

FEATURES

Solitaire

3D Shades and Shadows

Astrological Birth Charts

512 Forum

Matrices in Basic

passing Arrays 1o Functions
and Procedures

First Course -
Disc Filing Systems (Part 2)

Linked Lists (Part 1)

12
15
19
22

28

30
42

46
43
50
H4

58
61

PMS publisher
Microlink Commun‘\ca\'\ons pack 26
Yet More Printers:

A survey of the atest mode's 37
REGULAR ITEMS
Editor's Jottings 4
News 4
Supp\emen\ 33-36
The 768 Pageé 63
Postbag o4
Hints and Tips 05
gubscriptions & Back Issues 66
Magazine Disc/Tape o7
HINTS & TIPS
Remember Your THEN'S
ROM Clashing

Edword £PROM

place curs
on peg to
moved and
gpace Bar ¢
"n move <
hew posiphoe | s
= \ 1. Solitaire

2. Microlink Communicaﬁons

Move Ho .24 was fr

,).
3, Shades & Shadows

ubl jzher Mact

4. PMS publisher

rentld def

5 Astrological Birth Chal

6. Latest Printers Surve

() ARiES = LBRA = MERCURY) pwo
= L

A\ SCORPIO e VENUS 7o
11 o e

(ARN T

\ J TAURUS

A SAGITTARIUS ¢ 2 MARS

c)
Q CAPRICORN A JUPITER o
) T (!

= V)
NN AQUARIUS puis URANUS
Vo)

- |, NEPTUNE
ﬂ r\:{ VIRGO 1 \: PISCES)

 below. These Com|
~ of machine show clearly the vali . puter System “ _
 eachitem, ;'Y’grswn of Basic) and 'fgigombmat'ons Master (Basic 1V Filing System
| ‘h’wghasymb'g“’it,’%@mpaﬁbmty r g,fyf‘?m o .) ADFS i
|) na . w9
;(crrxg;r:gggiustafew Cﬁ:rgegzgmfégorkigge ine ompact (Basic VI) o
gross shows total ' s will be needed); M .
disting incom . ;a od . i
jstanU!shbetweenBas’?f?glrlll(tjyilge\,‘ewsd)om'[: el B (Basic) E L ,
e : Model B (Basicl) =
' , Basicl) [. .
; ube Compatibili
ity

Electron E ‘
. . ’ ‘ ube

Ldators
Jottings

BEEBUG MODEM FOR THE MASTER 128

We are pleased that at long last we have finally
received BABT approval for the BEEBUG internal
modem for the Master 128, and supplies of complete
units should be ready for shipment by the end of this
month. The modem, which is fully Hayes compatible, is
supplied complete with a revised version of our
Command software to give full control over all your
communications requirements. All orders are being
fulfilled as quickly as possible, and we hope other
members with a Master 128 will consider this new
product for their own machine.

MAGAZINE BACK ISSUES

Enclosed with this issue of BEEBUG you will find a
leaflet with special offers on magazine back issues. We
have always considered that the many articles and
programs which we have published over the years
since the BBC micro was launched provide an
invaluable library for all BBC micro owners, including
those with the Master 128 and Compact.

Our intention has always been to keep back issues in
stock (though we have now exhausted stocks of many
issues from volume 1), and it is quite remarkable how
long lasting some of those earlier programs and articles
are. Indeed, we still receive enquiries about programs
from as early as volume 2, often with suggestions or
requests for further enhancements. We urge all readers
to consider taking advantage of our special summer
offers, and complete their sets of BEEBUG while copies
still remain.

MEMBERS' INFORMATION

From time to time we publish information on user
groups and bulletin boards which are known to us. The
full lists are normally published twice a year, with
amendments and updates at other times. In
preparation for our next full printings we would
appreciate any information that will help us ensure
that the information is as up to date as possible. If you
know of any changes or additions to our previously
published lists (Bulletin Boards Vol.6 Nos.4, 6 & 7, User
Groups Vol.6 Nos.9 & 10 and Vol.7 No.1) then please let
us know.

4

MASTER 512 PRICE CUT

Acorn have recently announced a large reduction in
the price of the Master 512 upgrade. The list price of
the 512 co-processor, which allows a BBC machine to
run IBM PC software, is now just £115 inclusive. When
you consider that for this price you get not only a very
fast 80186 board with 512K of RAM, but also a mouse
and the complete set of GEM software, it becomes a
very attractive proposition. This now means that a
complete Master 512 system compares favourably with
a decent IBM PC compatible, both in terms of price and
performance. For users who want to connect a 512 co-
processor to a model B, the Universal Second Processor
box has also been reduced in price to just £56.35
inclusive. BEEBUG members do of course get the usual
discount on these prices, and additionally, BEEBUG
can for a limited period supply to members a Master
128 with the 512 co-processor fitted, for just £475, or
even less if you take advantage of BEEBUG's trade-in
offers.

Acorn have also reduced the price of two of their most
popular software products. View Professional now
retails at £79.35, while Acornsoft C for the model B and
Master is just £67.85. Both prices include VAT.

MASTERISE YOUR MODEL B

Determined that the model B has a lot of life in it yet, a
company by the name of Computech has released an
upgrade board called Integra B. The new board features
four banks of sideways RAM, 20K of shadow RAM,
12K of private RAM (as on the B+) and eight spare
sockets which can be used for either ROM or RAM.
There is also a real-time clock and CMOS RAM on the
board.

Integra B simply plugs into the 6502 socket inside the
computer, with the processor being moved onto the
board. The only other connections are a handful of
flying leads that clip to various locations. It is claimed

Beebug July 1988

that, unlike previous attempts at upgrading a model B
to a Master, the software provided with Integra B
really is compatible with that on a Master. The system
costs £130 inclusive, with additional 32K RAM chips
costing £11.50 each. Computech are at The Garth,
Hamsfell Road, Grange over Sands, Cumbria LA11
6BG. For more information phone (0448) 44604.

REDWOOD TAKEOVER

In a surprise move, Redwood Publishing has been
taken over by BBC Enterprises. Redwood will be best
known to BEEBUG readers as the company that
produces Acorn User Magazine, and also organises the
Acorn User show. BBC Enterprises is the commercial
wing of the BBC, and is itself no newcomer to
magazine publishing, producing Radio Times and The
Listener, among others. It is thought that one reason
for the takeover is to allow the BBC to produce more
specialist magazines. They have already started
producing a monthly wildlife magazine, and a fashion
magazine that is tied to The Clothes Show. It seems in
the future that other such ventures will be launched,
and that this is made much easier with the expertise of
a well established publishing company.

It is not thought that the takeover will have any effect
on Acorn User, which will continue to be published by
Redwood. There is however, no word on the future of
the Acorn User show, which as BEEBUG members will
know has suffered a number of setbacks in the past
months.

KEYPAD PROBLEMS

Back on the subject of the Master 512, Programmable
Systems Design (PSD) have just launched a package to
make using the 512 on a model B easier. Much IBM PC
software makes use of the numeric keypad of the PC to
provide such functions as cursor movement. On a
Master this is no problem, because there is an almost

Beebug July 1988

identical keypad. However, on a model B there is no
keypad, which means that much PC software cannot
be used. The new program from PSD allows keys on
the main keyboard to emulate the most important ones
on the keypad, namely INS, DEL, PG-UP, PG-DOWN,
HOME, and END. To make way for these additions,
certain other changes have had to be made. For
example, the £ symbol is now generated by Ctrl-§.

The new key emulator is only available by returning
your 512 DOS+ boot disc, for the upgrade to be
installed, together with a cheque for £15, to
Programmable Systems Design, 20 Beechwood Road,
Easton-In-Gordano, Avon BS20 ONA. Phone (0275)
813570 for more details.

FACING THE TYPE

Ian Copestake Software has produced a number of
new typefaces for use with twenty four pin dot matrix
printers, such as the Epson LQ series. The fonts include
Personal, Irish Gaelic, Shadow, and German Fraktur.
All the fonts are proportionally spaced, and are very
well designed. One interesting feature is the inclusion
of ligatures (fi and fl for instance), which can be used to
make text much more readable. All the typefaces are
supplied on disc for £21.85 in a format for
downloading into the printer, although it is hoped to
produce ROM module versions that can just be
plugged into the printer.

Also new from lan Copestake Software is a series of
special fonts for use with their Wordpower word
processor. These new fonts extend the range of Power
Fonts already produced by the company, and cover the
specialist areas of chemistry and physics, containing
most of the special symbols needed. The new fonts cost
£21.85 for 24 pin printers, or £36.80 for 9 pin printers.
Ian Copestake Software are at 10 Frost drive, Wirral,
Merseyside L61 4XL, phone 051-648 6287.

5

' Machine [Fiing System

4| i]

SOLITAIRE

Wile away these lazy summer evenings with
a game of Solitaire on the old Beeb using
this superb implementation presented by
W.E. Gander.

I would imagine that everybody will have come
across the game of Solitaire at one time or
another. It is such a simple game, yebt it
continues to intrigue generation after
generation. For those that need an explanation,
the game is played on a grid of 33 positions
arranged in the shape of a symmetrical cross.
At the beginning of the game 32 pegs are
placed on the board occupying every position
except for the very central one. The game can
then commence.

1 2 3 4 5 6

Q0
L Q00 Phsos eurspe
Q000000 2558 gnd press
Q000000 5r.o0us
Q000000 ™ "

Then move

’ 000
s 000

Move Ho.4 was from 4,1 t

Humber of pegs= 28

The aim of the game is to remove all of the pegs
bar one. A peg is removed when another peg is
lifted over it into an emptfr position. Pegs may
only move horizontally and vertically.
Although this may sound simple a couple of
games may well convince you otherwise. It is
not unusual to be left with six or seven pegs on
the board and nowhere to move.

6

The program listed here provides a most
attractive implementation of this ancient game.
Enter the program as printed, and save it to
disc or tape. When you run the program you
will be presented with the grid of pegs and a
cursor. Select the peg to move by using the
cursor keys and then press the Space Bar. Next
move to the position where you wish to move
the peg and press the Space Bar again. The
move will be checked for validity and,
providing that all is well, the peg that has been
jumped over will be removed from the board.
The game will end when you have removed all
the pegs bar one. If you get to a position where
you have many pegs but can make no further
moves press Escape and start again.

I am sure that this implementation of Solitaire
will keep you occupied whether you have
played the game before or not. If you are not
completely convinced that the puzzle is
solvable, we have placed an additional
program on this month's magazine disc that
will show you how to solve the puzzle.

Solitaire

B0.56

W.E. Gander

July 1988

subject to copyright

10 REM Program
20 REM Version
30 REM Author
40 REM BEEBUG
50 REM Program
(ol

100 ON ERROR MODE 7:PROCerror:END
110 PROCinit

120 MODE1

130 vpu23,1,0;0;0;0;

140 PROCintro

150 PROCboard

160 DIM dir$ (4)

170 READ dx%,dy%

180 DIM a% (dx%,dy$%,2)

190 FOR y%=0 TO dy%:FOR x%=0 TO dx%
200 READ a% (x%,y%,0)

210 NEXT:NEXT

220 READ wx$%,wy%

230 PROCpins

240 PROCboardplot (x%, y%, dep%)

250 nx%=352:ny%=672:nogood=FALSE
260 REPEAT

270 PROCmove

280 SOUND1,-14,150,1:PROCdelay (1)
290 X%=nx%:Y%=ny%

Beebug July 1988

SR SR e L 2 SRS = o Vo L e S Gt SRS ENT T e DR St L TSN A AR S A g e sl e e Sl e b e SR G A

300 x%=((X%/32)-2)/3:y%=(((1024-Y%)/32
e

310 PROCcheck

320 IF nogood THEN nx%=352:ny%=672:nog
00d=FALSE:UNTIL FALSE

330 PROCmove

340 SOUND1,-14,150,1:PROCdelay (1)

350 PROCsolit (x%,y%,dir%,dep%, np%)

360 IF nogood THEN nx%=352:ny%=672:nog
00d=FALSE:UNTIL FALSE

370 np%=np%-1:PRINTTAB(16,28)SPC(2)

380 PRINTTAB(16,28);np%

390 UNTIL np%=1 AND a% (wx%,wy%,dep%)=1

400 CLS:COLOUR1

410 PRINTTAB(4,5);"WELL DONE - YOU'VE
CRACKED IT !"

420 PRINTTAB(7,8);"NOW PLEASE PRESS AN
Y REY"

430 A$=GET$

440 RUN

450 END

460 :

1000 DEF PROCinit

1010 dx%=0:dy%=0

1020 s01%=0:mx%=0:dep%=0

1030 ypu2s 228,0,0,0,1,7,15,16,31

1040 VDU23,230,0,0,126,255,265,255,255,
255

1050 vpu23,232,0,0,0,128,224,240,240,24
8

1060 VDU23,234,31,63,63,63,63,63,31,31
1070 YDU23,236, 255,255,255 255 755, 255
255,255

1080 VDU23,238, 248 250 257 959 082, 257,
248,248

1090 vpu23,240,15,15,7,1,0
1100 Vnu23, 242,255 255,255,
0

1110 vDU23,244,240,240,224,128,0,0,0,0
1120 Piece$=CHR$228+CHR$230+CHR$232+CHR
$10+CHR$8+CHR$8+CHR$8+CHR$234+CHR$236+CH
R$238+CHR$10+CHR$8+CHRS8+CHRS8+CHR$240+C
HR$242+CHR$244

1130 ENDPROC

1140

1150 DEF PROCboard

1160 FOR 1 = 0 TO 6

1170 PRINT TAB(i*342,0);1

1180 NEXT

1190 FOR 1 = 0 TO 6

1200 PRINT TAB(0,i*3+2);1

:0,0,0
255,126,0,0,

1 2 3 4 5
i oo o Place cursor
on psg f? be
nove and re
0000000 Bl nl e
Then move cursor
3ODOOOOOwMMWMn
and press
0000000 ¥ B

000
000

Move Ho.24 was from 2,6 to 4,6

Humbetr of pegs= 8

1210 NEXT

1220 vDU19,3,6;0; : COLOUR3

1230 FOR E%=7 TO 13 STEP 3

1240 FOR F%=1 TO 4 STEP 3

1250 PRINTTAB (E%,F%);Piece$

1260 NEXT:NEXT

1270 FOR E%=1 TO 19 STEP 3

1280 FOR F%=7 TO 13 STEP 3

1290 PRINTTAB(E%,F%);Piece$

1300 NEXT:NEXT

1310 FOR E%=7 TO 13 STEP 3

1320 FOR F%=16 TO 19 STEP 3

1330 PRINTTAB(E%,F%);Piece$

1340 NEXT:NEXT

1350 ENDPROC

1360 :

1370 DEF PROCboardplot (x%,y%,dep%)
1380 COLOURL

1390 FOR x%=0T0dx%:FOR y%=0TOdy%
1400 nx%=(x%*3)+2:ny%=(y%*3)+2
1410 IF a%(x%,y%,dep%)=1 THEN PRINTTAB (
nx%,ny%);"*" ELSE PRINTTAB (nx%,ny%);" "
1420 NEXT:NEXT

1430 COLOUR3

1440 ENDPROC

1450 -

1460 DEF PROCinkey (U,D,L,R)

1470 TIME=0:REPEATUNTIL TIME>10
1480 IF INKEY-U ny%=ny%+96:dir%=
1490 IF INKEY-D ny%=ny%-96:dir%=
1500 IF INKEY-L nx%=nx%-96:dir%=
1510 IF INKEY-R nx%=nx%+96:dir%=2
1520 ENDPROC

1530 =

1540 DEF PROCsight:GCOL3, 3

1550 FOR I%=1T02

Beebug July 1988

1560 MOVEnx%, ny% :DRAWnx%+32, ny% : DRAWNX%
+32,ny%-32:DRAWNX%, ny%-32 : DRAWNX%, ny%
1570 NEXT:ENDPROC

1580 :

1590 DEF PROCmove

1600 *Fx4,1

1610 REPEAT:PROCsight :K$=INKEYS (0)

1620 PROCinkey (58,42,26,122)

1630 UNTIL K$=CHR$32

1640 *FXx4,0

1650 ENDPROC

1660 :

1670 DEF PROCdelay (X)

1680 NOW=TIME:REPEAT UNTIL TIME=(NOW+X*
100) : ENDPROC

1690 :

1700 DEF PROCpins

1710 np%=0

1720 FOR y%=0TOdy%

1730 FOR x%=0TO0dx%

1740 IF a%(x%,y%,0)=1 THEN np%=np%+l

1750 NEXT:NEXT

1760 PRINTTAB (0, 28); "Number of pegs= ";
np%

1770 ENDPROC

1780 :

1790 DEF PROCcheck

1800 IF a%(x%,y%,dep%)<>1 THEN PROCmess
age ("No pin at this position !"):nogood=
TRUE: ENDPROC ELSE ENDPROC

1810 :

1820 DEF PROCsolit (x%,y%,dir%,dep%,np%)

1830 LOCAL xx%,yy%

1840 IF dir%=1 THEN destx%=x%:desty%=y%
-2:skipx%=x%:skipy%=y%-1

1850 IF dir%=2 THEN destx%=x%+2:desty%=
y%:skipx%=x%+1:skipy%=y%

1860 IF dir%=3 THEN destx%=x%:desty%=y%
+2:skipx%=x%:skipy%=y%+1l

1870 IF dir%=4 THEN destx%=x%-2:desty%=
y%:skipx%=x%-1:skipy%=y%

1910 m%=m%+1:PRINTTAB (0, 24) STRINGS (39,"

") :PRINTTAB (0, 24) ; "Move No."m%;" was fr
om "ex%:", "ivi;" to Y.destxi:", ".destyd

1920 a%(x% y%,dep%)=0:a% (skipx%, skipy%,
dep%)=0:a% (destx%, desty%, dep%)=1

1930 FOR yy%=0 TO dy%

1940 FOR xx%=0 TO dx%

1950 a% (xx%, yy%,dep%+l)=a% (xx%, yy%, dep%
)

1960 NEXT:NEXT

1970 PROCboardplot (x%,y%,dep%)

1980 nx%=352:ny%=672

1990 ENDPROC

2000 :

2010 DEF PROCerror

2020 IF ERR=17 RUN

2030 REPORT

2040 PRINT " at line ";ERL

2050 ENDPROC

2060 ENDPROC

2070 :

2080 DEF PROCmessage (M$)

2090 PRINTTAB(0,26) ;M$:PROCdelay (3)

2100 PRINTTAB(0,26)SPC(39)

2110 ENDPROC

2120

2130 DEF BROCintro

2140 vDU28,23,23,39,0

2150 COLOUR1:PRINTTAB(3,2);"SOLITAIRE"
2160 PRINTTAB(3,3); "========="

2170 COLOUR3:PRINTTAB(0,5);"Place curso
r"

2180 PRINTTAB(0,6);"on peg to be"

2190 PRINTTAB(0,7);"moved and press"
2200 PRINTTAB(O,8);"Space Bar."

2210 PRINTTAB(0,10);"Then move cursor"
2220 PRINTTAB(0,11);"to new position"
2230 PRINTTAB(0,12);"and press Space"
2240 PRINTTAB(0,13);"Bar again."

2250 VDU26

1880 IF destx%<0 OR desty%<0 OR destx%> 2260 ENDPROC
dx% OR desty%>dy% THEN PROCmessage ("Move 22;8 g:zi g g L
off board !"):nogood=TRUE:ENDPROC A
1890 IF a% (skipx$, skipy%,dep$)<>1 THEN 2290 DATA 9,9,1,1,1,9,9
PROCmessage ("There is no peg to jump ove 2300 DATA 1,1,1,1,1,1,1
") :nogood=TRUE : ENDPROC 2310 paTA 1,1,1,0,1,1,1
1900 IF a$(destx$,desty$,dep%)=1 OR a$(2320 pATA 1,1,1,1,1,1,1
destx%,desty%, dep%)=9 THEN PROCmessage (" 2330 DATA 9,9,1,1,1,9,9
Destination is occupied or illegal !"):n 2340 DATA 9,9,1,1,1,9,9
0good=TRUE : ENDPROC 2350 DATA 3,3
8 Beebug July 1988

il - B Mm%

If you want multiple printer fonts, a
WYSIWYG preview facility, a Page
Description Language, and more, then The
Publisher from PMS could be for you.
David Somers explains all.

The Publisher

Permanent Memory Systems

38 Mount Cameron Drive North,
St. Leonards, East Kilbride,
Scotland G74 2ES.

Tel. (03552) 32796.

£45.85 inc VAT and p&p.

Product
Supplier

Price

About two years ago PMS released a piece of
software called Multi-Font NTQ, which
allowed you to produce a number of different
fonts on your printer by using its graphics
facility. The Publisher is a hybrid of the NTQ
system, incorporating many additions and
enhancements.

It seems that most BBC micro software is now
being supplied as a PAL-PROM combination,
and The Publisher is no exception, consisting of
a 64K PAL-PROM. It comes packed in an
attractive box also containing ROM fitting
instructions, an A5 size comb-bound instruction
manual (circa 60 pages), utility disc, function
key strip, and a Font Library booklet.

The Publisher will work on a model B, B+,
Master, or Master Compact. It is compatible
with second processors and Shadow RAM.
Your printer must be Epson compatible, and
capable of double or quad density graphics.

USAGE

Word processing is one of the most frequent
tasks a computer is asked to perform. However,
more and more facilities are required of word

Beebug July 1988

processors these days (such as WYSIWYG, the
availability of different fonts, etc.), so that they
are beginning to look more like mini Desk Top
Publishing (DTP) packages. The trouble is that
most users are fairly conservative and they are
reluctant to learn all the complexities of a DTP
package after they have spent many hours
learning to use their word processor.

This is where The Publisher from PMS comes
in, for it offers a Page Description Language
(PDL). Text is prepared on your own word
processor, but it has special codes inserted into
it. When the document is 'printed' The
Publisher takes over and recognises these
special codes to produce a variety of effects.
When printing text The Publisher utilises your
printer's graphics capabilities. For each line the
print head makes two passes to increase the
resolution.

FEATURES GALORE

The Publisher takes care of all the formatting of
your text completely independently of your
word processor. Four pitches are available: 10,
12, or 15 cpi, and proportional spacing. The
width and height of the characters can be up to
sixteen times normal size and the characters can
be emphasised. Justification can be either left,
right, centred, or block. Two background
shading patterns are available. The distance
between lines (leading) can be altered and text
can be put into super or subscript styles if
required.

The more specific DTP facilities include the
ability to produce galley lines, boxes around
text, underlining in various styles, and the
provision of both horizontal and vertical tabs
(which makes headers and footers easier).

FONTS GALORE

As the saying goes: "Variety is the spice of life".
To prove this point, The Publisher comes
complete with no less than sixteen different
built-in fonts. Further fonts can be added by
using Font Extension ROMs, each one of which
is capable of holding four complete fonts.

The utility disc contains a Font Editor. This
allows you to design your own fonts from
scratch (which is VERY time consuming), or to
modify one of the existing ones. After a font has
been designed, another program will convert it
into a Font Extension ROM suitable for loading
into sideways RAM or programming into an
EPROM.

If, however, designing letter styles is not up
your street, PMS have over fifty fonts (and
these are in-
creasing every
week) that you
can choose
from and pur-
chase. If you do
not have side-

This paragraph
contains left
Justified text
(ragged right
margin

This paragraph

Wsa RAM ar containsiirioht
ax;o rgiﬁgi\f Justified text
fheygcan also LEaERed l?ft
supply Font Ex- MBEE o

tension ROMs
programmed to
your require-
ments. Contact
PMS for further

This paragraph
contains
centred text

: This paragraph
details and [lcontains block
pricing. Justified text
ESCAPE CODES

Just like NTQ, The Publisher works by Escape
sequences. These allow you to alter various
parameters, such as the current font, pitch, etc.

10

Unlike the codes which control your printer,
these are mnemonics of the functions they
perform, and are quite easy to learn. e.g. ESC
"H" for height.

Users of Wordwise (including Wordwise Plus
and Plus II) and Interword can place these
Escape codes directly in their text by using the
embedded code facility. For View users it is
necessary to load up a special printer driver,
then 'fence' the escape codes between highlights
two and one.

MACROS

When printing documents we all have our own
'style' of doing things, e.g. all the headings in a
document are printed in a certain font and pitch
with the text body in another. Instead of having
to place sequences of (possibly) long Escape
codes throughout a document, they can be
replaced by a single "macro" Escape code.

The Publisher supports up to ten user-definable
macros which, when called, set up the font,
pitch and any required characteristics. The
macro editor is entered with *MACRO, with the
screen changing to a colourful MODE 7 display
showing the values for all the macros. It is then
a simple case of moving the cursor over the
parameters and altering them as necessary.

Once a set of macros has been defined, it can

then be saved to a disc or tape and loaded up
when necessary. It is quite easy to build a

Beebug July 1988

!BOOT file so the macros are automatically
loaded.

PREVIEW TIME

One of the biggest drawbacks with other Font
software is the inability to preview the output
on screen. With The Publisher, a WYSIWYG
display is possible with the simple command
*PREVIEW. Thereafter, any output to the
printer is shown on screen for checking before
printing (but only when in mode 0 or 3). This
can save a lot of printer paper from the rubbish
bin!

CONCLUSIONS

The Publisher is certainly an interesting piece of
software and it is worth every penny. The price
you have to pay in terms of memory is that of
one page (256 bytes); Master and Master
Compact users aren't affected as Private RAM
is used instead. Fortunately, when you are not
using The Publisher a simple star command can
be issued to free this memory.

