

REV\EWS

g The Watford Electronics
ITEMS
* REGULAR |

FEATURES

Multi-Colour Pr'\'nt'\ng
A Selt-Help Utility ‘0
Font Designer
Mathemat'\ca\
(Part2) i
oducing PostS _
\g:;p'mg with Computers in Schools 2
First Course -
\nvestigating
A General Purpos
Function o .
The Comms SPO
Da'\sy-Cha[\ned RQMS
Using a Video Digitiser
2 Forum '
5\Itlorks.hop -Spina Disc (Part5)
Aces High

Transiormat'\ons

Teletext Mode (5) 25
e Line-\nput

PROGRAM INFORMATION

All listings published in BEEBUG magazine are
produced directly from working programs. They are
formatted using LISTO 1 and WIDTH 40. The space
following the line number is to aid readability only,
and may be omitted when the program is typed in.
However, the rest of each line should be entered
exactly as printed, and checked carefully. When
entering a listing, pay special attention to the

video Digftiser 20

Editor's JottingS .
News -
RISC User i
Basic Booster =
Postbad .
Hints and Tips *
Personal Ads :
gubscriptions 8 Back lssues 63
Magazine Disc/Cassette
HINTS & TIPS

Printing alter Serolling

Line Spacing on Epson Printers

Answering tnhe USR Call

Instant ftalics

difference between the digit one and a lower case |
(L). Also note that the vertical bar character (Shift \)
is reproduced in listings as |.

All programs in BEEBUG magazine will run on any
BBC micro with Basic II or later, unless otherwise
indicated. Members with Basic I are referred to the

article on page 44 of BEEBUG Vol.7 No.2 (reprints

e
GNP S

pe
pst

more
+gpACE’ fOF

available on receipt of an A5 SAE), and are strongly
advised to upgrade to Basic IL. Any second processor

fitted to the computer should be turned off before the
programs are run.

Where a program requires a certain configuration,
this is indicated by symbols at the beginning of the
article (as shown opposite). Any other requirements
are referred to explicitly in the text of the article.

ope

A

-

Iml

NS

Colour Printing

Program will not function on a cassette-
based system.

Program needs at least one bank of
sideways RAM.

Program is for Master 128 and Compact
only.

Laltors Jottings

THE DEMISE OF CEEFAX TELESOFTWARE

It is not often that an event provokes strong criticism, but
the sudden and blunt announcement at the end of July that
the Telesoftware service provided by the BBC as part of
Ceefax was to be axed at the end of August, just one month
later, has certainly caused anguish. It was only in Vol.8
No.2 (June 1989) that John Woodthorpe reported on the
new weather satellite picture service provided by Ceefax
Telesoftware. This had aroused considerable interest from
many sources (many people having invested in the
necessary adaptor for just this), and we had received details
of improvements to the service only days before the
announcement of closure.

Now nobody would claim that broadcast Telesoftware was a
major fact of life for the majority of BBC micro owners, but
the manner of its parting surely has to be deplored,
particular when such exciting developments were taking
place. And the manufacturers of Teletext adaptors are
unlikely to be amused either. No doubt someone well placed
in News and Current Affairs (the current home of Ceefax)
has decided that telesoftware doesn't ‘pay’ (despite the
licence fee which all users will have paid anyway), and that
since you can't charge for a broadcast service, it shouldn’t
be done at all.

This hardly seems like support for the BBC micro, from the
sales of which the BBC continues to receive a substantial
royalty, and we can only deplore the apparent haste and
unfeeling manner in which the decision to close down the
service has been taken.

If you wish to express your own views on this matter we
would suggest you write to the Director of News and
Current Affairs, BBC TV Centre, Wood Lane, London W12
7RJ, or phone 01-743 8000.

BEEBUG READER SURVEY

At the time of writing well over 250 replies have been
received, and more are arriving daily. We are obviously
delighted at the high level of response, and we will shortly
begin the task of analysing the results in order to plan for
the future. Many thanks to all those who took the time and
effort to answer all our questions.

A3000 ON SPECIAL OFFER TO TEACHERS
Acorn has announced a joint scheme with selected Acorn
dealers (including BEEBUG) to offer the A3000 at a reduced
price to teachers. Full details are available from BEEBUG.

4

BEEBUG HAS MOVED

Please remember that we now have a new address,
117 Hatfield Road, St Albans, Herts AL1 4JS.

Our telephone numbers stay the same though.
Our Open Day at the new building is Sunday 10th
September 1989.

LOOKING AHEAD WITH BEEBUG

The following features are planned for the October
issue of BEEBUG:

Applications and Utilities:
Graph Plotting
Printer Control Commands
Font Designer Part 2
Auto-Input for Assembler
Disc File Identifier

Reviews:
Master Control ROM
DOS+ Problem Solver

Plus First Course, Workshop, News, Hints and more.

RISC USER

RISC User is the largest circulation magazine devoted
exclusively to the Acorn Archimedes range of
computers. It is available on subscription to all
BEEBUG members at a substantially reduced rate (see
facing inside back cover).

We expect the October issue to contain:
Desktop Diary Part 2
ARM Code Single Stepper Part 2
Icon Selector Shell
Colour Image Processing
Assembler Workshop
Mastering the Wimp Part 2

Reviews:
Pipedream 3
Armadeus
Forms and Labels Designer
Dabs Press Instigator

and more.

RISC User is the ideal magazine to keep you up to date
with all that’s happening in the Archimedes world, and
is particularly useful if you are contemplating the
purchase of an Archimedes or A3000 in the near
future.

Beebug August/September 1989

News News News News News News

A3000 STEALS SHOW

There is little doubt that the most popular attraction at the
recent BBC Acorn User Show held at Alexandra Palace
was the new Acorn A3000. The new machine is not only
fully compatible with the latest Archimedes systems, but is
also the new official ‘BBC Micro’. Sales of the A3000
outstripped even Acorn’s best expectations, and by the
end of the three day show there was only a handful of
machines left unsold. Part of the success must be due to
the scheme devised by Acorn and Mercantile Credit which
allowed people to buy the A3000 with 0% finance over one
year. As an added incentive Acorn were offering a free
monitor stand and carrying case, and BEEBUG backed this
up with a package of bonus items worth nearly £100.

Furthermore, a number of companies were already
demonstrating hardware add-ons and software for the
A3000. Complete compatibility with a RISC OS-based
Archimedes means that there should be no shortage of
software for the A3000.

Meanwhile, even though everybody’s eyes are on the
A3000, Acorn have pledged to support the existing Master
128, and earlier Beebs, for at least two years. However, the
turbulent life of the Master Compact is being ended, with
Acorn stopping all production in January 1990.

MUSICAL DISCS

AMPLE DCT, the support service for users of the Hybrid
Music 500 and Music 5000 synthesizers, has released a
series of discs containing music files. For the Music 5000
there are six discs, with at least twelve tunes on each,
while for the Music 500 the entire Oxygene and Equinox
suites are available. There are also a set of three discs
containing data files for use with the Island Music editor.
Each disc features 25 tunes. All the discs are 5.25” 80 track
format, and cost £5 each (inc. VAT). For more details
contact Panda Discs, Four Seasons, Tinkers Lane,
Brewood, Stafford ST19 9DE. Alternatively, details can be
found on the Ample DCT bulletin board which can be
contacted on (0384) 239944 (Viewdata), or (0384) 238073
(Scrolling).

Beebug August/September 1989

CLICK CLICK

Slogger Computers have made a comeback into the Acorn
market with Click - a pop-up utility supplied in a ROM
cartridge for the Master 128. The idea is that at the click of
a button (hence the name), the current task is suspended
and Click's menu pops up. This allows access to several
features including a full calendar and diary, a snapshot
utility which allows the screen to be saved or printed, a file
and disc editor which even works with ADFS hard discs,
and a memory editor. After using Click you can continue
execution of the program as if nothing had happened. To
avoid memory conflicts, Click contains its own RAM
within the cartridge, and this is battery backed-up to allow
information to be held for up to three months. Click, which
is only suitable for the Master 128, costs £59.95 (inc. VAT),
and is available from Slogger Computers, 7 Apsley Road,
Clifton, Bristol BS8 25H, tel. (0272) 743683.

NEW UNIX WORKSTATION

Acorn are working on a successor to their R140 UNIX
workstation. The new machine, which will be released in the
near future will be based around the new ARM 3 processor,
and will have 8Mbyte of RAM, twice that of the R140. A
major criticism of the original machine was that UNIX could
barely run on a 4Mbyte computer. The ARM 3 processor is
fully compatible with the existing ARM 2, but includes an
on-chip cache allowing very high processor speeds while
still using standard RAM. There is no indication of the price
of the new machine, but it will almost certainly be outside
the range of the home or secondary education user.

BEEB SCANNER

Watford Electronics have launched the first hand-held
image scanner for the Beeb. The unit, which connects to
the IMHz bus allows any printed image up to 105mm
wide (A6 size) to be scanned at resolutions of 100 or 200
dots per inch. Software supplied in ROM displays the
scanned image on screen, and also allows it to be
transferred directly into Watford's Wapping Editor package.
The Beeb Hand-Scanner costs £155.25 (inc. VAT), and is
available from Watford Electronics, Jessa House, 250
Lower High Street, Watford, tel. (0923) 37774. B]

5

Multi-Colour Printing

Dorian Goring explains how you can produce multi-coloured printout,
even if you only have an ordinary dot-matrix printer.

The fascination of information technology (IT)
is that, like life itself, it never ceases to offer
something new (see John Woodthorpe’s article
on downloading weather satellite pictures in
BEEBUG Vol.8 No.1). This is especially true if
you're interested in exploring graphics and
colour separation techniques. And this doesn’t
mean you have to have a colour printer!
Weather maps form an excellent subject for
demonstrating this technique.

MEEE fefoley e

Now, the BBC’s
Ceefax weather satel-
lite service inexpen-
sively brings impres-
sive high-quality,
coloured weather
maps showing the
European land mass
and Atlantic cloud patterns directly to your
home computer. In fact, the most expensive part
of the system - the bit orbiting the Earth - is free!

Colouring weather maps on a black and white
dot matrix is straightforwardly simple! For the
uninitiated, colour separation is the basis of
colour printing. The three primary colours -
yellow, magenta, cyan - together with black are
printed separately, but in combination produce
a wide range of hues and tints.

6

Coloured ribbons are available for most
printers, or you can remove the ribbon and use
coloured carbons face-to-face with white or
tinted paper. What you need to do is to create
separate masks - one for each colour - from the
original multi-coloured image. This is freehand
editing, and is best done within a graphics or
desktop publishing (DTP) environment (such as
AMX Art or StopPress).

