC") :*DISC

1160 f=OPENINES:PTR#f=s:ptr%=0:ENDPROC

1170 DEFPROCdosfree (n)

1180 LOCALX,y:x=P0S:y=VP0OS

1190 VDU26,31,6,3,135

1200 PRINTFNu(n,6);" (&";~n;") DOS byte
s free”

1210 vDU28,0,24,39,5,31,x, y: ENDPROC

1220 DEFPROCtitle:VDU26,12

1230 T$=CHR$132+CHR$157+CHR$131+CHR$141
+" BEEBUG BBC to PC transfer"

1240 PRINTTS'TS'LEFTS (T5,2) +tCHR$130+"

(Drive 0 to drive "+STR$~D+")"'CHRS

123;CHRS$157

1250 vDu28,0,24,39,5:ENDPROC

1260 DEFFNu (v, @%) :v$=STRSv

1270 IF LENvS$<@% THEN V$=§TRING$(@%-LEN
V$," ")+V$

1280 =v$

1290 DEFPROCkey

1300 PRINT"Any key to continue,..":IF G
ET

1310 ENDPROC

1320 DEFPROCadddir(file$) :LOCAL f

1330 ifn=0:REPEAT c=?(dir+32*ifn)

1340 ifn=ifn+l

1350 UNTIL ifn>113 OR c=0 OR c=&E5

1360 IF ifn>113 THEN full=TRUE:ENDPROC

1370 ifn=ifn-1:free=FNnextfreeclus

1380 IF LENfile$>7 THEN name$=LEFTS$ (nam
e$,7) ELSE name$=file$+STRINGS (8~LENfile
sl" ")

1390 ch=ASC"C" :REPEAT

1400 new$=FNuc (name$)+" .BB"+CHRSch: f=0

1410 REPEAT f=f+l:already=NS$ (f)=new$

1420 UNTIL f>=nf OR already

1430 IF already THEN ch=ch+l

1440 UNTIL NOT already

1450 PRINT'" File saved as ";new$

1460 $(dir+ifn*32)=FNuc (name$)+"BB"+CHR
$ch

1470 dir?(ifn*32+11)=&20

1480 FOR j=12 TO 21:dir?(ifn*32+3j)=0:NE
XT

1490 dir! (1fn*32+22)=FNstamp

1500 dir! (ifn*32426)=free

1510 PROCputclus (free, &FFF)

1520 full=FALSE: first=TRUE:ENDPROC

1530 DEFFNuc (a$) : LOCAL x$,a,i

1540 FOR i=1 TO LENa$:a=ASCMIDS (a$,1)
1550 IF a>96 AND a<123 THEN x$=x$+CHRS(
a-32) ELSE x$=x$+CHRS$a

1560 NEXT:=x$

1570 DEFPROCputsec (N) :LOCAL r

1580 PROCswitch("D0OS")-

1590 T=(N-1) DIV 9:S=(N-1) MOD 9 + 1
1600 PROCrwsec(T,S,FALSE) : ENDPROC

1610 DEFFNclus (n)

1620 !'&70=fat! (3*(n DIV 2)):!&73=0

1630 IF n MOD 2=0 THEN =!&70 AND &FFF E
LSE =(!&71 DIV 16) AND &FFF

1640 DEFFNsecno(c)=2*ct+dirsec+3

1650 DEFPROCdirfat2:PROCsetradr (fat)
1660 PROCgetsec(2) :PROCgetsec(3)

1670 PROCgetsec(4) :PROCsetradr (dir)
1680 FOR s=dirsec TO dirsec+6

1690 PROCgetsec(s) :NEXT

1700 loc=dir-32:nf=0:REPEAT loc=loc+32
1710 t=loc?11:IF 2loc=0 OR ?loc=&2E OR
?loc=229 OR t AND &18 THEN 1740

1720 nf=nf+l:loc?11=13:N$(nf)=LEFTS ($1lo
c,8) +" . "4RIGHTS (Sloc,3) tloc?lli=t

1730 siz%(nf)=loc!&lC:cl%(nf)=1loc!&lA A
ND &FFFF:F?nf=(loc-dir) DIV 32

1740 UNTIL 2loc=0 OR nf=M:ENDPROC

1750 DEFPROCgetsec (N) :PROCswitch ("DOS")
1760 PROCswitch("DOS")

1770 T=(N-1) DIV 9:S=(N-1) MOD 9 + 1
1780 PROCrwsec(T, S, TRUE) :ENDPROC

1790 DEFPROCrwsec(T,S,read)

1800 *fx143,12,255

1810 val=rst:IF D=0 THEN val=val OR 1 E
LSE val=val OR 2

1820 IF T MOD 2=1 THEN val=val OR sel
1830 ?ctrl=val

1840 2?flag=1:?cmd=&Ctspeed:PROCwait

60

Beebug May 1988

e VA IR s W) R M D TSR P S S S R R e e S N S G o e A M e AT R e AT A ot

1850 IF track80 THEN ?datareg=(T DIV 2)
*2 ELSE ?datareg=T DIV 2

1860 ?flag=1:?cmd=&18+speed :