The instruction manual is very good, with
separate sections detailing how to use it with

THE QUICK BROWN FOX JUMPED OVER THE LAZY DOGS
THE QUICK BROWN FOX JUMPED OVER THE LAZY DOGS
THE QUICK BROWN FOX JUMPED OVER THE LAZY DOGS
THE QUICK BROWN FOX JUMPED OVER THE LAZY DOGS
THE QUICK BROWN FOX JUMPED OVER THE LAZY DOGS

THE QUICK BROWN FOX JUMPED OVER THE LAZY DOGS
THE QUICK BROWN FOX JUMPED OVER THE LAZY DOGS
WHE QUICIK BROWN IFDX JUMIPIED DVYIER WHIE LAZY DDECS

THE QUICR BROWA FOX TUMPED OYER THE LAZP BOGS

THE QUICH BROWN FOR JUMPED OUER THE LAZY DDGS

THE OUICK BREWKN FOX JUNPED BVER THE LAZY DOGS

THE QUICK BROWN FOX JUMPED OVER THE LAZY DOGS

THE QUICK BROWN FOX JUMPED OVER THE LAZY DOGS

THE QUICK BROWN FOX TUMPED OVER THE LAZY DOGS
"OE PPIT'A BZOVE ZOQ KONIIEA OXEZ YOEMA AOHT

When previewing text, page breaks are also
indicated. This is very useful as your word
processor's paging facilities cannot be relied
upon when you start using some of The
Publisher's more advanced features, such as
multiple height text.

A problem when previewing the text on screen
is that its aspect ratio is not the same as it will
be on paper. However, a special 'interlaced
sync & video' mode can be set so that the aspect
ratio is roughly that of the printed output. OK,
the screen is reduced to half its normal size and
it does flicker a bit, but its works.

Beebug July 1988

View, Wordwise and Interword. The Hints &
Tips section is particularly helpful in that
respect.

With careful selection of its facilities you could
use The Publisher to produce impressive
looking documents in conjunction with your
word processor. If you have a printer then you
can't afford to be without The Publisher.

Users of PMS NTQ can obtain a £10 trade-in
when purchasing The Publisher. Alternatively,
they can either receive a Font Extension ROM
containing four fonts, or ten fonts on disc.

1]

e | T] &>

EN
- SHADES
SHADOWS

David Williams demonstrates how a simple
BBC micro can perform the shading and
shadowing usually associated with much
more powerful computers.

Have you ever seen those computer generated
images produced by expensive computers
which perform shading and shadowing? This
program does just that on a BBC. If you want to
try out this type of graphics, type in the
program and save it away. When you run it
you will see a chequer board and two circles
drawn on the screen. The program will then
scan the screen in the region of the board (the
circles are drawn to save the program wasting
its time by processing a board that will be
hidden from view), to find the regions in
shadow.

The shadows are drawn in at this stage. This
takes a long time, about 25 minutes on a model
B. After scanning the screen two spheres are
drawn, in place of the original 'disc' images. It
may seem to be drawing these rather slowly,
but this is because it is calculating the angle of
each part of the sphere with the sunlight vector,
and drawing that part in a lighter colour if it is
facing the sun.

The whole program takes 35 minutes to run,
but the result is well worth waiting for. If
anything, the final image looks better on a
monochrome display, or as a black and white
printer dump. You may like to save the screen
so that it can be quickly reproduced again. This
can be done by inserting the line:

175 *SAVE image 3000 8000
This will save the screen under the filename
"image" to disc or tape. The screen can be re-
displayed by the following:

MODE1

12

vpul9,2,4,0,0,0

*LOAD image
You can change the direction of the sunlight
vector in the program by changing the
arguments in the call to PROCscan

(SLx,SLy,SLz). The arguments refer to the
direction ratio of the sunlight vector x:y:z. The
co-ordinate system used has the x-y plane
parallel to screen, and the z axis pointing away
from you.

HOW IT WORKS

When the program draws the checker board, it
projects its image onto the z=0 plane, using
PROCperspective(F) where F is the distance of
the imaginary viewpoint to the screen. After
drawing the board a call to PROCDefinePlane
is made to define the plane, this is done by
finding the plane's DRN (A:B:C) [DRN =
Direction Ratio of the Normal] to define the
plane in the form:

Ax+By+Cz=D

As each pixel on the board is scanned an
imaginary line is constructed from the
viewpoint to the (x,y) co-ordinate of the screen
(which is conveniently positioned on the z=0
plane). The intersection of this point and the
plane is then calculated. Another parametric
equation is formed using this point on the plane
and the sunlight vector. This is substituted into
the equation of a sphere. The resulting
quadratic can then be solved to give the points
of intersection.

In fact, we don't need to know the intersection
points as such, only if they exist or not. Given

Beebug July 1988

A(x"2)+Bx+C=0, the roots are real if B*B-
4*A*C>0, in which case the line intersects the
sphere, the pixel on the board is in a shadow
region, and so the colour of the pixel on the
screen must be changed. This lengthy
procedure is repeated for each point on the
board. Finally the spheres are drawn by
stepping around the circumference, each
triangle has its DRN calculated, and the dot
product is taken between the normal and the
sunlight vector (the dot product routine returns
the cosine of the angle).

The theory behind the display may appear
quite daunting, but with this program you can
ignore that if you wish and concentrate on the
highly effective display produced.

10 REM Program Shadows
20 REM Version B0.25
30 REM Author David Williams
40 REM BEEBUG July 1988
50 REM Program subject to copyright
60
100 MODE1:ON ERROR GOTO 210
110 Vpu2s,1,0:0:0:0;
120 VDU29,640;512;
130 vpui9,2,4,0,0,0
140 DIM d(11)
150 PROCinitrotate(0,0,-20)
160 PROCboard
170 PROCscan (-50,100, 50)
180 *BPRINT
190 END
200 i
210 IF ERR=17 END
220 REPORT:PRINT"at line ";ERL
230 END
240
1000 DEF FNBallLineIntersect(a,b,c,ra,p
/9,58, t,u)
1010 LOCAL d,e,f,A,B,C,£5%
1020 d=g-a:e=s-b:f=u-c
1030 A=p*p+r*r+t*t: IF A=0 THEN =TRUE
1040 B=2* (p*dtr*ett*f)
1050 C=(d*dte*etf*f)-(ra*ra)
1060 =B*B-4*A*C>(0
1070
1080 DEF PROCinitrotate(A,B,C)
1090 LOCALa,b,c
1100 a=RAD (A) :d(4)=CO0S (a) :d(5)=SIN(a) :d
(6)=-d(5) :d(7)=d(4)

1110 b=RAD (B) :d (8)=COS (b) :d (9) =SIN (b) :d
(10)=-d (9) :d(11)=d(8)

1120 c=RAD(C) :d (0)=COS(c) :d (1) =SIN(c) :d
(2)=-d(1) :d(3)=d (0)

1130 ENDPROC

1140 :

1150 DEF PROCrotate

1160 Rx=0:Ry=0:Rz=400

1170 x=x-Rx:y=y-Ry:z=z-Rz

1180 LOCALxs,ys

1190 xs=x

1200 x=(xs*d(4))+(y*d (6)) :y=(xs*d (5))+(
y*d(7))

1210 xs=x

1220 x=(xs*d(8))+(z*d(10)) :z=(xs*d (9))+
(z*d (11))

1230 ys=y

1240 y=(ys*d (0))+(z*d(2)) :z=(ys*d (1))+(
z*d (3))

1250 x=x+Rx:y=y+Ry:z=z+Rz

1260 PROCperspective (800)

1270 ENDPROC

1280 :

1290 DEF PROCperspective (F)

1300 x=(F*x)/(F+z)

1310 y=(F*y)/ (F+z)

1320 ENDPROC

1330 -

1340 DEF PROCmove (x,y, z)

1350 PROCrotate:MOVEx,y

1360 ENDPROC

1370 :

1380 DEF PROCdraw(x,y,z)

1390 PROCrotate:DRAWX,y

1400 ENDPROC

1410 :

1420 DEF PROCplot85(x,y, z)

1430 PROCrotate:PLOT85,x,y

1440 ENDPROC

1450 :

1460 DEF PROCboard

1470 LOCAL X%,Y%,C%

1480 FOR X%=-400 TO 350 STEP 100

1490 FOR Y%=-250 TO 400 STEP 100

1500 IF C%=3 C%=1 ELSE C%=3

1510 GCOLO,C%

1520 PROCmove (X%,-100, Y%) :PROCmove (X%+1
00,-100,Y%) :PROCplot85 (X%,-100, Y$+100) :P
ROCplot85 (X%+100,-100, Y$+100)

1530 NEXT:NEXT

1540 PROCDefinePlane (-400,-100,-250, 350

-100,-250,350,~100,400)

1550 ENDPROC

Beebug July 1988

13

1560 -

1570 DEF PROCDefinePlane (x1,y1,zl,x2,y2
122,23,y3,23)

1580 LOCAL a,b,c,d,e, f,g,h,1

1590 x=x1:y=yl:z=z1:PROCrotate

1600 xl=x:yl=y:zl=z

1610 x=x2:y=y2:z=2z2:PROCrotate

1620 x2=x:y2=y:z2=z

1630 x=x3:y=y3:2z=z3:PROCrotate

1640 x3=x:y3=y:z3=z

1650 a=x2-x1:b=y2-yl:c=z2-zl

1660 d=x3-x1:e=y3-yl:f=z3-zl

1670 g=b*f-e*c:h=c*d-a*f:i=a*e-b*d

1680 A=g:B=h:C=1i:D=A*x2+B*y2+C*z2

1690 ENDPROC

1700 ':

1710 DEF PROCPlaneLinelntersect (A,B,C,D
/P/r,t,q,s,0)

1720 LOCAL k

1730 k=(D- (A*q+B*s+C*u))/ (A*p+B*r+C*t)

1740 Vx=p*k+q:Vy=r*k+s:Vz=t*k+u

1750 ENDPROC

1760 :

1770 DEF PROCscan (SLx, SLy, SLz)

1780 LOCALx%,y%,col%,test%,Vx,Vy,Vz

1790 PROCcircle(0,0,100,200)

1800 PROCcircle(-350,-100,100,100)

1810 FOR x%=-400TO555STEP4

1820 FOR y%=-50T0-430STEP-4

1830 col%=POINT (x%,y%)

1840 IF col%=0 OR col%=2 GOTO 1910

1850 PROCPlaneLinelIntersect (A,B,C,D,0,0
,=800,x%,y%,0)

1860 test%=FNBallLinelntersect (0,0,100,
200, SLx, Vx, SLy, Vy, SLz,Vz)

1870 IF test%=FALSE test%=FNBallLineInt
ersect (-350,-100, 100,100, SLx, Vx, SLy, Vy, S
Lz,Vz)

1880 IF test%=TRUE AND col%=1 col

1890 IF test%=TRUE AND col%=3 col%

1900 GCOLO,col%:PLOT69,x%,y%

1910 NEXT:NEXT

1920 PROCsphere(0,0,100,200,SLx,SLy, SLz

=0
=2

)
1930 PROCsphere (-350,-100,100,100, SLx, S
Ly,SLz)

1940 ENDPROC

1950 :

1960 DEF PROCcircle (x,y,z,ra)

1970 LOCAL a

1980 PROCmove (x,y,2) :GCOLO, 2

1990 FOR a=0 TO 2*PI+0.1 STEP 0.1

2000 PROCmove (x,y,z) :PROCplot85 (x+ra*Co

S(a),ytra*SIN(a), z)

2010 NEXTa

2020 ENDPROC

2030 :

2040 DEF PROCsphere(x,y,z,ra,Lx,Ly,Lz)

2050 LOCAL a,b,da,db,I,s,c,sd,cd

2060 da=0.4:db=0.3

2070 I=0:PROCmove (x+ra*COS(I),y+ra*SIN(
I),z)

2080 FOR b=-0.5*PI TO 0.5*PI STEP db

2090 s=SIN(b) :c=COS (b) :sd=SIN (b+db) :cd=
COS (b+db)

2100 FOR I=0 TO 2*PI STEP da

2110 sini=SIN(I):co0si=COS(I):sinida=SIN
(I+da) :cosida=COS (I+da)

2120 PROCtriangle (x+(ra*c)*cosi,y+s*ra,
z+(ra*c)*sini, x+ (ra*cd) *cosi, y+sd*ra, z+ (
ra*cd) *sini, x+ (ra*c) *cosida, y+s*ra, z+(ra
*c)*sinida)

2130 PROCtriangle (x+(ra*cd)*cosi,y+sd*r
a, z+ (ra*cd) *sini, x+ (ra*cd) *cosida, y+sd*r
a, z+(ra*cd) *sinida, x+ (ra*c) *cosida, yts*r
a,z+(ra*c) *sinida)

2140 PROCmove (x+(ra*c)*cosi,y+s*ra, z+(r
a*c)*sini)

2150 GCOLO, 3:PROCdraw (x+ (ra*c)*cosida,y
+s*ra, z+(ra*c) *sinida)

2160 NEXT

2170 NEXT

2180 ENDPROC

2190 =

2200 DEF PROCtriangle (x1,yl,zl,x2,y2,22
i3, 98,23

2210 PROCillumination(xl,yl,zl,x2,y2,z2
+%3,y3,23 Lx,Ly, Lz)

2220 PROCmove (x1,y1,z1)

2230 PROCmove (x2,y2,22)

2240 PROCplot85 (x3,y3,123)

2250 ENDPROC

2260 -

2270 DEF PROCillumination(xl,yl,zl,x2,y
2,22,%3,y3 23, 1Lx, 1y, 17}

2280 LOCALa,b,c,d,e, f,g,h,1,ans

2290 a=x2-x1:b=y2-yl:c=z2-zl

2300 d=x3-xl:e=y3-yl:f=z3-zl

2310 g=b*f-e*c:h=c*d-a*f:i=a*e-b*d

2320 templ=(g*g+h*h+i*i) :temp2=(Lx*Lx+L
y*Ly+Lz*Lz)

2330 IF templ*temp2=0 THEN ans=0 ELSE a
ns=(g*Lx+h*Ly+i*Lz) /SQOR(templ*temp2)

2340 IF ans>0 GCOLO,1 ELSE GCOLO,2

2350 ENDPROC

14

Beebug July 1988

Wachine

ip-nmE] i e

ASTROLOGICAL
BIRTH CHARIS

Donald Tattersfield offers a program to
draw your very own personal birth chart.

Whether you believe in the predictions of
astrologers or not, there is something
fascinating about the way they draw birth
charts to show the position of the planets, the
earth and the moon at the time of birth. Figure
1 shows such a birth chart for someone born at
11 a.m. GMT on 25 Dec 1976 in a place that is

40° 43' North and 74°West. Each sign of the
zodiac occupies 30° of arc, starting at the Ram,
or the First Point of Aries, referred to by
astrologers as the datum. The inner circle is
divided into twelve equal houses, one for each
sign of the zodiac. These are located
anticlockwise from a line called the ascendant,
the position of which depends not only on the
time of your birth but also on the geographical

Figure 1

latitude and longitude of the place of birth.
The position of the mid-heaven 'm' or medium
coeli as the astrologers call it, is also important
in the interpretation of the birth chart.

Beebug July 1988

The program given here will draw a birth chart
for a particular time and place of birth. Any
budding amateur astrologers can then use this
to predict the future! It is not possible in this
short article to explain the ins and outs of
astrology, but there are several good books on
the subject. For beginners, I recommend
Astrology, by Sheila Geddes, which is part of the
Macdonald Guidelines series. A more advanced
work is Practical Astronomy with your Calculator
by Peter Duffett-Smith, published by
Cambridge University Press.

LIBRA MERCURY

fT\ ARIES

TAURUS SCORPIO

CAPRICORN

JUPITER E SATURN

AQUARIUS

d
Il
St

NEPTUNE

e
e
GEMINI / SAGITTARIUS d MARS
B 2
a ¥
¥

m VIRGO ﬁ PISCES

Figure 2

The program should first be typed in and
saved. When run, you are prompted to enter
the latitude and longitude of the place of birth.
These values should be entered as degrees and
minutes, separated by either Return or a
comma. For longitudes west of Greenwich, and
latitudes south of the equator, both the degrees
and minutes should be entered as negative
values. For example, 40° 43'S is -40 degrees and
-43 minutes. The best way to find out the
latitude and longitude of a particular place in
the UK is to use an ordnance survey map. After
this, you should enter the date and time of
birth. The date should be specified as three
numbers separated by a Return or a comma.
For example, 19th February 1967 would be
entered as 19,2,1967. The time must be adjusted
to Greenwich Mean Time (GMT). This means
that any time difference, and any local seasonal
variations, should be taken into account.

When all the information has been entered, the
program prints out the sidereal time of birth,
the longitudes of the planets, the sun, the moon,
the ascendant and the mid-heaven. All these

15

figures will be of significance in interpreting the
birth chart. The birth chart itself is then drawn
as in Figure 1. Note that the actual positions of
the planets are the small dots just outside the
inner circle. The ascendant and mid-heaven are
shown by dots just inside the outer circle. The
meaning of the symbols is shown in Figure 2.
The only planet not shown is the Earth. This is
because the Earth is taken to be at the centre,
with all longitudes calculated as seen from the
Earth. It is further assumed that all the planets
orbit in the plane of the ecliptic, which while
not strictly true, is a good enough
approximation. The orbits of the planets are
stored as data at the end of the program.

If you want to produce a printout of the birth
chart, the commands to call a suitable screen
dump routine can be inserted between lines
1790 and 1800. Happy fortune telling!

10 REM Program BirthCharts
20 REM Version B 1.0
30 REM Author Donald Tattersfield
40 REM BEEBUG July 1988
50 REM Program subject to copyright
Bl
100 ON ERROR MODE7:REPORT:PRINT" at 1i
ne ";ERL:END
110 MODE 7:VDU23,1,0;0;0;0;
120 FOR I=5 TO 20
130 PRINT TAB(1,I) CHRS$(132);CHR$(157)
;CHRS (131) ; TAB(16,10) ; "BIRTHCHART"
140 NEXT I
150 PRINT TAB(6,15) ; CHRS (129) ; "Donald
Tattersfield 1988"
160 A=INKEY 100:CLS:PRINT
170 DIM P(9),CY(11),W(11),AM(9),0(9)
180 DIM S(9),ep(11),1(9),nu(9),r(9)
190 DIM dr(9),sr(9),sd(9),cd(9)
200 DIM pr(9),ps(9),1r(9),1d(9)
210 DIM rd(9),N(11),1m(9),ml(9)
220 DIM le(11),1LR(11),PTS(100,2)
230 FOR Q=1 TO 9
240 READ P(Q),CY(Q),W(Q),AM(Q),0(Q),S(
Q) ,ep(Q)
250 NEXT Q
260 READ CY(10),W(10),ep(10)
270 READ Lo,Po,No, I0:RESTORE:PRINT
280 CC=180/PI:EP=23.4522:RC=0.013
290 PRINT "* FOR PLACE OF BIRTH *"'
300 INPUT "LATITUDE NORTH (degrees,min
utes)"',dg,mi
310 IF dg*mi<0 THEN VDU 7:CLS:GOTO 300
320 IF ABS(dg)>90 OR ABS(mi)>=60 THEN
VDU 7:CLS:GOTO 300

330 PRINT:ph=FNgetdeg

340 INPUT "LONGITUDE EAST (degrees, mi
nutes)"',dg,mi

350 IF dg*mi<0 THEN VDU 7:CLS:GOTO 340

360 IF ABS(dg)>360 OR ABS(mi)>=60 THEN
VDU 7:CLS:GOTO 340

370 LB=FNgetdeg

380 PRINT '"* FOR TIME OF BIRTH 7!

390 INPUT "DAY,MONTH, YEAR"',J,M,Y

400 IF M>12 OR J>31 THEN VDU 7:CLS:GOT
0 390

410 INPUT '"GMT (hour,minute)"', ho,mi

420 IF ho>23 OR mi>=60 THEN VDU 7:CLS:
GOTO 410

430 IF ho<0 OR mi<0 THEN VDU 7:CLS:GOT
0 410

440 PRINT:JJ=J+ (ho+mi/60)/24:PROCsider

450 J=JJ:PROCcalc:d=(I-2442412)+(D-0.5

460 PRINT "LONGITUDES Mercury....Plut
o (degrees)"'

470 PRINT CHR$(134) ;"Please wait"'

480 FOR Q=1 TO 9

490 N(Q)=(360/365.25) *(d/(P(Q)))

500 N(Q)=FNround(N(Q))

510 1(Q)=N(Q)+(360*CY(Q)/PI)*SIN((N(Q)
+ep (Q) -W(Q)) /CC) +ep (Q)

520 N(Q)=FNround (N(Q)) :nu(Q)=1(Q)-W(Q)

530 r(Q)=AM(Q) *(1-CY (Q)*CY(Q))/(1+CY(Q
) *COS (nu (Q) /CC))

540 dr(Q)=(1(Q)-0(Q))/CC:sr(Q)=S(Q)/CC

550 sd(Q)=SIN(dr(Q)) :cd(Q)=C0S(dr(Q))

560 pr(Q)=ASN(SIN(dr(Q))*SIN(sr(Q)))

570 ps(Q)=pr(Q)*CC

580 1r(Q)=ATN(TAN (dr(Q))*COS(sr(Q)))+0
(Q) /cc

590 IF sd(Q)<>0 AND cd(Q)<0 THEN 1lr(Q)
=1r(Q)+P1

600 IF sd(Q)<0 AND cd(Q)>0 THEN 1r(Q)=
1ri0)+2*P1

610 1d(Q)=1r(Q) *CC:1d (Q)=FNround (1d(Q)
)

620 rd(Q)=r(Q)*COS(pr(Q))

630 NEXT Q

640 FOR Q=1 TO 9

650 1m(Q)=1r(3)-1r(Q):ml(Q)=1r(Q)-1r(3
)

660 IF Q<3 THEN le(Q)=180+1d(3)+ATN((r
d(Q) *SIN(Im(Q))) / (rd(3)-rd(Q) *COS (1Im(Q))
) *CE

670 IF Q>3 THEN le(Q)=ATN((rd(3)*SIN(m
1(Q))) /(rd(Q)-rd(3)*COS (ml(Q))))*CC+1d(Q
)

680 le(Q)=FNround(le(Q))

690 PRINT "le(";Q;™)";" ":le(Q)

700 NEXT Q

710 PRINT 'CHR$(134);"Press any key to

16

Beebug July 1988

B

continue" :KEYHIT=GET
720 N(10)=(360/365.25) *d
730 N(10)=FNround(N(10))
740 Md=N(10)+ep(10)-W(10)
750 Md=FNround (Md) :Mr=Md/CC
760 Es=360*CY(10) *SIN (Mr) /P1
770 1e(10)=N(10)+Es+ep(10)
780 le(10)=FNround(le(10))
790 PRINT '"LONGITUDE Sun (degrees)";"
P:le(10)!
800 1=360*d/27.3217+Lo:1=FNround (1)
810 Mm=1-(360*d)/(365.25*8.85)-Po
820 Mm=FNround (Mm)
830 N=No-(360*d)/(365.25*18.61)
840 N=FNround (N)
850 Ev=1.274*SIN((2*(1-1e(10))-Mm) /CC)
860 Ae=0.186*SIN (Mr) :A3=0.37*SIN(Mr)
870 mm=Mm+Ev-Ae-A3
880 Ec=6.289*SIN (mm/CC) : 1d=1+Ev-Ae+EcC
890 V=0.658*SIN(2* (1d-1le(10))/CC)
900 1t=V+1d:Nd=N-0.16*SIN (Mr)
910 Nm=(1lt-Nd)/CC:sd=SIN (Nm)
920 cd=COS (Nm)
930 Lm=ATN (TAN (Nm) *COS ((Io) /CC))+Nd/CC
940 IF sd<>0 AND cd<(0 THEN Lm=Lm+PI
950 IF sd<0 AND cd>0 THEN Lm=Lm+2*PI
960 LD=Lm*CC:LD=FNround (LD)
970 PRINT '"LONGITUDE Moon (degrees)";
n "’.LD"
980 e=EP-RC*(Y-1900)/100:e=e/CC
990 aA=ATN (-COS (TR)/ (SIN(TR)+TAN (ph) *T
AN(e)))
1000 HA=TR-aA
1010 IF HA<PI THEN aA=aA+PI
1020 td=TAN(e) *SIN(aA)
1030 1A=ATN (TAN (aA) *COS (e) +td*SIN(e) /CO
S(ah))
1040 IF HA<PI THEN 1A=1A+PI
1050 1A=1A*CC:PRINT "LONGITUDE Ascendan
t (degrees)":" ";1A'!
1060 aM=TR:td=TAN (e) *SIN (aM)
1070 1M=ATN (TAN (aM) *COS (e) +td*SIN(e) /CO
S(aM))
1080 1M=1M*CC:IF 1M>1A OR 1M<1A-180 THE
N 1M=1M+180
1090 1M=1M-INT(1M/360)*360
1100 PRINT "LONGITUDE Mid-heaven (degre
es)"’.ll ",.lM'
1110 PRINT CHR$(134);"Press any key to
continue"”
1120 KEYHIT=GET
1130 MODE 4:VDU23,1,0;0;0;0;
1140 X=600:Y=500:R=300
1150 R=R+100:R0=R-100:RZ=R0+45:RP=R0-50
1160 vDU 19,1,3,0,0,0:GCOL 0,1
1170 PROCCIRCLE (X,Y,R):GCOL 0,0
1180 PROCCIRCLE (X,Y,RO)

1190 VDU 23,224,0,20,42,42,8,8,8,0

1200 vDpU 23,225, 66,66,60,24,36,36,36,24
1210 vpu 23,226,0,124,40,40,40,40,124,0
1220 VDU 23,227,120,148,146,96,12,146,8
2,60

1230 vDU 23,228,24,36,66,66,36,40,169,7
0

1240 vpy 23,229,0,170,85,85,82,85,85,5
1250 vpu 23,230,24,36,36,231,0,231,0,0
1260 VDU 23,231,84,170,42,42,42,42,2,3
1270 VDU 23,232,0,14,6,74,48,48,72,1.8
1280 vpy 23,233,6,10,10,100,170,33,49,3
4