Alternatively you can use a simple splitter
program such as that listed here. The program as
listed works for mode 1 (a four-colour, medium
resolution mode) but could easily be adapted for
other modes. It loads any given screen display
from a file and then, for each of the four colours in
turn, it converts every screen pixel in that colour to
white, and every
other screen pixel to
black, to produce a
mask for that colour.
The colour mask is
then saved and the
process repeated for
the other colours.
When the program

Images taken by METEOSAT,
printed with different colour ribbons

terminates, we have four new screen dumps
saved, one for each of the four colours in mode 1.

Beebug August/September 1989

Multi-Colour Printing k

For other modes, the
main loop will need
to to cycle from 0 to
1,0 to 2, or:0'te 15
depending upon the
number of colours
per mode. The step
size in line 200 (but
not 190) can usefully
be changed to 8 in
modes 2 and 5 (low
resolution) and to 2
in mode 0 (high
resolution) to save
time.

You will need to use a
suitable screen printer
dump routine (e.g.
BEEBUG’s Dump-
master) to print each screen in turn. The colour
separation process means that one sheet of
paper now makes several passes through the
printer, each time with a different colour mask
and ribbon (or carbon). You'll find that you
need registration marks for accurate printing,
and you should use lighter colours first then
darker ones to minimise “muddying” ribbons.

Colours force the eye to move round the map
creating movement. This mirrors the movement
of swirling masses of vast clouds as they move
day by day around the planet.

Careful colour balancing allows the creation of
intriguing and dazzling effects, which, literally,
appear to vibrate before your eyes! Also,
discordant colours in juxtaposition create visual
conflict and tension, again, reflecting the
powerful forces at work.

The rewarding point about weather pictures in
particular is that they bridge the gulf between
aesthetics and science. They are a product of the
era of information technology created by the
logical and highly organised power of the
computer. However the techniques for multi-
coloured printing described above can be
applied to almost any multi-coloured screen
display.

Beebug August/September 1989

NOTE: We are sorry that we are unable to do full
justice to the multi-coloured printouts which
Dorian Goring submitted with his article, because
of the limitations of two-colour printing as used in
BEEBUG.

10 REM Program Split

20 REM Version B1.0

30 REM Author Dorian Goring

40 REM BEEBUG August/September 1989
50 REM Program subject to copyright
60 :

100 MODE1

110 %,

120 INPUT'"Filename: " pic$
130 vpu19,0,0,0,0,0
140 vpul9,1,1,0,0,0
150 vpul9,2,4,0,0,0
160 vDu1sg,3,7,0,0,0
170 FOR colour%=0 TO 2
180 OSCLI("LOAD "+pic$)

190 FOR y%=0 TO 1023 STEP 4
200 FOR x%=0 TO 1279 STEP 4
210 IF POINT(x%,y%)<>colour% THEN VDUl

8,0,7 ELSE VDU18,0,0

220 PLOT69,x%,y%

230 NEXT x%

240 NEXT y%

250 OSCLI("SAVE "+pic$+CHRS (48+colour$

)+" 3000+5000")

260 NEXT colour%
270 END B

7

A Self-Help Utility

L

Bernard Hill's comparatively short program will enable you to install a comprehensive
help system on your computer, customised to your own individual needs.

This article describes a simple help facility
which you can implement on your own system.
This is in the form of a ROM image which may
be loaded into sideways RAM, or programmed
into an EPROM for permanent installation. It
allows for up to nearly 16K of help text, using a
simple system of recall by keyword. Thus you
could keep a list of telephone numbers or
addresses against names; catalogues of records,
or you could even type in sections of system
help such as FX call lists or PLOT numbers - or
any other information you find hard to
memorize.

Once installed you could simply type:

*ASK FX5
or:

*ASK HARRY
to produce the information you have
previously stored under the keywords ‘FX5’ or
‘HARRY'.

HOW TO MAKE YOUR INFORMATION ROM
First you will need to create a help text file with
Wordwise, Edit or View, etc. Avoid any
embedded characters or commands, just as if
you were building an EXEC file (although the
program will handle the ‘soft’ spaces put in by
View when justifying text). Keywords in the
text should be in upper-case and surrounded by
‘£’ signs as in this example:

£MARYE

953-4476

£JOHNE

44053 (day)
01-234-5678 (evenings)
£BARRYE

4321 Ask fer Ext. 221

Here 'MARY’, ‘JOHN’ and ‘BARRY’ are
keywords; the text then follows each keyword
and may run (as in JOHN’) to as many lines as
you like. Thus, in this example:

*ASK BARRY
would produce the following:

4321 Ask for Ext 221

8

and:
*ASK JOHN

would give:
44053 (day)
01-234-5678 (evenings)

Of course, the text could be much longer than these
few words, and typically might fill one screen.

In case you forget what is contained in your
ROM, the command *ASK (without any
parameters) will give a complete list of
available keywords, thus:

*ASK
gives the response:

MARY

JOHN

BARRY
in this trivial example.

CREATING YOUR ROM IMAGE
Having typed in and saved the program, and
created your text file, run the program. The
only prompt is for the filename of the text file.
This is then coded into a ROM image and saved
on disc as a file called ASKROM. This can be
loaded into sideways RAM with *SRLOAD (or
the command appropriate to your sideways
RAM board), and used as already described.

LIMITATIONS AND CUSTOMISATION
Since ‘£’ is the delimiter for keywords in the
text, it clearly cannot be used in the text. If this
is a problem then you can define a different
delimiter, such as “\’. Simply replace the
variable sep in line 120 of the program, and
make sure that the only entries in the text file
which contain this symbol are the keyword
delimiters. The keywords should be in upper-
case only and contain no spaces.

If *ASK is a command already used by a different

ROM in your computer, or if you wish to have a

second self-help ROM in your computer, then

you can change the command by altering the

variable command$ in line 110. You could use

command$="Q", perhaps, but don’t use:
command$="HELP"

Beebug August/September 1989

A Self-Help Utility

for obvious reasons. Make sure that the name

assigned to command$ is in upper-case characters.

Other customisable features in the program are
the variable image$ in line 110, which is the

name of the ROM image under which the ROM
is saved on disc, and the variable title$ in line

120 which is the name of the ROM as you want

it to appear in response to a *ROMS command.

On this month’s program disc you will find a 15K

information file for you to use which contains a
wealth of help on PLOT, COLOUR, SOUND, etc.

10

20

30

40

50

60
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460

REM Program Ask ROM

REM Version B1.0

REM Author Bernard Hill

REM BEEBUG August/September 1989
REM Program subject to copyright

MODE7 : HIMEM=&3C00
command$="ASK" : image $="ASKROM"
title$="ASK ROM":sep=ASC"£"
FOR opt=4 TO 6 STEP 2
P%=68000:0%=&3C00

[OPT opt :BRK:BRK:BRK

JMP serve

EQUB &82:EQUB copy:EQUB 0
EQUS title$

.copy EQUB 0

EQUS "(C) Beebug, 1989":EQUB 0
.name EQUS command$

.serve:CMP #4:BNE ret
PHA:TYA:PHA:LDX#0

.loop LDA (&F2),Y:AND #&DF

CMP name, X:BNE notme

CPX #LENcommand$-1:BEQ eon:INX
INY:JMP loop

.eon INY:LDA (&F2),Y:CMP #13
BNE over:JMP bare

.over:CMP #32:BEQ keyword
.notme PLA:TAY:PLA:LDX &F4
+ret RTS

.keyword INY:LDA (&F2),Y:CMP #32
BEQ keyword:CMP #13:BNE over(
JMP bare:.over(

LDA #(text+l) MOD 256:STA &A8
LDA #(text+l) DIV 256:STA &A9
TYA:CLC:ADC &F2:STA &F2:BCC overl
INC &F3

.overl:LDA &F2:STA &AA

LDA &F3:STA &AB

.try:LDA &AA:STA &F2:LDA &AB
STA &F3:LDY #0

.comp:LDA (&A8),Y:BEQ eow

LDA (&F2),Y:AND #&DF:CMP (&A8),Y
BNE notword:INY:JMP comp

Beebug August/September 1989

470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
und"
840
850
860
arge,
870

.eow LDA (&F2),Y:CMP #13

BEQ found:CMP #32:BEQ found
.notword:LDA (&A8),Y:BEQ nextkey
CMP #&FF:BEQ end

INY:BNE notword:INC &A9

JMP notword

.nextkey:INY:BNE over2:INC &A9
.over2 LDA (&A8),Y:BNE nextkey
CMP #&FF:BEQ end

.nextfound: INY

TYA:CLC:ADC &A8:STA &A8:BCC try
INC &A9:JMP try

.found:INY:BNE over3:INC &A9
.over3:LDA (&A8),Y:BEQ fin

JSR &FFE3:JMP found

.fin JSR &FFE7

.end PLA:TAY:PLA:LDA #0:LDX &F4
RTS

.bare LDA #text MOD 256:STA &A8
LDA #text DIV 256:STA &A9:LDY #1
.loop:LDA (&A8),Y:BEQ eok

CMP #&FF:BEQ end:JSR &FFE3:INY
BNE loop:INC &A9:JMP loop
.eok:JSR &FFE7

.loop2:INY:BNE over4:INC &A9
.over4:LDA (&A8),Y:CMP #&FF

BEQ end:CMP #0:BNE loop2:INY
BNE loop:INC &A9:JMP loop

text

I

NEXT

spare=&C000-text-1

PRINTspare" bytes for text"'
REPEAT

INPUT "Filename of text : "name$
f=OPENINname$

IF f=0 THEN PRINT" --- file not fo

UNTIL £>0

ext=EXT#f:CLOSE#f

IF ext>spare THEN PRINT"File too 1
ROM not formed" :END

OSCLI("LOAD "+name$+" "+STRS~ (text

-&4400))

880
" 890

900
910
920
930
940

PRINT"Please wait - arranging text
FOR I%=text-&4400 TO text-&4400+ex

IF ?I%=sep THEN ?I%=0

IF ?I%=26 THEN ?I%=32

NEXT

! (text-64400+ext)=&FF00
OSCLI("SAVE "+image$+" 3C00 7C00 8

000 8000")

950
960
ity n
970

PRINT'" ROM saved as "image$
PRINT'spare-ext" bytes spare capac

END

| 2
| e

©

5

Font Designer

Ian Stewart presents the first part of a comprehensive and professional font designer
for the BBC micro.

The characters that you see on the screen of
your computer system, are represented as
numbers internally. Most computer systems,
including the BBC micro, use a standard
coding system called ASCII (American
Standard Code for Information Interchange).
In turn, the pattern of dots (8 by 8) which
represents the shape of each character on the
screen, is represented by a further set of eight
numbers.

