TAVAVAVAVAVAVATAV,S

FEATURES
Crossword Editor g Paintoox and Nustrator 6
Running a Tem perature 1 Secun\v ROMs Reviewed 37
Mathematical Worms e SO‘:\ ‘\SAUWSY ?Z%
BEEBUG MiniWimp (Part 3) 19 e Bank Manegt
Viewing Foreign Parts 22
Adventure Games 25 REGULAR \TEN\S
Matrices in Rasic (Patt 2) 26 ggtors Jotings A
First Course - Mot 4
Jugt Scroliing 30 ypplement 2336
é File Handling for Al (Pan 4) 42 Wit and Tips 61
| Using Agsembler (Part Ay Postodd 65
Workshop - Subscnp\\ons & Back lssues 66
Linked Lists (Part2) 52 Magazine Disc/T2P® 67
Dual Screen Program Display 55
The Comms Spot 58
512 Forum 4 62 H‘NTS & T‘PS
Master gerial Port
Telling Basic Apart
Compact View

Basic Errors

OGRAM INF k i
i ORM,
Ni)%ms listedin BEéBﬁgN
i edmilr-ectfrom working i
. ISTO1 formatw:t% 2 len
: e oudor oo eni
el when '
,gth%'}%nclutiedto aid retgg‘ag e
a40 will help in checki bkl
cotumn screen , mgp

1 ADES, DFS A

allstandard Ac
Compact and?,

; Ext ra gold
'Ialjx: f#.a!.:ﬂ

Gmru:: ‘.“‘\E l\\\ 5

m@.@m\ i

t‘muo\\
d

cheaue ne

amount
Uesr‘rlptxon EDNTRXBUTIDN
posted 06/06/88
analys c

Rev:on:l 1ed

is

tributors ey (ma@uv
a7zi? 40’13‘;

LI[‘- +x FRONT PAGE *
BEEBUG S On-1i0¢ M..u-‘j

BEEBUG

Magazine 1

MHET Con

DﬂlﬂBU‘
phat 19

Latest
BEEBUG retail
BEEBUG l'rodu(. ~ ane
nc Te

}L«.ltln'(e'z
s¢ USER
5 § - ane
ack

etails
11 Jul

elemmppum

goftware

le-,uitua @

[u-(»lsuu
HEW MA AGAZIHE
‘ble Key 8

su
F
UsE
N l ow uuav‘

Computer System
Master (Basic IV) m

Compact (Basic VI)
Model B (Basic ll) E
ModelB (Basicl) [

beIOW These
v how cl :
of mach show clearly the val o
S RS

ro mpatibili : >m ior
(n or‘:‘%‘“a symbol mdlcateg ngrltl:ta); v{/\ single line
Sfoie ShgwsStt gtfa?m changes will be ﬁgﬁggd)

co a

distinguish between ngg }'gir‘:éy"ReVIews donot

Electron E

Filing System

ADFS mﬁ
DES DE

Cassette
Tube Compatibility

Tube

Ldaitors
Jottmygs

THE MAGAZINE

This month we are publishing the third and concluding
part of our series on the BEEBUG Mini-Wimp, our
WIMP system for the BBC micro. We are sorry for the
fact that we were unable, at very short notice, to
publish this as intended in the July issue. This third
part discusses how to make the most of the BEEBUG
Mini-Wimp and the accompanying icon designer
program in generating your own applications based on
this system.

We have also changed direction with our series on
assembler language programming, now that we have
covered most of the basic groundwork. Our follow-up
series will concentrate on the application of assembler
programming, starting with that all-important area of
graphics. If you are interested in exploiting your
knowledge of assembler, then you may well find some
useful ideas in this section.

Now that the Master is no longer the new machine it
was two years or more ago we feel that it is preferable
to integrate our coverage of the Master and Compact
with the rest of the magazine. We will, of course,
continue to feature articles and programs specifically
for this range. Both the Master 128 and Master Compact
are excellent machines, and Acorn's announcement
earlier this year that a further 40,000 Master systems
were being ordered from the manufacturers only
serves to underline just how good these 8-bit systems
still are.

At the same time we have also introduced an occasional
series of articles in support of the 512 co-processor and
its users. This is in direct response to a good many
letters we have received this year asking BEEBUG to
help and support users of this system. The frequency
and content of future articles on this subject will very
much depend on the response we receive from
members. So if you have any particular topics or
problems you would like dealt with, let us know.

Please note that this issue of BEEBUG covers both
August and September. The next issue will be that
for October.

WAPPING DTP

Watford Electronics is the latest company to produce a
Desk Top Publishing (DTP) system for BBC micros.
The software, called the ‘'Wapping Editor' is supplied
on a 64K EPROM and uses the PAL-PROM technique
pioneered by Computer Concepts. The Wapping
Editor is designed to be used with Watford's Quest
Mouse, and includes a drawing package. There are
features to draw a wide range of shapes, and to
manipulate pictures in a variety of ways. A further nice
touch is the ability to import and manipulate pictures
captured using Watford's video digitiser.

Unlike most other DTP packages, the Wapping Editor
includes a versatile word processor. This not only
saves having to purchase a second piece of software,
but also makes the inclusion of text much easier,
because you do not have to switch between programs
just to make minor changes. Also included is a
comprehensive font designer, and an easy to use page
layout utility that allows areas of a page to be defined
by dragging a box around the screen. The Wapping
Editor should be available in a few weeks time,
although the release date and price have not yet been
finalised.

PEARTREE SAVED

The Huntingdon based firm Peartree Computers, who
we reported in BEEBUG Vol.7 No.2 as being in
receivership, has been bought by DRAM Electronics.
Stockport based DRAM has taken over all the assets,
premises, and name of Peartree. It has been revealed
that when Peartree put its business in the hands of the
receiver nearly two months ago, DRAM Electronics
was one of the major creditors. It is probably this that
prompted the take-over deal, which is believed to
involve a six-figure sum.

The new company will be known as Peartree-DRAM,
and it is expected that it will continue trading along the
same lines as Peartree did. All of the existing staff,
including former Peartree owner Vartan Mundigian,
will be kept on.

Beebug August/September 1988

News News News News News News News

There is still no word as to the future of the Music 87
synthesiser system, which we believe was one of the
main reasons that Peartree 'went under'. John Wandells
of DRAM confirmed that Peartree did have a large
stock of the Acorn Music 500, on which the Music 87 is
based. He also said that the company was anxious to
get together with Hybrid Technology who produce the
rival Music 5000. It is also thought that Peartree-
DRAM will be promoting PC clones for educational
use.

ARCHIMEDES HARD DISC

Watford Electronics is set to release an alternative to
the Acorn upgrade for Archimedes 305 and 310 owners
who want to use hard discs. The Watford system will
be similar to the official Acorn unit, consisting of 3.5
inch Winchester drive, and a hard disc controller
podule, both mounted internally to the computer. A
podule backplane must also be fitted to the machine,
and this must be purchased separately. It is not yet
known how much the Watford add-on will cost,
although it is expected to be at least £100 cheaper than
the Acorn equivalent, which sells for £575 inc. VAT.
Watford Electronics are at Jessa House, 250 Lower
High St., Watford WD1 2AN, phone (0923) 37774.

PRESTEL PRICE RISE

British Telecom has increased its subscription and log-
on charges for Prestel, which will in turn affect
subscribers to Micronet. The actual cost of subscribing
to Prestel and Micronet together has risen from £66 to
£79.95 a year. Business subscribers will now have to
pay £119.95 a year. But the major shock, is a change in
the charges for time during which you are actually
logged-on. Previously, there was a charge of 6 pence
per minute between 8.30 am and 6 pm weekdays and
Saturdays mornings, with all other times being free
(except for the cost of the phone call). However, an
additional charge of 1p a minute has been added for all

times except between midnight and 8 am. This may not *

seem much, but for someone who logs on for an hour
twice a week, the call charge is almost as much as the
annual subscription.

Beebug August/September 1988

Things are not all bad though. Telemap, owner of
Micronet, has launched Interlink which allows users to
access Telecom Gold through Micronet. Telemap have
also moved away from Prestel, and started Funtel
which is a viewdata system containing a number of
entertainment services. This includes the Hotel
California system (see news in BEEBUG Vol.6 No.10).
Telemap are at Durrant House, 8 Herbal Hill, London
ECIR 5ES, phone 01-278 3143.

SOLINET SOFTWARE

Solinet, who are the official user group for owners of
Solidisk add-ons, has started a public domain software
scheme. The idea of public domain software is that
programs, usually of a high standard, can be copied
freely and passed on to others at will. The Solinet
software will consist of a large number of programs for
BBC computers, with special attention paid to software
that uses Solidisk products. All the programs will be
available on 80 track discs, with the cost being just
enough to cover the price of the disc and postage.
Solinet also welcome submissions for possible
inclusion as public domain software, although they
stress that all programs submitted must be copyright
free, and be submitted with the knowledge of the
original author. More details from Solinet at 13 St John
St., Bridlington, East Yorkshire YO16 5NL.

788 MODEMS

Cambridge Computer has released a pocket modem
for use with its Z88 portable computer. The modem is
in fact a re-badged version of the Datatronics 1200P
which is imported from Taiwan. Both 300/300 and
1200/1200 baud speeds are supported, and while
1200/75 baud is not available, this should not cause
any problems as most Prestel nodes now support
multi-speed Vascomm systems. The modem, which
does not yet have BABT approval, is the size of a
cigarette packet, and is powered by a small PP3
battery. The cost is £172.44 inclusive, which also
includes a cut down version of Wordmongers' ZTerm
terminal software in a cartridge. More details from
Cambridge Computer on (0223) 312216.

MM Jx"x‘ Lnﬂﬁé“{(\

~

@
Q
QN

% N

S

29

S O
&,

X

9Qu /!///”745) 49092

Nidd Valley claims that its latest packages
provide desk-top publishing facilities for
the BBC micro. How much truth is there in
this claim? Roger Burg investigates.

Paintbox and Illustrator
Nidd Valley

Thorp Arch Trading Estate,
Wetherby,

West Yorkshire LS23 7B]J.
Tel. (0937) 844661

£19.90 inc VAT (Paintbox)
£49.00 inc VAT (Illustrator)

Products
Supplier

Price

Paintbox and Illustrator are mouse-driven
packages and use the Nidd Valley mouse, but
claim that they work with any other BBC
compatible mouse as well. The Illustrator also
runs well from the keyboard.

T

T

I
]Iluslra[or ‘Extra Bold
from P el

Nidd Valley @

t|lnu h you can zoom in

2'['ﬁm 'l]llbuw

ﬂl'ld un QuTSE I.H'I.E [[llﬁ
! l‘ Illﬂ[ll’l"a ﬂm
A Tl
A 7@ 1vidad el
PAIBIBOR

Paintbox is an easy-to-use mode 1 painting
program. Its response is a little slow, but in
practice this is not a problem. It can use any
four of the BBC's eight colours. These can be
extended further with four pixel mixes. It can
draw lines, rectangles, circles, and stretchable
but not rotatable ellipses. The rectangles and
lines are rubber-banded. It has a limited plain
fill, and allows freehand lines in any of six

6

brush shapes. There are simple facilities for
text, cut-and-paste, grid and very rudimentary
filing facilities.

Zoom, airbrush and all scrolling are
significantly missing as are polygons, patterns,
rays and other less valuable features, and the
menus permanently obstruct 15% of the screen.

Nice features are a quick mode conversion from
mode 4 to mode 1, a menu option for future
expansions, an attempt to protect the Break key
(ignored on some expensive software), and the
idea of saving the screen every five minutes
(which is sadly spoiled in its implementation).
Most useful is the new Integrex colour printer
dump.

On balance, I can find no justification for yet
another mode 1 graphics package in this price
range. But if you have a mouse and want a fun
application this would fill the bill.

VLLUSTRATOR

Illustrator is faster and more comprehensive. It
is essentially a simple mode 4 graphics
package. The features include the ability to
dump the output to any shape or size area of
the printer's page. This is particularly well
implemented, but it does not begin to justify the
extravagant subtitle "Desk Top Publishing
Graphics Software". In fairness to the package, I
have ignored these claims.

The program comes on two discs, with a 25
page, dot-matrix printed manual. The first disc
is only used for starting up and appears to be
for protection. This brings up the main screen,
and 60% of it is available for drawing.

The main features include all the usual drawing
options applicable to a monochrome screen.
They are generally well implemented and
quick. A few unnecessary extras have been
added when more attention should have been
paid to essentials.

For instance, a range of regular polygons is
provided. Polygons were never very useful
anyway. But these are extended to include
rubber-banded 'segments’ and 'sectors' like the
circles and ellipses, as well as the facilities to

Beebug August/September 1988

stretch and to rotate. Since the precision with
which the sizes can be specified is fixed to steps
(or strides) of eight pixels, the whole range of
shapes has little more than curiosity value, and
other problems undermine this group of
routines.

Light, bold and extra-bold text is provided. The
fonts seem to be derived from the BBC
character set. They do not support proportional
spacing, but the ability to place and type lines
of text on the screen, or delete a whole line and
instantly restore its background, is very easy to
use. There is also a facility to use 16 by 16 bit-
mapped fonts. Again the coding is very
competent. Unfortunately, the facility does not
really come up to scratch. You can design fonts
yourself, but the font designer provided is
weak in several respects, and larger sizes
cannot do without proportional spacing. The
zoom facility allows odd lines of text to be
drawn, but this is not what graphics utilities are
bought for!

Two pattern-fill
routines are
provided. The
more compre-
hensive one
fails to report
whether it has
filled complet-
ely or just run
out of memory,
and it misses
certain rows. An
incomplete fill
is not really acceptable nowadays. Single
button-presses can repeatedly undo and
instantly re-establish the fill to check it. Both of
these are well implemented, but in practice are
seldom needed.

The cut and paste options are entirely
rectangular, and within this limitation they
work well. The source image can come from
another screen, it can be copied exactly, or
stretched to fit any rectangle the mouse can
define, or be crushed and stretched in various
predefined proportions. Scrolling features
(other than in zoom mode) are significantly
missing. The image is 32 by 24 characters and
not expandable.

Beebug August/September 1988

Two sets of patterns or shades are provided. As
in most graphics packages, these have been
carefully chosen to tantalise rather than be
useful (who devises these incompatible shade
patterns, and grey scales with vast gaps?). But
then there are thirty two pattern options on-
screen at once, and you can always create and
save your own. The pattern library can be
defined for other uses, for example for large
text characters or circuit design, though these
are not offered entirely seriously.

Eight 'brushes' or nib sizes are available on-
screen, which can be redesigned and saved, and
more are available on disc. Some features work
together, so you can 'paint' in any of the
patterns with any brush, but line drawing and
other features ignore them.

A tiny zoom window helps to line up an area
for pixel editing. This works very well, and the
screen, magnified eight times, scrolls easily
around the full image. As the image is only 256
by 192 pixels, detailed manipulation is
essential. Within the zoom you can only set or
clear pixels, but in this price range, I think that
this is acceptable.

The filing options omit star commands. This is
a serious omission. You cannot even rename,
delete or catalogue a disc. The program tries to
shield the user from these complexities. You
can only load files which are presented on the
appropriate loading menu, and you can't
accidentally overwrite an existing file (but then
it also checks if you wish to overwrite a file that
you've asked to load, which rather destroys the
effect). I would prefer the option to save
compacted data rather than the well
intentioned hand-holding.

Extended options include several printer
dumps, two of which can be your own. None of
those provided is really high resolution, though
full scaling facilities allow you to select the
rectangular shape and size you want on the
page. This is done particularly nicely,
presenting the user with an image of the printer
page (complete with sprocket holes), and the
outlined shape of the area to be filled, with the
co-ordinates also represented in printer

Continued on page 21

k.

- T s>

Clo e
Huor

In editor mode the grid is again accessed using
the cursor keys. Typing a letter will
enter/overwrite the letter at the cursor position
on the grid, provided the cursor is not on a
'blocked out' square. The Delete key is used to
erase an incorrect letter. Additional function
key operations are available in editor mode as
well.

Keith Sumner's crossword editor will
appeal to both crossword solvers and
designers alike. And as a bonus, it can
optionally access SpellMaster for
anagrams and other crossword aids.

The Crossword utility presented here is both a
crossword designer and editor. Use it first to
design the crossword (or copy an existing one),
and then fill in the answers. Enter the listing as
printed and save it away. When the program is
run it will prompt the user for the size of the
crossword to be worked on (this must be an
odd number). The program then enters design
mode in which a blank design area is displayed.
Move the flashing cross cursor around the
design area with the cursor keys, and use f0
and f1 to delete and place 'blocks’ on the grid to
specify the crossword design. Other function
key options are available as follows.

DESIGN MODE FUNCTION KEYS
f0 - Delete block
f1 - Set block
£2 - Access to Spellmaster ROM
{3 - Clear design and restart
f4 - Cross cursor ON
f5 - Cross cursor OFF
f6 - Save crossword
{7 - Load crossword
{8 - Toggle symmetry checking ON/OFF
f9 - Exit design mode

When option f9 is selected the program
performs a check to see that the crossword
design has the correct symmetry. If this
criterion is not satisfied by the design, the user
is returned to design mode, and the crossword
must be edited further to give it the correct
symmetry. Only when the design is correct will
editor mode be entered. Note that it is possible
to toggle on and off the check for symmetry
with £8.

8

EDITOR MODE FUNCTION KEYS
f2 - Access to Spellmaster ROM
f4 - Cross cursor ON
15 - Cross cursor OFF
£6 - Save crossword
7 - Load crossword
f9 - Exit editor mode and end program

The SpellMaster ROM from Computer
Concepts provides a useful means of helping
with the solution of crosswords. For those with
this ROM fitted, the Crossword program allows
direct access to many of SpellMaster's facilities.
If you do not have SpellMaster, just ignore
these features.

When £2 is selected, the user is presented with a
window of options. To select an option, move
up and down the list with the cursor keys and
use Return to select the option. Option 6 is the
exit option and returns the user to the
design/editor mode. Options 1 to 5 then
prompt the user for a search string. Pressing
Return will exit string-entry mode and no
search occurs. Entering a string will pass
control to SpellMaster before returning you to
design/editor mode.

The program is well structured and easy to
follow. Notice that a small machine code |

routine in PROCmc is used to de-tokenise Basic

lines as they are needed.

The powerful facilities offered by this editor in
conjunction with SpellMaster make the design
of quite complex crosswords much simpler,
and will make a good addition to your software
library.

Crossword
B1.02

Keith Sumner
August 1988 \
subject to copyright

10 REM Program
20 REM Version
30 REM Author
40 REM BEEBUG
50 REM Program

100 ON ERROR GOTO 120 |
|

Beebug August/September 1988

110 *ANAGRAM
120 IF ERR=3 THEN spell=TRUE ELSE spel
1=FALSE
130
140 ON ERROR PROCend:REPORT:PRINT" at
line";ERL:END
150 MODE1:PROCsetup
160 PROCdesign:PROCsolve:PROCend:END
170 ¢
1000 DEF PROCend
1010 *Fx229,0
1020 *FXx4,0
1030 VDU26, 30:ENDPROC
1040 :
1050 DEF PROCwarn
1060 PRINTTAB(1,1)"Crossword not symmet
rical":PROCcont : ENDPROC
1070 :
1080 DEF PROCon:VDU23,1,1;0;0;0; :ENDPRO
c
1090 DEF PROCoff:VDU23,1,0;0;0;0; :ENDPR
ocC
1100 :
1110 DATA *ANAGRAM, *BROWSE, *CHECK, *CROS
SWORD, *FUZZY,EXIT
1120
1130 DEF PROCsetup
1140 *FX229,1
1150 *FX4,1
1160 *FX225,140
1170 VDU23,224,24,24,24,195,195,24,24,2
4:VDU23,255,126,126,126,126,126,126,126,
0
1180 CLS:INPUT" Enter size of crossword
:"D%
1190 IF D%<=1 ORD%>27 OR D% MOD2=0 PRIN
T" Invalid size":PROCcont :GOT01180
1200 VDU12,19,0,4:0;19,3,0;0;19,2,7:0;
1210 DIMW% D%"2,0$(5)
1220 X=1:Y=1:2&70=D%:RESTORE1110
1230 U%=19-D%DIV2:V%=15-D%DIV2
1240 FOR X% =0 TO 5:READOS (X%) :NEXT
1250 dochk=TRUE:PROCclear :PROCmC
1260 ENDPROC
1270
1280 DEF FNget (A%,B%) =W%?FNpos (A%,B%)
1290 DEF PROCput (A%,B%,C%)
1300 W%?FNpos (A%,B%)=C%:ENDPROC
1310 DEF FNpos (A%,B%) =D%* (A%-1)+B%-1
1320 :
1330 DEF PROCclear
1340 FORX%=0TOD%"2:W%?X%=0:NEXT : ENDPROC
1350 :
1360 DEFFNmode (N%)
1370 IFN%=0 ="DESIGN" ELSE ="EDITOR"
1380
1390 DEF PROCchk

L Meswaws
XTOODI
HEDTDT
~NemoD

NOOES

<HROT
= m3

H
0
u
S
ki
S
]

1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
raw
1550
1560
1570
1580
1550
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
Y%)
1770
X%)

C$="Disabled" :COLOUR129:COLOUR2
IF dochk C$="Enabled "
PRINTTAB (25,1) "Symmetry Check"
PRINTTAB (27,2)C$:COLOUR130
ENDPROC

DEF PROCdesign

REPEAT : on=TRUE : exit=FALSE

mode $=FNmode (0) : PROCdraw

REPEAT

A=INKEY (2) :PROCchar (32)

IF A>135 ANDA<140 PROCmove

IF A=140 PROCput (X,Y,0)

IF A=141 PROCput (X,Y,1)

IF A=142 AND spell PROCspell:PROCd

IF A=143 PROCclear:PROCdraw

IF A=144 on=FALSE

IF A=145 on=TRUE

IF A=146 PROCsave

IF A=147 PROCload

IF A=148 dochk=NOTdochk:PROCchk
IF A=149 exit=TRUE

IF on chr=224 ELSEchr=0
PROCchar (chr)

UNTILexit

IF dochk ok=FNcheck ELSEok=TRUE
IF NOT ok PROCwarn

UNTIL ok

ENDPROC

DEF FNcheck:LOCALX%,Y%,d%,e%
nosym=FALSE : d$=1+D%DIV2
e%=2*d%:X%=0

REPEAT : X%=X%+1:Y%=0

REPEAT: Y%=Y%+1

IF FNget (X%,Y%)<>1 GOT01790
S1=FNget (X%, Y%) : S2=FNget (e%-X%, e%-

S3=FNget (e%-Y%,X%) : S4=FNget (Y%, e%-

Beebug August/September 1988

1780 nosym=NOT (S1=S2 AND S2=S3 AND S3=S 2310 DEF PROCverify

4) 2320 ok=FNcheck:IF ok ENDPROC

1790 UNTIL Y%=D% ORnosym 2330 PROCwarn:PROCdesign

1800 UNTIL X%=D% ORnosym 2340 mode$=FNmode (1) :A=0:PROCdraw

1 1810 =NOTnosym 2350 ENDPROC

1820 : 2360 :

1830 DEF PROCsolve 2370 DEF PROCletter

1840 mode$=FNmode (1) :PROCdraw:PROCwords 2380 IF FNget (X,Y)=1 ENDPROC

1850 ENDPROC 2390 PROCchar (A) :PROCput (X,Y,A)

1860 : 2400 ENDPROC

1870 DEF PROCchar(Z) 2410 ¢

1880 LOCALA%,x%,y%,c%, fgd% 2420 DEF PROCerase

1890 x%=X+U%:y%=Y+V%:£9d%=0:c%=Z:A%=FNg 2430 IF FNget (X,Y)>1 PROCput (X,Y,0)
et (X,Y) 2440 PROCchar (32) :ENDPROC

1900 IF A%=1 ANDZ=32 fgd%=3:c%=255 2450

1910 IF A%>64 ANDZ=32 fgd%=0:c%=A% 2460 DEF PROCreplace

1920 COLOUR fgd%:VDU31,x%,y%,c% 2470 C%=FNget (X, Y) : IFC%$>64 PROCchar (C%)
1930 ENDPROC 2480 PROCmove :ENDPROC

1940 : 2490 :

1950 DEF PROCmove 2500 DEF PROCsave

1960 IF A=137 ANDX<D% X=X+1 2510 PRINTTAB(1,1)"SAVE CROSSWORD"
1970 IF A=136 ANDX>1 X=X-1 2520 PROCon

1980 IF A=139 ANDY>1 Y=Y-1 2530 INPUTTAB(1,2)"Filename :"save$
1990 IF A=138 ANDY<D% Y=Y+1 2540 IF save$="" GOT02530

2000 ENDPROC 2550 save=OPENOUT (save$) :PRINT#save,D%
2010 2560 FORX%=1TOD%:FORY%=1TOD%

2020 DEF PROCfill 2570 BPUT#save,FNget (X%, Y%)

2030 COLOUR0:COLOUR130 2580 NEXT:NEXT

2040 PRINTTAB(26,0)mode$;"™ MODE":CALL&A 2590 CLOSE#save:PROCoff:PROCdraw
00 2600 ENDPROC

2050 ENDPROC 2610 :

2060 @ 2620 DEF PROCload

2070 DEF PROCdraw 2630 PRINT TAB(1,1)"LOAD CROSSWORD"
2080 COLOUR128:VDU12:PROCoff 2640 E%=D%:PROCon

2090 VDU24,32;32;1248;992;:GCOL0,129,16 2650 INPUTTAB(1,2)"Filename :"load$
2100 IF mode$="DESIGN" PROCchk 2660 IF load$="" GOT02750

2110 PROCfill:ENDPROC 2670 load=0OPENUP (load$)

2120 : 2680 IF load=0 PROCnofile:GOT02750
2130 DEF PROCwords 2690 PROCclear:INPUT#load,D%

2140 X=1:Y=1:0n=TRUE:exit=FALSE 2700 FORX%=1TOD%:FORY%=1TOD%

2150 REPEAT:A=INKEY (2) :PROCchar (32) 2710 PROCput (X%, Y%,BGET#load)

2160 IF A>135 ANDA<140 PROCreplace 2720 NEXT:NEXT:CLOSE#load

2170 IF A>96 ANDA<123 A=A-32 2730 U%=19-D%DIV2:V%=15-DSDIV2:?&70=D%
2180 IF A>64 ANDA<91 PROCletter 2740 IF D%>E% PROCstop:END

2190 IF A=127 PROCerase 2750 PROCoff:PROCdraw

2200 IF A=142 AND spell PROCspell:PROCd 2760 ENDPROC
raw 2110

2210 IF A=144 on=FALSE 2780 DEF PROCstop

2220 IF A=145 on=TRUE 2790 PROCend

2230 IF A=146 PROCsave 2800 VDU7:CLS:PRINT"Dimension of new pu
2240 IF A=147 PROCload:PROCverify zzle is"'"greater than previous puzzle"
2250 IF A=149 exit=TRUE 2810 ENDPROC

2260 IF on chr=224 ELSEchr=0 2820 :

2270 PROCchar (chr) 2830 DEF PROCnofile

2280 UNTIL exit:PROCreplace 2840 PRINTTAB(1,3)"File not found"
2290 ENDPROC 2850 PROCcont :ENDPROC

i e Continued on page 57

$-10 Beebug August/September 1988

i BEEEECLE Ol o BT TSR = Sl R A AT R S T P T e el L e e e S L R AR i S e, Y L ST

e 2 sl |

RUNNING A
TEMPERATURE

Bernard Hill describes a temperature probe
which may be connected to the Beeb's
analogue port, and calibrated to give accurate
results both cheaply and easily.

