

FEATURES

\con Design
Graphic Design with ASTAAD
& Printer

Designing Screen
Characters

How tobe @ Good Mouser
REEBUG Education
Print Formatting
First Gourse -
Serolling Strings
Character Sorting
Visual Sorting
512 Forum
The BEEBUG Super-Squeeze
Using Assembler (Part 3)
File Handling for All (Part 5)

Workshop -
Linked Lists (Part 3)

REV\EWS

6 \ntegra-B 9
12 The New \nter-Base 44
The Account Book 54
788 Modem 63
17
2202 REGULAR ITEMS
26 Editor's Jottings 4
28 News 4
Points Arising 29, 69
30 Supp\emem 33-40
The 288 Page 68
31 pintsand TIPS 69
3 gubscriptions 8 Back Issues 70
T

M Magazine Disc/Cassette

oot

[i]
Tupe cards rhat make Y318 %0 d-nllpnd

S

Z

/‘lllllllllIl!.lt
I NN

FESREINFORCED |
TERVIoH TENPERRTURE, REUSABLE SURFACE INSULATION (HRSD)|
Lo TENPERATURE REUSABLE SURFACE INSULATION (LRSD) |
W2 b WONEK FELT (FRSD) REUSRBLE SURFACE THSULATION |
EMETAL OR OLASS |

CARBON TARBON (RCC)
(!

pRpa TEIn L
-3.14 9.817

PR FhEE R
-3.14 +9.87

00000.¥# 00000. 4%
-0003.14 00009.87

+0000. 4 +0000.##
-0003.14 +0009.87

LdaitorS
- Jottnys

MICRO USER SHOW

The autumn Micro User Show will be held at the New
Horticultural Hall, Westminster from 11th-13th November.
BEEBUG will have a promincnt stand at this show with
BEEBUG and RISC User magazines and discs. We shall also
be featuring our own range of software and hardware products
for the BBC and Archimedes computers, including the
internal modem for the Master 128, and Hearsay, our comms
software for the Archimedes. Not only that but Acorn's
amazing new operating system for the Archimedes, RISC OS,
will be demonstrated on our stand. We hope that as many
members as possible will visit us at the show. We would be
delighted to meet you and talk with you. The Micro User ad in
this issue entitles you to £1 off entry for tickets ordered in
advance.

MICRONET

There have been many changes to the BEEBUG pages on
Micronet recently, with new page logos, changed routing, and
the revamping of large parts of our database. Check the
BEEBUG pages for the latest reviews and information,
including coverage of the Archimedes. BEEBUG is also
implementing a new policy for telesoftware which should see a
completely revised and upgraded programme of software
appearing during the next few months. Watch out too for our
amazing free telesoftware bonus for the forthcoming
Christmas season.

In order that telesoftware may be downloaded by BEEBUG
members without incurring page charges, we use a password"
system. So that both BEEBUG and RISC User members may
have equal access, we shall be publishing the password at the
foot of the editorial page in each issue of both magazines
starting with this issue. The information on Micronet will tell
you which magazine's password is required for any particular
program.

BEST OF BEEBUG

We have published many excellent programs in BEEBUG in
recent years. Although these are available on the monthly
magazine discs we have decided to group the best of these
programs together under a number of thematic titles. In this
way you can obtain all the best programs on a particular
subject for the price of just a single disc. Full details of our
first two releases are contained in the supplement. There has
never been a better nor a cheaper way of buying the best of
BEEBUG programs.

This month's telesoftware password is blackbird.

4

News News News Ne

RISC OS MADE PUBLIC

Acorn has finally put its Arthur 2 operating system for
the Archimedes on show to the public. The new
operating system, which Acorn are calling RISC OS,
offers many improvements over the current Arthur
1.20. The main changes are the ability to run several
programs simultaneously, and a much improved
Desktop system, which now allows files to be moved
around just by dragging them between windows, very
much like the Apple Macintosh. There are also many
other new features, including a RAM filing system,
and a complete set of object based drawing commands,
which makes the implementation of drawing packages
very simple. RISC OS will not be available until April
next year, although Acorn say this is due to the lead
time for producing ROMs, and the software is in fact
complete. The documentation and the three disc
Welcome suite, which will contain several useful
applications, have yet to be finalised. The cost of
upgrading to RISC OS is expected to be around £50.

ACORN BACK IN THE BLACK

Acorn has announced a profit of £1.05 million in the
first six months of this year. This is a great
improvement on the £0.95 million loss for the same
period last year. The earning per share is 1.1p. Acorn's
chairman, Elserino Piol, said that the turnaround in
fortune is due to both the company's concentration on
mainstream products, and increasing sales of the
Archimedes. Hopefully, this improvement in Acorn's
finances will increase the faith that others have in the
company.

PERSONAL COMPUTER SHOW

For the first time in several years, Acorn made an
impact at the Personal Computer show (formerly the
PCW show). In common with last year, Acorn not only
displayed its own products, but also accommodated
some of the many third party suppliers for Acorn
machines. Acorn's major exhibit was RISC OS (see
above), but it was also showing its new Desktop
Publishing (DTP) package, which is based on the
Timeworks system from GST Ltd. Acorn DTP supports
all the functions you would expect from a page-layout
package, including the ability to import graphics and

Beebug October 1988

1

I

s News News News News News News Netv

text. This, combined with the multi-tasking of RISC OS
allows for a very powerful setup. The only real
limitation of Acorn DTP is the lack of different text
fonts, and it is hoped that this is something which will
quickly be rectified.

Clares Micro Supplies was showing its new Pro-
Artisan drawing package for the Archimedes. The
original Artisan package, which was one of the first
releases for the Archimedes, has been highly praised,
and it is on this that Pro-Artisan is based. Unlike the
original, Pro-Artisan works in the 256 colour mode 15,
with the colours being chosen using simple colour
charts. A completely new feature is the ability to
distort an image, in the form of a sprite, around the
surface of a 3D object. The colour fill has been
extended to allow a graduation of shades, which is
very useful when rendering 3D shapes. A novel feature
of Pro-Artisan is the wash facility. If the airbrush is
used to spray an area, washing that area will have the
effect of splashing a drop of water on the paper,
making the image blur outwards. Pro-Artisan sells for
£165 inc. VAT, which is rather more than the original
Artisan. More details from Clares Micro Supplies, 98
Middlewich Road, Northwich, Cheshire CW9 7DA, tel.
(0606) 48511.

PUNCH 'EM UP

Superior Software has just released a new boxing game
for the Beeb and Electron. The game, called By Fair
Means or Foul, includes all the facilities you would
expect of a boxing simulation, and also allows you to
cheat by using head butts, groin punches etc, but only
when the ref is not looking. By Fair Means or Foul on
disc for the model B and Master costs £11.95. The tape
version costs £9.95, as does the Electron version. For a
Master Compact the disc is £14.95. Superior Software,
Regent House, Skinner Lane, Leeds LS7 1AX, tel. (0532)
459453.

SNATCH A PICTURE

Snatch from 4Mation is a screen grabber and dumper
for any BBC micro with sideways RAM. Snatch allows
the screen to be grabbed while a program is running,
and then dumped to either an Epson compatible

Beebug October 1988

printer, or an Integrex 132 in full colour. The colours
can be modified before printing, and there is a choice
of sizes. Snatch costs £18.40 inc. VAT from 4Mation,
Linden Lea, Rock Park, Barnstaple, Devon EX32 9AQ,
tel. (0271) 45566.

MATHS IS FUN WITH LOGOTRON

The educational software house Logotron, which is
most famous for its implementation of the Logo
programming language, is about to launch a package
to help primary school children learn maths.
Numerator, as the new package is called, allows
mathematical problems to be modelled around three
types of component: 'Tanks' which hold numbers,
‘Boxes' which perform numeric operations, and "Pipes'
which connect Tanks to Boxes. Input can be taken from
the Beeb's analogue port, and the results can be plotted
out. Numerator costs £39.10 inc. VAT, with an Econet
site licence available for a further £200. Logotron can
be found at Dales Brewery, Gwydir Street, Cambridge
CB12LJ, tel. (0223) 323656.

NIDD VALLEY PRICES

Unfortunately, the prices given in the review of
Hlustrator and Paintbox (now renamed Colourbox) from
Nidd Valley Micro Products in the last issue of
BEEBUG were not correct. The correct prices are given
below. All of these include VAT and postage, and the
prices in brackets include the Digimouse.

Paintbox £14.95 (£44.90)
Illustrator £19.90 (£49.90)
Paintbox & Illustrator £29.90 (£59.90)

Additionally, until the 31st of January, Nidd Valley are
offering special winter prices. Paintbox and Illustrator
are available together with Chauffeur and Grafik for just
£29.90, or £49.90 with a Digimouse. Chauffeur is a
package to allow the mouse be used with programs
that only support keyboard input, and Grafik is a
simple drawing package. The Digimouse on its own
with no software is available for £29.90. Nidd Valley
Micro Products are at 4AA9 Thorp Arch Trading
Estate, Wetherby, West Yorkshire LS23 7BJ, tel. (0937)
844661.

5

ety

 [ofe],
el YRS

Graphic designer Roger Burg offers some
expert advice on the design of icons to help
you make the most of the BEEBUG Icon
Designer.

I'm still surprised at how
many icons surround us every
day. Yet in computer software
they often present a barrier
rather than an aid to
understanding. This really
shouldn't be so. Conveying meaning through
images is not always easy, but on the computer,
icons are used not so much to explain new
subjects, but to

Icons can incorporate text, or present optional
verbal prompts, when language is not a barrier

3).
AXr,
ﬂﬁuj; MM % | "us]
+0-0 4
Images - like any other means of

communication - fail when they require a big
jump in understanding, or when the user isn't
really familiar with the concept, as with
'relocatable module', 'hard disc', and 'file
locked' (4).

But icons, like words, take their meaning from
context, and the order in which they appear is
an important part of their design. If the user
selects a text style option, then tilted, italic,
extended and bold make sense. If he's selecting
printer output, then the parallel and serial
options need no more

extend the
user's current
understanding.
For this reason

HEEE

explanation. Related ideas,
like files and directories lend
meaning to each other (5a
and 5b).

they are less
vulnerable to jargon and imprecision than
computer terms like 'file', 'bank' and 'cell’,
which have many different dictionary
meanings without considering their technical
interpretation. In this article we'll take a look at
a wide range of icon designs (the references
relate to the illustrations).

The icon

for 'disc
write-
protected’

3 shows

the cause
of the failed save operation as well as its
solution, unlike the prompt where the jargon
sends the novice back to the manual (1).

The common word processing icons convey
format options far more clearly than diverse
technical terms (2).

6

Some abstract ideas have widely established
symbols, from arrows to hearts. Particularly
useful are the international exit symbol,
warning triangle, information, and the negation
bar (6).

The exit symbol is a good challenge for the
aspiring artist. There are dozens of shapes for
an arrow head, and some 'move' better than
others. A good designer will balance the white-
space surrounding the box and arrow to convey
the sense of emerging for those unfamiliar with

Gt ita

Many other international symbols and common
images can be adapted in screen menus, though

X

Beebug October 1988

it is treacherously easy to crib a good symbol,

only to

find that == A
it has a I Il é‘
precise

definition | i

quite C

different) jE====V 8
from the

one intended.

different, which can wreak havoc with screen
layout.

Linguistic and cultural conflicts can be a mine-
field. Puns like the ram for 'RAM/, or the bee for
'busy' are easy to check for. Innocent
assumptions are not. Arabic cultures generally
use the 'indian’, not our 'arabic' numerals (9).

Ticks and crosses reverse their meanings on the
other side of the

PLANNING AHEAD

Before committing yourself to an
icon, it's important to sketch out
the images which may be needed

1

eJA\ i %)

Atlantic because
American
teachers put a
'check' (or tick)

in the foreseeable future. If you

use the convention of the folded corner to
identify a sheet of paper, you won't be able to
use it later to show other turnable pages of
'help’ (7).

Mail-related
images present
similar problems.
In England, mail
boxes (for re-
ceiving mail) are
uncommon, and we tend to confuse them with
the pillar box, for sending it. But if you've used
the bulging pillar box to show that electronic
mail has arrived, then it can't be used later,
when you want to show that the system still
has mail to send. The sealed envelope is widely
used to indicate mail

- 7

on answers
which the pupil should check. Crosses are
reserved for right answers. But some European
software writers still use ticks and crosses to
indicate whether a menu option has been
selected or not.

arrived, but if you prettify it
by adding the stamp and
address, your icons for
mailing lists and address
labelling, if you add them, 9

il

[«]EJL]

will be less clear (8).

COMMERCIAL VALUE

If a smile is part of the world's universal

language, the good old smiley and the frown

convey

right

]

wrong

8|l better,

a n.d

illuminated switches represent on and off.

Running and walking are clearer than the hare

and tortoise to indicate speeds, and the face and

body generally convey many ideas common to

all races (10).

But whatever our cultural and linguistic

differences, anyone using a micro is likely to

recognise stationery, machinery and electrical

equipment, and the micro itself is often a
valuable source of images (11).

Icons can reduce the cost of
modifying software for
different countries. Textual
prompts must be translated,

ot

X

VATOWI 2|

and even when they print
from left to right and share a similar character
set, the lengths of the messages will be

Beebug October 1988

SOFTWARE FACTORS
The micro puts its own limitations on what can

7

be designed. The BBC was built to cope with
fuzzy televisions, and to compress 80-column
characters into half width. So BBC icons like its

SOURCES

The best icons are not stunning. They are the
ones which, in use, seem so obvious and
natural as to defy comment.

N EW

eepoppEe
Semssenans

So they are often difficult to
recall when you need them.

1| Probably the most reliable

character set must generally avoid using thin
verticals and diagonals to remain legible and to
present a coherent style.

way to find a new icon for a
well-known idea is to flick through books in
that subject area, in the local library. Diagrams,
pictures and cover designs usually reveal

someone else's well considered

The restric-
tions of
memory and
screen space
are extreme,

images for the subject.

Original icons for new ideas are more
4 difficult, and collecting ideas is
12)| perhaps the most valuable part of the

but several

traditional graphic practices can help. Coding
in shapes rather than outlines saves pixels and
the simplicity is visually more effective.
Sometimes adjacent blocks can be distinguished
by colour. Finally, if an image is still too big,
slice a third or even two-thirds away -
simplification is effective if the rest of the image
is clearly implied (12).

But the micro supplies some solutions too. As
tonal value is more assertive .than colour, it
often helps to use colour to adjust the weight
and direction of a line, or profile. Acorn
machines in particular can store and print large
images very economically as strings of VDU
characters.

And the computer offers its own opportunities.
When the pointer touches them, icons can
move. Verbs like 'compress’, 'move’, 'rotate’,
'append’, 'extend' and 'unplug' cry out for
simple animation.

exercise. Inspiration is important, but
unreliable! Books on modern graphic design
and traditional symbols are helpful, but for fun
as well as convenience I keep notebooks of
images culled from computer and graphics
magazines, public signs, dash-board buttons,
hi-fi, video and TV controls, TV news graphics
and weather charts, trade marks and logos,
washing
and cooking
instructions
and count-
less every-
day sources.

A few reference books can be invaluable, like
the Highway Code, rub-down lettering
catalogues and signmaker's brochures. British
standards and many specialist associations list
signs suitable in their own areas, and books on
contemporary specialisms use their own
symbolic codes, like chemistry, music, maths,
theatre, circuitry and

"Similarly, a palette,
or a stop sign seems
to require colour,
and warnings convey

el)

many others (14). I hope
you'll find these pages
worth keeping too.

more urgency in
flashing colour (though coloured images
should still be understandable on monochrome
screens) (13).

Note: the BEEBUG Icon
Designer was published in Vol.7 No.2 as part of
our Mini Wimp series.

;

Beebug October 1988

i

i & <= b Emm=2)|

INTEGRA-B

Bernard Hill plugs in the latest piece of hardware
that claims to turn your model B into a Master.

Product
Supplier

Integra-B
Computech

The Garth,
Hampsfell Road,
Grange Over Sands,
Cumbria LA11 6BG.
Tel. (0448) 44604
Price £122.50 inc. VAT

In BEEBUG Vol.6 No.9 I reviewed the Master
Emulation ROM from Dabs Press: an
inexpensive attempt to turn your Beeb into a
Master. Now we have a different approach
from Computech in the form of a hardware and
software package: the Integra-B board.

Because of its hardware content, this is a much
more complete solution than that from Dabs
Press, and therefore inevitably in quite a
different price league. In its basic form it
consists of a ROM expansion board of about 8"
by 6", which fits in the top-left corner of your
Beeb. Some self-adhesive plastic strips are
provided which support the board in this
position, the opposite corner being supported
by a 40-pin header plug which fits into the 6502
processor socket. On the Integra board is a
socket into which the CPU chip should then be
re-located. Integra-B does not provide the
extended 65C02 processor of the Master.

Although the board fits directly over the Econet
section of the circuit board, it can still be fitted
with this in place, but requires a tiny
modification to one support strip (details from
Computech). Even though the board partly
overlaps the motherboard's DFS section, it still
has at least 1/4" clearance over an Acorn 1770
DEFS card. The Integra board itself is finished to
a particularly high standard of construction and

Beebug October 1988

installation takes only a few minutes, with the
removal and relocation of two of the Beeb's
power leads, one jumper and three flying leads
to insert in the Beeb's PCB.

BOARD CONTENTS

Supplied on the board is a real-time clock, 32K
of shadow RAM, 64K of sideways RAM and 8
empty sideways ROM sockets, together with
the necessary support chips. Once the board is
installed, the memory map is identical to that of
a model B+, rather than to a Master.

Main Memory
* FFFF
0.S.
Iintegra-B
C000
aoiak *ials Integra-B
sideways RAM asic ¥ oo
+ B sockets 12K Private
RAM
8000
20K
User RAM Siadow
memory
3000
1900
System RAM
0000

Figure 1. Integra-B Memory Map

The paged ROMS are allocated as follows:

0-3 BBC motherboard 4 x 16K ROM
4-7 Battery-backed 4 x 16K RAM
8-15 8x 16K Integra-B sockets

The sideways RAM in slots 4 to 7 is fitted as
two 32k RAM chips soldered into the Integra
board, as is the 32k shadow RAM chip (see
later).

CONFIGURATION OPTIONS

To emphasise the great degree of flexibility of
this board, it contains no less than 19 jumpers:
16 of which allow configuration of the 8
sideways sockets on the Integra board. Thus
within any pair of sockets 8-9, 10-11, 12-13 or
14-15, the following options are available:

Two 2764/27128 (8/16k) EPROMs (or ROMs)
One 27256 (32k) EPROM

One 62256 (32k) RAM chip (not supplied)
which can be battery-backed if required.

0w

The RAM in sockets 4-7 is permanently battery-
backed, but removal of one of the board
jumpers for a few seconds disables the supply
to these chips and thus clears them. There are
also two jumpers which allow write-protection
of banks 4/5 and 6/7: write-protect switches
are offered by Computech as an upgrade
option. The functions of all the jumpers are
printed on the board, which is a nice touch.

SOFTWARE

While the Integra-B board functions as a very
well-behaved ROM/RAM expansion board all
by itself, it needs supporting software to access
the real-time clock and 32k of private and
shadow RAM. This software comes as a 16k
EPROM which should be fitted logically above
any filing system ROMs: the manual suggests
socket 3 on the BBC board, leaving the greatest
flexibility to configure the Integra-B as RAM
(you would need an extra four 32k RAM chips
of course to make a full 12 sets of 16k RAM).

The facilities given by adding the control ROM
can be divided into 5 sections as follows:

1. REAL-TIME CLOCK SUPPORT

Besides supporting a *TIME command, and
the corresponding OSWORD 14 & 15 calls,
the ROM has an astonishing range of *DATE
routines which encompass on-screen
calendar generation and day-of-the-week
calculations. The plethora of formats allows
you to perform such operations as finding
the day of the week for a given date, finding
the date of the next Sunday for example,
finding the date of the first Monday in
March, or even such things as finding the
date of the third Sunday after 30 June next
year, etc.

2. SHADOW AND PRIVATE RAM
The Integra-B ROM introduces an important
new command, *OSMODE, which allows
some measure of software reconfiguration of

10

your model B. *OSMODE 0, specifies a
normal model B, and Osmodes 1 to 4 are
extensions to this. Each of these new
"Osmodes" offers slightly different
configurations of your Beeb, but all allow
shadow RAM to be used. For example, after
*OSMODE 1 screen modes 128 to 135 are
available, as is a *SHADOW command, just
as on the B+ or Master. The difference
between Osmodes 1 to 4 is very badly
described in the preliminary version of the
manual. It turns out that the difference
between the four Osmodes is the way in
which various low-level operating system
calls are implemented.

On the B+, the shadow memory takes 20k,
and the remaining 12k of the 32k on board is
rather awkward to access. Computech have
encountered the same problem, but have
used this memory area to give a number of
additional facilities: besides saving some of
the system parameters in this area,
Computech has implemented an 8k printer
buffer and a *BOOT command, which
defines a sequence of operations to be
performed on powerup (like *KEY10 on soft
break). It appears that no attempt has been
made to segment this 12k into different
Master-type address ranges (ANDY and
HAZEL), but the printer buffer concept has
been extended to allow up to 4 sideways
RAM banks to be allocated to a 64k buffer.

3. ROM SUPPORT

As might be expected from a product which
attempts to imitate a Master, *ROMS,
*INSERT, *UNPLUG, *SRLOAD and
*SRSAVE are implemented, as is a new
command, *SRWIPE, to clear a bank of
sideways RAM. From version 1 of the Integra
OS ROM (to be sent free to all owners of
earlier versions), *SRDATA and *SRROM
will also be available.

4. *CONFIGURE SUPPORT
*CONFIGURE options are provided as in the
Master, the list being much the same,
although LOUD, QUIET and (NO)SCROLL
are missing, but a switch-on default Osmode

Beebug October 1988

(see above) and an undocumented MOUSE
option are added. Also included are
commands to load and save the full set of
configuration options via the current filing
system, and a badly documented
*CONFIGURE SHX ON/OFF option which,
when enabled, ensures that as you switch,
say, from mode 7 to mode 128, no programs
are lost due to them being in the wrong
memory bank.

5. OTHER * COMMANDS

The Integra OS ROM offers *APPEND,
*SPOOLON, *STATUS and *PRINT as on the
Master range. Also provided is *TUBE
ON/OFF to control a second processor, and
*BUFFER and *PURGE commands to control
the printer buffer. Missing in comparison
with the standard Master range, however are
*CREATE, *GO(IO), *IGNORE, *SHOW, and
*SHUT. An unusual *X*... command is
provided to run a non-shadow utility from
within a shadow memory session.

WORKSPACE

Those who remember my previous review of
MER will recall that workspace was a particular
problem. Even with all the extra RAM,
Computech can never completely overcome
this problem either, as some small part of the
normal memory map will always be needed for
sideways RAM access routines. But this has
been limited on current versions of the software
to just a few bytes in the CFS work area
between &380 and &3A4. This means that
Osmode 0 must be selected before writing to
Cassette, although Computech inform me that
they have plans for future versions to move the
function key and character set buffers (pages
&B and &C) to permanent expansions in
private RAM and thus release 512 bytes for
their own use.

THE MANUAL

The manual supplied with my board and
EPROM (version 0.96) consists of 22 stapled
sheets of A5, with an adequate coverage of
installation and extra commands, but minimal
explanation of board configuration, *OSMODE
and other technical aspects. But again, users are

Beebug October 1988

promised a free replacement which should
come with version 1 of the ROM.

COMPATIBILITY

Careful examination of this board and software
enables one to conclude that the Integra-B
system essentially puts some Master commands
into a B+ memory map, and so therefore clearly
cannot cope with Master-specific features such
as ROM Polling, OSWRSC and (inevitably but
sadly) filing system private workspace. Thus
PAGE remains at &1900 and any Master
programs needing a lower value may run out of
space. However, Computech claim complete
compatibility with all well-behaved software
(such as the View family) and even with less
polite software such as the Inter suite,
Wordwise (Plus) and Genie, although
sometimes only in Osmode 0.

THE FUTURE

The undocumented MOUSE configuration
mentioned above, and and an as-yet incomplete
page of the manual make it clear that
Computech are currently working on a form of
automated windows system making extensive
use of sideways RAM. If this materialises then
Integra-B will become a more powerful
product, and much more than a simple
expansion board.

CONCLUSION

So do you throw away your ATPL board,
Solidisk Real-Time Clock and Aries Shadow
RAM and then rush out and buy the Integra-B?
If you have all these, then I suspect not, but if
you are looking out for a shadow RAM system
or extensive sideways RAM system, and
possibly considering a real-time clock then
maybe you should invest in this all-in-one
solution. In terms of quality, design and
facilities it cannot be faulted, and virtually
converts your Model B into a B+ with some
Master features (Real-Time Clock, system
configuration and 64K sideways RAM). But full
Master compatibility? Not quite. If that's what
you want, you will probably be better off taking
advantage of BEEBUG's deal to trade in your
model B for a Master.

1

i R T s &

GROPHIC besian
- WITH Tk)

David Demaine presents a completely new
and improved version of BEEBUG's highly
acclaimed computer graphics program
ASTAAD.

Tim Tonge's original ASTAAD program
(published in BEEBUG Vol.2 No.7) was written
to work on a standard model B and was, in all
respects, as powerful as it could be for that
machine. However, this new version is written
specifically for the Master and makes use of
both the additional memory and extra graphic
facilities. The final product is a CAD program
that is quite comparable, and in some ways
more powerful, than the more popular
commercial packages. For the- model B owner
we have put a copy of the original ASTAAD
program on the magazine disc (and keystrips
for both versions in the supplement).

Due to the length and complexity of the
program it has been split into three separate
articles. In this, the first article, we shall
present the basic 'building blocks' for Astaad
which will provide the simpler drawing
functions. This first part has been written so
that it is usable, even without the following
enhancements. the next two articles we will
expand upon these basic facilities and
introduce advanced character generation,
magnification, scaling, definable fill patterns,
picture reversal, and much more.

RUNNING THE PROGRAM

Enter the program listing in the normal manner
and save it before proceeding any further. Be
careful to use the exact line numbers listed,
make sure that you do not renumber it, or you
will have difficulty appending the second and
third parts.

N

When the program is run you will be presented
with the ASTAAD drawing screen. As you
might expect, you are given a single cursor in
the middle of the drawing area. This cursor
may be moved about using the conventional
cursor keys. At the top of the screen your
current co-ordinates will be displayed. Most of
the functions available are called by using the
red function keys.

Bridle Joint

Detail
(HOT T0 SCALE)

We have provided a complete function key
strip in this month's supplement. We would
recommend that you cut it out and place it
above the keyboard, allowing quick reference
to a particular key's function. Because only a
limited number of functions are available in
this month's listing we have printed these
functions in bold so that you will not get
confused with the functions that are, and are
not, initially available.

THE STATUS DISPLAY & SIMPLE FUNCTIONS

The top of the screen is used by ASTAAD for
general information. As well as the current
graphics co-ordinate, you will notice a great
deal more information, including the current
scale and the distance from the origin (called
the vector). The current origin may be set
anywhere on the screen by placing the cursor at
the required position and pressing the Tab key.
The rest of the display shows which functions

Beebug October 1988

are currently active. The meaning of these will
become apparent later.

The simplest functions are Move, Draw, and
Rubout. Pressing any of these keys will alter the
status display accordingly. Depending upon
which of these are active, moving the cursor
around the drawing area will simply move, rub
out, or leave a line. Selecting the Line function
will draw a line of any length in any direction.
The Circle function will simply prompt for a
radius and draw a circle around the current
cursor position.

The Delete Area and Area Move functions
make use of the vector position. To delete an
area, move the cursor to the bottom left-hand
corner of the area to be deleted and press the
Tab key. Then proceed to the top right hand
corner and select the Delete Area function. The
area enclosed within these co-ordinates will be
deleted. The Area Move function is used in
much the same way, but the last two graphic
origins will be recorded. Move to the bottom
left-hand corner of the area, press Tab, then
move to the top right hand corner and press
Tab. Now move the cursor to the position to
which the area is to be moved, select the Area
Move function, and it will be moved.

The Infill/Outline will toggle the status display
accordingly. Depending upon this, circles (and
later other shapes) will be filled automatically
when drawn. The colour reverse simply
switches the foreground and background
colours for future functions. The Save and Load
Screen functions do exactly that. After having
entered a filename, the current screen will be
saved, or another screen will be loaded. Lastly,
the Print Screen function will call a screen
printing routine. The program, as listed,
assumes that you have BEEBUG's DumpMaster
ROM fitted. If this is not the case alter line 3270
to suit your particular software.

Like most CAD programs, the easiest way to
learn how to use it is to play with it. As you can
see from the screen shots included with this
article, the package is very powerful and can be
used to produce some extremely attractive
artwork and diagrams.