1290 vDU 23,234,0,42,84,0,0,42,84,0
1300 vpu 23,235,130,68,40,254,40,40,68,
130

1310 AS=PI/6:GCOL 0,1

1320 FOR Q=0 TO 11:MOVE X, Y

1330 DRAW X+RO*COS (Q*AS+1A/CC) ,Y+RO*SIN
(Q*AS+1A/CC)

1340 NEXT Q:VDU 5:GCOL 0,1

1350 FOR I=0 TO 11

1360 MOVE 300+135*COS ((30*I+1A+15)/CC),
520+135*SIN((30*I+1A+15) /CC)

1370 PRINT I+1:NEXT I:GCOL 0,0

1380 FOR Q=0 TO 11

1390 MOVE X+RO*COS (Q*AS), Y+RO*SIN (Q*AS)
1400 DRAW X+R*COS (Q*AS), Y+R*SIN (Q*AS)
1410 NEXT Q:VDU 5

1420 FOR Q=0 TO 11

1430 IF Q*AS>PI/2 AND Q*AS<PI THEN Z=40
ELSE Z=0

1440 MOVE X+ (RZ+Z) *COS (Q*AS+PI/12),Y+(R
Z+Z) *SIN (Q*AS+PI/12)

1450 PRINT CHRS$(224+Q) :NEXT Q

1460 VDU 23,236, 68,68,56,68,56,16,56,16
1470 vpU 23,237,56,68,68,40,16,16,56,16
1480 vpu 23,239,0,14,6,10,48,72,72,48
1490 vDU 23,240,48,8,8,8,16,62,4,4

1500 vDU 23,241,40,48,32,120,168,40,40,

1510 VDU 23,242,146,84,124,84,84,146,40

1520 VDU 23,243,84,84,84,56,16,124,16,0
1530 VDU 23,244,56,36,36,36,56,32,32,60
1540 vpU 23,245,0,120,132,180,180,132,1

1550 VDU 23,246,224,80,40,40,40,80,224,

1560 vDU 23,247,128,0,0,0,0,0,0,0

1570 le(11)=LD:GCOL 0,1

1580 FOR Q=1 TO 11:LR(Q)=le(Q)/CC

1590 MOVE X-20+RP*COS (LR(Q)), Y+RP*SIN (L
R(Q))

1600 IF Q<>3 THEN PRINT CHRS$(235+Q)

1610 NEXT Q

1620 FOR Q=1 TO 11

Beebug July 1988

17

1630 IF POINT (X+(RO+10)*COS(LR(Q)), Y+ (R
0+10) *SIN(LR(Q)))=1 THEN GCOL 0,0 ELSE G
CcoL 0,1

1640 MOVE X+ (RO+10)*COS(LR(Q)), Y+(RO+10
) *SIN(LR(Q))

1650 IF Q<>3 THEN PRINT CHRS(247)

1660 NEXT Q:MOVE X,Y

1670 PLOT 21,X+RO*COS(1A/CC),Y+RO*SIN (1
A/CC)

1680 MOVE X,Y

1690 PLOT 21,X-RO*COS (1A/CC),Y-RO*SIN (1
A/CC)

1700 VDU 30:VDU 5

1710 MOVE X+(R-10)*COS (1A/CC), Y+ (R-10)*
SIN(1A/CC)

1720 IF POINT (X+(R-10) *COS (1A/CC), Y+ (R-
10) *SIN(1A/CC))=1 THEN GCOL 0,0 ELSE GCO
LO,1

1730 PRINT CHR$ (247) :MOVE X+ (R-20) *COS (
1M/CC), Y+ (R-20) *SIN (1M/CC)

1740 IF POINT (X+(R-20) *COS (1M/CC), Y+ (R-
20) *SIN(1M/CC))=1 THEN GCOL 0,0 ELSE GCO
L0,1

1750 PRINT CHR$ (247) :GCOL 0,1

1760 MOVE X+ (R+40)*COS (1A/CC), Y+ (R+40) *
SIN(1A/CC)

1770 PRINT CHRS$ (97)

1780 MOVE X+ (R+45)*COS (1M/CC), Y+ (R+45) *
SIN (1M/CC)

1790 PRINT CHR$(109)

1800 VDU 30:INPUT "Another birthchart",
0$

1810 MODE 7:IF Q$="Y" THEN 230

1820 END

2000 DEF FNround(3)

2010 =A-INT(A/360)*360

2020 DEF FNgetdeg

2030 =(dg+mi/60)/CC

2040 DEF PROCsider

2050 LO=LB*CC/15:PROCcalc

2060 N=JD-2415384.5:n=N/3600

2070 T=6.59730556+236.555362*n

2080 Mn=(ho*60+mi)

2090 t=0.00069634577*Mn*24

2100 L=T+t:L=L-INT(L/24) *24:LL=L+L0

2110 LL=LL-INT(LL/24)*24

2120 PRINT "LOCAL SIDEREAL TIME (hours)
"iTAB(25) /11!

2130 TR=LL*15/CC

2140 ENDPROC

2150 DEF PROCcalc

2160 IF M>2 THEN 2200

2170 I=365*Y+INT((Y-1)/4)~-INT((Y-1)/100
)+INT((Y-1)/400)+1721059

2180 D=31* (M-1)-INT(M-1)+J+0.5

2190 GOTO 2220

2200 I=365*Y+INT(Y/4)-INT(Y/100)+INT(Y/
400)+1721059

2210 D=31*(M-1)~INT((M-1)*0.442.7)+J+0.
5

2220 I=I+INT(D) :D=D-INT (D)

2230 PRINT:JD=I+D

2240 ENDPROC

2250 DEF PROCCIRCLE (X,Y,R)

2260 DA=2*PI/72

2270 CQ=COS (DA) : SQ=SIN (DA)

2280 PTS(1,1)=X+R:PTS(1,2)=Y

2290 PLOT 69,PTS(1,1),PTS(1,2)

2300 FOR J=2 TO 72

2310 XD=PTS (J-1,1)-X

2320 YD=PTS (J-1,2)-Y

2330 PTS(J, 1) =X+XD*CQ-YD*SQ

2340 PTS(J,2) =Y+XD*SQ+YD*CQ

2350 MOVE X,Y

2360 PLOT 85,PTS(J,1),PTS(J,2)

2370 NEXT J

2380 PTS(72,1)=PTS(1,1)

2390 PTS(72,2)=PTS(1,2)

2400 MOVE X,Y

2410 PLOT 85,PTS(72,1),PTS(72,2)
2420 ENDPROC

2430 DATA 0.2409,0.2056,77.06645
2440 DATA 0.3871,48.03493,7.00427
2450 DATA 320.6631

2460 DATA 0.6152,0.006785,131.2193
2470 DATA 0.7233,76.4548,3.3944
2480 DATA 310.9745

2490 DATA 1.00004,0.016720,102.5104
2500 DATA 1.00000,0,0

2510 DATA 99.5343

2520 DATA 1.8809,0.09338,335.5988
2530 DATA 1.5237,49.3647,1.8498
2540 DATA 249.6292

2550 DATA 11.8622,0.04860,13.9199
2560 DATA 5.202804,100.19608,1.30450
2570 DATA 355.2141

2580 DATA 29.4577,0.05563,92.5583
2590 DATA 9.5384,113.4384,2.4893
2600 DATA 104.1728

2610 DATA 84.01247,0.04725,170.2547
2620 DATA 19.1819,73.8728,0.7732
2630 DATA 205.7829

2640 DATA 164.7956,0.008586,44.4059
2650 DATA 30.05796,131.5051,1.7724
2660 DATA 249.9146

2670 DATA 246.378,0.2461,224.2580
2680 DATA 39.2998,109.9965,17.1445
2690 DATA 202.3345

2700 DATA 0.01672,282.5104,279.04147
2710 DATA 124.8756,145.9601,248.6441,5.

1453

18

Beebug July 1988

I

Robin Burton
presents the
first of an occa-
sional series for
users of the 512
co-processor.

J 111111

The . 512 co-
processor, which
for a reasonable cost, allows a Model B or a
Master 128 to run IBM PC software, has proved
a popular upgrade among users. With the
current special offers on the 512 board (see the
News section in this issue), the number of users
can only grow. However, the support for 512
users, both in the form of books, and coverage
in BEEBUG and other magazines, has been
limited. Judging by the letters received recently,
many people would like to see this situation
changed, and this is your chance.

The size, frequency and content of this column
depends on you. We wont to know what you
want to read about. With such a vast range of
software available we cannot cover everything,
so your input is vital. There are no restrictions:
anything to do with the 512 will be considered.

For example, have you upgraded to DOS+ 2.1?
Did it solve any problems? Did it cause any?
Which packages do you use? Do you have any
hints or tips you would like to pass on to other
users? Have you had any particular problems?
If you have and you have solved them, how?
Are there any user groups out there? We know
the Big Ben Club in Holland has a very active
512 section of about 80 members, and there is a
group run in the Cambridge area by Andy
Smith from Acorn, but what about the rest of
us?

I'll start the ball rolling with an example of
using the batch facility. It's designed to make
life easier, but for many users it is just a source
of confusion. You might be aware that batch
files are similar to the Beeb's !BOOT or EXEC
files, but they can do very much more, because
they operate at a completely different level.

Beebug July 1988

Batch files are text files which contain one or
more commands of the type you could enter
through the keyboard, for example to catalogue
a disc, or copy a file. In practice though, you
can regard batch files as a means of defining
complete self contained functions. They work
by stringing simpler commands together, to be
executed in sequence within the framework of a
very simple 'language'.

DOS+ reserves certain file extensions to
indicate file types, so a .cmd' extension means a
command file, ".exe' means an executable file,
while ".bat' indicates a batch file. If any
command line is not known to DOS+, it looks
on disc for a file of that name, and if there is
one it takes the action indicated by the file
extension. This is why a command error
produces 'Bad command or filename', DOS+
can't tell the difference. A 'bat' extension means
process the commands in this file automatically
line by line. The 512 User Guide does mention
batch files, but only in passing, and it does not
make any attempt to show their power.

We will use word processing as an example,
but the techniques can be applied to virtually
any application. Our starting point is a system
which has just been started up, so all you have
on the screen is the DOS+ message and the A>
prompt. The batch file must therefore carry out
all the tasks that would otherwise require
laborious and error-prone keyboard entry.

To create a batch file, you must be able to enter
a text file that contains just printable ASCII
characters, with no control codes. Quite a few
word processors are able to store text in this
way, and those which don't, generally have an
option to save plain text. Obviously, the manual
for your particular word processor will give
more details. Another possibility is to use a text
editor such as ED, which is supplied with the
system and documented in the 512 User Guide.
As an alternative, you could enter the batch file
using your favourite Beeb editor or word
processor, and then use the 'getfile' utility to
transfer it to DOS+ format.

19

For our example job we will turn the interlace
off, select the screen mode and colour and load
our word processor software together with an
entered filename of our choice. On completion
of the edit we also want to make a backup of
what we have been working on. Here are the
major differences from BBC EXEC files. Firstly
a batch file can run the entire session from
beginning to end, and on leaving the
application it can still be in control. This means
that the application actually can be run from
within the batch file, rather than simply being
started by it. Secondly we can supply variable
information, (e.g. filenames), with the initial
command. These are passed to the batch file for
use during execution.

We will call our batch file 'WP.BAT'. Before
writing the batch file, we need to know exactly
how to perform each of our operations. For our
example, we will assume that our word
processor is started using 'wordproc
<filename>', where <filename> is a file to be
loaded. Further, we will assume that the word
processor software disc is in drive B, and the
disc in drive A contains the text files, the batch
file itself, and a command called 'fset' which is
copied from the DOS+ system disc. All our text
files will have a '.doc' extension, and the backup
files will use ".bak'.

With the document disc in drive A and the
applications disc in B, to edit the file
'TEXT.DOC' all we would need to do is enter
'wp text', and press Return. Everything else
would then be automatic (except the actual
word processing, of course). The wp part of the
command triggers the execution of 'WP.BAT",
while the filename 'text' is passed as the first
parameter. DOS+ just takes the rest of the
command line after the filename, and splits it
into parameters, with each parameter being
separated by one or more spaces. For example,
if you typed 'comm hello goodbye', comm is the
filename, hello is the first parameter, and
goodbye is the second parameter. Within the
actual batch file, the first parameter is referred
to as '%1', the second as '%2' and so on. The
system just substitutes the parameter from the
command line for the '%n' in the file.

20

Our batch file would typically start something
like this:

rem check file and screen setup
echo off

els

if not exist A:%1l.doc goto errorl
star TVO, 1

colour 1 2

pcscreen 3

The first line, starting with 'rem’, is a comment
line, and these can be used wherever necessary
to make the file easier to read. Blank lines are
also ignored, and can therefore be used to
separate different parts of the file. Going
through line by line: 'echo off' stops DOS+
displaying the rest of the batch file as it is
executed, (rather like using VDU 21 in a Beeb
EXEC file), while 'cls’ simply clears the screen.

The command in the fourth line of the file
shows some of the power of batch files. This is a
conditional statement, which looks for a file
(whose name is substituted for %1), and if it
does not exist, jumps to a point elsewhere in the
file. The syntax is very similar to that of IF-
THEN in most languages. 'exist' is a command
to check for a file existing, and in this example,
the file is specified as being on drive A:, with
the filename being the first parameter, and the
extension being '.doc'. The 'not' reverses the
result of the call to exist, and the 'goto' goes to a
label called 'errorl’ which we will specify later.
Assuming the file is found, the next three lines
are executed. These execute *TV 0,1 to turn
interlace off, set the text colour to green, and
change mode so that the *TV can take effect.

Our batch file continues:

rem load application with named file
echo Loading wordproc with A:%1l.doc...
b

a:fset a:%l.doc [rw]

wordproc a:%l.doc

rem the application executes here
a:fset a:%l.doc [ro]

echo Remove disc from drive B:

echo Insert wpbackup in drive B:
pause

if not exist b:*.bak goto error2

Beebug July 1988

g

This section starts by printing a message using
‘echo’ to confirm all is OK, and setting the
default drive to B:. The next line calls the
command 'fset' with the parameters being the
name of our text file, and [rw]. The effect of this
is to ensure both read and write access to the
file before we start the word processor.

After this, the actual word processor is started
up with the filename being specified in the
command. At this point, the batch file will be
suspended, and the word processor can be used
normally. It is only when you leave the word
processor to return to the system that execution
of the batch file is continued.

When the batch file is continued, it first of all
makes our text file read only again, and then
prints two messages asking for the word
processor disc to be replaced by the backup
disc. The 'pause’ command makes DOS+ print a
prompt and wait for a key to be pressed. As a
check that the correct disc has been inserted,we
check that at least one file with the extension
"bak’ exists already, jumping to an error routine
if it doesn't.

The next three lines are:

echo Securing A:%1.doc to B:%1.bak

if not exist b:%1.bak goto copy

b:fset b:%1.bak [rw]

1copy
These print a message to show what is being
done, and then check if the backup file already
exists. If it does, 'fset' is used to make sure the
file can be over-written. The ":copy' in the last
line is a label. Whenever 'goto copy' is executed,
the commands in the file are skipped over until
the ":copy' is found, and then execution is
continued from that point.

The last part of the body of the batch file is:

copy a:%l.doc b:%1.bak

a:fset b:%l.bak [ro]

echo Backup of A:%1.doc to B:%l.bak
complete

echo Run completed OK

goto exit

Beebug July 1988

This just copies the text file to the backup disc,
and makes the backup read only. Two
messages are printed to tell the user that
everything is done, and the last line goes to a
routine called exit, which we will define in a
minute.

The rest of the file handles the errors:

rem errors and exit

rerrorl - named input file missing
echo %l.doc is not on drive A:
echo Load abandoned!

goto exit

rerror2 no .bak files in drive A:

echo Disc in drive B is not a backup disc
@Cho **xkkkkkkkkkkkkkkkhkhhhkkhkkkkkkkkkkk

echo * *
echo * Backup of A:%1.doc HAS FAILED!!! *
echo * *

©Cho *hkkkkkkkkkkkkkkkhkkhkhkkkkhkkkkkkkk

rexit
a:

These lines just print warning messages and
goto the exit routine. The exit routine simply re-
selects drive A and exits at the end of the file.

Any errors that occur during execution of a
batch file will cause it to terminate. You can
also leave a batch file when it is paused by
pressing Ctrl-C. If necessary, batch files can be
nested, with one calling another by specifying
its name, and execution returning to the first
one when the second has finished.

If you are new to batch files, it is worth trying
the example given here. Just enter the file as
one long block, and make any modifications
necessary for your particular word processor.

That's all for this month. If you have any
suggestions for future 512 articles, please
write in and tell us about them.

REDUCED PRICES

Acorn has recently announced substantial
price reductions on the 512 Co-processor for
the model B and Master 128. See this month's
news pages for further details.

21

e T e 35

Matrices
in Basic

Jan Stuurman extends Basic to provide a
range of matrix operations on the BBC
micro.

As anybody who has studied maths to O-Level
standard will know, a matrix is a collection of
values organised in rows and columns. For
example:

1 2
5 4
5 6

is a matrix containing six values, or 'elements'.
This matrix is said to be a 3 by 2 matrix,
because it has three rows and two columns.

An obvious way of storing a matrix in Basic is
in the form of an array. For example, the matrix
given above could be stored in an array using
the instructions:

DIM A(1,2)

A(0,0)=1:A(1,0)=2

A(0,1)=3:A(1,1)=4

A(0,2)=5:A(1,2)=6
Note that when the array is dimensioned, the
number of columns is given first, and then the
number of rows. Also, the values in the DIM
are one less than the number of rows or
columns, because in Basic array subscripts start
at zero. Many people forget the zero subscript,
and start from one. While this will not normally
cause any problems, it may do with the
routines in this article. You should therefore
start all subscripts at zero.

However, when a matrix is stored in memory
as an array, any operations performed on that
matrix have to be done element by element. For
example, to set all the elements of a matrix to
zero you must reference each element one at a
time, and zero it. This becomes even more
involved when doing things such as adding
two matrices, or multiplying two matrices
together.

This is all solved by the extensions to Basic
provided by the programs given in this, and the

22

next issue of BEEBUG. These add a new
statement, MAT, to Basic, which can be used in
different ways to perform a number of very
useful matrix operations.

The program given in listing 1 should be
entered, and saved to disc before running it. As
it is listed, the program is suitable for Basic II
users only. People with Basic I should
substitute the lines given in listing 2, for the
corresponding lines of listing 1. The changes to
make the program run on a Master 128 or
Compact are rather more extensive, and these
will be covered next month. Do not renumber
the program at all, because next month's
additions will have to be merged into it. When
the program is run, it saves to disc a machine
code program called 'MAT'. This is assembled
to load at &7500, which means that the
computer must be in mode 7, or a shadow
mode, and the value of HIMEM should be set
to &7500. If you want to assemble the program
elsewhere, you can change the value of HIMEM
in line 100. To install the assembled program,
set HIMEM to the appropriate value, and type
*MAT. This will load the extra machine code,
and link it into Basic.

Matrices to use with the new commands should
be dimensioned as shown above, remembering
that it is:
DIM array (columns-1, rows-1)

The program restricts the array name to being a
single character, and also places an upper limit
on the size of the matrix, of 50 by 50. In
practice, the amount of memory available
might impose a lower limit on size than this.

The new statements offered are given below.
The letters A, B, and C many be substituted by
the appropriate array name.

MAT A=ZER
sets all elements of the matrix to zero.

MAT A=CON
sets all elements of the matrix to one.

MAT A=IDN

sets the matrix to the identity matrix. This is a
matrix with the leading diagonal set to ones,
and all other entries zero. The matrix must be

Beebug July 1988

e

square (have the same number of columns as
rows).

MAT A=B+C

adds the matrices B and C together, element by
element, and stores the result in matrix A. A, B
and C must all have the same number of rows
and columns.

MAT A=B-C
is the same as above, except that the matrices
are subtracted.

MAT A=B* (exp) or MAT A=(exp)*B
multiplies each element of the array by the
expression in brackets.

MAT A=B*C

multiplies the matrices B and C together,
storing the result in A. The element in the top
left of the matrix A is the sum of the values
obtained by multiplying the elements of the
first row of the matrix B, with the
corresponding elements of the first column of
matrix C. This is repeated for all the rows and
columns to form the rest of the elements of the
result. For matrix multiplication to work, the
number of columns in B must be the same as
the number of rows in C. The result will have
the same number of rows as B, and the same
number of columns as C. Therefore matrix A
must have these dimensions.

MAT A=COP (B)
copies the elements of matrix B into matrix A.
Both matrices must be the same size.

MAT A=TRN (B)

copies matrix B into matrix A, but swapping
rows and columns as it goes. The result in A is
called the transpose of B. Clearly, A must have
the same number of rows as B has columns, and
the same number of columns as B has rows.

Next month we add matrix inversion and
simultaneous equation solving to our matrix
commands.

Listing 1
10 REM Program MATRIX
20 REM Version B 1.00
30 REM Author Jan Stuurman
40 REM BEEBUG July 1988
50 REM Program subject to copyright
60 :

100
110
120
130

MODE7 : HIMEM=&7500

ON ERROR GOTO 150

PROCassem

OSCLI ("SAVE MAT "+STRS$~vector+" "

+STR$~P%)

140
150
160
170
180

END

ON ERROR OFF

MODE7:IF ERR=17 END
REPORT:PRINT" at line ";ERL
END

199 ¢

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
ame
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460

DEF PROCassem

PROCvariables

FOR PASS=0 TO 2 STEP 2

P%=HIMEM: [OPT PASS

.vector LDA &202:1LDX &203

CMP #start MOD256:BNE notdone
CPX #start DIV256:BEQ done
.notdone STA brkv:STX brkv+l
LDA #start MOD256:STA &202

LDA #start DIV256:STA &203

.done RTS

.start PHA:TYA:PHA

LDY #0:LDA (&FD),Y:CMP #4

BEQ mistake

.notours PLA:TAY:PLA

JMP (brkv)

.mistake LDY &A:DEY:TYA

CLC:ADC &B:STA &7E:LDA &C

ADC #0:STA &7F:JSR nxtwrd

BCS notours

DEY:TYA:CLC:ADC &A:STA &A
PLA:PLA:PLA:PLA:PLA:PLA:PLA

JMP (&7E)

.nxtwrd:LDX #0:.nxt1:1DY #0:.nxt2
LDA (&7E),Y:STA &72:1DA table,X
CMP #&FF:BEQ not:CMP #0

BEQ command:CMP &72:BEQ retest
.nxt3 INX:LDA table,X:BNE nxt3
INX:INX:INX:JMP nxtl:.retest
INX:INY:JMP nxt2;.not SEC:RTS
.command INX:LDA table,X:STA &7E
INX:IDA table,X:STA &7F:CLC

RTS

.table EQUS "MAT":EQUB 0:EQUW mat
EQUB 255

.brkv EQUW 0

.mat JSR getcha:JSR letter:STA arn

JSR getcha:CMP #&3D:BEQ equals
JMP syntax:.equals LDX #0

JSR findar:JSR getopr:JSR chkend
JSR optype:JSR operat:JMP cont
.letter CMP #&41:BCC arnerr

CMP #&5B:BCC arnok

CMP #&60:BCC arnerr

CMP #&7B:BCC arnok

.arnerr JMP syntax

.arnok RTS

Beebug July 1988

23

1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1730
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050

.findar LDA #&28:STA arname+l
LDA #(arname-1)MOD256:STA &37
LDA #(arname-1)DIV256:STA &38
LDA #2:STA &39:JSR schvar
BNE afound:JMP varnfd

.afound LDY #0:LDA (&2A),Y
CMP #6:BCC dimok:JMP baddim
.dimok PHA

CLC:ADC &2A:STA base,X

LDA &2B:ADC #0:STA base+l,X

LDA #1:STA dim,X

PLA:CMP #3:BEQ dm2

INY:LDA (&2A),Y:STA dim,X:INY
.dm2 INY:LDA (&2A),Y:STA dim+l,X
RTS

.getopr JSR getcha

CMP #&28:BNE nobrcl:JSR getval
.nobrcl STA oper

JSR getcha:STA oper+l:JSR getcha
CMP #&28:BNE nobrc2:JSR getval
.nobrc2 STA oper+2

JSR getcha:CMP #&28:BNE nobrc3
JSR getcha:STA oper+3:JSR getcha
CMP #&29:BEQ brcok:JMP misbrc
.nobrc3 DEC &A

.brcok RTS

.optype LDX #0:LDA oper+l
.0loopl CMP optab,X:BEQ opfnd
INX:INX:INX:CPX #12:BCC oloopl
.oloop2 LDY #0

.0loop3 LDA oper,Y

CMP optab,X:BNE nxtop
INX:INY:CPY #3:BCC oloop3

.opfnd INX:LDA optab,X:STA &37
INX:LDA optab,X:STA &38:RTS
.nxtop INX:LDA optab,X:BNE nxtop
INX:INX:INX:LDA optab,X

BPL oloop2:JMP syntax

.optab EQUS "+":EQUW add

EQUS "-":EQUW sub
EQUS "*":EQUW mul
EQUS ",":EQUW 0
EQUS "ZER":EQUB 0:EQUW zer
EQUS "CON":EQUB 0:EQUW con
EQUS "IDN":EQUB 0:EQUW idn
EQUS "COP":EQUB 0:EQUW cop
EQUS "TRN":EQUB 0:EQUW trn
EQUS "INV":EQUB 0:EQUW 0

EQUB &FF

.operat JMP (&37)

.zer JSR ldfan(0:BEQ fillar
.con JSR ldfanl

.fillar JSR initma

.fill JSR store:BCC £ill:RTS
.idn JSR chksqr:JSR zer

LDA base:STA &4B

LDA base+1:STA &4C:JSR ldfanl
CLC:LDA cdim:ASL A:ASL A

ADC cdim:ADC #5:STA doff

2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
2460
2470
2480
2490
2500
2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640

.1loop JSR stfam

CLC:LDA &4B:ADC doff:STA &4B
BCC inoc:INC &4C:.inoc

DEC cdim:BNE iloop:RTS

.chksqr LDA dim

CMP dim+l:BNE notsqr:RTS
.notsqr JMP baddim

.initma

ILDA #0:STA off:STA off+l

LDA dim+1:STA cdim

.ouloop LDY #0:LDA cdim:STA dim+l
.inloop CLC:TYA:RTS

.store

CLC:LDA base:ADC off:STA &4B
LDA base+1:ADC off+1:STA &4C
JSR stfam

CLC:LDA off:ADC #5:STA off

BCC onoc:INC off+l:.onoc

DEC dim+1:BNE inloop

DEC dim:BNE ouloop:SEC:RTS
.getval

LDA &B:STA &19:LDA &C:STA &l1A
LDA &A:STA &1B:JSR getnsb:PHP
CPX #&29:BEQ chktyp:JMP misbrc
.chktyp PLP:BEQ string:BPL integr
.real JSR nmlfa:JSR stfatl