The idea of a temperature probe for the BBC is not
new, but the beauty of this implementation is its
simplicity and low cost. Maplin Electronics sell a
range of assembled temperature sensors and Kkits.
Separately available for use with these kits are two
sensor probes, which cover a range of -40°C to
110°C. They each consist of a temperature-sensitive
variable resistor moulded into a plastic, metal-
capped stylus, attached to a length of about 3
metres of twin-core wire. All that is needed in
addition to the probe is a resistor and a 15-pin D-
connector (see Diagram 1). Diagram 2 shows the pin
connections to the D-socket viewed from outside
the Micro's case. The value of the resistor is not
crucial but should be around 2000-5000 ohms.

The complete shopping list from Maplin is given
below.

Price CatNo

Temperature probe

-40° to 50°C £1.95 FP65V

20° to 110°C £1.95 FP66W
D-plug £0.58 BK58N
D-plug cover £0.90 BK60Q
3300 ohm 1/8 watt resistor £0.03 U3K3
Postage £0.50
Surcharge (order below £4.50) £0.50
TOTAL £4.46

You will also need a low power soldering iron and
solder in order to connect the resistor and plug.
Take care here not to use excess solder which might
short a connection, nor to use too much heat and
melt the insulation around the wire. Assembly is
very straightforward if you follow Diagram 2. Note
that you can leave the resistor within the body of
the plug before screwing on the cover.

Because the precise value of the resistor is not
known, you will need to calibrate the probe before
use. This is the purpose of the Probe Calibration
program, but before you run this you will need to
have a normal thermometer ready and two to five
constant temperature sources. I use a mercury
thermometer and three or four glasses of water at

Beebug August/September 1988

temperatures between cold and about 50°C. Run the
program and place the probe and the reference
thermometer in the coldest beaker. After a few
seconds press the Space Bar. The program is now
sampling and averaging the value of analogue
channel 1. When the Space Bar is released you must
enter the value on the reference thermometer to
complete one calibration point.

PIN
1
Vref
3K3
PROBE
15(O—€
C‘cuﬂ @
50 v
Diagram 1

Now transfer the probe and thermometer into a
second beaker and repeat, but in order to allow the
thermometer to stabilise its reading I suggest that
you wait for a minute or so before pressing the
Space Bar to sample the probe again.

Do this for at least two calibration points and press
Escape to perform the final calibration calculation. If
you have used at least three sources then a
correlation coefficient is quoted by the program to
assess the degree of linearity of the calibration
points. This should be very close to 1, at least 0.99.
A function DEFFNtemp is then listed on the screen
and appended automatically to the program as line
32767. It can be tested with PRINT FNtemp and of
course will be in the same units as your calibration
thermometer (Centigrade or Fahrenheit). Make a
note of the coding for DEFFNtemp as you will need
it for any program which uses the temperature
probe.

The bother of calibrating the probe is offset by the
fact that it only needs to be done once. Your version
of FNtemp will always be the same from now on.
To increase your accuracy you could average your
subsequent temperature readings over at least one
second. This is an example procedure that uses
FNtemp to average a reading over a second.

10000 DEFFNtemp2

10001 LOCAL S,N,T:T=TIME:S=0:N=0

10002 REPEAT S=S+FNtemp:N=N+1

10003 UNTIL TIME-T>100

10004 =S/N

The Probe Plot program is a simple but versatile
graph drawing program which plots the output of

11

RESISTOR

i

}PROBE

ANALOGUE PORT CONNECTOR

(VIEW LOOKING INTO SOCKET)

Diagram 2

the probe over any period from a few seconds to
several weeks. With this program you could plot
the temperature in any school science experiment,
or graph the outside temperature over a complete
month or more. Printer dumps or *SPOOL
statements for a Mode-00 type dump (see BEEBUG
Vol.6 No.2 Page 50 and No.6 page 52) can be added
at the lines shown in the listing. When run, the
program requests a temperature range and a time
period for plotting. It also requests a sampling
interval over which it will average the temperature
probe reading. The longer you make this the more
accurate your graph, and the fewer points will go to
your *SPOOL file (if you are using one). When you
are ready to start sampling, press any key and
watch the graph build up. Press any key at the end
to finish.

The possibilities for this probe are endless, both at
home and in the classroom. Using the function
FNtemp, the probe may be used easily within your
own software.

Maplin Electronic Supplies Ltd can be reached at PO Box 3,
Rayleigh, Essex, or 0702-554161 for credit card orders with
next day delivery.

10 REM Program Probe Calibration

20 REM Version B1.12

30 REM Author Bernard Hill

40 REM BEEBUG August 1988

50 REM Program Subject to copyright

60 :

100 ON ERROR GOTO 430

110 Lim=10

120 MODE7:PROCtitle2 ("Temperature Cali
bration” 132, 135)

130 ¥DUZ28,0,24,33,5

140 DIM adval(Lim), temp(Lim) :M%=0

150 REPEAT

160 PRINT'"Press space bar to record t
emperature"'TAB(7) "or Escape to calculat
e:!

170 REPEAT UNTIL INKEY-99

180 N%=0:5%=0:REPEAT

190 PRINT"Calibrating ..

200 S%=S%+ADVAL1:N%=N%+1

210 UNTIL INKEY-99=0

220 *fx15 1

230 M3=M%+1:adval (M%)=S%/N%

240 PRINT''"Temperature during this ti
me:":

250 INPUT ""temp (M%) :UNTIL M3%=Lim

260 @%=&90A

270 IF M%<2 PRINT"Not enough points":V
DU26,31,0,24:END

280 MODE7:PRINT"Calculation based on "
;M3:" points: !

290 a=0:a2=0:t=0:t2=0:p=0

300 FOR i=1 TO M%

310 a=atadval (i) :a2=a2+adval (i)"2

320 t=t+temp(i):p=ptadval (i) *temp (i)

330 t2=t2+temp(i)*2

340 NEXT

350 avt=t/M%:ava=a/M%:vp=p/M%-a*t/M%"2

360 va=a2/M%-(a/M%)"2:vt=t2/M3- (t/M3)*

Jlavbti]

370 g=vp/va:t0=avt-g*ava

380 IF M%$>2 THEN PRINT"Correlation: ";
~vp/SQRva/SQRvt " '

390 S$="32767DEFFNtemp="+STR$t0+"—ADVA
L1/"+STRS (-1/g)

400 OSCLI ("KEY(Q "4s6+"[M"):*fx138,0,12
8

410 END

420 :

430 IF ERR=17 GOTO 260

440 REPORT

450 PRINT" at line "ERL

460 END

470 :
1000 DEF PROCtitle2(t$,cl,c2)
1010 LOCAL i,a$:a$=CHRS$c1+CHR$157+CHRSc
Z
1020 PRINTa$:FOR i =1 TO 2
1030 PRINTa$;CHR$141;TAB(20-LENtS/2):t$
1040 NEXT:PRINTa$:ENDPROC

*hkkkk

10 REM Program Probe Plot
20 REM Version B1.13
30 REM Author Bernard Hill
40 REM BEEBUG August 1988
50 REM Program Subject to copyright
60 :
100 ON ERROR GOTO 250
110 top=1199:H=940:MODE7:DIM mul (5)
120 mul(1)=1:mul(2)=60:mul(3)=3600
130 mul (4)=86400:mul (5)=604800
140 PROCtitle2 ("Temperature Graph",132
,131)
150 PROCoptions
160 REM insert *SPOOL filename here fo

12

Beebug August/September 1988

N e R S PO P T R E RO

r MODE-00 dump
170 MODE(Q:PROCaxes
180 PROCdraw
190 REM insert screen dump or *SPOOL h
ere
200 *FX15,1
210 IF GET
220 MODE7
230 END
240 :
250 MODE7
260 REPORT:PRINT" at line "ERL
270 END
280 ¢
1000 DEF PROCtitle2(t$,cl,c2)
1010 LOCAL i,a$:a$=CHRSc1+CHR$157+CHRSc
2
1020 PRINTa$:FOR i =1 TO 2
1030 PRINTa$;CHR$141;TAB(20-LENt$/2):t$
1040 NEXT:PRINTa$:ENDPROC
1050 :
1060 DEF PROCoptions
1070 LOCAL @%:@%=61020104
1080 REPEAT
1090 PRINTTAB(10,5) "Temperature Range:"
1100 PRINTTAB(0,7)"Minimum :";SPC11;"Ma
ximum :";SPC11;TAB(9,7):
1110 INPUT""m$:minT=VALm$
1120 PRINTTAB(29,7);
1130 INPUT""m$:maxT=VALm$
1140 UNTIL maxT>minT
1150 REPEAT
1160 tspan=FNtime ("Time Span:",9)
1170 U1=U2:U1$=U02%
1180 tincr=FNtime ("Sample Interval",15)
1190 UNTIL tspan>=2*tincr AND tincr>=1
1200 PRINTTAB(0,19) :PROCtitle2 ("Current
temperature:",132,135)
1210 PRINTTAB(10)"Any key to start";
1220 REPEAT S1=0:N%=0:T=0:M%=0:T%=TIME
1230 REPEAT S1=S1+FNtemp:N%=N%+1
1240 UNTIL TIME-T$%>100:S1=S1/N%
1250 T=T+S1:M%=M%+1:T$=STR$S1
1260 PRINTTAB(32,21)T$;TAB(32,22)T$;
1270 UNTIL INKEY1<>-1:t0=T/M%:ENDPROC
1280 :
1290 DEF FNtime (t$,L):LOCAL m$,t
1300 REPEAT:PRINTTAB(10,L)t$'
1310 PRINTTAB(0,L+2)"Size
I 8pCio
1320 PRINTTAB(0,L+3)"Units (S/M/H/D/W):
".spcio
1330 PRINTTAB (20,L+2) ; :INPUT ""m$
1340 t=VALmS$:PRINTTAB (20,L+3);
1350 INPUT ""U2$:IF U2$="" THEN U2$="s"
1360 U2=(INSTR("SsMmHhDdWw",U2$)+1) DIV
2
1370 t=t*mul (U2) :UNTIL t>=1:=t
1380 :
1390 DEF FNy(T)=(T-minT)/(maxT-minT)*H

1400 DEF FNx(t)=t/tspan* (top+l)

1410 :

1420 DEF PROCaxes

1430 LOCAL @%,t:@%=610000401

1440 VDUb,29,32;12;

1450 FOR t=minT TO maxT

1460 FOR t=minT TO maxT:y=FNy(t)

1470 IF y<0 OR y>H THEN 1510

1480 IF t MOD 5=0 THEN MOVE -32,y+10:PR
INTt;

1490 MOVE 0,y

1500 IF t MOD 5=0 THEN PLOT 5,top,y ELS
E PLOT 21,top,y

1510 NEXT

1520 line=FNline (tspan) :e=FALSE

1530 FOR t=0 TO tspan STEP line

1540 x=FNx(t) :MOVEx, 0:DRAWX, H

1550 S2=t/mul(U1)

1560 IF e THEN MOVE x-16,-8 FLSE MOVE x
-16,-40

1570 PRINTS2;U1$;:e=NOT e:NEXT:ENDPROC
1580 :

1590 DEF PROCdraw

1600 TIME=0:MOVE 0,FNy(t0)

1610 REPEAT S1=0:N%=0:T%=TIME

1620 REPEAT S1=S1+FNtemp:N%=N%+1

1630 UNTIL TIME DIV (100*tincr)>T% DIV
(100*tincr)

1640 T=S1/N%:DRAW FNx(TIME/100),FNy(T)
1650 UNTIL TIME/100>tspan:ENDPROC

1660 :

1670 DEF FNline(t)

1680 IF t>=4320000 THEN =604800

1690 IF t>=432000 THEN =86400

1700 IF t>=86400 THEN =21600

1710 IF t>=21600 THEN =3600

1720 IF t>=3600 THEN =900

1730 IF t>=900 THEN =300

1740 IF t>=300 THEN =30

1750 IF t>=120 THEN =10

1760 IF t>=30 THEN =5

1770 IF t>=10 THEN =1

1780 =

1810 :

Beebug August/September 1988

Machine [Filing System Tube

e nme|[Fn =S

by Grimble Gromble

From time to time an apparently simple piece
of mathematical analysis, implemented on a
computer and represented visually captures the
imagination of large numbers of people to the
point of developing a cult following. Examples
that come readily to mind are John Conway's
game of Life, and more recently the Mandelbrot
set. Now another fascinating world can be
revealed in the study and analysis of so-called
Mathematical Worms.

Mathematical
Worms are not new,
and were compreh-
ensively described in
Scientific American
for October 1973. The
rules described in
that article form the
basis of the program listed here. We will first of
all explore the basic rules governing our
mathematical worms, and then look in detail at
the use of the program which will allow us to
explore their intriguing world.

The worm starts from an arbitrary point on an
infinite grid of lines. We shall only consider
isometric worms, that is worms which traverse
a grid of equilateral triangles. As the worm
moves it 'eats' the line it is travelling along, so
that each line of the grid can be followed just
once. When a worm reaches a junction point or
node, a rule will determine which way it turns.
Initially, when a worm reaches a node, there are
five potential exit routes (it cannot leave by the
route it arrives). If the rules cause the worm to
revisit any node, the number of choices
becomes more limited. Ultimately, if the worm
reaches a node from which there is no exit
(either literally or because the rule applying to
that node prohibits any exit) the worm dies.

A visual representation will show the route
followed by a worm under a given set of rules.
Some pathways are quite short, while some are
infinite. Some exhibit a regular pattern while
others are more random in their appearance. It

14

is also possible to classify worms into groups or
species according to the sets of rules which they
follow.

Altogether there are 31 different node states
depending on the number of exit paths
(choices) still remaining, and their relationship
to the entry path of the worm. Wherever there
is a choice you can determine which rule should
be used. Choices can be grouped into four
fields depending on the number of uneaten
paths remaining (1, 2, 3, or 4) on exit. This leads
to 1296 different sets of rules, so you can see
there is plenty of scope here.

USING THE PROGRAM

The program should be typed in and saved as
usual. It is very tight on space on a model B
(PAGE at &1900), so do not add any extra
spaces, and omit the space between the line
number and the first instruction which is
included for readability.

Running the program will put an initial worm
through its paces. This worm simply takes the
right-most path at every node and doesn't last
long. You will see the worm's route on the
screen, and down the right-hand side are
shown the rules followed by the worm. Each
line of this display looks similar to:

X laK

First, an asterisk is displayed if this particular
rule was encountered. The next character shows

the path to be followed
ag 2l by the worm on exit
SN from this type of node
.7 hence:] 3 || (i.e. the rule), together
P e with the path number.
87 g Paths are numbered as

in Figure 1.

Figure 1

The final character and
number (in the range 0 to 30) give the node
type and number (that is the uneaten paths and
their relationship to the entry path). The
number is generated from a binary format
indicating the state of the node (read clockwise)
as in Figure 2. Nodes 0 to 30 are displayed with
their currently selected rules. Node 31 causes
the worm to die, so no rule is associated with it.
Instead the number of paths traversed is

Beebug August/September 1988

B A i S Pt A P e e s At) et e T B i

displayed plus an asterisk if the worm does die
by this means, rather than just reaching the
edge of the screen display.

eaten

eaten
N / gives: 82111 hence K 7
d
* eaten

Path by which
worm enters

uneaten
N

Y
N
4
7
uneaten 7

Figure 2
Changing the rule associated with a particular
node type will allow you to generate a huge

variety of different worm patterns on the
screen.

CONTROLLING THE PROGRAM
From the main display the following controls
are available.

Up and down cursor keys allow the node type to be

selected.

Left and right cursor keys alter the rule for the selected
node.

Copy Switches to an Alternative display.

W Sets off a worm.

F Also starts a worm, but sets a breakpoint to halt
the worm at the first node encountered where a
selection of rules is possible.

P Sets pause so that a worm pauses as soon as it
has started.

€ Clears pause mode.

S Saves the current display, rules and conditions
to a file.

L Loads a previous saved display from a file.

H Holds the current set of rules in memory.

R Recalls the previously held set of rules.

The Alternative display shows the starting
conditions and breakpoints. These have the
following meanings.

S: Scale - this is a figure in the range from 1 to 10
which determines the lengths of the line seg-
ments in a worm's path. The smallest scale (1) is
needed for the longer lasting worms, but even
this won't cope with the paths of all worms.

D: Direction in which a worm sets out initially.
X: X co-ordinate of a worm's starting point.
) & Y co-ordinate of a worm's starting point.

Beebug August/September 1988

N: Nodal breakpoint. A value other than 0 will
cause the worm to pause whenever it
encounters a node of this type.

M: Modulus breakpoint. A value other than 0 will
cause the worm to pause whenever it has
traversed a number of paths equal to a multiple
of this number.

Judicious use of D, X and Y can enable some
worms to be displayed at a larger scale. The
following keys can also be used from the
Alternative display.

Up and down cursor keys select the condition to alter.

Left and right cursor keys alter the selected condition.
The Shift and/or Ctrl keys may be used in
conjunction with these.

Copy Switches back to the main display.
W, F,P,C, L & S operate as from the main display.
Z Sets all of D, Xand Y to zero.

E Erases the breakpoints N and M, and switches
off pause mode.

CLASSIFICATIONS

One of the fascinations of the world of
mathematical worms, apart from the obvious
visual appeal of the paths themselves, is the
task of classifying worms according to the set of
rules each is governed by. This can be an
involved subject so we will only give an
introduction here.

One approach to classifying our worms, and an
alternative to the one given in the original
Scientific American article, is to use the F
option and let a worm classify itself. All that is
necessary is to write down the list of rules in
the order in which they are first encountered.

15

Consider, as an example, the programmed
worm (the one which appears when the
program first starts).

Press F and the worm will pause at node 0 for
which the rule is set to 0. So 0 starts the
classification list. Press C to continue. The
worm then stops at node 1 for which the rule is
set to 1, extending the list to 01. Press C again.
The next pause is at node 3 for which the rule is
2, and so the list becomes 012. Now press C
again. The worm next pauses at node 7 for
which the rule is set to 3, so the list becomes
0123. Press C and the worm continues without
any further pauses until it terminates, so the
complete classification of this worm is 0123.

You will see that the worm also visited node
type 15 but did not pause at that node as no
choice was available. The classification of
worms is determined by the choice of rule for
those nodes where choice is possible. The same
method may also be used to enter the rules to
achieve a particular classification. At each
pause set the rule as indicated by the
appropriate digit in the classification before
continuing.

There is much more that could be said about
classifying worms, but we will leave you to
explore this fascinating world for yourself. We
have provide some illustrations of some worms
we have generated to spur you on. If you
discover anything of particular interest then let
us know.

10 REM Program Worm

20 REM Version B1.2

30 REM Author Grimble Gromble

40 REM BEEBUG Aug/Sept 1988

50 REM Program subject to copyright

PROCchar :CLEAR
PROCinit ;A$="W"
ON ERROR MODE7:PROCerror:A$="E"
MODE 0:PROCscreen

140 REPEAT

150 IF AS<>"E" THEN PROCworm(D%,X%,Y$%,
AS="F",N%,M%)

160

170

180
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
2000
2010

3070

A$=FNoption
UNTIL FALSE

DEF PROCinit
c$=CHR$135:18=CHR$136:r$=CHR$137
d$=CHR$138:u$=CHR$139:c1%=-26
cr%$=-122:c%=-83:e%=-35:p%=-56
q%=-17:5p%=-99:shift%=-1:ctrl%=-2
R%=0:R2%=0:N%=0:M%=0:P%=FALSE
mx%$=582 :my%=508:dx%=6:dy%=4:ms%=10
DIM x%(5),y%(5),c 31,u 31,h 31
READ S%,D%,X%,Y%

FOR I%=0 TO 5
READ x%(I%),y%
x%(I%)=x%(1%)*
NEXT

FOR I%=0 TO 31:READ h?I%:NEXT
PRUCreset

*FX4, 1

*FX228,128

ENDPROC

(I%)
S%:y%(1%)=y%(1%)*S%

DEF PROCscreen

REM TEXT ON LEFT

REM VDU 24,112;0;1279;1023;
REM VDU 29, 112+mx%;my%;
REM VDU 28,0,31,6,0

REM TEXT ON RIGHT

VDU 24,0;0:1161:1023;

VDU 29, mx%;my%;

vbu 28,73,31,19,0

ENDPROC

DEF PROCworm (D3%,X%,Y%,F%,N%,M3)
FOR I%=0 TO 31:u?I%=0:NEXT
EX%=mx%-S5%*dx%:EY%=my%-S%*dy$%
T%=0:CLG:PROCshow:MOVE X%, Y%
REPEAT
X$=X%+2*x% (D%) : Y3=Y%+2*y% (D%)

DRAW X%, Y%:T%=T%+1

IF ABS (X%)>EX% OR ABS(Y%)>EY% THEN

C%=31:GOTO 3150

3080
3090

C%=FNnode

IF INKEY(e%) THEN F%=0:N%=0:M%=0:P

%=FALSE

3100
C%=15

IF F% THEN IF u?C%=0 THEN IF NOT (
OR C%=23 OR C%=27 OR C%>=29) THEN

P%=TRUE

3110
3120

IF N% THEN IF N%=C% THEN P%=TRUE
IF M% THEN IF T%MODM%=0 THEN P%=TR

IF INKEY (p%) THEN P%$=TRUE
IF P% THEN PROCpause
u?C%=1:D%=(D%+c?C%+4) MOD6
UNTIL C%=31 OR INKEY (g%)
ENDPROC

DEF PROCpause

16

Beebug August/September 1988

L R e e s e e

4010 LOCAL Q%,RS%,RC%,0X%,0Y%:@%=6

4020 OX%=X%-2*x% (D%) :0Y%=Y%-2*y$% (D%)

4030 VDU 23,1,0;0:0;0;

4040 FOR I%=0 TO 30

4050 IF u?I% THEN PRINTTAB(0,I%)"*";

4060 NEXT

4070 PRINTTAB(0,31)T%;

4080 PRINTTAB(0,C%) ;

4090 VDU 23,1,1:0:0;0;

4100 REPEAT

4110 GCOL 0,0:MOVE OX%,0Y%:DRAW X%,Y%

4120 IF u?C%=0 AND C%<>31 GOSUB 4190

4130 GCOL 0,1:MOVE OX%,0Y%:DRAW X%,Y%

4140 IF INKEY (sp%) Q%=RS% ELSE RS%=TRUE

4150 IF INKEY(e%) THEN F%=0:N%=0:M%=0:P
%=FALSE :0%=TRUE

4160 IF INKEY(c%) THEN P%=NOT RC%:Q%=RC
% ELSE RC%=TRUE

4170 UNTIL Q% OR INKEY(q%)

4180 ENDPROC

4190 IF INKEY(cl%) THEN PROCchoice(C%,1
) :PRINTTAB (0,C%) ; : TIME=0:REPEAT UNTIL TI
ME>16

4200 IF INKEY(cr%) THEN PROCchoice (C%,-
1) :PRINTTAB(0,C%) ; : TIME=0;REPEAT UNTIL T
IME>16

4210 RETURN

4220 :

5000 DEF FNnode

5010 LOCAL B%

5020 FOR I%=D%+8 TO D%+4 STEP -1

5030 B%=2*B%+POINT (X%+x% (I%MOD6), Y$+y% (
I$MOD6))

5040 NEXT

5050 =B%

5060 :

6000 DEF FNoption

6010 LOCAL Q%,AS

6020 PROCshow:*FX15,1

6030 REPEAT:PRINTTAB(1,R%);

6040 A$=FNupper (GETS$)

6050 ON INSTR(c$+1$+rS+usS+dS+"CPRHLSWE"
,A$) GOSUB 6080,6100,6110,6120,6130,6140
,6150,6160,6170,6180,6190,6200,6200 ELSE
VDU 7

6060 UNTIL Q%

6070 =A$

6080 AS=FNalter:IF INSTR("WF",AS) THEN
Q%=TRUE ELSE PROCshow

6090 RETURN

6100 PROCchoice (R%,1) :RETURN

6110 PROCchoice (R%,-1) :RETURN

6120 R%=(R%+30)MOD31:RETURN

6130 R%=(R%+1)MOD31:RETURN

6140 P%=FALSE:RETURN

6150 P%$=TRUE:RETURN

6160 PROCreset :PROCshow:RETURN

6170 FOR I%=0 TO 31:h?I%=c?I%:NEXT:RETU

RN

6180 PROCload:RETURN

6190 PROCsave :RETURN

6200 Q%=TRUE :RETURN

6210 ¢

7000 DEF PROCshow

7010 @%=5:CLS

7020 FOR I%=0 TO 30

7030 PRINTTAB(0,I%);:IF u?I% THEN PRINT
"xn: ELSE FRINT" ";

7040 PRINT CHR$(22442”¢c?I%) ;CHRS (ASC ("0
")+c?1%) ;CHRS (224+1%);1%;

7050 NEXT

7060 PRINTTAB(0,31);:IF u?31 THEN PRINT
"rd: EloL PRINT®

7070 PRINT T%;

7080 ENDPROC

1090

8000 DEF PROCchoice (R%,A%)

8010 LOCAL C%:C%=Cc?R%

8020 REPEAT

8030 C%=(C%+A%+5)MOD5

8040 UNTIL (2”°C% AND R%)=0

8050 c?R%=C%

8060 PRINTTAB (1,R%)CHRS (224+2°C%) ;CHRS (
ASC("0") 408

8070 ENDPROC

8080 :

9000 DEF FNalter

9010 REPEAT

9020 @%=4:CLS

9030 PRINT"S: " 'IlD:“ l"X: " "Y: " "N: "t "M:Il

9040 PRINTTAB(2,0)S%;

9050 PRINTTAB(2,1)D%;

9060 PRINTTAB(2,2)X%;

9070 PRINTTAB(2,3)Y%;

9080 PRINTTAB(2,4)N%;

9090 PRINTTAB(2,5)M%;

9100 REPEAT

9110 PRINTTAB(5,R2%);

9120 AS$=FNupper (GETS)

9130 ON INSTR(1$+rS$+uS+dS$+"CPZELSWF"+c$
,AS) GOSUB 9170,9180,9190,9200,9210,9220
,9230,9240,9250,9260,9270,9270, 9210 ELSE
vDU 7

9140 UNTIL INSTR (c$+"ZELSWF",AS)

9150 UNTIL INSTR(cS+"WF",AS)

9160 =A$

9170 PROCchange (R2%,1) :RETURN

9180 PROCchange (R2%,-1) :RETURN

9190 R2%=(R2%+5)MOD6:RETURN

9200 R2%=(R2%+1)MOD6:RETURN

9210 P%=FALSE:RETURN

9220 P%=TRUE:RETURN

9230 D%=0:X%=0:Y%=0:RETURN

9240 N%=0:M%=0:P%=FALSE:RETURN

9250 PROCload:RETURN

9260 PROCsave:RETURN

Beebug August/September 1988

17

9270 RETURN
9280 :
10000 DEF PROCchange (R%,A%)
10010 LOCAL MF%, SF%
10020 MF%=1:IF R%=5 SF%=10 ELSE SF%=2
10030 IF INKEY(shift%) THEN MF$%=MF%*SF%
10040 IF INKEY(ctrl%) THEN MF%=MF%*SF%"2
10050 ON R%+1 GOSUB 10070,10120,10130,10
150,10170, 10180
10060 ENDPROC
10070 0%=S%:S%=(S%+A%+ms%-1)MODms%+1
10080 FOR I%=0 TO 5
10090 x%(I%)=(x%(I%)DIVO%)*S%:y%(I%)=(y%
(I%)DIVO%) *S%
10100 NEXT
10110 PRINTTAB (2,R%)S%; :RETURN
10120 D%=(D%+A%+6)MOD6:PRINTTAB (2,R%)D%;
:RETURN
10130 X%=X%+2*A%*MF%:IF ABS (X%)>mx% THEN
X%=-SGN (X%) *mx%
10140 PRINTTAB (2,R%)X%; :RETURN
10150 Y%=Y%+4*A%*MF%:IF ABS(Y%)>my% THEN
Y%=-SGN (Y%) *my$%
10160 PRINTTAB(2,R%)Y%; : RETURN
10170 N%=(N%+A%+31)MOD31:PRINTTAB(2,R%)N
%; :RETURN
10180 M%=(M%+A%$*MF%+10000)MOD10000:PRINT
TAB (2,R%)M%; :RETURN
10190 :
11000 DEF PROCload
11010 LOCAL F$%
11020 CLS
11030 INPUT"Load:"'"File?"'F$
11040 IF F$="" THEN PROCshow:ENDPROC
11050 F%=0OPENIN (F$)
11060 INPUT#F$%,S%,D%,X%, Y%, T%
11070 FOR I%=0 TO 5
11080 INPUT#F%,x%(I%),y%(1%)
11090 NEXT
11100 FOR I%=0 TO 31
11110 c?I%=BGET#F%:u?I%=BGET#F%
11120 NEXT
11130 FOR I%=&3000 TO &7FFF
11140 ?I%=BGET#F%
11150 NEXT
11160 CLOSE#F$%
11170 ENDPROC
11180 :
12000 DEF PROCsave
12010 LOCAL F%:CLS
12020 INPUT"Save:"'"File?"'F$
12030 PROCshow
12040 IF F$="" THEN ENDPROC
12050 F%=0PENOUT (F$)
12060 PRINT#F%,S%,D%,X%, Y%, T%
12070 FOR I%=0 TO 5
12080 PRINT#F%,x%(1%),y%(1%)
12090 NEXT