The style of the character on the screen is called
a font. However, the BBC micro allows the user
to change the definition for each character, and
thus new fonts may be created. The purpose of
the programs listed here, and concluded next
month, are to provide a simple but powerful
application which overcomes most of the
difficulties normally encountered.

o
ad char.

vert window
otate window
irror window
ear undulchar
int cha

pg whole font
1

X|2|«|O(Aln]-
=lE(3j@a|m|=C|B | XR|S|[U[DH]|N|~A|=
wl€|o|T|la[N|O|IFMiv|N|®|w

PIE|TV|H|[m

o o o
WNOUNRWN D
METOII-HEN
K '! 000

C(T|F|a|lw|C|O|Z|D|-

N (W |=|m

“SPACE’ for more

2lE|O ||| M| =M 00| *|3%
Hix|la|=|a|s/|S|ZT|@|@|Q|N[+|#

NEIEIE

Type in both programs, keeping strictly to the
line numbering given, and save respectively as
SetUp and Design. Note that line 180 of Design
has variables which establish the disc filing
system to be used (DFS or ADFS), the disc drive
number (dr%) and default directory (dir$). Set
these as appropriate for your system. As listed,
the program assumes DFS (DISC), drive 0,
directory ‘$’.

When you run SetUp, and in turn Design, the
screen will eventually be displayed as shown
in figure 1. The top left-hand window is used
for editing an individual character, while the
large window to the right is used to store all
the characters in a font. Design is controlled by
the function keys (and the cursor keys), and
the purpose of each is shown in a further
window at bottom left. At present, most of the
functions are inoperative (to be added next
month), but you can design and edit a
character (use Ctrl to insert or delete a pixel),
and a character design can be moved to the
font display and vice versa. Note that f8 exits
from the program.

That is all we have space for this time. Part 2 of
the Design program will follow next month, with
a full explanation of all its features, and details of
how to include user-defined fonts in your own
programs.

Listing 1

Figure 1. Font designer screen

Two programs are listed here. The first of these,
called SetUp, creates two machine code
routines used by the second program, and must
always be run first. When its task is complete, it
automatically chains the second program. This
is the font designer proper, of which just part 1
is listed this month.

10

10 REM Program SetUp

20 REM Version B1.0

30 REM Author Ian Stewart
40 REM BEEBUG Aug/Sept 1989
50 REM Program subject to copyright
60 :

100 *EX225

110 *FX226

120 *FX227

130 *Fxd,1

140 PROCbox:PROCprint

Beebug August/September 1989

Font Designer

150

160

170
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480

PAGE=&1800:CHAIN "Design"
END

DEF PROCbox
pl=&70:p2=&72:p3=674:p4=676

FOR F%=0 TO 2 STEP2

P%=&900: [OPT F$%

JSR win0:JSR subpl

LDA #16:JSR subp2

LDA #16:JSR addp3

JSR addp4:JSR winO:LDA #3:STA &80
.ipl

JSR winl:JSR addpl

LDA #4:JSR subp2:LDA #4:JSR addp3
JSR subp4:DEC &80:BPL lpl

RTS

.win0

JSR winl

IDA #5:LDX #0:1LDY #6:JSR draw
IDA #5:LDX #0:1LDY #2:JSR draw
RTS

.winl

LDA #4:1DX #0:1DY #2:JSR draw
LDA #5:LDX #4:LDY #2:JSR draw
LDA #5:LDX #4:LDY #6:JSR draw
RTS

.draw

STA ty

LDA pl,X:STA x:LDA pl+l,X:STA x+1
LDA pl,Y:STA y:LDA pl+l,Y:STA y+l
LDX #0

.1p0

LDA plot,X:JSR &FFEE
INX:CPX #6:BNE 1p0

RTS8

.addpl

LDA #4:CLC:ADC pl:STA pl
LDA pl+1:ADC #0:STA pl+l
RTS

.subpl

LDA pl:SEC:SBC #16:STA pl
LDA pl+1:SBC #0:STA pl+l

RTS

.subp2

STA &81

LDA p2:SEC:SBC &81:STA p2
LDA p2+1:SBC #0:STA p2+1

RTS

.addp3

CLC:ADC p3:STA p3

IDA p3+1:ADC #0:STA p3+1

RTS

1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000

.addp4

IDA #16:CLC:ADC p4:STA p4
LDA p4+1:ADC #0:STA p4+l
RIS

.subp4

LDA p4:SEC:SBC #4:STA p4
LDA p4+1:SBC #0:STA p4+l
RTS

.plot:EQUB 25

.ty:EQUB 5

.X:EQUWO

.y:EQUW 0

] :NEXT

ENDPROC

DEF PROCprint

FOR F%=0 TO 2 STEP 2

P%=&A00: [OPT F%

STA char:STA &80:LDA #0:STA &72
IDA #12:STA &73:LDA #0:LDX #&11
DEX:STX &71:STA &70:1LDX char
.1p0

LDA &70:CLC:ADC #8:STA &70

LDA &71:ADC #0:STA &71

DEX:BNE 1p0

IDA #2:JSR &FFEE:LDX #0

(1ol

LDA prncds, X:JSR prn:INX

CMP #0:BNE 1lpl:LDY #0:STY &82
.1p3

LDA (&70),Y:STA &80

LDY #0:LDA #&80:STA &81

.1p4

LDA &81:BIT &80:BNE set

LDA #0

.cont

STA (&72),Y:INY:LSR &81:BNE lp4
LDA &72:CLC:ADC #8:STA &72

LDA &73:ADC #0:STA &73

INC &82:LDY &82:CPY #8:BNE 1p3
JSR sub:LDY #0

1p5

IDA #0:STA &80:LDA #&80:STA &81
LDX #7

vip2

LDA (&72),Y:BEQ noadd

IDA &80:CLC:ADC &81:STA &80
.noadd

LSR &81

LDA &72:CLC:ADC #8:STA &72

LDA &73:ADC #0:STA &73

DEX:BPL 1p2

Beebug August/September 1989

11

Font Designer

2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200

LDA &80:JSR prn:JSR sub
INY:CPY #8:BNE 1p5

LDA #3:JMP &FFEE

.set

LDA #255:JMP cont

.sub

IDA &72:SEC:SBC #&40:STA &72
LDA &73:SBC #0:STA &73
RTS

.prn

PHA:LDA #1:JSR &FFEE
PLA:JMP &FFEE

.prncds

EQUB 27:EQUB 42:EQUB 5:EQUB 8
BRK

.char

BRK

]NEXT

ENDPROC

Listing 2

10
20
30
40
50

60.

70

80 @

90
100
110
| Us=1

REM Program Design

REM Version B3.1A

REM Author Ian Stewart

REM BEEBUG August/September 1989
REM Progtam subject to copyright

X|" *x% INITIALIZE *** "

MODE4: *FX154, 8
A%=0:Y%=0:U%=USR!&214 AND &FF

IF U%=4 OR 8 THEN op%=TRUE ELSE IF
OR U%=2 THEN op%=FALSE ELSE VDU12,

7:PRINT"Please select DISC/ADFS or TAPE"

'"and
120
130
140
150
160
170
180

re-run program" :END

PROCescF:ON ERROR GOTO 6440
bbc%=INKEY-256:a$=CHR$28 :b$=CHR$12
IFbbc%=-1 THEN ?&367=15 ELSE *FX25
w0$=a$+CHR$3+CHRS27+CHRS21+b$+b$
wl$=a$+CHR$1+CHRS$27+CHRS20+bS+b$
w2$=a$+CHR$1+CHRS$27+CHRS$21+bS+b$
@%=0:1%=TRUE:disc$="ADFS":dr%=0:di

r$="$" :box%=6900:prn%=&A00: font$=£1100:c
opy%=&1410

190
200
210
220

DIM wsl% &100,ws2% &100,pa% &100
DIM gr%(8,8),val%(7) :x%=1:y%=1
SOUND3, -14,200, 4

FOR F%=font% TO font%+780 STEP 4:!

| F%$=0:NEXT

230

12

IF disc$="DISC" OSCLI("DIR “+dir$

240

250
260
270
280
290
300
310
320
330
340
350
360
370
¢ 915
380
390
400
(1%)
410
420
430
0,1
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
| 640

| ,1510,

650
| 660
[&0

680

) :PROCos ("DRIVE "+STRS (dr%))

IF disc$="ADFS" OSCLI("DIR :"+STR

$(dr%)+"."+dirs)

vDU19,1,0;0;17,129,12,17,128

FOR F$=1 TO 8

FOR N%=1 TO 8:M%=FNaddrl (F%,N%)
IM3=£818181FF: ! (M3+4)=681818181
NEXT N%,F%:GCOLO, 0

PROCwndw (24,731,292, 995)
PROCwndw (780, 76,1236, 983)
VDU24,784;80;1224;975;16,18,0,1
FOR N%=80 TO 975 STEP 64

MOVE 784,N%:DRAW 1227,N%:NEXT
FOR F%=784 TO 1200 STEP 64

MOVE F%,80:DRAW F%,80:DRAW F%, 975
MOVE F%,975:MOVE F%+4,80:DRAW F%+4

NEXT :PROCfont
VDU24,24,;128;716;667;16,26,18:0;
PROCwndw (24,128,716, 667) :PROCinstr

VDU24,484;899;588;1007;16,26
PROCwndw (368,731, 688,867)
VDU24,372;731;684;867;16,26,20,18,

SOUND3,-14,200,4
fE ek MATN ROUTINDG st

REPEAT

PROCcur (TRUE, FALSE)
sh%=INKEY-1:B%=gr% (x%, y%)

IF INKEY-99 i%=NOTi%:PROCinstr(i%)
IF INKEY-26 PROClt (FALSE)

IF INKEY-122 PROCrt (FALSE)

IF INKEY-58 PROCup (FALSE)

IF INKEY-42 PROCdn (FALSE)

IF INKEY-2 PROCbit (B%) :GOT0510
option%=FNkey

IF option%=0 OR option%>2 THEN 710
IF sh% THEN 660

PROCinstr (TRUE)

M%=FNaddrl (option%+12, 3)

FOR F%=M% TO M%+15 STEP 4

'F%=!F% EOR-1:NEXT

ON option% GOSUB 770,880,1020,1240
1770,1930,2550

GOTO 710

PROCinstr (FALSE)

M%=FNaddrl (option%+13, 3)

FOR F%=M% TO M%+15 STEP 4

Continued on page 52

Beebug August/September 1989

Mathematical Transformations (Part 2)

Keith Sumner adds the remaining features to this program,
and describes the implementation of mathematical transformations in Basic

The new code listed this month should be
added to last month’s program, but do make
sure that you have not changed any of the line
numbers. Save the new program, preferably
under a new name. The new code adds a
number of important additional options in the
choice of shape and transformation.