Beebug October 1988

10 REM Program Astaad (Part 1)
20 REM Version B3.02
30 REM Author David Demaine
40 REM Based On Original By Tim Tonge
50 REM BEEBUG October 1988
60 REM Program Subject to copyright
ol
100 ON ERROR MODE 3:PROCerror :END
110 DIM 0S% 40
120 DIM ad(7),bd(7),cd(7),dd(7)
130 MODE 128
140 PROCinit
150 PROCsetup
160 @
170 REPEAT
180 PROCruler:PROCcursor
190 key%=INKEY (0) : J%=key%-128:IF key3%<
=0 THEN UNTIL FALSE
200 *FX 15,1
210 IF accel% AND TIME<10 PROCaccel
220 IF accel% AND TIME>=10 count%=0:s%
=4
230 ON J%-12 PROCleft,PROCright,PROCdo
wn,PROCup ELSE 250
240 UNTIL FALSE
250 IF key%=127 MOVE x,y+28:PRINT CHR$
(127) :x=x+16* (x>16) : J%=14 :UNTIL FALSE
260 IF key%<127 AND key%>31 MOVE %,y
8 :PRINT CHRS (key$%) :x=x-16* (x<(1x%-16)) :J
%$=13:PROCruler:UNTIL FALSE
270 SOUND 17,-10,125,1
280 IF key%=9 THEN curscode%=4:copycod
e%=5:1inecode%=5:shapcode%=5:x3=x2:y3=y2
:x2=x1:y2=yl:x1=x:yl=y:curs$="MOVE" : PROC
heading:J%=13:UNTIL FALSE
290 IF key%=27 AND NOT INKEY-1 AND NOT
INKEY-2 PROChome:UNTIL FALSE
300 IF key%=27 AND INKEY-1 AND NOT INK
EY-2 CLG:PROCsetup:UNTIL FALSE
310 ON ((J% DIV 16)+1) PROCfnkey,PROCs
hiftfnkey, PROCctrlfnkey,PROCshiftctrlfnk
ey ELSE UNTIL FALSE
320 UNTIL FALSE
330
1000 DEF PROCsave
1010 IF J%<>41 ENDPROC
1020 fn$="Save "
1030 $0S%=FNcheck ("File name?")
1040 PROCmessage ("Filename "+50S%)
1050 *FX 108,1
1060 *SAVE NEERCS 3000 7FFF
1070 *FX 108,0
1080 OSCLI("RENAME NEERCS "+$0S%)
1090 PROCrehead

13

1100 ENDPROC

1110 :

1120 DEF PROCload

1130 IF J%<>42 ENDPROC

1140 fn$="Load "

1150 Fname$=FNcheck ("File name?") :PROCm
essage ("Filename "+Fname$)

1160 OSCLI ("RENAME "+Fname$+" NEERCS")
1170 *FX 108,1

1180 *LOAD NEERCS 3000

1190 *FX 108,0

1200 OSCLI ("RENAME NEERCS "+Fname$)
1210 ENDPROC

1220

1230 DEF PROCinit

1240 1x%=1280:1y%=960:VDU4:VDU 29|

1250 VDU 24,0:0;1x%-1;1y8-1;

1260 vDU 18,0,128,28,0,1,79,0

12706 vbu 5,23,11

1280 vou 19,0,3119,1,14]

1290 *FX 4,2

1300 *FX 225,129

1310 *FX 226,145

1320 *FX 277,161

1330 *FX 228,177

1340 ENDPROC

1350

1360 DEF PROCsetup

1370 GCOL 0,128:GCOL 0,1

1380 x=1x%/2+1:y=1y%/2+2

1390 J%=13:lastJ%=4

1400 x1=x:yl=y:x2=x:y2=y:x3=x:y3=y:x4=0
:y4=0:vector=0

1410 s%=4:t%=50:count%=0:b$=STRINGS (4,C
HR$32)

1420 fn$="Setup ":curs$="MOVE":com$="CA
D system initialised”

1430 shapcode%=5:curscode%=4:1linecode%=
5:areacode%=0:copycode%=5

1440 linelen=400:lineang=PI/3:circrad=4
00

1450 polyrad=400:polysides%=7:polybase=
0:polyrot=PI/3:polytilt=PI/6

1460 soft%=0:soft$="Text":asize=16:ahei
ght=32:aspace=16:adotr=0.5:ainterp%=1:at
ext$="ASTAAD"

1470 copy%=FALSE:copy$="move"

1480 arrow%=FALSE:arrow$="Line "

1490 circ%=TRUE:circ$="Circle"

1500 poly%=TRUE:poly$="Polygn"

1510 repeat%=FALSE

1520 fil1%=0:Fills="0utl” ;ecfS="5":NDU
4,23,2,&4FFFF; §FFFF; §FFFF; 6FFFF; 5

1530 col%=TRUE:col$="Fore"

|Lunp MOVE Text Line Edge Outl § Fore Fix Accl Abs = x=
Scale: 1.88times

529,80 y= 238
Vector:™ 268.5

- dl

1540 fix%=TRUE:fix$="Fix "

1550 accel%=TRUE:accel$="Accl"

1560 orig$="Abs "

1570 vector%=TRUE:vector$=" Vector:"

1580 dot%=0:dot$="Line"

1590 marg%=FALSE:marg$="Edge"

1600 scale$=STRINGS (3,CHRS$32) :scl$="tim
es":scale=1.0:scalep=1.0

1610 PROCheading:PROCdelay:PROCrehead

1620 ENDPROC

1630 :

1640 DEF PROCheading

1650 VDU 4,12

1660 comaS$=com$+STRINGS (41-LEN (com$) ,CH
R$(32))

1670 @%=&00020108 :PRINTTAB(0,0) fns$" "cu
rs8” "soft$" "copys” "dot$" "marg$" "fil
lsll llecfsﬂ “Cols" "fixsll "accelsll 'lorigs
" x=" (x-x4)*scale"y="(y-y4) *scale;

1680 @%=600020206:PRINTTAB(0,1)coma$;CH
R$32;"Scale:"scalep;

1690 @%=&00020108:PRINT scl$ scale$ vec
tor$ vector*scale;

1700 VDU 5:ENDPROC

1710

1720 DEF PROCrehead

1730 com$="":fn$="Cursor":PROCheading

1740 ENDPROC

17150 :

1760 DEF PROCmessage (c$)

1770 com$=c$

1780 PROCheading

1790 ENDPROC

1800 :

1810 DEF FNinput (c$)

1820 PROCmessage (c$) :VDU 4

1830 INPUT TAB(LEN(c$)+1,1)p:VDU 5:=p

1840 :

14

Beebug October 1988

e

1850 DEF FNcheck (c$)

1860 PROCmessage (c$) :VDU 4

1870 INPUT TAB(LEN(c$)+1,1)p$:VDU 5:=p$

1880 :

1890 DEF PROCaccel

1900 count%=count$+1

1910 IF count$%<61 s%=4+(count%*count% D
IV 256) *4 ELSE s%=256

1920 TIME=0:ENDPROC

1930 :

1940 DEF PROCleft:x=x-s5%*((x>=s%) OR ma
rg%) / ((s%=4)-1)+(x-1) * ((x<s%) AND NOT ma
rg%) :PLOT curscode$,x,y:copycode$=5:ENDP
ROC

1950

1960 DEF PROCright:x=x+s%* ((x<1x%-s%) O
R marg$)/((s%=4)-1) - (1x%-x-1) * ((x>=1x%-s
%) AND NOT marg%) :PLOT curscode$, x,y:cop
ycode%=5:ENDPROC

1970

1980 DEF PROCdown:y=y+s%* ((y>=s%) OR ma
rg%) +(y-2) * ((y<s%) AND NOT marg$%) :PLOT c
urscode%, x, y:copycode%=5 : ENDPROC

1990

2000 DEF PROCup:y=y-s%*((y<ly%-s%) OR m
args) - (ly%-y-2) * ((y>=1y%-s%) AND NOT mar
g%) :PLOT curscode%, x,y:copycode%=5:ENDPR
oc

2010 :

2020 DEF PROCfnkey

2030 ON J% PROCnoproc,PROCareamove, PROC
liner, PROCcirc, PROCnoproc, PROCnoproc, PRO
Cmove, PROCdraw, PROCrubout , PROCdelete, PRO
Cnone, PROCcopy ELSE ENDPROC

2040 ENDPROC

2050 :

2060 DEF PROCshiftfnkey

2070 ON J%-16 PROCnoproc,PROCnoproc,PRO
Cnoproc, PROCnoproc, PROCnoproc, PROCfill, P
ROCcolour, PROCnoproc, PROCnoproc, PROCnopr
oc ELSE ENDPROC

2080 ENDPROC

2090 ¢

2100 DEF PROCctrlfnkey

2110 ON J%-32 PROCdump, PROCnoproc,PROCn
oproc, PROCnoproc, PROCnoproc, PROCnoproc, P
ROCnoproc, PROCnoproc, PROCsave,PROCload E
LSE ENDPROC

2120 ENDPROC

2130 :

2140 DEF PROCcursor

2150 FOR I%=0 TO 1

2160 *FX 19

2170 PLOT 4,x, vH15:PIOT 6,%,y-15:P10T 4

%15,y PIOT 6,%+15,y

2180 NEXT I%

2190 PLOT 4,x,y

2200 ENDPROC

27210

2220 DEF PROChome

2230 IF x4=0 AND y4=0 THEN x=1x%/2+1:y=
1y%$/2+2 ELSE x=x4:y=y4

2240 J%=13

2250 ENDPROC

2260

2270 DEF PROCruler

2280 IF J%<13 OR J%>18 ENDPROC

2290 IF J%=17 ENDPROC

2300 VDU 4

2310 X=x1-x:Y=yl-y

2320 vector=SQR (X*X+Y*Y)

2330 @%=£00020108:PRINTTAB (61,0) (x-x4) *
scale TAB(72,0) (y-y4) *scale;

2340 PRINTTAB(70,1) vector*scale;

2350 TIME=0

2360 VDU 5:ENDPROC

2310 :

2380 DEF PROCareamove

2390 IF J%<>2 ENDPROC

2400 IF copy% fn$="Arcopy" ELSE fn$="Ar
Move”

2410 ans$=FNcheck ("Are you sure?")

2420 IF LEFT$(ans$,1)<>"Y" AND LEFTS(an
s$,1)<>"y" PROCrehead:ENDPROC

2430 PROCmessage ("Area "+copy$)

2440 MOVE x2,y2:MOVE x1,yl1:PLOT 188+are
acode%, x,y

2450 PROCrehead

2460 ENDPROC

2470 ;

2480 DEF PROCliner

2490 lastJg%=3

2500 fn$=arrow$

2510 IF repeat% PROCmessage ("Repeating
line") ELSE pl=FNinput ("Length?")

2520 IF NOT repeat% p2=FNinput ("Angle (
deg) ?") :IF ABS(p2)>360.9 PROCrehead:ENDP
ROC

2530 IF NOT repeat% linelen=pl/scale:li
neang=RAD (p2)

2540 x5=xt+linelen*COS(lineang) :y5=y+lin
elen*SIN(lineang)

2550 MOVE x,y:PLOT linecode%+dot%,x5,y5

2560 IF NOT fix% THEN x=x5:y=y5:J%=13

2570 IF repeat$% PROCdelay

2580 PROCrehead

2590 ENDPROC

2600 :

Beebug October 1988

15

2610 DEF PROCcirc

2620 lastJ%=4

2630 fn$=circ$

2640 IF repeat% PROCmessage ("Repeating
circle") ELSE pl=FNinput ("Radius of circ
le?") :IF pl=0 PROCrehead:ENDPROC

2650 IF NOT repeat% circrad=pl/scale
2660 MOVE x,y:PLOT shapcode%+fill%+144,
x+circrad,y

2670 IF repeat% PROCdelay

2680 PROCrehead

2690 ENDPROC

2100 :

2710 DEF PROCmove

2720 IF J%<>7 ENDPROC

2730 curs$="MOVE":PROCheading

2740 curscode%=4:copycode%=5:1linecode%=
5:shapcode%=5

2750 ENDPROC

2160 :

2770 DEF PROCdraw

2780 IF J%<>8 ENDPROC

2790 curs$="DRAW":PROCheading

2800 curscode%=5:copycode%=5:1linecode%=
5:shapcode%=5

2810 ENDPROC

2820 :

2830 DEF PROCrubout

2840 IF J%<>9 ENDPROC

2850 curs$="DEL ":PROCheading

2860 curscode%=7:1linecode%=7:shapcode%=

2870 ENDPROC

2880 :

2890 DEF PROCdelete

2900 IF J%<>10 ENDPROC

2910 fn$="DELETE":ans$=FNcheck ("Are you

sure?")

2920 IF LEFTS$(ans$,1)<>"Y" AND LEFTS(an
s$,1)<>"y" PROCrehead:ENDPROC

2930 MOVE x1,yl1:PLOT 103,x,y

2940 PROCrehead

2950 ENDPROC

2960 :

2970 DEF PROCcopy

2980 IF J%<>12 ENDPROC

2990 IF vector% PLOT copycode%+dot%,x1,
yl ELSE PLOT copycode%+dot%,x,yl:PLOT co
pycode$+dot%,x1,yl:PLOT copycode%$+dots,x
1,y:PLOT copycode%+dot%, X,y

3000 IF copycode%=5 THEN copycode%=7 EL
SE copycode%=5

3010 ENDPROC

3030 DEF PROCfill

3040 IF J%<>22 ENDPROC

3050 IF fill% £fil1%=0:£i11$="0Outl” ELSE

£i11%=8:£i115="Fill"

3060 PROCheading

3070 ENDPROC

3080 :

3090 DEF PROCcolour

3100 IF J%<>23 ENDPROC

3110 IF col% col$="Back":col%=FALSE:GCO
L 0,129:GCOL 0,0 ELSE col$="Fore":col%=T
RUE:GCOL 0,128:GCOL 0,1

3120 PROCheading

3130 ENDPROC

3140 : ’

3150 DEF PROCdump

3160 IF J%<>33 ENDPROC

3170 fn$="Dump ":PROCheading

3180 VBU 2 21

3190 @%=&00020101:PRINT '"Scale factor

is ": scale '""Printed scale is "' SPC(10
); scale*56.705;" units to one cm"
3200 VDU 6,3

3210 TIME=0:REPEAT:UNTIL TIME>tS%

3220 *BPRINT P5 F I W2 L100

3230 PROCrehead

3240 ENDPROC —

3250

3260 DEF PROCnoproc

3270 PROCmessage ("Procedure not yet inc
luded")

3280 PROCdelay:PROCdelay

3290 PROCrehead

3300 ENDPROC

3310 :

3320 DEF PROCnone

3330 PROCmessage ("No function on this k
ey")

3340 PROCdelay:PROCdelay

3350 PROCrehead

3360 ENDPROC

3370 @

3380 DEF PROCdelay

3390 LOCAL T%

3400 T%=TIME

3410 REPEAT UNTIL TIME>T%+150 OR ADVAL-

3420 ENDPROC

3430 :

3440 DEF PROCerror

3450 *FX 4

3460 REPORT:PRINT " at line ";ERL'
3470 ENDPROC

3020 :

16 Beebug October 1988

B o .

e e

Designing Screen
and Printer
Characters

Eddy Hunt explains how to define
alternative character sets for both screen
and printer as a follow-up to last month's
article on using foreign character sets with
View.

month shows the character definitions for the
Turkish language, and we will use this as an
example to explain how the system works. You
can then follow this when defining your own
character sets.

The DATA statements are enclosed in quotation
marks so that if a comma appears in a character
definition it will not be read as two separate
statements separated by the comma. Although
it is not essential to place each character
definition on a separate line, it does make
reading them easier. The first character in the

In an article in last
month's BEEBUG
(Vol.7 No.4), 1
described some
foreign language
character sets for use
with View, Acorn's
word processor.
Unfortunately, there
always seems to be
one occasion where
no matter what
character set you
have, there is still a
need to print
something different.

9999DATA **

9000DATA "+"3C028002000280023C-660066666666663C-U-umlaut™
9010DATA "Q*1CA20022002200A21C-423C66666666663C-0O-umlaut"
9090DATA "xd384401440146004400-003C6660663C1838-c-cedilla"
9095DATA "wd205401540156005408-003E603C067C1838-s-cedilla™
9140DATA "q*001CA2002200A21C00-42003C6666663C00-o-umlaut"
9150DATA ";~003C80020002803C02-6600006666663E00-u-umlaut"
9200DATA "<~0000000C010E000000-0000000000181830-comma™
9300DATA "@d182481248124813E00-3E003E66663E063C-soft-g"
9310DATA ">~000022803E80220000-18007E3C3C3C3C7E-I-dot™
9540DATA "W~609400950095029448-3C66603C463C0818-S—cedilla™
9550DATA "X"788401840186008448-3C666060663C0818-C-cedilla"
9600DATA "~"020550159005500E01-1824003C063E663E-a circumflex"
9610DATA ","0022003E0002000000-0000381818183C00-1 no dot™
9620DATA "~"0052009E0042000000-1824003818183C00-i circumflex"
9630DATA "|~1EA100A104A104A116-7E003C66606E663C-soft—-G"

This article will
describe how to
define your own characters. Once they have
been designed, you can install them on your
machine using the program listed last month.

Although the ideas described here were
developed for use with View, they could be
used in any context which allows user-defined
characters. Note also that the coding given here
for a printer is specific to the Epson, but that the
principles will be the same for other makes, and
details can be found in your printer manual.

Last month's system uses a common program,
with different sets of DATA statements, with
each set numbered from line 9000 onwards.
Each set of DATA statements holds a particular
set of character definitions. The first listing this

Beebug October 1988

Turkish Character Definitions

DATA statement indicates which key must be
pressed to generate the corresponding
character, and the end of the statement can be
used to include a comment about the character
being defined (the comment consists of all the
characters following the second hyphen).

The first group of characters, up to the first
hyphen, contains the codes for the printer, and
the second group is for the definition of the
screen character. Thus, in principle, each
definition follows the format:

<char><printer defs>-<screendefs>-<comment>

Here, 'char' is the character to be redefined, and
'printer defs' and 'screen defs' are the character
definitions as described below.

17

DEFINING THE PRINTER CHARACTERS
The printer prints up to 11 possible horizontally
separated positions per character, although
only 9 are used in order to permit spaces
between adjacent characters. Along each of the
9 vertical lines, points can be printed in 9
positions, although the top and bottom
positions cannot both be used, thus a vertical
grid of eight is sufficient. If the bottom points
are used, 'descenders' are said to be printed.
Details can be found in the Epson manual
under the instruction ESC-&.

The character 'A' in the second position of a
definition indicates that descenders are not
used. The letter 'd' (or any other character)
indicates that descenders will be printed. The
next 18 characters are hexadecimal digits
indicating the position of the dots on each
vertical line.

To form the code for a printer character, draw a
rectangle 9 squares horizontally, by 8 squares
vertically. Place an 'x' in each of the boxes in the
position where you want the dots to occur
(horizontally adjacent boxes cannot both be
printed, so you should avoid putting an 'x' in
both of them - see your printer manual for more

information on this). The character will appear
much more horizontally elongated than it will
when printed. Now below each vertical line
write the hexadecimal codes corresponding to
the eight boxes (the top line is the most
significant) reading from top to bottom. The
nine pairs of hexadecimal digits form the next
18 characters of the definition. See Figure 1 for
an example of the coding for the Turkish dotted
letter T

DEFINING THE SCREEN CHARACTERS
The hyphen is not read as such, and hence any
other character could be substituted in its place.
The next group of characters consists of eight
pairs of hexadecimal digits describing the
appearance of the character on the screen.
Details can be found in the User Guide under
the VDU 23 command for the format of user-
defined characters. The screen character is
printed using an 8x8 grid, with each pair of
hexadecimal digits describing one horizontal
group of eight points, starting at the top and
working down to the bottom. The remaining
characters in each DATA statement definition
are not read, but identify each character by
name.

TESTING THE RESULTS

8 X X

4

2 X X X

1 X

8 X

4 X

2 X X X

1
O 0s 2 R SIS = g R 0 0
O ORI o S SR R R 2 P O R ()

The second listing is a utility program
which eases the checking and correcting
of DATA statements. These must be
appended to the test program for this
purpose. It is best to spool out the DATA
statements using *SPOOL and save them
in that form. You can then use *EXEC,
either to append them to the test utility
to check that they are correct, or to the
base program published last month to
install the definitions on your system.
Using the test program, the printed and
screen character definitions are shown
on the screen for checking.

Three keys are used to control this
program. Typing 'L' prompts for a line
number - enter that of one of your

Figure 1. Designing a printer character

18

DATA statement definitions. Entering
'N' moves on to the next DATA

Beebug October 1988

statement, while 'Q’ allows you to quit from the
program.

In this way a stock of character definitions can
be built up. These definitions may be used with
the program as published last month, or
similarly in your own programs.

10 REM Program CharTest
20 REM Version B1.0
30 REM Author Eddy Hunt
40 REM BEEBUG October 1988
50 REM Program subject to copyright
Bl
100 MODE 6:0N ERROR GOTO 260
110 Quit%=FALSE:VDU23,1,0;0;0;0;
120 PRINT'"CHARACTER DISPLAY"
130 PRINT''"The printed and screen cha
racters for"'"each DATA statement can be
displayed.”
140 DIM pc$(1) :pc$(0)=" ":pc$(1)="*"
150 DIM sc$(15),pb%(15)
160 sc$(0)=" BiscS(1)=" *M-cc8()
= " * "ZSCS(3)=" * kM
170 505(4)-" ¥ " .gc0(h) ¥ % %8, o0 (6)
=" k% II:SC$(7)=" Kk xM
180 sc$(8)="* ":sc$(9)="* *":5¢$5(10
)="* * "ISC$(11)="* *xN
190 5c5(12)-"*% B.oc5(13) WEE 40 .cn0)
14)=thx% M.goS (15)="K%xxn
200 REPEAT
210 PROCnext:CLS:READ cd$
220 IF cd$="**" PRINT"End of data":Qui
t%=TRUE ELSE IF NOT Quit% THEN PROCcgen:
PROCinfo
230 UNTIL Quit$%
240 END
250 -
260 IF ERR=41 THEN PRINT"No such line”
:G$=INKEY (100) :GOTO 200
265 MODE 7
270 IF ERR=42 THEN PRINT"No DATA state
ments"” ELSE REPORT:PRINT" at line ";ERL
280 END
230
1000 DEF PROCcgen
1010 rc%=ASC(LEFTS$ (cd$,1))
1020 ND%=MID$ (cd$,2,1)=""":p%=3
1030 FOR i%=0 TO 8
1040 pb% (1%)=EVAL("&"+MIDS$ (cd$,p3+2*i%,
2))

1050 NEXT

1060 PROCprchr

1070 p%=p%+19

1080 PROCscchr

1090 ENDPROC

1100 :

1110 DEF PROCprchr

1120 xs%=1:ys%=1

1130 FOR x%=0 TO 9

1140 cl1%=0:pv%=128

1150 FOR y%=0 TO 7

1160 cn%=pb%(x%) DIV pv%

1170 cl%=cn%

1180 IF cn%=1 THEN pb% (x%)=pb$ (x%) -pv%

1190 pv%=pv% DIV 2

1200 PRINTTAB (xs%+x%, ys%+y%)pc$ (cn?)

1210 NEXT

1220 NEXT

1230 ENDPROC

1240 .

1250 DEF PROCscchr

1260 xs%=20:ys%=1

1270 FOR i%=0 TO 7

1280 pb%(i%)=EVAL ("&"+MIDS$ (cd$,p3+2*1i8,
2))

1290 PRINTTAB(xs%,ys%+i%)sc$ (pb%(i%)DIV
16) ;sc$ (pb% (1%) MOD16)

1300 NEXT

1310 ENDPROC

1320 :

1330 DEF PROCinfo

1340 VDU 23,224,pb%(0) ,pb%(1),pb%(2),pb
%(3) ,pb% (4) ,pb% (5) ,pb% (6) ,pb%(7)

1350 PRINTTAB(0,10)"Screen Character =
";CHRS$224

1360 PRINTTAB(0,12)"Character Name=";MI
D$ (cd$, 39)

1370 ENDPROC

1380 :

1390 DEF PROCnext

1400 vDU23,1,1;0;0;0;

1410 PRINTTAB(0,19)"Line Number/Next Li
ne/Quit (L/N/Q)"

1420 PRINT SPC30'SPC30;CHRS$13;CHRS11;CH
R$11

1430 REPEAT:G%=GET AND NOT 32:UNTIL INS
TR ("LNQ"+CHR$13, CHRSG3%)

1440 Quit%=(G%=81)

1450 IF G%=76 THEN INPUTTAB(0,20)"Line
Number="1n%:RESTORE 1n%

1460 VvDU23,1,0;0;0;0;

1470 ENDPROC

)

Beebug October 1988

19

&

A LHANGE i THE
AR FOR
IMCcROIEY

Richard J.Brunton looks at recent changes
to Micronet and Prestel, including the
controversial price increases.

Micronet and Prestel have remained almost
unchanged for many years now with only
minor improvements and updates. Recently,
however, Micronet has undertaken a series of
major changes which not only affect the
database itself, but also the company behind
Micronet, Telemap Group Limited.

The changes began when a new Managing
Director, John Tomany, was appointed to the
Telemap Group. Following this appointment,
staff reorganisations took place with the
appointment of new Product Managers for the
various areas of Micronet. This was the start of
the restructuring of Micronet.

One of the first improvements was the
updating and expansion of the indexing system
to access pages. The effect of this was a
reduction in the time taken to move around the
database, and the implementation of simpler
routes throughout the system.

Along with the routing changes came more
frequent updating, and the introduction of new
computer magazines. News stories now appear
daily, as do the many updates on other sections.
The magazines are updated on specific days of
the week, and extensive archives store the last
four issues of each on-line. All the magazines
have letters, hints and tips, articles, information
from experts, and some even have their own
chatlines, for example the BBC section.

Previously, the computer section only covered
the widely used home computers, such as the
Spectrum, BBC and Commodore. Now, the area
has been expanded and provides
comprehensive coverage for other Acorn
machines, PCs and compatibles, Commodore

20

64 and 128, Amiga and ST, and the Amstrad
CPC and PCW. Lately, areas for Z88 and QL
users have been introduced.

The Micronet company Bytemail, which
specialises in hardware and software by mail-
order, has been expanded to provide for the
increased range of computers covered, and also
caters for other computers such as the Electron.

Recently, an area called Xtra! was introduced,
supplying entertainment which has little or
nothing to do with computers. Xtra! includes
reviews of films, news of current events, radio
and television guides, and also brings together
Micronet's older leisure areas.

Within the Xtra! database there are a number of
features, including Shades (the Multi-User
Dungeon), 20th Century Hamster (a collection
of quizzes and competitions with cash prizes),
Starnet (a play-by-mailbox multi-user game),
Bazaar (which includes classified and lonely
hearts sections, and areas for buying and
selling, and for expressing your views) and
finally the newest introduction for Micronet
members and now for Prestel members,
Teletalk.

Teletalk is very similar to Shades, yet it is not a
game. Teletalk is a teleconferencing system for
both private and business users who wish to
contact each other by day or night. There are
over thirty areas, where conferences and
meetings can be held, although many private
users now access them for entertainment.

Telemap has also expanded away from
Micronet and allows open access to Shades on
the 0898 telephone system, under the title
Funtel. This in turn is based on the three-month
trial system called Hotel California. The Funtel
area is intended to include many of the old
Hotel California's services.

Funtel is accessed in the same way as Micronet,
and apart from Shades it offers many other
games and competitions to provide hours of
entertainment. The problem is the cost, since
the cost for the 0898 system is 25p per minute
off peak and 38p per minute at other times.

Beebug October 1988

e

The other major change to Micronet has arisen
through the revised time charges introduced by
Prestel. Prestel now costs 7p per minute from
8am to 6pm Monday to Saturday, while at all
other times the cost is 1p per minute.
Previously the charges were 6p per minute,
8am to 6pm Monday to Friday and 8am to 12
noon on Saturdays, while all other hours were
free of time charges.

Annual subscriptions were also increased, and
membership to Micronet and Prestel now costs
£20 per quarter for private users and £30 per
quarter for business users. This means an
increase to private users of £14 per anum and to
business users of £8 per anum. Telemap has
said that private users are facing a larger
increase than business users, because both
Prestel and Micronet felt that business users
were subsidising the private users.

The good news is that access to Telecom Gold
via the Interlink gateway is now cheaper and
costs only £1 per month, although there is a
further charging structure for the amount of
text sent.

According to Micronet and Prestel, the new
charges are needed to finance the additional
staff and equipment necessary for the fast
updating and maintenance, for future
improvements to the network of computers
running Prestel, and to update the baud rates
currently used by the system. Prestel gave
considerable thought to the new charges, but
decided that a small increase of both
subscriptions and time charges would be better
than a large increase in one of them. Telemap
has suggested that in the future a choice might
be offered to pay either by subscription or by
time charges.

Micronet has, fortunately, negotiated free
access to its pages between the hours of
midnight and 8am every day, when most use is
made of the system. Unfortunately, as soon as
the user wishes to send a mailbox message,
charges are incurred, since the mailboxing
system is contained within the Prestel pages.
Teletalk and Shades have also been spared the
increased rates. Users of these two areas are not

Beebug October 1988

constrained to the midnight to 8am time slot to
avoid time charges.