12100 FOR I%=0 TO 31

12110 BPUT#F%,c?I%:BPUT#F%,u?I%

12120 NEXT

12130 FOR I%=&3000 TO &7FFF

12140 BPUT#F%, 21%

12150 NEXT

12160 CLOSE#F%

12170 ENDPROC

12180 ;

13000 DEF FNupper (A$)

13010 IF A$>="a" A$=CHRS$ (ASC (AS)AND&DF)

13020 =A$

13030

14000 DEF PROCchar

14010 DIM C%(31,7)

14020 FOR I%=0 TO 31

14030 C%(1%,4)=8:C%(I1%,5)=8:C%(1%,6)=8

14040 IF I% AND 1 THEN C%(I%,4)=C%(1%,4)

OR 2:C%(1%,5)=C%(I%,5) OR 1

14050 IF I% AND 2 THEN C%(I%,1)=C%(1%,1)

OR 1:C%(I%,2)=C%(I%,2) OR 2

14060 IF I% AND 4 THEN C%(I%,0)=C%(I%,0)

OR 8:C%(I%,1)=C%(I%,1) OR 8:C%(1%,2)=C%

(I%,2) OR 8

14070 IF I% AND 8 THEN C%(I%,1)=C%(I%,1)

OR 64:C%(1%,2)=C%(1%,2) OR 32

14080 IF I% AND 16 THEN C%(I%,4)=C%(I%,4

) OR 32:C%(I%,5)=C%(I%,5) OR 64

14090 NEXT

14100 FOR I%=0 TO 31:VDU 23,224+I%

14110 FOR J%=0 TO 7:VDU C%(I1%,J%)

14120 NEXT:NEXT

14130 ENDPROC

14140

15000 DEF PROCreset

15010 FOR I%=0 TO 31:c?I%=h?I%:NEXT

15020 ENDPROC

15030

16000 DEF PROCerror

16010 CLOSE#0:@%=690A:VDU14

16020 REPORT:PRINT" (Error ":ERR:"] at]

ine ":ERL'"Continue (Y/N/*)?"::*FX15,1

16030 REPEAT:AS$=GETS$

16040 UNTIL INSTR("YyNn*",AS$)

16050 IF INSTR("Yy",A$) THEN ENDPROC

16060 IF AS="*" THEN INPUT LINE'"*"AS$:0S

CLI(AS) :PRINT'"Press any key";:A$=GET$:E

NDPROC

16070 PRINT:*FX4,0

16080 END

16090 :

17000 DATA ms%,0,0,0

17010 DATA dx%,0,dx%/2,dy%,-dx%/2,dy%, -

x%,0,-dx%/2,-dy%,dx%/2, -dy%

11020 paTA 0, 1,0,2,0,1,.0,3

17030 DATA 0

17040 DATA 0
0

11,0,2,0,1,0,4
Illolzlolllol3
17050 DATA 0,1,0,2,0,1,0,0

18

Beebug August/September 1988

B ot R e el] i A L e R T R TR R L E i G oR T e i e Dt e

Filng System

el

e

THE BEEBUG

MINEWIMP

Part 3

In the third and final part of his series on
the BEEBUG MiniWimp, David James
shows how this may be used to implement
pull-down menus.

Anybody who has used window-based
programs on computers such as the Atari ST,
the Apple Macintosh or indeed the Archimedes
will be familiar with the concept of pull-down
menus. At the top of the screen there is a menu
bar which displays a number of headings. For
example, in a page layout program, these might
include: 'File', 'Font', and 'Style'.

By moving a pointer onto one of these
headings, a menu is displayed. This menu
appears to be pulled down from the heading,
hence the term 'Pull-down Menus'. Once the
menu is on the screen, the pointer can be
moved down to the appropriate option.
Clicking on that option will then perform the
appropriate action, and remove the menu from
the screen.

To prevent confusion, most packages that use
pull-down menus keep the menu contents
unchanged. Thus pulling down, say, the 'File'
menu at one stage of the program's execution,
does not produce a different result to pulling
down the same menu at a different time. This
does mean, however, that some options might
not be appropriate at all times For example,
saving text from a word processor is not very
practical if no text has been entered. To guide
the user as to which options are applicable, any
option which cannot be performed at the time
that a menu is pulled down is displayed in grey
text. In this way, the menus themselves do not
change during execution, but the choice of
options does.

It should be fairly easy to see how to implement
pull-down menus using the commands

Beebug August/September 1988

provided by the BEEBUG MiniWimp system.
Because the MiniWimp only returns the pointer
position when the user clicks on a selection, we
have to insist that a menu is only pulled down
when its heading is clicked on. Further, we will
also give each menu a close box that can be
clicked on to remove the menu without
selecting any choices.

Listing 1 is an example program that shows
how pull-down menus can be implemented.
The main part of the program is between lines
100 and 260. The rest of the program is a set of
functions and procedures to implement the
pull-down menus. You should enter the
program and save it. Before running the
program, the MiniWimp ROM from BEEBUG
Vol.7 No.1 must be installed into sideways
RAM. Instructions for doing this were given in
the original article. When the program is run,
three menu headers appear, these being
'Sounds', 'Colours', and 'Finish'. By moving the
pointer to ‘Sounds' or 'Colours' with the cursor
keys, and clicking using the Copy key, the
appropriate menu can be pulled down. The
‘Sounds' menu offers a choice of two sounds,
whereas the 'Colours' menu allows the
background colour to be changed. You can
choose a particular option by pointing at it and
clicking. If you click on the small box
containing the cross, the menu is removed
without any other action being taken. Clicking
on 'Finish' will quit the program.

To use pull-down menus in your own
programs, all you have to do is to incorporate a
number of standard procedures from listing 1
as detailed below, and ensure that the
MiniWimp code itself has been loaded into
sideways RAM.

PROCheader(header$)

This takes as its argument a string that consists
of the menu headers, separated by spaces. The
routine draws a white box with rounded
corners across the top of the screen, and prints
the menu headers inside this.

FNarea(left,bottom,right,top)

This checks the current position of the pointer
against the box whose co-ordinates are given in
the function call, and returns the value TRUE if
the pointer is inside the box. Otherwise, the

19

value FALSE is returned. This function is used
to test if the pointer has been clicked on any of
the menu headers.

FNmenu(options,flags,X,Y,width)

This is the main function for displaying and
handling menus. The first parameter is a string
consisting of the various choices, each
separated by an '*'. The second parameter,
which should be an integer, determines
whether a particular option is greyed out or
not. This value should be thought of as a binary
number, with one bit per menu option. Bit 0
corresponds to the first menu choice, bit 1 to the
second, and so on. If the bit is clear, then that
choice is allowable, but if the bit is set, the
choice is printed in grey, and cannot be
selected. The third and fourth parameters are
the character co-ordinates of the top-left corner
where the menu should appear, and the final
parameter is the width of the menu in
characters. FNmenu exits when the user clicks
on an option, and will return either the number
of that option (starting with zero at the top), or -
1if the close box was clicked on.

PROCprint is a routine to print characters
proportionally spaced. In other words, no large
gaps are left between letters. This routine is
called by FNmenu, and must be included in
your own programs.

PROCassemble generates some machine code
that fills the screen with a stippled background
colour. This is activated using CALL &900.

By following the example program, and the

instructions for using the MiniWimp
commands given in BEEBUG Vol.7 No.1, it

20

should be fairly easy to incorporate pull-down
menus in your own programs. There are, of
course, many other applications for the
BEEBUG MiniWimp, particularly if combined
with the Icon Designer (BEEBUG Vol.7 No.2).
Altogether, this provides a complete WIMP
environment for your BBC micro.

Listing 1
10 REM Program Pull Down Menus
20 REM Version B 1.0
30 REM Author David James
40 REM BEEBUG Aug/Sept 1988
50 REM Program subject to copyright

100 MODE 4
110 ON ERROR IF ERR=17 THEN 260 ELSE R
EPORT:END
120 VDU 23:8202,0:0:0;
130 PROCassemble
*MWSETUP
150 FS%=0
160 COLOUR 129:COLOUR 0
CLS
180 CALL &900
190 PROCheader ("Sounds Colours Finish"

200 REPEAT end=FALSE

*MWPOINTER

IF FNarea(3,1,8,0) PROCsounds
IF FNarea(10,1,16,0) PROCcols
IF FNarea(18,1,23,0) end=TRUE
250 UNTIL end

260 MODE 7:END

1000 DEF PROCassemble

1010 FOR 1%=0 TO 3 STEP 3

1020 P%=&900: [OPT I%

1030 LDA#0:STA&73:LDA#&58:STA&74
1040 .bl LDY#0:.b2 IDA block%,Y

1050 STA(&73),Y:INY:CPY#8:BNEb2

1060 TYA:CLC:ADC&73:STA ¢73

1070 LDA#0:ADC&74:STA&74

1080 CMP#&80:BNEb1:RTS

1090 .block% EQUD&B57EET7DA

1100 EQUD&5BE77EAD

1110]NEXT:ENDPROC

1120 :

1130 DEF PROCsounds

1140 ch%=FNmenu("Sound 1*Sound 2",FS%,2
/1, 7)

1150 IF ch%=-1 THEN GOTO 1180

1160 SOUND 1,-15,100+100*ch%,10

1170 FS%=FS% OR 2°ch%

Beebug August/September 1988

e ——————

1180 *MWSHUT

1190 ENDPROC

1200 :

1210 DEF PROCcols

1220 ch%=FNmenu ("Red*Green*Yellow*Blue*
Magenta*Cyan*White",0,10,1,7)

1230 IF ch%=-1 THEN GOTO 1250

1240 VDU 19,1,ch%+1;0;

1250 *MWSHUT

1260 ENDPROC

1210 -

1280 DEF PROCheader (HS)

1290 GCOL 0,3:MOVE 0,981:MOVE 0,1023

1300 PLOT 85,1279,981:PLOT 85,1279,1023
1310 GCOL 0,0:MOVE 0,977:DRAW 1279, 977

1320 REM define & print rounded corners

1330 vpu23,128,248,224,192,128,128,0,0,
0,23,129 31,1,3,1,1,0,0 0

1340 PRINTCHR$128TAB (39) CHR$129

1350 VDU5:MOVE 96,1015:PRINTHS :VDU4

1360 ENDPROC

1370 :

1380 DEF FNarea(X1%,Y1%,X2%,Y2%)

1390 =(X%>=X1% AND X%<=X2% AND Y%<=Y1%
AND Y%>=Y2%)

1400 :

1410 DEF FNmenu (opt$,F%,XC%,YC%,XL3%)

1420 vpu23,130,0,255,0,255,0,0,0,0,23,1
31,193,162,148,136,148,162,193, 255

1430 N%=0:FOR L%=1 TO LENopt$

1440 IF MIDS (opt$,L%,1)="*"THEN N%=N%+1

1450 NEXT L%:nopt3%=N%

1460 OSCLI"MWOPEN "+STR$XC%+" "+STRS$ (YC
%tnopt%+2) +" "+STRS (XC%+XL%) +" "+STRSYCS
1470 PRINTSTRINGS (XL%,CHR$130) ; CHR$131

1480 FOR 0%=0 TO nopt$%

1490 pos%=INSTR(opt$,"*")

1500 option$=LEFTS$ (opt$,pos%-1)

1510 opt$=RIGHTS (opt$, LEN (opt$)-pos$)

1520 PROCprint (option$,0%)

1530 NEXT 0%

1540 REPEAT

1550 *MWPOINTER

1560 choice®=Y%-YC%-1

1570 UNTIL choice$>=-1 AND choice%<nopt
%+1 AND ((F% AND 2”choice%)=0)

1580 =choice$%

1590 .

1600 DEF PROCprint (M$,0%)

1610 VDU 5:VDU 29, (XC%+1) *32;1020-((YC%
+0%+1) *32) ;

1620 mw%=0

1630 FOR M%=1 TO LENMS

1640 LS=MIDS (M$,M$, 1)

1650 2&980=ASCL$:X%=580:Y%=9

1660 A%=10:CALL &FFF1

1670 IF (F% AND 2°0%)<>0 !&981=!§981 AN
D &55AA55AA: !16985=!&985 AND &55AA55AA

1680 VDU23,128,!8981;!6983; !£985; 18987;

1690 MOVE28* (M%-1) +mw%, 0:VDU128

1700 IF INSTR("MWmw",L$) mw¥=mw$+4

1710 NEXT

1720 VDU 4,29,0;0;

1730 ENDPROC

PATNTBOX AND ILLUSTRATOR (Qontinued from page 7)

characters. The display can be adjusted by
mousé and keyboard before the dump begins.
A separate utility also allows setting of some
non-Epson printer defaults, which are
automatically stored on disc and adopted
thereafter. And a word processor can be used
independently to print text around an image.

The program saves its screen dumps as
standard mode 4 screen files, which could work
with other software. There are drawbacks to
this, and it is not mentioned in the manual, so I
should not criticise it, but it could be a valuable
extra. The cost is in the disc space which is
wasted every time you save 10k of screen in
order to store only 60% of it.

Beebug August/September 1988

Some graphics screens and alternative brush
and pattern menus are provided on disc. This
does not constitute an 'extensive library' as the
manual says, and they don't justify further
comment.

Hlustrator is well priced at fifty pounds and
suffers most from its exaggerated claims. It is
not one of those excellent, small, user-friendly
packages which do little but do it admirably. In
some areas it attempts a little too much and
fails. However, most of it is thoroughly useable,
it creates and dumps fairly large mode 4 images
to disc and to the printer and, by using
standard screen files, it can integrate with
Paintbox and other software.

21

- i =2

ViIEWING
- FOREIGN PARTS

Eddy Hunt shows how to turn the View
word processor into something of a polyglot
when it comes to foreign languages.

One of the limitations most frequently
encountered when using word processors is the
need to print characters not available within the
character set supplied. This is likely to affect
users wishing to word process in foreign
languages, as well as mathematicians and other
specialists who require additional symbols.

increased by 600 hex, i.e. before loading the
program you must type:
PAGE=PAGE+&600 <Return>

You must also type X%=-1 if you wish to use a
printer (which must be switched on first),
otherwise set X%=0. These steps must be
completed before entering View, and will be
carried out automatically if you use the menu
program listed. This leaves the user in View
ready to start word processing. Because of the
memory used to hold the redefined characters,
the maximum text size for word processing is
reduced by 1536 bytes, so use shadow memory
if possible.

If you use a printer driver then it must be
loaded at this stage, although the redefined
characters will work without this. A word of
warning here. Many printer drivers reset the

The system described here
is for use with View
(Acorn's word processor),
and permits characters to
be redefined so that a
different symbol appears
on the screen. The special
symbols can also be
printed using an Epson
FX80 (or compatible)

printer. Normally this
makes good sense since
the printer may have been
left in an unexpected
mode from previous use.
But resetting the printer at
this stage will wipe out
the character definitions
sent by the program! Any
initialisation must be
removed from the printer

printer. Each new symbol
requires an existing one to be sacrificed,
although for most applications there are nearly
always some keys which are not needed. This
permits word processing in European
languages, although not in Arabic (since
writing is from right to left), nor in Chinese
because of the extensive, complex character set.

The program listed here will define the
characters needed for word processing in
French (definitions for other languages are
included on this month's magazine disc/tape).
There is also a short menu program which
makes the setting up of the system much more
convenient in practice.

The program to redefine the characters is
written in Basic and employs the 'exploded'
character definitions (see the User Guide under
*FX20). This requires the value of PAGE to be

22

driver. The code to reset
an Epson FX80 printer is Escape-@ (in
hexadecimal 1B 40). This can be found by
inspecting the code of the printer driver or by
disassembling it. These two bytes should be
replaced with 00 00. BEEBUG's EXMON
permits this operation to be carried out easily.

The Epson printer uses ASCII codes greater
than 128 to print italics. These codes are not
redefined by the Basic program, and can
therefore be used for inserting English within a
foreign text. On the screen, however, only the
corresponding foreign characters will be
shown.

The codes for redefining the characters are
contained in the DATA statements from line
9000 onwards, with one line per character
redefined. The first character within the
quotation marks gives the character to be

Beebug August/September 1988

_‘

sacrificed. Thus in the case of the program for
French, pressing the @-key will produce the
letter 'a' with a circumflex accent over it. The
end of the statement is a comment indicating
the character which will be printed. Thus a
library of character definitions can be built up
and DATA statements can be inserted and
deleted as required. Care must be taken,
though, not to redefine a character twice, since
only the second definition will have any effect.
It is useful to make a diagram of the keyboard,
indicating on the keys the characters which will
be printed. The last DATA statement must
always be a double asterisk.

There are two program listings. The first is the
menu program which automatically resets
PAGE and calls the appropriate file, whose
name must be the same as that of the language
being used. You can use *OPT4,3 to ensure that
the menu program will run automatically when
you press Shift-Break. The second listing is the
character redefinition program itself and the
DATA statements for the French language.

We have also listed here the DATA statements
for German. Simply replace the DATA
statements in the program listing as required.
The magazine disc/tape contains the character
definitions for the following languages:
German, Spanish, Turkish and Greek (as well
as French). Some readers may require slightly
different letters, for Scandinavian languages,
for example, or else you may wish to insert
mathematical symbols in your text. Details of
how to make up 'do-it-yourself' characters will
be included in a subsequent article.

NOTE: Most printers require a DIP switch to be set
to allow internal RAM to be used for redefining
characters. The alternative switching usually
allocates this RAM as a printer buffer. Check with
your printer's manual. On an Epson FX80, pin 4 of
DIP switch No.1 should be set off.

10 REM Program ViewF

20 REM Version B1.0

30 REM Author Eddy Hunt

40 REM BEEBUG Aug/Sept 1988

50 REM Program subject to copyright
60 :

100 MODE 7:0N ERROR GOTO 230

110 r$=CHR$129:y$=CHR$131:9%=CHR$130
120 PROCdhy ("Multi-Language Word Proce
ssing”)
130 PRINT''"Word Processor:";y$;"View"
140 PRINT'"Printer Required:";y$;"Epso
n FX80"
150 PRINT'"Printer on-line? (Y/N)";
160 REPEAT:G=GET AND &DF:UNTIL G=78 OR
G=89
170 X%=(G=89)
180 PROCdhy ("View - Foreign Character
Sets")
190 PROCmenu
200 PROCkeydefs
210 END
220 :
230 REPORT:PRINT" at line ";ERL:END
240 ¢
1000 DEF PROCmenu
1010 PRINT!
1020 PRINT!r5,.7£0%.qgS; "French"
1030 PRINT'r$;"f1";g$;"German”
1040 PRINT'rS;"f2";q$;"Spanish"
1050 PRINT'rS;"£3":q$; "Turkish®
1060 PRINT'r$;"f4";g$; "Greek”
1070 PRINT''
1080 ENDPROC
1080
1100 DEF PROCkeydefs
1110 *KEY 0 MODE 3 |MPAGE=PAGE+&600|MCH.
"FRENCH" | M*WORD |M
1120 *KEY 1 MODE 3 |MPAGE=PAGE+&600|MCH.
"GERMAN" | M*WORD | M
1130 *KEY 2 MODE 3 |MPAGE=PAGE+&600|MCH.
"SPANISH" [M*WORD |M
1140 *KEY 3 MODE 3|MPAGE=PAGE+&600|MCH.
"TURKISH" |[M*WORD |M
1150 *KEY 4 MODE 3|M PAGE=PAGE+&600 |MCH
"GREEK" | M*WORD |M
1160 ENDPROC
1170 ¢
1180 DEF PROCdhy (a$)
1190 x%=18-LEN(a$) DIV 2
1200 CLS:PRINTTAB(x%,1)CHR$141;y$;a$:PR
INTTAB (x%,2) CHR$141;y$;a$
1210 ENDPROC
x * % * %
10 REM Program French
20 REM version B1.0
30 REM Author Eddy Hunt
40 REM BEEBUG Aug/Sept 1988
50 REM Program subject to copyright
60 :
100 ON ERROR GOTO 200

Beebug August/September 1988

23

110 *FX20,6

120 IF X% PROCinitprint

130 REPEAT

140 READ cd$

150 IF cd$<>"**" THEN PROCchargen (cd$)
160 UNTIL cdS="**"

170 IF X% PROCset

180 END

190 :
200 REPORT:PRINT" at line ";ERL:END
210 :

1000 DEF PROCchargen (cd$)

1010 rc%=ASC(cd$)

1020 IF X% THEN PROCdefprint (rc%,cd$)
1030 PROCdefchar (rc%,cd$)

1040 ENDPROC

1050 :

1060 DEF PROCdefprint (rc%,cd$)

1070 LOCAL i%,p%:p%=3

1080 ND%=MIDS$ (cd$,2,1)="""

1090 vDU2

1100 vwu1,27,1,38,1,0,1,rc%,1,rc%,1,11-
128*ND%

1110 FOR i%=0 TO 8

1120 VDU1,EVAL("&"+MID$ (cd$,p%+2*i%,2))
1130 NEXT

1140 vpu1,0,1,0

1150 vDU3

1160 ENDPROC

1170 ¢

1180 DEF PROCdefchar (rc%,cd$)

1190 LOCAL i%,p%:p%=22

1200 VDU23, rc%

1210 FOR i%=0 TO 7

1220 VDU EVAL ("&"+MID$ (cd$,p%+2*i%,2))
1230 NEXT

1240 ENDPROC

1250 :

1260 DEF PROCinitprint

1270 VDU2

1280 vpul, 27,1, 64

1230 voi1,27,1,58,1,0,1,0,1,0

1300 vDU3

1310 ENDPROC

1370 ¢

1330 DEF PROCset

1340 VDU2

1350 voul,29,1,31,1,;1,1,0

1360 vDU1,27,1,ASC("M")

9010 DATA "@~020550159005500E01-1824003
C063E663E-a-circumflex”

9020 DATA "[~1C22082248A2082210-08103C6
67E603C00-e-acute"”

9030 DATA "]~1C2208A24822082210-10083C6
67E603C00-e-grave"

9040 DATA "~~0E1144118411441108-1824003
C667E603C-e-circumflex"”

9050 DATA " d384401440146004400-003C666
0663C1838-c-cedilla”

9060 DATA "|~00A2003E0082020000-6600381
818183C00-i-dotdot"

9070 DATA "}d00006D006E00000000-0000181
800181830-semicolon”

9080 DATA "~~000000006090009060-0C12120
C00000000-degree"

9090 DATA "{~3E002A40AA002A0022-08107E6
07C607C00-E-acute"

9100 DATA **

* % % %k &

German

9000DATA "}~040A208A600A201C02-10083C0
63E663E00-a-grave”

9010DATA "[~020550159005500E01-1824003
C063E663E-a-circumflex"”

9020DATA "~~1C22082248A2082210-08103C6
67E603C00-e-acute”

9030DATA " ~408000800A80108060-3C660C1
818001800~-2"

9040DATA "~"0E1144118411441108-1824003
C667E603C-e-circumflex"”

9050DATA "?2”068814204420148806-42183C6
67E666666-A-umlaut"”

9060DATA ">"1CA20022002200A21C-423C666
66666663C-0O-umlaut”

9070DATA "+73C028002000280023C-6600666
66666663C-U-umlaut"

9080DATA "/~040AA00A200AA01C02-42003C0
63E663E00-a-umlaut"”

9090DATA "\~000E51009100510E00-18243C6
666663C00-o-circomflex"”

9100DATA ".~001CA2002200A21C00-42003C6
666663C00~0o-umlaut”

9110DATA ";~003C80020002803C02-6600006
666663E00-u-umlaut"”

9120DATA "@~7E8000801280126C00-003C667
C667C6060-double-S"

9130DATA " {~00A2003E0082020000-6600381
818183C00-i~-dotdot"

1370 vDU3 9140DATA "<*000006000600000000-0000000

1380 ENDPROC 000001818-fullstop”

1390 : 9150DATA "*d00006D006E00000000-0000181

9000 DATA ";~040A208A600A201C02-10083C0 800181830~-semicolon”

63E663E00-a-grave" 9160DATA **
v 24 Beebug August/September 1988

B S RN iy b 2 o't e L e Ty Bl S N B e P ST et Nt e S g S L ST DR

(22

N CONp- b \
> = B = S S =4

aZ 7 NP Eh\'-(i‘ = fa\: Se

=~ ©
-ow =

ADVENTURE GAMES by Mitth ADVENTURE

How would you like a fist in your ear? Sounds
painful doesn't it? Well in fact it can be fun when
FIST stands for Fantasy Interactive Scenarios by
Telephone. You are no doubt familiar with the
Multi-User Dungeon (MUD) games which may
be played by connecting your micro, via a modem
and a telephone line, to a distant computer. The
problem with that system is the initial cost of the
modem plus the associated software. The idea
behind FIST is that you may play the game
instantly using only a push-button telephone (no
modem or computer of your own is required). By
dialling (0898) 800876 you will be transported in
sound to the courtyard of Castle Mammon.

With the final click of the connection made,
reality melts away and over the line come the
hollow sounds from the other world. While a cold
evening wind moans around the battlements, a
ghostly voice whispers a description of your
surroundings into your ear. From nearby comes
the sudden scream of a maiden falling into a pit
which has opened up in the middle of the cobbled
yard. Now you must make the first of many
decisions which will lead you down into the
monster-infested dungeons. The ghostly narrator
will inform you of the possible actions you may
take, and it is up to you to make your decision by
pressing an appropriate key on your telephone
key pad.

The game was devised by Steve Jackson, who is
the author of a series of Fighting Fantasy books,
and FIST is such a novel brought to life with the
aid of the Voicetek telecommunication
equipment. The system accesses a Winchester
disc holding 150 Mbytes of digitised sounds, from
which it instantly finds and plays the appropriate
section of data to let you hear the consequence of
your choice. Should you decide to rescue the
maiden, rather than 'leg it' for the nearest bolt-
hole, you will be rewarded by a whistling blow
which will send you crashing and clanking down
into the darkness. Prepare your sword arm
quickly, for here in the gloom a bellowing
creature is limbering up in preparation for
separating your chivalrous head from your
shoulders.

When the system went live on March 1st the lines
were jammed with thousands of adventurers

Beebug August/September 1988

anxious to be the first to find gold in the castle's
depths. Finding gold is the measure of success in
this game and it is also a way in which you can
reduce your costs. Each month the players who
have amassed the most gold are awarded prizes,
which range from T-shirts and rings, up to 'real’
money. Eerie music, snorting monsters and death
rattles pour down the line as you edge deeper
into the dungeon. There are approximately 50
different rooms to visit, and just as many
monsters. One room contains The Adjuster, who
behaves like a TV game-show host. Here you will
have the option to 'Come on Down' and gamble
all or part of your gold answering the Adjuster's
questions in an effort to increase your score.