NEW SHAPES

As well as the rectangle and triangle shapes
included previously, we can now define our
own shape (with up to 10 points) by answering
with ‘DESIGN’ in response to the initial prompt
for a shape (instead of RECTANGLE or
TRIANGLE).

:DES

Using the shape definer

To design your own shape, use the cursor keys
to move a cross hair cursor around the axes.
Pressing the spacebar defines a point at the
current cursor position. Use ‘D’ at any time to
delete the shape defined so far, ‘E’ or Return to
exit when the shape is complete.

ADDITIONAL TRANSFORMATIONS
The following transformations are now added
to those described last month. Note that the
abbreviated command word for those
instructions which have one is shown in
brackets after the extended instruction name.

Beebug August/September 1989

i
M
Mi
b)
M
S

Performing a shear

1. SHEAR(SHE): S(shx,shy) - This causes
the object to be sheared. The matrix for this
operation is:

(1 shy 0)
[y) e iy o1 (shx 1 0)
(0 0 i)

The net effect is:

x' = x 4+ y.shx

y' =y + x.shy

This command is executed by typing the
word SHEAR followed by two parameters
giving the required shear factor in first the x
direction and then the y direction. The SHEAR
command can be abbreviated to SHE. Thus the
command format could be:

SHEAR 0.5 1 <Return>
or at its shortest:

SHE 0.5 1 <Return>

2. INVERT (INV) - The object is inverted
through the origin.

3. REFLX=Y (RX=Y) - The object is reflected
in the line x=y.

4. REFLX=-Y (RX=-Y) - The object is
reflected in the line x=-y.

5. REFLX=0 (RX=0) - The object is reflected
in the line x=0.

6. REFLY=0 (RY=0) - The object is reflected
in the line y=0.

13

Mathematical Transformations

There are also some further commands which
may be used here.

7. AXES - Refreshes the co-ordinate axes. This
is useful if a shape lying on the axes is erased,
blanking one or both axes at the same time.

8. SHOW - shows the current state of the
transformation matrix.

9. CRDS - displays the co-ordinates of the
vertices of the object being transformed.

10. HELP - displays a list of the commands
available to the user.

A reflection in X=-Y

When a transformation takes place, the timing
of the various steps as seen on the screen is
controlled by the procedure PROCrastinate
(defined in part 1 of the program at line 4370).
Modify this if you wish to speed up or slow
down this part of the display.

Taken together, the full range of features provided
by combining parts one and two of this program
provides a comprehensive environment for the
exploration of mathematical transformations.

PROGRAM NOTES

The transformation routines need not be used
only in the context of this program, but can be
lifted to form the basis of another application. A
careful study of the program code will reveal
that there are in fact two different
transformation matrices active at any one time.
The first controls the transformation operations
being performed on the selected geometrical
object and is in a space mathematically local to

14

the program. The second controls the
transformations which map the object from its
local space to the BBC micro’s screen co-
ordinate space. This implementation thus
shows the power of keeping different co-
ordinate transformations separate, and only
applying the final composite transformation to
the co-ordinates just before plotting.

Thus the transformations being performed on
the object in the program’s local space are held
in matrix 1. The conversion of these co-
ordinates to the BBC micro’s screen space is
controlled by the contents of matrix 0. The
composite transformation is held in matrix 2
and is applied to the co-ordinates of the object
just prior to plotting.

T
M
v
T
R
H

Showing the available commands

The following is an outline of the name and
purpose of the procedures and functions that
make up the graphics transformation kernel
(lines 2500 to 3910).

PROCEDURES

PROCsetup_matrix

Defines the number of transformation matrices
in the application, and also the maximum
number of points transformable.

PROCset_matrix(M,A,B,C,D,E,F)
Sets the components a to f of matrix number M

to the values A to F (see Jast month’s article for
an explanation of the lettering used).

PROCinitialize(M)
Sets the matrix M to be the identity matrix L.

Beebug August/September 1989

Mathematical Transformations

PROCtrans(M,tx,ty,set)

Depending on the value of the flag set one of
two actions occurs (its function is the same in
all other procedures where it appears):

If set=TRUE the matrix is initialized and
then the translation transformation is applied.

If set=FALSE the translation operation is
applied to the transformation matrix in its
current state thus allowing concatenation of
transformations.

PROCscale(M,mx,my,set)

Allows the scaling of an object to be altered in
both the x and y directions by different
amounts.

PROCrotate(M,theta,set)
Enables an object to be rotated about the origin
by theta degrees in an anticlockwise direction.

PROCshear(M,shx,shy,set)
Allows an object to undergo a shearing
operation.

PROCmultmat(T1,T2,R)

Multiplies the matrices T1 and T2 together to

produce a composite transformation matrix R, thus:
R=T1.T2

PROCmmi(M,A,B,C,D,E,F)

Multiplies matrix M with the matrix defined by
the matrix components given in the call
argument list.

PROCtransform(M,N)

Applies the transformation matrix M to the N points
held in the arrays X() and Y(). The transformed
points are placed in arrays XT() and YT().

PROCerase(P%,N)
Erases the N points held in XTMP() and
YTMP() from the screen.

PROCdraw(P%,N)
Draws the N points held in XT() and YT() on
the screen.

PROCstore_mat(M,N)
Stores the contents of matrix M in matrix N.

PROCload_mat(M,N)
Loads the matrix M with contents of matrix N.

PROCreflectx(M,set)
Enables the object to be reflected in the line x=0.

Beebug August/September 1989

PROCreflecty(M,set)
Enables the object to be reflected in the line y=0.

PROCinvert(M,set)
Enables the object to be inverted in the origin of
co-ordinate space.

PROCreflectx_eq_y(M,set)
Enables the object to be reflected in the line x=y.

PROCreflectx_eq_minus_y(M,set)
Enables the object to be reflected in the line x=-y.

PROCprint_matrix(M)

Allows the contents of the ‘local program space’
matrix (Matrix 1 in the context of this
application) to be inspected.

FUNCTIONS

FNtfmx(M,x%,y%)

This function transforms the co-ordinate pair
(x%,y%) according to the matrix M. The value
returned by the function is the new x co-ordinate.

ENtfmy(M,x%,y%)

This function transforms the co-ordinate pair
(x%,y%) according to the matrix M. The value
returned by the function is the new y co-
ordinate.

1310 IFFNstr("D",0) PROCdesign:ok=nc>0
1550 DEF PROCdesign

1560 xst=2:yst=2:*fx4,1

1570 nc=0:X(nc)=xst:Y(nc)=yst

1580 PROCtransform(0,nc+1)

1590 PROCcursor

1600 REPEAT:*fx15,0

1610 A=GET

1620 IF A=136 ANDxst>-10 PROCupd(-1,0)
1630 IF A=137 ANDxst<10 PROCupd(1,0)
1640 IF A=138 ANDyst>-10 PROCupd(0,-1)
1650 IF A=139 ANDyst<10 PROCupd(0,1)
1660 IF A=32 PROCadd

1670 IF A=68 PROCdel

1680 UNTIL(A=69 OR A=13) OR nc=npts
1690 PROCcursor:*fx4,0

1700 PROCaxes (TRUE) :PROCdraw (4,nc)
1710 ENDPROC

1720 .

1730 DEF PROCdel

1740 PROCaxes (TRUE)

1750 nc=0:xst=X(nc) :yst=Y(nc)

1760 PROCtransform(0,nc+1)

15

Mathematical Transformations

1770 PROCcursor

1780 ENDPROC

1750 ¢«

1800 DEF PROCadd

1810 PROCcursor:PROCdraw(13,nc)

1820 nc=nc+l:X(nc)=xst:Y(nc)=yst

1830 PROCtransform(0,nc+1)

1840 PROCdraw(12,nc) :PROCcursor

1850 ENDPROC

1860 :

1870 DEF PROCupd (dx, dy)

1880 xst=xst+dx:yst=yst+dy

1890 X(nc)=xst:Y(nc)=yst

1900 PROCcursor:PROCtransform(0,nc+1) :P
ROCcursor

1910 ENDPROC

1920

1930 DEF PROCcursor

1940 GCOL3,1

1950 MOVE XT(nc)=-tick,YT(nc) :DRAW XT (nc
)+tick, YT (nc)

1960 MOVE XT(nc),YT(nc)-tick:DRAW XT (nc
) YT (nc) +tick
| 1970 ENDPROC

1980 :

2010 PROChelp

2070 IF FNstr("INV",0) PROCexec(3)

2080 IF FNstr("RX=0",0) PROCexec (4)
2090 IF FNstr("RY=0",0) PROCexec(5)
2100 IF FNstr("RX=Y",0) PROCexec (6)
2110 IF FNstr("RX=-Y",0) PROCexec(7)
2120 IF FNstr("SHE",2) PROCexec (8)

2140 IF FNstr("AXES",0) PROCaxes (TRUE) :
PROCdraw (4, nc)

2150 IF FNstr("SHOW",0) PROCprint matri
x(1)

2160 IF FNstr("CRD",0) PROCprint coords
2170 IF FNstr("HELP",0) PROChelp

3610 DEF PROCreflectx (M, set)

3620 IF set PROCset matrix(M,1,0,0,0,-1
,0) ELSE PROCmmi (M,1,0,0,0,-1,0)

3630 ENDPROC

3640 :

3650 DEF PROCreflecty (M, set)

3660 IF set PROCset matrix(M,-1,0,0,0,1
,0) ELSE PROCmmi (M,-1,0,0,0,1,0)

3670 ENDPROC

3680 :

3690 DEF PROCinvert (M, set)

3700 IF set PROCset matrix(M,-1,0,0,0,-
1,0) ELSE PROCmmi (M,-1,0,0,0,-1,0)

3710 ENDPROC

3120

16

3730 DEF PROCreflectx eq y(M,set)

3740 IF set PROCset matrix(M™,0,1,0,1,0,
0) ELSE PROCmmi (M,0,1,0,1,0,0)

3750 ENDPROC

3760 ¢

3770 DEF PROCreflectx eq minus y(M,set)

3780 IF set PROCset matrix(M,0,-1,0,-1,
0,0) ELSE PROCmmi (M,0,-1,0,-1,0,0)

3790 ENDPROC

3800 :

3810 DEF PROCprint matrix (M)

3820 vDU28,22,26,38,20:0%=620204

3830 FOR R%=1 TO 3:FOR C%=1 TO 3

3840 PRINTTAB ((C%-1) *6- (mat (C%,R%,M)>=0
) +R%) ;mat (C%,R%,M) ;

3850 NEXT:PRINT:NEXT

3860 PRINT'"Press a key";:*FX15,0

3870 A=GET:CLS:@%=10

3880 PROCaxes (FALSE) :PROCdraw (4,nc)
3890 ENDPROC

3900 :

3930 DEF PROCprint coords

3940 vDU28,26,28,38,12:@8%=620206
| 3950 FOR N=0 TO nc-1
| 3960 PRINT;FNtfmx(1,X(N),Y(N)),FNtfmy(1
[+ X(N), Y (N)) :NEXT
| 3970 PRINT'"Press a key";:*FX15,0
| 3980 A=GET:CLS:@%=10

3990 ENDPROC
| 4000 :
| 4060 IF func=3 PROCinvert (1,FALSE)

4070 IF func=4 PROCreflecty(1,FALSE)

4080 IF func=5 PROCreflectx(1,FALSE)
| 4090 IF func=6 PROCreflectx eq y(1,FALS
E)
| 4100 IF func=7 PROCreflectx eq minus y(
|1, FALSE)
| 4110 IF func=8 PROCshear(1,ta(l),ta(2),
|FALSE)

4260 DEF PROChelp

4270 vpU28,26,30,38,9

4280 PRINT"Commands are:"

4290 PRINT"TRA (NSLATE)"'"ROT (ATE) " '"MAG
(NIFY)"
| 4300 PRINT"SHE (AR)"'"INV (ERT)"''"Reflec
{t an "
i 4310 PRINT"RX=Y"'"RY=—yH INRy¥_(O" tnpy_(u
| 4320 PRINT'"RES (ET)" '"AXES"'"SHOW"'"CRD
i " IIHELP nt "END"
| 4330 PRINT'"Press a key";:*FX15,0
i 4340 A=GET:CLS
| 4350 ENDPROC
| 4360 : B3

Beebug August/September 1989

Introducing Postscript

David Spencer takes a look at the language of laser printers.