1870 PROCwait

1880 ?trackreg=T DIV 2:?secreg=S

1890 ?flag=1:IF read THEN ?cmd=&84 ELSE

2cmd=&A6 :REM read/write

1900 PROCwait:*DISC

1910 ENDPROC

1920 DEFPROCwait

1930 REPEAT UNTIL (?status AND 1)=0

1940 IF (?cmd AND §&10)<>0 THEN PRINT"Re
ad error drive "FNu(D,1)" track "FNu(T,1
)" sector "FNu(S,1):END ELSE ENDPROC

1950 DEFPROCinitpc (master)

1960 IF master THEN wd=&4FE28:ctrl=¢FE24
:sel=16:dden=620:rst=4 ELSE wd=¢FE84:ctr
1=4FE80:sel=4:dden=8:rst=20

1970 cmd=wd:status=wd:trackreg=wd+l

1980 secreg=wd+2:datareg=wd+3:5=0:T=0

1990 ?ctrl=rst+D+1:ENDPROC

2000 DEFPROCsetradr(a)

2010 FOR opt=0 TO 2 STEP 2

2020 P%=¢D00: [OPT opt : PHA

2030 LDA status: AND #1: STA flag

2040 LDA status: AND #&1F: CMP#3

2050 BNE exit: LDA datareg

2060 .dest STA a: INC dest+l

2070 BNE exit: INC dest+2

2080 .exit PLA: RTI

2090 .flag BRK

2100]:NEXT:S=0:T=0:ENDPROC

2110 DEFPROCswitch(a$) :*fx15,1

2120 IF D=0 AND L$<>a$ THEN PRINT"Inser
t "a$" disk : press a key":IF GET

2130 L$=a$:ENDPROC

2140 DEFPROCsetwadr (a)

2150 #txld3 12,255

2160 FOR opt=0 TO 2 STEP 2

2170 P%=&D00: [OPT opt: PHA

2180 LDA status: AND #&1F: CMP #3

2190 BNE exit

2200 .dest IDA a: STA datareg: INC dest
i+l

2210 BNE exit :INC dest+2

2220 .exit

2230 LDA status: AND #3: STA flag

2240 PLA: RTI

2250 .flag BRK

2260]:NEXT:S=0:T=0:ENDPROC

2270 DEFFNnextfreeclus:LOCAL i:REPEAT

2280 i=i+l

2290 UNTIL i>maxclus OR FNclus(i)=0

2300 IF i<=maxclus THEN =i

2310 PRINT"Cluster limit exceeded":END

REM seek

2320 DEFFNdosfree:LOCAL i,T

2330 FOR i=1 TO maxclus

2340 IF FNclus(i)=0 THEN T=T+1

2350 NEXT:=T*1024

2360 DEFPROCputclus (n,vV)

2370 !&70=fat! (3*(n DIV 2))

2380 IF n MOD 2=0 THEN !&70=(!&70 AND &
FFFFF000) OR v ELSE !&70=(!&70 AND &FF00
OFFF) OR 4096*v

2390 fat!(3*(n DIV 2))=!&70:ENDPROC

2400 DEFPROCdirfatback:PROCsetwadr (fat)

2410 PROCsetwadr (fat)

2420 PROCputsec(2) :PROCputsec(3)

2430 IF d2 THEN PROCputsec(4)

2440 PROCsetwadr (fat)

2450 IF d2 THEN s=5 ELSE s=4

2460 PROCputsec(s) :PROCputsec(s+1)

2470 IF d2 THEN PROCputsec(s+2)

2480 PROCsetwadr (dir)

2490 FOR s=dirsec TO dirsec+6

2500 PROCputsec(s) :NEXT

2510 ENDPROC

2520 DEFFNstamp

2530 IF NOT Master THEN =&210000

2540 X%=670:Y%=0:A%=14:?&70=1:CALL &FFF
1

2550 y=FNbcd (&70)-80:m=FNbcd (&71)

2560 d=FNbcd (&72) :h=FNbcd (&74)

2570 n=FNbcd (&75) :s=FNbcd (&76) DIV 2

2580 =s5+32*n+2048*h+65536* (d+32*m+512*y
)

2590 DEFFNbcd(x)=10*(?x DIV 16)+?x MOD
16

2600 DEFPROCdelete:LOCAL n$:PROCdosdir

2610 IF nf=0 THEN PROCkey:ENDPROC

2620 PRINT'TAB(10);

2630 INPUT "Which : "n$:n=VALn$S

2640 UNTIL F?n<>255 OR n<=0 OR n>nf

2650 IF n<=0 OR n>nf THEN n=0:ENDPROC

2660 n=F?n

2670 IF n=255 THEN PRINT"File not found
" : ENDPROC

2680 dir?(32*n)=&E5:c=dir? (32*n+26

2690 REPEAT v=FNclus (c) :PROCputclus(c,0
)

2700 c=v: UNTIL c>&FF7

2710 PROCdirfatback:RUN

2720 DEFPROCdosdir:LOCAL i:CLS

2730 IF nf=0 THEN PRINT''TAB(16);"No fi
les"'' :ENDPROC

2740 FOR i=1 TO nf

2750 PRINTFNu (i,3);TAB(10);N$(1i);TAB(25
) ;FNu (siz% (i), 6)

2760 NEXT:PRINT:ENDPROC

Beebug May 1988

61

) NOW C HERE PART 3 (continued from page 19)