When you finally emerge from the horrors of the
castle's dungeons you will then see the most
frightening apparition of all - the telephone bill!
'Aye there's the rub'. At a staggering 38p a minute
peak-time and 25p off-peak, you will need to be
already in possession of a sack of gold before you
go treasure-seeking in Castle Mammon. The
company accept that the cost is expensive, but
unfortunately it is British Telecom who sets the
rates and not them. A new subscription scheme
which could cut costs considerably is being
considered, but this is not yet finalised.

An Adventurer's Guild has been set up to provide
additional services to users and they also publish
a quarterly newsletter. Whilst it is possible to play
the game using the rotary-dial telephones, the
Guild sell a Tone Dialer for approximately £10.
This device connects to the mouthpiece of your
handset and enables you to access some of the
more sophisticated options. You may contact the
Guild at: Rex House, 4-12 Lower Regent Street,
London, SW1Y 4PE

You may also get more information on FIST by
sending a large S.A.E. to Computerdial, 6
Leaplace Road, Guilford GU1 4]JU.

The game sounds like an exciting radio play, and
when you couple this with the imagination of an
adventure enthusiast, the resulting mixture is
sure to please. Cost is of course the only reason
for not instantly throwing yourself onto the
nearest phone, but if used sparingly, FIST will
bring a new dimension to your hobby.

25

e x| i |

Matrices
- In BasSic

(Part 2)

Jan Stuurman adds some powerful new
functions to his Basic extensions to provide
a complete matrix manipulation package
in BBC Basic.

The program with last month's article provided
some simple operations that could be
performed on matrices stored as Basic arrays.
This month's program extends these operations
by adding two very powerful matrix functions.
The first of these is a command to calculate the
inverse of a square matrix, while the second
builds on this to give a command that will solve
a set of simultaneous equations.

Listing 1 is a series of lines to add to the
program from last month. First of all, load in
last month's program, and ensure that the line
numbering is as in the original article. Then,
enter the additional lines from listing 1. The
first two of these overwrite existing lines. Users
of Basic I should replace the last two lines of
listing 1 with:
10181 stfat2=&A36E:pntmt2=&AT7F3
10182 divmfa=&A6AD

You should, of course, have included the Basic I
modifications from last month as well. Once the
new lines have been entered, the program
should be saved, using a different name from
the original just in case something goes wrong.
When the new program is run, it will save the
matrix handling machine code to disc under the
name 'MAT', as before. To install the routines,
type *MAT from within Basic. The new code
loads in at &7500, and so mode 7, or any
shadow mode, should be selected first, and
HIMEM set to &7500.

MATRIX INVERSION

The inverse of a square matrix is another square
matrix of the same size, such that when this is
multiplied by the original matrix, the result is
the identity matrix. You may remember from
last month that the identity matrix is a square

220

matrix that contains all zeros, except for the
leading diagonal, which contains all ones.

As an example, consider the two by two matrix
A, which contains the elements:

2 3
4 5
The inverse of this matrix is:
—Pinds) 1.9
2 =

because, multiplying the two together, you get:

2 3 v =255 ST o 0
(4 5) (2 -1) (0 1)
which is the two by two identity matrix. The
process of finding the inverse of a matrix can be
very time consuming, especially for large
matrices. However, using the Basic extensions,
the inverse of a matrix is easily calculated with
the command:

MAT A = INV(B)

which will take the square matrix in array B,
invert it, and put the result in array A. Clearly,
A and B must have the same number of
dimensions, and because the inverse of a non-
square matrix is un-defined, both A and B must
have an equal number of rows and columns.
The code gives a 'Bad DIM' error if this is not
the case.

There is one further problem that can occur
when trying to evaluate the inverse of a matrix.
This is simply that some matrices do not have
an inverse. Such matrices are said to be
'singular’, and an example is the two by two
matrix:
2 1
(L)

The INV operation will generate an error
message if its argument is a singular matrix.

A final word of warning. To save workspace,
the INV function corrupts the value of its
argument. So,

MAT A = INV(B)
will set A to the inverse of B, but will also
corrupt B. If you do not want this to happen,
you should explicitly save matrix B first, and "
restore it afterwards. This can be done using;:

MAT C = COP (B)
MAT A = INV(B)
MAT B = COP(C)

after having defined C to be an array of the
same size as A and B.

Beebug August/September 1988

B Tt e Lyl D R A T T I A e 1o S s (PG Ve it Tt SRRt et [l S S o A et T o LR 110

SIMULTANEOUS EQUATIONS
In mathematics, you often encounter problems
such as:
Given that:
4x + 3y = 12 and*
2Rk =]
what are the values of 'x' and 'y'?

Problems such as this are known as
simultaneous equations, because you must find
solutions for all the separate equations
simultaneously. This example only has two
unknown variables, but in general, the
equations can have any number of unknowns.
The main proviso is that to find a solution of a
set of simultaneous equations with 'n’'
unknowns requires 'n' separate equations.
Further, all these equations must be 'linearly
independent’, which means that no equation
can be a simple’multiple of another one. As an
example of this, consider the equations:

A+ Iy ke g

xSy =g s wlh

8x + 6y + 4z = 24
There may appear to be three different
equations here, but if you study them, you will
find that the last one is simply the first one
doubled. This means that, given these three
equations, you could not find unique values for
x','y' and 'z,
One way you might try and solve simultaneous
equations is by guessing at the values. This can
sometimes work with two unknowns, but try it
for twenty! A much better solution comes when
you represent the equations as a matrix
multiplication sum. For example, the first set of
equations given above could be written as:

4 3\ ¥ X =i

Jno il
Try multiplying this out if you are not sure that
it is the same. To save writing the matrices each
time, we will refer to the square matrix as 'M',
the unknown matrix as 'X', and the result
matrix as 'R'. This gives us:

M*X = R
Now, suppose we find the inverse of 'M', which
is written as 'M™". We can now multiply both

sides of our matrix equation by 'M™"". This
gives:
M1*M*X=Ml*xR

Beebug August/September 1988

However, we know that if you multiply a
matrix by its inverse you get the identity
matrix, (that is the definition of the inverse), so
the sum reduces to:

I ¥ X ="MlI"*R
But, multiplying a matrix by the identity, leaves
that matrix unchanged. So, we end up with:

X =M1 *R
In other words, we can find the solutions to a
set of simultaneous equations by multiplying
the inverse of the matrix made up from the
equations by the result matrix (R) of the
equations.

To prove this, the inverse of 'M' in the above

example is:
=05 155
al o

Multiplying 'R’ by this gives:
w05 1.5\ * 12 =f 4.5
ik ~2 7l 2
showing that x=4.5, and y=-2. You can try these
solutions out for yourself if you want.

While you could use the operations already
provided by the MAT statement to solve
simultaneous equations, there is a special
operation to perform everything in one go. This
is the comma operator, and is written as:
MAT A =B, C

which performs the operation A=INV(B)*C. A
is the matrix for the result, B is the square
matrix made up from the equations, and C is
the result matrix of the equations. So, the above
problem could have been solved with the
commands:

DIM A(1,1),B(0,1),C(0,1)
A(0,0) = 4 : A(1,0) =3
R0l)= a2ie b AL, 1) =l
B(0,0) = 12 : B(0,1) = 7
MAT C = A, B

X = C(0:0) & y = C(0,;1)

MASTER AND COMPACT BASIC

As stated last month, the matrix machine code
as it stands will not work on a Master 128 or a
Compact. While it is relatively easy to adapt the
program to run with Basic I, because all the
routines used in Basic II are also in Basic I, the
situation is more complex with later versions of
Basic. This is because some of the equivalent
routines in Basic IV and Basic VI are not only in

27

different locations, but have been significantly
modified in the way they behave.

To create a Master or Compact version of the
matrix program, first of all enter the standard
Basic II version, by typing in listing 1 from last
month, but omitting lines 10080 to 10180. Then
add listing 1 from this month. Next, all
occurrences of '&4B' in the program must be
changed to read '&4A'. There are twenty-three
of these to change, the lines in question being:
2020,2070(2),2190,2380,2410,2660,2900
2920, 3210,3400,3780,4410,4420,4430
4560,4720,4750,4860,4870(2),4880(2)
(A number in brackets indicates the number of
changes to make to that particular line). You
should then do the same for all the '&4C's,
which should be changed to '&4B'. There are
sixteen of these in lines:
2030,2080,2200,2390,2420,2670,2910
2930, 3220,3410,3790,4440,4570,4730
4760, 4890
Finally, enter either listing 2 if you are using a
Master 128, or listing 3 if you have a Compact,
and save the complete program. This can now
be run as with the other versions.

Listing 1
1880 EQUS ",":EQUW lin
1940 EQUS "INV":EQUB 0:EQUW inv
3440 .inv JSR chksqr
3450 LDA oper+3:LDX #2:JSR chkar
3460 BNE wrgdim:BCC wrgdim:JSR idn
3470 LDA dim2:STA dim:STA dimtl
3480 JMP jordan
3490 :
3500 .lin LDA oper:LDX #2:JSR chkar
3510 BCC wrgdim
3520 LDA dim2:CMP dim2+1:BNE wrgdim
3530 LDA oper+2:1DX #4:JSR chkar
3540 BNE wrgdim:BCC wrgdim:JSR copy
3550 LDA dim4:STA dim
3560 LDA dim4+1:STA dim+1l
3570 JMP jordan
3580 :
3590 .jordan JSR ldfanl:JSR stfat2
3600 LDA dim2+1:STA 1dim:CLC
3610 ASL A:ASL A:ADC ldim:STA off
3620 ADC #5:STA doff
3630 LDA base2:STA base4
3640 LDA base2+1:STA base4+l
3650 LDA #0:STA qoff:DEC ldim
3660 .luloop JSR pivot
3670 .1lloopl JSR determ:JSR gauss
3680 CLC:LDA base4:ADC doff:STA based

3690
3700
3710
3720
3730
3740
3750
3760
37170
3780
3790
3800
3810
3820
3830
3840
3850
3860
3870
3880
3890
3900
3910
3920
3930
3940
3950
3960
3970
3980
3990
4000
4010
4020
4030
4040
4050
4060
4070
4080
4090
4100
4110
4120
4130
4140
4150
4160
4170
4180
4190
4200
4210
4220
4230

4240 :

BCC dnoc:INC base4+1:.dnoc

INC goff:LDA qoff:CMP ldim

BCC luloop:BEQ lloopl

.bsloop DEC qoff

SEC:LDA base4:SBC doff:STA based
BCS dnob:DEC base4+l:.dnob

JSR bcksub

LDA qoff:CMP #1:BNE bsloop:RTS

.determ LDA base4:STA &4B

LDA base4+1:STA &4C:JSR ldfam
BEQ detzer:JSR stfatl

JSR pntmt2:JSR mufamo

JSR stfat2:RTS

.detzer BRK:EQUB &64
EQUS "Determinant zero":EQUB 0

.pivot

LDA base4:STA pbase

LDA base4+1:STA pbase+tl

LDA qoff:STA poff:STA mdim
JSR stpiv

.check INC mdim

CLC:LDA pbase:ADC #5:STA pbase
BCC cnoc:INC pbase+l:.cnoc

JSR cmpare:BEQ cnext:JSR stpiv
LDA mdim:STA poff:JSR swap
.cnext LDA mdim:CMP 1dim:BCC check
RTS

.swap LDA &472:EOR #&80:STA &472
LDX #0:JSR mswap:LDX #2

.mswap

CLC:LDA qoff:ASL A:ASL A:ADC qoff
ADC base,X:STA cbase

LDA base+l,X:ADC #0:STA cbase+l
CLC:LDA poff:ASL A:ASL A:ADC poff
ADC base,X:STA gbase

LDA base+1,X:ADC #0:STA gbase+l
LDA dim,X:STA cdim

.movfpn LDY #4

.movbyt LDA (gbase),Y:PHA

LDA (cbase),Y:STA (gbase),Y
PLA:STA (cbase),Y:DEY:BPL movbyt
CLC:LDA cbase:ADC off:STA cbase
BCC mnocl:INC cbase+l:.mnocl
CLC:LDA gbase:ADC off:STA gbase
BCC mnoc2:INC gbase+l:.mnoc2

DEC cdim:BNE movfpn:RTS

.stpiv LDY #4

.stloop LDA (pbase),Y:STA fpbm,Y
DEY:BPL stloop

LDA &3D:AND #&7F:STA &3D:RTS

28

Beebug August/September 1988

TR (e g A R L T N JAIe S 1 TN i I o< DRl L s W B i ST RIS

4250 .cmpare LDY #0 4810 BCC snoc2:INC cbase+l:.snoc2
4260 LDA (pbase),Y:CMP fpbm:BNE neq 4820 DEC cdim:BNE suloop:RTS
4270 INY:LDA (pbase),Y:AND #&7F 4830 :

4280 CMP fpbm+l:BNE neq 4840 .bcksub LDA goff:STA mdim
4290 .cmloop INY 4850 .baloop DEC mdim:SEC

4300 LDA (pbase),Y:CMP fpbm,Y:BNE neq 4860 LDA qoff:SBC mdim:STA &4B:CLC
4310 CPY #4:BCC cmloop 4870 ASL A:ASL A:ADC &4B:STA &4B
4320 .leq LDA #0:RTS 4880 SEC:LDA base4:SBC &4B:STA &4B
4330 .neq BCC leq:LDA #1:RTS 4890 LDA base4+1:SBC #0:STA &4C
4340 : 4900 JSR ldfam:JSR stfatl

4350 .gauss 4910 LDX #0:JSR subrow

4360 LDX #0:JSR divrow 4920 LDA mdim:BNE baloop:RTS

4370 LDX #2:JSR divrow 10075 fpbm=&3C

4380 LDA qoff:CMP 1dim:BEQ gready 10181 stfat2=§A37D:pntmt2=&A7ED
4390 STA mdim 10182 divmfa=&A6AD

4400 .galoop INC mdim:SEC Yok Ak

4410 LDA mdim:SBC qoff:STA &4B Listing2

igg %ggizeﬁgii ?"lgDC i 1500 LDA #3:STA &39:JSR schvar
4440 LDA based+1:ADC #0:STA §4C 1970 .zer JSR ldfan0:BRA fillar

. : 8000 .pntmt2 LDA #&71:STA &4A

4450 JSR ldfam:JSR stfatl 8010 LDA #4:STA §4B:RTS

3338 ig; Iggg; :32;8: 8020 .stfat2 JSR pntmt2:JMP stfat
4480 LDA mdim:CMP 1dim:BCC galoop 10080 cont =&9005:chkend=69BA6
4490 .gready RTS 10090 syntax=&9B69:getcha=&8EEQ
4500 : 10100 schvzlar=&8087:varnfd=&AD8C
4510 .divrow CLC:LDA goff:ASL A:ASL A igi;g i’gigﬁ:ggggf ;g:;"o;:ig?g
S STE D Rae R TH e C 10130 getnsb=§ID3B:mismat=§9092
4530 LDA bzlase+1,X:ADCI#O:STA pbase+1 10140 gitof =&8185:ldfam —gA541
s I.Jg}i\lgég')a(é;ml\ S 10150 addmfa=6A68D: subfam=6A68A
4560 LDA pbase:STA &4B 10160 nmlfa =&81F7:stfat1=&A511
4570 LDA pbase+1:STA &4C 10170 ldfat1=&A539:m|:1famo=&A6A6
4580 JSR divmfa:JSR stfam SRy e 5 et
4590 CLC:LDA pbase:ADC off:STA pbase 10182 divmfa=gASEE

4600 BCC dinoc:INC pbaset+l:.dinoc

4610 DEC cdim:BNE diloop:RTS b

4620 : Listing 3

4630 .subrow CLC:LDA qoff:ASL A:ASL A 1500 LDA #3:STA &39:JSR schvar
4640 ADC qoff:ADC base,X:STA pbase 1970 .zer JSR 1dfan0:BRA fillar
4650 LDA base+l,X:ADC #0:STA pbasetl 8000 .pntmt2 LDA #&71:STA &4A
4660 CLC:LDA mdim 8010 LDA #4:STA &4B:RTS

4670 ASL A:ASL A:ADC mdim 8020 .stfat2 JSR pntmt2:JMP stfat
4680 ADC base,X:STA cbase 10080 cont =&8FE6:chkend=&9B86
4690 LDA base+l,X:ADC #0:STA cbase+l 10090 syntax=&9B49:getcha=&8EB9
4700 LDA dim,X:STA cdim 10100 schvar=&8087:varnfd=&ACEA
4710 .suloop 10110 baddim=§950D:1dfan0=6A647
4720 LDA pbase:STA &4B 10120 1ldfanl=&AS53E:stfam =&A469
4730 LDA pbase+l:STA &4C 10130 getnsb=&9D1B:mismat=&9071
4740 JSR ldfam:JSR pntmtl:JSR mufamo 10140 citof =&81A9:1dfam =&A49A
4750 LDA cbase:STA &4B 10150 addmfa=&A626:subfam=&A620
4760 LDA cbase+1:STA &4C 10160 nmlfa =&821E:stfat1=&A461
4770 JSR subfam:JSR stfam 10170 1ldfat1=&A492:mufamo=&A600
4780 CLC:LDA pbase:ADC off:STA pbase 10180 pntmt1=&A4D7:misbrc=6ACFC
4790 BCC snocl:INC pbase+l:.snocl 10181 stfat =&A469

4800 CLC:LDA cbase:ADC off:STA cbase 10182 divmfa=&A550
Beebug August/September 1988 29

- T s

Mike Williams

by Lindsey Cullen.

In a series of three
articles under our
First Course ban-
ner, I described
the use of Basic's
string handling
functions with a
variety of simple
examples. This
month I propose
to deal further
with string hand-
ling by describing
a set of fascinating
routines for scroll-
ing text written by
Lindsey Cullen.

st
COURSE

Just Scrolling

o

There are many opportunities for spicing up your
screen displays, not least by looking for more
imaginative ways of placing text on the screen
than the mere use of the PRINT instruction. The
procedures listed here illustrate a variety of
techniques which you may use in your own
programs. Even more, I hope they will provoke
you to devise even better alternatives.

The first idea we shall look at is that of scrolling
text sideways onto the screen. The following
procedure, which may be used in any mode, will
scroll any given message so that it appears to to
‘enter' the screen from the right-hand side. The
full text ends up positioned centrally across the
screen.

100 DEF PROCdisplayl (a$,y%,w%)

110 r%=LEN(a$) :s%=(w%-r%)/2

120 a$=a$+CHR$32

130 FOR loop%=0 TO r%+s$%

140 ch$=MID$ (a$,1, loop%)

150 PRINTTAB (w%-2-1loop$%,y%) ;ch$
160 TIME=0:REPEAT UNTIL TIME>8

170 NEXT

180 ENDPROC

The message to be displayed is specified as the
parameter a$. The second parameter (in common
with all the other procedures) specifies which line
on the screen is to be used, and another
parameter is used to specify a screen width (20, 40

e 30
A e N e A e I L o 8 R Sk i M Vo, < T o (it o O Lo e I\ Y o ST PGP RN i)

variety of text scrolling routines

describes a or 80 columns). If you are

only going to wuse the
procedure in a single mode,
this parameter and all

references to it may be
omitted, and replaced by a suitable fixed value.

We shall follow a common format in most of the
procedures, so a few words now will help in
understanding the other procedures. The variable
r% is used to hold the length (number of
characters) of the string of text, while s% is the
number of spaces to the left or right of the string
when positioned centrally across the screen.

As the message is scrolled from the right, the
procedure must manage to achieve two things.
The number of characters to be displayed will
increase by one each time the string moves to the
left. Second, once the whole message is on the
screen, but continuing to move left, the routine
must ensure that the right-most character is
replaced by a space at each step.

The last point is achieved by simply appending a
space to the end of the string (line 120). As the
string is repeatedly written one position further
right each time we go round the FOR-NEXT loop,
this trailing space will automatically overwrite
the last visible character. The task of selecting the
correct number of characters for display is
handled by the MID$ statement in the loop,
which uses the loop control variable loop% as a
counter.

Finally, the REPEAT-UNTIL loop at line 160
simply controls the rate of scrolling. Increase the
value given to slow scrolling down, or reduce it
to speed it up.

If you are using mode 7 for a title screen or
similar, then the following variation of our first
procedure may be used to scroll a double-height
title onto the screen.

200 DEF PROCdisplay2(a$,y$%)

210 cha$=CHR$ (141)+CHRS (134)
220 r%=LEN(a$) :8%=(36-r%) /2

230
240
250
260
270
280
290
300
310

a$=a$+CHR$32

PRINTTAB (0, y%) cha$'cha$
FOR loop%=0 TO r%+s%
ch$=MID$ (a$,1, loop%)
PRINTTAB (38-1oop%, y%) ch$
PRINTTAB (38-1oop%, y%+1) ch$
TIME=0:REPEAT UNTIL TIME>8
NEXT

ENDPROC

Beebug August/September 1988

Since mode 7 is always a 40-column screen this is
assumed by the procedure, and just two
parameters are needed, the string to be scrolled
and the screen line to be used. There are two
differences with our previous routine. Line 210
assigns two teletext control characters (for double
height and cyan text) to the variable cha$, and line
240 places these on the two lines used at the left-
hand edge of the screen. All text on those two
lines will henceforth appear in this format.

Second, the text itself is printed twice, once on
each of the two lines (in the program lines 270
and 280). To some extent the end result is less
satisfactory because of the way in which the
double height text is created, and the extra work
involved.

SCROLLING RIGHT

If you want to scroll the text in from the left-hand
side of the screen, the task is very similar, though
with some differences. The necessary code is
contained in PROCdisplay3, and again is written
for mode 7 double-height text.

400 DEF PROCdisplay3(a$,y%)
410 cha$=CHR$ (141) +CHRS (134)
420 r%=LEN(a$) :s%=(36-r%) /2
430 a$=STRINGS (s%,CHR$32) +a$
440 PRINTTAB (0,y%)cha$'cha$
450 FOR loop%=0 TO r%+s$%

460 chl1$=MID$ (a$, r¥+s%+1-loop%, loop$%)
470 PRINTTAB(3,y%)chl$

480 PRINTTAB (3,y%+1)chl$

490 TIME=0:REPEAT UNTIL TIME>8
500 NEXT

510 ENDPROC

Because the text now scrolls from left to right,
extra space is added on to the left-hand end of the
specified string (line 430). And not just one space
but sufficient to position the character string
eventually in the centre of the screen. The loop
extracts an increasing number of characters each
time it is repeated, but the starting point for
displaying the text remains constant at the left
hand-side of the screen (but not overwriting the
teletext control codes already placed there). The
procedure could be easily simplified for single
height text in this and other modes. Again, many
detailed variations can be derived by
experimenting with this procedure.

BOTH TOGETHER

Why not combine both ideas together? With
mode 7 double-height text you can arrange for

Beebug August/September 1988

the top half to scroll one way and the bottom half
the other. This not only adds visual interest but
means that the title or message is largely
unreadable until the last minute. PROCdisplay4
is a suitable procedure for this.

600 DEFPROCdisplay4 (a$,y%)

610 cha$=CHRS$ (141)+CHRS (134)
620 r%=LEN(a$) :s%=(36-r%) /2
630 al$=a$+CHRS$32

640 a2$=STRINGS (y,CHR$32)+a$
650 PRINTTAB (0, y%)cha$'cha$
660 FOR loop%=0 TO r%+s%

670 chl1$=MIDS$ (al$,1, loop%)

680 ch2$=MID$ (a2$, r$+s%+1-loop%, loop%)
690 PRINTTAB (38-1loop%,y%)chl$
700 PRINTTAB(3,y%+1)ch2$

710 TIME=0:REPEAT UNTIL TIME>8
720 NEXT

730 ENDPROC

You should be able to follow this one without
much difficulty. The trick, of course, is to ensure
that both halves of the text end up in the same
position on the screen.

ONE AT A TIME

The next routine produces a particularly effective
display. Rather than scroll the whole message, it
scrolls each letter in turn across the screen.
Because of the shortening distance travelled by
the individual characters, the letters appear to
move faster and faster. A procedure for this is
given below as PROCdisplay5.

800 DEF PROCdisplay5(a$,y%)
810 cha$=CHRS (141)+CHRS (134)
820 PRINTTAB(0,y%)cha$'cha$

830 r%=1

840 REPEAT

850 ch$=MIDS (a$,r%,1)+CHR$32
860 IF ch$=" " THEN 720

870 FOR loop%=38 TO r%+5 STEP -1
880 PRINTTAB (loop%,y%)ch$

890 PRINTTAB(loop%,y%+1)ch$

900 t%=INKEY(2)

910 NEXT loop%

920 r%=r%+1

930 UNTIL r%=LEN(a$)+1

940 ENDPROC

Two loops are involved this time. The inner loop,
using a FOR-NEXT combination, scrolls each
letter in turn from right to left (note how a single
space is added to the end of each character - line
850 - to overwrite the previous position as the
character scrolls left). The FOR-NEXT loop is

31

embedded in a REPEAT-UNTIL loop which repeats
the scrolling process for each letter in turn.

There are two points of particular note. Line 860
checks for a space in the character string (literally
two spaces because of the extra trailing space
added). If this is found the scrolling process is
ignored for that letter. Without this, the
procedure would scroll each space character just
as for any visible character, but this results in an
unnatural delay. If you are not sure try omitting
line 860 and note the effect.

The second difference lies in the delay loop at line
900. Using the pseudo-variable TIME is not of
much use for values under about 5 centi-seconds
because of the time taken to execute the
instructions themselves. INKEY provides a better
delay in this case, and provides sufficient fine
tuning on this occasion.

THE MOVING FINGER WRITES

The next procedure provides a quite different
approach to scrolling text, again coded for mode 7
double-height text. An asterisk moves across the
screen revealing the text of the message in its
wake. The result is quite effective. The coding is
contained in the procedure PROCdisplay6.

1000 DEF PROCdisplayé (a$,c%,y%)
1010 r%=LEN(a$) :s%=(36-r%)/2
1020 cha$=CHR$ (141) +CHRS (128+c%)
1030 PRINTTAB (0,y%)cha$'cha$
1050 FOR i%=1 TO r%

1060 PRINTTAB (s%+i%,y%)"*"

1070 PRINTTAB (s%+i%,y%+1)"*"
1080 TIME=0:REPEAT UNTIL TIME>8
1090 ch$=MIDS$ (a$,1i%,1)

1100 PRINTTAB (s%+i%,y%)ch$

1110 PRINTTAB (s%+i%,y%+1)ch$
1120 NEXT i%

1130 ENDPROC

Again a loop is at the heart of the procedure. On
each pass, the program must display the asterisk
in the next character position, and reveal (by
displaying) the character previously hidden.
However, all is not quite as you might expect. The
loop appears to place both the asterisk and the
current character in the same position (the
PRINTTAB statements have the same column
arguments).

The key is the delay at line 1080. The program
displays an asterisk and then pauses. When it

32

continues, it replaces the asterisk by a character
from the message, goes round the loop, and
displays a new asterisk in the next character
position. The consequence of this is that when the
loop terminates, the last character displayed is the
last character of the message, and with no further
ado the asterisk has completely disappeared.

Note that this procedure incorporates an
additional parameter c¢%. This allows a calling
program to specify the colour of mode 7 text, by
giving a number in the range 1 to 7. This feature
could be similarly incorporated in any of the
other procedures listed here in the same kind of
way. Remember, though, to make allowance for
any teletext control codes at the side of the screen.

DROPPING ONE'S AITCHES

The final procedure shows how it is possible to
move characters around the screen in fancy ways
as a message is built up. The procedure is listed
below.