In BEEBUG Vol.7 No.10 we took a look at laser
printers, and mentioned the Page Description
Language (PDL) PostScript. Now, in this short
series we will take a more detailed look at
PostScript. You might wonder why BEEBUG, a
BBC-orientated magazine, should feature
articles on a very specialised programming
language which few members will have access
to. However, there are two main reasons for
this. Firstly, PostScript is becoming increasingly
common, both in terms of the number of
different systems supporting it, and the
numbers of actual systems in use. In particular,
many schools are now using Apple
Macintoshes connected to LaserWriters - one of
the most common PostScript printers. In the
future, the use of PostScript can only become
more widespread, especially with the current
trend towards ‘Screen PostScript’. With this, the
operating system of the computer features a
PostScript interpreter which generates its output
on screen rather than on paper. All applications
then perform their screen output by sending
PostScript commands to this interpreter. This
simplifies application programs because a
common PostScript driver can be used for both
the screen display and the printed output, and
it also ensures that the screen display produced
by a program will match as closely as possible
the final printed output. Therefore, all
programs are inherently WYSIWYG (What You
See Is What You Get). The second reason for
studying PostScript is that in terms of a
programming language it is very different from
the likes of Basic and C, and is well worth
attention in its own right.

A HISTORY LESSON

PostScript is the brainchild of a handful of
American computers programmers who
formed a company called Adobe Systems in
1982. They recognised that with the increasing
sophistication of printers, and the software
driving them (particularly on the Apple

Beebug August/September 1989

Macintosh), there was a desperate need to
develop a standard that would allow any piece
of software to drive any printer. Furthermore,
they realised that something along the lines of
the Escape sequences used to control dot-
matrix printers was not going to be sufficient to
cope with the needs of future software.
Therefore, what Adobe did was develop an
entire programming language which could be
used to describe the layout of text and graphics
on a page, and hence PostScript was born.

THE IMAGE MODEL

As PostScript is designed to specify a page
layout, a good starting point in its study is to
consider how the language refers to the page.
One of the most important features of
PostScript is that it is almost totally device
independent from the user’s point of view. This
ensures that a PostScript program written for a
300 dpi laser printer will produce the correct
results if run on a photo-typesetter working at
4500 dpi. What's more, the program running on
the typesetter will take full advantage of the
extra resolution offered by that machine. To
achieve this device independence, a PostScript

program refers to positions on the page using a
co-ordinate system known as User Space. By
default, User Space has its origin at the bottom
left corner of the paper, with the X-axis
horizontal, and the Y-axis vertical.
Measurements are in units of 1 point, which
corresponds to 1/72”. (The point is a traditional
printing measurement which has been adopted
in Desktop Publishing.) For example, an A4
sheet of paper is 11.69 inches high and 8.27
inches wide, which means that the coordinates
of the top right hand corner in points are
(595,842). As we will see shortly, the User Space
coordinate system can be transformed in any
way possible, so you could for example have
the origin at the top of the page, or in the
centre, or you could scale the coordinates to
work in inches or millimetres instead of points.

17

Introducing Postscript

When it comes to printing marks on the paper,
the ink colour can be specified as black, or as
any colour using one of two methods for
specifying colour. Obviously colour printers are
a rarity, and not many PostScript devices will be
able to reproduce colour correctly. However, the
nature of PostScript means that even on a mono
printer, coloured areas will be reproduced in
the best possible way. Whatever the colour of
the ink, it is considered as being opaque which
means that any marks printed on the paper will
totally overwrite anything already there.
Hence, effects such as Oring which can be used
on-screen cannot be reproduced on a PostScript

printer.

TRANSFORMATION MATRICES
Another key feature of PostScript is the concept
of a transformation matrix. The basic idea is
that by using a three by three matrix, any
coordinate can be translated and subjected to
any combination of affine transformations
(such as scaling, rotating and shearing) simply
by multiplying the coordinate by the matrix. By
multiplying a number of transformation
matrices together a single matrix is formed
which represents all the component
transformations. For more details of this see the
Transformations program featured in this, and
the previous issue of BEEBUG.

PostScript maintains a Current Transformation
Matrix (CTM) which is used to transform all
coordinates used within a program. Initially,
the CTM maps coordinates from the User Space
into the so-called Device Space. This is the
coordinate system that is native to the physical
output device. Typically, one unit in the Device
Space corresponds to one pixel on the printed
page. Commands exist within PostScript to
multiply the CTM by another matrix, thereby
adding additional transformations to those
used to map coordinates onto the physical
output device. It is by modifying the CTM that
effects such as moving the origin, or scaling
coordinate units can be achieved. As all
coordinates are scaled by the CTM, this is a
very powerful feature. For example, if the CTM
is modified so as to rotate the axes by 90

18

degrees, then anything subsequently printed,
including text, will be rotated. Similarly, if a
PostScript procedure is written to draw a
square with sides of one inch starting at the
origin, then by modifying the CTM the same
procedure can draw any sized square at any
place and any orientation.

PATHS, CHARACTERS AND IMAGES

Printed objects in PostScript can be in one of
three forms, Paths, Characters and Images.
Perhaps the most important type of objects are
characters. These can be in a variety of type
styles (fonts) and at any size. It is even possible
to have the font size different in the X and Y
directions, allowing horizontally scaled
characters to be printed. Other character effects
can also be achieved, such as printing
characters as outlines, or ‘shadowing’
characters. The fonts available on a PostScript
printer depend on the particular device, and are
not defined as part of the language. The most
commonly used fonts will be stored in ROM
within the printer, while some devices allow
further fonts to be stored on a hard disc drive
built into the printer. Obviously features like
this are only to be found on the more up-
market PostScript systems such as photo-
typesetters. Another way in which the printer
can access fonts is by them being downloaded
from the host computer into RAM within the
printer. In this way, a number of fonts can be
stored by the host computer, and only
downloaded when needed. This can be done
intelligently, for example, the Apple Macintosh
examines any PostScript programs that are sent
to the printer, and if they require fonts which
don’t exist in the printer, it attempts to
download the font. Whatever the source of the
font, it will normally exist in a number of styles,
for example plain, bold, italic and bold italic.

Paths are a sequence of imaginary lines which
are drawn on the paper. These lines can be
straight, or can be a special type of curve
known as a Bezier curve. The theory of these is
too involved to explain here, but they are
basically curves which are specified in terms of
their endpoints, and two intermediate ‘control

Beebug August/September 1989

Introducing Postscript

A character from Courier (top) and Palatino
showing the difference between thin-stroke
and outline fonts

points” which affect the direction and curvature
of the line. A path can also be closed, which
means that its end is linked to the start. (There
is a subtle difference between this and the start
and end points happening to be in the same
position, as we shall see next month.) The
imaginary lines which make up a path are of
infinitesimal thickness, and therefore don’t in
themselves produce any marks on the paper.
However, commands exist within PostScript to
Stroke a path, which means broadening out the
path to make actual lines and, in the case of a
closed path, to fill its interior with solid colour.
These operations are very flexible. For example,
when stroking a path you can specify a solid
line, or any pattern of dotted or dashed lines.
You can also specify how the join between lines
is to appear, and how the ends of the path (if it
is not closed) are to be finished off. Other
operations on paths are also possible, for
example you can make the current path a
clipping path, which means that subsequent
marks are only placed on the page if they fall
within the path. This is similar to the concept of
a graphics window on the Beeb, but much more
flexible because the path can be of arbitrary
shape.

The final type of object is the image. This is
merely a pixel by pixel representation of a

Beebug August/September 1989

rectangular area, and is intended primarily for
tasks such as including scanned photographs in
a document. The image can be any size, and can
of course be transformed by the CTM, just as
with any other object.

In fact, the distinction between characters and
paths is artificial, because PostScript stores
characters internally as paths, in one of two
forms. Most fonts are stored as outlines, which
means that the path for each character
represents the outline of the character. Certain
thin fonts (such as Courier - a typewriter style
font) are instead stored as a path which
corresponds to the lines that make up the
character. To make this clearer, figure 1 shows a
‘Q” in both Courier and Palatino (a very
common serifed font), together with the paths
that make up the character. When a particular
font is selected the language sets up a mapping
between the ASCII codes of each character in
the font, and the path which represents that
character. When a font is scaled to a particular
size what in fact happens is that the path for
each character is scaled by the appropriate
value. When a character is printed, the
components of its path are added to the current
path. Then, the action taken depends on the
type of character. For an outline, the path is
filled, while for a thin font it is stroked with a
line thickness appropriate to the font size.

Having looked at how a PostScript program
views the printed page (or in fact whatever
output device the interpreter is driving), we
will move on next month to study the language
itself, and develop some simple programs. We
will also give details of how to connect a Beeb
to an Apple LaserWriter Plus, perhaps the most
common PostScript printer. Meanwhile, if you
want to find out more about PostScript, then
there are three books all published by Adison
Wesley and Adobe Systems. These are
"PostScript - Tutorial and Cookbook’, ‘Postscript -
Reference Manual’, and ‘PostScript - Program
Design’. The Cookbook costs £14.95, and the
other two £19.95 each, and they should be
available from any bookshop with a computer
science section.