char string[], partl[], part2[]; ptrl->next->prev = ptrl->prev;
if (ptrl == firstpointer) {
: int ¢, n=0, m=0; firstline = ptrl->next->linenum;
while((c=string[n++]) !'=' ' && c != '\n' &k ¢ firstpointer = ptrl->next;
= N0 gk o '=! ") }
partl[mt+]=c; if (ptrl == lastpointer) {
partl[m] = '\0'; lastline = ptrl->prev->linenum;
m=0; lastpointer = ptrl->prev;
if (string[n] = '\0'){ }
for(m = 0; m <=6 ; mt+)
part2[m]='\0'; return (NULL) ;
else return (NULL); /* null input, no such line */
}
while((c=string[n++]) && ¢ !'= '\n' & c !=
\D') /* non-null line */
part2[m++]=c; ptr = &(info[nfs++]); /* Next free cell in
part2[m] = '\0'; info */
}
/* check for first/last line */
/* test partl, return TRUE if numeric */ if (linen == firstline){
n = TRUE; ptr->linenum = linen;
for(m = 0;partl[m] != '\0';mH){ ptr->next = firstpointer->next;
n=né& (partl[m] >= '0' && partl[m] <= ptr->prev = NULL;
'9'); ptr->next->prev = ptr;
} firstpointer = ptr;
if (m = 0) }
n=FALSE; if(linen == lastline){
return(n); ptr->linenum =linen;
} ptr->next = NULL;
ptr->prev = lastpointer->prev;
/* INSERT */ ptr->prev->next = ptr;
insert (linen,line) lastpointer = ptr;
int linen; }
char line[]; if(linen < firstline){
{ ptr->linenum = firstline = linen;
struct txtcontrol *ptr; ptr->prev = NULL;
struct txtcontrol *ptrl; ptr->next = firstpointer;
int n; firstpointer = ptr;
char ¢; ptr->next->prev = ptr;
}
/* Check for null line (delete) */ if(linen > lastline){
ptrl = firstpointer; ptr->linenum = lastline = linen;
if(line[0] = '\0'){ ptr->prev = lastpointer;
/* null input - delete line */ lastpointer = ptr;
while (ptrl->linenum < linen &6 ptrl->next if (ptr > info)
1= NULL) { ptr->prev->next = ptr;
ptrl = ptrl->next; }
}
if (ptrl->linenum == linen) { /* line to be inserted between 1st and last */
if (ptrl->prev != NULL){ if(linen > firstline && linen < lastline){
ptrl->prev->next = ptrl->next; while (ptrl->linenum < linen && ptrl->next !=
} NULL) ‘
62 Beebug May 1988

iRl 1y SR SO B RO G T USRS R SNSRI, S5 A VP e GRS S

ptrl = ptrl->next;
if (ptrl->linenum == linen){
ptr->prev = ptrl->prev;
ptr->next = ptrl->next;
ptr->prev->next = ptr;
ptr->next->prev = ptr;
}
else{ /* inserting a new line */
ptr->prev = ptrl->prev;
ptr->next = ptrl;
ptrl->prev->next = ptr;
ptrl->prev = ptr;
}
}
ptr->linenum = linen;
ptr->ptext = pfree;

/* info pointers now set up */
/* copy line into text £
n=0;
while((c=line[n++]) != '\0'){
*pfree = c;
pfreet+;

}
*pfree = '\0';
pfreet+;
}

/* INITIALISE */

/* reset all pointers */
initialise(){

int n;

struct txtcontrol *ptr;

ptr = info;

for (n = 0; n <= LINEMAX; n++){

ptr->prev = ptr->ptext = ptr->next = NULL;

info[n].linenum = 0;
ptr++;
}
pfree = text;
firstline = 32000;
lastline = 0;
firstpointer = info;
lastpointer = NULL;
nfs = lineno = 0;

}

/* PROGLOAD */

progload (filename)

char filename[];

{

int ¢, sub, n:

char inline[80];

if ((in=fopen (filename, "r")) == NULL){
printf("can't open file!");

return (NULL) ;
}

lineno = 10;
sub = n = 0;
while ((c=fgetc (in)) != EOF){
if(c !'= '\n' & ¢ != EOF)
inline[n++] = ¢;

else{
if(n = 0)
inline[n#+] = ' ';

inline[n] = '\0';
insert (lineno, inline);
lineno += inc;
n=0;
}
}
fclose (in);
/* list first 21 lines */
proglist (10,210) ;
}

/* PROGSAVE */
progsave (filename)
char filenamel[];
{
int o,n;
char *textptr;
struct txtcontrol *ptr;
/* check if ok to overwrite existing file */
if ((out=fopen (filename,"r")) != NULL){
fclose (out) ;
if (! (c=confirm()))
return (NULL) ;
}
if ((out=fopen (filename, "w")) == NULL){
printf ("unable to open file!!");
return (NULL) ;
}
ptr = firstpointer;
n=0;
while (ptr != NULL && (textptr = ptr->ptext) !=
NULL) {
fputs (textptr,out);
fputc('\n', out);
ptr = ptr->next;

fclose (out) ;

}

/* CONFIRM */

confirm() {

int e

printf("Do you wish to overwrite this file?
Y/N");

while((c=getchar()) != 'y' && c != 'n' && ¢ !=

Beebug May 1988

63

'Y' gk l= 'N');
ite=e Y Jlic= ¥
return (TRUE) ;
else
return (FALSE) ;
3 }

/* PROGLIST */
proglist (nl,n2)
int nl;
int n2;

{
int n = 0;
char *tptr;
struct txtcontrol *pt;
pt = firstpointer;

if (nl <= 0){
nl = firstline;
n2 = lastline;

}
while(pt->linenum < nl) {
pt = pt->next;
}
if(n2 == 0 || n2 < nl){
n2=lastline;
}
do{
tptr = pt->ptext;
if (pt->ptext != NULL) {
printf ("$4d. $s\n",pt->linenum, tptr);
pt = pt->next;