1200 DEF PROCdisplay7(a$,y%)
1210 r%=LEN(a$) :x%=1:p%=4
1220 REPEAT

1230 z%=30:ch$=MIDS$ (a$,x%,1)
1240 IF MIDS (a$,x%,1)=" " THEN 1360
1250 FOR i%= 5 TO 10

1260 PRINTTAB(z%+1,1i%-1);" "
1270 z%=2%-1

1280 PRINTTAB(z%+1,i%-1);ch$
1290 t%=INKEY (p%)

1300 PRINTTAB(z%+1,i%-1);" "
1310 NEXT

1320 FOR i%=z% TO x% STEP -1
1330 PRINTTAB(i%,y%):;ch$;" "
1340 t3=INKEY (p%)

1350 NEXT

1360 x%=x%+1

1370 UNTIL x%>r%+1

1380 ENDPROC

If you call this procedure, you will see the
characters 'drop' down the screen before moving
left to form the text. A REPEAT-UNTIL loop is
executed once for each character, with one FOR-
NEXT loop handling the movement down the
screen, and a second scrolling the character left.
Again spaces are detected and omitted from this
process.

There are many more ways in which characters
could be moved around, but the procedures listed
here, and demonstrated on the magazine
disc/tape, should give you plenty of ideas.

Beebug August/September 1988

e h il I oo 0 e s a8 i ol = iy B AR) S | S e LS st et L et s

Too early to think of

Not when it

comes to

our show!

10am-6pm Fri, Nov 11
10am-6pm Sat, Nov 12
10am-4pm Sun, Nov 13

This show has it all!

LOADSA exhibitors

(around 70)
hardware
software

new products
games
happenings
technical
advice

LOADSA
LOADSA
LOADSA
LOADSA
LOADSA
LOADSA

...and most
important of all for
you, the visitor —
LOADSA BARGAINS!

With hundreds of
special show offers
available you could
end up a financial
winner.

You can even save

£1 a head before you
get there by using this
advanced ticket form.

New Horticultural Hall

Greycoat Street
London SW1

BBC MICRO

The 1988 Innovation Awards

B Take a stroll down Innovation Row — a brand

new show feature area, specially constructed

for the event.

BBC MICRO
.
GEP

Please supply
Adult tickets at £4 (save £1)
Under-16s tickets at £2.50 (save £1)

Cheque enclosed made payable to
Database Exhibitions

Please debit my credit card account

Name

Address

Post to: Database Exhibitions, Europa House, Adli

PHONE ORDERS: Ring Show Hotline: 0625 879920
PRESTEL ORDERS: KEY *89, THEN 614568383
MICROLINK ORDERS: MAILBOX 72:MAG001
Please quote credit card number and full address ~ A492

DATABASE
EXHIBITIONS

¢
£

B See the grand finalists displaying their
innovations in public for the first time.

B Help Pick The Winners. You will be able to
cast a vote in both categories of the awards —
the BBC Micro and the Archimedes.

Admission at door:
£5 (adults)
£3.50 (under 16s)

Advance ticket orders

must be received by

TatalEra . = November 2, 1988
Access Visa Expiry date '7/- N
£ B 0 5 1
Signed
i Park, Adli Macclesfield SK10 4NP.

g

I

'Christmas shopping?

No matter which Acorn
machine you use — from the
Electron up to the top of the
range Archimedes — you'll
find just what you are
looking for at the show.

All the leading companies
servicing each sector of the
Acorn market will be out in
force to demonstrate their
latest developments.

Traditionally the liveliest
Acorn event of the year, this
pre-Christmas show is the
one you can't afford to mijss.

I How to get there

Underground: The nearest
tube stations are VICTORIA
(Victoria, District & Circle
Lines). St JAMES'S PARK
(District & Circle Lines) and
PIMLICO (Victoria Line).

By British Rail: VICTORIA
STATION. The halls are a 10
minute walk from the
station.

By Bus: 11, 24, 29, 70, 76
and Red Arrow 507 to
Victoria Street — alight
Army and Navy Stores.

CONTEX

BANK MANAGER (for disc systems only)
The most advanced and versatile personal bank management
program available for all BBC computers. Consistently acclaimed!
"data entry ks a delight. .professional...excellent product" - Micro User April 86.
Enter cheques and receipts. Standing orders any frequency.
Automatic date sequencing. Reconcile statements. Search, amend
and delete. Unreconcile. Move forwards or backwards. Analyse
expenditure. Forwards cash flow forecast. Up to 36 simultaneous
‘bank' (bank credit cards, savings, cash) accounts online
simultaneously, inter-account transfers, 9999 standing orders, 99
analysis categories. 12 actual and 12 budgets per category, over
4,000 postings on an 80tk disc. Reports to screen or printer. Graphics.
Foreign currency support. Password. File recovery. Auto exec file.
Field editing. Itemised look ahead. Programmable report writer.
Standard Bank Manager for the BBC B, B+ £17.50

BANK MANAGER MASTER £22.50
Additional facilities for the Master and Master Compact.

BANK MANAGER BUSINESS UTILITIES £12.00
Adds trial balance and spreadsheet reports to Bank Manager.

ALL PRICES FULLY INCLUSIVE, FREE POSTAGE WITHIN UK

Enquiries and Access Credit card orders telephone 023 03 347
Please state disc format size

CONTEX COMPUTING
15 Woodlands Close, Cople, Bedford MK44 3UE

Cumana 40T disc drive including power supplies.
Advanced Elite Filing System. Manuals included. £50.
Tel. (0705) 527957 after 6pm.

BBC Master 128 in original packaging only £335. Tel.
Bedford (0234)67067 eves.

Master 65C102 6502 Turbo Upgrade £75. BEEBUG
Toolkit + ROMs originals boxed with instructions.
Demon Modem complete with ROM (no instr.) £30.
Acorn Prestel adaptor inc. software £50. Tel.(0272) 874082
eves. and weekends.

Double 3.5" disc drive £60. Watford 32k shadow RAM
card £40. Watford DDFS kit + manual £30. Basic
accelarator ROM + disk £20, Wordwise plus £20.
InterSheet £20. Tel. 01-730 5054.

Cumana DS DD 80T disk drive, with own PSU £75 ono.
Microvitec Cub 1451 colour monitor TTL, PAL + audio
inputs £140 ono. ROMs, all original with full
documentation. Acornsoft Pascal, with stand alone
generator £45. AMX Superart £35. Acornsoft Logo £35.
Peartree Artist £20. InterWord £25. Games on 5.25" disc
with original documentation: Repton 3, Codename
Droid, Bone Cruncher, Crazy Rider, £20 the lot.
Acornsoft Database £10. Tel. 01-737 6179.

34

Personal Ads

Torch Z80 second processer and software £100.
6502 second processer £65. Green screen monitor
£50. Microvitec colour moniter £130. Tel (0634)
241237.

1770 Disc Interface £35, Allophone speech
synthesiser (not Acorn) £15. Both unused, in mint
condition. Tel. (0294) 52250, after 6 p.m.

Epson MX-80 III F/T printer, with cables and
manual, £95. Tel. (09274) 24063.

Master 128 with Master ROM. Akhster Dual
40/80T switchable double 800k drive with own
PSU. Microvitec High Resolution Colour 1451
monitor. Centronics GLP printer and cable,
manuals. Many programs on disc. All for £550
o.n.o. Will not split. Sevenoaks area, Tel. (0732)
884940 evenings.

Viglen double-sided 48/80T switchable disc
drive, powered from BBC, as new, £70. Wanted:
128k Eproms and 32k/128k RAM chips-top prices
paid. Tel (0324) 558692.

SEGA Master System for sale including 2
joysticks, games worth £95, still under garantee.
Still boxed. Excellent condition. Will sell for £120
0.n.0. Phone Chelmsford (0245) 268990.

Digitiser (Watford) and service ROM. Little used

and still boxed. Includes Instruction Book. £70.
BBC B View2.1, Super Art firmware, DFS, Technomatic
40/80T disk drive and Brother HR10 printer, all cables,
the complete word-processing package, with manuals,
£350. Tel. Skipton (0756) 69293.

Did you buy a graphics enxtension ROM from me in the
June issue of Beebug. I have found the examples tape, but
lost your address. Please phone me and I'll send it to you.
Tel.(01-737) 6179.

Master 512 with DOS Plus, mouse and GEM software
£420. Akhter UF twin 40/80T disc drive in plinth £150.
Zenith 12" hi-res green screen monitor on tilt & swivel
base £40. Master Reference Manuals 1 & 2 £15. Digital
Research DOS Plus Manual £10. All leads and some
software on both BBC and MS=DOS formats. Tel.(0792)
703005 day or (044128) 4461 after 6pm.

AMX Pagemaker £25. AMX Mouse package £25.
ViewStore £25. All as new. Tel.(0736) 63918.

256k Solidisk Sideways RAM/ROM with 4MHz 65C02
and 256k Manager ROM (includes 200k silicon disc) plus
Solidisk 2.2 DFS (unlimited number of files per disc) £80.
New Interword ROM with clean registration card £30.
Slave+ ROM £10. Beebugsoft Toolkit ROM £10. Tel.
(0892) 21021 after 6pm.

Beebug Supplement August/September 1988

e e

DABS
PRESS

Dabhand
User
News

Devoted to the
Serious Expert User

David Atherton and
Bruce Smith bring you the
latest in Expert Software
and Dabhand Guides for
your BBC and Master
micros.

If you have a printer then
we believe HyperDriver
will be one of the most
significant purchases you
can ever make.

Here’s what Beebug said
about our products in the
March 1988 issue:

HyperDriver: “...an ingen-
ious blessing.. a million other
good design features...”

MOS Plus: "..an excellent
product.”

Master Emulation ROM:
“..the whole system FEELS
just like a Master...the most
impressive implementation is
an almost complete emula-
tion of the temporary filing
system.”

Send or phone for our
free 32 page catalogue.

HyperDriver:
Printer Power

Possibly the most significant purchase you can make

HyperDriver isn’t just another printer ROM - it's the
ultimate one. It's absurdly easy to use and provides you
with so many of the facilities missing from your current
printer orientated software including: on-screen pre-
view, CRT graphics, NLQ font, VIEW printer driver and
user definable macros to name but a few.

No matter what you use your printer for, word process-
ing, spreadsheets, databases, programming, you will
have in excess of 80 * commands instantly available.
We really don’t know how to cram all the facts in here, so
read Geoff Bains review of HyperDriver in the March
1988 issue, pages 47/48, or ask for our latest catalogue.
Master Emulation ROM

Amazing as it may seem, if you own a BBC B or B+ then
installing MER will give it virtually all the software fea-
tures of a Master 128! See the Beebug review in the March
1988 issue, pages 28/29.

MOS Plus

MOS Plus is a must for all Master 128 owners not least
because it fixes those irritating bugs in the OS and adds
many essential extras such as *SRLOAD, *FORMAT and
*VERIFY in ROM. See Beebug March 1988 pages 44/45.

Prices
Beebug members can obtain their normal 5% discounton

these Dabs Press products simply by quoting their
membership number (prices in brackets).

HyperDriver: ROM £29.95(£28.52), SWR £24.95 (£23.76)
MOS Plus: ROM £12.95 (£12.33), SWR £7.95 (£7.57)
MER: ROM £19.95 (£19), SWR £14.95 (£14.24)

Orders

Send cheques, POs, official orders to the address below,
or quote your Access/ Visa card number and expiry date.
Credit card orders accepted by phone or mailbox. P&P
free in UK. Elsewhere add £2 or £10 airmail. 3.5" ADFS

disc £2 extra please state if required.
Dabs Press, 76 Gardner Road, D S
PRESS

Prestwich, Manchester, M25 7HU
Phone: 061-773-2413

Prestel: 942876210

BT Gold: 722MAG11596

Beebug Supplement August/September 1988

35

Some of the Greatesf Games Ever...

These compilations include some of the greatest games ever produced for the BBC Micro and Acorn Electron, including:

Planetoid One of Acornsoft's top games. “It's fast and fun, Repton 3 Probably the best-loved of all of Superior's games.
annoying and addictive. In fact, it's one of the classic micro The endearing hero, Repton, features in a superb strategic
arcade games.” ... Electron User game which includes character and screen designers
Citadel Afascinating arcade-adventure; features over 100 enabling you fo create your own scenarios. “This is top quality;
beautifully detailed screens of action. “The game is extremely arcade action at its very best” ... A & B Computing

good. Well worth the cash.”... Computer Gamer

And many, many more!

SPECIAL OFFER - 3 COMPILATIONS FOR THE PRICE OF 2
For every three compilations ordered directly from Superior
Software, you will be charged for only two.

For example, if you order the BBC Micro Cassette versions of
THE SUPERIOR COLLECTION 4, THE SUPERIOR COLLECTION 2 and
PLAY IT AGAIN SAM (20 top games in total), you will pay for only
two of the compilations, that is, £19.90.

HOW TO ORDER

Please enter the quantities required in the boxes below and send the complefed
coupon, with a cheque, postal order or credif card defails, fo: Superior Soffware Lid
Regent House, Skinner Lane, Leeds LS7 1AX.

We will also be pleased to accept felephone orders, or mail orders without using the
coupon, but please clearly indicate that your order is for the “Three Compilations for
the Price of Two Special Offer"

Please note that if three compilations are ordered that differ in price, the free
compilation will be the cheapest of those ordered

BCMicro | B8CMicro pa Acom Electron
TITLES X - Not avarlable n this format Cassette 5% Disc 3% Disc Cassette 5% Disc 3% Disc
5995 4195 §14.95 £9.95 £195 £1495 Name
THE ACORNSOFT HITS VOLUME 1
Magic Mushrooms, Planetoid, Maze, Rocket Raid X X Address
(On he Electron version, Monsters is in piace of Rockel Raid)
THE HITS VOLUME 2

Starship Command, Arcadians Meteors, Labyrinth
(On the Electron version, Snooker is in place of Labyrinth)
THE SUPERIOR COLLECTION VOLUME 1

X X

Syncron, Replon, Karate Combat, Star Striker, Airlif, X X X
X X
X

BMX on the Moon, Wallaby. Smash and Grab

THE SUPERIOR COLLECTION VOLUME 2
Kix, Repton 2, Deathstar, Space Pilot, Missile Strike,

Battie Tank, Crazy Painter, Overdrive *lenclose a chequelpostal order for

*Please charge fo my Access/Visa card

THE SUPERIOR COLLECTION VOLUME 3
Syncron, Repton, Repton 2, Karate Combat, Deathstar, X X X
Mr Wiz, Smash and Grab, Overdrive My card number is:

PLAY IT AGAIN SAM
Citadel, Thrust, Stryker's Run, Ravenskull
Signature

PLAY IT AGAIN SAM 2

Repon 3, Crazee Rider. Galatorce. X X * DELETE AS APPROPRIATE S0
Codename Droid

(BBC Micro games are compatible with the BBC B B+ and Master series compulers)

/ SUPERIOR X CALT
SOFTWARE ACO Dw g R OUR GUARANTEE
Please make VISA ® All mail orders are despaiched
payable lo P ® Postage and packing is free
i o faul tes and discs will
(Acornsoftis aregistered trademark of Acorn Computers Lid. Superior Software Lid isaregistered user) SQ::gvee' i HOURTELEPHON Faulty cassettes and discs w

24 £ be replaced immediately.
Superior Software Lid, Regent House, Skinner Lane, Leeds LS7 1AX. Telephone : (0532) 459453 ANSWERING SERVICE FOR ORDERS (This Ges nol oNect your safutory ighis)

Tpm— i

i & < B/ mme= 2

Security ROMs
Reviewed

Recent months have seen a number of
security ROMs come onto the market with
the sole purpose of making the machine in
which they are installed unusable by
anyone except the owner. Lance Allison
reviews two such devices.

Like most expensive electrical equipment,
computers are very open to being stolen, be it
from an educational institution or from home.
Although the only way of actually preventing the
computer from being removed is to physically
secure it down, an alternative method is to make
it useless to anyone should it be stolen. This
philosophy is applied to most expensive car
stereo equipment nowadays.

Product
Supplier

ComputerLock
ComputerLock

7 Ganners Grove,

Bramley,

Leeds LS13 2PW.

Tel. (0532) 566314
£25inc.VAT

(Educational discount available)

Price

Securi-Kit

Software Services

65 South Mossley Hill Road,
Allerton,

Liverpool L19 9BG.

Tel. (051) 427 7894

Pre-programmed ROM £9.95 inc.VAT
Securi-Kit disc £12.95 inc. VAT

Product
Supplier

Price

The two products for review are Securi-Kit from
Software Services and the eponymous
ComputerLock. Both of these ROMs need to be
placed in the highest priority ROM socket in your
machine whether it be a Master or a model B.
After installation the machine will always display
the owner's name and address at the top of the
screen upon power-up. The user is then asked for
a password in order to use the machine. This will
prevent the immediate use of a stolen machine.
Another useful utility that both ROMs provide is

Beebug August/September 1988

a command that temporarily disables the machine
until a password is entered. If you wish to leave
the room for a couple of minutes a simple star
command will make sure that no one can tamper
with the machine while you are away.

Securi-Kit is supplied in two forms, either as a
pre-programmed ROM or as a do-it-yourself disc.
If you purchase the disc you must have access to
an EPROM programmer. The disc will ask you
for all the relevant information such as name,
address, machine serial number, and will
generate a ROM image which may then be blown
onto EPROM. Using this method you may protect
as many machines as you like. Alternatively you
can send your details to Software Services and
they will make a ROM for you.

ComputerLock require your details when the
ROM is ordered and supply it already in ROM
form. Besides the code protection and temporary
disable facilities, ComputerLock also offers quite
advanced file coding commands. These
commands allow single files or whole discs to be
coded up in such a fashion that only the person
with knowledge of the correct password will be
able to decipher them again.

A major problem with both of these devices is
that they are just ROMs, and thus may be
removed from the machine that they were
designed to protect. The only sure method of
fixing the ROM in permanently is to solder or
glue it in. Although it is still possible to get past
these methods the ROM will serve as an effective
deterrent. ComputerLock is supplied with
stickers reading 'Computer Protected With
COMPUTERLOCK Theft Is Pointless'. This is an
extremely good idea. Any security device will
only act as a deterrent if its presence in known.

All in all both products are quite professional and
do their job well, but you may dislike the need to
type in a password every time you switch the
machine on. However, in an educational
establishment or large company, where computer
theft is more likely, protection ROMs may be a
good investment. The decision as to which ROM
to purchase, Securi-Kit or ComputerLock, will
depend entirely on whether you want the file
coding facilities offered by ComputerLock. If
these are not important Securi-Kit is half the price
and does the job just as well.

37

BEEBUG SURVEY

In the first of our new BEEBUG surveys,
Geoff Bains puts through their paces six
ROMs that allow you to maximise the use of
your printer.

These days, many dot-matrix printers are
equipped with two or more Near Letter Quality
(NLQ) fonts to give you more choice and more
effects in your printouts, but if you are still
paying off the mortgage on an older model, you
are pretty much stuck with just the one print
style. However, there are a number of software
packages designed to alleviate this problem.

These fall into three broad categories: those
which give old, non-NLQ printers an NLQ
style; those which add one or more NLQ styles
to an Epson compatible printer; and those
which re-define the existing NLQ characters
(available for a limited range of printers,
namely the Taxan KP-810 and KP-910, and the
Canon PW1080 and PW1156).

FONTAID AND NLQ DESIGNER

We will look at this last category first. In order
to re-define the character set within a printer, a
RAM chip must be fitted inside the machine.
This allows the printer to take the down-loaded
character definitions (about 4000 bytes of data).
Such RAM chips are cheap (about £2.50) and
are simple to fit - not unlike fitting a ROM to
the BBC micro. Some printers are in fact
supplied with the RAM already installed.

The two programs in this category are the NLQ
Designer from Watford Electronics, and
Fontaid from CJE Micros. Both are supplied on
ROM and fulfil similar functions. Fontaid is
also available in a version for the Star NL-10
but this was not tried for this review.

First of all, new fonts can be downloaded to the
printer from disc with suitable star commands.

* 38
305 Gk inleillsaie |00 SO Mo il Conetiiiy U NS SO sl] et e R e BT T i G iy O e T e e .

The new NLQ font is then used just as normal
NLQ, with a printer Escape code being used to
choose between them.

The Fontaid disc contains 10 fonts of different
sizes including one of mathematical symbols.
Further fonts are available on disc. The NLQ
Designer disc has 29 fonts on, all of which are
standard characters.

NORMAL NLQ:
abedefghijklmhopgrestuvway o
SCRIPT :
wtbcdefghi-jklmaapgrstucuscyy
SEIARE
abocdefghi jkimmopagrebuvuxyz
OUTLINE:
abedefght Jklmnepartuvmnyz
BONHLYT .
abcdefgbhijrRImopgrstuonxpz
EIPOADWAY &
abcodlefiohi ik mnopogrstuvwsy 7
dHADON
2bedefghi jk)maaparsbuvnnyz
HAND
abcdefghi jhimnopqrslbuvwicys
LEEH .

Canon

Fontaid and NLQ Designer

The differences appear in the font editors. Both
use a 23x18 grid on which the characters are
designed or altered one by one - just like most
character or sprite definers used on the Beeb.
The NLQ Designer displays only 32 of the
whole character set at any one time but shows
these on the screen in the same detail as they
appear in print, unlike Fontaid which displays
the whole set at a reduced resolution.

As well as pixel editing operations, both
programs allow manipulation of complete
characters, and even whole character sets. NLQ
Designer uses the function keys for this,
Fontaid a series of single key mnemonic
commands. I found the NLQ Designer editor

Beebug August/September 1988

BEEBUG SURVEY

marginally easier to use as it allows more
manipulation of whole characters, but both are
quite adequate.

Both packages allow the first 31 down-loaded
characters, usually reserved for foreign,
accented letters and symbols, to be printed
packed together in two or three lines as a large
but high resolution logo. Single star commands
are used to print the logo, and the printhead is
then returned to the start position so as not to
confuse a word processor's line count.

Once defined the characters can be printed,
saved to disc, downloaded, or saved as a ROM
file to blow onto EPROM for installation in the
printer as a permanent alternative character set.
The NLQ Designer has the sensible option of
printing the characters from the editor as
graphics, without downloading. This saves
considerable time when you're juggling a
design to get it just right.

Both programs are extremely easy to use and
open up a whole new world of possible fonts
for owners of this range of printers.

HYPERDRIVER AND EPSON NLQ ROM

contains a thousand and one other printer aids
(see the review in Beebug Vol.6 No.9), but for
this purpose we shall consider only the NLQ
add-on aspect of the package.

Both programs are supplied on ROM and both
must be first initialised (whereupon they take a
page of RAM for workspace). They can then be
almost ignored, except to turn the effect on and
off. You print in the normal way, and the
software intercepts all output to the printer,
converting it into a sort of running graphics
dump of NLQ characters.

One difference between the two packages is the
way in which the effect is switched on and off.
The Epson NLQ ROM uses either star
commands or the ASCII codes 129 and 193. This
causes problems when some control codes are
sent to the printer. The NLQ mode must first be
turned off, the codes sent and then the NLQ
mode turned back on again. Hyperdriver uses
just star commands, both to control NLQ
printing, and all the other effects.

The NLQ print itself is different between these
packages. The Watford program produces NLQ
print in two passes, which is identical to

WE EPSON NLQ:

1234567890

HYPERDRIVER:

1234567890

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abedefghijklmnopgrstuvwxyz

ABCDEFGHIJKLMNOPQRSTUVW
XYZabcecdefghijklmnopgrstuvwxyz

that produced by the Taxan and Canon
range already mentioned. It also manages
it at a similar speed.

Hyperdriver's NLQ is produced in three
passes. This means that it is much slower
to print but the results are in many ways
better - darker, smoother and generally
more pleasing to the eye.

The Epson NLQ ROM can produce NLQ

Hyperdriver and Epson NLQ ROM

For those with printers that do not support
down-loadable fonts, the other two categories
of font extender programs will be the answer.
The simplest of these are the programs which
give non-NLQ printers a new lease of life with
an add-on NLQ style. Two programs perform
this task: Watford Electronics' Epson NLQ and
Dabs Press' Hyperdriver. Hyperdriver also

Beebug August/September 1988

print proportionally spaced, underlined
and enlarged. Hyperdriver's NLQ is
always the same size and proprtionally spaced
(which can be a problem at times, but if you are
going to be stuck with just one option, better
the proportional).

The Watford ROM certainly most closely

matches the effect of a real NLQ printer.
However, Hyperdriver achieves better results,

39

2

BEEBUG SURVEY

and is much easier to use with only one set of
commands to learn. Hyperdriver also has the
advantage of a whole host of other features
and, if you already have NLQ on your printer,
Hyperdriver gives you a different font, rather
than just repeating what's already there.

FONTWISE AND PRINTWISE

The third category of printer font software is
the full-blown multi-font package. There are
two of these: Fontwise from Clares and
Printwise from Beebugsoft.

Again, these packages are broadly similar. Both
allow any Epson compatible printer (capable of
single, double and quad density graphics), or
the once-popular Shinwa CP80 in the case of
Printwise, to produce high resolution NLQ
characters in a variety of sizes and styles. Both
packages also include a font editor, but more on
those in a minute.

Unlike the other types of software looked at
here, these multi-font packages are not just
switched into operation and then used
transparently as though they were not there.
These programs are used almost as printing
languages. When something is to be printed in
these fonts, the programs are run and the text
loaded in much like a word processor. The
multi-font program then prints it out to the
printer in a running graphics dump in much
the same way as the add-on NLQ packages.

The original text will usually be written on a
word processor. Both programs can cope with
text entered in Wordwise/Wordwise Plus,
View and Mini Office formats. Printwise can
also cope with Inter-Word text. In addition,
Printwise also has its own built-in text editor
for entering short pieces (up to about 425
words) without having to go to the trouble of
using the word processor.

As well as just printing out the text in a suitably
impressive style, these programs are also word
processor back ends in their own right. They
can interpret codes embedded in the text to
alter the line length, justification, centring,

40

indents, paging and all other manner of
formatting operations, and to turn on and off
printer effects such as bold print, italics,
proportional spacing and so forth.

ABCDEFGHIJKLMNOPQRSTUVWXY Z
efghijklmnopyrstuvwxyz12345678

ABECPBEFBEBITRIMPDOPARSTHUPBX
efgbitRImnopgrstubtoxrz1234567890

ABCDEFGHIUKL MNOPQRSTUVWXYZ
efghikimnopgarstuvwxyz128456877¢

ABCLEFANIIRLHNOPARSTITIRY Za
elralhlil kdlmnlolplaldsitiulviwxsvizlit2i31615167

ABCDEFGHIJKLMNOPQRSTUVWXYZa
efghiikimnoparstuvwxyzi123456789

ABCDEFGHIJEFLMNOPQRSTUVHXY
efghiikKinnoparstuvwxyzi2345¢

ABCDEFGHIJKLMNOPQRSTUVWXYZa
efghijklmnopqrstuvwxyz123456789¢

ABCDEFCHNIJKLIMNOPQRSTOVWXY 2¢
erg9hijhkimnopgrstuvwxyzlf2345678

ABCDEFGHIJKLMNOPQRSTUVWXYZabcc
efghijklmnopqrstuvwxyzl234587890

ABCDEFGHILALMNOPLRS T UV WX
efgltiFghimnopgroituvwxyz/23456789

ABCDEFGHIJKLMNOPQRSTUVWX)
efghiikimnopqrstuvwxyz1234567

ABCDEFGHIJKLMNOPQRSTUVWXYZabcd
efghijklmnopqgrstuvwxyz12345678%90

Fontwise

In this way these packages are half way
towards full 'publishing’ software. With a little
imagination it is easy to use this software to
create professional looking brochures and
booklets. Some manual paste-up work is
required and all illustrations or photographs
have to be handled separately, but the

Beebug August/September 1988

e e e e T I T e Ol AU I Mg i -

BEEBUG SURVEY

'typesetting' is all provided by the font
packages.