Before users were officially informed of the
new charges, the news was leaked from within
Micronet. The result of this was considerable
anger towards Prestel, and many members
commenced complaining long before official
confirmation was released. Irate members sent
many mailboxes to Prestel and various
computer magazines who hold accounts with
Prestel. Letters were also sent to Prestel's head
office, and there was an increased use of
Prestel's Telex service!

A 'swearathon', which was widely publicised
beforehand, took place on the last day of the
old charges, and the participants arranged to
send obscene messages on the various
chatlines, thus challenging Micronet to enforce
the conditions of membership and terminate
many of these user's accounts. Micronet tried in
vain to delete all obscene messages sent, but
finally decided to close down the chatlines
being mis-used.

A large number of Micronet members also
threatened to leave Micronet, but even though
nights are much quieter and the total usage
seems to have decreased (especially on Shades,
Teletalk and the many chatlines), David
Rosenbaum, spokesperson for Telemap, said
that they had not lost many members. He also
said that they expect a small number of
members to leave when their membership
renewal option comes round.

Prestel and Micronet still remain the major on-
line services providers. Even though the costs
have increased, they are still cheaper than the
main rivals in the market. With the new
additions, upgrades and future plans yet to be
carried out, Micronet still remains a good
choice for both the private and business user.

Micronet may be contacted (verbally) on 01-278 3143,
For a free demonstration of Micronet and Prestel
phone 01-618 1111 on 1200/75 baud (using the ID
4444444444 and the password 4444).

To contact the Funtel service (available on 1200/75
baud) dial 0898 100890. B

21

Graham Crossley throws some light on that
mechanical rodent connected to your user
port.

Over the past few years, the use of mice has
revolutionised the way users communicate
with computers. However, there are many BBC
micro owners who have a mouse, but have little
idea of how it works, or how to read its output
directly. The purpose of this article is to explain
how a mouse works, and to develop a set of
routines that can be used to read the mouse's
position and button status from within your
own programs.

THE USER PORT

Before looking at mice, we need to take a quick
look at the functioning of the computer. Inside
a BBC micro are two rather complex chips
called Versatile Interface Adaptors (VIA's), one
being the system and the other the user VIA.
These chips have two 8 bit ports (A and B) and,
as the name implies, they interface various
devices to the micro-processor (CPU). Port A of
the user VIA forms the parallel printer
interface, while port B is the user port. Figure 1
shows the connections on the user port socket.
The ones marked 'X' are those used by a mouse.
Pins PBO-PB7 are data lines which can be read
by the computer to determine mouse
movement and button presses. The two pins
CB1 & CB2 are a little more complicated but
their function will become clear as you read on.

INTERRUPTS

When your BBC computer is running a
program, or even sitting idle, the CPU is
repeatedly, but only momentarily, diverted in

22

order to run small machine code routines which
perform background tasks such as scanning the
keyboard, incrementing timers etc. These tasks
‘interrupt' the system, and may be generated by
any one of certain specific 'events'. For example,
each VIA includes two timers, and the
operating system uses one of these to generate
an interrupt every 0.01 seconds. This is used to
control processes such as the keyboard auto-
repeat. Another way to cause an interrupt is by
changing the logic level on either the CB1 or
CB2 lines on the user port. This is very useful,
as you will see later.

) (69]
Ov Ov Ov Ov Ov Ov Ov Ov

0 QOQO0 000 O

Pin 1

+5v +5v

€30 O D LR L K

PB7 PB6 PB5 PB4 PB3 PB2 PB1 PBO CB2 CB1

® 0 ® x) 0 0 ®
Lines marked 'x' are connected to the mouse.

Figure 1. User port connections

To be of any practical use, we need to control
what the CPU is going to do when interrupted,
and in the BBC micro this control is provided
by means of interrupt vectors; IRQ1V at
&204/5 (high priority) and IRQ2V at &206/7
(low priority). In order to execute a specific
piece of code during an interrupt we simply
ensure that the address of this code is in one of
the vectors prior to the interrupt occurring.

MOUSE ANATOMY

A standard mouse 'rides' on a ball which is
mechanically linked to 2 rotation sensors that
produce electrical pulses when the mouse, and
thus the ball, are moved. This linkage is
normally in the form of two rollers at right
angles to each other. To stabilise a ball, there
are also one or two dummy rollers which are
spring loaded to hold the ball in place. The
sensors are usually optical in nature, and
function by rotating a slotted disc between an
infra-red emitter and detector. When the roller
is rotated, the disc will also turn, which will
cause the infra-red beam to be interrupted

Beebug October 1988

o

periodically. By using some simple electronics
to clean up the signal from the sensor, you end
up with a series of pulses as the mouse is
moved. Each pulse corresponds to a fixed
angular movement of the roller, and hence to a
fixed linear movement of the mouse. As the
two rollers are perpendicular to

made to cause an interrupt. There are several
different ways to use these lines, but for the
mouse they are programmed so that an
interrupt is caused when the signal changes
from logic 1 to logic 0. This is called the
negative edge of the signal.

each other, one detects movement
of the mouse in the X direction,
and the other in the Y direction.
Any other direction will cause
both sensors to produce pulses.

(CB1 or CB2)

(PBO or PB2)

So far, we have two signals. Both
of these are a series of pulses, one
for the X axis, and the other for
the Y. But how do we tell in

Output 2

Output 1 [Mouse moved
I right or up
Output 2 I l Output 1

Mouse moved
Output 1 left or down

leads
Output 2

: : : : : Output 1

1 1 1 1 1 la§
Output 2

which direction each roller is

rotating? In other words, how do

you tell the difference between up and down or
left and right. The solution to this is rather
clever. Instead of having one infra-red sensor
for each slotted disc, you have two, these being
positioned at different points on the
circumference (see Figure 2). Provided the
relationship between the number of slots and
the posi-
tioning of the
sensors 1S
correct, you
can tell the
direction of
rotation. This
is because
both sensors
will produce
the same
number of

Infra-red

/ sensors

Slot

et Metal disc pulse§, but
one will start
Figure 2 its pulse
before the

other. Which one is first depends on the
direction of rotation. This is shown in Figure 3.

READING THE MOUSE

We now have four signals from the mouse
which can be read by the computer to calculate
the mouse's movement. The way this is done is
by connecting one of the X pulse signals to the
CB1 line on the user port, and one of the Y
signals to CB2. As said earlier, a change in the
logic level on either of these input lines can be

Beebug October 1988

Figure 3

The other X and Y pulse signals are connected
to the PBO and PB2 lines on the user port
respectively. The computer can test the logic
levels on these lines simply by reading a
register within the VIA. If you refer back to
Figure 3, you can see that if, say, the X pulse
generates an interrupt on the CB1 line, the
program can immediately look at the level on
the PBO line, and use this to work out the
mouse direction (logic 0 is left, logic 1 is right).
The same applies to the Y movement, except
that this time the interrupt is on the CB2 line,
and PB2 must be checked to find the direction.

The other inputs from the mouse come from the
three buttons. These are connected to the inputs
PB5-PB7 on the user port (the left button is PB5,
the middle one is PB6 and the right one is PB?).
These inputs will normally be at a logic 1.
However, when the appropriate button is
pressed, the line drops to logic 0.

MOUSE DRIVER

The operating system of the BBC micro
provides no handling for the mouse
whatsoever. Therefore, in order to use a mouse
you must add some extra software, called a
mouse driver. Most mice come with such
software, usually in ROM, and some packages
that work with a mouse include their own
mouse driver. The driver has to store the X and
Y positions of the mouse, and update these as
the mouse is moved. In order to do this it must
be able to cope with all the interrupts produced

23

by the mouse. The mouse driver also has to
provide some way of letting the user read the
current position, and the state of the buttons.

DATA INPUT & INTERRUPT CONTROL
Before writing a mouse driver, we need to
know more detailed information about how the
VIA is used to read the user port. Each VIA has
16 internal registers which can be written to,
and/or read from. These registers are allocated
unique addresses in the computer memory
map, the user VIA being at locations &FE60 to
&FE6F. For the purpose of our mouse driver,
only five of these actually concern us.

The first thing for a mouse driver to do is
program the CB1 and CB2 lines to behave as we
want. This is done using two of the VIA
registers: the Auxiliary Control Register (ACR)
at location &FE6B, and the Peripheral Control
Register (PCR) at &FE6C. The commands to
perform the re-programming from Basic are as
follows:

?&FE6B=?&FE6B AND &FD

?&FE6C=?&FE6C AND &F

The reason for modifying the existing value in
the registers, rather than just setting them to a
certain value, is that the registers also control
the other port which is used for the printer. If
we accidentally changed these bits, the printer
port could cease to function until the computer
is reset.

Before the CB1 and CB2 lines can actually cause
interrupts, they must be enabled. This is done
by writing to a register at location &FE6E called
the Interrupt Enable Register (IER). The value
to write into the IER is &98, which will enable
both CB1 and CB2 to produce interrupts.
Again, any other value written could upset the
other functions of the VIA.

Now, whenever the mouse is moved, an
interrupt will be generated. By reading the
Interrupt Flag Register at &FE6D, the source of
the interrupt can be found. Bit 7 will be set to
show that the VIA is interrupting, and either bit
3 or 4 will be set to show the cause of the
interrupt (bit 3 for CB2, bit 4 for CB1). The other
mouse signals are read from Input Register B
(IRB) at location &FE60. The values of lines PBO
to PB7 are read into bits 0 to 7.

24

A WORKING PROGRAM

The program given here includes all the
routines needed to implement a mouse driver,
and uses them as the basis of a simple drawing
package.

To use the mouse in your own programs,

include the PROCassemble definition from this

program, and call it at the start of your code.

You can then activate the mouse driver using:
CALL setmouse

and when you have finished, deactivate it with:
CALL resetmouse

The X and Y co-ordinates of the current mouse
position are stored in locations &70 to &73 as
normal graphics co-ordinates. Your program
can read these using:

X=1&70 AND &FFFF:Y=!§&72 AND &FFFF
To see if a button is pressed or not, set Y% to 1,
2 or 3, for the left, middle or right buttons, and
execute:

BUT=USRtestbuttons AND &FF
This will set BUT to zero if the button is not
pressed, or to a non-zero value if it is.

The simple drawing program uses the left-hand
button to draw, the middle button to change
colour, and the right-hand button to clear the
screen.

10 REM Program Mouse Demo

20 REM Version Bl1.0

30 REM Author Graham Crossley

40 REM BEEBUG October 1988

50 REM Program subject to copyright

100 ON ERROR GOTO 2080
110 MODE1l

120 PROCassemble

130 PROCsketch

140 END

1000 DEF PROCassemble

1010 x%=&70:y%=672:!x%=640:'y%=512
1020 orb=§FE60:1ifr=¢FE6D:ier=6FE6E
1030 acr=&FE6B:pcr=&FE6C:irqv=6204
1040 FOR opt%=0 TO 2 STEP 2:P%=&900
[OPT opt%

1060 .setmouse

1070 SEI:IDA irqv:STA oldirqv

1080 LDA irqv+l:STA oldirqv+l

1090 LDA #start MOD 256:STA irqv
1100 LDA #start DIV 256:STA irqv+l

Beebug October 1988

1110
1120
1130

LDA acr:AND #&FD:STA acr
LDA pcr:AND #&F:STA pcr
LDA #&98:STA ier:CLI:RTS

1140 :

1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430

.resetmouse

SEI:LDA oldirqv:STA irqv
LDA oldirqv+l:STA irqv+l
LDA #&18:STA ier:CLI:RTS
.oldirqv

EQUW 0

«start

PHP:PHA:TXA:PHA:TYA:PHA

LDA #&80:BIT ifr:BEQ exit

LDA #&10:BIT ifr:BEQ up_down
.left right

LDA #&01:BIT orb:BEQ mouse left
.mouse_right

LDA x%:BNE incx

LDA x%+1:CMP #&05:BEQ exitrgt
.incx CLC:LDA x%:ADC #&04:STA x%
LDA x%+1:ADC #0:STA x3%+1
.exitrgt JMP exit

.mouse left

LDA x%:BNE decx

LDA x%+1:BEQ exitlft

.decx SEC:LDA x%:SBC #&04:STA x%
LDA x%+1:SBC #0:STA x3%+1
.exitlft JMP exit

.up_down

LDA #&04:BIT orb:BEQ mouse down
.mouse up

LDA y%:BNE incy

1670 ENDPROC

1680 :

1690 DEF FNbutton (Y$%)

1700 =USR (testbuttons)AND&FF

1710

1720 DEF PROCsketch

1730 vDU23,128,248,240,240,248,156,14,4
75,23,1,0;0;0;0;

1740 CALL setmouse:penx%=0:peny%=0:col%
=3

1750 vDU25,4,625;500;18,3,c0l%,128,25,4
1625;500; :F$=TRUE

1760 REPEAT

1770 newx%=(!x% AND &FFFF)

1780 newy%=(!y% AND &FFFF)

1790 IF newx%=1280 newx%=1279

1800 IF newy%=1024 newy%=1023

1810 IF FNbutton(l) PROCdraw ELSE PROCm
ove

1820 IF FNbutton(2) PROCcolour

1830 IF FNbutton(3) VDU16,128,25,4,penx
%;peny%; :F$=TRUE

1840 UNTIL FALSE

1850 ENDPROC

1860 :

1870 DEF PROCdraw

1880 IFnewx%=penx% AND newy%=peny% AND
NOT F% ENDPROC

1890 IF F$% VDU128,25,4,penx%;peny%;18,0
,CO1% :F$=FALSE

1900 penx%=newx%:peny%=newy$

1910 VDU25,5,penx%;peny%;

1920 ENDPROC

1440 LDA y%+1:CMP #&04:BEQ exitup 19310 ;

1450 .incy CLC:LDA y%:ADC #&04:STA y% 1940 DEF PROCmove

1460 LDA y%+1:ADC #0:STA y%+1 1950 IFnewx%=penx% AND newy%=peny$ AND

1470 .exitup JMP exit F% ENDPROC

1480 .mouse down 1960 IF NOT F% VDU18,3,col%,128,25,4,pe

1490 LDA y%:BNE decy nx%;peny%; :F$=TRUE : ENDPROC

1500 LDA y%+1:BEQ exit 1970 penx%=newx%:peny%=newy$:*FX19

1510 .decy SEC:LDA y%:SBC #&04:STA y% 1980 VDU128,25,4,penx%;peny%;128,25,4,p

1520 LDA y%+1:SBC #0:STA y%+1 enx%;penys;

1530 .exit PLA:TAY:PLA:TAX:PLA:PLP 1990 ENDPROC

1540 JMP (oldirqv) 2000 :

1550 : 2010 DEF PROCcolour

1560 .testbuttons 2020 col%=(col%+1)MOD4

1570 LDA bitnumber,Y:BIT orb 2030 IF col%=0 THEN col%=

1580 BEQ pressed 2040 VDU128,25,4,penx%;peny%;18,3,cols,

1590 .notpressed 128,25, 4, penx%;peny%;

1600 LDA #0 2050 Z%=INKEY 30

1610 .pressed 2060 ENDPROC

1620 RTS 2070 :

1630 : 2080 IF ERR=17 CALL resetmouse:MODE 7:P

1640 .bitnumber RINT'"DONE" ELSE REPORT:PRINT" at line "

1650 EQUD &80402000 ;ERL

1660]NEXT 2090 END B
Beebug October 1988 25

BEEBUG
Education

7

TOPIC WORK AND SOFTWARE
by Mark Sealey

BEEBUG Education this month looks at topic or
project work for the Primary, Middle and
Secondary age ranges. Since as much software
for this area of the curriculum has been
produced as for any other, it is only to be
expected that it should be of varying quality.
Before turning to some examples, it seems
useful to sketch a few broad guidelines about
what is available and how it can be
approached.

There is very little topic software which does
not fall into one of the six categories: adventure,
simulation, geography, history, science, and
what the publishers call 'across the curriculum'.
It would be impractical to survey even 1% of
what is available. You need to browse and
decide whether your approach is to be an
integrated one - (ignoring subject boundaries
and oriented towards skills), a child centred
approach, or one where you may decide to
adapt something that is not quite right but falls
roughly into your subject area. It is vital not to
let the title or a brief product description tie you
down. Good software is flexible!

To get some idea of what is available, of target
age range, suitability, content and practical
details, you could do a lot worse than ask to be
put on the mailing list of one of the best guides,
the Rickitt Educational Software Directory, from
Rickitt Educational Media, Ilton, Iminster,
Somerset TA19 9BR.

By and large, good software for use in topic or
project work will meet three criteria. Firstly, the
language on screen will not be too difficult or
specialised for the users. Secondly, the material

26

away from the computer will generate as much
thoughtful activity as the programs themselves.
Thirdly, the pupils will not be required to jump
through a series of hoops as 'proof' of having
learnt something. Software which suggests that
pressing a key gets the only 'right' response
should be avoided. The more open-ended an
activity, the more room there is for pupils' own
exploration and for them to develop skills of
hypothesis formation. In general, software of
the context free variety is to be preferred.

If a program has a well-defined scenario, so
much the better; research suggests that learning
is more effective when children are working in
'microworlds' which obey predictable and
discoverable rules. Where there is a strong
flavour of place, theme or time, learning is
enhanced.

In history, for example, there is little to be
gained in having pupils commit pages of facts
to memory in order to come up with them at
the right time in the program. Regrettably, the
BBC micro has spawned many of these.
Approaches that promote speculation about
what would have happened if... or attempt to
see a well-known event from an unusual point
of view are usually more successful. Before
using or buying project software, check that it
conforms to as many as possible of the
evaluation criteria offered in BEEBUG
Education Vol.7 No.1.

Two suites representative of what is new in the
area, and which illustrate some of the above
points, are discussed here. It is to be borne in
mind that very few packages satisfy every
requirement, especially where applicability
across the curriculum is concerned. Both
Apprentice and The Water Game go quite a way
towards doing so, though.

APPRENTICE
for the BBC B, B+ and Master (DFS 40T or 80T).
Supplied by Scetlander, 74 Victoria Crescent Road,
Glasgow G12 9]N.
Price £21.85 inc.VAT and p&p

This suite can be used with juniors as well as
secondary school pupils. Its scenario is 'small

Beebug October 1988

B2 e

town' life in Seventeenth Century Scotland. The
pupil has to learn the crafts of archery and
breadmaking, survive physical attack, site and
build a mill and develop map-reading skills in a
series of self-contained but connected and well-
paced modules.

It is obvious from this list just how many areas
of the curriculum can be brought in with
imaginative teaching. The program asks pupils
to arrange in order the component jobs of
breadmaking. They could well use the
sequencing skills needed here in other contexts
such as building, farm management or games
of the period.

There is another facet of topic work to be
highlighted. Don't expect the computer or
pupils to do all the work! Go out and buy the
yeast and flour, and be prepared to get your
hands wet. Apprentice promotes as much
activity away from the computer as on it. There
is even a board game concerning Burgh
Government and diet and nutrition.

The package also has that reliable sign of
quality: educational aims given in the excellent
documentation, plus evidence of 'expert' advice
and a book list for teachers and pupils. There is
also a way for teachers to preview the path
through the package without having to 'play
each game'. When they do, they will see how
the suite could very easily be adapted to a
whole variety of classrooms and styles of
teaching.

Project software should be usable by pupils of
varying abilities; this is obviously difficult to
achieve and quite rare. Apprentice scores by
containing activities which will challenge a fair
range of experiences and aptitudes related, for
example, to number work and the difference
between 'divergent' and 'convergent' thought.
This is really quite an important distinction in
the way in which 'problems' are perceived and
solved by pupils. Much topic software pays no
attention to the variety of ways in which
children may tackle tasks.

There is probably as much as a term's work in
this pack. It also provides enough background

Beebug October 1988

information to allow pupils who become
fascinated with a particular aspect of the subject
matter to explore it for themselves. Apprentice is
thoroughly recommended.

THE WATER GAME
Supplied by CWDE Software, Regents College,
Inner Circle, Regents Park, London NW1 4NS.
Price £15.50 inc.VAT and p&p

This pack, aimed at slightly younger children,
is every bit as impressive, although not so large,
which shows that quality and size are not
necessarily related. Topic software in general is
effective because it is simple.

The Water Game has a simple idea - to teach
pupils how to manage what is a very scarce
resource in most parts of the world (lots of
relevant geographical data is given in the
documentation - as well as an excellent
resource list).

In that sense, it could be described as specialist
software. But, like GRASS (the database from
the same producers, reviewed in BEEBUG Vol.5
No.9) it has a very wide application. After the
initial menu screen (which can be recalled at
any time), pupils (from 2 to 5 in number) are
asked to change any of the variables in the
game. These include duration and some slight
changes in playing conditions.

Previously saved games can now be reloaded,
and joint decisions have to be made about what
the water requirements will be: for drinking, for
animals, irrigation and so on. The remainder of
the game uses attractive graphics and the sort
of sound effects that will probably not become
tiring. You have to collect the precious water
and then allocate it, both in a visual game and
conventional problem-solving situations.

The only small criticism of this suite, which
applies to Apprentice as well, is an over-reliance
on text. Younger children are not always able to
read multiple text screens, however appealingly
presented. It would,however, be churlish to
make too much of this when faced with such a
well thought-out compromise between real-
time and 'take-your-time' activities.

27

[Madhine: Fiing 5 T e |

B<-TmE T = e

PRINT
FORMATTING

If your program produces large quantities
of numerical output then Bernard Hill's
print formatting function may be just what
you need.

Many users have found that when it comes to
printing or displaying numbers in any quantity,
getting just the right format or alignment is not
that easy. Using either the comma or semi-
colon as a separator, and adjusting the value of
the system variable

form of function called FNusing, and it is the
code for this (from line 30000 to 30320) which
should be added to any of your own programs
which need to use this facility. Included with
the function you will find a demonstration
program which shows clearly all the different
formats which are possible. Part of that output
is reproduced here. The demo also shows
clearly how to call FNusing to display or print a
number.

To see the results, type the whole program in
and save it before proceeding further. When
you run the program a comprehensive test
display will be produced. If you have a printer,
pressing Ctrl-B just before you run the program
will produce a more permanent record of the
formats available.

@% should provide

all that you need, but FRERE. 4 Hith . b FEERE.HH FEERE . HE HHEEE.E FREEE. 4
often it just diesn's 1.00 -3.14 9.87 31,01 97.41 -306.02
seem to work. In | .ppus o ppl GHELEE EHLHE B LN
fact, many program- +1.00 i +9.87 31 +97.41 -306.02
mers forsake these

methods altogether, 00000. 44 00000, #4 00000. ## 00000. #4 00000. ## 00000. ##
convert all their 00001.00 -0003.14 00009.87 -0031.01 00097.41 -0306.02
numbers into string

ey eoanl Gt +0000. # +0000. #4 +0000. ## +0000.4# +0000. 4 +0000. #4
8o formatting +0001.00 -0003.14 +0009.87 -0031.01 +0097. 41 -0306.02
themselves.

There is a better solution, and it's not new
either. In the past, many implementations of
Basic provided a so-called PRINT USING
function. This enabled the user to specify
precisely what format any number should be
printed in by effectively 'painting' a picture of
how the number should be laid out. For
example, a format of +##.#### would indicate
that an eight character field would be used for
printing. The '#' characters indicate where the
digits will be placed, and the full stop where
the decimal point should go. Lastly, the '+ at
the front of the format simply ensures that
either a plus or minus sign is printed at the
beginning of the number, rather than just a
space in the case of a positive value.

The program listed here contains a PRINT
USING function which you can incorporate into
your own BBC Basic programs. This is in the

s 28

The features of a print format are made up from
the following code letters:

indicates the position for a digit.

indicates the position of the decimal

point.
AAAA - shows where the exponent should be if
'scientific’ notation is required.
7 a comma appears as a comma, for use

with very large numbers.

0 same as # except that all digit positions
are filled (with zeros) if necessary, rather
than spaces, if the number does not fully
fill the print field.

0 brackets around the format indicate that
negative numbers should be enclosed in
brackets (often used for financia] figures)
rather than printed with a minus sign.

Beebug October 1988

B s et I R e 1 .

Examining the display produced by the test
program should show you exactly how to use
these print formats. Now you have no excuse
for producing badly formatted numeric
displays. So why not add a print using function
to your own programs?

10 REM Program FNusing Test

20 REM Version B1.0

30 REM Author Bernard Hill

40 REM BEEBUG October 1988

50 REM Program subject to copyright

100 MODE3

110 PROCtest ("#####.##",-PI)

120 PROCtest ("+####.#4",-PI)

130 PROCtest ("00000.##",-PI)

140 PROCtest ("+0000.##",-PI)

150 PROCtest ("##.###°~~"",0)

160 PROCtest ("##.###~"~~",-PI)
170 PROCtest ("##.###°~~~",-1/PI)
180 PROCtest ("###.#**"",-PI)
190 PROCtest ("&######",-PI)

200 PROCtest ("&000000",-PI)

210 PROCtest (" (###.4##)",~-PI)

220 PROCtest (" (0000)",-PI)

230 PROCtest ("+, ###, ###.4",-12.3)
240 PROCtest ("#,###, ###.4",21.1)
250 PROCtest ("#, ###, ##4#",21)

260 PROCtest (" (#, ###,###)",-10)
270 END

290 DEFPROCtest (s$,X)

300 LOCAL i

310 PRINT

320 FOR i=0 TO 5:PRINTTAB(13*i);s$;:NE
XT:PRINT

330 FOR i=0 TO 5

340 PRINTTAB(13*i);FNusing(s$,X*1i);

350 NEXT

360 PRINT

370 ENDPROC

380 :

30000 DEFFNusing(f$,n)
30010 LOCAL @%,p$,x$,y$,a$,b$,n$,D,2,E,C
,B,P,L,N

30020 p$=" ":L=LENf$:C=INSTR(f$,",")>0
30030 D=INSTR(f$,"."):IF D=0 THEN n=INT(
it o)

30040 Z=INSTR(f$,"0"):IF Z THEN p$="0"
30050 E=INSTR(fS,"~**~"):IF E=0 THEN 300
80

30060 IF n=0 THEN p=0 ELSE p=INTLOGABSn
30070 =FNusing(LEFT$(£$,E-1),n/10"p) +"E"
+FNusing ("+0#",p)

30080 IF ASCf$<>38 THEN 30130

30090 n$=STRS~n:L=L-1

30100 N=LENn$:IF n<0 AND L<N THEN n$=RIG
HT$ (n$, L) :GOTO 30100

30110 IF Z THEN x$="&" ELSE y$="&"

30120 GOTO 30320

30130 P=ASC£$=ASC"+" AND n>=0

30140 B=ASC£$=40:IF B=0 GOTO 30180
30150 L=L-2:IF D>0 THEN D=D-1

30160 IF n>=0 THEN x$=" ":b$=" ":GOTO 30
180

30170 n=-n:b$=")":IF Z x$="(" ELSE y$="(

30180 @%=(&1020000+256* (L-D)) *SGND+L
30190 IF Z AND P THEN ="+"+FNusing (MIDS$ (
£$,2),n)

30200 IF Z AND n<0 THEN ="-"+FNusing (MID
$(f$I2)I-n)

30210 n$=STRSn:IF NOT C THEN 30280

30220 IF ASCn$=45 a$="-":n$=MIDS (n$,2)
30230 D=INSTR(n$,".")-1:IF D=-1 D=LENn$
30240 IF D<4 THEN n$=a$+n$:GOTO 30280
30250 FOR N=1 TO LENn$:a$=a$+MIDS (n$,N,1

)

30260 IF (D-N) MOD 3=0 AND N<D a$=a$+","
30270 NEXT:n$=a$

30280 N=LENn$

30290 IF I<N THEN =f$

30300 IF L=N THEN =x$+y$+n$+b$

30310 IF P THEN L=L-1:n$="+"+n$

30320 =x$+STRINGS (L-N,p$) +y$+n$+b$

MULTI-COLUMN PRINTING (Vol.7 No.1)

Unfortunately the two print styles, pica and
elite, were confused. Changing lines 2100 and
2110 as shown will ensure that the correct style
is selected.
2100 UNTIL P%=69 OR P%=80 OR P%=67:
PRINTCHRS$P%' : pmode%$=- (P%=69) -4* (P%=67)
2110 mlin%=80-16* (P%=69)-52* (P%=67)

Beebug October 1988

Points Arising....Points Arising....Points Arising....Points Arising....

MATHEMATICAL WORMS (Vol.7 No.4)
The number following GOTO in line 3070
should be changed to read as follows:

3070 IF ABS(X%)>EX% OR ABS(Y%)>EY%
THEN C%=31:GOTO 3160
and not as published in the magazine. Our
apologies for this small error.