}
else(
n2 = 0;

} while(pt->linenum <= n2 && n2 > 0 && pt !'=
NULL) ;
}

/* Convert a string to an integer */
atoj (str)
char *str;
{
int x=0;
int ans =0;
if (str[0] == '\0")

return(0) ;
for(: strix] != '\0'; xtt)

ans = (10 * ans) + (str[x] - '0');
return(ans);
}
/* Put zero in null strings */
editcheck (s1,s2)

char sl1[];
char s2[];
{
if(*sl = '\0")
gl = '0';
if(*s2 = '\0')
*s2 = '0';
} B

MULTI-COLUMN PAGE PRINTER (continued from page 11)

3520 .cnoc DEX:BNE cloopl

3530 RIS

3540 :

3550 .makeline LDY #S5%:LDX bufptr
3560 .charloop JSR osbget:BCS eof
3570 CMP #ASC("}"):BEQ eop

3580 CMP #ASC("{") :BEQ eoc

3590 CMP #&0D:BEQ eol:CMP #ASC" ":
BCS notc:LDA #ASC" "

3600 .notc STA buffer,X:INX:CPX #cwid%
3610 BEQ charloop:BCC charloop
3620 DEX:CMP #&20:BEQ eol

3630 JSR split:JMP storebuffer
3640 .eof LDA #&FF:STA eofflg
3650 .eop LDA #&FF:STA eopflg

3660 .eoc LDA #&FF:STA eocflg
3670 .eol LDA #&FF:STA eolflg
3680 LDA #0:STA bufptr

3690 DEX:CPX #&FF:BEQ return

3700 .storebuffer TXA:TAY

3710 .stloop LDA buffer,Y:STA (lbase),Y
3720 DEY:CPY #&FF:BNE stloop

3730 .return RTS

3740 :

3750 .sploop DEX

3760 .split LDA buffer,X

3770 CMP #&20:BEQ spc:CPX #0:BNE sploop
3780 LDX #cwid$%

3790 .spc DEX:RTS

3800 :

3810 .bufferreset LDY #0

3820 .buloop INX:LDA buffer,X

3830 CMP #&20:BEQ next

3840 STA buffer, Y:INY:STY bufptr

3850 .next CPX #cwid%:BCC buloop

3860 RTS

3810 :

3880]:NEXT

3890 ENDPROC

o 64

R L o N R o T e o i g L T i e Gk e

Beebug May 1988

Peter Rochford gives an overview of the
latest Dabhand guide to Acorn's View
family.

When I reviewed Acornsoft's ViewStore
database management ROM in BEEBUG Vol.4
No.5, I was full of praise for this excellent piece
of software. I did, however, point out that to get
the full power from this package, you needed to
study the manual very carefully. Perhaps I
should have been more forthright and said that
the manual was not as easy to follow as it
should have been and lacked in
detail in certain areas.

i A Dabhand Guide s

VIEWSHEET
VIEWSTORE

This criticism I think would also
apply to the manuals that
accompany the rest of the View
family. The View productivity
software suite is indeed ?‘,
excellent and powerful, but the
manuals are neither compre-
hensive, nor easy to follow,
particularly for those new to
computing.

=) G\
- s.avs
A Xk

572
%,a

o
2027
22D

- awea

Dabs Press has not been slow to
seize on this long-standing
weakness, and following on
from its initial Dabhand Guide
to View, it has now released a
guide to both ViewSheet and
ViewStore in one book.

The Dabhand Guide to ViewSheet and
ViewStore is a 340 page spiral-bound book
aimed at those who want to get the best from
their View database and spreadsheet. It is
written by Graham Bell who is the editor of
Acorn User.

The book is a complete tutorial and reference
guide to both software packages, and contains
several examples of setting up and using a
database and a spreadsheet. A number of very

Beebug May 1988

ViewSheet & ViewStore.
A Dabhand Guide by Graham Bell,
published by Dabs Press at £12.95.

useful utility programs are included, and these
can be purchased on disc at a cost of £7.95 if
you do not want the chore of typing them in.

Apart from clarifying and expanding on the
information in the original manuals, the book
provides a host of hints and tips, which make
using both pieces of software that much
simpler and quicker. Also provided are some
excellent quick reference guides to both
commands and error messages.

To give a detailed breakdown of the matter
covered by this book is not really within the
scope of this review, as there is just so much
information on both pieces of software. Suffice
to say that it is very comprehensive indeed, and
certainly provides answers to the many
questions left by the original
manuals. As an example, the
REPORT utility in ViewStore is
one which has caused problems
to many, myself included, as
the detail in the original
manual was so vague. This
book has a large section
devoted to this particular area.
By use of several examples it
unveils the mysteries and
enables the setting up of some
very complex reports with
relative ease.

The book is written in an easy
to follow style and should find
favour with both newcomers
and old hands. There are
numerous examples which
help to illustrate the areas
covered. In addition to the information on
ViewSheet and ViewStore, the author has
provided details of ViewPlot and the OverView
package for the Master.

In conclusion, I can find little to criticise in this
book. It is well-written, instructive and
informative, and provides all the right kind of
information that users of ViewSheet and
ViewStore are likely to need. Highly
recommended.