LDY &1B:INY:STY &A:LDA #0:RTS
.string JMP mismat

.integr JSR citof:JMP real

.add LDA #0:STA asflag

.addsub JSR chkopr:JSR initma
.asloop

CLC:LDA base4:ADC off:STA &4B
LDA base4+1:ADC off+1:STA &4C
JSR ldfam

CLC:LDA base2:ADC off:STA &4B
LDA base2+1:ADC off+l:STA &4C
BIT asflag:BNE subtrt

.additn JSR addmfa:JMP astore
.subtrt JSR subfam

.astore JSR store:BCC asloop:RTS
.sub LDA #&FF:STA asflag

JMP addsub

.chkopr LDA oper:LDX #2

JSR chkar:BNE misdim:BCC misdim
.chkop2 LDA oper+2:LDX #4

JSR chkar:BNE misdim:BCC misdim
RTS

.chkar JSR letter:STA arname
JSR findar:LDA #0:PHA

LDA dim,X:CMP dim:BNE mdl

.cd2 LDA dim+1,X:CMP dimtl

BEQ same:CLC

.same PLA:RTS

.mdl PLA:ILDA #1:PHA:BNE cd2
.misdim JMP baddim

.mul LDA oper:BEQ nummul

LDX oper+2:BNE matmul:STA oper+2
.nummul JSR chkop2:JSR initma

24

Beebug July 1988

2650 .muloop JSR ldfatl

2660 CLC:LDA base4:ADC off:STA &4B
2670 LDA base4+1:ADC off+1:STA &4C
2680 JSR mufamo:JSR store:BCC muloop
2690 RTS

2700 .matmul LDA oper:LDX #2

2710 JSR chkar:BCC misdim

2720 LDA oper+2:1DX #4

2730 JSR chkar:BNE misdim

2740 LDA dim2:CMP dim4+1:BNE misdim
2750 STA mdim

2760 CLC:LDA dim+1:ASL A:ASL A
2770 ADC dim+l:STA poff

2780 CLC:LDA mdim:ASL A:ASL A

2790 ADC mdim:STA qoff

2800 LDA base2:STA cbase

2810 LDA base2+1:STA cbase+l

2820 JSR initma

2830 .mloopl LDA mdim:STA ldim
2840 LDA base2:STA pbase

2850 LDA base2+1:STA pbase+l

2860 LDA base4:STA gbase

2870 LDA base4+1:STA gbase+l

2880 JSR ldfan0

2890 .mloop2 JSR stfatl

2900 LDA pbase:STA &4B

2910 LDA pbase+l:STA &4C:JSR ldfam

3240
3250
3260
3270
3280
3290
3300
3310
3320
3330
3340
3350
3360
3370
3380
3390
3400
3410
3420
3430
9000
9010
9020
10000
10010
10020
10030

.Ein CLC
LDA pbase:ADC poff:STA pbase

BCC tnocl:INC pbase+l:.tnocl
JMP tloop2

.Tout CLC

LDA base2:ADC #5:STA base2

BCC tnoc2:INC base2+l:.tnoc2
JMP tloopl

.tready RTS

.wrgdim JMP baddim

.cop LDA oper+3:LDX #2:JSR chkar
BNE wrgdim:BCC wrgdim

.copy JSR initma

LDA base,X:STA cbase

LDA base+l,X:STA cbase+l
Cloop

CLC:LDA cbase:ADC off:STA &4B
LDA cbasetl:ADC off+1:STA &4C
JSR ldfam:JSR store:BCC cloop
RTS

] NEXT

ENDPROC

DEF PROCvariables
arname=670:0per=&72:asflag=675
base=&76:base2=§78:based=&7A
cbase=&7C:pbase=&7E:gbase=§80

2920 LDA gbase:STA &4B 10040 dim=682:dim2=§84:dim4=686
2930 LDA gbaset+l:STA &4C:JSR mufamo 10050 cdim=688:1dim=689:mdim=&8A
2940 JSR pntmtl:JSR addmfa 10060 poff=&8B:qoff=&8C:0ff=48E
2950 CLC:LDA pbase:ADC poff:STA pbase 10070 doff=68D
2960 BCC nocl:INC pbase+l:.nocl 10080 cont =&8B9B:chkend=&9857
2970 CLC:LDA gbase:ADC #5:STA gbase 10090 syntax=&982A:getcha=&8A97
2980 BCC noc2:INC gbase+l:.noc2 10100 schvar=&9469:varnfd=6AE43
2990 DEC 1dim:BNE mloop2 10110 baddim=69127:1dfan0=4A686
3000 JSR store:BCS mready:BEQ frmout 10120 1dfanl=&A699:stfam =&A38D
3010 .fromin CLC 10130 getnsb=&9B29:mismat=&8COE
3020 LDA base2:ADC #5:STA base2 10140 citof =&A2BE:ldfam =&A3B5
3030 BCC noc3:INC base2+1:.noc3 10150 addmfa=&A500:subfam=&A4FD
3040 JMP mloopl 10160 nmlfa =&A303:stfat1=6A385
3050 | fxmout CLC 10170 ldfat1=&A3B2:mufamo=6A656
3060 LDA base4:ADC qoff:STA base4 10180 pntmtl=&A7F5:misbrc=&AE61
3070 BCC noc4:INC base4+1:.noc4 10190 ENDPROC
3080 LDA cbase:STA base2
3090 LDA cbaset+l:STA base2+1 LA TR R
3100 JMP mloopl
3110 .mready RTS Listing 2
3120 .trn 10080 cont =&8B0C:chkend=§9810
3130 LDA oper+3:LDX #2:JSR letter 10090 syntax=69839:getcha=&8A1E
3140 STA arname:JSR find'Mar 10100 schvar=§9429:varnfd=¢AE72
3150 LDA dim:CMP dim2+1:BNE wrgdim 10110 baddim=&90D5:1dfan0=6A691
3160 LDA dim+l:CMP dim2:BNE wrgdim 10120 ldfanl=gA6A4:stfam =gA37E
3170 CLC:LDA dim:ASL A:ASL A 10130 getnsb=69B03:mismat=&8B7E
3180 ADC dim:STA poff:JSR initma 10140 citof =&A2AF:ldfam =§A3A6
3190 .tloopl LDA base2:STA pbase 10150 addmfa=&A50E : subfam=§A50B
3200 LDA base2+1:STA pbase+l 10160 nmlfa =&A2F4:stfat1=gA376
3210 .tloop2 LDA pbase:STA &4B 10170 1dfatl=§A3A3:mufamo=&A661
3220 LDA pbaset+l:STA &4C:JSR ldfam 10180 pntmt1=g&A7FB:misbrc=&AE90
3230 JSR store:BCS tready:BEQ fout
25

Beebug July 1988

MICROLINK
COMMUNICATIONS
PACK

We asked Peter Rochford, author of our
regular Comms Spot, to review the latest
software and hardware package offered by
Microlink Communications.

Title
Supplier

Microlink Communications Package
Microlink Communications Ltd,
Europa House,

Adlington Park,

Adlington SK10 4NP.

Tel. (0625) 879940

Price £169.00 (inc.VAT)

Database Publications is a well known name in
the field of computer journalism, in particular
to Beeb users because of the Micro User
magazine. Some while ago, Database entered
the world of comms by launching their own
closed user group on the BT Telecom Gold
network, to compete in some ways with
Micronet on Prestel. Now, in a similar fashion
to Micronet in its early days, Database is
offering a combined hardware/software
package along with a subscription to its
Microlink database on Telecom Gold.

The modem supplied with the package is a
multi-speed Hayes compatible unit, and
operates at V21 (300/300), V23 (1200/75) and
the higher V22 (1200/1200) speed. It comes
housed in a neat, attractive red and black case
with the power supply as a separate unit ready
to plug straight into a mains socket.

The rear panel of the modem has a socket for a

telephone, the PSU input and a 25-way D
connector for connection to your Beeb's RS423

26

Bl

port. A reset switch is also provided for
resetting the modem's own internal software.
The front panel of the modem features six LEDs
indicating power-on and the status of the
modem. There are no switches or any other
external controls.

As well as standard Hayes compatibility, the
modem has extra AT commands and S registers
along with auto-dial, auto-answer and number
store facilities, making it flexible, powerful and
easy to use.

 SPEED
MODEM

The modem is 'intelligent' and has its own
microprocessor and operating software, much
like other Hayes compatible units. It can sense
both the speed of the terminal it is connected to
and the speed of the host, adjusting itself
accordingly. In addition, it can detect whether a
dial tone is present on the line and if the
number it is calling is engaged. Both of these
conditions will cause the modem to report back
to the terminal with an on-screen message.

To understand more about 'intelligent’ modems
and their many advantages you may wish to
refer to the article in BEEBUG Vol.6 No.2 and
the review of six intelligent modems in
BEEBUG Vol.6 No.6.

THE SOFTWARE

The bundled software supplied with the
package is a cut down version of Database's

Beebug July 1988

e

own Mini Office suite on 5.25" disc. It
comprises just the comms section and the word
processor.

The wordprocessor is supplied to allow off-line
editing of text files ready for uploading when
linked to Telecom Gold. It is a remarkably
competent piece of software, and bears many
similarities to Wordwise. It is easy to use, and
has a wealth of features and facilities that make
it a real bonus.

The comms section of the software allows easy
dial-up and log-on to Microlink at several
different baud rates, all by means of a single
key press.

Amongst the many features available while on-
line are uploading of text from disc or memory
buffer, output to disc or memory, or sending of
all screen output to a printer. There is also a
split screen facility allowing received text to be
displayed in one window and outgoing text in
the other. A nice addition is that the software
may be used with an AMX mouse.

MICROLINK

Microlink is a closed user group on BT's
Telecom Gold scrolling text Email service. The
package provides free registration to Microlink
along with telex validation registration and one
month's connection time without time charges.

Joining Microlink is a cheap way of gaining
access to, and using Telecom Gold. Having said
that, you must remember that after the first
month all of the normal rates apply. This
involves a standing charge of 3 pounds per
month and a connection charge of 3.5p per
minute cheap rate and 11p per minute standard
rate.

In addition to that, you will be charged 20p per
month for every 2048 characters of information
stored in your mail or file store on Telecom
Gold. Add to all of this your telephone charges

Beebug July 1988

whilst online and it starts to look expensive. It
can be, but using the high speed modem helps
as you can download and upload text very fast
and then get offline quickly. Long browsing
sessions and learning to use the system are best
confined to the first month's free connect time.

So what are you getting for your money? Well,
access to one of the most sophisticated Email
systems in the world and access to worldwide
Email too. Telecom Gold has links with other
international online databases, and also
provides access to the Packet Switch Stream
whereby you can link into overseas systems at a
fraction of the cost of dialling direct.

As well as all this, Microlink itself provides
many services for computer users including
computer news, bulletin boards and
downloadable telesoftware.

CONCLUSION

I can honestly say that I really enjoyed
reviewing this package. The whole thing is well
thought out and presented, with excellent
documentation throughout.

Both the software and hardware are a delight to
use. I will be sad to part with the modem at the
end of the review. The software does lack the
facility for accessing viewdata systems, but I
did use the modem with both Commsoft and
BEEBUG's own Command ROM to access
Prestel successfully.

Whether the free registration to Microlink is
worthwhile you will have to weigh-up
carefully. To allow a free peek at what it offers
there is a demonstration account which you can
dial up and sample for yourself.

For me, I think the modem alone is worth the
£169 asking price. It is an excellent piece of
hardware. The inclusion of the software and the
Microlink registration are a bonus to what is
already a bargain package.

27

e - | T s

PASSING ARRAYS
TO FUNCTIONS
AND PROCEDURES

Jan Stuurman offers a clever little
technique to let you pass arrays to
functions and procedures.

In all the versions of Basic up to and including
Basic IV, it is not possible to pass arrays as
parameters to functions and procedures. This
can be a serious drawback. For example, you
cannot write a procedure that will calculate the
inverse of any matrix, because the procedure
has to be written to be specific to just one
named array.

This problem is overcome in Basic V on the
Archimedes, which allows arrays to be
specified as parameters, and also extends the
DIM statement to provide a function that
returns the number of dimensions of an array,
and the size of each dimension. While it is not
practical to implement a system quite like this
for earlier versions of BBC Basic, it is possible to
achieve a similar result.

The short machine code routine given here
allows the name of an array to be passed to a
procedure or function as a string parameter.
The definition of the procedure is then written
with reference to the same array by using the
underscore character (), followed by '%' or '$' if
you are specifying an integer or string array.
The underscore is accepted by Basic as a valid
name, and is unlikely to be used for this
purpose elsewhere in the program.

Listing 1 is a demonstration to illustrate this
technique. When the program has been entered,
the address at the end of line 1420 should be
changed according to the version of Basic you
have in your machine. The possible values are:

Basic I &9429
Basic II &9469
Basic IV & VI &8087

If you are using Basic IV or VI, you must
also add the line:
1385 INC &39

28

The demo program creates a five element real
array, a five element integer array, and a five by
two string array. It then assigns values to each
element of the three arrays, and uses a single
routine, where the name of the appropriate
array is passed as a string parameter, to print
out each array in turn. If you type it in and run
it, you should be able to see the results.

The key parts of the example program are the
procedure PROCassemble, and the CALL in
line 1180. To use the array passing in your own
program, you must first add the definition of
PROCassemble to the program, and call this
procedure at the start of the code (see line
1020). This sets up a machine code routine that
is used later. Line 1180 in the example program
is the important line as far as passing the array
parameter is concerned, and a line similar to
this should be included at the start of any
procedure definition which uses this technique.
This line stores the name of the array in
memory (starting at location &2EE, which is
used by the operating system as temporary
workspace), and then calls the machine code
routine assembled by PROCassemble. The
remainder of the procedure definition should
then refer to the array using the underscore
character, as in PROCdisplay from line 1170 to
1300. Note how the procedure copes with the
possibility of the three different types of array
(integer, floating point and string) in lines 1230
to 1260.

The effect of executing line 1180 is to create a
variable name that consists of an underscore,
possibly followed by a '$' or a ‘%', and to make
this new name point to the array specified
when the procedure was called. Therefore,
instead of passing the contents of the array to
the procedure, you pass just its name. This is
known technically as a 'Call by Reference'. The
net effect of this is that if the procedure changes
any elements of the array referred to by the
underscore, these changes will be reflected in
the original array. While this is not always what
you might want, it is the same method that is
used by Basic V on the Archimedes, and is
much more efficient than creating a local copy
of the entire array.

Another point to note is that this technique is
not restricted for use within a function or

Beebug July 1988

oy "

procedure, although this is possibly its best use.
Indeed, each time you call the machine code, it
will merely make the underscore variable name
point to the specified array. This can happen
anywhere in the program, although it is most
useful in the context of passing arrays as
parameters.

There are three restrictions to the use of this
technique. Firstly, the array name passed to the
routine must be no longer than 16 characters,
including any $ or %, and secondly, there must
be no other variables whose names start with
the underscore character. In actual fact, any
such variables in existence when the machine
code is called will be lost, and any assigned
afterwards would cause all the other variables
to be corrupted. Finally, this technique cannot
be used in nested routines. For example, if
procedure 'A’ has an array parameter, and this
then calls procedure 'B' which also has an array
parameter, the original array pointer will be
lost.

HOW IT WORKS

The key to this array passing technique is the
way in which Basic stores variables. When the
machine code is executed, it calls a routine in
the Basic ROM which is used to locate where a
variable is stored. This routine is called with
memory locations &37 and &38 pointing to the
location one before the place where the variable
name is stored, and with &39 containing the
length of the name. Because the name is poked
into locations &2EE onwards, &37 and &38 are
set to &2ED. The value to store in location &39
is calculated by counting the characters of the
name up to and including the '(' which is used
to distinguish arrays from simple variables. The
Basic ROM routine returns, in locations &2A
and &2B, a pointer to the start of the actual
variable in memory. For an array, this will in
fact point to a block of data giving the size of
the array, which is in turn followed by the
elements of the array.

Once the address of the array is known, the
machine code sets up a dummy variable called
_, and points this to the array. Basic stores
variables as a series of linked lists (see the
Workshop in this issue), with a separate list for
each possible first letter. This program works
by making the list for names starting with an '’
point to the appropriate array.

Beebug July 1988

1230
1240
1250
1260
(I%)
1290
1280

tinue.

1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450

REM Program Array Passing

REM Version B 1.0

REM Author Jan Sturrman

REM BEEBUG July 1988

REM Program subject to copyright

MODE 7
PROCinit
PROCdemo
END

DEF PROCinit
DIM A(4),B%(4),C$(4

PROCassemble
ENDPROC

DEF PROCdemo

FOR I%=0 TO 4
A(I%)=I%*PI

B% (I%)=INT(I%*PI)
C$(I%,0)=STRS(I%)+" * PI = "
C$(I%,1)=STRS (I$*PI)
NEXT
PROCdisplay("A",4,0)
PROCdisplay("B%",4,0)
PROCdisplay("C$",4,1)
ENDPROC

DEF PROCdisplay(array$, row,col
$&2EE=array$+" (" :CALL code
CL3:PRINT "Array “;arrays;“()}"
FOR I%=0 TO row

FOR J%=0 TO col

PRINT TAB(5+10*J%,5+1%);
type$=RIGHTS (array$,1)

IF type$="%" PRINT 3 (I%)

IF type$="§" PRINT $(I%,J%)

IF type$<>"$" AND type$<>"$" PRINT

NEXT : NEXT

PRINT TAB(6,20) "Press space to con
"

REPEAT UNTIL GET=32

ENDPROC

DEF PROCassemble

DIM code 70

FORpass=0 TO 2 STEP 2

P%=code: [OPT pass

LDA #&ED:STA &37:LDA #2:STA &38
LDY #0:.loop INY:LDA (&37),Y
CMP #&28:BNE loop:STY &39

LDX #4:DEY:LDA (&37),Y

CMP #&25:BEQ inc

CMP #&24:BNE call:.inc INX
.call STX sub+1:JSR &9469
SEC:LDA &2A:.sub SBC #0:STA &4BE
LDA &2B:SBC #0:STA &4BF:RTS
]NEXT : ENDPROC

29

- RO

filing system.

This month I'd
like to delve a
little deeper into
the intricacies of
disc filing sys-
tems. This article
will refer particu-
larly to the DFS,
but much of what
I have to say
applies equally to
the ADFS (see
additional com-
ments later).

st
COURSE
Making Better

Use of Disc
Filing Systems

p

The DFS maintains a catalogue (maximum 31
entries on an Acorn DFS) which contains the
names of the files stored on your disc, and a
pointer to the position on the disc where each
file starts. Since every DFS file occupies a
contiguous area of the disc (that is, all the
sectors are adjacent), once the start address is
known the rest of the file is easily located.

In fact the DFS stores more than just a name
and a pointer for each file. If you insert a DFS
format disc into a drive and type *INFO *.*
<Return> you will get a listing of all the files on
your disc like the example shown here.

Mike Williams gives some more
advice on the use of your disc

D.FLASH 000000 000000 000740 O8F
V.Beebadl 006576 026565 0002B0 08C
V.ADRIAN1 016576 000000 000A82 081
$.BGRAPH FF1900 FF8023 0030CE 050
$.SARAH1 000000 000000 0002F0 04D
B.POINT2 FFOEOO FF802B 000581 047
B.POINT1 FFOEOO FF802B 000577 041
$.CROSSRE FFOEOO FF802B 002113 01F
V.SPELL 016576 000000 001BB7 003
B.German 000000 FFFFFF 000061 002
DFS Disc Catalogue Using *INFO *.*

Unlike the results of using *CAT, files are no
longer listed in alphabetical order, but in the
order in which they are located on the disc. To

“ 30

make matters a little
confusing you will find that
the first file is listed at the
bottom, and the last file at
the top of the list. You can
see this from the numbers at
the right-hand side of the list.
These are in fact the addresses (sector numbers)
for the start of each file, and are in hexadecimal
not decimal. You should see that the first
(bottom in the list) file on your disc starts at
sector 2, because the first two sectors
(numbered 0 and 1) are used for the catalogue
itself.

The number listed immediately before the
sector number in each case indicates the length
of the file in bytes. Again this is given in
hexadecimal. The simplest way to convert
between one and the other is to get Basic to do
the job for you. If as a result of using the *INFO
command you see that the length of a file is
given as, say, 1000 (hex), then you can convert
this to decimal by typing:
PRINT &1000

and the decimal equivalent (4096) will be
displayed. Likewise, if you want to convert a
decimal number to hex, say 3156 for example,

just type:
PRINT ~3156
to see the result (C54).

Thus when you load a file (or program), the
DFS searches through the catalogue for the file
name and extracts the corresponding address
(sector number) and length. The DFS then goes
directly to that sector on the disc and reads the
file into memory, block by block, until the
specified number of bytes has been found.

Despite the information about the location and
length of each file on a DFS disc, there is no
easy way of determining how much free space
is left over, nor the extent to which this free
space is fragmented (leaving gaps between
files). But the simplest way to get the necessary
information is to use the two utilities by
Bernard Hill which were published in Vol.6
No.8, and these have been included again on
this month's magazine disc and tape. The
utilities implement two additional star
commands, the first being *FREE which gives
the number of free bytes on a disc, and
secondly *MAP which shows how this free
space is distributed on the disc.

Beebug July 1988

i e

LOAD AND EXECUTION ADDRESSES

The other two numbers included for each file in
the *INFO listing are the load address and the
execution address, again these are both in hex.
In fact, you don't really need to bother about
either of these most of the time. The load
address indicates where in memory a file
should be loaded from disc, and the execution
address indicates the point at which a machine
code program should start running.

For example, if you look at the load address
given for any Basic program you will normally
find that this has been set to the value of PAGE
(usually the default for your machine) which
was operative at the time that the program was
saved. The execution address will usually be set
to 8023 or similar depending on your version of
Basic; this does not indicate where the Basic
program should start execution, but marks the
entry point to the Basic assembler itself. On the
Master series you may find these addresses
preceded by FF (hex). This is of significance
only on 2nd processor systems.

Of course, the idea of an 'execution' address for
a data file is pretty meaningless, but some
software writers make use of this to store other
information (the date when a file was last
updated for example). Generally, this
information can simply be ignored.

UNDERSTANDING *LOAD AND *SAVE
There are two star commands which can be
useful for many purposes, viz *LOAD and
*SAVE. These may be used to load a file from
disc into memory, or to save a file from
memory to disc. In effect, *SAVE simply saves
to disc a specified area of the computer's
memory. Unlike the LOAD and SAVE
commands used with Basic programs, the star
command equivalents may be used to load and
save any files (including Basic programs if you
5o wish).

Before looking at some of their applications, we
need to understand the basic syntax of these
two commands. The simplest is *LOAD, so
we'll consider that first. The shortest form of
this is:
*LOAD <filename>

which will load a file from disc into memory at
the address specified in the stored load address
for that file. The alternative form of the
command is:

Beebug July 1988

*LOAD <filename> <address>
which involves specifying (in hex) the memory
address at which the file is to be loaded. This
overrides the load address saved in the disc's
catalogue.

The syntax of the *SAVE command is more
complex. The simplest form of this is:

*SAVE <filename> <address>+<length>
where filename is the name of the disc file to be
used, address is the start address in memory,
and length is the number of bytes to be saved.
All values must be given in hex, but without
the preceding ampersand ('&') usually
associated with hex numbers. An alternative
form of the command is:

*SAVE <filename> <addl> <add2>
where add1 is the start address, and add? is the
final address plus 1 of the area of memory to be
saved.

When a file is saved, the execution address in
the catalogue is set by default to be the same as
the load address, but you can specify your own
choice by appending a further hex number to
either form of the *SAVE command given
above. It is even possible to append a further
hex number known as the reload address which
sets the load address in the file's catalogue
entry to be different from the address in
memory from which the file was saved. Our
examples will use only the two simpler
versions.

USING *LOAD AND *SAVE
We'll now deal with some useful applications of
*LOAD and *SAVE. Although Basic programs
are saved and loaded using the two Basic
commands SAVE and LOAD, there are
occasions when *SAVE and *LOAD may be
useful. Sometimes a disc which is difficult to
read may respond to *LOAD where it will not
work correctly when LOAD is used. To load a
program in this way just type:

*LOAD <progname>
If successful, you should then be able to list and
run the program as normal, though it is
advisable to type OLD <Return> so that TOP
and LOMEM are correctly set (using LIST will
do this automatically).

Occasions also arise when it may be useful to
use *LOAD and *SAVE as a means of copying a
file (you can then save the copy under a new
name, unlike *COPY). To do this, use *INFO

31

first and note the length of the file in question.
Then use *LOAD to load the file into memory
specifying the current value of PAGE as the
load address, and save using *SAVE in the
form:

*SAVE <name> <address>+<length>
where name is the new name of the file, address
the current value of PAGE, and length is the
length of the file obtained previously. For
example, if *INFO shows:

Olddata 0025C3 0025C3 001C32 BC3
we could then make a new copy with:

*LOAD Olddata 1900

*SAVE Newdata 1900+1C32

Another application of *SAVE can be a real life
saver with earlier versions of View, where
pressing Break leads to a complete loss of your
current text file and a return to Basic. In fact,
very little is lost as your text is very likely still
sitting in the computer's memory. The precise
action to be followed depends on the screen
mode you were using. The simplest thing to do,
and whatever you do must be done as soon as
the loss occurs, is to save the entire contents of
memory from the current value of PAGE up to
the end of user RAM:
*SAVE MyText E00 8000

This assumes PAGE is at &E00 - change this as
appropriate (&1900 on a model B for example).
Then re-activate View and use the read
command to read into View the file just saved.
When complete, press Escape and you should
see your 'lost' text. Because we saved the whole
of memory you will probably find a lot of
garbage at the end of the file, but this can be
quickly marked and deleted to restore the
original text, which should be immediately
saved for safety.