29

e - | s

st

This month's First Course
contains a number of different
items. There are two more fancy
scrolling routines by Lindsay
Cullen, E.T.Ems explores
character sorting within strings,
while Lindsay Cullen (again)
provides a useful visual insight

Lindsay Cullen's other
scrolling procedure is
really misnamed-named as
such. What it does is to
display a character string
in mode 7 double-height
characters on the screen,
and then split the two
halves of the line of text
(upper and lower) into two
separate single-height

To add to last
month's collec-
tion of scrolling
routines, here are
two more ideas
for improving screen displays. The first of these
is very short, and serves a different purpose to
most of those we looked at previously. It takes
any string (up to Basic's limit of 256 characters),
and writes this on the screen at a readable
speed, one character at a time. The rate at which
characters are displayed can be easily
controlled by the value in line 150. The larger
the value the slower the rate of display.

compiled by
(Mike Williams

100 DEF PROCdisplay (x%,y%,a$)
110 PRINTTAB(x%,y%);

120 length=LEN(a$)

130 FOR loop%=1 TO length

140 PRINTMIDS (s$,loop%,1) ;

150 TIME=0:REPEAT UNTIL TIME>16
160 NEXT

170 ENDPROC

The parameters required by the procedure are
the co-ordinates of the position on the screén at
which text should commence, and the string
itself.

If you want to display more that 256 characters
then just split your text up into several strings
and call the procedure for each one
successively. Depending on where a string
meets the left-hand edge of the screen, the
occasional space between words may need to
be omitted. Trial and error is the best way to
sort this out.

, 30

I T T T N L T T e

lines, one above and one
below the original position. The effect is
actually much more impressive than it might

C O UR SE into string sorting.
SCROLLING
A miscellany STRINGS actually much more impr
[. ; ;
of items Lindsay Cullen "

200 DEF PROCdisplay(a$, y%)

210 len%=LEN(a$)

220 x%=(36-1len%) /2

230 PRINTTAB (x%-2,y%) ;CHRS (134) ;CHRS (1
11) ;a$

240 PRINTTAB (x%-2,y%+1) ;CHRS (134) ;CHRS
(141) ;a$

250 FOR loop%=0 TO len%-1

260 ch$=MIDS (a$,loop%+1,1)

270 IF ch$=" " THEN 340

280 FOR move%=1 TO 4

290 PRINTTAB (x%+1loop%,y%-move%) ;ch$

300 PRINTTAB (x%+loop%, y%+1+move%) ;ch$

310 PRINTTAB (x%+loop%,y%+l-moves) ;" "

320 PRINTTAB (x%+loop%,y%+moves) ;" "

330 TIME=0:REPEAT UNTIL TIME>6

340 NEXT:NEXT

350 ENDPROC

The text string specified is centred horizontally
on the screen in a vertical position determined
by the parameter y%. The separation into two
separate lines of text is performed by the loop
at lines 280 to 340, with the new lines being
positioned 4 lines above and below the original.
Changing the value '4' in line 280 will control
the degree of separation, while adjusting the
time value in line 330 will determine the speed
at which the separation occurs.

These procedures, together with those given
last month, provide a useful collection for a
variety of effects when it comes to displaying
text. No doubt by experimenting you could
devise many more.

Beebug October 1988

CHARACTER SORTING

E.T.Ems

The First Course article in BEEBUG Vol.7 No.1
gave a function for ordering the characters
within a string as an example of the use of
Basic's string handling functions. That original
function is reproduced below.

1000 DEF FNsort (string$)
1010 LOCAL n:n=LEN(string$)
1020 FOR i=n TO 1 STEP -1
1030 FOR j=1 TO i-1
1040 IF MID$ (string$, j,1)>MIDS$(string$,
j+1) THEN string$=LEFT$ (string$,j-1)
+MID$ (string$, j+1,1)
4MID$ (string$, j,1)
+RIGHTS (string$,n-j-1)
1050 NEXT:NEXT

Listed below is an alternative function, which
makes a vast improvement to the speed at
which this process is carried out.

1000 DEF FNsort (string$)

1005 IOCAL ascii,s,SS$

1010 S$="":5=0

1020 FOR ascii=32 TO 126

1030 REPEAT

1040 S=INSTR(string$,CHRS (ascii),S+1)
1050 IF S>0 THEN S$=S$+CHRS$ (ascii)
1060 UNTIL S=0

1070 NEXT

1080 =S$

The routine uses the fact that when we are
sorting single characters, we know in advance
the range and order of all the possible elements,
and hence we can build this knowledge into the
program. Line 1020 is a FOR loop which takes
each ASCII code from 32 to 126 in turn. The
routine then uses the INSTR function to search
for every occurrence of the corresponding
character in the original string and assign these
to a new string, which is built up and returned
by the function. The other difference is that the
characters are not progressively re-ordered
within the string. The ordered string returned
could replace the original if required. On long
strings, Mr.Ems' routine takes under 3 seconds
compared with over two minutes for the
original routine.

Beebug October 1988

In fact, the technique described above can be
readily modified to sort a character string into
any predefined order. What is required is a
mask which is a string containing every
character in the desired order. This then
determines the basis for ordering any other
string. The function below uses such a mask, to
order the characters. For flexibility, the mask
should be specified in the main program, and
supplied to the function as a parameter.

1000 DEF FNsort (string$,mask$)
1010 LOCAL char§$,count,S,S$
1020 S$="":S=0

1030 FOR count=1 TO LEN (mask$)
1040 char$=MIDS (mask$,count,1)
1050 REPEAT

1060 S=INSTR(string$,char$,S+1)
1070 IF S>0:S$=S$+char$

1080 UNTIL S=0

1090 NEXT

A possible mask might be:

100 mask$="AaBbCcDdEeFfGgHhTIiJjKkL1MmN
nOOPpQQRr SsTtUUVVWwXxYyZz0123456789 !#5%
U<>EE, = /= R |~ () 2N L]"

This orders all the characters alphabetically
irrespective of case, followed by all the digits in
order, and then all the other printable
characters. The three character-sorting
functions are included on the magazine disc as
complete working demos together with
timings. You can also experiment with different
masks of your own choosing.

VISUAL SORTING

Lindsay Cullen

Our final program this month is longer than we
normally feature in First Course articles, but it
should prove quite instructive to beginners. It
provides a visual demonstration of three
sorting methods:

Bubble Sort - compares, and swaps if necessary,
adjacent elements so that on each pass the
smallest element bubbles up to the top of the
list (or as here the largest sinks to the bottom).

Selection Sort - takes each position in turn and

searches for the smallest element in the
remainder of the list to fill this position.

31

Cullen's Sort - a variation on the Selection Sort
by the author of the program which swaps the
element in each position with the first smaller
element found.

In each case, you are asked to enter up to 20
names, which are then sorted. The names are
displayed on the screen and as you watch you
can see just how the names are swapped
around. The program asks for a 'pause' value: 0
gives the fastest display, larger values (1, 2, 3
etc.) slow the display down. At the end,
pressing the space bar returns to the menu
display.

We expect to cover sorting (and searching)
techniques in more detail in a future Workshop
series.

-10 REM Program Sorts

20 REM Version Bl1.4

30 REM Author Lindsay Cullen
40 REM BEEBUG October 1988
50 REM Program subject to copyright
60 :

100 MODE7:0N ERROR GOTO 280
110 VDU23,1,0:0;0;0;

120 DIM name$ (20) ,he$(3)

130 he$(1)="Bubble Sort"

140 he$(2)="Selection Sort"
150 he$(3)="Cullen's Sort"

160 REPEAT:PROCmenu

170 CLS:PROCdouble (4,1,he$ (key$%))
180 PROCnames

190 PROCshiftnames

200 IF key%=1 PROCbubble

210 IF key%=2 PROCselect

220 IF key%=3 PROCcullen

230 PRINTTAB(0,20) ; "Finshed"
240 key%$=GET

250 UNTIL FALSE

260 END

280 MODE7:REPORT:PRINT" at line ";ERL
290 END

1000 DEF PROCdouble (x,y,m$)
1010 PRINTTAB(x-1,y)CHR$141;m$
1020 PRINTTAB (x-1)CHRS$141;m$
1030 ENDPROC

1050 DEF PROCmenu

1060 hed$="Sort Demonstrations"”
1070 VDU26:CLS:PROCdouble (10, 0,hed$)
1080 FOR i=1 TO 3

1090 PRINT''TAB(5);STRS(1);:".":heS (i)
1100 NEXT i

1110 REPEAT:key%=GET-48

1120 UNTIL key%>0 AND key%<4

1130 ENDPROC

1140 :

1150 DEF PROCnames

1160 PRINT'"Please type in up to 20 nam
es, each no"'"longer than 7 letters long
."!'"Press Return to exit."'

1170 vpU28,0,24,39,8

1180 vDU23,1,1;0;0;0; :1oop%=0

1190 REPEAT:loop%=lo0op%+1

1200 PRINT"Name"+STR$ (loop%)+":"

1210 REPEAT

1220 PRINTTAB (8,VP0S-1) STRINGS (15," ")
1230 INPUTTAB(8,VP0S-1) a$

1240 UNTIL LEN(a$)<8

1250 IF a$<>"" THEN name$ (loop%)=a$
1260 UNTIL a$="":max%=loop%-1

1270 INPUT''"Pause Please: ",PA

1280 vDU23,1,0;0;0;0;

1290 ENDPROC

1300 :

1310 DEF PROCbubble

1320 REPEAT:finish%=TRUE

1330 FOR b%=1 TO max%-1

1340 IF nameS$ (b%)>name$ (b%+1) THEN PROC
swap (b%,b%+1) : finish%=FALSE

1350 NEXT

1360 UNTIL finish$%

1370 ENDPROC

1380 :

1390 DEF PROCshiftnames

1400 vpU28,0,24,39,3:CLS

1410 FOR x%=0 TO 26:FOR i%=0 TO max%
1420 PRINTTAB (0, i%) ;name$ (i%) ; SPC25; TAB
(x%,1%) ;name$ (i%)

1430 NEXT:NEXT

1440 ENDPROC

1450 :

1460 DEF PROCswap (a%,c%)

1470 PROCleft (a%,17)

1480 PROCleft (c%,9)

1490 PROCuandd(a%,c%,1,9,-1)

1500 PROCuandd(c%,a%,-1,17,1)

1510 PROCright (a%,17,8,c%)

1520 PROCright (c%,9,16,a%)

1530 a$=name$ (a%)

1540 name$ (a%)=name$ (c%) :name$ (c%)=a$
1550 ENDPROC

1560 :

1570 DEF PROCleft (pos%,to%)

1580 name$=LEFTS$ (name$ (pos$%) +STRINGS (7,
1] ll),7)

1590 FOR x%=1 TO to%

Continued on page 64

Beebug October 1988

e R T T

/

The premier exhibition for users
of all Acorn machines returns to
its popular venue in the heart of

- G S

’ sal'rcaadpitI:Znally the liveliest event reycoat treetl
f th the A

::)alened:f,atrhznpre?ch:i(;rr;as Lo n d o n SW 1

show is the one you just cannot

afford to miss. 10am-6pm Friday, November 11
It's vou:‘\;_al.ue-for-monev 10am-6pm Saturday, November 12
passport to: 10am-4pm Sunday, November 13

® 70 exhibitors displaying all
the latest developments
across the entire Acorn
range.

® Archimedes World — which
provides a fascinating
glimpse into the current and
future roles for this

" remarkable machine.

@ Technical advice from the
UK’s leading experts on all
Acorn computers.

® Hundreds of special offers for

I O Adult tickets at £4 (SaVe £1) ... €. . 15 (aduits)
the BBC Micro and Electron I O Please debit my credit card account: [J Access (] Visa Expiry date

O Cheque enclosed made payable to Total £
Database Publications Ltd

waiting to be snapped up as i S S N 0 6 IS 0 1
top-value Christmas presents.

All this — and so much more —
at the 20th record-breaking
Electron & BBC Micro User
Show.

Name
Address

Signed

You can even save y If £1 e o
; PHONE ORDERS: Ring Show Hotline: 0625 879920

before you get there by using I)A A A Ordors: . 4568383

this advanced ticket form. B SE froatsl g3, KE 19 THEN 1

F. X H | BlTl()Ng MicroLink/Telecom Gold Orders: 72:MAG001

Please quote credit card number and full address

New Horticultural Hall,

Please supply tickets for November show: Admission at door:

£3.50 (under 16s)
O Under-16s tickets at £2.50 (save £1) o £ Advance ticket orders
must be received by I

November 2, 1988

Post to: Database Exhibitions, Europa House, Adlington Park, Adli Macclesfield SK10 4NP. I

A493 I

The show that ALWAYS .
'xkeps} you one step ahead

Take a stroll down Innovation
Row — a brand new show
feature area, specially
constructed for the event.
See the grand finalists
displaying their breakthrough:
in public for the first time. An
you can.help pick the winners
by casting a vote in both
categories of the awards —
BBC Micro and Archimedes

How to get there

Underground: The nearest tut
stations are VICTORIA (Victori
District and Circle Lines),

ST. JAMES'S PARK (District af
Circle Lines) and PIMLICO
(Victoria Line).

By British Rail: VICTORIA

STATION. The halls are a 10-
minute walk from the station

By Bus: 11, 24, 29, 70, 76 and

Red Arrow 507 to Victoria Stre
- alight Army and Navy Store:

Personal Ads

BEEBUG members may advertise unwanted computer hardware and software through personal ads (including
'wants') in BEEBUG. These are completely free of charge but please keep your ad as short as possible. Although
we will try to include all ads received, we reserve the right to edit or reject any if necessary. Any ads which
cannot be accommodated in one issue will be held over to the next, so please advise us if you do not wish us to do
this. We will accept adverts for software, but prospective purchasers should ensure that they always receive
original copies including documentation to avoid any abuse of this facility.

WANTED Secondhand 40/80T Midwich Disc Drive at
resonable price. Tel. 0670716109.

Lots of games on cassette and disc. Complete Micro User
and Acorn User from Jan 85 to July 88 with binders, £13
per volume. Phone for list of games prices. Uxbridge
(0895) 31163.

WANTED InterBase ROM and documentation for BBC
B. Tel. (0332) 556381.

For BBC B: Fleet Street Editor £20, Digimouse and
software £15, both for £30. Voyager 7 modem £40,
Commsoft Comms Software £15, both for £50. For
Electron. Quickshot II joystick controller plus software
£5. Life of Repton £2.50, Starship Command £0.75, Desk
Diary £0.75, Me and My Micro £0.75, Tel. Tonbridge
(0732) 359959.

1770 Disc Interface £35. Allophone speech synthesiser
(not Acorn) £15. Both unused, in mint condition.
Tel. (0294) 52250 after 6pm.

BBC Model B with ATPL ROM board/Sideways RAM,
Acorn 6502 2nd Processor , dual disc drives, Opus hires
colour monitor, many ROMs and lots of software, £600.
Tel. (0886) 32083.

Acorn Electron with Plus 1 and ACP Plus 4 interface,
View wordprocessor and ViewSheet cartridges. £120
ono. Brother M1009 (GLP) printer £60 ono. All come
with original documentation and all are in excellent
working order. Tel. 021-378 1721 after 6pm.

Canon Typestar 5r (portable typewriter /serial printer)
plus cable to BBC, 4 new ribbons, hardly used £110 ono.
Four black spare pens for Silver Reed EB 50/]B 10 plotter
£1. Wordwise Plus (1.4E), Watford WorkAid, BEEBUG
Dumpmaster II - above ROMs £12 each. Gemini Office,
Office master, ViewChart disc, ViewIndex disc - £5 each.
Unused parallel printer cable £3. Tel. (0532) 651614.

Master 128, Cumana 40/80T DS/DD PSU disc drive,
Exmon II, Interword, AMX Superart, Dumpout 3, Icon
Master, manuals 1&2, data recorder, joystick, covers,
leads, discs, software BEEBUG Vols.2-6, A/U mags,
extra 32k SWR cartridge (write protected) other books,
bargain £450. Tel. (0375) 380369.

Twin Cumana 40T SS disc drive £100, Master single
plinth £5, Microvitec medium resolution colour monitor
£125. Tel. (056 888) 301 after 7pm.

Solidisk 256k 4Meg board plus 32k Manager ROM plus
Software - £80, Interword ROM £35, Both £100. Tell.
(041-641) 1200.

BBC accessories - Torch Graduate 256k plus twin disc
drives plus MS-DOS and Xchange software £250. Colour
monitor RGB/video/sound £120. Twin 40/80T drives
with integral PSU £115. Tel. (0452) 617725 evenings.

Acorn Z80 second processor (incl Business Software)
£150. Cumana touch pad (including software) £25. Epson
40 30mm roll printer (incl spare roll) £25. Computer
Village CVx 16-2 ROM/RAM expansion board £25.
Original tape and disc software from 50p upwards.
Please send for list. Tel. (0325) 321719.

Teac 40T DS disc drive £35, Prism 1000 modem with
Micronet software on ROM £25, Watford 13 ROM board
£10, Wordwise Plus £20, Watford ROM Manager £10,
Spellcheck II £10, BEEBUG toolkit £10, Vine TD ROM £5,
all with manuals etc. Will swop for 80T DS disc drive.
Tel. 091-237 0536 after 6pm.

BBC micro issue 7 board without DFS £175. RML 4802
Link Machine complete with dual disc drive suitable for
network. Software is considerable - includes PASCAL,
£350. Amiga with high resolution screen and second disc
drive- no software £350. Tel. 01-989 2640.

WANTED: Have you the video quantisation kit to
supply, for a fee, an Arc screen dump of a photo?
Contact Des Fisher Te. (0236) 20199 (day) or (0786)
833541 (evening).

Four-pen colour printer/plotter (in excellent condition)
Tandy model CGP!!% with manual, pens and paper £50.
Tel. (03302) 2949 evenings.

BBC Master 128 £300, Midwich single 400k 40/80T disc
drive £90, Microvitec 1451 DS colour monitor £90, Taxan
KP 810 dot matrix printer £150, Fischertechnik 30554
computing kit for Acorn/Model B £100 ono, ViewStore
£25, Murom £11, Romit £13, Beebfont £12, ViewSheet
£25. All above with manuals etc. Tel. (0837) 840718.

Continued on page 38

34

Beebug Supplement October1988

o

PRSI S

:

|
ARTL.) L orga e N TR TB) TPF 7
The Best of BIBIBIB UG ‘J

The very best of all the programs published in BEEBUG are now available conveniently grouped together
by subject on disc. The first two compilations are GENERAL UTILITIES and APPLICATIONS. In each
case the disc is complete and self contained. All the programs may be loaded ready for use through a
customised menu system, and all the information you need to know is included on the disc too for
displaying on your screen or outputting to your printer. These discs offer exceptional value for money,
and are available only to BEEBUG and RISC User members.

Each disc (6" only) costs just £5.75, plus post and packing 60p (90p for two). Simply complete the order
form below, or if you wish to pay by Access, Visa or Connect just phone in your order.

CGemeral Utilitics

Printer Buffer *

Split) Join
Tine il Lines ROM Controller
S EANEYOE IR LR RAS YOS RaNAAD Saab b N . Sprite Editor/Animator I
Go To] Set { . P - |
Marker I Marker Commanc Multi-Character Printer Driver for View f
i ;:«;-tnnnul;.u-"mnn.-..--nn--uul;u.-.ulu;;;;.;:o Mode 7 Screen E.Ciltor ;"
B s O L RS SN Multi-Column Printing (i

Epson Character Definer
ROM Filing System Generator
BEEBUG MiniWimp t

* Master series only.
t Requires sideways RAM.

Applications
Business Graphics ‘ E o

i : 9,36 PH BST

Video Cataloguer
World by Night and Day
Phone Book
Page Designer
Personalised Letter-Heads
Mapping the British Isles
Selective Breeding
Appointments Diary
The Earth from Space
Personalised Address Book

Please rush me my Best of BEEBUG discs:
1.General Utilities Disc Code1605a [2.Applications Disc Code 1604A Q

Name Total £
Address Postage £
Grand Total 5
Memership No
I enclose a cheque for £ OR please debit my Access, Visa or Connect account, Card
No / / / Expiry /____Signed

Return to BEEBUG Ltd, Dolphin Place, Holywell Hill, St Albans, Herts AL1 1EX. Telephone (0727) 40303.

UK BULLETIN BOARDS

All the above listed boards were believed to be active as of late July 1987. Circumstances may
have changed since then and BEEBUG would appreciate members letting us know of any
changes they have discovered, such as boards that have ceased operating or changed times and
baud rates. Also, if you know of a board that is not listed here, please let us know for the benefit

of other members.

Some new boards, particularly NBBS and OBBS systems, enable Beeb owners with Commstar or
the Demon Zromm to have colour. With Commstar use mode 7 and switch off the filter mask at
the command screen before entering 'Chat' mode. Zromm users should use Mode 7 and *Chat
instead of *Terminal. Then when logged on answer 'Yes' to the question 'Are you using software
on a BBC that allows colour'.

Aberdeen ITEC 0224 641585 Bob's Bizarre 0394 279644
24 Hours (Aberdeen) 24 Hours 300/300 & 1200/1200
1200/75 Viewdata
C-View Rochford 0702 546373
Acorn 0223 243642 24 Hours (Essex)
24 Hours (Cambridge) 1200/75 Viewdata
1200/75 Viewdata
Cardiff ITEC 0222 464725
Asylum 01 853 3965 24 Hours (Cardiff)
24 Hours (London) 1200/75
300/300
CBABBS 021 430 3761
BABBS I 0394 276306 24 Hours (Ex.Thurs.) (Birmingham)
24 Hours (Felixstowe) 300/300
300/300
CBBS London NW 0895 420164
BABBS II 0268 778956 24 Hours (London)
24 Hours (Basildon) 300/300
300/300
CBBS Surrey 04862 25174
Basildon ITEC 0268 22177 24 Hours (Surrey)
24 Hours (Basildon) 300/300
1200/75 Viewdata
CBBS South West 0392 53116
Beeb-Tec 0472 276476 24 Hours (Exeter)
24 Hours 1200/75 Viewdata 1200/75 & 300/300
Betelgeuse 5 0463 231339 Club 1512 01 204 8755
24 Hours 300/300 & 1200/75 24 Hours 1200/75 300/300
Bolton BBS 0204 43082 CFC#9 0395 272611
20.00-08.00 (Bolton) 24 Hours (Exmouth)
300/300 300/300
Brixton ITEC 01 735 6153 CNOL 0524 60399
24 Hours 1200/75 Viewdata 24 Hours (Lancaster)
300/300
To be continued
36

Beebug Supplement October 1988

4Cty 4 ya ‘a1z HAOW
graTEa| zoomnw | mMwua gaow | svdawd | nooxios | gmowro | anzT VMY | Q¥visy
Sev,T3u| SaELs | SNWU: N0 | ASHEAEY | ENITINO | ASAITIE | 08¢ ¥0 | MOWNY FAOW | QVYLSY
wroro | 91 wo | x1a anri| wnoton | Trrant | sooxtos | srodro |wo anin [wo xéop | zs0s
NEZZNOS | NETOS | SWYalLs ZOVWI | NOSdno | QELiod | Iom: | NEENOS
avoT FAYS ANIT areos | snrowvw| swowarw | swor o grTog| wczoma | INTua
[To3 Zox | o3 Aox | 13 A=x | 93 Aoy | cs Ay | v3Xex | es Aex | zz Aoy | 13 Aew | o3 Kew |

avv.isVv

‘ureigoxd syl Susn uaym
oxopu oA uo dyizs opyserd ay3 zaopun 2oe(d pue a5ed syyy Adoo-ojoyd 10 dpx3s£ay Y3 INO IND IYNA
-anss| Sfy3 JO 9T 03 ZI sofed U0 QVV.LSV JO UOJSI9A MIU Y[Pasn 3q 03 pauJsap sy dsAay SiyL

VY HANIT 6d/za

| growro| mrEgEq | mrEgEg | O ENIT | My¥g | FAOW | IVAGEN | FJVHS | MOWUV | QUULSY
HASUFATI AUV LSY anna NITIOS | NIZIOS
JNOTOD qISA TTIANI LIOS JALNIYA avo'l FAYS

aumom g3 Key | 13 Key | o3 Aoy | o3 xex | vz Zey | €3 Zow | z3 Koy | 13 Xey _ouhﬂL

avv.isVv

‘wrgxgoxd sy}
Fursn uaym oxopux moX uo dyrys opyserd ay3 xpun Ioeld pue aed syy3 Adods-0j0oyd 10 dixs£ay 3y3 Ino
MO 19YF *d [PPOW Y3} J0] AVV.LSV JO UOJSIdA [BUISHO Y3 YIIM Pasn aq 03 paudisap sj dp13s£ox spyL

37

Beebug Supplement October 1988

Personal Ads (continued from page 34)

BBC (OS 1.2) Basic II, DFS, Wordwise, Pluspaint, 40T
SS disc drive, tape recorder, 3 joysticks, Quset mouse,
books, full set of Input (bound), BEEBUG, Acorn User,
Micro User, Disc User mags plus lots of software. £695.
Tel. (0530) 35439 after 6pm.

BBC B (issue 7), Watford DFS dual 40T DS disc drive,
Watford 32k RAM card, Wordwise Plus, plus many
other ROMs. Software inc. Mini Office 2, Masterfile 2,
Printwise, discs and games, manual and books. £350
ono. Tel. (0378) 73524.

BBC B (issue 7) OS 1.2 as new, unmodified, for just
£195. Tel. 01- 794 5906.

Computer Concepts Mega-3 ROM (InterWord,
InterSheet, InterChart) £55, Morley Electronics ROM
board AA (Master only) £35, Care Master ROM cartridge
plus Master ZIF ROM cartridge £15, Peartree MR 6000
switchable ROM/RAM cartridge (4 ROM/RAM) £8. Tel.
01-494 1365.

Master 128, Microvitec 1431, Mitsi 5.25 40/40T DD,
Epson 3.5 40/80T DD, DD PSU, Demon plus Eprom,
software plus magazines. £500, offered complete or will
separate. Tel. 021-749 2320 weekends only.

Interword £20, Toolkit I £12, Sleuth £10, Disc Doctor £8,
Watford Shadow RAM £20. All boxed with instructions.
Tel. (0442) 62271 evenings.

BBC B (issue 7) with 1770 DFS, Watford 13 ROM board,
16k battery-backed sideways RAM, ZIF socket and
Watford 32k shadow RAM card. Includes original
manual plus welcome package and cover. All in very
good condition. £375 ono 01-958 7475.

Acorn Electron 64k/Turbo (Master RAM board fitted)
¢/w Plus One, (fitted with EXP 2.0 ROM), ROM Box,
ACP Plus 4 disc interface, (DFS & ADFS) all in excellent
condition, £225 ono. Tel. (0533) 363639.

BBC B Solidisk 1770 DFS/ADFS, Watford 64k
RAM/ROM board c¢/w 16k battery backed RAM ,
Watford 32k Shadow RAM Board, BCPL ROM plus
SAG, GXR, Wordwise Plus, Basic editor, MAX ROM,
Disc Doctor, CC's Graphics ROM, Revs, 4Tracks, Frak,
Knightlore, Alien & Jetpac, Return to Eden. £320. Tel.
(0454) 322138.

Quest mouse, Quest Paint plus Conquest ROMS £40,
Watford ROM/RAM board (128k s/ways) £35,
Dumpout 3 ROM and manual £10, Intersheet ROMs and
manual £15. Tel. (0384) 455066.

Juki 6000 printer with manual and four daisywheels -
Elite, Courier, Helen and Mini-tile. No printer lead.
Excellent conditions. £100. Tel. 031-663 8808.

Modem, Prism 2000, Pace ROM, £25, Watford ROM (for
Apollo), £15, Solidisk DFDC board with 2.2] DFS ROM,
£25. Leads, manuals, Tel. (058 283) 3937.

BBC disc drive 40T SS £40, BBC PSU £40, Speech
Upgrade £20, View 3 £40, ViewSheet £25, GXR 'B' £20,
Wordwise £15. Offers invited. Tel. 01-903 5881.

BBC Master and and 40/80T DS drive both under
guarantee and immaculate. Also green screen monitor,
ref. manuals 1 & 2, Master ROM, Dabhand View guide,
Viglen cartridges, BEEBUG magazines and discs and
much original software. £520 cash for the lot. Tel. (0602)
392554.

BBC B, DFS, Watford ROM/RAM board with 64k
sideways RAM, 16k battery-backed CMOS RAM
read/write protected, PMS 6502 second processor, ZIS.
Also GXR, Toolkit Plus, Wordwise Plus, Word Aid
ROMS. Other software on disc and tape. £350 as one,
will negotiate for sale of individual items. Tel. 01-388
0392.

InterChart £15, Wordpower with M4 Power Font £20,
PMS Multi-Font NTQ with 4 fonts £20, Transferom £10,
all as new originals with manuals. Tel. (0235) 30471
evenings.

Hardware, software and firmware for sale. EG AMX
MAX £12, teletext unit £75, replay £18, Microvitec 1431
monitor £125. Send SAE for full list write to Paul
Duesbury, Riverside, Woodhead Rd, Honley,
Huddersfield, HD7 2PP.

WANTED - User manuals Vol. 1 & 2 for BBC Master 128.
Tel. (0652) 55130.

32016 Cambridge co-processor IMb 10MHz FPU latest
Panos with £2000 of software including GCAL, BCPL,
REDUCE, GKS-UK, MATRIX3, VUWRITER and SPICE.
Only £700. Tel. (0234) 750770.

Interword complete as new with box, manual and
keystrip. £35. Advanced User Guide also as new £10. Tel.
(0293) 541599.