65

BEEBUG MINI-WIMP (Continued from page 23)

8820:

C8B1 F229 DFC9 57D0 FOD9 8918:696F 6E3E
8828:29A9 6985 77A9 8885 A796 8920:574C 4F41
8830:78A0 00B1 7720 E3FF 9BEF 8928:696C 656E
8838:C8D0 04E6 78A0 00AA E33C 8930:203C 7374
8840:D0F1 4CA2 80A2 00BD E80D 8938:6963 6F6E
8848:5588 20E3 FFE8 C90D C910 8940:4D57 5341
8850:DOF5 4C9B 800A 4D49 7A14 8948:6669 6C65
8858:4E49 5749 4D50 2052 70C4 8950:3E20 3C73
8860:4F4D 2056 312E 3030 5156 8958:3E20 3C65
8868:0D0A 4D49 4E49 5749 FABE 8960:0D50 6F69
8870:4D50 2052 4F4D 2056 90FB 8968:3A0D 0D20
8878:312E 3030 2028 4329 7F79 8970:4F4F 5244

8978:3339 3E20
8880:2044 414A 2031 3938 9AlB
8888:370D 0D20 204D 5753 633A 8980:303E 0D20
8890:4554 5550 0D20 204D ECSE 8988:4F49 4E54
8898:574B 4559 0D20 204D C25B 8990:4E65 7720
88A0:5753 5449 434B 0D20 9D3E 8998:7273 3A0D
88A8:204D 574D 4F55 5345 3D71 89A0:3132 2D54
88B0:0DOD 5769 6E64 6F77 0D73 89A8:616E 7920
88B8:733A 0DOD 2020 4D57 DFOB 89B0:6F77 730D
88C0:4F50 454E 203C 6C78 9148 89B8:332D 4E6F
88C8:2C62 792C 7278 2C74 9208 89C0: 646F 7720
88D0:793E 0D20 204D 5753 F3CE 89C8:0D20 2032
88D8:4855 540D 0D49 636F 6467 89D0:6164 2070
88E0:6E73 3A0D 0D20 204D 1CC9 89D8:6574 6572
88E8:5749 434F 4E20 3C30 7E83 89E0:3231 352D
88F0:2D36 333E 0D20 204D 1B82 89E8:6963 6F6E
88F8:5744 4546 203C 6963 D039 89F0:482E 0D58

89F8:5848 492E
8900:6F6E 206E 6F2E 2026 COA5
8908:2033 3220 6279 7465 6B87 8A00:0000 0000
8910:2064 6566 696E 6974 F769 8A08:206D 616E

0D20 204D D12E BA10:6E64 6F77 7300 0000 0313
4420 3C66 339C 8A18:D54E 6F20 7769 6E64 DIIE
616D 653E 7360 8A20:6F77 206F 7065 6E00 98B2
6172 7420 EB86 8A28:0000 0000 D642 6164 79C8
3E0D 2020 7388 8A30:2070 6172 616D 6574 B554
5645 203C 7A88 8A38:6572 7300 0000 0000 0C25
6E61 6D65 07BA 8A40:D742 6164 2069 636F 8605
7461 7274 SBES 8A48:6E00 0000 0000 0000 3115
6E64 3EOD 3E79 8A50:0000 0049 434F 4E20 F103
6E74 6572 D590 8A58:2020 204F 5045 4E20 C807
204D 5743 785F 8A60:2020 2053 4554 5550 FFFQ
203C 302D 4C94 8A68:2020 2043 4F4F 5244 7815
3C30 2D33 38C3 8A70:2020 2050 4F49 4E54 DOCA
8A78:4552 2053 4855 5420 39BB
204D 5750 C130
4552 0DOD 76EF 8A80:2020 2053 5449 434B 81B4
6572 726F BF92 8A88:2020 204B 4559 2020 BIAA
0D20 2032 EFAD 8A90:2020 204D 4F55 5345 AC3A
G6F6F 206D 3F12 BA98:2020 2044 4546 2020 847A
7769 6E64 AEBC 8AR0:2020 204C 4F41 4420 66A2
2020 3231 C1A8 8AA8:2020 2053 4156 4520 C334
2077 696E OF9E BAB0:2020 20AB 80BC 8117 645D
6F70 656E CO51 8AB8:843C 8475 841D 86D6 1400
3134 2D42 SFC3 8AC0:86DD 86E4 86EB 8649 ESBF
6172 616D 69C1 BAC8:8786 8707 OFLF 3F7F E3DA
730D 2020 OA8A 8ADO:FFFF FFFF 3C3C 3838 FACS
4261 6420 1D9D 8AD8:0000 0000 0206 OEIE 3106
0D00 5853 0886 BAEQ:3E7E 7E08 0810 1000 18FB
4C2E 330D 5B3A BAEB:0000 0000 0000 0000 E7B3
0D19 0000 82D8 B8AF0:0000 0000 0000 0000 4365
8AF8:0000 0000 0000 0000 DOC8
D454 6F6F OASC
7920 7769 4A61 B

ADVENTURE GAMES (continued from page 52)

if you wish to start a new game, the program
crashes with a 'NOT FOUND' message if you
reply 'Y'. Generally speaking the disc handling
routines are unfriendly. When attempting to
reload a saved game there is no way to obtain a
list of the saved files from within the program,
and should you find yourself in such a position,
there is no elegant way to recover. Equally
frustrating, the program will crash if you
mistakenly confirm that the program disc is in
the drive when in fact your saved game disc is
still resident.

This game is one for the experienced player.
Individually the puzzles are not too difficult

66

but when woven into a web such as this you
will need to be prepared to restart continually
from square one, and re-examine your logic
repeatedly to ensure that all your basic
assumptions are correct.