As an alternative to saving the entire contents
of memory, if no shadow memory is in use, just
save the contents of memory from PAGE up to
the start of the screen display. These start at
different places as follows:

MODE ADDRESS

0,1,2 &3000
3 &4000
4,5 &5800
6 &6000
7/ &7C00

Thus if you were working in mode 3, you
would use:

*SAVE MyText E00 4000
The read the text back into View and tidy up as
before.

32

Another application for these star commands is
in saving and re-displaying screens. This will
only work in non-shadow modes, and you need
to refer to the same screen addresses given
above. In every case the end of screen memory
is at &7FFF. Thus to save a mode 2 screen write:
*SAVE Screen 3000 8000
and the screen display will be saved under the
name Screen. This can be used in a program, but
even better is to use an OSCLI command which
then allows several screens to be saved with
different names. For example, using:
OSCLI ("SAVE Screen"+STR$ (s%)+" 3000 80
00")
will save a mode 0, 1, or 2 screen with a
filename determined by the current value of s%
(e.g. Screenl, Screen2 etc.).

Any screen which has been saved in this way
can be easily re-displayed using:
*LOAD <screen-name>

You will need to select the correct mode first,
and if the logical colours of the original screens
had been altered using VDU19, a similar
VDU19 call will be needed when the screens are
re-displayed or they will appear in the default
colour settings. The following code will re-
display a sequence of screens saved as above
(Screenl1, Screen2, etc.):

100 MODE 2

110 s%=1

120 REPEAT

130 OSCLI("LOAD Screen"+STR$(s%)+" 3000")

140 G=GET

150 s%=s%+1

160 UNTIL s$>n%
Note that n% is the number of screens to be
displayed. Pressing any key will move on to the
next screen.

ADFS USAGE

Most of what I have described will work in
almost the same way on ADFS systems. The
way in which files are stored on disc is
different, but a file still has a load address, an
execution address, a length and a sector
number, all given in hex in that order in
response to the *EX command. The two
commands *FREE and *MAP are built into the
ADFS (and 1770 DFS), but have similar
meanings. The commands *LOAD and *SAVE
may be used exactly as described.

I hope these two First Course articles have

helped to clarify some of the more confusing
points of disc filing systems.

Beebug July 1988

i G gy

7 .

T N . e

! NOW AVAILABLE FOR: ‘ ' BARBARIAN
{ BBCMICRO ‘ The Ultimate Warrior

Palace Software, 1987
ELECTRON 0 MADE UNDER ucmc;

i PN

b

& Of

THE ULTIMATE WARRIOR THE ULTIMATE GAME

At last, BARBARIAN, the most realistic and exciting of The evil sorcerer Drax has abducted the beautiful
sword-fighting games reaches the BBC Micro and Princess Mariana fo satiate his nefarious desires.
Electron. A powerful warrior is sought to vanquish against
3 . Drax’s demonic guardians and free the princess?
8:;3”‘”0 players—fight against the computerora You are that warrior: a mighty barbarian wielding
$ your broadsword with deadly skill.

PRIZE COMPETITION
BBC Micro Cassette £9.95 Acorn Electron Cassette £400 is the first prize in our competition, with 20 congratulatory
BBC Micro 5%" Disc £4.95 BBC Master Compact 3!" Di certificates for runners-up.

(Compatible with the BBC B, B+ and Master Series computers) To enter the competition, you must complete the game and write
to us describing the final messages that you receive.

Please make cheques payable to “Superior Software Ltd". Closing Date: 30th September, 1988.

SUPERIOR a
SOFTWARE ACORNS&FT
Limited
Dept. 2, Regent House, Skinner Lane, Leeds LS7 1AX. Telephone: 0532 459453

Personal Ads

BEEBUG members may advertise unwanted computer hardware and software through personal ads (including
'‘wants') in BEEBUG. These are completely free of charge but please keep your ad as short as possible. Although
we will try to include all ads received, we reserve the right to edit or reject any if necessary. Any ads which
cannot be accommodated in one issue will be held over to the next, so please advise us if you do not wish us to do
this. We will accept adverts for software, but prospective purchasers should ensure that they always receive
original copies including documentation to avoid any abuse of this facility.

We also accept members' Business Ads at the rate of 30p per word (inclusive of VAT) and these will be featured
separately. Please send us all ads (personal and business) to MEMBERS' ADS, BEEBUG, Dolphin Place, Holywell
Hill, St. Albans, Herts AL1 1EX. The normal copy date for receipt of all ads will be the 15th of each month.

Watford Electronics DUMPOUT 3 ROMSs, with manual,
£17. View 3.0 manual, £6. Tel. (0924) 826483 eves.

Wordwise Plus. Both manuals and key-strip included,
all as new, £25. Tel. High Wycombe (0494) 716037.

InterWord £20, Toolkit plus £15, ROMIT £13, all
complete with manuals. APTL board inc RAM chips £20.
Modem 2000 and Micronet ROM £25. Tel. (0923) 775098.

Disc based games: Barbarian, Spy vs Spy, Roundheads,
White Knight Mk12, all 4 for only £10.] Crabtree, 10
Pathfields, Dartmouth, Devon TQ6 9HL. Tel. Prestel
21997318.

Z88 with 2 extra RAM packs (32k and 128k) and mains
adaptor, £300 all in price. Tel. (0734) 784897.

Colour Monitor: Microvitec 1431 in excellent condition
£120. Prefer buyer collects. Carriage extra. Tel. (0689)
57245.

Cumana lock disc drive £35 plus ROMs: Toolkit £5,
Replay (8271) £10, Comunicator £5, Wordwise £10. Tel.
01-699 5087.

BBC Model B 32k DNFS 1.2, O.S. 1.2, excellent
condition, £225. Tel. (0273) 516941.

Archimedes 305 (OS 1.2), Zenith 12" high-resolution
green screen. User guide, Programmer's Reference
Manual (Vols 1 & 2) Welcome guide & disc, Arcwriter,
parallel printer cable, and fifteen 3.5" discs, £730 ono.
Matched pair Celestion Ditton 44 hi-fi loudspeakers, £80.
| Tel. Oxford (0865) 246892 after 8pm.

Z88-BBC Link £10. 32k RAM and EPROM £15 each, Z88
computing by Ian Sinclair £6. Tel. Ratna 455 1069 eves.

Electron plus one and ACP plus 4 DFS both as new,
with the manual and in original packaging £60. Tel. St.
Albans 72865 eves.

BBC B series 7, Solidisk DDFS, 80T DSF, Microvitec Cub
monitor, InterWord, Wordwise +, Paul Beverly's
continuous processing ROM, Disc Doctor, Watford 32k

RAM card, data recorder together with all manuals etc.,
offers in the region of £475. Will split. Tel. (0502) 57227.

B plus 64 or 128 owners only, ATPL Side plus ROM |
board £10. Watford DDFS plus £10, both with manuals.
Tel. Farnham Common (028 14) 5332.

Master 128, Cumana 40/80 DS/DD PSU disc drive,
Brother M1009 NLQ printer, InterWord, Exmon I, AMX
Superart Dumpout 3, extra 32k SWR write protect
cartridge, User manuals 1 & 2, other books data recorder,
joystick, covers, 30 discs, BEEBUG Vol.2-6, Acorn User
magazines, lots of software on disc and tape, mint
condition, £650. Tel. (0375) 380369.

BBC B 1.2 O.S. Issue7 + games + 40 BEEBUG mags, £199
only, negotiable. Tel. W.O.T. 242960 (Middx) after 7pm.

Solidisk 2M 128K memory expansion £30. Watford Mk |
2 ROM/RAM expansion fitted 16k RAM £15. EDUCAD
£20. AMX Super Art + mouse £20. Sensible offers
considered. Tel. 01-500 5701.

Master Compact computer with second disc drive,
printer lead and amber monitor, £375. Computer
Concepts Mega-3 ROM £15. BEEBUG Master ROM
(InterWord, InterSheet & InterChart) £50. Spellmaster
ROM £25. Watford Dumpout 3 ROM £15. BEEBUG
Master ROM £15. Masterfile II ADFS £15. Beta-Base with

utilities £25. Signwriter plus four extra fonts £20. All |

with full documentation. 30 3.5" discs in storage boxes |
£20. Sell separately or whole lot for £450. Tel.
Newmarket (0638) 62044.

Microvitec 452 Colour Monitor £120. Viglen console
system for BBC B + separate keyboard case £28, ROMit
ROM complete £15, Zenith green screen monitor £40,|
Aries B20/B12 complete £60. Tel. (0403) 814976.

BBC B issue 7 Watford DFS, dual 40/80 switchable
double sided drive, 30+ discs, games, ROMs, manuals .
and books £375 ono. Tel.(0703)553237. |

Printer: Shinwa CP-80A in box with lead, manual and
ribbons, £99. Also two 100k disc drives with dual lead,
£60. Tel. (0257) 278286 Lancs.

-

“Beebug Supplement July 1988

o s

PREMISIORIC REFION

EIEYPTIAN REPION

FLTURE REPTON

VICKORIAN REMON

REPTON — THE TIME TRAVELLER
Where did Repton come from? Does he have an Egyptian mummy? Is he the real Jack the Repper? Where is he now? Where is he going to?!
We have been inundated with these and many other questions about our lovable hero. Now all is revealed in 40 new screens that vividly reveal
Repton’s evolution from prehistory to the future.
The PREHISTORIC screens with their caves, mountains and volcanoes, have Repton battling against pterodactyls and dinosaurs to collect edible
berries. In EGYPTIAN times, Repton chases around pyramids and sphinxes collecting scrolls and meeting a mummy or twol Amidst the smog and
grime of VICTORIAN times, Repton collects gold coins — but can he avoid the police and the gallows? PRESENT DAY Repton has even greater
dangers to face as he rushes around the city’s jungle of parking meters and skyscrapers, looking for cans of cola. If the gangster's machine gun
doesn't get him, the traffic wardens will. Amazingly Repton may make it to the FUTURE. As he zooms through space collecting crystals, the Martians
give chase. Will he succeed or disappear forever into the infinite depths of a black hole? Only you can help Repton Thru Time!

Each copy of Repton Thru Time includes:
ethe Repton 3 main program e the Repton 3 editorand ethe 40 new game screens.

BBC Micro Cassette
BBC Micro 5%4" Disc..

£6.95 Acorn Electron Cassette £6.95
£7.95 BBC Master Compact 32" Disc..£9.95

ik (Compatible with the BBC B, B+ and Master Series computers).
The screen pictures show the BBC Micro version of the game.

THE CHARACTER EDIRR

PRIZE COMPETITION
If you complete all 40 screens of Repton Thru Time without
using passwords, you can enter our competition. A draw
will be made from all the correct entries received to select
25 prize winners. Each will receive an EGYPTIAN REPTON
Cuddly Toy and a signed certificate.

SPECIAL OFFER — NEW!
A unique range of Repton Cuddly Toys Is now available. Each Cuddly Toy is
about 24 Inches high and has a realistic face and features corresponding
1o the particular Repton character. They are only available from Superior

Somele, REPTON ORIGINAL £9.95
ARCTICREPTON ~ £9.95

TEENAGE REPTON £9.95

Closing date: 30th September, 1988.

Postage and packing free.
REPTON ORIGINAL Lol
Cuddly Toy
y / SUPERIOR s
ACORNSSFT ¥
SOFTWANRE 2 oS parr ,
Software Lid". ﬂ @ Faulty casseties and discs will
FAHOUR TELEPHONE
ioveo . = = O TsEROHE S
Dept. T5, Regent House, Skinner Lane, Leeds LS7 1AX. Telephone: 0532 459453,

35

BBC USER GROUP UPDATE

SWEDEN

1 Acorn User Society of Sweden

Tord Israelson, Tuppa Klars Vag 12, S-702 29
Orebro, Sweden.

BIRMINGHAM

Birmingham Amateur Computer Club

Kingsbury Road Community Centre, Kingsbury
Road, Erdington, Birmingham. Less than 5 minutes
from M6 Junction 6. Chairman: Roy Eddington
021-378 3404. Secretary: Ray Moorby 021-742
4649.

DEVON

North Devon Computer User Group

The North Devon Computer User Group holds its
meetings on the first Wednesday of every month.
New members and visitors are welcome to come
along. For more information please contact David
Roberts on Ilfracombe (0271) 64882.

New Address:

BUCKINGHAMSHIRE

South Bucks Acorn Computer Club

Contact Alan Lilley, 8 Cross Meadow, Chesham,
Bucks HP5 2RU. Tel. (0494) 785549

Meeting 8pm-10pm on 1st Tuesday of the month at
St.Leonards Church Hall, Chesham Bois.

LIVERPOOL

Mersey BBC User Group (MBUG)

Now meets twice monthly in college terms. First
Wednesday of each month: Sandown College (Old
Swan Site), formerly Old Swan Tech College, Room
C33 from 7.30 pm. Third Wednesday of each
month: St Julie's College, Woolton, 6th Form Block,
from 7.30 pm. Refreshments available (at St
Julie's). For more information call Nik Kelly on 051
525 2934.

HAMPSHIRE

Portsmuth & Fareham

Michael Archer, 113 Beerhirst Crescent,
Paulsgrove, Portsmuth, Hampshire PO6 4EJ. Tel.
(0705) 325647. Group meets at 7pm on Tuesdays
at the Portchester Community Centre.

LONDON
The WC1 User Group (University College London)
is not operational any more.

BIRMINGHAM

MARS BBC User Group

Meets on the second Tuesday of each month
7.30pm at the Midland Amateur Radio Society
headquarters, Unit 16, 60 Regent Place, off
Caroline Street, Birmingham 1. Tel. Michael Nyman
021-382-3606

EVENTS

PCW 88 Show
11th Personal Computer World Show
Earls Court, London
14th-18th September 1988

The Electron & BBC Micro User Show
New Horticultural Hall
Westminster, London
11-13th November 1988

For advertising details, please contact Yolanda Turuelo

on (0727) 40303

or write to
Dolphin Place, Holywell Hill, St Albans, Herts.AL1 1EX

Beebug Supplement July 1988

Chnch s

YET MORE
PRINTERS

Our printer expert Geoff Bains is back with
details of the latest printers to hit the
market place.

Dot-matrix printers with 24 pins are definitely
here to stay. There are now a good many 24-pin
machines on the market with prices within
reach of BBC micro owners (and many even
more expensive machines).

24-pin machines offer all the advantages of
‘normal' 9-pin dot-matrix printers (versatility,
speed, and so on) with a fundamental
improvement - the NLQ print quality is that
much better and at a speed considerably faster
than the 9-pin cousins can manage, because on
these machines NLQ printing is achieved in a
single pass.

However, there still are some 9-pin machines
worthy of note and two of them (the LC-10 and
the BX-480) get some attention here. With more
pins (or their equivalent) than most of the
others put together, the Deskjet from Hewlett-
Packard gets the BEEBUG look over too.

One major criterion of dot-matrix printers is
speed, and the printers here have been tested to
find a speed figure which is directly
comparable between models and which
represents a speed you can expect in actual use
- unlike the usually misleading figures claimed
by manufacturers.

CITIZEN BQP-40 £574

The HQP-40 is a mid-priced Epson-compatible
24-pin machine which concentrates on speed. It
is a large machine with all the mechanics at the
back and big areas of mostly empty case at the
front. The interface sockets are on the same side
as the paper wind knob, so positioning this
printer on the side of the Beeb is inconvenient.

Beebug July 1988

However, it is reasonably made if a little on the
'plasticy’ side, and the front panel switches are
real push button switches - a pleasant change to
the usual membrane type.

Normal NLQ text
Emphasised text
Super= & sub~ SCLipt
Italic text
Proportional text
Underlined text

Double height text

The tractor feed unit can be swung into one of
two positions to push or pull the paper
through. With a suitable printer stand, paper
can even be fed into this machine from the base
which allows the paper stack to be kept out of
the way below the machine.

For cut sheet paper, the HQP-40 has an unusual
automatic paper loading mechanism which
requires no triggering. The paper is simply
placed in the fold-up guide and, without
further prompting, the printer feeds it through
to the right position for printing. A good idea,
but the mechanism is prone to feeding the
sheets crookedly.

NLQ MODE
1"#$%&' ()*+,-./012345
6789:;<=>?@ABCDEFGHIJ
KLMNOPQRSTUVWXYZ [\]~_
“abcdefghijklmnopqrst
uvwxyz{ i}

As well as a reasonably fast, decent quality
NLQ print at 46cps and a good speed draft
print at 114cps, the HQP-40 can also produce a
‘correspondence' mode print at a speed of
75cps, but this is barely distinguishable from
the draft quality, so most people are unlikely to
use it much.

37

HQP-40 offers the usual effects of underlining,
double width, proportionally spaced, bold,
italic, super and subscript characters, as well as
novel ones such as double height text and
reversed (white on black) text. The HQP-40 can
also take credit card sized 'smart cards'
containing other NLQ fonts. These cost about
£35 each.

EPSON LO-500 £443

The LQ-500 is one of the cheapest 24-pin
printers around, beaten only by the £349
Amstrad LQ 3500. However, it is better thought
out and made. A push-feed tractor unit is
provided, but this must be removed if the
printer is to be used for cut sheet paper. The
automatic paper loading requires triggering
from a front panel button, but it is very smooth
and efficient. It copes with all reasonable
thicknesses of paper without ever catching or
feeding crookedly.

NLQ PRESTIGE

I"ME$T& ()*+,-./012345
6789:;<=>?@ABCDEFGHIJ
KLMNOPQRSTUVWXYZ[\]A_
abcdefghljklmnopqrst
uvwxyz{ ! }Cuéaaaageeel
11AAE&£006 uyot¢L£L¥PMfa

1éunNa§j etk a» L-|

o a L

173 Ve &
+><

T Fi
aBFnEout§696m¢en
L 1/'nzl

impossible to hold a telephone conversation
nearby.

20CPI text

17CPI text

15CPI text

12CPI text

10CPI text

8.5CPI text

T« 5CPE text
6CPI text
5CPI text

The LQ-500 is (of course) Epson compatible but
it also provides all the IBM graphics characters
and accented letters. The LQ-500 can produce a
good quality NLQ print at 40cps (about a
minute per page of text - much faster than the
Amstrad LQ3500) and draft at a respectable
97cps - under 30 seconds for a typical page.

However, this printer is extremely noisy.

Without the plastic cover in place (and it often
gets in the way) the noise makes it totally

38

By

The LQ-500 has three NLQ fonts to choose from
- the normal typewriter look-alike style (which
Epson calls 'Roman’'), Sans Serif (a plain
modern-looking style), and Prestige (similar to
Roman). Further print styles can be added on
plug-in cartridges for £44 a time.

SEIKOSHA SL-80AI £401

Even though the SL-80AI costs more than the
Epson LQ-500 it has fewer features and is of
inferior construction. This printer has a
distinctly cheap feel about it, and it doesn't look
as if it will have a long life. A clip-on tractor
feed unit is provided for continuous stationery
but this uses the wasteful pull-feed method.
Annoyingly, the tractor unit has to be removed
for friction feeding cut sheet paper. However,
the SL-80AI does have efficient automatic paper

NLQ MODE
COhN! " HE%E ()24, . /01
23456789 : ; <=>?@ABCDEF

GHIJKLMNOPQRSTUVWXYZ[
\]1" ~abcdefghi jklmnop
arstuvwxyz{ | }Clieéddaac
éééifiAAEm£66660§0U¢£

Naoor——‘}ég P &> i
ﬁlﬂ ‘ﬂ_],_L L%ftﬁ

nrﬁh'TW

T?L'ED’JJ‘EQ’GQS‘DQ)GQ“

> JTN°-—I"2-

Beebug July 1988

L I o o g TR A SR Ry

loading which rarely requires any intervention
by the user.

The SL-80AI produces reasonable quality NLQ
print, but it is slow and ponderous. The printer
seems to stop for thought between each line.
Even feeding the paper at the end of a page is
visibly slower than on other machines. The
draft speed is only 53cps and the NLQ speed
26cps - over a minute and a half for a typical
page of text. For a considerably lower price a 9-
pin printer can produce NLQ print of similar
quality at the same or a faster speed. Strangely,
when draft mode is selected with the front
panel switch, control codes from the computer
cannot override it to put the printer into NLQ
mode - a silly arrangement which can prove
frustrating in use.

The SL-80AI is both Epson and IBM compatible
and can manage most of the basic printing
effects. There is no 15 and 7.5 characters per
inch (cpi) text size, which most printers
provide, and the SL-80AI cannot produce
condensed text (17 and 20cpi) in NLQ mode.
Some other printers suffer this problem too but
they print condensed draft text when
condensed print is selected in NLQ mode. The
SL-80AI just ignores the command altogether.

STAR LC-10 £263

NLQ SANSERIF
Vora! "HSU” () Xx+,-./01
23456789: ;<=>7@ABCDEF
GHIJKLMNOPQARSTUVWXYZL
\]~_‘*abcdefghi jklmnop
grstuvwxyz{i>GCu&addaldg
geeiltiAAExrfcootuyoltt
¥RFALIOURNARL —Jk i «»ifl

llllal-L

w i1
ﬂEUuT@GQ P €
Jdsx®.-(N2g

The LC-10 proves all is not lost for 9-pin
machines. For a remarkably low price this

Beebug July 1988

printer offers almost all the features of
machines several times its price. It is fast,
achieving 79cps in draft mode and 18cps NLQ
mode - about 2.5 minutes for a page of text.

Sty

The NLQ quality is excellent - far better than
other machines of this price. The letters are well
styled and crisp and dark. Unusually for this
price of printer, the LC-10 offers three different
styles of NLQ character. As well as the usual
'‘Courier' typewriter look-alike font, there is a
choice of the plain 'San Serif' style or the
modern 'Orator', which can print small letters
either in lower case, or as smaller sized capitals.
The LC-10 can perform all the usual dot-matrix
printing effects and it can produce enlarged
letters nearly half an inch high.

It is equipped with both friction and tractor
feeds. The tractor feed is hidden away under a
back panel when not in use. Unusually for a
budget printer, the LC-10 has automatic paper
loading too. The printer is solidly made and
well designed. Its only silly feature is the
placing of the interface socket on the same side
as the paper wind knob.

BX-480 £424

Sold as: Walters WM480
Precision Software 4010

Micro Peripherals MP-480

For pure speed of printing there is nothing to
beat the BX-480. This is a peculiar printer in a
couple of ways. It is sold by three different
companies in the UK, under three different

39

names - as the Micro Peripherals MP-480, the
Precision Software 4010 and the Walters
WM480. BX-480 is its Japanese manufacturer's
name.

It is so fast because it uses four separate print
heads spaced across the printer width, each of
which prints only a quarter of each line of text.
In draft mode this printer can print at a
staggering 237cps - about six pages a minute.
Only a laser printer (costing upward of 1200)
can match that. In NLQ mode the speed is
reduced but still a healthy 53cps - 1.5 pages a
minute which is at least 1.5 times the speed of
any other printer under £1000.

However, in NLQ mode the print quality is
appalling. It is little more than a bold version of
draft print with no attempt to style the
characters. In addition, the 'descenders' of
letters such as g and j are not printed below the
level of letters without tails, and letters such as
b's and d's similarly have poor 'ascenders'.

However, for fast rough copies, especially
when used alongside a daisywheel printer for
the final neat printout, the BX-480 is unbeatable
because of its speed. Both Centronics and RS232
versions are available at the same price,
allowing the BX-480 to be connected to the
BEEB together with an existing daisywheel
machine.

The BX-480 is designed very much for fanfold
paper. No automatic paper loading is provided
and the top cover has to be removed to load
each sheet. However, to use this machine for
cut sheet paper is to largely waste its talents.

If you want a fast printer, the BX-480 is the
fastest and good value with it.

HEWLETT PACKARD DESKJET £978
The last printer looked at here is the most
expensive ever considered in BEEBUG. It may
seem over the top to spend more on a printer
than the rest of your micro system put together,
but in the case of the Deskjet this is an
economy. You would be saving around £800.

40

This is because the Deskjet is all but a laser
printer. It has the laser quality print, laser
quality graphics and laser flexibility. All it is
missing is the speed.and of course the laser!
This is an ink jet printer. It is a dot-matrix
machine but it prints about 300 dots per inch.
The result is truly difficult to tell from typed or

typeset copy.

The Deskjet even looks totally different from
other printers. It has more in common with a
photocopier than a trusty Epson FX-80. It has
no tractor feed and it cannot use fanfold paper.
Instead it has a bulk sheet feeder built-in as
standard. This takes a stack of cut paper,
automatically loads it as required and deposits
the printed sheets in a neat pile in the out tray.

COURIER (BUILT-IN)

VOBAIMESIE! () *+,-. /01
23456789: ; <=>?@ABCDEF
GHIJKLMNOPQRSTUVWXYZ [
N ‘abcdefghijklmnop
qrstuvwxyz({ |)Gliéddaag
eee111AAEanoéﬁuyOU¢£

¥Pfa10unN“‘ 0 ¢—hh i wmiiil

U T adaber (i

.l aﬁrw20u169n6wwen_
-Jn?=.B083%?)
UGB Lt L ey

There is no need for fanfold paper with this
kind of treatment. The feeder is happy with all

Beebug July 1988

sizes from the width of A4 to the length of
foolscap. Other sizes and envelopes can be fed
in by hand.

dot-matrix machines under £1000 can manage
this NLQ speed and certainly not to this
quality.

COURIER NLQ (built-in)
LETTER GOTHIC NLQ (cartridge)
LETTER GOTHIC NLQ (cartridge)
TIMES ROMAN NLQ (cartridge)
TIMES ROMAN NLQ (cartridge)
HELVETICA NLQ (cartridge)
HELVETICANLQ (cartridge)

The Deskjet has one font built-in and others are
available on cartridges (for £66 each). The range
of print styles and sizes is somewhat limited
with any one cartridge, but a RAM cartridge for
downloadable fonts is also available for
changing fonts 'on the fly', although software
for this is confined to IBM PC programs.