Watford Electronics 32k Shadow RAM printer buffer
expansion board for Model B complete with manual and
ROM, as new £45. Tel. (0784) 242817 evenings.

WANTED. Interbase ROM for BBC B complete with all
documentation. Tel. (0332) 556831.

Printer Shinwa CPAS80 plus £75 ono. Tel. (0203) 504254.
Modem, Linnet inc. command ROM, lead and unused

subscription and registration. Was £139. All for £100. Tel.
(0276) 65876.

38
»

Beebug October 1988

RISC USER

The Archimedes | Magazme and Support Group

G 5 stﬁlscmss Now
, D B
REATBIRTHDAY || ““ticcicer |
OFFER BIRTHDAY OFFER. |
WORTH OVER £50 || SPECALRATES
The volume One Special Disc || ZZSSES;’G

Yours for only £4.95 oo eubendiand e

SPECIAL DISC CONTAINS ALL THIS FOR JUST 4.95

1. ARCSCAN
A fast on-screen bibliography with
powerful search facilities for all the
RISC User and BEEBUG magazines.
Normal price £12.

. PIXEL EDITOR
This powerful drawing tool is a full
screen full-feature pixel editor for
creating and editing screens and
sprites.

. TOOLBOX
This incredibly useful utility features a
memory editor, memory search and
replace, disc editor and disassembler.
TOOLBOX contains many of the
features found in packages costing
over £35.

. WORLD IN MOTION
A stunning animation with an oddly
reminiscent feel to it.

. DISC MENU MODULE
Use the mouse to control your disc
files with this extremely useful
relocatable module.

. PRINTER BUFFER
e This printer buffer frees your computer
| | o Fire ™ 1 ' during long printouts and is
' configurable from a few bytes to 4
Mbytes. Similar to packages currentl
e eemm, | A S .
%‘ lrl:hg'SI:T;q "
i e el ‘. Altogether the items on the disc would be
e iver worth over £50 if bought separately. See page
Gl | 70 for reduced subscription rates for BEEBUG
members.

| (]

Hint: Keyboard] I t
g;:nl l#h;:h:’;urnsis;h! Purposes

THE PUBLISHER

See you at the Micro User Show
in November - Stand 98.

A NO-NONSENSE, NO-GIMMICK
DESKTOP PUBLISHING SYSTEM

* INTEGRATES WITH YOUR EXISTING
WORDPROCESSOR

* SIMPLE BUT POWERFUL PAGE DESCRIPTION
COMMANDS

* ON-SCREEN PREVIEW FROM WORDWISE,
VIEW & INTER-WORD

THE PUBLISHER is a single, massive 64K ROM which
holds the controlling software and 16 FONTS. Being ROM
based, THE PUBLISHER is instantly available, no disc
access required. PREPARE, PREVIEW and PRINT all from
WITHIN your word processor £39 + £1 P&P +VAT = £46
INC.

CONTACT PMS FOR FULL DETAILS, SCREEN-
SHOT AND SAMPLE PRINTOUT.

PMS, 38 Mount Cameron Drive, East Kilbride G74 2ES
Tel. (03552) 32796.

with

" Patent and Regisiered Design

EHE_EFI LtlF! SEAL 'nTYPE @
WE'VE got you .
EOVEERI. | oo o,

* 24hr dust/spill cover
* Removable, washable, re-usable.
* Can be custom-made for any

keyboard. Ring for details.

Ring or Write for our FREE catalogue

Re-Inking Service £190 Pricesare fulyincl. [ETY
Ring for transporter SAE

DMP re-Inking kit£10,00 Cheques/P.O. payable to:
VDU Screen KADOR, Unit 4
(Colour/Mone) Pontcynon Industrial Estate,

Mouse Mat
Dust Covers
(Colour/Mono)
| Plonker Box £2.30
Dexette Copy Holder £6.
Surge Protectors £12.00

Abercynon
Mid. Glamorgan CF45 4EP
Tel: 0443 740281

(5asr)y

ADVERTISING IN BEEBUG

For advertising details, please contact Mike Williams on (0727) 40303

or write to:

Dolphin Place, Holywell Hill, St Albans Herts.AL1 1EX

Beebug Supplement October 1988

Liiiiill This month
Robin Burton
looks at the
vexed subject
of just how
compatible PC
software is
with the 512

CO-processor.

o I T R

One of the most common questions that 512
users ask BEEBUG is "How can I tell if this
package will run?" or "Why doesn't my new
version of Lotus 1-2-3 run, when the old
version did?". There is no general answer to
these questions, but we will show here some of
the reasons why not all DOS software will run
on the 512.

The first question is "Do you have DOS+
version 2.1?" If not, and you have problems,
this is step one. DOS+ 2.1 fixes all known bugs
from earlier versions, and provides new
facilities too, including a utility needed for
running 'pop-ups' like Sidekick. STL PC+ users
should note that 2.1 also has a modified
memory map to cater for this too.

Remember, if you seek help from your Acorn
dealer, you can expect a fairly short answer if
you are not using the current versions of the
software. Keep a copy of your old DOS+
version though, because a few programs will
not run with 2.1, but do with 1.2!

Compatibility is, to say the least, a large subject,
but all the problems finally boil down to the
fact that the 512 is not a PC clone. Some areas
can be identified, and while there's no magical
solution, at least some of the time wasted trying
unsuitable software can be avoided by asking
the right questions. There are also one or two
tricks which might help and we'll look at these
too.

PROBLEM AREAS

Strictly, problems can be due to either the 512
hardware, or its DOS+ operating system, but
really the two cannot be separated. A complete
and comprehensive compatibility list would be
the perfect answer, but this isn't practical. There

Beebug October 1988

is no complete list, and it would fill several
issues of BEEBUG if there was.

A better approach is to understand why
packages may or may not run, and to be aware
of pointers which apply to selecting software,
the aim being to improve the chances of getting
it right.

The simplest question is "How much memory
does a package need?" For some it's 640k
(standard for many PCs), so unless you have
expanded your 512, these are out. Check this
first. A second point is that DOS+ takes about
90K more memory for workspace than MS-
DOS, so even if software is suitable for a 512K
MS-DOS machine, do not assume that it is
bound to work on the 512.

Next let's take a look at the hardware. It is the
easiest area to deal with in many ways, not
least because it is a known quantity, and in any
case there is little you can do about it. Not
surprisingly, to talk about the hardware we
must also involve the operating system.

THE DOS ENVIRONMENT

It helps to know that DOS interfaces with
applications by means of a system of fixed
memory locations and associated operating
system calls. These provide access to the
software functions and the hardware too.

You are probably familiar with the various
types of OS call in the BBC micro, but in DOS
they are slightly different. In Acorn terms the
nearest equivalent to a DOS call could perhaps
be described as a delayed action OSWORD call,
because they do not happen immediately on
demand.

As you may know, some DOS systems can run
more than one application simultaneously, or
can split processing between foreground and
background tasks (this is where the 'SLICE'
command is used). The point is that DOS
cannot be called on demand as the BBC micro's
OS can, because no program can assume that it
has the machine to itself. In consequence
programs do not directly control the OS or the
processor.

41

Instead, ten times every second, DOS polls all
the programs that are running and examines
every one of these defined memory locations to
see if any program requires operating system
attention. If so DOS carries out the required
action before returning control to the user
programs. System calls implemented in this
way are called 'interrupts’, but should not be
confused with hardware interrupts.

An application should, in theory, use interrupts
to read or write data when connecting to the
outside world. In this context the outside world
includes all peripherals attached to the
machine, and remember that in DOS both the
screen and the keyboard are treated as
peripherals.

The object of all this is that DOS should always
look the same to every user program, and vice
versa, regardless of the micro on which it is
run. In addition, enhancements can be included
in later versions of DOS without disturbing any
of the existing facilities. The result is a fixed,
standard program environment, which is
where the high degree of applications
compatibility comes from.

THE HARDWARE INTERFACE

The only remaining question is "How can DOS
deal with the hardware, so that it can be
installed in different micros, some with slightly,
or as in the case of the 512, very different
architecture?”

Just as there is a standard protocol for
applications wishing to talk to DOS, there is a
standard for DOS when talking to hardware. In
fact communication between DOS and the
hardware is indirect and depends on the 'Basic
Input Output System' (BIOS), which is a
separate DOS module, customised for each
different machine by the hardware supplier. In
this way DOS itself need never be altered to
cater for hardware peculiarities. Only the BIOS
is ever changed, and because DOS provides an
interface between the BIOS and the user's
program, the operation of the latter should be
unaffected.

Unfortunately it is not a perfect world, and just
as in the BBC micro, while 'legal’ software uses
standard calls, not all software obeys the rules.

“42

A e L R s I I e e B e s g = DS T

As an example, you probably know that in the
BBC Micro the WD1770 or WD1772 chip
controls the disc hardware. You probably also
know that this chip can be directly
‘programmed' so as to by-pass the disc filing
system to read or write non-standard disc
formats.

Similarly, in a true PC there are various chips
or 'plug in' cards, each dedicated to a particular
function, each of which can be be programmed
either by using the 'legal’ interrupts, or by
'illegal' (but generally faster) direct coding,
again just like the BBC Micro.

PROBLEM DEFINED

Now to the crux of the problem. Contrast a true
PC with the 512, where every external device is
on the other side of the Tube. This means that
only software using legal calls has even a
chance of working. The real devices are simply
not there. In consequence, software which
attempts to read or write hardware devices
directly will fail. (There's just one exception,
and we will come to that in a moment.)

Even with legal calls, correct functioning
depends on the ability of the 512's DOS+ and
BIOS (actually called the XIOS by Acorn) to
suitably translate or amend these calls into
something the BBC micro on the other side of
the tube will understand.

The job of DOS+ in the 512, therefore, is to
translate legal DOS+ interrupts into calls across
the Tube, but it can only do this for operations
for which the BBC micro has both the
appropriate hardware and a suitable software
routine. Having finally reached the I/O
processor, calls can then be actioned. This is
performed by some extra code that the 512
pokes into the I/O processor's memory.

In short, to operate correctly DOS+ programs
must only use legal interrupts which,
ultimately, the BBC micro must be able to
service. This is what determines whether DOS+
software runs or not.

Clearly discs and printers can be dealt with
reasonably, and suitable coding can be
provided for elementary screen and keyboard
handling, but software that tries to read or

Beebug October 1988

write hardware devices directly (or even legally
for non-existent devices) must fail. This is why,
for example, applications written for an
Extended Graphics Adaptor (EGA) or a
Hercules graphics card will not work. Even if
DOS+ accepted the call, what could it do with
it?

This gives the first compatibility pointer. The
software you examine must be CGA
compatible. Anything that demands an EGA, a
Hercules or for that matter any other PC
extension board will not work.

DOS DIFFERENCES

Now let's consider DOS in general, rather than
the 512 or the BBC micro. Necessarily this is a
simplification, but it will put things in
perspective. The first point is that there are
several members of the DOS family. The main
ones are PC-DOS, used in IBM PCs, MS-DOS,
produced by Microsoft and used by many
clones, and DOS+, by Digital Research, a
version of which is used by the 512 amongst
others.

These are all similar enough to be obviously
from the same family, yet at the same time they
are different enough to cause compatibility
problems with some applications.

A further complication, quite apart from the
different implementations of DOS, is that for
each type there may be several versions, hence
the joke that not all IBM PCs are PC compatible.
It depends on the version of DOS they use and
the hardware devices catered for. As hardware
has developed, DOS has been extended to cater
for the changes.

Typically, applications written for a later
versions of DOS will probably not function on
an earlier version, even of the same type.
Fortunately, the reverse is less common, and
old software runs on later systems, more often
than not (but not always).

512 SPECIFICS

DOS+ supplied with the 512 is compatible with
all legally written software which runs with
MS-DOS version 2.1, PC-DOS version 2.1, or
CP/M(86) (the forerunner of DOS+).

Beebug October 1988

This gives two more questions that you must
ask when looking for new software. What type
and what version of DOS is it compatible with?
If it is not one of the above, you will probably
have trouble.

Even when you are sure that DOS and the
hardware is right, further confusion arises
because some packages 'almost' run, but not
quite, or most features work, but not all.

INITIAL SET-UP

Many DOS packages need installing, and have
a special program for this purpose, but
sometimes this is where the first problem
occurs. Bear in mind that some packages will
run on the 512, but cannot be installed on it.
This can be because of initial defaults, or
because 640k is needed for installation, though
not necessarily when running.

The solution is to borrow a PC or clone to
configure the system for the 512. Often the
working system produced by this method can
be used quite successfully.

Now to configuring itself. If there is a screen
option for mono, choose it; if there isn't, select
CGA. If there is a memory size option, select
the one that suits the free memory given by
'BACKG'. Remember to allow for background
printing, the alarm or the memory disc if you
use them.

TRYING NEW SOFTWARE

When you run your new program, if things are
still not right, try entering 'COMMAND' before
loading the application. This re-loads
'COMMAND.COM,, but the result is not quite
the same as you get from booting the system.
For some packages this seems to cure the
problem.

Finally, when buying software, talk to people
who should be able to help, like your Acorn
dealer, but above all explain the situation. Any
dealer worth his salt will understand, and allow
a reasonable trial with an agreed refund or
exchange if the package won't run. If he is not
prepared to do this, the only advice is to take
your money to someone who will.

43

il & - £ mmpé

THE NEW
INTER-BASE
» REVIEWED

Lance Allison assesses Computer Concepts'
InterBase, now re-released in a new and
updated version.

InterBase

Computer Concepts Ltd
Gaddesden Place,
Hemel Hempstead,
Herts HP2 6EX.

Tel. (0442) 63933

£67.85 inc. VAT and p&p

Product
Supplier

Price

In the Summer of 1987 Computer Concepts
released the final ROM in their Inter-Series. It
was far more than just a simple database,
incorporating a sophisticated programming
language. Unfortunately this product was
found to be somewhat less than bug-free, and
its potential was limited as a result. At last, a
year later, Computer Concepts has released a
new version of the software that not only fixes
these bugs, but introduces some very
impressive new features.

After a year of waiting, the new version of
InterBase has finally arrived. The package looks
much the same as the first version. The box
contains the InterBase ROM, a keystrip, an
example disc, and a manual. The most obvious
difference between the two versions is the size
of the manual. It has grown to a large 250
pages, twice the size of the original.

Surprisingly enough the disc is only supplied in
80 track, single sided, DFS format. If this is not
suitable for your system Computer Concepts
recommends that you send it back for
replacement. It would seem a good idea to state
what system you have when ordering!
InterBase works with practically all disc
systems available for the BBC micro including
the ADFS and even Solidisk's filing systems.

Al

R e e Tl et e L L e T L e P L TR T I e e——

The ROM must be installed in one of your
sideways ROM sockets, or in a cartridge if you
have a Master. The ROM is supplied on a
carrier board in usual Computer Concepts
style. When the ROM has been installed the
package is called up with the the *IBASE
command. This will take you straight into the
Card Index program.

At this point it is worth explaining the concept
behind the InterBase programming language.
InterBase is not just a standard database; it is a
language with which to write a database
system easily and efficiently just like DBase II
for the PC. But if Computer Concepts were to
market this programming language on its own,
it would only be of interest to programmers.
For this reason Computer Concepts has written
a powerful database program (called the Card
Index), which is supplied along with the
language. It is this program that you enter upon
typing *IBASE.

The Card Index presents you with a simple
menu incorporating all of the options that you
would expect to find in 4 good database. The
menu is self explanatory and easy to follow.
Databases may be created, edited, and updated
at the touch of a key. More sophisticated
utilities such as index creation and condition
setting are also available and, unlike the
previous version, appear to work faultlessly.

The beauty of this simple program is that you
are totally in control of the record layout. You
may select any screen mode for display, and
may place fields on the screen in any order and
in any position. At this level InterBase is
comparable to most of the popular competitors
on the market. Inevitably you will find
limitations for your particular application and
will want to expand the system. It is at this
point that you may well want to make use of
InterBase's own programming language.

Entry into the programming language is simply

by selecting the 'Program menu' option in the
Card Index menu. This will take you into a

Beebug October 1988

menu which resembles that of a word processor
such as Wordwise. This is, in fact, not far from
the truth. A word processor is supplied in order
to write and edit InterBase programs. The usual
options are available such as save and load text,
search and replace, and edit text. The editor
allows many programs to be stored in memory
at the same time, and each may be edited as
required. To enter a program, just press Escape
and type away.

The language resembles BBC Basic in many
ways but offers more structuring without the
use of line numbers. In addition to all of the
usual Basic keywords, there is a whole host of
extensions specifically designed for database
manipulation. Entire databases may be created
with single statements, and records may be
saved and retrieved simply and quickly.
Another major extension to the language is its
handling of data structures. Basic is limited in
that the elements of an array must all be of the
same type. In InterBase, multi-dimensional
arrays may contain a mixture of strings,
integers, reals and dates (all in the same array).
What is more, the whole array could be written
to disc with a single command!

Possibly the most important improvement over
the first version of InterBase is the ability to
‘extend' the card index program. It is now easy
to add another option to the Card Index menu
to select your own utility. Control may then be
returned to the Card Index upon completion.

COMPUTER CONCEPTS' ROM-LINK

As most people will be aware, Computer
Concepts have devised the so-called ROM-
LINK system with which all their packages
may communicate. If you plan to use this
system, InterBase is far more than just another
member; it ties the whole system together
because of its programming ability. It could be
used to allow a database to perform a mail
merge with InterWord, or even to display
information using InterChart. The possibilities
for a complete interactive data system are
endless.

Beebug October 1988

Although programs are written using
InterBase, they may in fact be run from within
any of the other ROM-LINK packages. There is
a nice example in the manual demonstrating
how a short InterBase program can be used to
calculate thirty random numbers for InterChart
so that they can be displayed graphically.
Although InterBase is not being used for its
database abilities it shows how the system slots
together. The manual is full of useful
demonstrations and exercises of this kind.

DOCUMENTATION

Back in August 1987 Peter Rochford reviewed
the first version of InterBase for BEEBUG (Vol.6
No.4). His principal criticism was the standard
of documentation. I am glad to say that it has
been improved substantially. More emphasis
has been put on tutorials, and many more
examples have been included. This is reflected
in the size of the manual which has grown from
one hundred to two hundred and fifty leaves.
This is not to say that the documentation is
perfect; there is still room for improvement.

CONCLUSION

If you use any of the Inter Series ROMs for
business or pleasure, InterBase is a must.
Educational institutions may find that the
InterBase language is a good introduction to
concepts to be found in more expensive
commercial packages such as DBase III.

Freelance programmers may use InterBase to
write specialist database applications. Resulting
programs may be blown into ROM and used
completely independent of the Card Index. The
only limitation is that an InterBase ROM must
be installed in the machine in which the
program is to run.

EXISTING INTERBASE OWNERS

Computer Concepts are offering a free upgrade
to all customers who have purchased the first
version of InterBase. Contact Computer
Concepts directly for further information.

45

e 20X i e

THE BEEBUG
SUPER-SQUEEZE

Are your programs tight on bytes? David
Spencer can help with his latest utility.

It is often necessary with long Basic programs
to reduce their length as much as possible so
that they will fit into the available memory.
This can be done in a number of ways, the
obvious two being the removal of comments
and unnecessary spaces. However, such
crunching of a program by hand is time-
consuming and prone to error. This is where
The BEEBUG Super-Squeeze steps in. It
crunches a program as much as possible by
removing REMs, blank lines, spaces, THENSs,
LETs, shortening variable names, and
concatenating lines.

USING THE SUPER-SQUEEZE
The Beebug Super-Squeeze is in the form of a
ROM image which must be loaded into
sideways RAM. To assemble the machine code,
enter the listing given here, save and run it.
This will create the ROM image and save it to
disc using the name 'SQZOBJ'. The method for
loading Super-Squeeze depends on the type of
sideways RAM you are using. For a Master 128,
Compact or B+128K, you can use:

*SRLOAD SQZOBJ 8000 zQ
For other types of sideways RAM you should
refer to their instruction books for loading
details. Once the ROM image is loaded you
should press Ctrl-Break to initialise it. It is
important not to write-protect the RAM bank
containing Super-Squeeze, because the spare
memory is used as workspace.

To crunch a Basic program, it must first be
loaded into memory. Then type *SQUEEZE
(minimum abbreviation *SQ.), and Super-
Squeeze will do its best to shorten the program
to the minimum possible length. This may take
a few minutes with a long program, and Escape
can be used to stop the crunching at any point.
As the crunching proceeds, dots are printed to
give an idea of the progress.

46

Once a program has been crunched using
Super-Squeeze, you should not attempt to edit
it at all. This is because the Basic line parser
gets confused by the lack of spaces around
keywords and fails to tokenise the program
correctly. You should always keep a safe
'source’ version of any program compacted in
this way.

Another possible problem is with the use of the
function EVAL to evaluate an expression.-
Within the argument to the EVAL function it is
possible to include variable names within
quotes. For example:

PRINT EVAL ("prefix$+"+A$)
Super-Squeeze will not recognise the text
within the quotes as referring to a variable, but
will shorten the name 'prefix$' elsewhere in the
program. This results in a 'No such variable'
error when the EVAL is executed.

HOW IT WORKS

We do not have the space here to explain the
complexities of Super-Squeeze. Suffice it to say
that two passes of the program are made. On
the first pass a list of all variable names and line
references is made. On the second pass the
actual crunching is performed.

10 REM Program Super-Squeeze

20 REM Version B1.00

30 REM Author David Spencer

40 REM BEEBUG October 1988

50 REM Program subject to copyright
60 :

100 page=&18:1ptr=651:1nos=53
110 vars=&55:temp=657:temp2=558
120 aflg=659:1num=&5A:1temp=65D
130 vend=&5F :bst=661:newv=663

140 pend=&66:blen=&6A:glen=66C
150 bptr=&6E:0eflg=670:tflg=671
160 sflg=&72:1boff=673:eflg=674
170 oeflg=&75:boff=676:ytemp=677
180 quof=678:1in=679:yback=§7A
190 vtype=&7B:hexflg=67C

200 DIM code 3000

210 FOR pass=4 TO 7 STEP 3

220 P%=68000:0%=code

230 [OPT pass:EQUB 0:EQUB 0:EQUB 0
240 JMP service:EQUB &82

250 EQUB copy AND &FF:EQUB 1

260 EQUS "BEEBUG Super-Squeeze"
270 .copy EQUB 0.

280 EQUS " (C) BEEBUG 1988":EQUB 0
290 .service:CMP #4:BEQ comm:RTS

Beebug October 1988

B o s Al v i s o g P L e itnd e LA o1 e T e e A T

300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860

.comm TYA:PHA:LDX #0

.comm2 LDA (&F2),Y:AND #&DF

CMP ourc,X:BNE commd:INY:INX

CPX #7:BNE comm2

.comm3 LDA (&F2),Y:INY:CMP #ASC" "
BEQ comm3:BCC ours:BCS commd
,comm4 ILDA (&F2),Y:INY:CMP #ASC"."
BEQ comm3:.commb PLA:TAY:IDX &F4
IDA #4:RTS:.commé6 JSR &FFE7:PLA
TAY:LDX &F4:LDA #0:RTS

.ourc EQUS "SQUEEZE"

.ours LDA #&FF:STA lnos:STA end
LDA #&BF:STA lnos+l:LDA page

STA lptr+1:LDA #end MOD &100

STA vend:LDA #end DIV &100

STA vend+1:LDY #1:STY lptr:DEY
LDA (lptr),Y:BMI comm6:STY aflg
.ploop LDY #3:.ploop2:LDA (lptr),Y
CMP #&F4:BNE ploop3:JMP pcr
.ploop3 CMP #13:BEQ pcrj

CMP #ASC"""":BNE pnq:.qloop INY
LDA (lptr),Y:CMP #13:BNE ql2
beri ME per: gi2 OWF jAscRent
BNE gloop:INY:BNE ploop2

.png CMP #ASC"&":BNE namp

.ampsk INY:LDA (lptr),Y

CMP #ASC"0":BCC ploop2

CMP #ASC"9"+1:BCC ampsk

CMP #ASC"A":BCC ploop2

CMP #ASC"F"+1:BCC ampsk:BCS ploop2
.namp CMP #ASC"[":BNE nason

IDA #&FF:.nas STA aflg:INY

BNE ploop2:.nason CMP #ASC"]"

BNE nasof:LDA #0:BEQ nas

.nasof CMP #&A4:BEQ pf:CMP #&F2
BNE npf:.pf STA vbuff:IDX #1

.pf2 INY:IDA (lptr),Y:JSR chkdig
BCS pf3:JSR vschk:BCC pf4

.pf3 STA vbuff,X:INX:BNE pf2

.pf4 LDA #0:STA vbuff,X:JSR vadd2
JMP ploop2

.npf CMP #&8D:BNE nlno:INY

JSR decode:STY temp:JSR nocor

1DY #0:STA (lnos),Y:JSR dlnos
TXA:STA (lnos),Y:JSR dlnos

LDY temp:.plj JMP ploop2

.nlno INY:BIT aflg:BPL ninas

CMP #ASC™.":BNE plj

.nlno2 LDA (lptr),Y:INY

CMP #ASC" ":BEQ nlno2

.ninas JSR vschk:BCC plj:JSR vadd
JMP ploop2

.pcr BIT &FF:BPL pcr2:JMP commé
.pcr2 JSR nxtlin:LDY #0

LDA (lptr),Y:BMI pcr3:JMP ploop
.pcr3 LDA lptr:CLC:ADC #1:STA pend
LDA lptr+1:ADC #0:STA pend+l

870
880
890
900
910
920

JMP pld

.decode LDA (lptr),Y:ASL A:ASL A
STA temp:AND #&CO:INY:EOR (lptr),Y
TAX:LDA temp:ASL A:ASL A:INY

EOR (lptr),Y:INY:RTS

.dlnos LDA lnos:BNE dlnos2

DEC lnos+l:.dlnos2 DEC lnos

LDA 1lnos:CMP vend:BNE dlnos3

LDA lnos+1:CMP vend+l:BNE dlnos3
JMP vnroom:.dlnos3 RTS

.vadd JSR vpull:.vaddl LDA vbuff
CMP #ASC"$":BNE vadd2:LDA vbuff+2
BNE vadd2:LDA vbuff+l:CMP #ASC"A"
BCC vadd2:CMP #ASC"Z"+1:BCS vadd2
RTS:.vadd2 JSR vfind:BCC vput:RTS
.vput STY temp:IDY #0

.vput2 LDA vbuff,Y:STA (vars),Y
INY:CMP #0:BNE vput2:LDA #&FF
STA (vars),Y:TYA:CLC:ADC vars:PHA
STA vend:LDA vars+1:ADC #0

STA vend+1:CMP lnos+1:BCC vsok
BNE vnroom:PLA:CMP 1nos:BCC vsok2
.vnroom IDA #0:STA &100:STA &101
TAY:.eloop LDA verr,Y:STA &102,Y
INY:CMP #0:BNE eloop:JMP &100
.verr EQUS "No room":EQUB 0

.vsok PLA:.vsok2 LDY temp:RTS
.vfind STY temp:LDA #end MOD &100
STA vars:LDA #end DIV &100

STA vars+1:LDA #ASC"A":STA newv
IDA #0:STA newv+1:STA newv+2

LDA vbuff:CMP #ASC"$":BNE vlo
LDA #ASC" ":STA newv

.vlo LDY #0:LDA (vars),Y:STA vtype
CMP #&FF:BEQ vfind2

.vloop LDA (vars),Y:CMP vbuff,Y
BNE vloop2:INY:CMP #0:BNE vloop
LDY temp:SEC:RTS

.vloop2 LDA (vars),Y:PHP:INY:PLP
BNE vloop2:LDA vtype:CMP vbuff
BNE vloop3:JSR incvar:.vloop3 CLC
TYA:ADC vars:STA vars:BCC vlo
INC vars+1:BCS vlo:.vfind2 CLC
1LDY temp:RTS

.vschk CMP #ASC"A":BCC vschk3
CMP #ASC"z"+1:BCS vschk3

CMP #ASC"™ ":BCS vschk2:CMP #ASC"["
BCS vschk3:.vschk2 SEC:RTS
.vschk3 CLC:RTS

.chknul LDY #3:.chkn2 LDA (lptr),Y
INY:CMP #ASC" ":BEQ chkn2

CMP #ASC":":BEQ chkn2:CMP #13
BEQ chkn3:CMP #&F4:BEQ chkn3

CMP #&8B:.chkn3 RTS

.encode PHA:ORA #&40:STA lnumt2
TXA:AND #&3F:ORA #&40:STA lnum+tl
TXA:AND #&C0:STA temp2:PLA