ARCHIMEDES NEWS

A piece of news which should be of interest to
Archimedes owners is that Robico Software are
at present putting the finishing touches to the
upgraded version of 'Enthar Seven'. This S.F.
adventure was a great favourite of mine on the
BBC, and as the new version comes complete
with graphics and an updated parser, I'm sure
it will be a great hit on the wonder machine. [3

Beebug May 1988

o B s i e g e W A ey T e O A b S R TP 0 e b 16 S A LY PR P h .

EXPANDING THE COMPACT

Can you please tell me if there
are any ROM expansion
boards, either internal or
external, which are suitable for
the Master Compact. I have
already fitted the Mertech
Compact Companion to the
expansion socket so I am
wondering if its bus
connection is any use.

S.B.Birks

We do not know of any ROM
board for the Compact, but an
alternative solution is the Viglen
Cartridge system - see Postbag
Vol.6 No.8.

USING SHADOW RAM

I have a query concerning the
shadow RAM used on the B+
and the Master. I have a font
designer program which I
have written which uses
normal RAM to store the font,
and then calls OSWRSC and
OSRDSC (OSRDRM) to read
and write to the screen.
Although this works, on the
Master the operations are
much slower with a noticeable
flickering. Can you tell me if it
is possible to read and write
shadow RAM whilst viewing
a normal screen. This would
give me 20K of storage space
whilst being able to read and
write to normal memory very
quickly. Andrew Fletcher

The answer, at least as far as the
Master is concerned lies in the
call FX108. This call allows you
to select whether peeking and
poking addresses between &3000

Beebug April 1988

and &7FFF accesses main or
shadow memory. *FX108 will
access main memory, while
*FX108,1 will access shadow
memory. Therefore, putting
*FX108,1 before you access the
screen, and following it with
*FX108, will let you read and
write the shadow screen directly.
Incidentally, for details of other
shadow screen FX calls see the
hint on page 45 of BEEBUG
Vol.5 No.5. We hope to deal
with this topic more fully in the
next issue.

512 CO-PROCESSORS UNCOVERED
In the March issue of BEEBUG
(Vol.6 No.9) you asked what
readers would like to see in
the magazine. I was pleased to
see the article on C, and have
also found the Master pages
very useful.

But there is never anything on
the 512 co-processor. For
instance, better and cheaper
versions of C may be used
with this but there was no
mention of this in your C
article. Your readers could be
reminded that Acorn has
issued a second version of the
operating system software for
the 512. Some help as to which
Basics can be used would be
useful.

I have subscribed to BEEBUG
since issue 1, and I feel that if
it is to meet its claim of
supporting serious users,
SOME help should be given to
512 users.

Mrs.E.M.Kenward

«)POSTBAG

1t is true that we have largely
ignored the 512 co-processor in
the past, as we felt this to be very
much a minority interest and
not within the normal ambit of
BBC micro users. However, Mr.
Michael Nyman of Birmingham
and Mr.S.].0'Donnell of
Cornwall both wrote in similar
vein supporting the 512 co-
processor and seeking more
support for this system from
BEEBUG, and as a result we are
now investigating an article on
this subject. Mr O'Donnell also
writes further:

C AND OTHER LANGUAGES

In your "Jottings" you ask for
comments about the wisdom
of running a series on
programming in C. One of the
prime advantages of C is its
transportability and therefore
its independence of machine
or hardware. I wonder about
the worth of an extended
series on such a topic,
although I would certainly
encourage a short series on
this or any other language.
Could we perhaps have one
on Pascal as well?

S.J.0'Donnell

Others have also written to

indicate their approval of our

series on C, and to date no voice

has been raised in dissent. We do

not feel, though, that Pascal
warrants the same level of

coverage at this time, and we

have no immediate plans for any

articles on this language.

67

HINTS, HINTS, HINTS, HINTS;, HIN

TS

o

NEAT LISTINGS

Wayne Johnson

If you dislike the '>' prompt
which is inevitably printed at
the end of Basic program
listings, there is an easy way
to prevent this. List the
program as normal, using
Ctrl-B to turn the printer on,
but when the listing is finished
press Ctrl-A followed by the
Delete key, before using Ctrl-
C to turn the printer off. This
little trick works by sending a
delete character directly to the
printer, which 'rubs out' the
prompt before it is printed.
This will only work on
printers that buffer a whole
line before printing, but this
includes most dot matrix
printers. The Ctrl-A makes the
operating system send the
delete character to the printer
rather than the screen.

HIGHLIGHTING A VIEW
PROBLEM

Mandy Dunn

The majority of printer drivers
used with the View word
processor, including those
supplied by Acorn, cancel any
highlights that are in
operation when the end of
each line is reached. This can
cause a real problem if you
don't spot what has happened,
because the second highlight
code, which is supposed to
turn the highlight off, will
then turn it back on again.
Obviously, line breaks can
change while text is being

68

edited, so special attention
must be paid to highlights
before printing the text. A
further problem with
highlights is that on version
1.4 of View (the original
version), highlight codes are

treated as individual
characters, which upsets
formatting.

Finally, most printer drivers
reset the printer just before
printing a document, which
means that it is impossible to
set up a special printing mode
beforehand, as it will be
cleared as soon as printing
starts. The only way around
this is to use a printer driver
that allows the required effects
to be set from within the text.