To make things easier for the majority of Beeb
users, the embedded commands to specify all
the formatting and printer effects are for the
most part the same as

I must say that on the whole I prefer the
Fontwise fonts. They are crisper, darker and
more 'real' than the Printwise ones. However,
the range of sizes available and the more
versatile nature of Printwise will swing the
balance for many users.

those used in Wordwise
Plus. Most documents
prepared with Wordwise
Plus can therefore be
used directly in Fontwise
and Printwise. A similar
system applies to Inter-
Word (with Printwise
only) and Mini Office
documents although
many commands differ
from the Mini Office
embedded mnemonics.

For use with View, the
programs differ.
Printwise uses highlights

ABCDEFGHIJKKL
EFGHIJKLMNOPQRSTUVWXY 21234

ABCRESGBHITIRIL M BORABRSGTUPPIRIBEZabed
efghijhlmnopgratubioxps1 234587 890

ABCAE#THIXKAMNOMOPETYQEY ZafcS
EFYMNRARVETOpaTUGWEYL 1234567830

AIFECPERLEH S ZHLMA PBDIRAT LY XY Rabed
eff G AL tmnopgust iy n s 2IGEE PO

ABCDEFGHIJKLMNOPQRSTUVWXY Zabed
efghijkimnopqgrstuvwxyz1234567890

ABCDEFGHIJKLMNOPQRSTUVWXYZabcd
efghijklmnopgrstuvwxyzl 234567890

ABCDEFQGHIJKLMNOPQRSTUVW XY Zabcd
efghijkimnopqrstuvwxyzi23456 7800

MNOPQRSTUVWXY%ABCD

1 and 2 to surround the
commands. This is
simple but means the document is littered with
embedded sequences which are meaningless to
the wordprocessor. Fontwise gets around this
problem by using View's own command
structure (entered in the margin on screen) but
further problems arise here from confilicting
meanings between View and Fontwise
commands with the same mnemonic.

The biggest difference between the packages is
the range of sizes of text which they can
produce. Fontwise can manage three sizes - the
normal size of letters (about 8 per inch), and
condensed and enlarged letters of half and
twice this width.

Printwise is much more versatile. Around
twenty sizes are possible with a combination of
enlarged and condensed versions of different
sized characters in different printer modes.
However, for the full range, four separate
'fonts' are required, each covering a different
range of sizes.

Beebug August/September 1988

Printwise

Both Fontwise and Printwise have font editors
for designing your own character styles or
altering the ones provided. The editor is
included in the Printwise package. The
Fontwise editor used to be an extra, but it is
now included.

Here again, the relative difference between the
two programs is apparent. The Fontwise editor
is basically just a character editor, much like
any other you will see on the BBC micro. It is
fast and easy to use, but each font takes up
inordinate amounts of memory allowing only
one to reside in memory at any one time when
actually printing.

Printwise uses some clever memory saving
techniques to compress the fonts into the
smallest possible space. Common parts of
letters are stored only once and a single letter
can be stored in bits to fit between adjacent
partners. This means that Printwise can hold

Continued on page 60

a1

il i 6 e

By Mike Williams and David Spencer

Last month we discussed in some detail the
creation of a suitable file structure as part of a
more professional and general approach to the
writing of file handling programs. Our
intention is to illustrate much of what is
involved by the creation of an integrated set of
procedures which you can use (and modify) as
part of your own programs. So far we have
provided a procedure called PROCcreatefile
which may be used to create an empty data file.

We now propose to describe the procedures
needed for the main features of any file
handling program. These will include routines
for opening and closing a file, and for adding,
deleting, updating and displaying records.
However, before we can proceed there is one
important topic that must be covered.

DISC BUFFERING

The disc filing system which you use, whether
it be the DFS or ADFS, uses a system of
buffering for data transfers between disc and
main memory. The buffers used (one for each
file up to the allowed maximum of five) will
hold 256 bytes of data using the DFS (it is
handled more dynamically under the ADFS),
that is the contents of one disc sector. When a
program writes to a file, data from the
program's own storage area is transferred to the
appropriate disc buffer, and only when that
buffer is full is it written out to disc.

Likewise, when a program tries to read data
from disc to the program's storage area in
memory, a whole sector is transferred from disc
to the disc buffer, and the relevant data then
supplied from the buffer to the program. Now

42

it is extremely unlikely that the record structure
in a data file will match exactly the sector size.
As a result, you may find when writing to a file,
that sometimes no data transfer to disc seems to
take place; the data has just not filled the buffer.
The same situation may arise on input, if a
previous disc read for one record has also
resulted in the next record being read as well.

Although it is as well to understand what is
going on, this form of disc buffering is largely
transparent to the user. Most of the time it will
be quite sufficient to think of data as being
transferred directly between the program and
disc. Of course, for maximum speed, it would
be advisable to relate record size to disc buffer
size, so as to maximise the amount of useful
data in each buffer transfer. For most
applications, the extra effort is probably not
justified, and it would probably have to be paid
for by more wasteful use of both disc storage
and memory.

RECORD BUFFERING

However, there is another form of buffering
which is almost essential to the functioning of
any sensible file handling program. Most of the
work any program is going to be called upon to
do will relate to one complete record. We must
therefore make provision for the program to be
able to store a record in its own memory area.
This will become the heart of our file handling
system and its set-up is therefore quite
important.

For example, when data is to be entered
through the keyboard, it will initially be stored
in this record area. Once a record is complete it
may be transferred from the record area to the
file. Likewise, a record read from a file will be
placed in the record area, and the contents of
the record area displayed on the screen. If we
want to update a record, it will first need to be
read from the file into the record area. The
contents of the record area will need to be
displayed on the screen, and during editing the
program will need to update both the screen
display and the contents of the record area in
unison. Once editing of the record area is
complete, its contents will be written back to
disc, overwriting the original copy of that
record.

Beebug August/September 1988

R et Loy - e R B e e TN T T e e £l Bl e o L e ety S L L e B

Implementing such a record area is not as
straightforward as it might seem at first for a
program handling many different data files.
There are two ways in which it might be
approached: by using one or more arrays, or by
designating an area of memory and using
indirection operators. Indirection operators can
be more efficient in both speed and use of
memory, but it can be harder to follow the
coding. For the time being at least, we will use
arrays for this purpose.

Now BBC Basic offers a useful facility whereby
an array can be dimensioned by the value of a
variable. That is to say, the size of an array can
be determined by the program at run time,
rather than fixed by the programmer when the
program was written. Like most things there is
a price to pay. An array once dimensioned
cannot be re-dimensioned. This would be a
limitation if we wanted to open one file for
processing in some way, and then proceed to
open a second file. The alternative is to use a
fixed size of array, even though this will be
more wasteful of storage. The size specified for
the array will act as an upper limit on the
number of fields possible within a record.
Opverall, a fixed size for this array is probably
most effective, and is easier to work with for
coding purposes.

There is one further point worth mentioning
before we get down to writing some
procedures. At the moment our plans only
relate to processing one record in one file at a
time. However, you may well find it useful to
make provision for handling more than one
record at a time by creating a two-dimensional
array, thus providing a multiple buffer facility.
For example, if we use last month's idea of a
pointer field then we might well need to have
both the initial record, and the linked record, in
memory together.

Now we can get down to writing some
procedures. The first one will be needed to
open a file and read the File Description Record
defined last time. In fact the coding will be
quite similar to the PROCcreatefile procedure
already written. We now just read the
information previously written to the file.

Beebug August/September 1988

1500 DEF PROCopen file (name$)

1510 1o0M, 1%

1520 F%=OPENUP (name$)

1530 IF F%=0 THEN PROCerror (1) :ENDPROC
1540 INPUT#F%,FH%,FS%,NR%,RS%,NF%
1550 FOR I%=1 TO NF$%

1560 INPUT#F$%,Fname$(I%),Fwidth%(I%),Ft
ypes (I%)

1570 NEXT

1580 start%=256*FH%

1590 ENDPROC

We are assuming that the three arrays
Fname$(), Fwidth%() and Ftype%() have all
been declared in the main program. The
procedure attempts to open a file with the name
supplied. If this is successful, the FDR is then
read using the three arrays, and the other
variables referred to last time. It is assumed that
the arrays and FDR variables are treated as
global variables whose values are accessible at
all times throughout the program. The
procedure also sets up two further global
variables, F% the channel number for the file
opened (which can also be used as a flag to
indicate that the file is open), and start%
calculated as the position of the first data record
(following the FDR).

If you decide to include any other information
about the file in the FDR, such as we discussed
last month (date last accessed for example),
then this would also be read in at this stage for
use as and when required.

We have included one token error check in the
procedure. This detects if the specified file can't
be found (maybe you've got the wrong disc, or
mis-typed the file name for example). It calls a
procedure PROCerror and exits from the
procedure. We are assuming that all error
situations you wish to detect will be handled
similarly. PROCerror, which we will not define
here, would output an error message
corresponding to the specified error number
(here given as 1), and might well set an error
flag.

This is a simple approach, and avoids the
unnecessary duplication of error messages that
would arise if the same error were to occur at
more than one point in the program.

43

If you need to cater for more than one data file
in use at a time, the variables F% and start%
could be converted into arrays. The program
just needs to keep track of a current file 'index'
all the time. Of course, all our other global
variables would also need an extra dimension
to store the same set of information about each
open file.

The next two procedures which we'll consider
perform the all important task of reading or
writing a single record. We will need a further
array, to which we'll give the name Record, to
implement a multi-buffer record area in
memory. As all our data is assumed to be
stored in string format this will have to be a
string array. Our two procedures will need to
designate the record number (and which
memory buffer) to use:

2000 DEF PROCwrite record(R%,buffers)
2010 LOCAL I% 7

2020 PTR#F%=start%+RS%*R%

2030 FOR I%=1 TO NF%

2040 PRINT#F%,Record$ (I%,buffer%)
2050 NEXT

2060 ENDPROC

2500 DEF PROCread record(R%,buffer%)
2510 LOCAL I%

2520 PTRF%=start%+RS%*R%

2530 FOR 1I%=1 TO NF%

2540 INPUT#F%,Record$ (1%,buffer%)
2550 NEXT

2560 ENDPROC

In both cases the file pointer is moved to the
calculated start of the specified record using
PTR#. A FOR-NEXT loop deals with each field
of the record in turn.

One of the first things you will want to do
when writing a database program is to write a
procedure to input a record and add this to the
file. However, this can be quite involved as far
as the screen display is concerned. It is very
much up to you to decide on this for yourself. It
is also closely related to the screen mode which
you use. You will probably want to display the
field names on the screen as a prompt for input,
and you may wish to convert some of the data
if you have implemented field types (dates for
example). What we have coded is thus just an
outline of what you might wish to do.

44

3000 DEF PROCenter record(buffer%)

3010 LOCAL I%:CLS

3020 FOR I%=1 TO NF%

3030 PRINT Fname$ (I%)+": ";

3040 Record$ (I%,buffer%)=FNinput (Ftype%
(I%),Fwidths (I%),pad$)

3050 NEXT

3060 IF FNconfirm THEN PROCwrite record
(NR%+1,buffers) :NR3=NR%+1

3070 ENDPROC

3100 DEF FNinput (type%,width%,p$)

.........

.........

3190 ENDPROC

The procedure first clears the screen (or current
text window). A loop then proceeds to display
the field name and input the corresponding
data for each field in turn. The input of data is
assumed to be handled by a further function
(FNinput) with three parameters, the field type,
the field width, and a specified pad character.
The field width can be used to ensure that the
data input does not exceed the maximum size
for that field, while the field type can be used to
automatically convert data if this feature has
been implemented.

Once the data has been input and converted, it
will need to be padded out so that the total
number of characters is equal to the field width.
The parameter pad$ could be used to specify
the pad character to be used. The resulting,
justified string is then assigned to its correct
position in the record area. Since a new record
will be appended to the end of the file, a call to
PROCwriterecord is all that is needed to add
the new record to the file, and the number of
records in the file (the value of NR%) is then
updated accordingly. FNconfirm is a further
function which would seek confirmation from
the user that the new record is correct before it
is added to the file.

PADDING AND STRIPPING

The choice of pad character is up to you, but
whatever character you choose may not be part
of any data. One solution is to use the null
character (ASCII 0). This will pad out any string
as required, but will be invisible if the data is
displayed or printed. However, if we wish to
compare the contents of a data field with any

Beebug August/September 1988

RSO G - 5 N T I e e s 2 - T s DT i e et TSR e B e L SN T

specified string, then either the pad characters
(even nulls) will need to be stripped from the
data first, or the specified string will need to be
padded out to the same field length. This is
probably the quickest approach.

Within the record area, it is probably best to
keep data in its padded form so that it is
identical to the way in which it is stored in the
file. Our procedures will be written on this
assumption. If necessary, strip any pad
characters from the data before displaying or
printing it.

DISPLAYING RECORDS

Displaying a record on the screen depends
much on what you are trying to achieve. Do
you wish to limit the number of fields so that
they may all be visible on the screen together?
Perhaps you want to cater for lengthy records
by splitting the screen display into several
. pages. Again you may be happy with a scrolling
screen. If you have decided to cater for different
file types you may want the program to modify
the data as it is taken from the record area and
displayed on the screen. We can only give a
simple outline of the kind of procedure you
might use.

3500 DEF PROCdisplay record (R%, buffer%)
3510 LOCAL I%:CLS

3520 PROCread_record(R%,buffer%)

3520 FOR I%=1 TO NF%

3530 PRINT Fname$ (I%);TAB(12);FNfield (R
ecord$ (I%,buffer%),Ftype% (I3),pads)

3540 NEXT

3550 ENDPROC

3600 DEF FNfield(data$,type%,p$)

3610 IF type%=2 THEN data$=FNinteger (data$)
3620 IF type%=3 THEN data$=FNreal (data$)
3630 IF type%=4 THEN data$=FNdate (data$)

3690 =FNstrip (data$,p$)

This follows much the same format as the
procedure PROCenter_record. The procedure
calls PROCread_record to read the specified
record from the file. The record is then
displayed, field by field, with a field name and
the corresponding data on each line. The data is

Beebug August/September 1988

extracted from the record area, and then passed
to a function called FNfield for conversion (and
stripping of pad characters if required) before
being displayed on the screen. We have given
just an outline of what FNfield might contain.
Stripping of pad characters could either be
incorporated here (as shown), or in the
individual conversion functions.

We will conclude this month's instalment by
writing a simple function to close our data file
at the end of a session. We will then have the
basis of a program to create a data file, open
and close a file, and to add and display records.
In fact, we have put all these procedures and
functions together in a simple demo program
on this month's magazine disc. Here is the final
function.

4000 DEF FNclose file(C)
4010 PTR#C=0

4020 PRINT#C,FH%,FS%,NR%
4040 CLOSE#C

4050 =0

This would be called with a line such as:
F%=FNclose (F%)

where F% is the channel number of the file to
be closed. Writing the routine as a function and
calling it in this way ensures that F% is set to
zero after the file has been closed, and this is
consistent with the use of this variable not only
as a channel number but as a flag to indicate
whether or not the file is open.

The function also sets the file pointer to the
start of the FDR so that the values of the first
three parameters may be written back to the
file. This ensures that the FDR contains
(correctly) the current number of records in the
file. If you have included any other information
which may have been updated (such as date
last accessed) then this data will also need to be
written back to the file. Either write back the
entire FDR, or calculate the pointer position for
the particular item of data and move the file
pointer there using PTR#.

We will continue our discussion of file handling in
the next issue.

@

45

e e e]
i & < X mmle

THE
BANK MANAGER

If you have problems keeping up with your
home accounts, you might find this
package from Contex Computing very
useful. Mark Joliffe explains all.

Product The Bank Manager

Supplier Contex Computing
15 Woodlands Close,
Cople, Bedford MK44 3UE.
Tel. (02303) 347

Price £22.50 inc, VAT (Master)

£17.50 inc. VAT (BBC B, B+)

The Contex Bank Manager is an accounting
system aimed primarily at home users and
small businesses. Versions are available for the
BBC B, B+, Master 128, Compact, and
Archimedes. The review version was that for
the Master 128.

Bank Manager is for disc systems only, and
comprises an unprotected disc and a manual. A
colour monitor is an advantage, and a printer
almost essential. The programs can be
transferred to your own disc, and a second
drive can be designated for data alone.

The features offered are extensive, and the use
of the program is simple once a working disc
has been created. Essentially, payments are
made to or from designated accounts, each
transaction being allocated a category for later
analysis. Creating a working disc requires the
entry of the account names and analysis groups
to be used. Each account or analysis name is
given a one or two digit code which is referred
to in the future. In addition, each account or
analysis group has a "budget" facility, which
can be set up to compare present totals with
previous periods, from one day to thirty-six
months.

Regular payments or receipts are catered for by
a 'standing order' feature, which enters these
transactions automatically as they become due.
Further customising adapts the program for

46

hardware variations or user preferences. The
review version allowed multiple account sets to
be accessed on the same disc, primarily for
Winchester users, but useful on the large floppy
disc ADFS format as well.

The programs are menu driven, with mode 7
being the usual display for data entry. Some
reports appear in 80 column mode if this has
been selected at set-up. All entries are in
response to clear prompts, although some of
the clarity will be lost without a colour monitor.
Sound is used to good effect, with different
notes for correct entry, deletion, and error.
Option selection is by the initial letter of the
keyword, or occasionally by default confirmed
by pressing the Return key.

urren

Unrec
65.68

switch)

reconcile
torward
amend

initial record

delete record

When used for the first time, a preliminary
menu lists the account sets available. The initial
menu is then entered, giving access to any
updates on the package, utilities for sorting and
recovering files, business utilities (if present), or
the Bank Manager program itself. Selection of
the Bank Manager option causes the
configuration file and date to be read, and
confirmation leads to the main menu.

This gives access to File Management, Posting
of Credits and Debits, Amending and
Reconciling, Reports, Graphics, or Switching of
Data Sets. Each of these leads to further menus.
File Management is a "Housekeeping" mode,
dealing with the setting-up or altering of file
parameters and configuration settings, and is
seldom needed after the initial customising.
The posting of credits and debits, the amending
and reconciling, and the reports form the
regularly-used heart of the program. The

Beebug August/September 1988

IR g e g R ol TS T L TR R T R e DTS B il < Pl U0 A DR A e e

graphics are primitive bar charts, of very
doubtful worth.

Each posting is done individually on a clear
mode 7 screen. After the required bank account
code has been entered, the full name of that
account is printed at the top of the screen
together with the brought forward balance, the
unreconciled total, and the account total. These
three (should!) correspond to the balance at the
end of the last bank statement, the total
unreconciled cheques, and the last figure in
your cheque-book.

Prompts for input are laid out down the screen,
with default date and cheque number ready
entered - the date will either be that read from
the internal clock, or the date entered for the
previous posting. The default cheque number
will be one more than the last number entered
for that account. Confirmation requires
pressing Return, while overtyping clears the
default and displays the new entry.

After each entry the cursor moves to the next,
ending with a request for confirmation of the
whole screen. Simplicity itself, with different
tone beeps helping those who need to watch
their typing fingers. One big irritation, which
has caused many errors, is the need to prefix a
credit with a minus sign. At the bottom of the
Posting Screen is a function key listing: these
can be pre-programmed with any often-used
words.

The Amend and Reconcile screen is very
similar to the Posting, without the function key
list but with a further menu. Entries can be
reconciled or unreconciled, alteted or deleted,
scanned forwards or backwards, or searched
for with a variety of criteria. Scanning can be
either for all, or unreconciled, entries. The
prompt for this is in an unfortunate choice of
white on a green background - virtually
invisible. Reconciliation simply involves
moving through the entries: a touch of a key
gives a yellow flag to indicate that the entry
agrees with your bank statement. Any error is
easily corrected by selecting 'amend' and
confirming each detail with Return, or by
overtyping to correct. Again, very simple, very
straightforward.

Beebug August/September 1988

The Report facility gives a range of listings for
all the accounts and analysis groups, with
comparisons between actual and budget totals.
Even deleted items can be listed. But the real
gem is the Report Writer: using a short list of
special commands a wide range of reports can
be created to a format that suits the user. These
command files are retained on disc and are
called by name as required, so that more or less
detailed reports can be generated when needed.

Sunday

<

Insurance

re
Function
1-6

A typical report could contain text as headings
or explanatory comments, a listing of accounts
with the current brought forward and carried
forward balances, and an analysis listing with
budget comparisons. Total lines can be printed
with one command, and dating can be
automatic. Printer commands can be entered
where appropriate to produce, for instance,
underlining or emphasised text.

Altogether a most smooth and pleasing
package, worth the very modest cost, and
backed by suppliers who have attended to
queries and problems with speed, courtesy, and
patience.

Product Bank Manager Business Utility Pack 1
Supplier Contex Computing
Price £12.00 inc. VAT

The Business Utilities provide a means of
printing out Bank Manager information, either
in Trial Balance or Spreadsheet format. They
are supplied ready integrated with the Bank
Manager suite, with the instructions on disc.
The Trial Balance utility is well worth the
money, but the Spreadsheet facility is of quite
limited value.

47

vt T s |

RUSING
A5 EITBEER
PAR g

This month Lee Calcraft extends the
drawing of graphics objects.

In this issue we shall be developing a
generalised plotting routine, and will build on
this to create line, triangle and rectangle
drawing subroutines. The starting point for all
this is a routine to perform the equivalent of
Basic's PLOT command.

But before we begin, it is worth taking a hard
look at the graphics co-ordinates which will
best suit our purpose. The reason for this is that
the 6502's registers are only 8 bits wide, so that
unless we deal in multi-byte values, we are
limited to graphics co-ordinates in the range 0
to 255. The Beeb commendably uses a
1280x1024 system for all graphics modes. But
none of the modes available on the BBC micro
(or indeed on the Archimedes) makes full use
of this precision. The best which the Beeb can
offer is 640x256 in mode 0. While all other
modes provide a resolution of 320x256 or
worse.

Since the 6502's registers are 8 bits wide, the
greatest graphics precision that can be achieved
using single registers is 256x256, and we will
opt for this system here. The upshot is that our
code will be much easier to write, and will
perform much more quickly than it would if we
had attempted to work with 16 bit numbers.
Moreover the loss in resolution will be minimal.
There is no loss at all in the Y direction, while
the X co-ordinate is only noticeably impaired in
mode 0. And even here, the fineness of any
plotting will not be affected, only the precision
with which a given point or line can be

48

specified. The only real snag is that the X and Y
co-ordinates are now on a slightly different
scale. The X co-ordinate is scaled down by a
factor of five, while the Y co-ordinate is
reduced by a factor of four. But this is very
easy to live with.

Listing 1 implements a generalised plotting
routine, making use of the new co-ordinate
system. It is called with the plot number in the
accumulator, and the X and Y co-ordinates (in
the range 0 to 255) in the X and Y registers. The
program also contains a routine to implement
GCOL. This is called with the logic mode in the
X register, and the colour number in Y. To
demonstrate the two routines, the code begins
with three short sequences. The first selects
mode 1. The second sets colour 1 (red), and the
third plots a point in that colour at the centre of
the screen (co-ordinates 128,128).

Listing 1

10 REM General Plot

20 REM Author Lee Calcraft
30 REM Version B 0.5

50 oswrch=&FFEE

60 templ=&70:temp2=6&71
70 MODE1

80 FOR pass=0 TO 1

90 P%=&900
100 [
110 OPT pass*3
.8tart
130 \Set Mode 1
140 LDA #22:JSR oswrch
150 LDA #1:JSR oswrch

170 \Set colour 1
180 LDX #0:LDY #1:JSR gcol

200 \Plot a central point

210 LDA #69:LDX #128:1LDY #128
220 JSR plot

230 RTS

240 \
250" ..gcol

260 \Logic din X, .colour in ¥
270 LDA #18:JSR oswrch

280 TXA:JSR oswrch

290 TYA:JSR oswrch

300 RTS

3107
320 .plot

Beebug August/September 1988

R e o e Oy L e e e e Tl o I L e L B L e N e e e TR

330 \Plot code in accumulator
340 \X & Y coords in X & Y
350 \Range 0-255 (X & Y)
360 PHA

370 LDA #0:STA templ

380 LDA #25:JSR oswrch

390 PLA:JSR oswrch

400 :

410 STX temp2:TXA

420 ASL A:ROL templ

430 ASL A:ROL templ

440 CLC:ADC temp2

450 BCC skip:INC templ

460 .skip
470 JSR oswrch
480 :

490 LDA templ:JSR oswrch
500 LDA#0:STA templ:TYA
510 ASL A:ROL templ

520 ASL A:ROL templ

530 JSR oswrch

540 LDA templ:JSR oswrch
550 RTS

560 \
570
580 NEXT

590 2

600 CALL start

HOW IT WORKS

At the heart of the plotting routine is the code
which multiplies the X co-ordinate by 5, and
the Y co-ordinate by 4. It then uses calls to
OSWRCH to send the following sequence:

VDU 25,plot no,Xlow,Xhi,Ylow,Yhi
where Xlow and Ylow are the bottom 8 bits of
the reconstituted X and Y co-ordinates (i.e.
1280x1024 style), and Xhi and Yhi are the high
bytes.

Multiplying the Y co-ordinate by 4 is just a
matter of shifting a register two places to the
left. This is performed in lines 510 and 520.
Note the use of the left shift followed by the
rotate instruction (discussed in Exploring
Assembler, part 9). This ensures that the bits
shifted out of the top of the register are caught,
and become a part of the top byte of the result.
Multiplying the X co-ordinate by 5 is achieved
by a similar double shift to multiply by 4,
followed by adding in the original value. This is
much quicker than performing a full 16-bit
multiply.

Beebug August/September 1988

LINES, TRIANGLES AND RECTANGLES
Now that we have a generalised plotting
routine, we can build on this to create routines
for drawing a variety of shapes. Listing 2
contains three such routines, and can draw any
line, filled triangle or open rectangle. Each of
the three routines makes calls to the plotting
routine discussed above. As an example, take a
look at the line-drawing routine at line 320 in
listing 2. Each time that this is called it will
draw a line between the co-ordinates x1,y1 and
x2,y2. These four co-ordinates must be supplied
to the routine in a four-byte parameter block.
This is located at &80 onwards in zero page
RAM, with x1 stored at &80, y1 at &81 and so
on. The short sequence of code starting at line
150 illustrates how this works. It sets up co-
ordinates 0,0 and 255,255 before executing JSR
line in line 180. The result is a diagonal line
from the bottom left-hand corner of the screen
to the top right.

The line drawing routine itself is very simple
(see line 320 onwards). It first loads the X
register with the contents of &80, and the Y
register with the contents of &81. It then loads
the accumulator with the value 4, and jumps to
the plotting subroutine. The value 4 in the
accumulator causes plot code 4 to be used, so a
MOVE is performed to the first of the line co-
ordinates. The other two co-ordinates are
picked up in the same way (line 370), and now
the accumulator is loaded with the value 5, to
cause the line to be drawn.

The triangle routine is also very
straightforward, except that there are three sets
of co-ordinates this time. These are supplied in
the six bytes of zero page from &80 to &85
inclusive. Finally the rectangle routine requires
just four parameters to be passed. These are the
co-ordinates of the bottom left-hand corner of
the rectangle and the width and height of the
rectangle. They must be placed in locations &80
to &83 in the order x1, y1, width, height. Unlike
the line and triangle routines, this one uses two
bytes of workspace (&84 and &85).