Beebug October 1988

47

1440 AND #&CO:LSR A:LSR A:ORA temp2 2010 LDA newv+2:JSR vinc:STA newv+2
1450 LSR A:LSR A:EOR #&54:STA lnum:RTS 2020 .incvd RTS
1460 .nocor STA ltemp+1l:STX ltemp 2030 .vinc CLC:ADC #1:CMP #1:BNE vincl
1470 LDA lptr:PHA:LDA lptr+l:PHA:LDA #1 2040 LDA #&30:.vincl CMP #&3A:BNE vinc2
1480 STA lptr:LDA page:STA lptr+l 2050 LDA #&41:.vinc2 CMP #&5B:BNE vinc3
1490 .noc LDY #0:LDA {Iptn) Y 2060 LDA #&5F:.vinc3 CMP #&7B:RTS
1500 BMI nocout:CMP ltemp+1:BNE nonxt 2070 .shunt LDA lbuff:CMP #&80
1510 INY:LDA (lptr),Y:CMP ltemp 2080 BNE shunt2:RTS:.shunt2 LDA #ASC"."
1520 BEQ nofnd:.nonxt JSR nxtlin 2090 JSR &FFEE:LDA pend:SEC:SBC lptr
1530 JMP noc:.nocout PLA:STA lptr+1:PIA 2100 STA blen:LDA pend+1:SBC lptr+l
1540 STA 1lptr:.nocout2:LDA ltemp+1 2110 STA blen+l:0RA blen:BEQ shuo
1550 LDX ltemp:RTS:.nofnd JSR chknul 2120 LDA 1ptr:SEC:SBC bst:TAX
1560 BNE gofnd:JSR nxtlin:JMP nofnd 2130 LDA lptr+1:SBC bst+1:PHA:TXA:SEC
1570 .gofnd LDY #1:LDA (lptr),Y 2140 SBC lbuff+2:STA glen:PLA:SBC #0
1580 STA ltemp:TAX:DEY:LDA (lptr),Y 2150 STA glen+1:BCC shuup:ORA glen
1590 STA ltemp+1:JSR encode:PLA 2160 BEQ shuo:LDA lptr:STA temp:SEC
1600 STA lptr+1:PLA:STA lptr:LDY temp 2170 SBC glen:STA bptr:LDA lptr+l
1610 DEY:LDA lnum+2:STA (lptr),Y:DEY 2180 STA temp+1:SBC glen+l:STA bptr+l
1620 LDA Inum+1:STA (lptr),Y:DEY 2190 LDY #0:.shudnl LDA (temp) , Y
1630 LDA Inum:STA (lptr),Y:BNE nocout2 2200 STA (bptr),Y:INY:BNE shudnl?
1640 .nxtlin LDY #2:LDA {iptr), ¥ :CIC 2210 INC temp+l:INC bptr+l
1650 ADC lptr:STA 1lptr:BCC nxtlin2 2220 .shudnl2:JSR decb:BNE shudnl
1660 INC lptr+l:.nxtlin2 RTS 2230 BEQ shuo:.shuup LDA pend:STA temp
1670 .vpull STA vbuff+l:LDX #2 2240 SEC:SBC glen:STA bptr:LDA pend+1l
1680 .vpull2 LDA (lptr),Y:INY 2250 STA temp+1:SBC glen+l:STA bptr+l
1690 JSR chkdig:BCS vpull3:JSR vschk 2260 LDY #0:.shuup2 LDA bptr:BNE shuup3
1700 BCC vdn:.vpull3 STA vbuff,X:INX 2270 DEC bptr+l:.shuup3 DEC bptr
1710 BNE vpull2:.vdn STY yback 2280 LDA temp:BNE shuup4:DEC temp+l
1720 DEC yback:PHA:LDA #0:STA vbuff,X 2290 .shuup4 DEC temp:LDA (temp),Y
1730 LDA #1:STA temp:PLA:CMP #ASC"3" 2300 STA (bptr),Y:JSR dechb:BNE shuup2
1740 BEQ vdn2:CMP #ASC"S$":BNE vdn3 2310 .shuo LDY #0:.shuo2 LDA 1buff,y
1750 .vdn2 STA temp:LDA {lptr),Y:INY 2320 STA (bst),Y:INY:CPY lbuff+2
1760 .vdn3 CMP #ASC" (":BNE vdn4:INY 2330 BNE shuo2:LDA lptr:SEC:SBC glen
1770 LDA temp:ORA #&80:STA temp 2340 STA bst:STA lptr:LDA lptr+l
1780 .vdn4 DEY:LDA temp:STA vbuff:RTS 2350 SBC glen+1:STA bst+1:STA Iptr+l
1790 .vmatch JSR vpull:STY temp+l 2360 LDA pend:SEC:SBC glen:STA pend
1800 LDY yback:.vmatch2 JSR vfind 2370 LDA pend+1:SBC glen+l:STA pend+1
1810 BCC vmatch5:BIT hexflg 2380 RTS
1820 BMI vmatch25:LDA newv:CMP #ASC"G" 2390 .decb LDA blen:BNE decb?
1830 BCS vmatch25;JSR sadd 2400 DEC blen+l:.decb2 DEC blen
1840 .vmatch25 LDA newv:JSR badd 2410 LDA blen:ORA blen+l:RTS
1850 LDA newv+l:BEQ vmatch3:JSR badd 2420 .toktab
1860 LDA newv+2:BEQ vmatch3:JSR badd 2430 EQUB &D5:EQUB &FB:EQUB &D6
1870 .vmatch3 CPY temp+l:BEQ vmatch4 2440 EQUB &D7:EQUB &D9:EQUB &DE
1880 LDA (lptr),Y:JSR badd:INY 2450 EQUB &DF:EQUB &E2:EQUB &E3 -
1890 BNE vmatch3:.vmatch4 SEC:RTS 2460 EQUB &E4:EQUB &ES5:EQUB &E6
1900 .vmatch5:LDY #1:.vmatché 2470 EQUB &D3:EQUB &E7:EQUB &E8
1910 LDA vbuff,Y:BEQ vmatch7:JSR badd 2480 EQUB &D2:EQUB &EA:EQUB &EB
1920 INY:BNE vmatch6:.vmatch?7 IDA vbuff 2490 EQUB &EC:EQUB &ED:EQUB &EE "
1930 PHA:AND #&7F:CMP #1:BEQ vmatch8 2500 EQUB &FF:EQUB &F1:EQUB &D0
1940 JSR badd:.vmatch8 PLA:BPL vmatch9 2510 EQUB &CF:EQUB &F0:EQUB &F2
1950 LDA #ASC"(":JSR badd 2520 EQUB &F3:EQUB &F7:EQUB &D4
1960 .vmatch9 LDY temp+1:CLC:RTS 2530 EQUB &FC:EQUB &D1:EQUB &FD
1970 .incvar LDA newv:JSR vinc:STA newv 2540 EQUB &EF:EQUB &FE:EQUB 0
1980 BNE incvd:LDA #ASC"A":STA newv 2550 .tokchk STY ytemp:LDY #0:TAX
1990 LDA newv+1:JSR vinc:STA newv+l 2560 .tokchk2 TXA:CMP toktab,Y
2000 BNE incvd:LDA #ASC"0":STA newv+l 2570 BEQ tokchk3:INY:LDA toktab,Y

48 Beebug October 1988

e R T T o e e e e R e e e bt e R e e e L o e e e e e R R T TSN

2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690
2700
2710
2720
2730
2740
2750

BNE tokchk2:LDA #&FF:.tokchk3 PHP
LDY ytemp:PLP:RTS

.badd IDX boff:STA sbuff,X:STA lin
INC boff:R1S

.sadd PHA:LDA #32:JSR badd:PLA:RTS
.chkdig CMP #ASC"0":BCC chkdig3
CMP #ASC"9"+1:BCS chkdig3:SEC:RTS
.chkdig3 CLC:RTS

.pld LDY #1:STY Iptr:STY bst

LDA page:STA lptr+l:STA bst+l

IDA #&80:STA lbuff:.chew IDY #0
LDA (lptr),Y:BMI chout:BIT &FF
BPL chew(5:.chout JSR shunt

JMP commb: .chew05 STY oeflg

STY tflg:JSR chknul:BNE chewl

JSR nxtlin:JMP chew:.chewl LDY #0
STY lin:.chew2 LDA (lptr),Y

STA sbuff,Y:INY:CPY #3:BNE chew2

3150
3160
3170
3180
3190
3200
3210
3220
3230
3240
3250
3260
3270
3280
3290
3300
3310
3320

BMI chewll:CMP #ASC".":BNE chewll
JSR badd:JMP chewd

.chewll CMP #ASC".":BEQ chewl2
JSR chkdig:BCC chewl3

.chewl2 JSR badd:INY:LDA (lptr),Y
CMP #ASC".":BEQ chewl2:JSR chkdig
BCS chewl2:DEY:LDA #&4FF:STA eflg
.chewl2l INY:LDA (lptr),Y

CMP #ASC" ":BEQ chewl21:JSR chkdig
BCC chewl22:JSR sadd

.chewl22 JMP chew45

.chewl3 CMP #&8D:BNE chewl4

JSR badd:LDA #3:STA temp+l

.1nch INY:LDA (lptr),Y:JSR badd
DEC temp+l1:BNE lnch

.chewj2 JMP chew4

.chewl4 CMP #ASC"A":BCS chewl5
JSR badd:LDA #&FF:STA eflg

2760 STY boff:DEY:.chew3 LDA #0 3330 BNE chewj2:.chewl5 CMP #ASC"\"

2770 STA sflg:STA eflg:LDA #&FF 3340 BNE chewl6:.ccsk INY:LDA (lptr),Y

2780 STA hexflg:.chewd INY 3350 CMP #13:BNE ccsk2:JMP chewdn

2790 .chew45 LDA hexflg:BMI chew46 3360 .ccsk2 CMP #ASC":":BNE ccsk

2800 DEC hexflg:.chew46 LDA (lptr),Y 3370 .chewjj JMP chew45

2810 CMP #13:BEQ dnj2 3380 .chewl6 JSR vschk:BCC chewl7:INY

2820 CMP #ASC":":BNE chew5:LDA lin 3390 JSR vmatch:BCS itwas:LDA vbuff

2830 BEQ chew3:CMP #ASC":":BEQ chew3 3400 CMP #1:BEQ vsep5:.itwas LDA #&FF

2840 LDA #ASC":":JSR badd:JMP chew3 3410 STA eflg:DEY:LDA (lptr),Y

2850 .chew5 CMP #ASC" ":BEQ chew4 3420 CMP #ASC"$":BEQ vnsep:CMP #ASC" ("

2860 CMP #&E9:BEQ chew4:CMP #ASC"*" 3430 BNE vsep:.vnsep JMP chewd

2870 BNE chew6:JSR badd:BIT eflg 3440 .vsep STA temp:INY:LDA (lptr),Y

2880 BMI chewd:DEC sflg:.osc INY 3450 CMP #ASC" ":BEQ vsep2:JMP chew45

2890 LDA (lptr),Y:CMP #13:BEQ dnj2 3460 .vsep2 INY:LDA (lptr),Y

2900 JSR badd:JMP osc:.dnj2 JMP chewdn 3470 CMP #ASC" ":BEQ vsep2:CMP #ASC"?"

2910 .chew6 CMP #ASC",":BNE chew7 3480 BEQ vsep4:CMP #ASC"!"™:BEQ vsepd

2920 JSR badd:.chewj JMP chewd 3490 LDA temp:JSR chkdig:BCS vsep3

2930 .chew7 CMP #&DC:BNE chew8 3500 JSR vschk:BCS vsep3:JMP chew4d5

2940 JSR badd:LDA #0:STA quof:.data INY 3510 .vsep3 LDA (lptr),Y:CMP #ASC"."

2950 LDA (lptr),Y:CMP #ASC" ":BEQ data 3520 BEQ vsep4:JSR chkdig:BCS vsepd

2960 DEY:.data2 INY:LDA (lptr),Y 3530 JSR vschk:BCC vsep5

2970 CMP #13:BEQ dnj:JSR badd 3540 .vsep4 JSR sadd:.vsep5 JMP chew45

2980 CMP #ASC"""":BNE data3:LDA quof 3550 .chewl7 CMP #&8C:BNE chewl8

2990 EOR #&80:STA quof:JMP data2 3560 .thl INY:LDA (lptr),Y:CMP #ASC” *

3000 .data3 BIT quof:BMI data2 3570 BEQ thl:CMP #&CF:BCS thl2

3010 CMP #ASC",":BNE data2:JMP data 3580 CMP #&8D:BNE thl3:.thl4 LDA #&8C

3020 .chew8 CMP #ASC"""":BNE chewd 3590 JSR badd:JMP thl2

3030 JSR badd:.qte INY:LDA (lptr),Y | 3600 .thl3 CMP #ASC"*":BEQ thl4

3040 JSR badd:CMP #13:.dnj BEQ dnj2 3610 JSR sadd:.thl2 LDA #0:STA eflg

3050 CMP #ASC"""":BNE gte:BEQ chewj 3620 JMP chew45:.chewl8 CMP #&A4

3060 .chew9 CMP #ASC"&":BNE chewll 3630 BEQ fnnn:CMP #&F2:BNE chewl9

3070 .hexx JSR badd:INY:LDA (lptr),Y 3640 .fnnn JSR badd:STA vbuff:1DX #1

3080 JSR chkdig:BCS hexx:CMP #ASC"A" 3650 .fnnn2 INY:LDA (lptr),Y¥:JSR chkdig

3090 BCC hexx2:CMP #ASC"G":BCC hexx 3660 BCS fnnn3:JSR vschk:BCC fnnn4

3100 .hexx2 DEY:.hexx3:INY:LDA (lptr),Y 3670 .fnnn3 STA vbuff,X:INX:BNE fnnn2

3110 CMP #ASC" ":BEQ hexx3:CMP #ASC"A" 3680 .fnnn4 LDA #0:STA vbuff,X

3120 BCC hexx4:CMP #ASC"G":BCS hexx4 3690 JSR vfind:LDA newv:JSR badd

3130 JSR sadd:.hexx4 LDA #1:STA hexflg 3700 LDA newv+l:BEQ fnnn5:JSR badd

3140 JMP chewd5:.chewlQ:BIT eflg Continued on page 64
49

Beebug October 1988

-

e rmE e

WSING
A>SELTEFER

P Rilg2

This month Lee Calcraft discusses vectors,
and the implementation of a dual-window
system.

Vectors provide the BBC micro programmer
with a very useful tool in that they allow him to
"bolt on" pieces of code to the machine's
resident firmware. For example, by using
vectors it is possible to add new Basic
commands or new star commands to the BBC
micro's repertoire, or to implement such things
as pop-up calculators.

This is made possible because a number of vital
entry points into the machine's firmware are
vectored. This means that when commonly used
routines such as OSRDCH (operating system
read character) are called, whether it be by the
user, by Basic, or by the operating system itself,
the program does not immediately jump to the
OSRDCH code in ROM and begin execution. It
first looks at a fixed location in RAM called the
OSRDCH vector, and jumps to the address held
by this vector. Normally this address will be
that of the corresponding ROM routine. This is
because when the machine powers up, or when
Break is pressed, the operating system installs
the addresses of all default routines at the
appropriate vectors. Each vector consists of two
bytes of RAM, and holds the 16 bit address of
its service routine low byte first.

It is thus a simple matter to replace any vector
with an address which points to a user-
supplied routine. In most cases the new code
supplied by the user will not replace the resident
code, but will supplement it. Thus for example,

» 50

S R e i | T e L = T e e e -

if we were installing a pop-up calculator, we
might wish to add a special routine to
OSRDCH to check for a particular key code
(e.g. Ctrl-P) in the keyboard buffer. If the ASCII
code for Ctrl-P (16) was detected, then the
calculator would be invoked. But if not, we
would want the keypress to be processed
normally. To ensure that this occurs, we simply
need to save the original contents of the read-
character vector at &210 and &211, and jump to
the address formed by those contents after we
have made our check for Ctrl-P. Broadly
speaking the same process occurs when using
any of the machine's vectors, and a list of some
of the more common ones is given in table 1.

200 User vector

202 Break vector

204 IRQ vector

208 Command line interpreter

20E OSWRCH write character vector
210 OSRDCH read character vector
212 OSFILE filing system vector
214 OSARGS filing system vector
216 OSBGET filing system vector
218 OSBPUT filing system vector
21A OSGBPB filing system vector

Table 1. Commonly used vectors

A PRACTICAL EXAMPLE

In order to illustrate the way in which vectors
can be used, we will take a very simple
example. The object of the exercise will be to
produce a beep whenever a key is pressed. The
VDU? beep provides a very useful way of
testing new routines since it is both easy to
implement, and easy to detect when activated.

The program in listing 1 uses the read-character
vector in this way. If you type it in, and run it,
you will find that the computer will operate
more or less as normal, except that every time a
character is read from the current input stream
(e.g. after a keypress), a beep will be sounded.
To terminate the effect, ignore the beeps, and
type:
CALL reset

As you can see from the listing, there are three
separate routines (setup, newcode and reset).

Beebug October 1988

Most programs which make use of vectors can
be broken down into three such parts, and it
will be instructive to look at each in turn.

Listing 1
10 REM Read chr vector
20 REM Author Lee Calcraft
30 REM Version B 0.2
40 :
50 oswrch=&¢FFEE
60 vector=&210:REM read chr vector
70 newvec=&70 :REM Temp storage
80 MODE7

100 FOR pass=0 TO 1

110 P%=6900

120 [

130 OPT pass*3

140 .setup \Set up new vector
150 \to point to new code
160 LDA vector:STA newvecC

170 LDA vector+l:STA newvectl
180 LDA #newcode MOD &100

190 STA vector

200 LDA #newcode DIV &100

210 STA vector+l

220 RIS

240 .newcode \Produce beep
250 PHA

260 LDA #7

270 JSR oswrch

280 PLA

290 JMP (newvec)

310 .reset \Reset vector
320 LDA newvec:STA vector

330 LDA newvec+l:STA vector+l
340 RTS

350]

360 NEXT

370 CALL setup

The purpose of setup is to store the original
contents of the read-character vector (situated
at locations &210 and &211), and to replace
these two bytes with the address of our new
routine, which is situated at newcode. Note here,
the way in which MOD and DIV are used to
calculate the low and high bytes of newcode. The
hash (#) in lines 180 and 200 is also worth

Beebug October 1988

noting. This is essential because although
newcode is an address, we are loading its low
and high byte components as immediate data.

The routine setup is called just once
immediately after assembly. From then on,
every time that the computer reads a character
from the input stream, it automatically accesses
newcode. In this example newcode does very
little. It first stacks the accumulator, then loads
it with the value 7, and performs a jump to
OSWRCH to send the character 7 to the VDU,
and thus produce a beep. Finally it unstacks the
accumulator and jumps to the address held at
newvec and newvec+1. This is our own new
vector containing the original contents of &210
and &211. This means that the normal read-
character routine will now be executed. And
since we have preserved the value held in the
accumulator by stacking and unstacking it, the
correct character will be read by OSRDCH.

Finally we come to reset. This routine (activated
from Basic by CALL reset) restores the original
contents to the read-character vector, so that
newcode will no longer be accessed at every
keypress. To reactivate the program you can
always use CALL setup again. But there is just
one thing to avoid: calling setup when the new
vector is already in place. So when debugging
the program you will need to clear the new
vector each time before you run the Basic
program (since the Basic program also calls
setup). This can be done either by pressing
Break, or by calling reset.

IMPLEMENTING DUAL WINDOWS

To give a more practical illustration of the use
of vectors, listing 2 implements a dual-window
system. When it is installed, pressing Ctrl-P
from the keyboard will toggle between two text
windows situated side by side on the screen.
You can use them to catalogue a disc while
keeping a program listing on screen, or to
compare two parts of a program, etc. Once
enabled, the routine not only operates from
immediate mode Basic, but at any time that
keypresses are read from the keyboard buffer.
For example, during Basic's INPUT, GET or
INKEY (but not when using negative INKEY),

51

or from any machine code character input
routine which uses OSRDCH.

To put the program through its paces, type it in,
and save it away. When it is run it will install
the new vector. As a result the computer will
behave normally until Ctrl-P is pressed. At this
point mode 3 will be engaged, and a text
window set up on the left-hand side of the
screen. Now the computer can again be used
normally, though all text will appear within
this left-hand window. To switch to the right-
hand window, simply press Ctrl-P again. Each
time that a window is reselected, the cursor will
be reinstated to the position which it held when
the window was last used. To put things back
to normal, use Ctrl-Shift-P

If you wish to save the code, use:

*SAVE windows 900 +FF
Typing *windows at any time will then install
the routine and make it active. But take care to
do this only if you are not already using the
windows.

HOW IT WORKS

The program has many elements in common
with that in listing 1. The setup routine is
identical except that a few lines have been
added to it to initialise three memory locations:
one holding a flag giving the current state of
the dual window system, and those used as a
temporary store of the cursor position. The
section of the program at newcode has also been
extended. Here we first check to see whether
the accumulator holds the value 16, indicating
that Ctrl-P has been pressed. If not, we hastily
exit. But if Ctrl-P is detected, we stack the X and
Y registers, and perform a negative INKEY
(OSBYTE &81) to check for the Shift key. If Shift
is detected, the reset routine is entered. This
resets the vectors to normal, cancels the
windows (with VDU26), emits a beep and
returns to Basic.

If Shift is not detected, a jump is made to the
subroutine thecode. This contains the whole of
the windowing routine. On entry to thecode, the
state of the window flag is tested, and if it
contains zero, indicating that the routine has

s 52

Dual windows in mode 3

been entered for the first time, it engages mode
3. Next the current position of the cursor is read
by a call to OSBYTE &86, and stored in tempx
and tempy. The window is then set, depending
on the contents of the bottom bit of the window
flag (tested by LSR A followed by BCC in lines
860 and 870). Finally the cursor is placed at the
correct position for that window, the old cursor
position stored for use next time, and the
window flag adjusted accordingly.

If you wish to modify the program to generate
different sized windows, you can alter the data
from line 1100 onwards. Clearly there is great
scope for experimentation. You might replace
the window routine for one which swapped the
RAM used for the function keys on a model B
(or character definitions). Or you could set up a
system for entering Basic keywords at a two-
key press. If you feel really ambitious you could
even.try writing a new Basic keyword. For help
in all these matters, you will find The Advanced
User Guide to be quite indispensable.

Next month we will look into the associated topic of
events and interrupts.

Listing 2
10 REM Program Dual Windows
20 REM Version B 1.0b
30 REM Author Lee Calcraft
40 REM BEEBUG October 1988
50 REM Program Subject to Copyright
60 :
100 oswrch=4FFEE:osbyte=&FFF4

Beebug October 1988

B R T A ik e S e S0 Al T PR AN R e T e e Lo el T g € T MR e T ST) e P G

110 vector=&210:REM read chr vector
120 newvec=670:flag=672:

130 curx=&73:cury=&74

140 tempx=&75:tempy=&76

150 MODE3

160 :

170 FOR pass=0 TO 1

180 P%=6900

190 |

200 OPT pass*3

210 .setup \Set up new vector
220 1DA vector:STA newvec

230 LDA vector+l:STA newvec+tl
240 LDA #newcode MOD &100

250 STA vector

260 LDA #newcode DIV &100

270 STA vectortl

280 LDA #0

290 STA flag \Initialise flag
300 STA curx:STA cury \and cursor
310 STA tempx:STA tempy

320 RTS

330 ¢

340 .newcode \Check key pressed

350 PHP:PHA \Stack status & acc
360 cMp $16 \Test for Ctil P
370 BNE notmykey

380 TXA:PHA \Stack X register
390 TYA:PHA \Stack Y register
400 :

410 IDY #&FF \Test for Shift
420 1DX #&FF

430 IDA #&81 \Perform inkey(-1)
440 JSR osbyte

450 : ‘

460 CPX #&FF

470 BEQ reset \Shift so reset
480 JSR thecode\Call window code
490 :

500 .skipit

510 PLA:TAY \Unstack Y register
520 PLA:TAX \Unstack X register
530 .notmykey

540 PLA:PIP \Unstack status & acc

550 JMP (newvec)\Resume OS routine
560 ¢

570 .reset \Reset vector
580 LDA newvec:STA vector
590 LDA newvec+1l:STA vector+l
600 LDA #26:JSR oswrch

610 LDA #7:JSR oswrch

620 JMP skipit

630 :

640 .thecode

650 LDA flag

660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950
960
970

980 :

990
1000
1010
1020

1030 :

1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200

BNE skipclear\Test flag
TAX

LDA #22:JSR oswrch\Mode 3
LDA #3:JSR oswrch

TXA

.skipclear

PHA \Stack the flag
LDA #6&86

JSR osbyte\Get cursor posn
STX tempx

STY tempy

PLA \Unstack the flag

LDX #0

LSR A

BCC window
LDX #5
.window
LDY #5
.loop

LDA params, X

JSR oswrch

INX

DEY

BNE loop

LDA #&1F \Set cursor
JSR oswrch

LDA curx

JSR oswrch

LDA cury

JSR oswrch

\Set up window

LDA tempx \Save old cursor
STA curx
LDA tempy
STA cury

LDA flag \Adjust flag
ORA #&80
EOR #1
STA flag
RTS
.params \Window parameters
EQUB 28

EQUB 0 :EQUB 24

EQUB 39:EQUB 0

EQUB 28

EQUB 41:EQUB 24

EQUB 79:EQUB 0

]

NEXT

CALL setup

Beebug October 1988

53

i & < X4

THE ACCOUNT
BOOK

Reviewed by Herbert Brothwell

Every business, large or small, needs an effective
method of recording its income and expenditure.
This can be achieved by purchasing the standard
type of account book from any stationery shop.

The drawback of this is that the owner of the
business must manually record the details, total
each page, review the ledger for bills remaining
unpaid, summarise entries for the accounts etc.

A software package, however, is able to do this in
a fraction of the time and with greater accuracy.
Furthermore, many packages now incorporate
management aids to identify bad payers, effect a
trial balance, and even show the current level of
profitability. The Account Book from Apricote
Studios is such a package.

disc. Assuming that you will be using the 5.25"
disc, you will need either: two 80 track single or
double sided drives or one 80 track double sided
drive.

The package is attractively presented in a plastic
folder, and the accompanying manual is well
written and makes relatively easy reading. Like
all mortals, of course, I gave the manual only a
cursory glance before loading the program disc
and, surprisingly, found very few problems - a
true user-friendly program (I had naturally
already made a backup copy of the disc).

This period of 'playing about’ with the program is
really essential to get the true feel of the Account
Book and is strongly recommended. Any
problems arising are often solved by reference to
the manual, but the very fact that you have spent
ten minutes scratching your head makes the point
"stick" that much better.

Once I had become reasonably confident in
operating the program, I prepared a fictitious set
of figures to enter. The main index gives access to
four sub-menus, and I entered the Utilities Menu

Product The Account Book to set up the account name as Landrace
Supplier Apricote Studios Enterprises. Having done that I had to go back to
2 Purls Bridge Farm, the Main Menu and then again to the Utilities
Manea, Nr. March, Menu to enter the opening bank and cash
Cambs PE15 OND. balances of the business. The scenario for the
Tel. (035 478) 432 fictitious business is given in the table on the next
Price £27.95inc. VAT page.

The program is designed to run on any BBC
computer (from the model B to the Master).
Although supplied on a 5.25" disc, I actually
reviewed the Account Book on a Master Compact
by having the program copied onto a 3.5" disc
and loading it via the DFS image on the Welcome

The next stage is probably the most important
aspect of the program and needs careful thought.
The Receipt and Payment labels are the
management aid which will enable you to not
only enter receipts and payments quickly, but
also to analyse the figures. You can, for instance,

%0k BALANCE, H

BANK BALANCE

(OPENING BANK BALANCE)

—-19506.6808

ERERS.ESCARE. FOR MAIN INDEX, . vvnnmnn

R o P 1
15400.00 15400.8 8.80

8.9
PAYMENTS BREAKDOWN EXCLUDING VAT
L:Ptu-cash. . :] CEULIN 6:STRAW . ;] 250.00 15 e @.88
(2:b16S .] 8108.60 NPT 6.00 | R] @.68
B:BARLEY . ;] 7560.00 NI 8.00 & F R e.68
B:ELECTRIC. . :] 506.60 I 6.00 14 : DRHWINGS . _ ;] @.0e8
p:LAPLTAL . . :] 2000.00 | 8.00 ISF:FTIY I 15400.08

Figure 1. Trial Balance

54 Beebug October 1988

QR o 0 = T =S U ST SO = O O T K Mol M 1 i N G S T AL S A =

get a print-out of all the
receipts from a
particular customer, or
details of all receipts in
a particular month, or
even which bills remain
unpaid. For the Receipt
label I entered only
A=abattoir (the pur-
chasers of pigs) and
M=mill (purchaser of
the 4 tons of barley).

30.04.88 purchases 200 pigs

30.05.88 gays electricity bill
30.05.88 buys a tractor
30.05.88 buys straw
30.10.88 sells 200 pigs
30.10.88 sells 4 tons barley
01.11.88 purchases 200 pigs

30.12.88 pays electricity bill
30.12.88 buys straw

The Payment labels are

Landrace Enterprises
Opening bank balance £1000 Opening cash balance £200

30.04.88 purchases 35 tons of barley

01.11.88 purchases 30 tons of barley

04.04.89 sells 150 pigs (50 pigs died!)

Having finally set the

system up, I entered all

Cost Receipts the transactions and
£4000 then went to the
23388 Results Menu. The
£2000 Trial Balance (Fig.1)
£ 100 reveals (surprise) that
£10000 Landrace Enterprises

£ 400 made a loss of £2950.