The Deskjet can print at a reasonable speed -
93cps in draft mode and 67cps in NLQ. This is
not in the same league as a laser printer but few

Make &
model

Price Draft speed
(inc.VAT) claimed actual
£574 200

Citizen 114

HQP-40
Epson
L.Q-500
Seikosha
SL-80AI
Star
LC-10
Walters
WM480

Precision Software
4010

Micro Peripherals
MP-480

Hewlett-Packard
Deskjet

£443 150 97

£401 120 53
£263 120 79

£424 480 2587

" " "

£978 240 93

* Speed is mentioned in characters per second.
* NLQ quality is on a scale of 1 to 10, with 10 the best.

Beebug July 1988

Normal NLQ text
Emphasised text

§ TR Eevipt
naxr height text
Single underline
Double underline

The big problem with the Deskjet is in the
software codes used to control it all. These are
to Hewlett-Packard's own standard - a
particularly nasty bunch of long and
unmemorable numbers. The codes used are
actually a subset of those in the Hewlett-
Packard Laserjet, but as no Beeb software is
designed for that either, this doesn't help much.
An Epson emulation cartridge is available (also
for £66) and that makes life much easier for the
BBC micro owner, but adds to the cost. B

NLQ speed NLQ Supplier
claimed actual quality
66 46 8 Citizen
(0895) 72621
50 40 9 Epson
01-902 8892
47 34 7 Seikosha
(0753) 685873
30 18 8 Star Micronics
01-840 1800
80 o5 1 Walters
(0494) 32751
. . ! Precision Software
01-330 7166
. . ' Micro Peripherals
(0265) 473232 |
120 67 10 Hewlett-Packard
(0734) 696622

41

©

et R R e B S e e e e b e e e e Y e S e s S e T P o .

Part 5
ANY OTHER BUSINESS

Dec McSweeney concludes his introduction
to C with some apposite words about the
use of the BEEBUG C compiler, and a
quick overview of C's many other facilities.

This is the final part of our introduction to the
C programming language. Up to now, the
series has been implementation-independent;
that is, all the information applies to any
version of C - on any machine. This month we
will be concentrating on the BEEBUG
implementation, and focusing on the
compilation process and library facility.
Owners of other versions of C should still find
plenty of interest so stay tuned!

A quick recap first. C is a compiled language,
which is to say that object code is generated
from the source program by a process known
as compilation. When the program is run, it is
the object code rather than the source which is
used. BBC Basic programmers will be familiar
with the concept of generating machine code by
assembly - a similar process. Compilation of C
on the BBC micro and other computers is
essentially a two-part operation - the source is
first compiled, then external function calls are
included by the linker.

Almost all the functions used in C are not part
of the language itself. For example, printf(), the
equivalent of the Basic PRINT instruction, for
example, is a separate routine which is supplied
as part of the implementation. The object code
for printf() exists in a library of routines called
rtlib (Run-Time LIBrary). When a source
program is compiled, an intermediate ("semi-

42

compiled") file is created which contains
references to functions outside the program
itself - a bit like calling non-existent procedures
in Basic. The program cannot be run in this
form, even if there are no unresolved
references.

These references are resolved by LINKing the
semi-compiled file - a process where the
external functions are fetched from the library
and added to the program, creating an
executable file. The BEEBUG C user guide,
supplied with the software, contains
descriptions of all available functions in rtlib.
You may find that you require other routines
regularly - for example to calculate VAT. Rather
than include the same code in every program
you write, it is possible to add such a routine to
the run-time library, or create your own. The
BEEBUG C package includes a utility to
maintain libraries, and its use is described here.

First let's write a short routine which calculates
the VAT on a given quantity, returning the
total. Type in the following and save it in a file
called c.addvat:

static double addvat(double amount)
{

return(amount * 1.15);

}

The first line may not look familiar. It defines
the function to be of type double, which means
it returns a value of type double. It is declared
as static to avoid confusing the linker. In the
brackets we have declared the type of
parameter the function expects as well as its
local name. This is a useful extension to
"standard" C, part of the new ANSI (American
National Standards Institute) standard which is
destined to become the "definitive" version of
the language.

You can compile this routine, even though it
has no main() function. Since it will be a library
routine, we will use the NODEBUG option
when compiling:

COMPILE/NODEBUG ADDVAT

Beebug July 1988

This will create a 'semicompiled’ file called
o.addvat. To install this in a library, we must
run LIBRARY - an object program supplied
with BEEBUG C which is very easy to use. Your
conversation with the computer proceeds as
shown.

This should fail with the message "Undefined
symbol in O.LIBTEST - addvat". This is because
the linker uses rtlib as the default library and
addvat is in MYLIB. The correct command is:

LINK/LIBRARY=rtlib, MYLIB libtest

Computer Programmer
C prompt ($) RUN LIBRARY
(Displays version no etc.)

LIBRARY> CREATE MYLIB

Identification text:

Copyright text: Whatever
LIBRARY> INSERT addvat
Name of object file: O.ADDVAT
LIBRARY> QUIT

Commit changes? ¥

Change identification text? N

Anything you like

This causes the linker to look in both
libraries for the external functions. You
should get an error-free linkage, and an
executable file which you can run in the
normal way to give hours of fun(!).

The main advantage of using libraries is
that the code for commonly-used
routines can reside in just one place.
Should a library routine require
amendment, those programs which use it
can simply be re-linked, instead of

Now you've created a library, here is our main
program, to be saved in c.libtest:

/* use your own libraries */

#include <h.stdio>

extern double addvat (double amount);
main ()

{
double money=0;
while (money < 100) {
printf("\nType in the amount : ");
scanf ("$£", &money) ;
printf("Adding VAT we

addvat (money)) ;

}

}

get %4.2f£",

Here, after the #include line, we have declared
that a function called addvat exists, external to
this source file. This is necessary to avoid
upsetting the compiler. If you look through the
header file h.stdio you will find similar
declarations for all standard routines. If you
have many new routines, perhaps you should
create your own header file to be #included.

Compile this and try to link it:

LINK libtest

Beebug July 1988

having to edit, recompile and link each
one afresh. This has advantages in commercial
environments where any revised routine can be
easily installed.

ANY OTHER BUSINESS

In this short series we have only covered some
of the features of C; it is a complex language to
master fully, though by now you should be able
to write and understand simple programs.
Several areas merit a brief mention before we
close this concluding article. For more complete
explanations I would refer you to The C
Programming Language by Kernighan and
Ritchie (known as K & R), or one of the many C
tutors which are available (for example, the
excellent C: A Dabhand Guide, reviewed in
BEEBUG Vol.7 No.2).

SWITCHES

A switch is is a multiple-choice conditional
statement (called a CASE statement in some
other languages) which could be used in many
situations instead of a sequence of if statements,
as in main() in the line editor (see last month).
The switch takes the form:

switch (exp) {
case constl :

43

statementl;

break;
case const2 :
case const3 :

statement2;

break;
/* *Rkk abc, hAkk *x/

default:
statementx;

}

The expression exp is evaluated and then tested
against each constant (const1, const?2 ...) in turn.
If the expression matches the constant, the
corresponding statement (statementl,
statement? ...) is executed.

The optional break command forces an exit to
the statement following the closing brace.
Several cases may precede a statement.
Statements may be compound (several
statements within braces). The expression and
constants must be of type int or char.

This is a useful command but not easy to get to
grips with if your first language is Basic.

POINTERS TO FUNCTIONS

As well as allowing you to access and
manipulate pointers to data, C permits you to
do the same with functions. To declare a
pointer to a function which returns an integer
use:

int (*ifunc) ();

To call the function pointed to by this pointer
write:

(*ifunc) (argl, arg2,);

The commonest way of assigning values to
function pointers is in a function call:

do_something (7, some_function) ;
do_something (how often, ifunc)
int how_often; /* number of calls */

int (*ifunc)(); /* argument is a pointer */
{

a4

int x:
for(x=0; x<how_often; x++)
(*ifunc) (argl etc.); /* calls some function
*/ 5
}

The address of the function some_function is
passed to do_something() because of the
context (no brackets following the function
name). Most reference works (even K & R) are
curiously short on details about this facility; it
strikes me as a solution looking for a problem!

CASTING

This feature allows the type of a variable to be
explicitly changed. As an example, consider a
call to addvat() (which expects an argument of
type double) where the argument starts life in a
variable of type int:

int n=3;
double x;

addvat (n) ;
or worse */
X =n;

L7l

addvat (x); /* This would work */
addvat ((double) n); /* So would this */

/* This might generate nonsense

/* implicit conversion to double

The last line here shows casting at work. A
copy of the value held in n is passed to addvat,
but as if it had come from a variable of type
double. Nifty, what?

UNIONS

This is a feature whereby the same area of
memory can hold data of several different types
and sizes (one type at a time). Unions are
defined like structures:

union this union{
int memnum;
double salary;
char age group;
} u details;

This defines an area of memory big enough for

the largest variable type declared within the
braces. To access the variables, you could use:

Beebug July 1988

e R RN & SR A SRR ORI R REENT ST We A PST R SIP S SA yied SO RTI4TN e i e DR e ot i N Sl e R T

u_details.memnum = new number++;
or, using a pointer:

this_union *u pointer;

/* pointer of type this_union */
u_pointer = &u details;
total_salary += u pointer->salary;

It is up to the programmer to keep track of the
data type currently in the union. This can be a
cause of much grief, so take care!

INPUT AND OUTPUT

We have only scratched the surface of C's input
and output facilities. Many standard functions
exist to provide formatted input and output, as
well as in-memory formatting. Full definitions
of printf(), scanf() and their siblings fprintf(),
fscanf() (file input-output) and sprintf(),
sscanf() (in-memory formatting) will be found
in your user guide. Nor should we forget the
file-handling functions fread(), fseek(),
fwrite()...

BBC FACILITIES

The BEEBUG implementation of C allows
access to all the operating system facilities
(OSWORD, OSBYTE etc.), as well as to the
Basic extensions in the form of draw(), point(),
gcol(), vdu() and so on. You can even change
modes within a called function.

BIT MANIPULATION
Several bitwise operators exist and may be used
on all but types float and double:

& bitwise AND

I bitwise OR

e bitwise EOR

<< shift left (zero fill)

>> shift right (zero fill (unsigned),
sign fill (signed))

= one's complement

THE PRE-PROCESSOR

We have seen the use of #include as an
instruction to the compiler. In fact there are a

Beebug July 1988

number of compiler commands which can
make the C programmer's life easier. In the line
editor, we used #define to set the values of
TEXTMAX and LINEMAX. To change these
values, we need only alter the #define, instead
of changing many lines throughout the
program - and perhaps missing one! #define
can also be used to set up macros - expanding
these at compile time into executable
statements. The draw command, for example,
exists as a macro in h.stdlib:

#define draw(x,y) plot(5,x,y)

Other pre-processor commands include #undef
(forget a #define), #ifdef and #ifndef (check if
a #definition has been made), and #pragma
(controls compiler listing options among other
things).

Well that about wraps up this introduction to
C, said by many to be the language of the
future. Those of you who work with computers
will have seen the increase in interest within the
industry as the operating system UNIX, which
is written in C and for which C is the preferred
language, becomes available on more and more
machines. C has advantages over almost all
other commercially-used languages and is still
being improved - watch out for C++!

If you have found the series enjoyable and
would like to see more articles and programs in

C please write to the editor.

B C-ing you!

This article concludes our introductory series
on the C language. If you have any requests
for further C programming topics, or C
programs, then let us know. If you have a C
program which you think would be suitable for
publication we would be pleased to consider
this. If you missed any of the earlier parts in
this series (five in all), then all the relevant
back issues are available (see inside back cover
for prices).

45

s

e i e

This novel utility by
Brian Knott will allow
your Master to roll
pictures down the
screen as seen in so
many Archimedes
MASTER demonstrations.
SERIES
You will no doubt have
Roll-Down seen on television impres-
S_Cl'een sive graphics effects where
Displays the picture curls up and
shoots off the screen, or is

sucked away down a
'plughole’ in the centre of the screen - these are
produced by dedicated graphics systems like
Quantel's Paintbox. However, the Master is
capable of some of the simpler graphics tricks,
although at a somewhat slower speed. This
article explains how two of these effects can be
achieved. The first is as if the display has been
rolled into a tube and this is slowly unrolled
down the screen. The second is a Venetian
blind effect where the display appears in
gradually widening strips across the screen.

Applications for these effects are numerous.
They could be used to display title screens,
graphic pictures, rolling demonstrations and so
on. The effects are achieved by first loading the
picture into memory above the Basic program
and workspace with the Master in a shadow
screen mode so that this will not affect the
display. Next, the machine code utility will
transfer this image, piece by piece, into screen
memory creating the desired effect. The screen
image must be in mode 0, 1 or 2 and must have

46

been saved in the normal manner (i.e. using
*SAVE <filename> 3000 8000).

ENTERING THE PROGRAM

The program should be typed in and saved.
When run, a machine code file will be
assembled. A checksum is included to make
sure that the assembly language has been
entered correctly. If this is not so, the file will
not be saved.

USING THE PROGRAM

Once the machine code utility has been
successfully assembled it is ready to be used by
your own program to create the desired effects.
This small program demonstrates how the
utility may be used:

10 *SHADOW

20 MODE 0

30 HIMEM=&2EQ0
40 vDU23,1,0]|
50 *RUN ROLLDN
60 *LOAD IMAGE1
70 CALL &DD6B
80SVDITE23,d, 14|
90 END

Line 10 ensures that the machine will remain in
a shadow screen mode when you select the
appropriate mode for the screen image in Line
20. Line 30 will ensure that the Basic stack is
put below the area in which we will load the
screen image initially. Lines 40 and 80 simply
turn the cursor on and off. These are not
essential but improve the display. Line 50 loads
and initialises the machine code utility. Line 60
loads the appropriate screen image into
memory. In this case it is assumed that there is
screen on disc called IMAGEL. Line 70 calls the
machine code routine to create the desired
effect. Calling &DD6B will perform the roll-
down effect whilst &DDB5 will perform the
blinds effect. Following the same procedure any
Basic program can use the utility just as easily.

It is worth noting that some screens may need
the logical colours to be changed with a VDU
19 command. If this is done before the machine
code is called, it may result in a colour change
in the existing picture on the screen. Executing
the VDU 19 after the machine code has been
called will result in the effect being in the
wrong colours. You will have to decide what
best suits your application.

Beebug July 1988

R e e B s s o P TG SN B L L o e S M el P TR

MEMORY USAGE

The machine code is assembled into the
'transient program area' at &DDO00
recommended by Acorn for short utility
routines. A number of zero page locations
between &70 and &83 are used as counters and
markers, while locations &2E00 to &2FFF are
used to hold a table of values which the
machine code accesses. Locations &3000 to
&7FFF are used to hold the screen image which
will be displayed when the effects are called.

Call Addresses
Roll Down &DD6B
Blinds &DDB5 1100 LDA #&F8:STA &80
1110 LDA #&2E:STA &81
PROGRAM NOTES 1120 LDX #32
There are actually three different machine code L0 8L WOE 10
routines. The first routine is called only once, ﬁgg A;EZ#TYA:CLC
* &80:STA (&80),Y
when you *RUN ROLLDN, and creates a table 1160 DEY:BPL st2
of start addresses for each row on the screen. 1170 LDA-&SO
The other two routines performthe roll-down 1180 SEC:SBC #8:STA &80
effect and the blinds effect. 1190 1LDY #7
1200 .st’ TYA:8TA (&80),Y
You should now be able to implement this 1210 DEY:BPL st3
handy routine in your own programs to make 1220 LDA &80:SEC
your screen displays even more interesting. 1230 SBC #&8:STA &80
1240 DEX:BNE stl
10 REM Program ROLLDOWN 1250 LDA #&F8:STA &80
20 REM Version B0.25 1260 LDA #&7D:STA &82
30 REM Author Brian Knott 1270 LDA #&2F:STA &81
40 REM BEEBUG July 1988 1280 LDX #32
50 REM Program subject to copyright 1290 .st4 LDY #7:1LDA &82
60 1300 .st5 STA (88D),Y
100 ON ERROR MODE 7:PROCerror:END 1310 DEY:BPL st5:DEX
110 MODE7 1320 DEC &82:DEC &82
120 OSWRSC=&FFB3 1330 LDA &80:SEC
130 PROCass 1340 SBC #8:STA &80
140 Y%=0:FOR X%=&DD00 TO &DE17:Y%=Y%+? 1350 LDY #7:LDA &82
X% :NEXT 1360 .st6 STA (&80),Y
150 IF Y% <> §95C0 PRINT"Error in mach 1370 DEY:BPL st6
ine code.":END 1380 DEC &82:DEC &82
160 *SAVE ROLLDN DD00 DE18 1390 DEC &82:LDA &80
170 END 1400 SEC:SBC #8:STA &80
180 : 1410 DEX:BNE st4
1000 DEF PROCerror 1420 RTS
1010 REPORT 1430 rolldown
1020 PRINT " at line ";ERIL 1440 LDA #8:STA &70
1030 ENDPROC 1450 STA &82:TAX
1040 : 1460 TAY:INY
1050 DEF PROCass 1470 .rdl
1060 FOR pass%=0 TO 3 STEP 3 1480 LDA #&FF:SEC
1070 P%=&DD00 1490 SBC &70:SBC &70
1080 [:OPT pass% 1500 INA:STA &83
1090 .store Continued on page 62
47

Beebug July 1988

BEEBUG
Education

BN
“a
This month Mark Sealey reviews some
educational books and software.

[EENG i

INSIDE INFORMATION. Open Learning Pack.
Supplied by: BBC Software, 80 Wood Lane, London
W12 0TT. Tel. 01-576 0548, Price £41.35 inc VAT

It is common on Computer Literacy courses at
Further Education (FE) level for students to
follow the subject matter presented to them
with interest, but to be left looking for more
than either the software, literature or even
handouts (and certainly the full manuals) can
offer.

What is needed is a compilation of sources that
takes the student or any comparative
newcomer to information technology (IT)
further. It must satisfy their general interest,
and answer particular questions about the sorts
of software which they have been using.
Purchasers of Inside Information from BBC Soft
can also follow both the Radio 4 series of the
same name and the City and Guilds assessment
444. Restructured and re-presented versions of
the former come on cassette with this package.

The review that follows and forms the bulk of
this month's BEEBUG Education is for readers
new (and not so new) to IT, as well as teachers
and lecturers who want to provide students
with extra material. Here, Inside Information is
specifically tied to software which is written to
expose the workings of computers and their
programs. This, together with the fact that you
have all the resources in one product, makes it
very attractive.

So why Inside Information? Herein lies the
strength of the whole pack, which comprises
three discs (in BBC DFS 40 track and MS-DOS
formats), two audio cassettes with edited
versions of the radio series, manuals and a very
well written and appealingly illustrated book
by Jacquetta Megarry of 200 pages.

48

There are five programs in the software suite.
LID-OFF simulates the four stages of a von
Neumann computer: Input, Processing,
Memory and Output. LIDTEXT - perhaps the
weakest - is a simple text editor. If you wanted
to use this for writing your first novel, you
would be disappointed. It is clear from the style
of the whole package, though, that its authors
know just how patchy and incomplete the
understanding of students can be even after
learning the mechanics of View, Wordwise or
whatever. LIDTEXT, in common with the
simulated spreadsheet, LIDCALC, and the two
data handling programs, LIDDATA and
LIDBASE, really does take off the lid and shows
how a computer (rather than a typewriter or a
shoebox full of cards) handles information. This
is a task that few other pieces of software for
the BBC Computer have ever done (remember
PEEKO Computer?) and these do it very well.

ANSIDE INFORMATION

LID-OFF, for instance, shows conceptually
what happens inside the computer while
running a simple program in Basic to calculate
VAT and add it to a price. Programming is
becoming less common both in GCSE and in
the increasing number of non-specialist FE
courses. Yet students often ask about it, so it is
good to see it demonstrated so well here.
Essential notions like exit conditions and error
trapping are thankfully prominent.

Yet that is not all: the screen is divided into
several areas, and you have infinite control over
the speed at which various messages appear
informing you of exactly how the Operating
System (modelled on that of the BBC computer)
controls input and output, and how algorithms
are translated. This is a compelling piece of
software that does its job well.

Beebug July 1988

e e e T e N e IS Rt i R el

LIDTEXT takes as its model the way that a
trained typist or word processor operator
would set about correcting text which has been
entered at speed and contains errors. It all takes
place slowly so that you can see what is
happening. This blend of open-ended and pre-
determined use of the software, with plenty of
opportunity for self-assessment (and with
learning objectives spelt out at all stages) is in
the best educational traditions.

The database is the most complex program and
contains such delights as a slow-motion sorting
routine and the ability to achieve a detailed
record format. The latter also crops up
frequently on computer literacy courses.

By now you will have got the idea. There are
many video films aiming to explain how
computers in control work. The BBC itself did a
series on the subject some years back.
LIDTURN has adequate graphics to hammer
home the essential message: computers can
only execute commands one at a time. It is a
pity that pseudo-code alone was used and a
pseudo-code fairly close to English.

The book, subtitled Computers, Communications
and People, fills in many of these gaps: the
chapter on telephones was particularly
enjoyable to read. If you are looking for a well-
written comprehensive package for pupils from
15 upwards, which starts with the very basics
(recognising a computer), is modelled on the
BBC system and covers its ground remarkably
well, Inside Information should be seriously
considered.

3D LOGO EXTENSION
Supplied by: Logotron Ltd, Dales Brewery, Gwydir
Street, Cambridge CB1 2L]. Tel. (0223) 323656. Price
£18.40 inc VAT

In BEEBUG Education Vol.6 No.1 we looked at
a range of utilities for the LOGO programming
language. LOGOTRON has recently released a
3D extension on disc to run with its original
ROM. It is an excellent product and much
overall thought has gone into it.

At heart, it provides some twenty-two
primitives which have been added to those
available on the by now standard BBC
implementation. Chief among them are ROLL,
PITCH and YAW, which - with SETZ and
ZCOR - allow the turtle to operate in a third

Beebug July 1988

dimension: that is 'backwards' INTO the
monitor in addition to horizontal and vertical
directions on the screen.

After playing with the new facility (a cut-out
card is provided to help in visualising the
process) and trying some of the usual
spectacular graphics, you can get down to
exploring such structures as polyhedra,
perspective and spiral staircases. There are
literally hundreds of suggestions for using this
extension in other project work, and these are
well presented to say the least. A very
significant piece of educational software,
which, if taken with the books also under
review, will set you up nicely for the summer
holidays.

MAKING LOGO WORK
by Janet Ainley and Ronnie Goldstein
Supplied by: Basil Blackwell, 108 Cowley Road,
Oxford OX4 1JF. Tel. (0865) 791100. Price £6.95

LET'S TALK BBC TURTLE
by Liddy Neville and Carolyn Dowling
Supplied by Cambridge University Press. The
Edinburgh Building, Shaftesbury Road, Cambridge
CB2 2RU. Tel. (0223) 312393. Price £3.50 Pupil's
book and £6.95 Teacher's book

You have to be very careful with books about
Logo for it is not only the purists who insist
that written guidance can stifle children's
activities with the language. In the case of Let’s
Talk BBC Turtle, the strengths of the books are
threefold: they are well laid out - especially for
children, they are written around the Logotron
ROM and, although overpriced, contain things
that children of 8 to 14 will actually want to do.
If you believe in the assignment approach, and
are maybe not too sure about Logo yourself,
they are as good as any of their type.

Of greater significance, and with a surer
theoretical grasp, is the more comprehensive
book by Ainley and Goldstein. It makes a
readable and well-argued case for doing
worthwhile things with Logotron Logo, and is
packed with resources and ideas. The Chapter
on Microworlds, a term often used but not so
often actually understood, is a good one. But if
you are tired by now of the anecdotal, narrative
approach - describing what other classes have
done with Logo - there will be less in this to

appeal to you.

49

et T &

This month Mike Williams and David
Spencer discuss a more general and

professional approach to the requirements
of file handling.

In the first two articles in this series we
discussed how to set up a simple database, and
wrote a set of short programs to provide us
with the basic requirements of adding, deleting,
amending and displaying the records in our
file. The system we set up may well suffice for
many simple applications, particularly where
the number of records, and size of record is
reasonably small.

However, the approach we used, while itself
simple, suffers from a number of drawbacks.
First of all the routines used were specific to the
particular application we used as our example.
Of course we could write similar programs to
handle any other application, but if we want to
set up several databases, this does seem to be a
clumsy approach. What is required is a more
general approach which can be applied to any
data file we may wish to use.

~———Field 1

In this and succeeding articles in this series we
shall be looking at ways of overcoming these
limitations, and discussing the many
implications that arise as a result. The scale of
programming required will also be much
greater than before. Because we are not
intending to create a comprehensive database
program ourselves, but to cover the many ideas
and techniques which you may wish to know
about, we shall henceforth concentrate on
writing procedures which you can use (and
modify) in your own programs.

FIXED LENGTH RECORDS

In our previous database, each piece of
information used just the amount of space in
the file which it needed. The consequence of
this is that every record is (nominally) of a
different length to every other, and
consequently there is no way of determining
where in a file a particular record starts.

The solution to this, and one used by many
commercially available databases, is to insist
that every field and record in each file is of a
fixed length. Their sizes may differ from one
database to another, but within any one file
their lengths will be the same throughout. In
these circumstances, if we know which record
in a file we require we can calculate exactly
where in the file it is (record number multiplied
by record length), and use PTR# (described last
month) to move the file pointer directly to that
position.

Now this does not mean that the data itself is
fixed in length, just the size of the space
allocated for the storage of that data. Thus each
field in a record will be set to a certain

Field2 —» <«—

>

A

FH | FS | NR | RS | NF | Fname | Fwidth

Ftype | Fname | Fwidth | Ftype

Fn?/

Fig 1. Format of File Description Record

Secondly, the only way in which we could
access the records in our file was by starting
with the first record and then reading each
successive record in turn. We had no way of
putting the records into any kind of order
(unless they were entered in order at the
outset), nor of locating any individual record
directly.

50

maximum size. In the majority of cases of
course, the data will use less than the space
allocated.