DISABLING THE ADFS

David Spencer

Many people using a model B
with a 1770 disc interface, or a
B+, complain that if both the
ADFS and the DFS are present
then PAGE is set too high to
run many Basic programs.
However, as long as both the
DFS and ADFS are not needed
at the same time, it is possible
to 'remove' one of them in
software, and claim back some
memory. To do this, you must
first find out which ROM
sockets the ADFS and DEFS are
in. If you have a utility ROM
with a *ROMS or *ROMLIST
command then this is easy,
otherwise you must look
inside the machine to

determine this. Once you
know where the ROMs are,
one of them can be unpluged
by entering ?&DFx=-1 and
pressing Ctrl-Break, where x is
the single digit ROM number
in hex. For example, if the
ADFS is ROM 14, it can be
unplugged with ?&DFE=-1,
(14 being E in hex). Once
disabled, the ROM remains
inactive until the machine is
turned off, or the appropriate
location is reset to zero, e.g.
?&DFE=0, and Ctrl-Break is
pressed to reclaim the
workspace. Alternatively, the
*PANEL command on the
BEEBUG Master ROM can be
used to unplug and insert
ROMs.

DISC WRITE PROBLEMS

James Francis

Attempting to save a program
using Acorn's 1770 DFS will
sometimes result in the error
message 'Disc read only'. This
does not always mean that the
disc is write protected, but can
arise if a 40 track disc is used
in an 80 track drive, even
though the command *DRIVE
0 40 has been issued. The
reason is that the 1770 DFS
will not allow any write
operations on a disc which is
being double stepped. The
only solution is to use a 40
track drive, or a 40/80 track
drive switched to 40 track
mode. You will also need to
restore single stepping mode
with *DRIVE 0 80.

Beebug May 1988

R A ot e e e R i (o) b oo e A e e Tl e e e L R s e

-

=

| BEEBUG technical BEEBUG technical

In response to the many requests
for help we have received since
reviewing Cambridge Computer's
Z88 in BEEBUG Vol.6 No.7, David
Spencer presents some hints and
tips to help users.

BBC BASIC

There are some subtle
differences between the Z88
version of BBC Basic, and the
genuine article.

The first of these is that if a
procedure or function takes
parameters then there should
be no space between the name
and the opening bracket on
the Z88. For example:

PROCaverage (total,count)
is valid on BBC micros, but on
a Z88 the space must be
removed to give:

PROCaverage (total, count)

The second quirk concetns the
nesting of FOR-NEXT and
REPEAT-UNTIL loops, and
functions and procedures. As
most users are aware, it is very
bad practice to jump out of
half completed loops, but the
BBC micro lets you get away
with such bad habits.
However, the Z88 is less
forgiving and will give an
error message if any loops are
badly nested. For example,
consider the following;:

10 DEF PROCnaughty

20 FOR count =1 TO 10

30 IF count = 20 THEN
PRINT "Line 30" :ENDPROC

40 NEXT count

50 PRINT "Line 50"

60 ENDPROC

If this procedure is called on
either the Z88 or BBC it works
fine, producing the output

Beebug May 1988

'Line 50'. However, if the 20 in
line 30 is changed to a 5, and
the procedure called again,
then 'Line 30' is printed, but
the program then crashes on
the Z88. This is because the
procedure attempts to exit
before the FOR-NEXT loop
has properly terminated. The
answer is to keep your
programs well structured.

RECHARGEABLE BATTERIES

While the Z88 uses very little
battery power when com-
pared to other portables, it still
doesn't come cheap when you
have to spend about £2.00 on
batteries for every twenty
hours of use. Many people
have turned to using re-
chargeable Nickel Cadmium
(Ni-Cad) batteries instead.
However, there are problems
with such a move. Firstly, Ni-
Cads provide only 1.2V per
cell, rather than the 1.5V of
ordinary batteries. With 4
batteries in the Z88 this means
that the overall voltage is
down by over a volt when Ni-
Cads are used. The Z88 will
quite happily work at this
lower voltage, but it does
mean that the low battery
indicator soon comes on,
making it impossible to judge
accurately when the batteries
are dangerously low. Second-
ly, when Ni-Cads start to
flatten they do so very
quickly, which means that if
the Z88 starts to play up one
evening, then by the next
morning all the stored data
may have been lost - so be
warned. Incidentally, the
batteries have to be recharged
in a separate charger; they

don't charge up when the
external mains adaptor is
plugged in.

CAPS LOCK

The Caps Lock on the Z88 can
be set to produce lower case
when Shift is held down. For
example the A key on its own
produces an 'A’, but with Shift
pressed produces an 'a'. To set
this mode press Caps Lock
while holding down the
Square key. The Caps symbol
on the display changes to
lower case, and the feature
remains in operation if the
Caps Lock is turned off and on
again. To go back to normal
Caps Lock operation press the
Caps Lock key while holding
down the Diamond key.

DISPLAY EFFECTS

By using a simple VDU
command from Basic, it is
very easy to obtain effects on
the LCD display such as bold
and flashing. The various
effects are all turned on by
VDU followed by a character,
and turned off again by the
same sequence. The possible
effects, which can be mixed if
needed, are:

VDU 1,ASC"B" Bold on/off

VDU 1,ASC"C" Cursor on/off

VDU 1,ASC"F" Flashing text on/off
VDU 1,ASC"G" Grey text on/off
VDU 1,ASC"R" Reverse video on/off
VDU 1,ASC"T" Tiny font on/off
VDU 1,ASC"U" Underlining on/off

For example:
VDU1,ASC"B",1,ASC"U":