19

The Watford Electronics Video Digitiser

David Spencer takes a look at the Beeb Video digitiser from Watford Electronics.

Product
Supplier

Beeb Video Digitiser
Watford Electronics,

Jessa House,

250 Lower High Street,
Watford, Herts WD1 2AN.
Tel. (0923) 37774

£130.35 (inc. VAT and p&p)

Price

The idea of a video digitiser is a simple one -
it is a device for taking a picture from some
video source, and converting it into a series
of discrete pixels which can be displayed by
the computer. However, in practice the
situation is more involved. Firstly, the
sampling of the picture needs to be done
quickly, which necessitates a good deal of
electronics, and secondly, the sampling must
be coordinated with the sync pulses produced
by the video source, otherwise the picture
will be jumbled up randomly, and will appear
as nonsense. These reasons, together with the
limited screen resolution offered by the Beeb
have meant that video digitisers for the Beeb
have been almost non-existent. However,
there is one, produced by Watford
Electronics, which has been available for
some time now, and it is this which we will
look at here.

The digitiser comes in the form of a grey
plastic box about six inches by four inches,
with a sloping front that is two inches high at
the back, and one inch at the front. For some
reason, having seen the picture of the device
in Watford’s advert, I expected it to be about
twice the size that it actually is. Protruding
from the back of the unit is a 20-way ribbon
cable that connects to the computer’s user
port, and which is about a metre and a half
long. Also on the back is a BNC-type socket
for connecting the video source (more of
which later). On the front of the case are two
switches, two knobs, and an LED. The left
hand switch has three positions marked mode

20

0, mode 1 and mode 2, and not surprisingly
these correspond to screen modes 0, 1 and 2
on the computer.

The other switch controls the signal levels
used to distinguish between black and white.
In ‘auto’ mode the system will attempt to
work out the levels automatically, while with
the switch in the ‘manual’ position you have
to set the black and white levels using the two
knobs. Finally, the LED indicates Sync pulses
from the video source, and should flash on
and off about once every two seconds
provided a video source is connected to the
digitiser, and the software is installed in the
computer.

The software is supplied on a 16K EPROM
which will need to be installed in the computer.
If you are tight on ROM sockets then I suspect
that an image of the ROM could be transferred
to disc and loaded into sideways RAM, though
I have not tried this. Having installed the
software, the next stage is to connect a suitable
video source. The digitiser needs to be
connected to the video-out socket on either a
camera or a video recorder. The system is
compatible with both 75 ohm monochrome and
composite colour (PAL) signals, though the
images are always grabbed in black and white.

Beebug August/September 1989

The Watford Electronics Video Digitisera

Initially, I tried to use a Ferguson Videostar
camera, but the results obtained were far from
acceptable. The manual does state that there
can be problems with some cameras, and this
was evidently one. As no other camera was
available, the video output of an Archimedes
310 was used to feed the digitiser. You may
experience difficulty in finding the correct lead
to connect the video source and the digitiser, in
which case a video connecting kit will prove
invaluable. These are available from most video
shops. Once everything is connected and
powered up, the Sync light should flash
reassuringly.

The digitiser is controlled by a number of star
commands, though these can be packed up
into a more usable form, as shown by the
program elsewhere in this issue. The most
important command is *IMAGE which grabs
a screen from the digitiser. For this to work,
the computer must be in the same mode as
the switch on the digitiser, and the screen
must not have been scrolled. The only
parameter that *IMAGE can take is an ‘N’ to
grab a negative of the image. It takes a couple
of seconds to grab a single image, and
therefore when using a camera it is best to
mount it on a tripod. Similarly, the picture
should be frozen if a video recorder is being
used.

The commands *IMPRNT and *OPRINT
dump the grabbed image to an Epson or
Acorn Sparkjet printer respectively. An
optional aspect ratio can be specified to
ensure that the dimensions of the dump
match those of the original picture. One very
annoying feature of these commands is that
they assume that the printer is setup to
produce linefeeds each time a carriage return
is received. If this is not the case, which it
won’t be for many printers, then the entire
dump is printed on a single line. You therefore
have to open up the printer and change the
DIP switch settings.

*IMLOAD and *IMSAVE load and save
grabbed images in a compressed format.

Beebug August/September 1989

Watford claim that a 20K screen will be reduced
to between 1 and 12K, depending on
complexity. Finally, the commands *IMART,
*MASK and *IMMIX are used to convert a
grabbed image into a format suitable for
transfer to the AMX art packages and Stop
Press.

In use, the only problem I found with the
digitiser was setting it up. The ‘auto’ mode
proved to produce a picture which was too
dark, and lacking in contrast. I therefore had
to resort to using ‘manual’ mode, and
adjusting the two threshold controls in order
to obtain a suitable image. The best way to do
this is to use a simple program which
repeatedly grabs images. Once setup, the
controls should not need adjusting unless the
video source is changed. The manual suggests
that the setting up is performed in mode 2,
however this is only of use on a monochrome
monitor, as the colours prove to make the
image almost unrecognisable. However, with
a monochrome system, the colours in mode 2
are used to good effect to provide grey
shades.

The documentation is in the form of a
twenty-four page manual, with an additional
section covering ROM installation. The
manual explains what a digitiser is, gives
details of all the available commands, and
describes how to set up the system. There
are also sections on using the commands
within your own programs, and fault
finding.

CONCLUSION

Having found a suitable video source, the
digitiser proved to perform very well, and the
results produced are probably as good as is
possible on the Beeb. My only niggle is that the
printer dumps assume a particular printer
setting, but apart from that I cannot fault the
system. However, I would advise anyone who
is considering buying the system to check if it is
compatible with the camera they intend to use.
The price of the unit also seems reasonable for
what it offers. B

21

@

Coping with Computers in Schools

At the start of a new school year, Paul Pibworth, an experienced teacher and head of
department in a comprehensive school, presents a personal view on the way schools
and teachers are coping with information technology.

Following the micro revolution, computers
became an accepted part of school equipment.
With the introduction of the National
Curriculum, and the inclusion of Information
Technology (IT), their presence has become a
necessity. Many homes now have a micro-
computer, although in many cases it will not be
the same model as the one in the child’s school.
Education pages feature regularly in the
computer press. They often take the form of
surveys of the current software scene, and are
aimed at both teachers and parents. This article
is not another software review, but an attempt
to explore some of the difficulties which can
arise as schools move forward.

It may well be helpful to survey briefly the use
of computers in schools. I am aware that
brevity may cause over-simplification, but it
will help to set the scene. Compulsory state
education tends to be divided into one of two
systems: primary/secondary, and primary/
middle/secondary. The younger children tend
to spend most of their time in the same room
with the same teacher, while at the secondary
level, it is common for teaching to be subject
based, and often room based. This will
obviously affect the learning strategies used.
Thus, a micro-computer based in a primary
school classroom could be available all day for
the members of that class. A computer based in
a science laboratory will tend to be available to
members of a given class only when that class
is in that laboratory.

Another difference is the type of use to which
the computer is put. Software can be content
based. As an example, a program which deals
with chemical formulae and equations is of
little use outside a chemical laboratory. There is
a wide range of such software, as a glance at
any review of the type mentioned above will
demonstrate. However, the in-words now are

22

“content-free” and “cross-curricula”. This
approach sees the computer as a general tool, a
device to help in the development of broader
skills. Such skills may be classified as
numeracy, communication, problem-solving,
manipulation, etc. Software in this category
would include wordprocessors, databases,
spreadsheets, data-logging, and CAD. Finally,
there is general administration software, used
by teachers and the school office rather than by

pupils.

With such a wide divergence of users and
usage, I want to examine the situation from
different angles, namely software, hardware,
and people. Since the first two are often related,
some overlap cannot be avoided.

SOFTWARE

I will deal first with content-based software. The
first and obvious problem for the teacher is
whether the software is good. The true value of
software, like a textbook, becomes more apparent
in use, rather than by inspection. Unlike
textbooks, software is not usually made available
for inspection for obvious reasons. Some LEAs
are now purchasing software to be kept at a
central location, but this makes the assumption

Beebug August/September 1989

]

Coping with Computers in Schoolé

that teachers are willing to visit the centre in their
own time (and probably at their own expense), a
very sensitive issue at the moment!

Having decided that the software is good, the
next question is whether it is suitable for the
class situation. How many children can be
grouped round one monitor? Who “drives” the
machine? Or, given individual application, can
the lesson be structured appropriately so that
individual pupils can all have their turn? This is
less of a problem at primary level, but could be
quite difficult in a history lesson at secondary
level.

Much progress has been made with content-
free software. I well remember low ability
pupils having difficulties with Wordstar, the
philosophy then being that even low ability
pupils should have access to a sophisticated
word processor. This type of problem is
reduced if the word processor is easy to use. I
know a Modern Language department which
has greatly benefitted from the purchase of
Folio, a specialised word processor for use with
foreign languages. On the whole, I think that
great progress has been made in the area of
software, and that problems in this field are
becoming less significant.

HARDWARE

It is hardware that is probably the greatest
source of headaches! I know that this is a
BBC/Acorn users’ magazine, and that BBCs
feature prominently in schools. However, many

Beebug August/September 1989

‘mix-n-match’ situations exist already. I know of
an establishment that began with an RML380Z,
added several BBCs, and then acquired an
RML480Z network. The Special Needs
department uses Spectrums. The library and the
office have three systems between them. Finally,
the school was given some Amstrad machines.
There are often valid reasons behind such a
situation, finance being only one. In fact, being in
the vanguard can bring serious disadvantages.
This is seen when those so recently lagging
behind begin to to overtake as they acquire the
latest 16/32 bit computers!

Then there is the problem of where to place the
machines. Should there be a computer room?
Individual computers are more vulnerable to
theft, whereas a dedicated room is more easily
fitted with an alarm system. Such a room will
be less suitable for content-based software
though. A teacher cannot be expected to delay a
topic until the room becomes available, or to
move a class if the computer component is not
a significant part of the lesson. Should there be
a network? A network system needs a network
manager. This requires time. Teachers are paid
to teach. Yet if technical help is unavailable (I
speak from experience), the network still has to
be administered.

The total number of machines is affected by
finance. I am sure that the number of computers
within schools owes much more to the fund
raising of individuals and groups than to those
who hold the purse strings! How many pupils
still have to share a keyboard, as they undertake
tasks which are part of their coursework?

Finally, while on the subject of hardware, what
about maintenance? The nearest official repair
depot for one of our systems is over 50 miles
away! Our County technical help service is
stretched because their work includes visits to
primary schools to change batteries in their,
Masters! If a computer needs to be taken for
local repairs, this again depends on a teacher
going in his/her own time, and usually at his or
her own expense. It is probably not widely
known that some insurance companies place an

23

Coping with Computers in Schools

additional premium on private motor policies
for this privilege, so check first!