We are already encountering an important
characteristic of file handling: in order to
facilitate the processing of data the amount of
storage space allocated on disc (and in

Beebug July 1988

R I e L e A S L N Y N e o R A Y P I S S et o -

memory) will be more than that strictly
required by the data used. Some forms of data
storage can easily double (or more) the space
required. All our discussion from now on will
assume that we are using fixed length fields,
and hence fixed length records.

FILE HEADERS

If we are going to write a program (or set of
programs) to deal with all our data files, then
with each file we shall have to find some way of
storing all the information (like the names of
fields, number of fields, number of records etc.)
which describes the format of each file. We will
refer to this as a File Description Record (FDR). It
is like adding an extra record at the start of our
data file, but one that is different from those
that actually contain data.

Now this may seem a backwards step. We have
only just said that the key to file handling is the
use of one standard size and format of record
throughout a data file, and here we are thinking
of introducing another record in each file which
is quite different. What we can do though, is to
make the File Description Record the same
format in all files. In that way we can write one
piece of code to read the File Description
Record of any file, and that in turn will provide
the detailed description of the structure of the
data file itself.

In fact, you can store as much descriptive
information about the contents of a file as you
like in the File Description, but this is all an
overhead on disc space, so it is best to keep it as
short as is reasonably possible. The File
Description will also contain things like the
names and lengths of the fields which make up
a record. Now some data files may contain just
a few fields, while others may contain very
many (even hundreds). The simplest approach
would be to allocate a size for the File
Description large enough to store the maximum
amount of information which is ever likely to
occur. But of course, the majority of files will
need much less space so this arrangement is
also wasteful.

The solution is to make the File Description
modular. We will allocate a basic space of 256
bytes, but add further blocks of 256 bytes for
those files which need it. And how will the
program know just how much space has been
allocated? By specifying as the first byte in the

Beebug July 1988

File Description the number of blocks
comprising the File Description record for that
file. It's easy really.

DEFINING A FILE DESCRIPTION RECORD (FDR)
Let's now consider the information required in
a File Description. The minimum we would
suggest is as in Table 1.

Identifier ~Meaning
FH Number of 256 byte blocks in FDR
FS Physical size of file in records
NR Number of records currently in the file
RS Size of record in bytes
NF Number of fields
Table 1

The information in the table applies to the file
as a whole, and could be extended further (date
created, date last accessed, password etc.). This
would then be followed by additional
information for every field in the file. This is
more open to variation in response to
individual requirements, but we suggest you
consider the following:

Function Data Type Size
Field Name String 1042
Field Width Integer 4+1
Field Type Integer 4+1
Field Format String

Field Prompt String

Field Default String

Field Checks String

The information on fields above the line we
consider to be essential for all database systems,
though it is possible to omit the file type. The
field descriptors below the line are examples of
optional extras depending on what is important
to you. For example, the field format could
specify different layouts for numbers and dates.
A field prompt would appear on the screen
when prompting for data entry (rather than just
the field name). Field checks could be used to
validate data on entry against pre-determined
limits, ranges etc. The basic arrangement for the
File Description Record is shown in the
accompanying diagram.

We'll now examine the details of the FDR
further. The first five entries relate to the file as

51

a whole, and all will be stored as integers
giving ample scope when it comes to numbers
of fields, records etc. The first item, the number
of File Description blocks, has already been
referred to.

We are assuming that when a data file is first
created, the user specifies the maximum
number of records the file is to hold, and that
the file will be created at that size. In the
context it seems better to specify the size in
terms of records rather than bytes, and an
integer will suffice for this. Likewise, we will
also need to store the number of records
currently in use, again as an integer. We are
assuming that new records will be added
following the last existing record in the file.
Setting NR equal to zero will indicate that there
are no records in the file. An alternative is to
have this value point to the next empty position
in the file (i.e. one more than the current
number of records). Both approaches have their
merits when it comes to coding.

The size of a record will be measured in bytes,
and will be the sum of the lengths of the
individual fields within a record. This could
always be calculated when required but it is
more convenient to store it once and for all.
Given all this information we can derive a
useful formula for locating any record. The nth
record in a file will start in position p, where:
p=256*FH+ (n-1) *RS

The file pointer (the value of PTR#) starts at
zero. The first data record starts immediately
after the last FDR block. So if the File
Description consists of just one 256-byte block,
the first record in the file will start in position
256. Check this out for yourself to make sure
you understand this formula. Finally, this
section contains the number of fields per record
in the file.

INFORMATION ON FIELDS

The information you will need to store about
the fields is more arbitrary. Each field will need
to be identified by a name, but the maximum
length of this name is up to you. We would
recommend a maximum of 10 characters. The
field width represents the maximum space
available for a piece of data. It makes great
sense to store all data in string format for
uniformity of processing at this level, but note
that this is less economical of storage space. A

52

number like -12.345678 consists of 10
characters, but will only use 6 bytes if stored in
a file as a real number. Nevertheless, string
format is much to be preferred.

The third item of data about each field is the
field type. This is not essential (our highly
popular BEEBUG Filer database recognised
only string data). However, a file type is useful,
and will be helpful to us in future
developments in this series. By marking each
field with a simple code to indicate its type, the
file handling program can treat different types
of data in different ways. The most likely field
types are shown in Table 2.

string date
integer logical
real pointer

Table 2

Another alternative is to have a data type called
numeric, and avoid the distinction between real
and integer. As an example of the usefulness of
this approach, consider the date type. Dates are
most economically stored as a reversed 6 byte
string (yymmdd). On displays and on printout
it looks more friendly to present a date in the
form:
<day>th <month> <year>

e.g. 27th June 1988. If a field is marked as of
type date, it is then straightforward to write
code which will recognise a date and
automatically ensure that it is displayed in the
'long' form. The same can be applied on data
entry, with a routine to automatically compress
a date for storage in a file. Of course we pay for
this convenience in the time taken to make the
conversion.

A logical data type is one where only two
possibilities exist (like TRUE or FALSE). An
example is the common requirement to indicate
the sex of a person (either male or female). The
last data type we have suggested is pointer. This
allows a record to have a pointer to either
another record in the same file, thus opening
the possibility of chaining records, or to a
record in a completely separate file. The latter
arrangement can avoid the unnecessary
repetition of extensive data by storing the data
once with a corresponding pointer in each
record which would otherwise have contained
a copy of these details.

Beebug July 1988

RGNS S S) N R T e L S S il e Ry e R A e ST D

An example might be a database of student
records where the record for each student
might contain a pointer to the course for that
student in a separate courses file, or a pointer to
the student's tutor in a further tutors file. In an
example like this it does not take much
imagination to see how a highly complex
database might well emerge with many files
involved and with many pointers between files.

Don't get too carried away. Large and complex

databases like this require rather more power’

and storage capacity than the humble Beeb can
offer, but the same principles can still be
applied on a smaller scale.

PUTTING THEORY INTO PRACTICE

We will conclude this month's article by giving
a procedure to create a data file according to
data input by the user. We will use the code
letters as integer variable names, and we will
also assume that suitably sized arrays have
been set up for the field information:

Fname$() Field Names
Fwidth%() Field Widths
Ftype%() Field Types

The relevant procedure could then be defined
as follows.

1000 DEF PROCcreate_file (name$)

1010 LOCAL F%,I%

1020 FH%=(25+22*NF%)DIV256+1

1030 RS%=0

1040 FOR I%=1 TO NF%

1050 RS%=RS%+Fwidth% (I%)+2

1060 NEXT

1070 OSCLI ("SAVE "+name$+" 0+"+STRS$~(25
6*FH%+FS%*RS%))

1080 NR%=0:F%=OPENUP (name$) : PTR#F%=0

1090 PRINT#F%,FH%,FS%, NR%,RS%, NF%

1100 FOR I%=1 TO NF%

1110 PRINT#F%,Fname$ (I%),Fwidth% (I%),Ft
ypes% (I%)

1120 NEXT

1130 CLOSE#F%

1140 ENDPROC

The five initial items in the FDR will be stored
as integers, a total of 25 bytes. Storing field
names, field widths and field types as described
will require 12, 5 and 5 bytes for a total of 22
per field. Thus the size of the FDR will be
(25+22*NF), and the number of 256 FDR
modules required can then be calculated as in
line 1020. Remember that in a file a string

Beebug July 1988

occupies two more bytes than the number of
characters in the string, while an integer
requires 5 bytes (this was discussed in detail
last month).

Next, the size of each record consists of the total
of the field widths, plus a two-byte overhead
(again) for every field. This total is calculated in
lines 1030 to 1060 to determine the value of RS.
We can now create the correct size of file using
OSCLI to pass a *SAVE command to the filing
system. This simply calculates the size of the
file in bytes and copies that number of bytes
from memory to disc as the initial file. This is
the quickest way of creating a file of a given
size, though it will be full of garbage.

The procedure then opens the file just created,
and outputs to the file the five initial
parameters followed by the field information
before closing the file and terminating the
procedure. You might wish to set a flag to
indicate successful completion of this process
immediately before the exit from the procedure
(or indeed convert the procedure to a function
which returns such a flag). This can be useful
for detecting situations such as insufficient disc
space for the file specified.

Notice too that all the variables which we have
chosen to define as integer are so marked in the
procedure with the '%" sign. This ensures that
their values are stored in the file in the correct
integer format. If you assign an integer value to
areal variable and then store that in a file it will
be stored as a real number using a total of 6
rather than 5 bytes. This would ruin all our
careful calculations.

In the above we have assumed that the contents
of the arrays Fname$(), Fwidth%() and
Ftype%(), together with the values of FS and
NF have been correctly entered by the user
before this procedure is called.

This is where we pause for breath, and give you
an opportunity to digest all this detail before
continuing further in the next issue. You might
also like to consider the reasons for the present
built-in limit of 255 characters on the size of any
data field, and how this might be overcome.

The magazine disc/tape contains a short demonstration
of the use of PROCcreatefile.

53

[ube |

©d

Filng System

TN

E<XnE

e

- ESEHBLER
PARIgI

This month we begin the sequel to our
Exploring Assembler series, in which we
will cover practical applications of
assembler programming on the Beeb. We
begin with a look at machine code
graphics.

Providing you do not need to write directly to
the screen, implementing graphics routines in
6502 assembler for the BBC micro is a relatively
straightforward affair. It involves repeated use
of the OSWRCH operating system call to send
sequences of VDU codes to the screen. To take a
very simple example, the sequence VDU22,1
will select screen mode 1. This is performed in
assembler as follows:

LDA #22

JSR oswrch

LDA #1

JSR oswrch

You may remember from earlier in the series
that the OSWRCH call sends the contents of the
accumulator to the screen. In this example it is
assumed that the variable oswrch is set to
&FFEE, the OSWRCH entry point. The code
sends first the value 22, and then a 1 to the
screen, and thus engages mode 1. When
changing mode in this way you should
remember that Basic pseudo-variable HIMEM
is not reset in accordance with the new mode,
so that there can be conflict between Basic
workspace and screen RAM. Of course, if you
are using machine code this is usually of little
consequence.

Table 1 gives the VDU control codes associated
with graphics functions. As you can see, many
Basic commands used in graphics have a direct
VDU equivalent. Thus for example to select
cyan as the current text colour when in mode 2

54

VDU Code EFFECT
12 @
16 CLG
17 COLOUR
18 GCOL
19 Logical to Physical Colour
20 Restore Default Colours
22 Mode Change
23 User Characters/Cursor on-off
24 Define Graphics Window
25 PLOT
26 Restore Default Windows
28 Define Text Window
29 Define Graphics Origin
30 Home Cursor
31 TAB(X,Y)
Table 1. VDU control codes
associated with graphics functions.

(colour 6), we can issue VDU17,6. You can test

this out from Basic, and can even string a

sequence of codes together. For example:
YDu2z,2;17,6,65

will set up mode 2, select cyan as the text

colour, and print the letter "A" (ASCII 65). In

assembler this becomes:

LDA #22 :JSR oswrch

LDA #2 :JSR oswrch

LDA #17 :JSR oswrch

LDA #6 :JSR oswrch

LDA #65 :JSR oswrch
GCOL

Using the equivalent of Basic's GCOL to set up
graphics colours involves a similar process,
except that an extra parameter is required. The
syntax of GCOL is:

GCOL mode, colour
where mode is a number between 0 and 4 giving
the plotting mode, and colour is the logical
colour to be plotted. VDU18 is the code for
GCOL, and to set up colour 6 in Exclusive OR
plotting mode, we could send the sequence:

VvDU18, 3,6
In assembler this becomes:

LDA #18 :JSR oswrch

LDA #3 :JSR oswrch

Beebug July 1988

B ARG 2, L A B s U U e T S ek L o OO I B e Sl s e B A Rt [i i Rl e L s S L i o) T ST R e [e

Where graphics calls are repeatedly made in
assembler, it usually pays to write them in the
form of subroutines. These could take
parameters passed in the accumulator and X
and Y registers, where required. The following
routine executes a generalised GCOL:

.gcol

LDA #18 :JSR oswrch
TXA :JSR oswrch
TYA :JSR oswrch
RTS

It is called with the X register holding the
desired plot mode, and the Y register the colour
number. On exit the contents of the
accumulator are undefined, while the X and Y
registers are preserved.

Another way to implement this, and one which
illustrates the use of the PHA instruction
introduced last month, is to call the routine
with the required colour number in the
accumulator, and with the X register holding
the required plot mode. The new routine is as
follows:

gcol

PHA

LDA #18 :JSR oswrch
TXA :JSR oswrch
PLA :JSR oswrch
RTS

This version of the routine preserves all
registers. It works by pushing the initial
contents of the accumulator onto the stack at
the start. It then sends first the value 18, and
then the plot mode to OSWRCH before pulling
the colour value off the stack, and calling
OSWRCH for a third time.

LONGER VDU SEQUENCES
A similar technique can be applied to a variety
of graphics calls, but in cases where a large
number of parameters are required, it is
cumbersome to load them each individually. A
more convenient approach is to hold the
parameters in a data block. By way of
illustration, the subroutine below implements a
cursor off command:

+-coff

LDX #0

.loop

LDA base,X

Beebug July 1988

JSR oswrch

INX

CPX #10

BNE loop

RTS

.base

EQUB 23 :EQUB 1
EQUD 0 :EQUD 0

In this routine the X register is used as a loop
counter. Ten complete cycles of the loop are
made, and with each the accumulator is loaded
with a new value from the data block located at
base, and then OSWRCH is called. The routine
sends the equivalent of:
vpu23,1,0,0,0,0,0,0,0,0

Note the use of EQUB to place a single byte into
the assembled code, and of EQUD to place four
bytes.

Exactly the same technique could be used for
VDU23 sequences designed for redefining
characters. In this case the data block would
take a very similar form, and might look like
the following:

.base

EQUB 23:EQUB 255 Redefine chr 255

EQUD &818181FF

EQUD &FF818181
Now each pair of digits in the EQUD sequence
represents a single byte of the eight bytes
required to define the character. The important
thing to remember here is that the lowest byte
of each four-byte sequence is sent first. The data
in this particular block will redefine character
255 as an empty box, and is the equivalent of:

VDu23,255,255,129,129,129,129,129,129, 255

55

USING PLOT
We have intentionally left until last the most
important of the graphics commands: the
equivalent of Basic's PLOT. The syntax of the
Basic command is:
PLOT n,x,¥y
where n is the plot number - an integer in the
range 0 to 255 which defines the type of
plotting action - and x and y are the graphics
co-ordinates. The X co-ordinate ranges from 0
to 1279, and the Y co-ordinate from 0 to 1023.
The VDU equivalent is:
VDU25,n,%;y;

The two semicolons in the sequence indicate
that both x and y are 16-bit values rather than 8-
bit bytes. When translating this into machine
code, we must generally treat the two 16-bit co-
ordinates as pairs of bytes, in which case the
VDU string reduces to the following:

VDU25,n,x MOD 256,x DIV 256,y MOD 256,y
DIV 256
In other words the x and y co-ordinates are sent
low byte first.

Suppose we wish to plot a point on the screen
at the centre. We could use any of:

PLOT 69,640,512
or: VDU25,69,640:512;
or: VDU25,69,128,2,0,2
In the latter case, the X co-ordinate is made up
from 128+2*256, while the Y co-ordinate is
exactly 2*256. We could translate this into
assembler as follows:

LDA #25 :JSR oswrch
LDA #69 :JSR oswrch
LDA #128 :JSR oswrch
LDA #2 :JSR oswrch
LDA #0 :JSR oswrch
LDA #2 :JSR oswrch

Using sequences of code such as this to perform
a plotting function is all very well if such plots
are few in number. But in the majority of cases
programs will need to make repeated calls of
this kind to build up any given screen display.
Broadly speaking there are two quite different
ways in which we can efficiently incorporate
multiple plotting calls. One approach is to build
up a large data block of VDU codes, which will
be sent to OSWRCH in sequence. An alternative
approach makes use of a short plotting

56

e FE e ik R, S R RS S A R L U e NS S D A IR

subroutine which is called once for every
VDU25 call made, with parameters being
passed in the 6502's registers or in zero page
RAM. The former approach, to be examined
below, is really only suited to situations where
the values sent to OSWRCH are known at the
time of assembly. The second, and more flexible
approach, allows parameters to be processed
during run time, and we will explore this in the
next issue.

SENDING LONG VDU SEQUENCES

The first of the two methods is really very
simple. The only skill involved is in putting the
correct values into the data block, and arguably
the best way to check that you have got the data
correct is to test out the Basic equivalent before
coding up the assembler version. For the
purposes of illustration, listing 1 gives a short
Basic program to draw a house with a red roof
and magenta door. It is set in a field of green
grass against a cloudless blue sky.

Listing 1
10 REM .>Asseml2-1
20 REM:Basic house and grounds
30:4:
40 MODE2
50 GCOLO,132:REM Blue sky
60 CLG
T0%:
80 GCOLO,2:REM Green grass
90 MOVE 0,0
100 MOVE 1279,0
110 PLOT 85,0,320
120 PLOT 85,1279,320
ihe{el
140 GCOLO,7:REM White house
150 MOVE 512,512
160 MOVE 512,256
170 PLOT 85,768,512
180 PLOT 85,768,256
190
200 GCOLO,1:REM Red roof
210 MOVE 480,512
220 MOVE 640,640
230 PLOT 85,800,512
240 :
250 GCOLO,5:REM Magenta door
260 MOVE 608,256
270 MOVE 608,352
280 PLOT 85,672,256
290 PLOT 85,672,352

Beebug July 1988

The assembler equivalent is given in listing 2.
The vast bulk of this consists of EQUB, EQUW
and EQUD directives to build up the block of
VDU data (maximum size 256 bytes). The
working part of the program is itself very short.
This just loads the X register with zero, and
uses indexed addressing to load the
accumulator with the first byte of the data
block. This is sent to OSWRCH, the X register is
incremented, and the process repeated. One
trick well worth noting is that we have used the
assembler itself to calculate how many data
items there are. On line 160 the X loop is
checked against the value endtable-table. The
value endtable will have been assigned a value
because we have inserted a label of just this
name in line 470.

Listing 2
10 REM .>Assem 12-2
20 REM:M/C house and grounds

40 MODE1

50 oswrch=&FFEE

60 FOR pass=0 TO 1
70 P%=&900

80 [

90 OPT pass*3
«start

110 LDX #0

.loop

130 LDA table,X

140 JSR oswrch

150 INX

160 CPX #endtable-table
170 BNE loop

180 RTS

.table

210 EQUB22:EQUB2 \Mode 2
220 EQUB18:EQUB0:EQUB132\Blue sky
230 EQUB16\CLG

250 EQUB18:EQUB0:EQUB2 \Green grass
260 EQUB25:EQUB4:EQUWO : EQUWOQ

270 EQUB25:EQUB4:EQUW1279:EQUWOQ

280 EQUB25:EQUB85:EQUWO0:EQUW320

290 EQUB25:EQUB85:EQUW1279:EQUW320
300

310 EQUB18:EQUBO0:EQUB7 \White House
320 EQUB25:EQUB4:EQUW512:EQUW512

330 EQUB25:EQUB4:EQUW512:EQUW256

Beebug July 1988

340 EQUB25:EQUB85:EQUW768:EQUW512
350 EQUB25:EQUB85:EQUW768: EQUW256
360

370 EQUB18:EQUB0:EQUB1 \Red Roof
380 EQUB25:EQUB4:EQUW480:EQUW512
390 EQUB25:EQUB4:EQUW640:EQUW640
400 EQUB25:EQUB85:EQUW800:EQUW512
470

420 EQUB18:EQUB0:EQUB5 \Magenta Door
430 EQUB25:EQUB4:EQUW608:EQUW256
440 EQUB25:EQUB4:EQUW608:EQUW352
450 EQUB25:EQUB85:EQUW672:EQUW256
460 EQUB25:EQUB85:EQUW672:EQUW352
470 .endtable

480]

490 NEXT

500 CALL start

The data itself needs little comment, but to
illustrate the way in which it has been encoded,
take a look at line 280. This performs the
equivalent of:

PLOT 85,0,320
or of:

VDUZ5, 85,02 320;
The first two bytes have been encoded as:

EQUB25:EQUB85
But the next two values have been encoded
using EQUW. This is because the VDU
sequence expects two bytes to be used for each
of the position co-ordinates of the PLOT. The
EQUW directive handles this automatically,
storing the low byte of the two-byte co-
ordinates first, which is exactly the order
demanded by the VDU sequence. To verify the
way in which it works, you may like to supply
the house with a chimney pot, windows and a
garden path.

The EQU family of assembler directives are
not available on Basic I. See BEEBUG Vol.7
No.2 for suitable conversion routines. To
check whether you have Basic I or not, switch
on your machine, and type REPORT. If the
copyright message is 1981, you have Basic I.

Next month we will continue with the graphics
theme, developing subroutines for drawing a
variety of objects.

o7

F ey

Tube

i s

EREERTEEHEEER)

1
!

11

B8

il

T 1

[

HEERREE
EREEEROERERTEREE

LE
g

I

1l

P

David Spencer deals with a very important data storage technique
which is often misunderstood.

When programmers design
a new masterpiece, they
tend to concentrate on how
the various tasks within the
program should be
performed, and think very
little about how best to store
the data used by the
program. This is a great
pity, because as we shall
show, a little thought in this
area can greatly improve
performance.

There are two different
stages to the design of data
storage systems. Firstly, you
must decide how to store a
single data record. For
example, in a database
program you have to design
a structure that will allow
all the various fields to be
stored. This topic is covered
in this month's File
Handling article. Secondly,
you must design a system
to link together individual
data records. The way this
is done depends a lot on
how the data is to be used.
It is this second subject that
we will be concentrating on
in this, and subsequent,
workshops.

ARRAYS

The only basic data
structure available in BBC
Basic is the array. This is
merely a collection of
records all with the same
data type. What's more, in
Basic, this means that the
elements can only be real,
integer, or string. An
element within an array is
referenced by its position in

the array. For one dimensional arrays, this is
simply a number specifying where the element
appears in the list. In two dimensions, you need
two numbers, one to specify the row in which
the element appears, and the other to specify
the column. For three dimensions there are
three numbers, and so on.

Arrays have several advantages over other
methods of data storage. For one, they are fairly
easy for beginners to understand. Arrays can
also be accessed very quickly. Given the start
address of the array in memory, the element we
want to find, and the length of each element,
we can calculate its position and access it
directly.

There are however, quite a few disadvantages
to using arrays. We have already said that in
Basic the elements of an array can only be one
of three simple types. While other languages,
such as Pascal and C, allow the elements of an
array to be of any data type, even another
array, there are no languages that allow a
mixture of different data types for different
elements within a single array. Further, almost
all languages insist that an array must be
defined before it is used, and that the definition
must say how many elements the array will
contain. Often, you will be uncertain of how
many elements will be needed, for example in a
database, and so you must allocate the largest
size allowed. This will mean that storage
technique is often very wasteful of space.

What is needed is some way of storing a set of
records, all of which are possibly in different
formats, and linking them together somehow. If
we can do this, each record can still be treated
as an individual entity, but it is also possible to
perform operations such as finding the next
record after the current one, or finding the nth
record. The answer to all our problems, (for the
time being anyway), is the Linked List.

As the name suggests, a linked list is a list of

records that are linked together. The key to this
'linking' is the use of pointers, which will be

Beebug July 1988

B I e T e A B R e A A Iy T T ety AR = 2 e e e i T RN e Bl e i e e e S A e e

familiar to anybody used to C or Pascal, but
which is less common in Basic. To understand
pointers, you must first of all realise that when
a record is stored in memory, the fundamental
way of referring to that record is by its address
in memory. When you refer to a variable by a
variable name, all that really happens is that the
language uses its name to find the address in
memory of the associated data. For any
particular record stored in memory, it is

possible to take the address of that record, and -

store it in another variable in some way. The
content of this second variable then becomes a
'pointer’ to the original record.

Assembly language programmers will already
be familiar with the concept of pointers, under
the guise of indirect addressing. For example,
the instruction:

STA &70
will store the contents of the accumulator in
location &70 of memory. Now consider the
instruction:

records. This will in general be much faster,
because there is less data to swap. As always,
there is a slight drawback. Now that we are
referring to the records by means of pointers,
accessing each record is slightly more time
consuming. Instead of going straight to a
particular record, you now have to go to the
pointer for that record, and use that pointer to
locate the record. However, the extra time this
takes will most likely be insignificant when
compared to the time saved through not
shunting large records around.

Now that we know roughly what a pointer is,
we can show how these can be used to
implement linked lists. This is really quite
simple. Given a set of records, the first thing to
do is to add an extra field to each record, this
new field being a pointer. Normally, this
pointer field will be placed at the start of each
record, so that when the location of a record is
known, the pointer field can be read without

STA (&70)
The addition of the

brackets makes a major
difference to the action

A B (& D
A—>| Data |0—|->| Dqtal*-fbl Dcﬂal+ LDctalNull]

taken by the instruction.

What happens now, is that
the processor takes the
contents of locations &70 and &71, and makes
them into a sixteen bit address. It then stores
the contents of the accumulator in the location
pointed to by this new address. What has
happened, is that instead of using location &70
as the actual record, the processor has used the
contents of this, and the next location, as a
pointer to the data record.