PRINT"HELLO WORLD":VDU1,

ASC"B",1,AsSC"U"

will produce the words
"HELLO WORLD" in bold,
underlined text. B

69

BOXED IN THE CARPARK - 2 gelighttul litle game
years old.
MULTI-C UMN PAGE PRINTER 2 Uity to allow any

rmat.
FILE HANDL\NG FOR ALL - three programs 10 create,
display and update serial files, plus @ sample datafile to

with.
ERE (Part 3)-3 §hor\ file append program and

EEBUG \MP sour de, and the
ROMimage re@ ytor for new Miniwimp series
IS LER UTIL! y - divert an t your printer

NTROL three short
rograms roviding full demons\ra\'\or\s of this month's

R
CTORING AROUND -8 demons\ra\'\on of the use
of extended yectors, anda helpfu! utility-
S - use this short

rs.
EXPLOR\NG ASSEMBLER (PART 10) - @ machine
code program for integer division, and @ gimulation of the

arook ‘3% 18085
fotor car tFapped
ROr a car. eark.

Car
r e Exit

11 CAN

er C
reay

CAR REGISTnR‘IuN LETTER 7

32 %
$F o EEE
o B0 ~ GOS8

N €

BE DONE

ar Lettey
ested and
Sor Keus

whole process:

\BMTO NSFER UTILITY (Part 2) - this month

the compleme ry utility for BBC 10 PG transter DE

G complet dex for yolume t BEEBUG Mini-Wimp
REEBUG plus the pibliography for this issue-

All this for £3 (cassene), £4.75 (5" 3.5" disc) + 50p p&P-

Back issues (5.25" disc since Vol.3 No.1, 3.5 disc 6inCO vol.5No.1, tapes 8ince Vol.1 No. 0) available at the same prices.

5" disC subscriptio
'mdiv'\dua\ orders 10

ywell Hil, St.Albans, Herts. AL1 1EX

The Best Deals
- on Archimedes
- From BEEBUG ™

/

rchimedes| = %
gpecM//SfS;J

below.

Deposit 9 Payments
A305 Base £83.85 £80.00
A305Mono £87.35 £86.00
A305 Colour £106.85 £103.00
A310MBase £96.25 £96.00
A310MMono £108.75 £101.00
A310MColour £119.25 £119.00

0% FINANCE

For a limited period we are able to offer 0% APR finance
over 9 months onthe purchase of any Archimedes. You pay
nointerestatall. Thisis abrand new scheme only available
from BEEBUG. The deposit and repayments are shown

Deposit 9 Payments

A310 Base £9025 £89.00
A310Mono £102.75 £94.00
310 Colour £113.25 £112.00
A440Base £267.85 £264.00
A440 Mono £271.35 £270.00
A440 Colour £290.85 £287.00

Allowances are as follows:

TRADE IN YOUR OLD
BBC, MASTER OR COMPACT
FOR AN ARCHIMEDES

We will be pleasedto accept your old computer (in working
condition) as part exchange towards the purchase of an
Archimedes. (If you use the finance scheme this will replace
your initial deposit on a 305/310, so you pay nothing now)

BBC Issue 4 No DFS £1

BBC Issue 4 DFS
BBC Issue 7 No DFS £175
BBC Issue 7 DFS (OrB+)

Master 128

Compact Base System

Please phone for allowances on other Compactand Master

systems

£176

£225
£250
£215

25

FREE DISCS &
PC EMULATOR

Join RISC USER, the Archimedes magazine and support

group, and purchase your Archimedes by Cheque, Access,

Visa, Official Order or 11.5% finance and we will supply you,

absolutely free, 10 3.5" discs, a lockable disc storage box,

printer lead and the latest version of The PC Emulator from

Acorn. Altogether you save more than £142.00.

Prices Including VAT
Mono £861.35
Mono £948.75
Mono £2701.35

Colour £1033.85
Colour £1121.25
Colour £2873.85

A305 Base £803.85
A310 Base £891.25
A440 Base £2643.85

(A1 15% FINANCE
OVER 12 TO 36 MONTHS

As aLicensed Credit Broker we are able to offer finance on
the purchase of any equipment, including the Archimedes
You still benefit from the free PC Emulator, discs, disc box
and printer lead. (Typical APR23% onthe purchase ofa310
Colour system over 36 months

Deposit £126.25 36 payments of £37 36)

DISCOUNTS FOR
EDUCATION

We are able to offer attractive discounts to Education
Authorities, Schools, Colleges and Health Authorities.
Please write with your requirements for a quotation.

-

TO FIND OUT MORE
PHONE OR WRITE NOW.

Please indicate your requirements below.
Subscription to Risc User (£14.50 UK) |
305/310/310M/440 Base/Mono/Colour |
Base/Mono/Colour [] Trade Ir

| Information Pack and Catalogue

] 0% Finance Form for

12-36 Months Finance Form for 305/310/310M/440

BBC/Master/Compact [] Purchase 305/310/440 Base/Mono/Colour |

TEL: 0727 40303

We offer a complete service,

including Advice, Technical

Support, Showroom, Mail Order
and Repairs. Our showroom in St.
Albans stocks everything available
for the Archimedes. Callin for a

demonstration

Beebug, Dolphin Place, Holywell Hill, St. Albans, Herts AL11EX Tel: 0727 40303
BEEBUG ~ The Archimedes Specialists

L s

UK Courier Delivery £7.00
| enclose a cheque value £.
Please debit my Access/Vi
Expiry. with £

Name

Address

Signature

Overseas please ask for a quotation.

1 1
sa/Connect CardNo | | | |

I
(~ aa

T Tl total