THE HUMAN FACTOR

Turning to people, one first thinks of the pupils.
Did you know that placing a magnet in front of
a monitor can do permanent damage? Can you
think of any reason why pupils should want to
remove the fuses from the buffer boxes? When
using a network, why can’t pupils stay within
their own user area? Why do they forget to use
the establishment filename system? How did
someone create a file with the name “;”...1
cannot delete it!

The modern pupil is certainly not keyboard-shy;
not so teachers. Perhaps the biggest obstacle to
increasing the use of computers is the teachers
themselves. The policy makers must bear some
of the responsibility. In-service training days
(Baker days as they were known) are used to
discuss curricula, profiles, performance (of
pupils and staff), and assessment. Should more
time be given to teachers to become confident in
using modern technology? In my experience,
most teachers who are happy to use a computer
at school do in fact have one at home! One of the
rewards of teaching is the delighted response
from a pupil when a new technique has been
learnt, or problem has been solved. In our
department, we use a system to record and
process test marks. Not all staff rush to enter
their marks. You can thus share my feeling of
achievement when a colleague, having entered
his test marks, felt brave enough to add a new
pupil to a file. There was definite joy in his face
as he told me, “Paul, I've added a new boy to the
list”. Another convert?

LOOKING AHEAD

And what about the future? How can the
problems be overcome? Both the DES and the
DTI have indicated support for increased
computer use in schools, but how can this
support be translated in practicalities?

Let us look at the ‘mix and match’ situation. It is
with us and will stay with us. It is not an
insuperable problem, but the answer is outside

24

of the school. When software is written for a
range of systems, site licences must take this into
account. One is often allowed to make a back-up
for use within the establishment. In this case,
why not allow a second copy/version for the
other system at nominal cost? What is also
needed is support from the major hardware
manufacturers for inter computer link-ups as is
done by Cambridge Computers for its Z88. This,
coupled with the necessary software to transfer
data files, would be a significant step forward.

Turning to software, it is acknowledged that
software houses need to pay their bills! I feel
that general purpose software is more difficult
to learn than that written with a particular use
in mind. There is room here for LEA’s to
identify such applications. They could then
sponsor a software house to produce the
necessary software. On the other hand, there
must be a significant amount of ‘in-house’
software already within the authority. The
network administration programs that I have
been using were all written by a former
colleague. Such work should be identified,
evaluated, and published.

Finally, I return to the teacher. It is the teacher
who is in the front line, and who has to
implement any new policy. It is no use putting
a computer into the hand of someone who
doesn’t want it, doesn’t like it, and who doesn’t
want to like it either! The battle is to convert the
teacher, and commercial techniques may well
need to be applied. If a business venture feels
that its staff need training, they are trained in
work time, at work expense, and in training
centres that employ good cooks! When a drug
company wishes more patients to benefit from
its products, it seeks to convert the GP, over
lunch of course! Some of these techniques have
been used in the past, to introduce TVEI, and
JIG-CAL. If school administration staff are
deemed worthy of such attention, then why not
school teaching staff?

As Archimedes might well have said “Convince
the teacher, and you will convince the world.”

B
Beebug August/September 1989

course

Having described most
of the features and characteristics of Teletext
mode, I propose in this final part to present a
number of procedures which I have found
useful. I would, however, stress one point right
at the outset. My object is to encourage and
help you to write your own procedures to suit
your own needs. I hope therefore that you will
take my examples as no more than guidelines
to what can be achieved. It is not my intention
that these should be seen as a definitive set of
procedures which you must use. I have also
included a demonstration program to show
what the procedures can do and how they can
be used within a program.

Why use procedures anyway? Well, if any
routine is needed at different points throughout
a program it makes sense to code the routine as
a procedure. However, it can often be helpful to
code a routine in this way even if it is called
only once. It helps to keeping the programming
simple, and means that the routine can be
treated and tested independently of the rest of
the program.

In writing procedures to work in mode 7, you
need to decide on some basic parameters, and
then stick to them. Most of the procedures will
need to refer to a location on screen at which
something is to be displayed. As previously, I
prefer to make the co-ordinates refer to the
visible item (text or graphics), positioning any
teletext control characters to the left. The
alternative, which I don’t like, is to place the
control characters at the co-ordinates given,
but this can make alignment difficult.
However, you will always need to check, with
the method that I have used, that you have
allowed sufficient space for any control
characters (for example, you cannot use either
of the first two procedures listed below to
position coloured text starting in position zero
on a line).

Beebug August/September 1989

Investigating Teletext Mode (5)

To conclude this short series on the use of Teletext characters
and graphics, Mike Williams describes a set of useful procedures.

Some procedures will also need to specify a
colour. The text colours range from 129 to 135,
and so could be represented by the range 1 to 7,
adding 128 automatically within the program.
On this occasion I have decided to use colour
control codes as they are, although I have used
the other approach in the past.

Another factor with regard to the use of
procedures is the way in which the more basic
and fundamental routines can be used to build
up more complex procedures, without
excessive duplication of effort. However, I
would once again stress the importance of
adapting any routines to your own
requirements.

DISPLAYING TEXT

The first two procedures are the most obvious,
routines to display messages in either single or
double height characters. We have covered
double height characters earlier in these
articles. Notice the consistency in the use of
parameter and variable names to help you
remember what everything is for.

1000 DEF PROCmsgl (x,y,c,text$)
1010 PRINTTAB (x-1,y)CHRS$ (c);text$;
1020 ENDPROC

1030 :

1100 DEF PROCmsg2(x,y,c,text$)
1110 LOCAL p

1120 FOR p=0 TO 1

1130 PRINTTAB(x-2,y+p)CHRS (c) ; CHRS141;t
ext$;

1140 NEXT p

1150 ENDPROC

151500 %

In both cases, x and y are the position on thes
screen (x being the position along the line
starting from zero, and y counting the number
of lines from the top of the screen downwards,
again starting from zero). The parameter c is the
text colour (in the range 129 to 135), and text$

25

First Course - Investigating Teletext Mode

holds the message to be displayed. Notice how
in the first routine the single control code is
placed in position x-1, while in the second
routine the control codes start in position x-2
because of the extra control code for double
height characters.

A variation on the second procedure would be
to add a further CHR$140 at the end of the text
message (line 1130) so that any further text on
the same lines will be single height, not double
height. However, as a result of some quirk,
double height text can only be followed by
single height text on the upper of the two lines
in question. On the whole, it’s better to keep to
double height only on a particular line.

FRAMES AND BORDERS
Another procedure which I have used on
several occasions, and which can make mode 7
displays look quite smart, is one for drawing
rectangular frames or boxes.
We need to pick the right

1200 DEF PROCframe (x,y,w,h)

1210 LOCAL p

1220 PRINTTAB (x,y)CHR$183;

1230 PRINT STRINGS (w-2,CHRS$163) ;
1240 VvDU235

1250 FOR p=y+1 TO y+h-2

1260 PRINTTAB (x,p) CHR$181

1270 PRINTTAB (x+w-1,p) CHR$234;
1280 NEXT p

1290 PRINTTAB (x,y+h-1)CHR$245;
1300 PRINT STRINGS (w-2, CHR$240) ;
1310 VvDU250

1320 ENDPROC

13805+

Of the parameters, x and y mark the position of
the top left-hand corner of the frame, and w
and h represent the width and height of the
frame. Lines 1220 to 1240 produce the top left-
hand corner, the top edge, and then the top
right-hand corner. Lines 1250 to 1280 create the
left and right sides of the rectangle, and lastly

Teletext graphics codes to
form the four sides of the
rectangle (which can largely
be drawn with FOR-NEXT
loops), but the four corner
characters have to be placed
individually.

CHR$183

: P CHRS$181
A major decision needs to be

made on whether the colour of l
the frame is to be included as

one of the parameters or not.
Superficially, the answer might
seem obvious (‘yes’), and my
first version of the procedure
listed below was written on

CHR$245

CHR$163

\]

CHR$235

A

CHR$234

|

~¢——— CHR$240 ———» CHR$250

this basis. However, it can
often be useful to draw two or
more frames adjacent to each
other, but to do so will often
lead to corruption of the graphics characters by
the colour control codes. In the end I therefore
decided to treat colour separately. The
following procedure will therefore draw a
frame in whatever is the current graphics
colour for each line.

26

Figure 1. Typical 'outer’ frame showing graphics

characters used

lines 1290 to 1310 finish off with the bottom
left-hand corner, the bottom edge, and the
bottom right-hand corner.

I have chosen the graphics characters (see the
back of your User Guide) to give a frame one

Beebug August/September 1989

r']

First Course - Investigating Teletext Mode

pixel wide (remember that a Teletext graphics
character is two pixels wide by three pixels
high). Several styles of frame are possible, and
the one I have chosen is illustrated in figure 1.
This is what I would call an outer frame. You
could similarly design an inner frame. The
outer frame style has the advantage that any
text inside the frame is always separated by at
least one pixel from the frame itself.

Be warned of one failing in this system. If you
try to position double height characters, as a
title say, inside a frame you will end up with a
hole in the frame. This again derives from some
peculiarity in the implementation of double
height characters, and there is unfortunately
nothing that can be done about this.

One final point to note regarding the use of the
frame procedure is that the minimum size of
frame is 3 vertically by 2 horizontally (not 2 by
2 as you might expect). Because FOR-NEXT
loops are always executed at least once (even if
this appears logically wrong in a particular
application), the two vertical sides will always
be at least one unit in length with the corners
still to be added on.

Incidentally, if you intend to create even a
modest mode 7 display, it can help to plan
everything out on paper first, and the User
Guide contains a handy form for just this
purpose.

FOREGROUND AND BACKGROUND
Since I have decide to control graphics colours
separately from the graphics itself, our next
need is for a procedure which will determine a
graphics colour, and while we are about we will
also include a procedure to control the
background colour.

A graphics colour control code needs to be
placed on any line containing graphics
characters. A simple arrangement is to place
a column of such characters down the left-
hand side of the screen to fix the graphics
colour for the screen. Our procedure does just
this but in a more flexible way. In effect, it

Beebug August/September 1989

allows a column of graphics colour control
characters to be placed in any position, and
the top and bottom of the column can also be
specified.

1400 DEF PROCforeground(x,yl,y2,c)
1410 LOCAL p

1420 FOR p=yl TO y2

1430 PRINTTAB (x,p)CHRS (C) ;

1440 NEXT p

1450 ENDPROC

1460 :

In this procedure, x is the position across the
screen where the column is to appear, while y1
and y2 mark the positions of the top and
bottom respectively of our column. If y1 and y2
are the same, then only one line will be affected.