If you stop and think for a moment, you should
be able to come up with some reasons why
pointers are so important. For example,
consider the situation where you want to sort a
large number of lengthy records into order.
Most sort routines involve a great many swaps
between records, and if you had to swap the
entire record each time, the sort could be very
time consuming indeed. However, what about
keeping the records in one place all the time,
and having a set of pointers to the records? This
way, rather than actually swapping records, all
we need to do is to swap the pointers to those

Beebug July 1988

Figure 1. The structure of a linked list.

knowing such things as the length of the
particular record. Then all you have to do to
connect the records together into a linked list is
to make the pointer field of each record point to
the next record. This is shown in figure 1, with
the arrows representing pointers.

The first and last records have to be considered
as a special case. There must be some way of
referring to the first record in the list, because
no other record points to it. This can be easily
be achieved done by having a separate pointer
that points to the first record, although there is
a better method which we will explain in the
next workshop. The other special case is the
pointer field of the last record. Because there
are no more records to point to, this last pointer
should have a value which can be identified as
marking the end of the list. This is traditionally
called the 'null' pointer, though its actual value
depends on such things as the language in use.
We will always give the null pointer a value of

59

0, because our pointers directly represent
memory addresses, and it is very unlikely that a
record will be located at location 0 in memory.

READING A LINKED LIST

To read all of the records in a linked list, or to
get at just one record in the middle, is really
quite simple. You start by taking the initial
value of the pointer to read the first record. You
can then read the contents of that record, and
take the pointer field from that record and use
it to find the next record. This is then repeated
until you get to the null pointer, showing that
the whole list has been read. If you want to
read the nth record, you just skip through the
list, taking notice only of the pointer fields,
until you get to the record you want, and then
just read that as before.

ADDING TO THE END OF A LIST

Similarly, it is fairly straightforward to add an
extra record to the end of a linked list. Firstly,
the new record must be stored in memory
somewhere, complete with a null pointer field.
Then, search through the current list until the
null pointer is found, and change it so that this
points to the new record.

LINKED LISTS IN BASIC

Having just covered the theory, you may be
wondering how you can actually implement
and use a linked list from within a Basic
program.

Clearly, there is no way of directly
implementing a linked list in Basic. One
possibility is to use an array to store the actual
data, and another array to store pointers to that
data. This can however get very messy, and by
far the best method is to use indirection
operators to access a block of memory directly.
The linked list can then be built up within this
block.

The manipulation of a linked list is best
illustrated by an example. The program given
here creates a linked list of words which must
be typed in, and when Escape is pressed prints
the list out. Line 100 allocates a block of
memory to use for the list. There is no checking
on the size of the list, so if it runs over the 1000

60

bytes allocated, the program's variables will be
corrupted. Line 120 sets up an empty record at
the start of a list. This is so that should Escape
be pressed before any words are entered, the
program will still function correctly. The
variable 'free’ is set up to contain the address of
the next free byte in our block of memory,
which initially is at the start of the block. Words
are entered into the list by lines 130 to 210,
which take a word, search through for the end
of the list, and then add the word as a new
'record’. Each record consists of a 4 byte
pointer, followed by the actual word,
terminated with a carriage return. This allows
the pointer to be accessed using !, and the word
to be accessed with the $ indirection operator.
Lines 230 to 280 print out the contents of the
list, by starting at the first record and going
through until the null pointer is reached.

Next month, we will look further at linked lists,
and in particylar, we will show how to add and
delete records in the middle of a list.

10 REM Program Linked List Demo
20 REM Version B 1.0
30 REM Author David Spencer
40 REM BEEBUG July 1988
50 REM Program subject to copyright
60
100 DIM list 1000
110 ON ERROR IF ERR=17 THEN 230 ELSE R
EPORT :END
120 free=list:!list=0:$(list+4)=""
130 REPEAT INPUT word$
140 ptr=list
150 REPEAT
160 IF !ptr<>0 THEN ptr=!ptr
170 UNTIL!ptr=0
180 !ptr=free
190 !free=0:$ (free+d)=word$
200 free=free+LEN (word$)+5
210 UNTIL FALSE
220 ¢
230 PRINT''
240 ptr=list
250 REPEAT
260 PRINTS (ptrt+4)
270 ptr=!ptr
280 UNTIL ptr=0

Beebug July 1988

B R R e I s e s e g e e e Y N A R, S el I o

COMMUNICATING
IN PACKETS

For the uninitiated Peter Ball conveys some
of his new found enthusiasm for packet
radio, and the freedom of the airways.

Things have been quite exciting here lately in
what has come to be known as my technology
centre. Let me explain. At one end of my study
is my computer, a BBC Master 128 with the
usual array of peripherals. For my Christmas
present last year my wife bought me a Watford
Apollo modem and associated software and I
have been probing the depths of Prestel,
Telecom Gold and a host of independent
databases. This has been with increasing
anxiety because of rapidly escalating phone
bills.

At the other end of the study is my ham radio
gear. I had been persuaded to take my radio
amateur's licence (though you can receive any
broadcast without a licence) last year but, in all
honesty, I can't work up a lot of enthusiasm for
general chat about my rig, the aerial and how
much power I am putting out, and noting in the
log the same details for whomsoever I manage
to contact on the air.

It seemed to me that the two ends of the study
needed connecting together, and this should be
possible with the recent developments in what
is called packet radio. It's a bit like
communicating with a modem but using radio
rather than a phone line. So I bought a bit of
gadgetry known variously as a Terminal Node
Controller (TNC) or Packet Modem.

Now, as we technical people know only too
well, you don't connect everything together,
throw a big switch and expect everything to
work. So bit by bit the various parts were made
to 'talk' to each other, and at last it seemed that
the throwing of the big switch might be
possible. It was.

The various parameters were input, mainly
relating to baud speed of the different elements.

Beebug July 1988

The VHF transceiver was set to 144.65 MHz, the
amateur radio frequency used primarily for
packet radio. At the computer keyboard the
system was put into monitor mode in the hope
that I could decipher something from those
bursts of data that could be heard in the
loudspeaker. Immediately a flood of
information came pouring in that was much too
quick to read on the screen. No problem; the
whole stream could be diverted to the disc to be
studied at leisure.

What was immediately apparent was that well
within radio range were two packet mailboxes,
one at Stevenage and another at the Radio
Society of Great Britain (RSGB) HQ at Potters
Bar (I now know that there is a network of
several dozen of these mailboxes around the
country). After more reading of the manual for
the TNC, and a very good American book on
the subject, it seemed I could try to connect to
one of these mailboxes. I typed in CONNECT
G4SPV (the callsign of the Stevenage station)
and almost immediately came back a reply
saying that I was indeed connected.

It further told me that I was not recognised by
the mailbox and would I enter my first name. I
did as I was bid, and immediately I was
welcomed as Peter (as I have been ever since)
and would I please enter my commands, for
which a string of single letter options were
given. This was a bit like the genie of the lamp,
"What is your wish, oh master?" but I wasn't
sure what wishes I had. For most of my wishes
the system came back and told me that I had
given it an INVALID COMMAND. Eventually
it gave up in disgust with my efforts, and timed
out with the statement that I was
DISCONNECTED.

Back to read the written text, and the next
attempt was more successful. I found that if I
simply entered a question mark or H for HELP
it would guide me through the various
procedures. So we were in business and since
then the whole thing has been addictive. It is
really astounding how much traffic there is to
read on subjects ranging over Sir Ranulph
Fiennes attempts to get to the North Pole, the
current state of the Russian MIR satellite, and
how to cure RFI (radio frequency interference)
on your home computer.

61

The wonder is that all of this is totally error
free; the system works on standards well
known to data transmission engineers as X25.
When monitoring traffic, the repeats resulting
from the error correcting processes are all
received, but it is a simple procedure with the
word processor to remove these and get
absolutely clean copy. When receiving traffic
directly addressed to you the copy is totally
clean every time.

I find that it is possible not only to
communicate with the local mailboxes but also,
via them, to communicate with mailboxes over
the whole country and even, via a gateway at
the University of Surrey and the UOSAT2
satellite, to mailboxes anywhere in the world.

There are quite a number of versions of TNC
(packet modem) available, although most now
operate to the AX25 standard protocol (the
amateur radio version of X25), and will
therefore talk to each other. I am using one
made by Kantronics and this and other varieties

are available from Ham Radio suppliers. There
are also various terminal programs available
specifically designed to drive the TNC, but I
have found no need for these and find that the
Watford Apollo ROM does all I need with the
added advantage that it is a simple matter to
switch to Prestel, etc. using the same ROM.

Further information on Packet Radio, including
specialist publications, can be obtained from
the Radio Society of Great Britain (RSGB) at
Lambda House, Cranborne Road, Potters Bar,
Herts EN6 3JW.

Now I'm very much a beginner in all this, but
then nobody has a lifetime of experience in
packet radio, have they? I am all excited. Is
anybody else? Are there any experts who
would like to give me more guidance? Are
there any beginners who would like to know
how I have got as far as I have? I would be
delighted to communicate with them either by
traditional communication channels or via
packet - G1YFL @ G4SPV-2 or @ GB3HQ-2.

Roll-Down Screen Displays (Continued from page 47)

1510 (td2 JSR doroll
1520 INC &82:LDA &82
1530 TAX:TAY: INY

1540 DEC &83

1550 BNE rd2

1560 LDA &70:STA &83
1570 ASL &83:TXA:SEC
1580 SBC &70:TAX:TAY
1590 .rd3 JSR dobyterow
1600 INY:INX

1610 DEC &83:BNE rd3
1620 RTS

1630 . doroll

1640 LDA &70:STA &75
1650 .rd4 JSR dobyterow
1660 INY:DEX

1670 DEC &75

1680 BNE rd4

1690 TXA:TAY

1700 JSR dobyterow

1710 RIS

1720 .blinds

1730 STZ &11

1740 LDA #16:STA &78
1750 .bl LDA #16:STA &£83
1760 b2 1DA &77:TAX:TAY
1770 JSR dobyterow

1780 1DA &77:CLC

1790 ADC #16:STA &77

1800 DEC &83:BNE b2

1810 INC &77

1820 DEC &78:BNE bl

1830 RTS

1840 .dobyterow

1850 LDA &2E00,X:STA &D6
1860 LDA &2F00,X:STA &D7
1870 LDA &2E00,Y:STA &80
1880 LDA &2F00,Y:STA &81
1890 LDA #80:STA &76
1900 PHY:LDY #0

1910 .show

1920 LDA (&80)

1930 J8R OSHRSC

1940 .incmemptr

1950 LDA &80:CLC

1960 ADC #8:STA &80

1970 LDA &81:ADC #0

1980 STA &81

1990 .incserptr

2000 LDA &D6:CLC

2010 ADC #8:STA &D6

2020 LDA &D7:ADC #0

2030 STA &D7

2040 DEC &76:BNE show
2050 PLY

2060 RTS

2070]:NEXT

2080 ENDPROC

62

Beebug July 1988

e v D e o e e e i e e T S e b

In the Z88 page
this month,
David Spencer
continues his
look at the VDU
drivers.

CURSOR
POSITIONING
It is often essential to be able to position the
cursor at either a particular point on the screen,
or at a particular row or column. This is easily
accomplished on the Z88 using one of three
commands. The first:

VDU 1,51, 64,32+x,32+y
will move the cursor directly to the character at
(x,y). The point (0,0) is the top left corner of the
application window (the area used for printing
by Basic), and x can be any value up to 93,
while y must be in the range 0 to 7. The next
command:

VDU 1,50,88,32+x
moves the cursor to the given x coordinate
(column), whilst remaining on the same row.
Similarly:

VDU 1,50,89,32+y
moves the cursor to the given y coordinate
(row), keeping in the same column.

HIGHLIGHTING TEXT

BEEBUG Vol.7 No.1 showed the use of various
codes to select highlights such as underlining.
Once an effect has been selected it is applied to
all the text that is printed until the effect is
turned off again. There is however another way
of using four of these effects (Reverse, Grey,
Flash and Underline) which allows you to
change the style of text already on the display.
This technique is a four stage process:

1) Move the cursor to the text to be highlighted

2) Select the effect, or effects, to be applied.

3) Execute acommand to highlight a certain
number of characters.

4) De-select the effects.

The cursor moving is done with the VDU
sequence given above, and the highlights are
selected and de-selected using:

VDU 1,ASC"<letter>"
where <letter> is the first letter of the effect in

Beebug July 1988

upper case. For example, flashing is selected
and de-selected using:

VDU 1,ASC"F", or VDU 1,70
The command to highlight the characters takes
one of two forms. The simplest is:

VDU 1,50,65,32+n
which will apply the current attributes to the 'n’
characters starting at the cursor. The second
form of the command is:

VDU 1,50,69,32+n
which instead of directly applying the effects,
Exclusive ORs the current effects with those
that the characters already have. This means for
example, if grey is currently selected, any of the
' characters not grey will be made so, and any
already grey will return to normal. This is very
useful for things such as reversing out menu
options.

As an example, try out the following program:
10 CLS:VDU1,ASC"C"

20 ON ERROR VDUL, 50, ASC"+" ASC"C", 1,51,

ASC"-",ASC"U",ASC"R" :END

30 vpu 1,51,64,40,35

40 PRINT "BEEBUG BEEBUG
50 REPEAT VDU1,51, 64, 40,35
60 vDU1,ASc"U",1,50,65,38,1,ASC"U"

70 vpul,50,88,58

80 VDU1,ASC"R",1,50,69,38,1,ASC"R"

90 A=GET:UNTIL FALSE
You should be able to go through this line by
line, and predict what it will do in the light of
the commands described above. The only VDU
codes not covered in this article are the use of
VDU1,ASC"C" to turn the cursor off, and the
string of codes in line 20 which ensure that the
effects are switched off, and the cursor turned
on, if Escape is pressed.

BEEBUG"

There are a couple of points to note when using
this technique. Firstly, the operation of
highlighting the 'next n' characters moves the
cursor right by that number of characters.
Secondly, this method only works with display
attributes, not character attributes. For example,
you can 'grey out' a string of characters because
that is a display effect, but you cannot
embolden the same string, because bold is
achieved by using a different character set
when the characters are printed. Similarly, you
cannot change a group of characters to use the
tiny font, without reprinting them.

63

BB

e

POSTBAG

eEBt/@

\ISBO/

POSTBAG

SYSTEM GAMMA - A PERSONAL
VIEW

I read with interest Geoff
Bains' review of System
Gamma (BEEBUG Vol.6 No.9),
and I would like to reply to
the first part of what he says.

It is not a "con and extremely
silly" that the Programmers
Reference Guide is sold as an
extra. Both System Delta and
System Gamma are sold as
general programs, and most of
these will be used by non-
programmers. It is not fair that
these 90% plus users should
be penalised for the inclusion
of this manual. You must also
bear in mind with regard to its
price that the Reference Guide
is complete with technical
support, and is not simply the
extra cost of printing.

Secondly, the inclusion of the
Programmers Reference Guide
would automatically lead to
the package being labelled as
being for programmers, and
most non-programmers would
not give the program a second
glance. I personally do not like
the way in which reviewers
continually try to label System
Delta and Gamma as packages
for programmers. I am sure
that you agree System Gamma
is so simple to use that even a
school child could pick it up
and produce graphs in a very
short time.
Nova Fisher
Minerva Software

64

Through lack of space we have
had to omit sections of the letter
received from Minerva, but
believe the summary above is a
fair representation of the views
expressed. Geoff Bains responds
as follows.

“If the real expense of the
Manual/Support package is the
support then why not charge
extra for that alone? I still stand
by my remark that including the
manual in the System Delta
package would only increase the
total price of the package by a
very small amount (due to
supply in large numbers, etc.).

"That way, support would not
be charged for those not needing
it (or in Minerva's terms - not
‘penalising’ those not wanting
it).

"A programmers’ reference
manual and the support are not
inseparable. Quite the opposite.
Those that will really benefit
from the manual (i.e.
‘programmers’) are less likely to
want extensive support than
those merely ‘using’' the
applications packages. The
programmers tend to be able
(certainly with a manual!) to
work it out for themselves.

"Neither have I said that System
Gamma (or Delta) is a
programming language only,
nor that the applications
programs are not simple to use.
However, System Gamma is
based around a programming

language. Because of this it is
longer and more complicated
and therefore more expensive.
Since buyers have to purchase
the expensive programming
language and since Minerva has
gone to the (exemplary) effort of
writing it, shouldn't they get the
full benefit of it? "

Geoff Bains

MULTI-COLUMN ON THE MX80
There must be many Epson
MX80 and similar printer
owners who would like to use
your most effective multi-
column print routine (Vol.7
No.1). The following
modifications to the program
will enable them to do so.

150 VDU2,1,27,1,64,1;27,1;0%;3
2070 CLS:PRINTCHR$130"Enter
print mode (N/E/C)"

2080 PRINTCHR$130" (Normal/Emph
asized/Condensed)"; TAB (25, 0) CHR
s131:

2090 P$=GETS

2092 IFPS$="N"THEN mlin%=
64:G0T02100

2094 IFPS="E"THEN mlin%=80:Q%=
69:G0T02100

2096 IFPS$="C"THEN mlin%=
15:G0T02100

2098 GOTO 2080

2100 PRINT P$'

2120 PRINT'TAB(5)CHR$134"Charac
ters/line:" CHR$133;mlin%

0:0%=

132:0%=

Lines 2092 to 2098 are the new

ones. Note that the original

line 2110 should be deleted.
Derek Lucas

We have checked this out and. it
works well. Our thanks to Derek
Lucas for his efforts. ~

Beebug July 1988

2

TS

| HINTS, HINTS, HINTS, HINTS, H

In future we will be
awarding five pounds to
every hint or tip published,
and fifteen pounds to what
we consider to be the best
hint or tip of the month.
Hints may be submitted on
any aspect of the BBC
micro or Master series. So,
why not put pen to paper,
and make the benefit of
your experience available
to other BBC micro users.

REMEMBER YOUR 'THEN'S

by Stuart Lafosse

Nowadays it is common
programming practice to leave
the THEN out of a:

IF <condition> THEN
<operation>

statement. In most cases this is
perfectly acceptable. However,
the THEN must not be
forgotten if you are using any
of the Beeb's pseudo variables
such as HIMEM, PAGE or
LOMEM. For instance the
statement:

IF PAGE<>&EOQ0 THEN
PAGE=&E00

may not be shortened to:

IF PAGE<>&E(00 PAGE=
&E00

This is simply because pseudo
variables are given different
tokens depending upon
whether they are on the left or
right of the THEN command.
If there is no THEN command
the second pseudo variable

Beebug July 1988

will be given the wrong token.
The same is true with star
commands.

ROM CLASHING (Revisited)

by S.Harp

As more and more ROMs
become available and the
software becomes more
sophisticated, the likelihood of
ROMS clashing with one
another becomes even more
likely. Master owners have the
*UNPLUG command to turn
offending ROMs off, but
unfortunately the model B has
no such command.

However the machine keeps a
sixteen byte table, from &2Al1
to &2B0, so that it knows
exactly what ROMS are
present at any one time. This
table may be directly poked to
'unplug' a ROM from the
machine, and stop it from
interfering with other
software.

Location &2A1 represents
ROM socket 0, &2A2 ROM
socket 1, and so on up to &2B0
which represents ROM socket
15. Find out which socket the
offending ROM is plugged
into and poke the relevant
location with zero. For
instance, to turn off the ROM
in socket five enter the
command ?&2A6=0. This
command will not survive
pressing Break or Ctrl-Break,
so this is the simplest way to
recover a ROM when
required.

If you would like a slightly
more automated method of
controlling the ROMs in your
machine an excellent ROM
Controller program was
published in Vol.5 No.3.

EDWORD EPROM

by Malcolm Chisholm

One major drawback with the
Edword word processor,
popular in education, is that it
uses many disc-resident files
to carry out its commands.
There are 27 possible
commands, leaving space for
only four document files on a
DFS disc. This problem may
be overcome by turning these
files into a form where they
can be placed in a Sideways
ROM. If you do not have
access to an EPROM
programmer the ROM image
may be loaded into sideways
RAM. Watford Electronics'
ADDER package will allow
the files to be arranged into
the right format.

Still on Edword, there have
been two versions of the
software. Unfortunately files
created on one version will not
work on the other. Files
originating from the first
version require an execute
address of &FFFE while files
originating from the second
version require an execute
address of &FFFB. To transfer
files between the two versions
simply use a disc editor to
change the execute addresses.

65

Send app\'\ca\ions1
address pelow. Al membersh'\p fees,
cheques)ona UK bank. Mermboe!

of membership renewals, Me
including OV
rs may aiso subscrioe 10

orders for pack issues 10 the
n pounds sterling drawn (for
pecial reduced rate.

BEEBUG SUBSCR\PT\ON RA BEEBUG & RISC USER
¢ 7.50 & months (5 issues) UK only
£14.50 1 year (10 issue UK, BFPO, £23.00
£20.00 Rest of Europe & Eire £33.00

£25.00 Middle East £40.00

£27.00 Americas & Africa £44.00

£29.00 Elsewhere £48.00

SUE PRICES

URTHER D\SCOUNTS

We will allow you @ further discount:

are sent
official UK

and back
ease note that there
ing charge for
orders under £10 whi i
an invoice- Note that there is N0
VAT in magazines-

PACKING
Please add the cost of p&p:

All overseas jtems
airmail. We will agcqpt

isa orders and subsdlpﬂons)

JULY 198 88
D\SCICASSETTE
CONTENTS

this ancient
separate an
b\e 1o find it for

SOLITAIRE - an elegant \mp\emen\ \\on ot
and fascinaling one-player g
complete solution fo or thos
themselves.

3D SHADES ADOWS - create solid \ooking

AND SH
hadow g

- have fun with this
lro\og\ca\ bmh charts complete with

objects with shading an and
OLOG\C

C - 'a first program to implement 2
- a.program to
demonstrate the process o fi
COURSE
E & <MAP - two short utilities 10 implement new

DES systems-

ROLL DOWN SCREEN DISPLAYS - implement the s
code for tWo atriking ways of putting graphic d\sp\ays on ¥

the screen.
NG 1 o

), CANCER

TAURUS

FUNCT! |ONS AND
-a demonslranon of a clever technique
arrays as parame\ers& o pro

ER (P2 at 1) -
ommands

{wo programs showing
s may be \mp\ememed in

‘ﬂ_, \£0

T\Q VIRGO

a dem onsiraﬂon of list
mems n alinked fist.

proceSS\ g, di pay\ng \
hy for this issue (Vol.7 No 3).

MAGSCAN - bibliography 10

&35
3 5" disc since Vol.5 No.1

Al this for 5" d\sc) +50p p&p

Back issues (5

casseue),
25“ dlSC since Vol

5" DisC
£25.50
£50.00

Prices aré inclusi

Cassette subscriptio s ca
per issue of the subscn

Shades & Shadows

T -
= uBRA ‘(/, o S B R
)

SCORPIO. VENUS

(@
4

m

p st o MARS
7 O

B

CAPRICORN). JUPITER

AQUARIUS w URANUS

IS

¥

NEPTUNE

\,& PISCES
/

Astrological Birth Charts

apes since Vo\ 1 No.10) available the sameé prices.

0% FINANCE

For a limited period we are able to offer 0% APR finance
over 9 months onthe purchase of any Archimedes. You pay
nointerestatall. Thisis abrand new scheme only available
from BEEBUG. The deposit and repayments are shown
below.
Deposit 9 Payments Deposit 9 Payments

A310
A305 Base £79.66 £76.00 A310 Base £93.24
A305Mono £91.21 £82.00 A310Mono £104.79
A305Colour £104.01 £100.00 A310Colour £117.52

A310M A440
A310MBase £104.79 £97.00 A440Base £278.93 £276.00
A310MMono £107.34 £104.00 A440Mono £290.48 £282.00
A310MColour £129.14 £121.00 A440 Colour £303.28 £300.00

TRADE INYOUR OLD BBC, MASTER

OR COMPACT FOR AN ARCHIMEDES

We willbe pleased to accept your old computer (in working
condition) as part exchange towards the purchase of an
Archimedes. (If you use the finance scl e this will replace
your initial deposit on a 305/310, so you pay nothing now).
Allowances are as follows:

BBC Issue 4 No DFS £125 BBClIssue 4 DFS £175
BBC Issue 7 No DFS £175 BBClIssue 7 DFS (OrB+) £225
Master 128 £250 Compact Base System £215

Please phone for allowances on other Compact and Master
systems.

EXPORT |

Although unable to offer finance to overseas customers, we
can offer an efficient export service with delivery to your
door. Please write for a quotation.

TO FIND OUT MORE
PHONE OR WRITE NOW.
TEL: 0727 40303

We offer a complete service,
including Advice, Technical
Support, Showroom, Mail Order
and Repairs. Our showroom in St.
Albans stocks everything available
for the Archimedes. Callin for a
demonstration.

£§ FREE PC ENULATOR AND
15t WORDPLUS

Purchase your Archimedes by Cheque, Access, Visa
Official Order or 11.5% finance and we will supply you,
absolutely free, 10 3.5” discs, a lockable disc storage box,
printerlead and the latest version of The PC Emulator from
Acorn. Additionally if you are purchasing a 440 system you
will receive 1st Word Plus.

Prices Including- VAT
A305 Base £763.66 Mono £829.21 Colour £1004.01
A310Base £912.24 Mono £977.79 Colour £1152.59
A440 Base £2762.93 Mono £2828.48 Colour £3003.28

115% FINANCE
OVER 1270 36 MONTHS

AsaLicensed Credit Broker we are able to offer finance on
the purchase of any equipmem, including the Archimedes.
You still benefit from the free PC Emulator, discs, disc box
and printerlead. (Typical APR 23% on the purchase of a 310
Colour system over 36 months.

Deposit £152.59 36 payments of £37.36).

DISCOUNTS FOR
EDUCATION

We are able to offer attractive discounts to Education
Authorities, Schools, Colleges and Health Authorities.
Please write with your requirements for a quotation.

WS