21(1)88 This would not be the
£ 300 actual tax loss shown
£ 150 when the final
£5000 accounts are prepared
Bankrupt because, at the end of

broken into two
different types. At the top of the screen are the
headings for standing orders and frequently
recurring payments. I entered A=Pedigree Pigs
(source of the pigs) and C=Corn Sellers (source of
the barley). The bottom of the screen consists of
15 boxes to enable you to break down your
payments into different categories. Boxes 1 and 15
are marked Petty Cash and Banked respectively,
and these cannot be changed (the manual does
explain why this is necessary). Boxes 2 to 14
however give you plenty of scope to itemise your

payments.

18406808
83280
62480
4168 w
208880
L - w

—-2088
-4168
-6248
-83280
—-18468

AP MA JU JU AU SE 0OC NO DE

JA

Figure 2. Profit/Loss Graph

This is the only time when I would suggest that
you contact your accountant (if you have one), as
he would be able to advise you on the categories
to use (possibly based on your previous
accounts). For Landrace Enterprises I have
entered:

2 = pigs

3 = barley

4 = electricity

5 = capital (assets of the business, i.e. tractor)

6 = straw

14 = drawings

Beebug October 1988

the day, the firm still
has the tractor.

Finally, on the Profit/Loss Graph (Fig.2) we can
see that the 'result’ line of the graph shows that
Landrace Enterprises only came into profit once,
in October 1988.

CONCLUSIONS

The Account Book is designed for small
businesses which use one bank account. Whilst
larger organisations may require more from a
software package (e.g. stock control), the small
business or self-employed person could find the
program invaluable.

The program is completely user-friendly and
requires no accounting knowledge. The system is
based on the double-entry method of book-
keeping and ensures that no error can be made
which is not immediately apparent from viewing
the Trial Balance.

The various statements which can be printed out
will ensure that preparation of your annual
accounts will be easier, and if you have an
accountant, cheaper than before (bearing in mind
that accountants charge around £40 per hour, the
package will pay for itself in the first year).

As well as the features already mentioned the
Account Book offers:
*full AutoVat facilities - figures for quarterly
Returns prepared.
*search by comment facility.
*full use of the red function keys .
*free helpline service.

The introduction to the manual states "the
purpose of this program is to replace the standard
type of account book used by most small
businesses and the self-employed with a
computer version" - it succeeds admirably. B

55

el ey

By Mike Williams and David Spencer

This month we shall be describing and
explaining the remaining procedures needed to
form our embryo database program. However,
before launching into new territory, let's just
recap on what we are trying to achieve and
where we have got to.

The first two articles in this series developed a
simple file handling program to provide the
basic requirements of adding, deleting,
amending and displaying the records within a
file. That program worked well, but suffered
from a distinct lack of flexibility. For example,
only the particular file specified explicitly in the
program could be handled.

To overcome this lack of flexibility we have
been developing a set of procedures which
could form the basis of a much more general
approach. The resulting program could then be
used to create and maintain many different files
each storing quite different data. The key to this
approach is the use of a File Description Record
(abbreviated to FDR).

This is a special record at the head of every file
created with this approach, which contains a
description of the file structure (information
such as the size of the file, the number of
records stored, and the names, and lengths of
all the data fields).

56

The other key feature of our approach to file
handling is the use of an array (called Record$)
to provide an internal record area or buffer.
Thus entering a new record involves keyboard
input into the buffer, followed by the writing of
the buffer contents to the file. Displaying a
record involves reading a record from the file
into the buffer, and then displaying the buffer
contents on the screen.

Of course, there is considerably more involved
in practice in putting these ideas into effect, and
you may well find it useful to re-read the last
two articles before continuing further. The
procedures we have written so far rely on a set
of global variables and arrays (global meaning
that they can be accessed directly from within
any procedure or function), and those we have
introduced so far are listed in table 1.

GLOBAL VARIABLES

Fname$() field names
Fwidth%() field widths
Ftype%() field types
Record$() record buffers
FH% number of 256-byte blocks in

the File Description Record
FS% maximum file size in records
NR% current number of records
RS% record size in bytes
NF% number of fields
F% file channel number
start% start address of first record

Table 1. List of global variables.

So far we have described procedures to handle
the following functions:

Create a file

Open a file

Read a record

Write a record

Enter a record

Display a record

Close a file
These procedures formed the basis of a
complete working demonstration program
which was included on last month's magazine
disc.

Beebug October 1988

B L e e e L e L DTt TR I N e o e Ry B e e

To complete a working set of procedures we
need two further functions, just as we did with
the very first program in this series: how to
amend records and how to delete records. Let's
start by dealing with record deletion.

DELETING A RECORD

This immediately raises a number of problems,
and we will have to decide how to deal with
these. The reason for this state of affairs is that
it is seldom practical to physically delete a
record on demand. If a record is no longer
required, what should we do about the physical
space it occupies in the file?

We could, of course, blank out all the fields, but
the record would still physically exist, and as
such could be displayed just like any other. We
could mark or flag the record in some way and
write our procedures to check for and omit any
record so marked. That would still leave a gap
in the sequence of valid record numbers.

You might feel that the solution is to remove
the empty record by closing up the gap, but it
would be very time consuming to do this after
every record deletion. Of course, if each record
were linked to the next by some form of
pointer, then a record could very easily be
removed by altering the pointers to bypass the
deleted record. But that cannot be applied here.

In fact there is no easy or simple solution. To
some extent we have brought the problem
upon ourselves by our overall approach of
using a serial file, with a record's relative
position within the file providing the means of
access. As already indicated, some form of
linked record structure would make the
solution of our current problem much easier,
but only at the expense of even greater
complexity in file handling as a whole.

We have to make some decisions. First of all we
will mark a deleted record in some way and
amend our procedure for displaying records to
ignore 'deleted’ records. Second, we will extend
our previous procedure for closing a file so that

Beebug October 1988

at that time records are shuffled up to remove
any deleted records. In effect, a record will first
be logically deleted, and then on closing the file
all logically deleted records will be physically
deleted. At that stage too, the information on
the number of records in the file will be
updated. Attempting to change this sooner
would cause problems when trying to access
any records after those deleted.

To mark a record as logically deleted we will
set the top bit of the first byte of the record.
Normally, characters have ASCII codes in the
range 0 to 127 (see your User Guide). Setting
the top bit is equivalent to adding 128 to the
ASCII value. So we will have to read the record,
set the top bit of the first byte (character), and
then write the record back to the file. We will
then need to amend our procedure for
displaying records to check the first byte of any
record, and display only those records for
which this byte's value is less than 128.

In a working program, the sequence to be
followed would be to ask for the number of the
record to be deleted, read this into the buffer
and display it on the screen, and then seek
confirmation that this is the correct record to be
deleted. If confirmed, the record would be
marked as a 'deleted' record. Reading and
displaying the record would be accomplished
easily with existing procedures.

These steps can be written in a 'pseudo-
programming' language (quite a useful idea
this), and then rewritten in Basic when they are
thought to be correct. Pseudo-code is just
abbreviated English which you make up to suit
your needs. This is illustrated below.

=>Check file open - if not display message
and exit.

=>Get number of record to delete

=>Check valid record number - if not
display message and exit.

=>Read record

=>Display record

=>Confirm deletion - if yes, logically
delete record.

=>Exit

57

The revised PROCdisplay_record and the new
PROCdelete_record are listed below.

3500 DEF PROCdisplay record(R%,buffer$)
3510 CLS:PROCread record(R%,buffers)
3520 IF ASC(Record$(1,buffer%))<128 THEN
PROCdisplay fields(R%,buffer%) ELSE PROC
error(4)

3524 ENDPROC

3526

3528 DEF PROCdisplay fields(R%,buffer%)
3530 LOCAL I% -

3532 FOR I%=1 TO NF$

3540 PRINT Fname$ (I%);TAB(12);FNfield(R
ecords$ (I%,buffers),Ftype% (I%),pad$)

3550 NEXT

3560 ENDPROC

3510

4500 DEF PROCdelete record (R%,buffer%)
4510 LOCAL r$

4520 PROCread record(R%,buffer$)

4530 r$=Record$ (1,buffer%)

4540 Record$(1,buffer%)=CHRS (ASC(r$)OR1
28) +tMIDS$ (r$,2)

4550 PROCwrite record(R%,buffer$)

4560 delete%=delete3+1

4570 ENDPROC

The display procedure has been modified as
described to check a record before displaying it
on the screen. For convenience, this process has
now been divided into two separate
procedures. The second procedure is the one
which displays the fields on the screen. If the
record has been marked for deletion, then an
error routine (PROCerror) is called to display a
suitable message ("No such record" for
example). All these features, with some slight
variations, have been incorporated in the
working demo on the magazine disc.

Using an error procedure means that a set of
error messages can be easily built up avoiding
duplication, and any message can be displayed
by calling the routine with an appropriate
number.

One other point to note is the introduction of
one further global variable, delete%, into
PROCdelete_record. This would initially be set
to zero. Each time, while a file is open, that a
record is deleted, this variable would be
incremented by 1. We shall see how this is used
in the revised version of PROCclose file in a

58

—

moment. At its simplest it acts as a flag which
tells us whether any record has been deleted or
not.

FILE RE-ORGANISATION

The counterpart to the logical deletion of
records described above is the reorganisation of
the file when it is closed to physically remove
the records marked for deletion. The process is
quite straightforward and can be expressed
again as pseudo-code before writing it in Basic.

=>Check 'delete' flag to see if any
records have been deleted - if not
exit.

=>Initialise 'read' and 'write' pointers.

=>Repeat

=>Read next record.

=>If not 'deleted' write record to file,
and advance 'write' pointer else
decrement 'delete' flag.

=>Advance 'read' pointer.

=>Until 'delete' flag zero.

=>Copy any remaining records.

=>Exit.

The previous FNclose_file has now been re-
written as a procedure.

4000 DEF PROCclose file

4010LOCAL nr%:nr%=NR%-delete?

4020 IF delete%=0 THEN PROCexit :ENDPROC

4030 pread%=1:pwrite%=

4040 REPEAT

4050 PROCread record (pread$, 0)

4060 IF ASC(Record$(1,0))<128 THEN PROC
write record(pwrite$,0) :pwrite$=pwrite%+
1 ELSE delete%=deletes-1

4070 pread%=pread$+l

4080 UNTIL delete%=0

4090 IF pread$>NR% THEN NR%=nr%:PROCexi
t :ENDPROC

4100 REPEAT

4110 PROCread record(pread$, 0)

4120 PROCwrite record (pwrite%,0)

4130 pread%=pread%+l:pwrite%=pwrite$%+1

4140 UNTIL pread$>NR%

4150 NR%=nr%:PROCexit

4160 ENDPROC

4170:

4180 DEF PROCexit

4190 PTR#F%=0

4200 PRINT#F%,FH%,FS%,NRS

4210 ENDPROC

Beebug October 1988

You should be able to follow the programming
by matching it against the pseudo-code. Most of
the previous function now reappears as a short
subsidiary procedure for convenience.

These additional procedures have been
incorporated into a new version of the demo
program from last month's magazine disc/tape.
Please remember that it is only a
demonstration. In any such program that is
going to be used for real, you will find it
necessary to incorporate more checks to avoid
the possibility of errors arising (asking for a
non-existent record, for example).

UPDATING RECORDS

The other task we have set ourselves is to allow
for records to be updated. In principle this is
also fairly simple, and again it pays to write it
in pseudo-code first.

=>Get number of record to update.

=>Read record.

=>Display Record.

=>Update record on screen and in memory.
=>If confirmed write record to file.

The hardest part of this is the updating of the
screen display and the corresponding buffer
contents, and keeping these the same. The
screen part of this will depend on what mode
you choose to use, and on your design of screen
layout. You will need your own input function
to deal with this character by character, one
field at a time.

You could of course make life simple for
yourself by displaying the original record on
the screen, and then using our procedure
PROCenter_record to input a complete
replacement. However, it is much more
satisfying to be able to update the the old
record directly on the screen. How
sophisticated you make this is up to you. We
have chosen a fairly simple approach, and a
suitable procedure would look something like
that listed at the head of the next column.

Another alternative, used by some commercial
software, is to reserve part of the screen for data

Beebug October 1988

5000 DEF PROCupdate record(R%,buffer$)
5010 LOCAL I%

5020 PROCdisplay record (R%,buffer%)
5030 FOR I%=1 TO NF%

5040 PRINTTAB(12,1I%-1);

5050 Record$ (I%,buffer%)=FNinput (Ftype%
(I%),Fwi dth%(I%),pad$)

5060 NEXT:PRINT

5070 IF FNconfirm THEN PROCwrite record
(R%,buffers)

5080 ENDPROC

entry purposes. This could be two or three lines
at the foot of the screen, or a window,
depending on the system. User input to each
field appears first in the data entry area until
confirmed, whereupon it is transferred to the
main record display. This can be used, of
course, for both initial data entry and updating.

In fact, if you look at all the procedures we have
written you will begin to find quite an overlap
between some of them. For example, the only
difference between initial data entry and
updating is that the existing contents of a
record are displayed on the screen first when a
record is to be updated. Thus we could write a
single procedure to cover both requirements,
with an extra parameter in the form of a flag
which can be used to determine whether an
existing record is to be displayed or not.

Looking for duplication and redundancy in any
programs which you write will enable you to
develop programs which are both more elegant
in their style and which save memory space
into the bargain.

We have now reached another turning point in
our discussion of file handling. The procedures
and functions from this and the last two articles
form the basis of a reasonable database
program, and a demo program including all
our routines is on this month's magazine disc.

Next time we will be taking a look at some new
Basic functions related to file handling, and see how
these can help improve our programs further.

59

e [e

Tube

™

EEmE
imnnE

I
P

I

|

I
=

PP

EEme

il

ERERE e anannaEl
EERETIELaEEnE

]

1]

FEL T
I

T
11

]

PP TTTITTTT
mEEonEREED e

EEGERuE e EREREE

BEEfECREC R EnaREE D

60

David Spencer concludes this short series on linked lists with a complete
heap management system, and gives details of how Basic uses this

powerful system.

HEAPS OF MEMORY

In the last two workshops,
whenever memory was
needed to create a linked
list, it was claimed using
DIM. Once any part of that
memory had been used, it
could not be re-used for
another purpose. In a real
system this method is not
practical, and instead
something called a Heap' is
used.

A heap is merely an area of
memory from which blocks
of differing sizes can be
claimed. Once a block has
been claimed it can be used
for any purpose, for
example, storing a linked
list. When a particular block
of memory is no longer
needed it can be returned to
the heap and re-allocated
later.

The Basic interpreter uses
just such a heap to store all
the variables used by a
program. We will look at
this in more detail later, but
first we shall show how a
heap can be created and
manipulated.

HEAP MANAGER

The software responsible
for the creation of a heap,
and the subsequent
allocation and de-allocation
of blocks of memory, is
called a 'Heap Manager'. It
is such a heap manager that
we will develop now. If you
ignore the de-allocation of
memory, the heap manager
is really very simple. You
maintain a pointer to the

first free byte of memory, and whenever a block
is requested, return the value of this pointer,
and increment it by the size of the new block. If
there is not sufficient memory to allocate to the
new block, the heap manager returns an error
instead.

The process of handling blocks of memory that
have been returned to the heap manager when
they are no longer needed is more difficult.
When a block is de-allocated it will leave a gap
in the middle of the heap, unless it happens to
have been the last block to be allocated. It
would be possible to close up this hole by
moving the remainder of the heap downwards.
The problem with this is that the data in the
blocks that are moved might rely on being at a
certain address, and also, moving large
amounts of memory can be time consuming.
The way round this problem is to make all the
free blocks into a linked list themselves. Each
free block then contains details of its length,
and a pointer to the next free block. The final
block will contain a null pointer.

Using this method, whenever the heap
manager is required to allocate a new block, it
simply needs to go through the list and find a
suitable sized block. Once this has been done,
the linked list of free space can be re-built.

HEAP DESCRIPTOR

Our heap in memory needs to contain certain
items of information. The most important item
to store is the pointer to the list of free blocks. It
would also be useful to identify the memory
being used as being part of a heap area. All this
information is stored in a heap descriptor at the
start of the heap memory. Our heap manager
will use a heap descriptor consisting of two
four-byte entries. The first will be the characters
'HEAP" to identify the area as a heap, and the
second will be the list head. This will contain a
pointer to the first free block, or null if no
blocks are available.

BLOCK FORMAT

Each block of memory allocated by our heap
manager will contain, in the first four bytes, the

Beebug October 1988

length of that block. The length allocated is four
bytes longer than that requested, in order to
allow for this. The address of the block that is
returned to the application is in fact the address
of the first byte after the length.

USING THE HEAP MANAGER

listing 1 contains the three routines that make
up our heap manager, together with the word
sort program from last month's Workshop.
Provided you have followed our look at linked
lists, you should be able to see how this
program works by comparing it with the one
from last month.

It is very easy to use the heap manager
functions in your own programs. There are
three functions:

heap=FNheap create (size)
will create a new heap of length 'size' (in bytes)
and return its address. To claim a block of
memory use:

block=FNheap claim(heap,size)
where ‘heap' is the address of the heap, and
'size' is the length required; and to release a
block use:

valid=FNheap release (heap,block)
where 'heap' is the address of the heap, and
'block’ is the address of the block to be freed.
All these calls return zero if the operation could

Listingl
10 REM Program Word Sort with Heap
20 REM Version B 1.0
30 REM Author David Spencer
40 REM BEEBUG October 1988
50 REM Program subject to copyright

heap=FNheap create (1000)

head=FNheap claim(heap,4) : thead=0

PRINT"ENTER WORDS"

REPEAT: INPUT word$

140 IF word$<>"" PROCenterword (head,wo

rd$)
150
160

UNTIL word$=""
PRINT' "DELETE WORDS"

170 REPEAT:INPUT word$

180 IF word$<>"" THEN IF NOT FNremovew
ord (head, word$) PRINT "Word not in list"
:VDU 7

190 UNTIL word$=""

200 ptr=head

210 REPEAT

ptr=!ptr
IF ptr THEN PRINTS (ptr+8);TAB(20);

UNTIL ptr=0
END

DEF PROCenterword (ptr,A$)
LOCAL new
IF !ptr=0 THEN 1050
IF $(!'ptr+8)=A$ THEN ! (!ptr+4j=! (!
ptr+4)+1:ENDPROC
1040 IF $(!ptr+8)<A$ THEN PROCenterword
(!ptr,word$) :ENDPROC
1050 new=FNheap claim(heap, LEN (A$)+9)
1060 !'new=!ptr:new!4=1:$ (new+8)=AS
1070 !ptr=new
1080 ENDPROC
1090 :
1100 DEF FNremoveword (ptr,AS$)
1110 LOCAL ptr2:IF !ptr=0 THEN =FALSE
1120 IF $(!ptr+8)=AS THEN ptr2=!ptr:!pt
r=!ptr2:=FNheap release (heap,ptr2)
1130 =FNremoveword(!ptr,A$)
1140 :
10000 DEF FNheap create(len)
10010 LOCAL heap
10020 IF len<l6 THEN =0
10030 DIM heap len-1:$heap="HEAP"
10040 heap!4=heap+8:heap!8=0
10050 heap!12=len-8
10060 =heap
10070 :
10080 DEF FNheap release (heap, add)
10090 LOCAL ptr:add=add-4
10100 IF !'heap<>&50414548 THEN =FALSE
10110 add!4=!add:!add=0
10120 ptr=heapt4
10130 REPEAT IF !ptr THEN ptr=!ptr
10140 UNTIL!ptr=0
10150 !ptr=add:=TRUE
10160 :
10170 DEF FNheap claim(heap,len)
10180 LOCAL ptr,ptr2,bptr,max, size
10190 IF 'heap<>&50414548 THEN =FALSE
10200 len=lent4:ptr=heapt+4:max=&FFFF:IF
len<8 len=8
10210 REPEAT
10220 ptr2=!ptr:size=ptr2!4
10230 IF ptr2<>0 AND size>=len AND size<
max THEN max=size:bptr=ptr
10240 ptr=ptr2
10250 UNTIL ptr=0
10260 IF max=&FFFF THEN =0
10270 ptr=!bptr:ptr2=!ptr:!ptr=len
10280 IFmax-len<8 THEN !bptr=ptr2:=ptr+d
10290 ptr!len=ptr2:ptr! (len+d)=max-len
10300 !bptr=ptrtlen:=ptr+4

Beebug October 1988

61

not be performed for some reason, such as
insufficient free memory to allocate a block.

BASIC AND LINKED LISTS

So far, we have explained the theory of linked
lists and given some rather abstract examples of
their use. So as to not leave you thinking "Yes,
all very nice but do they have a real use?", we
will end our look at linked lists by explaining
how Basic uses a heap to store its variables.

One of the easiest ways for Basic to store
variables would be to place the name of each
variable, followed by its value, in memory, one
after another. However, searching for and
altering any variable would be very time
consuming using this method.

You should already be thinking by now that a
better solution to the variable storage problem
would be to use a linked list. By storing a
pointer with each variable name and value as
well, you could join together all variables to
form a linked list. Now, searching for a variable
would be much quicker, because you can find
the next variable without searching through all
the data that makes up the current variable.
This also means that the variables do not need
to be stored one after another.

However, even this technique is not fast
enough for BBC Basic. The problem is that the
linked list of variables can still get very long,
and it will take a relatively long time to find a
variable at the end of the list. The solution to
this is to have several short lists, rather than
one long one. Basic uses the first character of
any variable name to choose one of fifty four
lists. Each of these lists has a list head which is
simply a two byte pointer containing the
address of the first variable in that list. If this
address is zero (or in practice any value less
than 256) then that list is empty. These pointers
are stored in memory at locations &400+2*x
(low byte) and &401+2*x (high byte), where 'x’
is the ASCII code of the first letter. For example,
the list for variables beginning with the letter
'A' is at locations &482 and &483.

Within each list, each variable is stored with the

first two bytes being a pointer to the next
variable in that list, or zero if at the end of the

62

list. Then comes the variable name, without its
first letter, then a zero byte, and finally the
variable's value. The format of this depends on
the type of variable. With this method,
assuming that the spread of 'first letters' is
uniform, each list will be only 1/54th the size of
a single list. Locating a variable is much quicker
as aresult.

The program in Listing 2 prints out the names
of all Basic variables defined. By adding more
assignments in PROCdefine, you will see more
names printed out. It should be easy to follow
the working of this program. Once Basic has
created a variable, its value is not discarded
until all the variables are cleared. Regrettably,
Basic does not implement a true heap
management system, and memory allocated for
local storage or for string storage is not
recovered when discarded by a program. String
storage in particular can waste large areas of
memory if allowed to by the programmer.

Listing2
10 REM Program Variable List
20 REM Version B1.0
30 REM Author David Spencer
40 REM BEEBUG October 1988
50 REM Program Subject To Copyright

100 PROCdefine

110 FOR F%=ASC"A" TO ASC"z"

120 P%=!(&4004F%*2) AND &FFFF

130 PROClist (F%,P%)

140 NEXT

150 END

160

1000 DEF PROClist (first,ptr)

1010 IF ptr<256 ENDPROC

1020 VDU first:0%=1

1030 REPEAT 0%=0%+1

1040 IF ptr?0%<>0 VDU ptr20%

1050 UNTIL ptr?0%=0:PRINT

1060 PROClist (first, !ptr AND &FFFF)
1070 ENDPROC

1080 :

1090 DEF PROCdefine

1100 REM Put sample definitions here

That ends our look at linked lists, but next month
we will continue on the theme of data structures by
looking at trees.

Beebug October 1988

e e Nt B0 R I T et A B S e L T e it S O IV -

288 MODEM
REVIEW

David Spencer puts his Z88 on-line and
finally becomes a fully-fledged yuppie.

Product
Supplier

788 Pocket Modem
Cambridge Computer,
Bridge House,

10 Bridge Street,
Cambridge CB2 1UE.
Tel. (0223) 312216

Price £179.95 inc. VAT and P&P

The first thing to say about the new Z88
modem is that it is not the elegant black box
carrying Cambridge Computer's name as
originally promised. Instead, it is a standard
Datatronics 1200P, dual speed auto-dial auto-
answer modem, in a beige case. The overall size
of the device is about 3" by 2" by 1" deep, with a
25 way D-connector protruding from one end.
The back of the case carries two American style
phone connectors, one for the phone line, the
other for the phone, and also a 2.5mm socket
for a 9V power supply, this latter overriding the
internal 9V battery. On the top of the box are
three red lights, one for low battery, one to
indicate the baud rate, and one to show the
presence of a carrier. The modem does not yet
have BABT approval. This does not mean that
the modem is in anyway substandard or
dangerous, rather that the device has not yet
completed the strict approval system.

Supplied with the modem are two leads, one to
connect it to the Z88, the other to connect to the
phone line, the driving software in a 32K
EPROM card, and manuals for both this and
the modem.

The technical specification of the 1200P modem
is quite impressive. The only real problem is
that while 300/300 and 1200/1200 baud are
supported, 1200/75 is not. This doesn't cause
any problems with Prestel, which now uses
multi-speed Vasscom ports, but it may prevent
the modem being used with other viewdata
systems. The 1200P is fully Hayes compatible,
which means that it is controlled by a standard
set of commands, and will therefore work with
a wide range of communications software.

Beebug October 1988

Features such as tone dialling and last number
re-dial are also supported.

The software supplied with the modem is a cut
down version of Wordmonger's Zterm package,
renamed Comm88. Following the fashion of
other Z88 software, all the functions of the
modem are controlled through menus or
'diamond key' sequences and help information
is provided for all the commands. There are
three modes of operation. Two of these are
viewdata and plain text (called teletype), and
the third allows commands at the lowest level
to be sent directly to the.modem. Comma88 can
be configured for such details as the mode to
use, the baud rate and the data format, and this
configuration is automatically saved to a file.
Additionally, up to five function keys can be
programmed with passwords, log-on sequences
ete.

Comm88 offers the option to dial a number
from a stored list, or entered from the
keyboard. When using a stored list, the correct
baud rate and mode will be selected
automatically. The viewdata mode is fairly
primitive, with each page being split into three
sections to fit on the display. Graphics are only
partly supported, and obviously there is no
colour. There is also no facility to download
telesoftware. The teletype mode does not suffer
from these problems, and includes two-way file
transfer using the XMODEM standard.

In conclusion, the modem performed very well
in use, but is clearly somewhat limited by the
788 - T would not want to read many Prestel
pages in sections on the eight line display. The
price of nearly £180 pounds is also rather high,
acceptable, maybe, to the jet-setting yuppie
executive, but rather excessive for ordinary
mortals like you and L. B

63

FIRST COURSE (Continued from page 32)

1600 PRINTTAB (26-x%,pos%) ;name$; SPC8; TA
B(26,p0s%) ;name$

1610 PROCwait (PA)

1620 NEXT

1630 ENDPROC

1640 :

1650 DEF PROCuandd (from%,to%,stp%,at$,v
als)

1660 name$=LEFTS$ (name$ (from$%) +STRINGS (7
’" ll),7)

1670 FOR y%=from% TO to% STEP stp%

1680 PRINTTAB (at%,y%+val%);SPC8

1690 PRINTTAB (at$%,y%);name$

1700 PROCwait (PA)

1710 NEXT

1720 ENDPROC

1130 ¢

1740 DEF PROCright (pos%,to%,at$,aorcs)

1750 name$=LEFT$ (name$ (pos$%) +STRINGS (7,
m ll),7)

1760 FOR x%=1 TO to%

1770 PRINTTAB (at%+x%,aorc$);" ";name$

1780 PROCwait (PA)

1790 NEXT

1800 ENDPROC

1810 :

1820 DEF PROCcullen

1830 REPEAT:finish%=TRUE

1840 FOR b%=1 TO max$%-1

1850 FOR s%=b%+1 TO max$

1860 IF name$ (b%)>name$ (s%) THEN PROCsw
ap (b%,s%) : finish%=FALSE

1870 NEXT:NEXT

1880 UNTIL finish%

1890 ENDPROC

1900 :

1910 DEF PROCselect

1920 FOR b%=1 TO max3%-1

1930 b$=name$ (b%) : found$=FALSE

1940 FOR s%=b% TO max$

1950 IF b$>name$ (s%) THEN found%=TRUE:b
$=name$ (s%) :d%=s%

1960 NEXT

1970 IF found% PROCswap (b%,d%)

1980 NEXT

1990 ENDPROC

2000 :

2010 DEF PROCwait (t)

2020 t=INKEY (t)

2030 ENDPROC

THE BEEBUG SUPER-SQUEEZE (Continued from page 49)

3710 LDA newv+2:BEQ fnnn5:JSR badd

3720 .fnnn5 JMP chew45

3730 .chewl9 CMP #&8B:BNE noel:PHA

3740 LDA #0:STA eflg:PLA:.noel CMP #&E7
3750 BNE noif:DEC tflg:.noif CMP #&85
3760 BNE noerrr:DEC oeflg

3770 .noerrr CMP #&F4:BEQ chewdn

3780 JSR tokchk:BNE noexp

3790 LDA #&FF:STA eflg

3800 .noexp LDA (lptr),Y:JSR badd

3810 JMP chew4:.chewdn:LDA #13:JSR badd
3820 LDA boff:STA sbuff+2:JSR nxtlin
3830 SEC:LDA sbuff+2:SBC #3:CLC

3840 ADC 1lbuff+2:BCS tolo

3850 .notol LDA sbuff+3:CMP #&DC

3860 BEQ tolo:CMP #&DD:BEQ tolo

3870 LDA lnos:STA temp:LDA lnos+l

3880 STA temp+l:.clin LDY #0:JSR clinc
3890 LDA temp+1:CMP #&C0:BEQ app

3900 LDA (temp),Y:CMP sbuff+l:BNE clin2
3910 INY:LDA (temp),Y:CMP sbuff

3920 BEQ tolo:.clin2 JSR clinc:JMP clin
3930 .tolo:JSR shunt:LDA #&80:STA lbuff
3940 .app LDA lbuff:CMP #&80:BEQ app2
3950 LDX lbuff+2:LDA lbuff-2,X

3960 CMP #ASC":":BNE appl:DEX

3970 .appl LDA #ASC":"

3980 STA lbuff-1,X:LDY #3

3990 .app3 LDA sbuff,Y:STA lbuff,X
4000 INY:INX:CMP #13:BNE app3

4010 STX lbuff+2:.app5 BIT tflg

4020 BMI pback:BIT sflg:BMI pback
4030 BIT oeflg:BMI pback:LDA sbuff+3
4040 CMP #&DC:BEQ pback:JMP chew
4050 .app2 LDY #0:.app4 LDA sbuff,Y
4060 STA lbuff,Y:INY:CPY sbuff+2
4070 BNE app4:STY lbuff+2:JMP app5
4080 .pback JSR shunt:LDA #&80

4090 STA lbuff:JMP chew

4100 .clinc INC temp:BNE clinc2

4110 INC temp+l:.clinc2 RTS

4120 .sbuff EQUS STRINGS(128,CHR$0)
4130 EQUS STRINGS (128, CHR$0)

4140 .vbuff EQUS STRINGS (128, CHRS0)
4150 EQUS STRINGS (128, CHRS$0

4160 .lbuff EQUS STRINGS (128, CHRS$0)
4170 EQUS STRINGS (128, CHRS0)

4180 .end:]NEXT

4190 OSCLI ("SAVE SQZOBJ "+STR$~code+"
"+STR$~0%+" 8000 8000")

64

Beebug October 1988

B S e S P e e e A e o 2 e e ot i e ML e i L g s

-4 A [| o

ELEVENSES

Paul Timson presents an excellent
implementation of the popular card game
Elevens, a variation of patience.