Listing 2
10 REM Plot routines
20 REM line, triangle & rectangle
30 REM Author Lee Calcraft

49

5900

RS N e s T SO ST e Tl | RIS MRS M WAL P WO OB N1k {1 o A <0 0SS B e il | A oy S s I £~

REM Version B 0.5

oswrch=&FFEE
templ=&70:temp2=&71
MODE7

FOR pass=0 TO 1
P%=&900

[

OPT pass*3

J8tart

\Draw a line

LDA #0:STA &80:STA &81
LDA #255:STA &82:STA &83
JSR line

\Draw a triangle

LDA #0:STA &80:STA &81

LDA #128:STA &82:STA &83

LDA #255:STA &84:1DA #0:STA &85
JSR triangle

\Draw a rectangle

LDA #0:STA &80:LDA #120:STA &81
STA &82:STA &83

JSR rectangle

RTS

.line

\x1,y1,x2,y2 at &80-&83
LDX &80:LDY &81

LDA #4

JSR plot

LDX &82:LDY &83

LDA #5

JSR plot

RTS

.triangle

\x1,y1,x2,y2,x3,y3 at &80-85
LDX &80:LDY &81

LDA #4

JSR plot

LDX &82:LDY &83

LDA #4:JSR plot

LDX &84:LDY &85

LDA #85:JSR plot

RTS

.rectangle

\x1,yl,width, height at &80-83
LDA &80:CLC

ADC &82:STA &84

LDA &81:CLC

ADC &83:STA &85

600 LDX &80:LDY &81

610 LDA #4:JSR plot

620 LDY &85:LDA #5:JSR plot
630 LDX &84:LDA #5:JSR plot
640 LDY &81:LDA #5:JSR plot
650 LDX &80:LDA #5:JSR plot
660 RTS

670 :

680 \
690 .plot

700 \Plot code in accumulator
710 \X & Y coords in X & Y
720 \Range 0-255 (X & Y)

730 PHA

740 LDA #0:STA templ

750 LDA #25:JSR oswrch

760 PLA:JSR oswrch

T4

780 STX temp2:TXA

790 ASL A:ROL templ

800 ASL A:ROL templ

810 CLC:ADC temp2

820 BCC skip:INC templ

830 .skip

840 JSR oswrch

850 :

860 LDA templ:JSR oswrch

870 LDA#0:STA templ:TYA

880 ASL A:ROL templ

890 ASL A:ROL templ

900 JSR oswrch

910 LDA templ:JSR oswrch

920 RTS

930" \
940]
950 NEXT

960 MODE1

970 CALL start

FLEXIBLE CALLING

Listing 3 provides a more taxing example of the
use of the rectangle drawing routine, using it to
generate a pattern made up from 120 small
rectangles, as you will see when you run the

program.

The whole point of using generalised plotting
and drawing routines is that they may be called
repeatedly, and whenever required, with
parameters calculated in real time (rather than
using previously determined parameters). If we
are to do this, we must ensure that calling our
drawing routines does not corrupt the
processor's registers. This is achieved by

Beebug August/September 1988

pushing them on to the stack at the start of the
routine, and pulling them off at the end. Listing
3 contains a new version of the rectangle-
drawing code which preserves registers in this
way. Line 340 pushes all three registers on to
the stack, and line 430 removes them again once
the drawing is complete.

This permits us to use the X and Y registers as
loop counters in the code which calls the
rectangle subroutine. The code for generating
the 120 rectangles appears from line 160
onwards. It begins by initialising locations &80
to &83 with the start co-ordinates of the first
rectangle (0,0), and its size (xsize by ysize, set
up in line 80 as 20x16). In lines 200 and 220 the
two loop counters are loaded with their initial
values (12 and 10 respectively). This will cause
a 10x12 grid of boxes to be drawn.

For each cycle of the X-loop, a single rectangle
is drawn, then location &80 is incremented to
give a new X co-ordinate for the next plot. The
X register is decremented, and the loop
repeated until the X register reaches zero. At
this point the next cycle of the Y loop is begun,
producing a second row of boxes, and so on
until the Y-counter reaches zero.

Listing 3
10 REM Multiple rectangles
20 REM Author Lee Calcraft
30 REM Version B 0.6

50 oswrch=&FFEE
60 templ=&70:temp2=6&71
70 xinc=24:yinc=20
80 xsize=20:ysize=16
90 MODE7
100 FOR pass=0 TO 1
110 P%=&900

120

130 OPT pass*3
140 .start

180

160 \Draw 120 rectangle pattern
170 LDA #0:STA &80:STA &81

180 LDA #xsize:STA &82

190 LDA #ysize:STA &83

200 1LDY #12

210 .yloop

220 1LDX #10

230 .xloop

240 JSR rectangle

Beebug August/September 1988

250 LDA &80:CLC:ADC #xinc:STA &80
260 DEX:BNE xloop

270 LDA #0:STA &80

280 LDA &81:CLC:ADC #yinc:STA &81
290 DEY:BNE yloop

300 RTS

310\
320 .rectangle

330 \x1,yl,width,height at &80-83
340 PHA:TXA:PHA:TYA:PHA

350 LDA &80:CLC:ADC &E2:STA &84
360 LDA &81:CLC:ADC &83:STA &85
370 LDX &80:LDY &81

380 LDA #4:JSR plot

390 LDY &85:LDA #5:JSR plot

400 LDX &84:LDA #5:JSR plot

410 LDY &81:LDA #5:JSR plot

420 LDX &80:LDA #5:JSR plot

430 PLA:TAY:PLA:TAX:PLA

440 RTS

450 \
460 .plot

470 \Plot code in accumulator
480 \X & Y coords in X & Y

490 \Range 0-255 (X & Y)

500 PHA:LDA #0:STA templ

510 LDA #25:JSR oswrch

520 PLA:JSR oswrch:STX temp2

530 TXA:ASL A:ROL templ

540 ASL A:ROL templ:CLC

550 ADC temp2:BCC skip:INC templ
560 .skip

570 JSR oswrch:LDA templ

580 JSR oswrch:LDA#0:STA templ
590 TYA:ASL A:ROL templ

600 ASL A:ROL templ:JSR oswrch
610 LDA templ:JSR oswrch

620 RTS

630 \
640
650 NEXT

660 MODE1

670 CALL start

You will find that you can easily experiment
with this routine to create different effects. You
could for example alter the size of the rectangle
at certain stages of the loop, or animate the
rectangle by plotting and over-plotting using
GCOL 3,n. There is also plenty of scope for
writing routines to generate other graphics
objects.

Next month we will take a look at the new topic of vectors,
but we will return to graphics at a later date.

51

[Filing System [be |

RIG={EITTE| I ([5 = | <€> |

David Spencer continues his look at linked lists, and their use in Basic.

Last month we looked at the record A into record B, so that both now point

use of pointers, and how to record C. Assuming that our pointers are

these could be used to four byte values at the start of each record, this

implement linked lists could be done using:

within Basic. However, we 'newptr=!ptr

covered only the creation of and Figure 2 depicts this.

' a new list, the addition of a
record to the end of a list,

and the reading of a list. L

Two further important

Tl

p—— Y] A

operations which we need
to consider are the addition
and removal of a record in
the middle of a linked list. L B

We will consider insertion
first, for which our starting Figure 2

point will be a linked list in

memory, and a new record Finally, the link from record A has to be
to insert into the list. We redirected to point to record B, which could be

- will assume that this new done using:
[! ptr=newptr

P
i

This is shown in figure 3,
L L and you can see that the
new record is now linked
« A ¢ = into the list. It is important
to realise that the records
3 will not normally be in
) B order in memory. The order
of the list is determined
= solely by the pointers,
Figure 1 regardless of where the

record already has a pointer actual records are.

field, but its contents are pejetion is even easier. Consider deleting

undefined. We will also record B from figure 3. This is easily
assume that there is a

pointer in the program
| called 'ptr' which points to
the record (referred to as A) —ple A ® c L,
preceding the point of I
insertion, and another
pointer called 'mewptr’
which points to the new
record (referred to as B).
Record C is the record that

is currently after A. This is Figure 3
shown in figure 1.

SRR

=

il
il

|

]
!

FI P ET IR IR i

ElEEEREaE

T
L1

1

TTET !
EEE
PP
EEa

i

i
i

T
|

\
@

AR

P PP

i

accomplished by taking the link pointer from
The first thing to do is to record B, which points to record C, and storing
copy the pointer field of this value in the link pointer of record A. This

PR o B

ERIEERDEEREET O

52 Beebug August/September 1988

makes record A point to record C, effectively

by-passing record B, although it is still in

memory. In Basic this could be done using:
!ptr=! (!ptr)

This returns to the state of figure 2.

Incidentally, these techniques can also be used
to insert and remove records from the end of a
linked list. This is because at no point is the
record after the one being deleted or inserted
accessed. All that is used is a pointer to that
record, and if you are at the end of the list, this
will simply have a null value.

LIST HEADS
One of the problems that occurs with linked
lists is the handling of an empty list, in other
words, one containing no records. If you adopt
the method we showed last month, with a
separate pointer that points to the start of the
list, then an empty list will be indicated by this
pointer having a null value. While this method
may seem straightforward, it can cause a lot of
unnecessary work when accessing the list. For
example, consider a linked list of records that
will be stored in memory somewhere, with the
first record pointer to be a pointer called
'FirstPtr'. Now assume that we have a record in
memory at location 'MemLoc' to add to the end
of the list. A fragment of code to do this might
look like:

IF FirstPtr=0 THEN FirstPtr=MemLoc

ELSE PROCinsert (FirstPtr)

DEF PROCinsert (Ptr)

IF !'Ptr=0 THEN !Ptr=MemLoc ELSE
PROCinsert (!ptr)

ENDPROC

The action of this code is to go through the list
until a null link pointer is found, and then to set
that pointer to point to the new record. We
have used a recursive technique to work our
way through the list (see the Workshop in Vol.7
No.2 for more information on recursion). This
simply treats the list as a series of smaller lists.
Each time PROCinsert is called, the list is
effectively one record shorter.

You can see that we need to pay special
attention to the case of an empty list. In such
circumstances we cannot just set the link
pointer of the last record in the list to point to
the new record, because there is no last record.

Beebug August/September 1988

Instead, we have to alter the value of 'FirstPtr'
which is a pointer to the whole list.

There is, however, an easy way round this
problem. This is to place a dummy record at the
start of the list, and make the link pointer in
this dummy record point to the first real record.
Such a dummy record is called a 'List Head',
because it appears at the head of the list. A list
head doesn't have to be the same type of record
as the rest of the list, because all that is needed
is the pointer field. The list head is created at
the start of execution, before any manipulation
of its list takes places, and it should be set up
with a null pointer. This means that the list
consists of just the list head. The advantage of
this, is that there is always at least one record,
and so we no longer have the special case of a
totally empty list to deal with.

Using this method, our operation for inserting a
record at the end of the list could be coded as
follows, (assuming that 'FirstPtr' now points to
the list head):

PROCinsert (FirstPtr)

DEF PROCinsert (Ptr)

IF !'Ptr=0 THEN !'Ptr=MemLoc ELSE
PROCinsert (!Ptr)

ENDPROC

This time, we do not need the extra code to
check for an empty list, as this is handled
automatically.

Listing 1 is an example program that reads
words that are typed in, and stores them in a
linked list in alphabetical order. If you then
press Return on its own, the program switches
to delete mode. Any words now entered will be
deleted from the list. A further press of Return
on its own will result in all the words in the list
being printed out in alphabetical order. Each
word is also stored with a count of the number
of times that word has been entered. However,
when you delete a word from the list the word
is simply removed, without any reference to the
number of times it has occurred.

The record format used to store each word is:
4 byte link pointer (Memory address)
4 byte integer count
ASCII characters of word, terminated
with a carriage return.

53

A list head is set up at the start of our memory
block. This consists of just a single four byte
pointer, which is initially set to zero to indicate
an empty list. The procedure to insert a word
starts at the list head and searches through the
existing list. If the new word is already present,
then its 'frequency count' is incremented.
Otherwise, the search continues until a word is
found that comes after the new word
(alphabetically). The correct position for the
new word is immediately before this record. At
this stage, a record is created for the new word,
and it is linked into the list. A special check has
to be made for the end of the list. If we reach
the end before finding a place for the new
word, then the new word must be the last word
alphabetically, and it is inserted at the end of
the list.

The deletion routine is similar. This checks
through the list until the desired word is found,
and when it is, unlinks the corresponding
record from the list. If the word is not found
before the end of the list, then a warning
message is printed, and the list is left
unchanged.

One possible use for a data structure along
these lines is the implementation of a simple
spell checker. Rather than typing in each word,
you could have a procedure that read a text file,
and returned it a word at a time. By the end of
the text, you would end up with a sorted list of
all the words read in, along with a count of how
many times each word occurred. You could
then go through the list one word at a time,
check each entry against the spell checker's
dictionary, and if it is found remove the word
from the list. After all the list has been checked,
all that is left is a list of words not in the spell
checkers dictionary, along with a frequency
count of their usage.

MEMORY ALLOCATION

Our discussion of deleting records from a list
gives rise to an interesting problem. What do
you do with the deleted record? As it stands,
any records we delete simply get left tucked in
a corner of memory. While this is no problem
with our simple examples, with a larger list
where records are constantly added and
deleted, we could quickly run out of memory as
it is filled up with old records.

54

What is needed is a set of routines that can
allocate chunks of memory as needed, and then
clean up once records have been deleted so that
the memory space can be re-used. Such a
system will be developed in the next
Workshop, and surprise, surprise, it will use
linked lists in its operation. Also, next time, we
will show how Basic uses linked lists to store its
variables.

10 REM Program Linked List Word Sort
20 REM Version B 1.0

30 REM Author David Spencer

40 REM BEEBUG August/September 1988
50 REM Program subject to copyright

100 DIM list 1000:free=list+4

110 !1ist=0: REM List Head

120 PRINT "ENTER WORDS"

130 REPEAT INPUT word$

140 IF word$<>"" PROCenterword(list,wo
rd$)

150 UNTIL word$=""

160 PRINT '"DELETE WORDS"

170 REPEAT INPUT word$

180 IF word$<>"" THEN IF NOT FNremovew
ord(list,word$) PRINT "Word not in list”
VDU |

190 UNTIL word$=""

200 ptr=list

210 REPEAT

220 ptr=!ptr

230 IF ptr THEN PRINTS (ptr+8) ;TAB(20) ;
ptr!'4

240 UNTIL ptr=0

250 END

260 ¢

1000 DEF PROCenterword (ptr,A$)

1010 IF !ptr=0 THEN 1040

1020 IF $(!ptr+8)=A$ THEN ! (!ptr+d)=!(!
ptr+4)+1:ENDPROC

1030 IF $(!ptr+8)<A$ THEN PROCenterword
(!ptr,word$) :ENDPROC

1040 !free=!ptr:free!4=1

1050 $(free+8)=A$

1060 !ptr=free

1070 free=free+LEN(AS$)+9

1080 ENDPROC

1050 :

1100 DEF FNremoveword (ptr,AS)

1110 IF !ptr=0 THEN =FALSE

1120 IF $(!ptr+8)=A$ THEN !ptr=!(!ptr):
=TRUE

1130 =FNremoveword(!ptr,A$)

Beebug August/September 1988

LR e TR T S R

G- T = |

DUAL SCREEN
PROGRAM
DISPLAYS

Paul Pibworth presents a useful utility
that will allow two programs to be
examined on the screen at the same time,
using a split screen display.

How many times have you found yourself in
the position where you cannot exactly
remember the subtle differences between two
versions of the same program? This utility will
allow you to examine both programs on the
screen at the same time.

Simply enter the program as listed and save it
as usual. When the program is run it will ask
for the file names for both programs which
should previously have been saved to disc or
tape. Enter the appropriate names and you will
be presented with two boxes, one for each
program. The cursor will be placed in the top
left-hand corner of the top box. Use the cursor
left/right keys to increment/decrement
through the line numbers.

Pressing Shift whilst using the cursor keys will
prevent the Basic lines from being displayed,
allowing the program to be searched through at
a quicker pace. Pressing Ctrl and cursor left will
take you directly to the beginning of the
program. Pressing P will print the current line
on the printer. Lines from the first program will
appear on the left hand side of the paper while
lines from the second program will appear on
the right. This makes cross referencing the
listings easier. You may swap between boxes by
using the cursor up/down keys. The current
box is signified by the presence of a >>>> next
to the file name. Once you have mastered the
key functions, you will find that programs may
be interrogated quickly and easily. When you
have finished press Escape to exit.

For those who are interested in how the

program works it simply loads the two files
above itself in memory. This is far faster than

Beebug August/September 1988

any alternative method, such as using random
access files. Once loaded the small machine
code routine in PROCassem is used to decode
Basic lines as they are needed. Because the two
programs to be compared are loaded above the
utility, memory is at a premium. This may limit
the lengths of programs to be compared. If you
find that you do not have enough memory we
would suggest that you remove PROCbox and
lines 230-240. If you also remove all REM
statements and spaces you will be able to
change line 140 to:
140 B%=PAGE+&D00

If you have a utility ROM such as BEEBUGs
Toolkit Plus you may compact the program
(*CRUNCH on Toolkit Plus).

As a final point regarding use of memory, be
careful not to insert any additional spaces when
entering the listing. If you keep a copy of the
utility nearby you should find it very useful
indeed.

10 REM Program
20 REM Version
30 REM Author
40 REM BEEBUG
50 REM Program
60
100 ON ERROR MODE 7:PROCerror:END
110 MODE 7
120 PROCassem
130 A$=STRINGS(253,CHRS32) :AS="PRESS A
RROW!"
140 B%=PAGE+&F00
150 INPUT''"ENTER NAME OF FIRST PROG "
'N1$
160 INPUT''"ENTER NAME OF SECOND PROG
HIN2$
170 OSCLI"LOAD "+N1$+" "+STRS~B%
180 Z%=0OPENUP N1$:C%=EXT#2%:C%=C3DIV25
:C%=C%*256+256+B%
190 CLOSE #2%
200 OSCLI"LOAD "+N2$+" "+STRS$~CS
210 :
220 CLS
230 PROCbox(0,2,8, 39)
240 PROCbox (0,15, 8,39)
250 PRINTTAB (6, 0) "PROGRAM
260 PRINTTAB (6,13) "PROGRAM
270 D%=B%:Y%=B%
280 E%=C%:2%=C%
290 *Fx4,1
300 G%=FNvdu(8,35,3,1)
310 REPEAT

Compare Utility
B1.05

Paul Pibworth
August 1988

subject to copyright

N

1=INiS
:="N2$

55

count %+3) =ABScount%
PROGRAM :-PROG1 1170 =mem%tcount%
.80 ¢
1190 DEF PROCdisplay
1200 IFG%=1 AS=S(Y%+4) :0%=7 (Y%+1) *256+2
(Y%+2) :L%=Y%?1:ELSE AS$=$(Z2%+4) :0%=?(2%+1
) *25642 (2%+2) :1%=2%?1
1210 token%=-1
PROGRAM :-PROG2 1220 1F1%=255 CLS:PRINT TAB(10)"END" :EN
¥SPO0OL filename h i
5 1230 PRINTTAB(0,0);0%" ";
1240 FORQ%=1TOLENAS
1250 A%=ASCMIDS (AS,0%,1)
1260 IFA%=34 token%=token%*-1
1270 IFA%>31 AND A%<127 PRINTCHRS$A%;
1280 IFA%=&8D:PRINT; (256* (((ASCMIDS (A$,
320 F%=GET Q%+1,1) *16)AND192) EOR ASCMIDS (AS$,Q%+3,1
330 IFF$=139 VDU26:PRINTTAB(0,0)" >>>))) +(((ASCMIDS (AS,Q%+1,1) *4) AND192) EOR
".TAB (0,13) SPC(5) :G$=FNvdu (8,35,3,1) ASCMIDS (AS,Q%+42,1)) ; :0%=0%+3:A%=0
340 IFF%=138 VDU26:PRINTTAB(0,13)" >>> 1290 IFA%>127 AND token%=-1 CALL&900
".TAB (0, 0) SPC (5) :G%=FNvdu (21, 35,16,2) 1300 IFA%>127 AND token%<>-1 PRINTCHRS$A
350 IFF%=136 AND G%=1 AND NOT INKEY-2 %;
D%=FNback (Y%,B%) :F%=137 1310 IFA%=&F4 token%=0
360 IFF$=136 AND G%=1 AND INKEY-2 D%=B 1320 NEXT
%:Y%5=B% 1330 PRINT
370 IFF%=136 AND G%=2 AND NOT INKEY-2 1340 ENDPROC
E%=FNback (2%,C%) :F%$=137 1350 ¢
380 IFF%=136 AND G%=2 AND INKEY-2 E%=C 1360 DEF PROCprint
%:2%=C% 1370 IrG%=1 VvDU2,1,27,1,108,1,5,1,27,1,
390 IFF%=137 AND G%=1 Y%=D%:D%=FNforwa 81,1,40,3
rd+D% 1380 IFG3-2 VDU2,1,217,1,64,1,27,1,108,1
400 IFF%=137 AND G%=2 Z%=E%:E%=FNforwa ,45,1,27,1,81,1,80,3
rd+E% 1390 VDU2:PROCdisplay:VDU3
410 IF NOT INKEY-1 PROCdisplay 1400 ENDPROC
420 IFF%=80 PROCprint 1410 :
430 UNTIL F%=69 1420 DEF PROCassem
440 VDU26,12:*FX4,0 1430 FORpass=0 TO 2 STEP 2
450 END 1440 P%=§900
460 : 1450 [OPT pass
1000 DEF FNvdu(H%,1%,J%,K%) 1460 STA&80
1010 vDuU28,4,H%,1%,J%,31,0,0 1470 LDA&8015
1020 =K% 1480 CMP#50:BEQ bas2
1030 : 1490 CMP#52:BEQ bas4
1040 DEF FNforward 1500 BRK:EQUS™ BASIC ROM NOT RECOGNISED
1050 IFG%=1 mem%=D% ELSE mem3%=E% " :BRK:RTS
1060 IFmem%?1>127 =0 1510 .bas2
1070 L%=mem$?1:M%$=mem%?2:N%=mem%?3 1520 LDA#(&71-10) :STA&85
1080 0%=L%*256+M% 1530 LDA#&80:STA&86
1090 CLS:IFL%<&FF PRINT;0% 1540 LDA#&8A:STA&87
1100 =N% 1550 JMPtoken
1110 ¢ 1560 .bas4
1120 DEF FNback (mem%,base%) 1570 LDA#(&56-10) :STA&85
1130 IFmem%=base% =base% 1580 LDA#&84:STA&86
1140 LOCALcount%:count%=0 1590 LDA#&81:STA&87
1150 REPEAT:count%=count$-1 1600 .token
1160 UNTIL? (mem$+count%)=13 AND ? (mem%+ 1610 LDA&85:STA&81:LDA&86:STA&82

56 Beebug August/September 1988

1620 LDY#10 1820 ENDPROC

1630 .loop2 1830 :

1640 LDA(&81),Y:CMP&80:BEQ found 1840 DEF PROCerror

1650 CLC:LDA&81:ADC#1:STA&81 1850 REPORT:PRINT " at line ":ERL

1660 LDA&82:ADC#0:STAC82:CLC 1860 *FX 4,0

1670 JMP loop2 1870 ENDPROC

1680 .found 1880 :

1040 PR 1890 DEF PROChOX (%, y,h,w)

1700 LDA(&81),Y 1900 LOCAL 1, J

i%g giggﬁigs%ggc fond 1910 PRINTTAB (x,y) ; CHR$147; CHRS (183) ; ST
A e o RINGS (w-2, CHRS (163)) ;CHRS (107)

1740 .print2 1920 FOR j=0 TO 5-3

1750 INY:LDA(&81),Y 1930 PRINTTAB(x,j+yf1);CHR$147;CHR$(181
1760 CLC:CMP#&7F:BCS rts) ; CHR$135; TAB (x+w-1, j+y+1) ; CHR$147 ; CHRS (
1770 JSR&FFEE:JMP print2 106)

1780 .rts 1940 NEXT j

1790 RTS 1950 PRINTTAB (x,y+h-1);CHR$147;CHRS (117
1800]) i STRINGS (w-2, CHR$ (112)) ; CHR$ (122)

1810 NEXT 1960 ENDPROC

CROSSWORD EDITOR (Continued from page 10)

2870 DEF PROCcont 3190 =8$

2880 VDU7:PRINTTAB (1,VPOS) "Press any ke 3200 :
y to proceed”:*FX15 3210 DEF PROCexec(0%)

2890 B=GET:ENDPROC 3220 vpU28,25,30,38,1,14:COLOUR131:CLS
2900 3230 IF 0%=0 OSCLI ("ANAGRAM "155)

2910 DEF PROCoptions 3240 IF 0%=1 OSCLI ("BROWSE T459) 1501032
2920 LOCALX%:VDU28,1,7,12,1 00

2930 COLOUR131:CLS:COLOUR2 3250 IF 0%=2 OSCLI ("CHECK "+S$)

2940 FORX%= 0TO5:PRINTTAB (1) 0$ (X%) :NEXT 3260 IF 0%=3 OSCLI ("CROSSWORD "+588)
2950 ENDPROC 3270 IF 0%=4 OSCLI("FUZZY nEss)

2960 : 3280 VDU7:PRINT"Press a key":*FX15

2970 DEF PROCspell 3290 B=GET

2980 LOCAL X%,C,ex 3300 VDU15:COLOUR129:CLS:ENDPROC

2990 PROCoptions:ex=FALSE 3318

3000 REPEAT:S$="":X%=0:COLOUR2 3320 DEF PROCmc

3010 REPEAT:*FX21,0 3330 FOR 2%=0TO2STEP2 :P%=6A00: [OPTZ%
3020 COLOUR 128 :PRINTTAB (1,X%)0$ (X%) 3340 LDA#17:JSR&FFEE:LDA#130:JSR&FFEE
3030 C=GET:COLOUR131:PRINTTAB (1, X%)0$ (X 3350 LDA#&FF:STA&71:LDX#0
%) 3360 .x INX:LDY#0:.y INY:INC&71

3040 IF C=139 ANDX%>0 X%=X%-1 3370 TYA:PHA:1LDY&71:LDAWS, Y

3050 IF C=138 ANDX3%<5 X3%=X%+1 3380 STA&TF:BEQzero:CMP#1:BEQone

3060 UNTIL C=13:IF X%=5 ex=TRUE 3390 LDA#0:STA&75:JIMPpl

3070 IF NOTex S$=FNgetstr 3400 .zero LDA#0:STA&75:LDA#32:STAGLTF
3080 IF NOTex ANDS$<>"" PROCexec (X%) 3410 JgMpPpl

3090 PROCoptions 3420 .one LDA#3:STA&75:LDA#255:STA&TF
3100 UNTILex 3430 .pl PLA:TAY

3110 COLOUR129:CLS:VDU26:COLOUR130 3440 LDA#17:JSR&FFEE:LDA&75: JSR&FFER
3120 ENDPROC 3450 LDA#31:JSR&FFEE

3130 3460 TXA:CLC:ADC&454:JSR&FFEE

3140 DEF FNgetstr 3470 TYA:CLC:ADC&458:JSR&FFEE

3150 COLOUR129:C1.5:VDU28,5,5,33. 1 3480 LDA&TF :JSR&FFEE

3160 COLOUR131:CLS:COLOUR2 :PROCon 3490 CPY&70:BMIy:CPX&70:BMIx

3170 PRINT"Search string":INPUT":"S$ 3500 RTS:]NEXT

3180 PROCoff:COLOUR129:CLS 3510 ENDPROC B

Beebug August/September 1988 57

) THE
\ _/\2’;//\\1\

& comms spor
\\‘\\ o\

o

In this month's Comms Spot, Peter
Rochford investigates what one should
look for when purchasing communication
equipment.

In last month's Comms Spot, I presented a list
of communication terms with explanations for
those new to the subject. This month I am going
to explain what features to look for in terms of
both the hardware and software needed for a
comms set-up.

MODEMS

I explained what a modem is and what it does
in last month's column. It is a hardware device
and quite a complex piece of electronics.
However, it does not need to cost the earth and
prices have actually fallen recently, largely due
to production of custom chips like the AMD
7910. These chips contain most of the modem'’s
circuitry all in one package, instead of in the
form of discrete components, thus saving on
cost.

When choosing a modem you must first decide
at what speeds you wish to communicate.
300/300 baud (V21) is standard on most
modems but is rarely used now. 1200/75 (V23)
is again standard on most modems and is
necessary to communicate with Prestel.
Telecom Gold also works at 1200/75 but can be
used at 300/300. Unfortunately the latter is
painfully slow and costly in terms of both your
telephone bill and online time charges.

The next speed up the scale is 1200/1200 (V22).
Both Prestel and Telecom Gold can operate on
this standard. In the case of Prestel, V22 is not
much of an advantage unless you are sending
large numbers of mailboxes which you have

58

created off-line and then wish to upload
quickly. Prestel responds, in the main, to single
key presses or short keywords to request
information. The difference between sending
them at 1200 baud instead of 75 baud will
hardly be noticeable or advantageous to the
user. Neither will typing in mailbox messages
while on-line be much faster at 1200 baud
compared to 75 baud, as most people cannot
type fast enough to benefit from the extra speed
of data transmission.

When it comes to Telecom Gold, with its far
more sophisticated Email system, then V22 can
be much more desirable when you regularly
create large text files off-line and then upload
them quickly onto the system and log off, thus
saving time and money.

MHET Contributors (e HOB269a L2}
EIEF'H [- (B727> 48363
e K LJ — o b Mo
*+ FRONT PAGE *#*
1. DATABUS - BEEBUG’s On-line Hag
‘i s X :H.lf
Mhat is BEEBUG 7
4. Latest Magazine Details
. BEEBUG Retail
5. BEEBUG Products ~ inc Software
». Feat

2 Jul
Teleshopping

To Jo BEEBUG~
Hew easy
. For a Free H

9., BRISC _USER
Master ROM now

AGRZ LHE
luble Keu I

The next most common speed offered on
modems, and in use by BT on their online
systems, is 2400/2400 baud (V22bis). This is
twice the speed of V22 and can mean significant
savings to you in terms of time and money, not
to mention the sheer luxury of getting the
information on your screen so fast. The penalty
at the moment however, is that V22bis modems
are still quite expensive at around £500. Until
the price of the technology falls, as it surely
will, it is beyond the reach of most domestic
users.

So, having decided which speeds your modem
should have, what other features should you
look for? Auto-answer is one that is offered as
standard on many modems. However, this will

Beebug August/September 1988

AR Sl SR S, - o e I IEY S SR S0 SRS RS, U TR ke G, T RS o (R e e R b ST e N e - e T Sl Gk T el (I

be a little-used facility by most unless you want
to set up your own bulletin board.

What about auto-dial? Definitely worth having
I believe as it saves the bother of dialling
manually and enables you to keep a database of
your most regularly used numbers, for
selection and dialling via software by means of
a single keypress.

A large number of modems are now available
that are Hayes compatible. I have talked before
about Hayes and its advantages. Briefly, it is a
standard developed in the USA whereby the
modem will respond to a set of commands that
enable speed selection, auto-dial and auto
answer amongst other things, all under
software control. The beauty of it is that the
modem will work with virtually any software
that allows the codes to be sent to the modem.
This is a great step forward in comms, and I
would not consider buying a modem that was
not Hayes compatible.

FUMTEL

» Coaster oame

9 Quit

Scrolling Funtel

SOFTWARE

This is a difficult subject to tackle and causes
most people the biggest headaches. There are a
large number of comms software packages
around for the Beeb. The majority of them are
very good, but some are downright awful.

Choosing a package can sometimes be dictated
by the modem you have chosen, as the modem
is designed to work with particular software to
select its functions. Such was the case of the ill-

Beebug August/September 1988

fated Demon modem and the accompanying
Zromm software.

What else should you look for in a software
package? It certainly should provide the facility
to access both scrolling text and viewdata
services. It should also allow you to
communicate at all the speeds that your
modem is capable of. If your modem is not
Hayes compatible then it should allow you to
auto-dial from your modem if that is possible.
Certain packages like Commsoft have modem
drivers available to allow this. It consists of an
extra piece of software loaded into RAM once
the main software has been called up.

In Viewdata mode the software should allow
telesoftware downloading, the printing and
saving of screens and off-line mailbox editing.
These are, I believe, the very basics.

In scrolling text mode there should be the
facility for uploading and downloading of text
files, saving of output/input to disc or memory
buffer, printing of all screen output, choice of
screen modes and the ability to
download/upload data and text using one or
more of the popular error checking protocols
such as Xmodem or Kermit. These again are the
basics that should be included.

There is one final and particularly important
criteria to mention in choosing comms
software, and that is ease-of-use. You must be
happy with the software and find it simple to
use. If not, your on-line time will become a
chore and will ultimately cost you more money
as time is wasted whilst you fight to get the
software to do what you want.

As with most products you purchase, try to see
the modem and software working together
before you buy. Not always easy to get that sort
of demonstration, but well worth trying for.

Note: BEEBUG's internal modem for the Master 128 is
now available for £113.05 to members, and is supplied
complete with our Command ROM and an 84 page
manual. B

59

FONT ROM (continued from page 41)

two fonts in memory at once and these can be
instantly switched between when printing
(with yet another embedded command). This
also means that unlike Fontwise, Printwise can
print a single line in more than one font - a very
useful feature.

However, this complication of the font data
handling also makes the Printwise font editor
less friendly than Fontwise. As ever it's a choice
of ease of use against versatility.

CONCLUSION

Both Fontwise and Printwise are excellent
packages in their own right and the choice
between them is largely a matter of personal
preferences and requirements. The same goes
for the rest of these font packages too.

If it's just a straightforward NLQ you require
then Watfords Epson NLQ and Hyperdriver
provide simple solutions. Hyperdriver also has
the advantage of offering a host of other
goodies too.

For owners of the Taxan and Canon printers
covered by the NLQ Designer and Fontaid
ROMs then either of these provide high quality

PROGRAM FORMAT PRINTERS

Epson NLQ ROM

(Watford)

Fontaid
(CJE Micros)

Epson
compat.

ROM Taxan/
Canon/

Star

Fontwise
(Clares)

Epson
compat.

Epson
compat.

Hyperdriver
(Dabs Press)

Taxan/
Canon

NLQ Designer
(Watford)

Epson/
Shinwa
compat.

Printwise
(Beebugsoft)

and easily-used alternative printer styles. These
make use of the printer's existing (if rarely
used) features which both knit in perfectly with
the normal printer effects and provide a high
quality output.

However, these two ROMs cannot compete
with the two multi-font programs (Fontwise
and Printwise) when it comes to versatility. For
truly professional output, these programs are
only beaten by 'publishing' software such as
Fleet Street Editor and Stop Press - both of
which are considerably more complicated and
expensive.

SUPPLIERS
Watford Electronics, 250 Lower High St., Watford
WD1 2AN, phone (0923) 37774.

Dabs Press, 76 Gardner Road, Prestwich, Manchester
M25 7HU, phone 061-773 2413.

Clares Micro Supplies, 98 Middlewich Road,
Northwich, Cheshire CW9 7DA, phone (0606) 48511.

Beebugsoft, Dolphin Place, Holywell Hill, St. Albans,
Herts. AL1 1EX, phone (0727) 40303.

CJE Micros, 78 Brighton Road, Worthing, West Sussex
BN11 2EN, phone (0903) 213361.

FONT ENLARGED/
EDITOR CONDENSED

>1 FONT
PER LINE

No.
FONTS

1 no yes yes

10 yes

Beebug August/September 1988

R O R T e R e I e A T e L

=

HINTS, HINTS. HINTS. HINTS. HINTS

David Spencer rounds up
this month's Hints and Tips
from BEEBUG members.

** * STAR HINT * * *

MASTER SERIAL PORT
Andre Peters

There is a very subtle
difference between the serial
port on the model B, and that
on the Master, which stems
from the use of a different
serial input chip on the two
machines. When a working
RS232 or RS423 device is
connected to the serial port,
both machines behave
identically. However, the
effect when the serial port is
unconnected is different
between the model B and the
Master. On a model B, both
the data input, and the Clear
To Send (CTS) input, float to a
logic high level. This means
that no data is received by the
computer on the serial port.
On a Master, however, both of
these lines float to a logic low.
This means that the computer
will continually receive Null
characters on the serial port.
Further, all these characters
will cause what is known as a
framing error, because the line
is held low all the time.
Normally, the operating
system can cope with this, and
just ignores the erroneous
characters. But, some third
party software written for the
model B might not be able to
handle this properly, and this
could prevent the software
from working.

Acorn say that the solution to
this problem is a small
hardware modification which

involves adding two resistors
to the Master. Both should be
15K in value, with one
connected between IC50 pin 8
and IC51 pin 6, and the other
between IC50 pin8 and IC51
pin8. As this involves
soldering directly to
integrated circuits on the PCB,
it is better to have the
modification carried out by an
approved dealer.

TELLING BASIC APART

Gary Blackwell
It is often very useful when
writing machine code

programs to be able to access
routines within the Basic
ROM. This can save writing
large chunks of code which
Basic already provides.
However, one of the main
problems of this is that there
are several versions of Basic
around, and the same routine
is unlikely to be at the same
address in any two versions.
One way around this is to
keep a table of the addresses
of the routines for each
version of Basic, and then pick
the correct one when the
program is assembled.
However, you still need to
find which version of Basic
you have. The easiest way of
doing this is to look at the
copyright date in the Basic
ROM. The byte at location
&8015 contains the last digit of
the year in ASCII. You can
then write a line such as:

IF ?&8015=ASC"4" THEN
PROCbasicIV
The values to use are "1" for
Basic I'"2" for Basic 11, '4" for
Basic IV, and '6' for Basic VI
(Compact).

Beebug August/September 1988

COMPACT VIEW
John Wallace
Many users of View on the
Compact do not realise that it
contains a built in printer
driver for Epson compatible
printers. This driver is
automatically selected when
View is started, but if a
different driver is used, the
default Epson one can be re-
installed by typing:

PRINTER EPSON
from the command screen.
This will download the driver
from ROM. The built-in
printer driver is fairly
sophisticated, and supports all
the extended highlight
sequences listed on the View
Reference Card.

BASIC ERRORS

Matthew Cooper

There is a little quirk in Basic
that only shows itself if you
have a program with a line 0
in it. As you will know,
normally when a program
generates an error, Basic prints
a message such as:

Syntax error at line 1234
However, if an error occurs at
line 0 in a program, the
message is not:

Syntax error at line 0
but just:

Syntax error
This is because Basic looks at
the line number where the
error occurred, and if it is
zero, assumes that the error
was in a direct mode
command and doesn't bother
to print the line number.
While this should cause no
problems, it can be confusing
if you do not realise what
is happening. B

61

Robin Burton
presents another
collection of
hints for users of
the 512 'co-
processor.

512

Lii i1l

In this month's
forum we will
expand on a
couple of points from the example batch file
given last time, and then look at a feature of the
512 that many owners are quite unaware of.

COLOUR

It seems that there is quite a lot of confusion
among new users of the 512, as to the use of
colour displays. The 512 emulates a CGA
(Colour Graphics Adaptor), and a CGA display
in 80 column mode can use four colours, so you
might hope the 512 will do this too.
Unfortunately this is not so: in 80 column mode
the 512 displays only two colours.

The 512's CGA emulation is limited to ensuring
that the four colour output from an application
is translated to two colours, while still
producing a legible display. For the reason
behind this look no further than the BBC's two
80 column screen modes (mode 0 and mode 3).
Both of these are two colours only.

The colours can be any of the BBC's 16, but only
two at a time, one for the foreground, and one
for the background. In practice, only the non-
flashing colours in the range 0 to 7 are of any
real use.

Even if your software includes four colours in
its options, and you have seen it use four
colours and 80 columns on a PC, the 512 still
displays only two. The normal choice of colours
is white text on a black background, although
this can be changed by using the 'colour’
command, which performs a VDU 19 to change
the screen colours.

The 'colour’ command takes two parameters:
the first indicates whether the colour to be
changed is the foreground colour (1) or the

¢ 62
I L Ot oy o e N e LT T N T e e e A .

background colour (0), while the second is the
number of the colour to be used. The second
parameter can be in the range 0 to 15, and is the
physical colour number. These are listed in the
Beeb's User Guide. The 'colour' command
works by simply sending the necessary VDU
codes to the Beeb to bring about the colour
change. For example, to display green text on a
blue background, the two commands required
are:
colour 0 4 - Change the background to
blue
colour 1 2 - Change the foreground
(text) to green.

It does not matter what the colours are to begin
with, they will be changed regardless. Another
thing to note is the use of spaces, rather than
commas, to separate parameters. This is
standard practice with DOS+ commands. To set
the colours for GEM, use 2 and 3 instead of 0
and 1 for background and foreground
respectively.

If you are using GEM, it is possible to have a
four colour display, by installing the four-
colour screen driver supplied on the
miscellaneous disc (number four). This is done
using the GEM set-up program and is described
in the 512 User Guide. The main drawback of
this four-colour driver is that there is a straight
trade-off of screen resolution against colour.
That is, you double the colours, but you halve
resolution. Although 80 column text can be
displayed, it isn't suitable for word processing,
even with GEM Write, owing to the poor
character resolution.

The 'colour' command, when used with the four
colour option, is similar except that there is no
foreground or background as such. Each of the
four colours is referred to by a number between
four and seven. For example, to change the first
colour (number four) to cyan (BBC colour six),
the command is:

colour 4 6

If you later wanted to change colour four,
currently cyan, to blue, the colour number does
not change, so the command would be:

colour 4 4

Beebug August/September 1988

THE RAM DISC

Next we will take a look at the RAM disc,
which is an area of memory set up to behave as
if it were another disc drive. I suggested that
this could be used with batch files to avoid disc
swapping. In fact it can be useful with many
programs, with or without batch files. Some
implementations of DOS have a (semi)
permanently configured default RAM disc
which appears automatically when the system's
loaded. This is not possible on the 512, but
given its limited memory this is just as well.

Memory is at a premium on the 512. As it is,
many programs will not run with less than
640K of memory. You therefore have to be very
careful about how much memory you allocate
to a RAM disc, as this will reduce the amount
of memory available to programs. Some
programs need all, or most, of the available
RAM, for loading, even if they can cope with
less memory when running. These applications
will fail with a RAM disc installed, so you must
experiment with your own jobs. What works
for one may very well not suit another.

While we're on this topic, if you wonder why
some programs run quite happily in a 512K
MS-DOS machine but won't run in a Master
512, the reason is that DOS+ takes about 90K
more RAM than MS-DOS.

To set up a RAM disc is simplicity itself; even
the User Guide explains this well enough. It is
what it doesn't tell you that matters. The
command is 'memdisk’, followed by the
number of kilobytes that you want to allocate.
For example, to create a 20K RAM disc you
would enter:
memdisk 20

If you use a RAM disc you can include its set-
up commands in your startup batch file.
Include the command to create it, together with
suitable copy statements to put into it the often
needed transient command software, like 'fset’,
'chkdsk' and your batch files. When these are
called, you won't have to re-insert the systems
disc, nor do you need a copy of them on every
data or applications disc. Try these commands

Beebug August/September 1988

with the systems disc in drive A - you will soon
get the idea:

backg

memdisk 60

copy a:fset.cmd m:

copy a:chkdsk.cmd m:

dir m:

backg

The two 'backg' commands show the memory
reduction caused by the RAM disc. The bad
news is that memdisk is a program, and it uses
memory. As you will see from your screen, the
total for a 60K RAM disc is about 150k. The 90K
overhead does not vary, so even a 20K RAM
disc needs 110K. Bear this in mind when you
decide on the suitability of a RAM disc for your
particular job.

Important points to note about a RAM disc are
that after it is created you are stuck with it until
the system is re-booted. You cannot remove it
or change its size even if it is empty. This is a
real nuisance, and definitely belongs on the
bugs/omissions list, although in fairness this is
peculiar to neither the 512, nor even DOS+.

Another point is, no matter what size you
allocate, the result is always an even number. If
you need a 31K RAM disc you must allocate
32K. An attempt to create it as 31K will be
rounded down to 30K by the system, which is
perhaps not enough if you are being careful
with the size. The final point is that your RAM
disc is always drive M.

It is not all bad news, however. With the right
applications a RAM disc can greatly speed up
operations that call for the loading of transient
commands, like 'fset'. They only take a few
seconds really, but it seems like an age while
you wait. A good many applications do not
need all the RAM, and some will adjust to use
what's left (within reason) after the other
allocations are taken.

For example I use PC-Write, which is quite
happy to co-reside with a 100K RAM disc while
editing a 60K document in memory, adequate
for most purposes. If the RAM disc allocation is
128K, PC Write adjusts by reducing the

63

maximum document size down to about 42K,
and so on.

Unless you have a hard disc, a RAM disc can
save you time, but remember that it is not a real

disc. A power cut or any machine failure is:

fatal, as the contents are lost. Use it for
temporary storage, but NOT for critical data
files.

MONITORING GOINGS-ON

We will round off with a quick look at the
monitor built into the DOS+ boot chip, and the
subject of segmented memory. This is the
program that gives the * prompt, seen when the
512 is switched on but not booted, or when
BREAK is pressed before switching off the 512
or entering the 'NOTUBE' command. This is
really only for interest, as it is a tool for
patching or debugging. Far better general user
development tools exist, even among the free
ones in the public domain.

To see the full range of the monitor's
commands, from the * prompt type:

H.MON
and press return. It is quite limited, but it does
provide the ability to access the BBC's star
commands as well as the opportunity of getting
into the 512's memory directly.

The first command, 'd', allows an area of
memory to be dumped, in hex and ASCIL

The command shown as 'dos' simply enters
the boot routine to load DOS+.

'f' allows a specified area of memory to
filled with a given byte or word value.

'go’ is is for debugging specific areas of
programs, by supplying the address from
which execution should start.

'mon’' enters the monitor. This allows the
monitor to be re-entered from within DOS+
by typing:

star mon

's' means set. This is the 512 memory editor.
You can move around using the cursor keys,
and directly key in values as required.

“ 64

'st' is a memory search routine allowing a
given string to be located in the 512, again
used for debugging and testing.

Finally 'tfer', the most interesting command,
transfers memory across the Tube in either
direction. The parameters are the address in
the I-O processor (the BBC) the address in
the 512, the length of data to move and R
(read from the BBC), or W (write to the BBC)
for the direction of transfer. If you feel
adventurous try transferring an area of
(used) 512 memory to the BBC, then
*SAVEing it to disc, when you find 'putfile’
or 'move' too boring.

Even more useful, you can call 'tfer' from
Basic. Using a simple memory management
procedure and 'OSCLI', you could archive
up to half a megabyte of BBC Basic data in
the 512. It gives a whole new meaning to
'sideways' expansion, doesn't it?

SEGMENTED MEMORY

You will notice that in the help list for the 512
Monitor, addresses are listed as
<segment:offset>. What this means is that the
addresses should be specified as two values,
separated by a colon, rather than the normal
single value. The reason for this is that the
80186 can address upto 1 Mbyte of memory.
This requires a twenty-bit address, but all the
registers used in the 80186 are only sixteen bits
wide. To allow the full address range to be
accessed using the value from a single register,
addresses are made up of two parts - a segment
number and an address offset. The processor
takes these two parts and forms a twenty bit
address by multiplying the segment number by
16 and adding the address offset.

When we specify addresses for use by the
Monitor, the segment number is given,
followed by a colon, and finally the address
offset. So, for example, an address of &12345
could be specified as 1234:5, which means the
5th byte in segment &1234. There are however,
other ways of specifying the same address. For
example, 1233:15, because &1233*16+&15 is
&12345.

Beebug August/September 1988

B e s A oy e e e A ety e e B il M el e e e | G e e S A

221

\n

MASTERING DOMESTIC
ACCOUNTS

Some years ago BEEBUG
published a Domestic
Accounts program, and later
this was included in the
members' pack for a time. Due
to changes in the OSBYTE &87
call, the screen dump section
of this program does not work
correctly on Master series
machines. The following
changes will correct this:

5100 DATA FAFFEOFFF004E000
5110 DATA D00A208357A98720
5120 DATA F4AFFA920A90120EE
5330 IF T%<>23804 PRINT'"C
hecksum error.":END

Thope this is of interest.
T.D.Tuddenham

This program has remained a
firm favourite with BEEBUG
members since it was first
published (Vol.2 No.10 & Vol.3
No.6). Several members have
asked for help with running this
program on a Master, and we
are therefore pleased to pass on
Mr Tuddenham'’s update.

OF SHOES AND SHIPS
AND SEALING WAX

You asked for comments as to
the future direction of
BEEBUG. I would be happy to
see programs in other
languages, simply out of
interest. I still have trouble
enough with Basic.

I have recently been given an
Archimedes for my job as an
advisory teacher involved
with LT. (can't wait for a state-
of-the-art word processor and

POSTBAG ()P

desk-top publishing package),
and I would find it very useful
if programs published in
BEEBUG were marked so as to
indicate whether they would
run on an Arc unmodified, or
under the emulator. I still run
many BEEBUG visuals and
use programs such as Zoom
(BEEBUG Vol.4 No.2), and it
would be useful to know if
anything new could be used.

As a previous network
manager, it would also be
useful to see the occasional
network comment, and to
know whether programs ran
also on these systems.

Martyn Wilson

Some other readers have
commented similarly about
marking programs from
BEEBUG for their suitability for
running on an Arc. Many
programs will run with little or
no modification, and often
benefit from the increased speed
of the Archimedes, though there
are some significant differences
(see article by Chris Drage in
Vol.6 No.10), and clearly any
which use the 6502 assembler
would only run under the
emulator. We hope to
experiment with the testing and
marking of BEEBUG programs
in this way very shortly. Further
comment would be welcome.

Readers may also be interested to
know that BEEBUG is an
Econet approved dealer and runs
an Econet network with various
BBC micros and an Archimedes
connected. This system is now
used for all editorial work.

Beebug August/September 1988

CREDIT WHERE CREDIT IS DUE
I think it is about time you
gave more credit to some of
your own (Beebugsoft)
programs, especially when
comparing them with other
products of a similar nature in
reviews. In particular I refer to
Masterfile IT which I have
used for many years on my
BBC, and then on my Master.
In my view it is by far the best
database going today.
E.A.Allchin

Mr Allchin’s letter raises a point
which has always caused us
some concern. Whilst we accept
that members clearly wish to
know about any products
produced by ourselves, it is also
our view that any attempt to
review our own products,
particularly in comparison with
other similar ones, would at the
very least undermine the
perceived objectivity of our
reviews. As a result, other
suppliers might no longer be
prepared to submit their own
products for review, and
members might well have less
regard for what we say. We have
therefore followed a policy for
some time now of not reviewing
our own products, although we
have relaxed this stance with
regards to BEEBUG Surveys
(starting this month) of existing
rather than new products.We
hope members will appreciate
our position in this in the
interests of providing
independent and objective
reviews of all products which we
do feature in BEEBUG.

65

for back issues to the
s sterling drawn (for

d Americas & Africa
£29.00 Elsewhere £48.00

BACK ISSUE PRICES (pef issue)
All overseas jtems aré sent

Magazin® sDisc 357D1C airmail. We will ¢ ficial UK
£0.40 - - ot

£0.50 -

£0.70 i £3.50

£0.90 . £4.00 -

£1.20 ! £4.50 £4.50

£1.30 ! £4.75 £4.75 an invoice-

£1.30 50 5 £4.75 VAT in magazines-

FURTHER D\SCOUNTS pOST AND PACKING

We will allow you @ further discount: Please add the cost of p&p:

Five or more: Destination

Ten or more.

Twenty Of more: UK, BFPO + chl
Thirty of more: educt £5 i Europe + Eire
Forty of more: Elsewhere

Mannée on-Fri -5pm
(24hr Answarph ne for con ['p\'\ons)

rogram for all \\h\slra\or
crosswor tans o o iqning and S solving

crosswords, With opti <5 10 Spe KMG\)B\\N‘
more assistanc®
RUNNING ATEMPERATURE two programs, one 1o

cord from the simple tem perature (fhe W o t\““'g"";ﬁ

J is nather Wuﬁ lhs
ORMS - explore this tascinaling ' H““m‘

A ALY

paintboX and Jllustrator

G - seven separate procedures for
ackaged Up

t 4) . a complete
ate the use of the

assembler
programs showing the developmen of a genera\\sed

p\omng routine
BEEBU! WORKSHOP how to usé linked lists 10 store

datainan ordered sed quence
DUAL SCR REEN PROGRAM |SPLAY - display and

compare tWo Rasic programs O° o the screen & {he same

time. :
MAGSCAN - yibliograpy for this 155U (Vol7 No&) Mathematical WormS

All this for £3 (cas sene), 4 5" disc) + 50p P &p-
Back issues (5.25" disc since Vol.3 4,35 disc since Vol 5No.1, ¢ s 5iNCe Vol.1 No. 10) available at th

UK ONLY
cassette

£50.00
prices are mclus:ve o

0% FINANCE

For a limited period we are able to offer 0% APR finance
over 9 months onthe purchase of any Archimedes. You pay
nointerestatall. Thisis abrand new scheme only available
from BEEBUG. The deposit and repayments are shown
below.
Deposit 9 Payments
A305 A310
A305 Base £79.66 £76.00 A310Base £93.24 £91.00
A305Mono £91.21 £8200 A310Mono £104.79 £97.00
A305 Colour £104.01 £100.00 A310Colour £117.59 £115.00
A310M A440
A310MBase £104.79 £97.00 A440Base £278.93 £276.00
A310MMono £107.34 £104.00 A440Mono £290.48 £282.00
A310MColour £129.14 £121.00 A440 Colour £303.28 £300.00

Deposit 9 Payments

TRADE INYOUR OLD BBC, MASTER
OR COMPACT FOR AN ARCHIMEDES

We willbe pleasedto accept your old computer (inworking
condition) as part exchange towards the purchase of an
Archimedes. (If you use the finance scheme this will replace
your initial deposit on a 305/310, so you pay nothing now).
Allowances are as follows:

BBC Issue 4 No DFS £125 BBC Issue 4 DFS £175
BBC Issue 7 No DFS £175 BBCIssue 7 DFS (OrB+) £225
Master 128 £250 Compact Base System £215

Please phone for allowances on other Compact and Master
systems.

Although unable to offer finance to overseas customers, we
can offer an efficient export service with delivery to your
door. Please write for a quotation.

TO FIND OUT MORE
PHONE OR WRITE NOW.
TEL: 0727 40303

We offer a complete service,
including Advice, Technical
Support, Showroom, Mail Order
and Repairs. Our showroom in St.
Albans stocks everything available
for the Archimedes. Callin for a
demonstration.

1stWORD PLUS

Purchase your Archimedes by Cheque, Access, Visa,
Official Order or 11.5% finance and we will supply you,
absolutely free, 10 3.5" discs, a lockable disc storage box;,
printerlead and the latest version of The PC Emulator from
Acorn. Additionally if you are purchasing a 440 system you
will receive 1st Word Plus.

Prices Including VAT
A305 Base £763.66 Mono £829.21 Colour £1004.01
A310Base £912.24 Mono £977.79 Colour £1152.59
A440 Base £2762.93 Mono £2828.48 Colour £3003.28

11.5% FINANCE
OVER 1270 36 MONTHS

AsalLicensed Credit Broker we are able to offer finance on
the purchase of any equirment, including the Archimedes.
You still benefit from the free PC Emulator, discs, disc box
and printer lead. (Typical APR 23% onthe purchase of a310
Colour system over 36 months.

Deposit £152.59 36 payments of £37.36).

s

DISCOUNTS FOR
EDUCATION

We are able to offer attractive discounts to Education
Authorities, Schools, Colleges and Health Authorities.
Please write with your requirements for a quotation.