For those that are not already familiar with the
game of Elevens, the idea is to lay down the
entire pack of cards on the table by obeying
certain rules. Firstly, nine cards are laid face
down on the table, in a three by three grid. Each
card is turned over until two cards are turned that
add up to eleven. These two cards are then
covered with two new cards from the pack placed
face upwards. Should these two cards then add
up to eleven they must be covered again in the
same manner. If a Jack, Queen, and King appear
at the same time they may also be covered with
three new cards from the pack. The game ends
when there are no more cards to turn and no two
cards add up to eleven. You win by using up all
the cards in the pack, by no means an easy feat.

Type in the listing as printed and save it before
going any further. Note that PAGE must be
reduced to &1200 before running the program if
you do not have shadow memory. When the
program is run it will first inform you that the
pack is being shuffled. The nine cards will then be
dealt, face down, on the table. Each card will be
identified with a number between one and nine.
Press the 0 key to turn the first card, and again to
turn the second. If these two cards add up to
eleven then press the keys corresponding to their
identifying numbers (i.e. 1 and 2 in this case). If
this is not the case then continue turning cards
with the 0 key until two cards add up to eleven.
Should a Jack, Queen, and King appear in any
order, these may also be covered in the same
manner. The game will end when there are no
more possible moves or when you have used all
of the cards in the pack.

Although the game is extremely easy to play and

very simple, it is visually entertaining and quite
addictive. Type it in and give ita go.

Beebug October 1988

10 REM Program Elevens
20 REM Version B1.03
30 REM Author Paul Timson
40 REM BEEBUG October 1988
50 REM Program Subject To Copyright
B0
100 ON ERROR MODE 7:REPORT:PRINT" at 1
ine ";ERL:END
110 MODE1: PROCdefine: PROCinit
120 REPEAT:CLS
130 PROCset
140 REPEAT
150 COLOURO:COLOUR130
160 FOR1ine%=1TO010:PRINTTAB (0, 9+1line$%)
;SPC(7) :NEXTline%
170 PRINTTAB(0,0) ;deck%;SPC(1);TAB(0,1
) ;"Cards"; TAB(0,2) ; "Remain": first%=GET-4
8
180 IF first%>=1 AND first%<=cards% AN
D cards%>=2 PROCcards
190 IF first%=0 PROCdeal:IF cards%=10
deck%=deck%+1:third%=-1:PROCfinished
200 IF deck%=1 AND cards%=9 third%=-1:
PROCfinished
210 IF deck%=0 PROCend
220 UNTILdeck$="!"
230 PRINTTAB(5,24) ;"Do you want anothe
T go [F/N)2"
240 key$=GETS$:IFkey$<>"y"ANDkey$<>"n"A
NDkey$<>"Y"ANDkey$<>"N" GOT0240
250 UNTIL NOT (key$="y" OR key$="Y")
260 MODE7
270 END
280 :
1000 DEF PROCshuffle
1010 deck$="":FOR shuffle%= 51 TO 0 STE
P=1
1020 random%=RND (shuffle%) :deck$=deck$+
MIDS$ (shuffled$,2*random%+1,2) :shuffled$=
LEFTS$ (shuffled$, random%$*2) +RIGHTS (shuffl
ed$, (shuffle%-random$) *2)
1030 NEXTshuffle%:shuffled$=deck$
1040 ENDPROC
1050 :
1060 DEF PROCinit
1070 DIMdealt$(9)
1080 vou23,1,0:0;0;0;19,2,2,0,0,0
1090 *FX11,0
1100 shuffled$="AHACADAS2H2C2D2S3H3C3D3
S4HAC4ADASS5H5C5DS5S6H6CE6D6STHTCTD7S8HEC8D8
S9HICIDISTHTCTDTSIHICIDISQHQCODQSKHKCKDK
S"
1110 PROCshuffle:PROCshuffle:ENDPROC
1120 @
1130 DEF PROCset
1140 COLOUR130:CLS:COLOURO:PRINTTAB (14,
5H"ELEVENEB"TAB(13,15) "By Paul *

65

Timson";TAB(15,25) ; "SHUFFLING! ! "

1150 PROCshuffle:PROCshuffle

1160 PRINTTAB(14,5):8PC(13) :TAB(13,15);
SPC(15) ; TAB(15,25) ;SPC(11) ;TAB(10,9);"1"
;TAB(19,9);"2" : TAB(28,9) ;"3";TAB(10,19) ;
FAr;TAB(19,19) ;"5 : TAB(28,19):76"; TAB(10
/29);"7";:T0B(19,29) ;"8"; TAB(28,29) ;"9"

1170 PRINTTAB(1,31);"Type cards that ma
ke 11:0 to deal/end";

1180 temp$=deckS:deckS="**kkkkkkkxkxkk*
**%%%:cards%=0:REPEAT:PROCdeal : UNTILcards
$=9:deck$=temp$: COLOUR130: COLOURO:cards%
=0:deck%=52

1190 ENDPROC

1200 :

1210 DEF PROCdeal

1220 cards%=cards%+1:deck%=deck%-1:IFca
rds%=10THENENDPROC

1230 IFcards%=10Rcards%=40Rcards%=7 xco
ord%$=7ELSEIFcards%=20Rcards%=50Rcards%=8

xcoord%=16ELSEIFcards%=30Rcards%=60Rcar
ds%=9 xcoord%=25

1240 IFcards%>=1ANDcards%<=3 ycoord%=0E
LSEIFcards%>=4ANDcards%<=6 ycoord%=10ELS
EIFcards%>=7ANDcards%<=9 ycoord%=20

1250 card$=LEFT$ (deck$, 1) :deck$=RIGHTS (
deck$, LEN (deck$) -1) :suit $=LEFTS (deck$, 1)
:deck$=RIGHTS (deck$, LEN (deck$) -1) :dealt$
(cards%)=card$+suit$:PROCdisplay

1260 ENDPROC

1210 :

1280 DEF PROCdisplay

1290 LOCAL temp,temp$,whole$,part,line$
,line,count, char

1300 IF card$="A" whole$="30*30"ELSEIFc
ard$="2" whole$="9*41*9"ELSEIFcard$="3"
whole$="9%20*20*9"ELSEIFcard$="4" whole$
="7*x3*37*3*7"ELSEIFcard$="5" whole$="7*3
*18%]18*3*7"ELSEIFcard$="6" whole$="7*3*1
gE3xigeaign

1310 IF cardS$="7" wholeS$="7%*3*4*11*3%16
*3*7"ELSEIFcard$="8" whole$="7*3*4*]1]1*3*
11*4*3*7"ELSEIFcard$="9" whole$="7%*3*9*3
*4%4*3%9*3*T"EL,SETFcard$="T"whole$="6*3*
A*AKIXQRIE R R R N

1320 IFcard$="J"ORcard$="Q"ORcard$="K"
whole$="7*45*7"ELSEIFcard$="*" whole$=ST
RINGS(63,147)

1330 IF card$="*" GOT01410

1340 temp$=card$:IFcard$="T" temp$="10"

1350 whole$=whole$+"*":temp%=0:FORcount
%$=1TOLEN (whole$) -1

1360 IF MIDS$(whole$,count%,1)<>"*"ANDMI
D$ (whole$, count%+1,1) <>"*" temp$=temp$+S
TRINGS (VAL (MIDS (whole$,count%,1)) *10," "
)

1370 IFMIDS (whole$, count$%,1)<>"*"ANDMID

$(whole$, count%+1,1)="*" tempS$S=temp$+STR
INGS (VAL (MIDS (whole$,count%,1))," ")

1380 IF MIDS(whole$,count%,1)="*" temp$
=temp$+"*"

1390 NEXTcount%:IFcard$="T" wholeS$=temp
$+|l 10"

1400 IFcard$<>"T" whole$=temp$+card$

1410 COLOUR131:COLOURL:IFsuit$="D" char
$=224ELSEIFsuit$="H" char%=225ELSEIFsuit
$="8" char%=226:COLOUROELSEIFsuit$="C" ¢
har%=227:COLOUROELSEIFsuit$="*" char%=22
8

1420 FOR1ine%=0TO8:LET1ine$=MIDS (whole$
, (line%*7)+1,7)

1430 FORpart=1TO7:IFMIDS (line$,part,1)=
"*"THENLET1ine$=LEFTS (1ine$, part-1)+CHRS
(char$) +RIGHTS (1ine$, 7-part)

1440 NEXTpart :PRINTTAB (xcoord%, ycoord%+
line%);1line$:NEXT1line%

1450 ENDPROC

1460 :

1470 DEF PROCcards

1480 IFLEFTS (dealt$(first%),1)="J"ORLEF
TS (dealt$ (first%),1)="Q"ORLEFTS (dealt$ (£
irst%),1)="K"THENIFdeck%>=3 PROCthree:EN
DPROC

1490 IFLEFTS (dealt$(first%),1)="J"ORLEF
TS (dealt$ (first%),1)="Q"ORLEFTS (dealt$ (f
irst%),1)="K" ENDPROC

1500 IFdeck%>=2 PROCtwo

1510 ENDPROC

15280

1530 DEF PROCtwo

1540 sum$=first%:PROCAtoT

1550 second%=GET-48:IFsecond%=0 ENDPROC

1560 IFsecond%<lORsecond$>cards$ GOTO15
50

1570 IFLEFTS (dealt$ (second%),1)="*"ORse
cond%=first% GOT01550

1580 sum%=0:number%=first%:PROCadd:numb
er%=second%:PROCadd: IFsum%<>11 GOT01550

1590 sum%=second%:PROCAtoOT:temp=cards%:
cards%=first%-1:PROCdeal:cards%=second%-
1:PROCdeal :cards%=temp

1600 ENDPROC

1610 :

1620 DEF PROCAtoT

1630 PRINTTAB(0,10);"Ace =";TAB(0,11);
"wo =":TAB(0,12);"Three-";TAB(0,13):"F
our —";TAB(0,14) "Eive =" ;TAB{0, 15];"8ix

=":TAB(0,16) ;"Seven=";TAB(0,17) ;"Eight
=".TAB(0,18);"Nine =";TAB(0,19);"Ten ="

1640 IFLEFTS (dealt$ (sum%),1)="A" PRINTT
AB(6,10) ; sSum3ELSEIFLEFTS (dealt$ (sum%),1)
="T" PRINTTAB(6,19) ; Sum¥ELSEPRINTTAB (6,9
+VAL (LEFTS (dealt$ (sum%),1))) ; sum%

1650 ENDPROC

66

Beebug October 1988

O R R N N e e T e e e T L e e e ey Ty T A .

¥
+
Y

ed AL s
ce =_9 K K
0 =7 ¢ * * -~
ree=
ve = »
1 X - » *
en
*» * *
ne = s B i *k
. 2 4 2
* - - -
N RIS 2
7 8 9

Tupe cards that make 11:0 to dealsend

1660 :

1670 DEF PROCadd

1680 IFLEFTS (dealt$ (number%),1)="A" sum
$=sum%+1ELSEIFLEFTS (dealt$ (number%),1)="
T" sum%=sum%+10ELSEsum%=sum%+VAL (LEFTS (d
ealt$ (number%),1))

1690 ENDPROC

1700 :

1710 DEF PROCthree

1720 sum%=first%:PROCJQK

1730 second%=GET-48:IFsecond%=0 ENDPROC
1740 IFsecond%<1ORsecond%>cards% GOTO17
30

1750 IFdealt$ (second%)="*"ORsecond%=fir
St%ORLEFTS (dealt$ (second%), 1) =LEFTS$ (deal
t$(first%),1) GOTO1730

1760 IFLEFTS (dealts$ (second%),1)<>"J"AND
LEFTS (dealt$ (second%) , 1) <>"Q"ANDLEFTS (de
alt$(second%),1)<>"K" GOT01730

1770 sum%=second%:PROCJIQK

1780 third%=GET-48:IFthird%=0 ENDPROC
1790 IFthird%<1ORthird%$>cards% GOT01780
1800 IFdealt$(third%)="*"ORthird%=first
%ORthird%=second% GOT01780

1810 IFLEFTS (dealt$(third%),1)=LEFTS (de
alt$(first%),1)ORLEFTS (dealt$ (third%),1)
=LEFTS (dealt$ (second%),1) GOT01780

1820 IFLEFTS (dealt$(third%),1)<>"J"ANDL
EFTS (dealt$ (third%),1) <>"Q"ANDLEFTS (deal
tS{thirdy) , 1) <"R" GOTO1180

1830 sum%=third%:PROCJQK:sum%=ASC (LEFT$
(dealt$ (first%),1))+ASC(LEFTS (dealt$ (sec
ond%) ,1)) +ASC(LEFTS (dealt$ (third%),1)):I
Fsum%<>230 ENDPROC

1840 temp=cards%:cards%=first%-1:PROCde
al:cards%=second%-1:PROCdeal:cards%=thir
d%-1:PROCdeal:LETcards%=temp

1850 ENDPROC

1860 :

1870 DEF PROCJQK

1880 PRINTTAB(0,10);"Jack =";TAB(0,11);
"Queen=";TAB(0,12) ; "King =":IFLEFTS (deal
t$ (sum%),1)="J" PRINTTAB(6,10);Sum$ELSEI
FLEFTS (dealt$ (sum%),1)="Q" PRINTTAB(6,11
) ; SUM$SELSEIFLEFTS (dealt$ (sum%),1)="K" PR
INTTAB(6,12) ; sum%

1890 ENDPROC

1900 :

1910 DEF PROCend

1920 deck$=STRINGS (18, "*") :deck%=9:COLO
UR0:COLOUR130:PRINTTAB (1, 31) ; "Now to fin
ish type pairs/JQKs-0 to end";:TIME=0:RE
PEAT:VDU19,2,3,0,0,0:VDU19,2,2,0,0,0:UNT
ILTIME=100

1930 REPEAT:COLOURO0:COLOUR130:FORline%=
1TO10:PRINTTAB (0, 9+1ine%) ; SPC(7) :NEXTlin
e%:PRINTTAB(0,0) ; SPC(3) 'SPC(5) 'SPC(6) :LE
Tfirst%=GET-48

1940 IFfirst%=0 third%=-1:PROCfinished

1950 IFfirst%>=1 ANDfirst%<=9 ANDdealt$
(first%)<>"*" PROCcards

1960 third%=0:FOR line%=1T09:IFdealts$ (1
ine%)<>"*x" thirdi=]

1970 NEXT line%:IF third%=0 COLOURO:COL
OUR130:FORline%=1 TO10:PRINTTAB (0, 9+line
%) :SPC(7) :NEXTline%:PROCfinished

1980 UNTILdeck$="!'"

1990 ENDPROC

2000 :

2010 DEF PROCfinished

2020 COLOUR130:COLOURO:PRINTTAB (0, 0) ; SP
C(3) 'SPC(5) 'SPC(7) ; TAB(0, 31) ; STRINGS (39,
” ")l.

2030 IFthird%=0 PRINTTAB(11,4);"WE L L

D ONE";TAB(8,14);"You have won at E
levens”

2040 IF LEFTS (deck$,1)<>"*" AND third%=
-1 PRINTTAR(5,4);"You have ";deck%;" car
d(s) remaining” ELSEIF LEFTS (deck$,1)="*
" ANDthird%=-1 PRINTTAB(12,4);"B A D L
U C K";TAB(7,14) ;"You almost won at Ele
vens"”

2050 IFdeck%=1 AND LEFTS (deck$,1)<>"*"A
NDthird%=-1 PRINTTAB(2,14);"To win you n
eed 1 or 3 JQKs remaining"

2060 decks$="!"

2070 ENDPROC

2080 :

2090 DEF PROCdefine

2100 vDU23,224,0,8,28,62,127,62,28,8

2110 wWo23,275,0,20,62,127,121,62,28,8

2170 vpuo3,226,0,8,28,62,1217,127,42,8

2130 vnu23,221,0,8,28,42,127,42,8,8

2140 VDU23,228,129,66,36,24,24,36,66,12
9

2150 ENDPROC

Beebug October 1988

67

In the Z88 Page
this month,
David Spencer
explains the use

of windows on
the Z88.

/68

The display on the
788 is divided
into three areas as
shown in figure 1. Normally, characters can be
output to the entire application area. It is,
however, possible to define a series of windows
on the screen, and then any text will be output
to the current window. The operating system
allows a total of eight windows, although three
of them are reserved for error boxes and pop-
up applications. This leaves the user with five
windows, numbered 1 to 5. Normally, only
window 1 is active, and this is set to cover the
whole application area of the screen.

TOPIC APPLICATION A oz
AREA AREA 8 AREA
characters
10 94 characters 16 pixels
<« | > |—>
characters Y

Figure 1. Z88 screen layout.

The definition of a window can be changed
using the command:
VDU 1, 55, 35,window, 32+x, 32+y, 324w, 3244,
flags
where:
window is the window number (1-5) as an ASCII
digit, (window 1=ASC"1"=49 etc.).
x is the x co-ordinate of the top left-hand corner of
the window.
y is the y co-ordinate of the top left-hand hand
corner.
w is the width of the window in characters.
d is the depth of the window in characters.
flags is a byte that determines how the border of
the window appears. There are four possible values:
&80 No border
&81 Vertical bars at side
&82 Shelf brackets at top
&83 Both bars and brackets
The vertical bars provide an edge to the
window. Shelf brackets, if selected, form a sort
of elbow in both top corners of the window.
These allow any reversed text printed on the
top line to join onto the side bars. This is how
windows are given titles.

68

The co-ordinates of the top left corner of the
window are specified relative to the top left
corner of the applications area. However, the 'x'
value can be negative, allowing windows to be
specified in the topic area of the screen.

The selection of which window is used is
performed by one of three different commands.
First:

VDU 1,50, 67,window
selects the window (again given as an ASCII
digit), clears it, and sets the display toggles
(bold etc.) to off. The next command:

VDU 1,50,72,window
selects the window, but without clearing it, and
maintaining the same toggles as when it was
last selected. Finally:

VDU 1,50,73,window
selects a window, and then both clears it and
resets the toggles only if it is the first time the
window has been selected. Otherwise, the
window's contents are left unchanged.

As an example, try the following program:
10flags=&83
20vDU 1,55,35,AsC"2",23,32,40,40, flags
30VDU 1,50,67,A8C"2",1,ASC"R"
40PRINT "WINDOW 2"
50VDU 1,ASC"R"
60PRINT "This text is in window number
two."
T0A=GET:VDU 1,50,72,ASC"1"

This program sets up an 8 by 8 window in the
topic area, and gives it a reversed title (using
VDU 1,ASC'R" to select reverse printing), and
some sample text. Pressing any key will re-
select the default window number 1. Try
altering the value of the variable 'flags' to one of
the other options given earlier, and see what
effect it has.

Another useful pair of commands is:

VDU 1,50,71,43 and

VDU 1,50,71, 45
The first one of these 'greys' out all of the
current window, while the second one 'un-
greys' it again. If you grey the current window
before selecting another window, the new
window will stand out. You must of course un-
grey the original window when it is re-selected.
This is the method used by pop-ups such as the
clock and the calculator.

Beebug October 1988

R e N L I e e R e L B T e e e e D s

HINTS. HINTS. HINTS, HINTS, HINTS,

This month's collection of
hints and tips are rounded
up by Lance Allison.
Remember that we are
always looking out for good
hints. All hints featured on
this page are awarded five
pounds and we award
fifteen pounds for the star
hint,

* * * STAR HINT * * *

ELAPSED DAYS

by Bernard Hill

The following function will
calculate and return the
number of days that have
elapsed since 30 November 1
BC (Modern Calendar, not
pre-Gregorian).

1000 DEFFNd(d,m,y)

1010 IF m<3 THEN m=m+12:y
=y-1

1020 =d+31*m-INT(0.4*m
+2.3) +365*y+yDIV4
=INT(0.75+(yDIV100+1)

Use FNd(dl,ml,yl) -
FNd (d2,m2,y2) to calculate
the number of days between
two dates. Note that d,m, and
y are all integer numbers
representing the day, month
and year, and that the year
must be the full year (ie.
y=1988 not 88).

To complement that, here is a
second function to return the

day of the week for a specified
date. The day is returned as an
integer number in the range of
0 to 6 where 0=Sunday and
6=Saturday. It will work for
all dates including leap years
and non-century leap years.

2000 DEFFNdn(d,m,y) =
(FNd (d, m,y)+1)MOD 7

For example, FNdn(19,8,1988)
will return 5 for Friday.

VARIABLE CURSOR

by Brian Care

The following VDU sequence
will generate a flashing cursor
whose height is dependent on
the value n.

vou 23,0,10,n,0,0,0,0,0,0

If n=0 then the cursor will be
at its biggest whilst n=10 will
totally remove the cursor.

PROCEDURE INDEX

by Nicholas Sayers

The following function key
definition will list all of the
functions and procedures in
memory along with the line
numbers at which they are
situated.

*K.OP=PA. :REP.N=P?1*256+P?
2:P=P+3:REP.P=P+1:U.?P=221
OR?P=130RP>TOP: IF?P<>221U.
P>T0P EL.P=P+1: P.RI. *

"+STRS(N) ,5) 7™ ":M."EN
PROC", ABS (?P=242) *3, 2+ABS (

?P=242)*2) ; :REP.P=P+1:VDU?
P:U.?2P=13:P. ;:U.P>TOP

Be careful to enter the
definition exactly as printed.
Do not expand any of the
abbreviations or Basic will not
let you enter the entire string.

Once it has been entered
correctly, press f0 to list all of
the functions and procedures
in memory. Quite a handy
untility!

SIDEWAYS SCREEN

by Colin Cleaver

Screen images may be saved
in sideways RAM and recalled
easily on the Master and
Compact micros using the
*SRWRITE and *SRREAD
commands. The following
listing demonstrates this:

10 *SRDATA 4

20 *SRDATA 5

30 *LOAD SCREEN

40 *SRWRITE 3000 8000 0
50 CLS

Line 30 simply loads in a
previously saved screen but
could be replaced with the
appropriate graphics
commands. Line 40 writes the
screen data into sideways
RAM. To recall the screen, use
the following:

60 *SRREAD 3000 8000 0

This will work in any mode.

Points Arising....Points Arising....Points Arising....Points Arising....

CROSSWORD EDITOR (Vol.7 No.4)
Line 2090 of the program was listed incorrectly. It should read:
2090 vDU24,32;32;1248;992; :GCOL0,129:CLG

Beebug October 1988

69

Send applications for
address below.
cheques) O a

£20.00

£25.00
£27.00
£29.00

Des\'mat\on

UK, BFPO + chl

Europe + Eire
Eisewhere

membership 1€ s, membe!
membershi os, including overseas,
nk. Mermbers may

BSCR\PT\ON RATES

months (5 issues)
BFPO, chl

1 year (10is
Rest O

rship queries and orders for back issues to the
nds sterling drawn (for

newals,
should be in pou
ial reuced rate-

aso subscrive 10

UK only

sues) Ut
t Europe & Eire
Middle East
Americas & Africa
£48.00

Elsewhere

ES (per issue)
tems are sent
e will accept

for

AND P ACKING
the cost of p&p as
n opposite:

i, 1.Albans, Herts ALY 1EX
03 FAX: (0727) 60263
c\/AoOOSs/ Visa orders and subscﬂpﬂons)

BEEBUG'S acclaim
the Mastef, and the full original versio® el
HOW TO BEA GOOD USER - usé this program 10

build your OWn mousemmro\\ed programs independent

ot any R M-base! are.
THE BEEBUG SUP _SQUEEZE - save memory space
witth the uttimate compaction utility-
RM G jon of @ procedure
ed formatting of

numeric output n your oWn programs-
S ND PRINTER CHARACTERS -

DESIGN! EE!

a test program to check your designs for screen an
rinter chara ers, sV \ied here with the Turkis
character € \ast month's article

VENSES - e \| impleme ted and quite

addictive form { patience for alitle relaxation.
FIRST COURSE

SCROLL\NG STRINGS - two more routines for tancy

scrolling of text.

CHARACTE! SORTING - @n alternative approach 10
sorting characters within strings using @ masx-

VISUAL SORTING - an i mentation of three
difterent sort met vividly lustrated 00 the screen.
FIL HANDLI L _ a complete
working dat@ ase prog incorporating all the routines
from this and previous wo instaliments-

USING AS R (Part3)- assembler programs
showing the { vectors, including & utility for @ dual
screen display

BEEBUG W KSHOP - two programs, one to list out all
Basic's current vana s, and oné 10 demons\ra\e the
use of heap managemen techniques.

MAGSCAN . bibliography for this issué (Vol.7 No.5)-

Cassette subscriptions can be
per issue of the subscriptio n
BEEBUG

o D T LT oty 8 fore P 8651 MRl
et hiines

Vol.1 No.

Elevenses

&p (30P fore

529,80 9* 238
\hclwa“ 268.5

r each additional item).
10) available at the same prices.

Internail
Master Modem

The Beebug Master Modem is a
high quality internal modem for
the Master 128. It is easy to install
and requires no soldering. The
Master Modem is supplied with
the Command software which
allows easy access to a whole
range of services, such as Prestel,
Telecom Gold, Bulletin Boards etc.

Beebug Master Modem price
including fitting
instructions, software £1 1 9
and user guide inc VAT

APPROVED for annection to
telecommunication: s!ams specified
in the instructi : use s

the conditions: Bet nnl:'m them.

S/3113/3/H/501018

r% To claim | l?e;b-ﬁg- members | pnce_l't_ls_e-s-s;ntlal to quote your membership number
‘ Please supply ___ Master Modem(s) at £1191 or £113.05 memb. price il Carriage £4

: Please supply ___ New style battery pack(s) at £3.68 [or £3.50 memb. price EI Carriage £1
I Name: Membership No.

(Master-owners)...should
seriously consider this
excellent new product from
Beebug.

...cheaper than many other
modems of a similar
specification...

ACORN USER OCT 88

for the
Master 128

Features include

¢ fits internally in Master 128

* just plugs in - no soldering reqd.

¢ 300 baud full duplex (V21)

¢ 1200/75 baud half duplex (V23)

e auto-dial facility

¢ V25 auto-answer facility

¢ line monitoring through
computer loudspeaker

e tinkle suppression

e supplied with Beebug's highly
acclaimed Command software

Certain early versions of the Master 128 had their
battery packs located in the modem fitting
position. If your battery pack is NOT located to
the left of the keyboard, it will need replacing
with the new style battery pack (price £3.68).

Postcode:

. T 1 1§ i e e T | g
|Acceslesa No. I . ‘ |

l i J ACCESS/VISA EL—_‘J
Lot Explry Date

1
I Beebug Ltd. Dolphin Place, Holywell Hill, St. Albans, Herts., AL1 1EX Tel (0727) 40303

o e