For example, cyan is coded 150 and green 146.
Thus:
PROCforeground(0,0,11,150)
PROCforeground (0,12,23,146)
would put the code for cyan at the beginning of
the first 12 lines, and the code for green at the
start of the next 12 lines. All graphics characters
on those lines would be in a colour determined
by the control code at the start of the line. Any
frames drawn with our frame drawing
procedure would also be coloured by these
codes.

That deals with the foreground (for graphics).
Here’s a procedure for colouring the
background.

1500 DEF PROCbackground(x,yl,y2,c)
1510 LOCAL p

1520 FOR p=yl TO y2

1530 PRINTTAB(x,p)CHRS (c) ;CHR$157;
1540 NEXT p

1550 ENDPROC

1560 :

This procedure creates a column of control
codes just like that for specifying foregrounds
colours, but the column is now two characters
wide because both the colour (parameter c) and
the background code (157) have to be included
on each line (and you will need to leave space
for these).

27

First Course - Investigating Teletext Mode

BEEBUG Teletext Procedures

S
f%'“*{ﬁ
e, L

The Demo program

If you intend to use coloured graphics on a
coloured background then the codes for the
background colour need to appear to the left of
that for the foreground colour. If the codes for
the background appear after those for
foreground, only the background colour will
show (see illustration of demo program). As an
example, the following two lines will set a blue
background and a yellow foreground for the
whole screen:

PROCbackground (0, 0,24, 140)

PROCforeground(2,0,24,147)
The two background characters will be the first
on each line (in positions 0 and 1) followed by
the foreground code (in position 2).

PIXEL GRAPHICS

Up to now we have been dealing with a mode 7
screen in terms of rows of characters (25 lines of
40 characters). But each graphics character is
made up of a two by three matrix of pixels, and
it can be very useful to have a routine which
places a single pixel at any point on the screen.
Our co-ordinates will now be 80 pixels
horizontally (numbered 0 to 79) and 75 pixels
vertically (numbered 0 to 74), with (0,0) in the
top left-hand corner as for text.

A procedure to do this is more complex than
those we have seen previously, as it has to be
written so that due recognition is made of any
other pixels displayed adjacent to the one to be
placed by the procedure. Thus the routine has
to determine, from the pixel graphics co-

28

@

ordinates, the character position on the screen,
read and decode any existing graphics
character in that position, incorporate the new
pixel and write the character back to the screen.
Here is the procedure.

1800 DEF PROCpixel (x,y)

1810 LOCAL char,x1,x2,yl,y2

1820 x1=x DIV2:yl=y DIV3

1830 x2=x MOD2:y2=y MOD3

1840 char=FNchar (x1,yl) :IF char>128 AND
char<160 THEN char=val(y2,x2) OR 160 EL
SE char=char OR val(y2,x2) OR 128

1850 PRINTTAB(x1,yl)CHRS (char) ;

1860 ENDPROC

1870 ¢

1900 DEF FNchar(x,y)

1910 LOCAL A%,C

1920 vDU31,x,y

1930 A%=135:C=USR (&FFF4)

1940 =(C AND &FFFF) DIV &100

The array val() holds the individual pixel
values, and must be dimensioned and set up
before PROCpixel is called in the main program
(see lines 120 to 150 in the demo program listed
at the end of this article.

Lines 1820 and 1830 calculate the correct
character position. An additional function,
FNchar(x,y), is called at line 1840 to find the
existing character in this position. This can only
be done with USR call shown, and I suggest
you just accept this (it is covered in your User
Guide in the section on OSBYTE calls).
Depending on the character found, the new
character is formed and then printed in line
1850. Thus:
PROCpixel (30,40)

would place a single pixel, in the current
graphics foreground colour, in pixel position
30,40.

Once we have this procedure up and running
we can use it to produce further effects. The
next two procedures both use PROCpixel to
draw either a vertical or a horizontal line. In
each case the position and ends of the line are
determined by the parameters.

Continued on page 56

Beebug August/September 1989

A General Purpose Line-Input Function

Gareth Williams describes a highly versatile input routine which will smarten up your
screen data input displays.

INTRODUCTION
It is often said that the things which make a
good program are the routines that accept input
from the user, and produce results on the screen
or paper. This is understandable, because a good
program should not only function well, but
should look smart and above all appear robust.
For example, if a prompt is displayed saying:
Please enter a number
and a naive user types ‘Thirty six’ in reply, then
the program shouldn’t simply crash with an
error such as:
Type Mismatch at line 920
At the very least, the program should repeat the
request, and it would be even more friendly if it
could suggest a reason why the original input
was rejected. Another possibility is only to
accept characters that are valid for the chosen
type of input. For example if a number is
requested then the program would only
respond to, and hence echo to the screen, the
digits ‘0’-'9” and perhaps - and “.".

Unfortunately, that is an ideal situation, and
anybody who has written a substantial program
will know that designing robust input routines
is very time consuming, and nowhere near as
satisfying as designing the main workings of the
program. Therefore, many otherwise perfect
programs resort to using Basic’s INPUT
statement with little or no checking on what the
user enters. However, the machine code routine
presented here helps to solve the problem by
providing a robust data entry routine in which
you can specify the type of input allowable. The
routine deals with the job of showing the input
on the screen in a neat way, and also editing the
input line up to the point where Return is
pressed. A facility also exists to allow brief help
information on each entry item.

THE PROGRAM
Because of the length of the program, it is
presented here in its entirety, together with a

Beebug August/September 1989

demonstration, but the full details on how the
routine works, and how to use it in your own
programs will not be covered until the next
issue. To start with, enter and save listing 1.
Running this program assembles the machine
code which forms the heart of the input routine,
and saves this with the filename ‘EdLine’. Next,
you should enter the demonstration program
from listing 2, and save and run it. The first task
this performs is to load in the ‘EdLine’ file, and
therefore this must have been assembled with
the first program beforehand.

low_nan s _do_you have? i 0 you Tike football?

fou many O-Tevels do you have? .. re_you a yuppie? (V/] A
Jou many Ai-Tevels do you have? ., re_you an estate agent? (/] A
uld you mind answering extremely personal questions? (V/N) .

The 'Demo’ program in action

When you run the demonstration, you will be
presented with a mode 3 screen containing a
number of input prompts. Each of these is
followed by a series of dots indicating how
many characters will be accepted in the input.
At the top right of the screen is a message
indicating that you are in OverWrite mode. The
cursor is positioned at the start of the first entry.

Movement within the line currently being
edited is via the left and right cursor keys.
When used by themselves these keys move the
cursor left or right by one character. When used
in conjunction with the Shift key, the cursor is
moved to the start or the end of the input line.

29

A General Purpose Line-Input Function

When the Ctrl key is used with the left or right
cursor keys, the line is deleted from the current
cursor position to the start or end of the line
respectively.

To move down to the next input line, press
Return or Cursor-Down. To move up to the
previous input line, press Cursor-Up. If you
move off the top of the document, you will
reappear at the bottom; if you fall off the bottom
of the document, you will reappear at the top.
Help messages may be obtained by pressing
Ctrl-H, and these will appear for two and a half
seconds at the bottom of the screen. To change
to Insert mode press Ctrl-I (or Tab), and to
revert back to OverWrite mode use Ctrl-O.

To finish entering details on this document,
move to the final input on the screen (‘Press
Copy to finish:’), and press the Copy key. You
will be returned to Basic. In a real situation the
details entered would then be processed by the
remainder of the program.

Next month we will conclude this article with
details of how the input routine can be incorporated
into your own programs. In the meantime, looking
at the data statements at the end of the
demonstration program should give you a general
idea of how the input criteria are specified.

Listing 1

10 REM Program EditLine

20 REM Version Bl.1

30 REM Author Gareth Williams

40 REM BEEBUG August/September 1989
50 REM Program subject to copyright

100 MODE7

110 PROCAssemble

120 PROCSaveCode

130 END

140 :
1000 DEF PROCSaveCode
1010 F$="EdLine"
1020 OSCLI("SAVE "+F$+" "+STR$~Put+" "+

STR$~0%+" "+STRS$~Mc+" "+STRS$~Mc)

1030 ENDPROC
1040 :
1050 DEF FNStartOfCode

| rsor

1060 A%=133:X%=3

1070 =((USR(OSByte) AND &FFFF00) DIV&10
0)-&500

1080 DEF PROCAssemble

1090 OSByte=&FFF4:0SRACh=&FFEQ

1100 OSWrCh=&FFEE:0SAsci=&FFE3

1110 OSArgs=&FFDA:Mc=FNStartOfCode

1120 DIM Put &500

1130 P%=&70: [OPT2

1140 .Cursor EQUBO
1150 ;Statl EQUBO
1160 .Stat2 EQUBO
1170 .8tat3 EQUBO
1180 .Stat4 EQUBO
1100 XC EQUBO
1200 YO EQUBO
1210 .MLen EQUBO
1220 .Len EQUBO
1230 .Flagl EQUBO
1240 .Flag2 EQUBO
12 506 Elagl EQUBO
1260 .CurPos EQUBO
1270 .NumFlag EQUBO0
1280 .Temp EQUWO
1290 .LineAddr EQUWO
13007 7p EQUWO
1310 .Dummy

13201

1330 FOR Opt=4 TO 7 STEP 3

1340 P%=Mc:0%=Put

1350 [OPTOpt

1360 STX zp:STY zptl

1370 LDY # (Dummy-Cursor-1)

1380 .PushLoop

1390 LDA Cursor,Y:PHA:DEY:BPL PushLoop
1400 LDY#14:LDA(zp),Y:STA MLen:LDY#3
1410 .FlagLoop

1420 LDA(zp),Y:STA Len,Y

1430 DEY:BNE FlagLoop:STY NumFlag

1440 LDA#4:1DX#1:JSR OSByteWrite:STX Cu

1450 LDA#225:LDX#1:JSR OSByteWrite:STX
Statl

1460 LDA#226:1LDX#144:JSR OSByteWrite:ST
X Stat2

1470 LDA#227:LDX#160:JSR OSByteWrite:ST
X Stat3

1480 LDA#228:LDX#1:JSR OSByteWrite:STX
Stat4

1490 LDA Flag3:AND#1:STA Flag3

1500 LDY#10:LDA(zp),Y:STA LineAddr

1510 INY:LDA(zp),Y:STA LineAddr+l

1520 LDA Flag2:PHA:AND#2:BEQ NoClear

1530 .SetZeroLen

1540 LDY#0:LDA#13:STA(LineAddr),Y

30

Beebug August/September 1989

A General Purpose Line-Input Function

1550 .NoClear 2100 .NotEscape

1560 PLA:AND#4:BEQ NoFlush 2110 LDX#0

1570 LDA#15:LDX#&FF:JSR OSByte 2120 .FnLoop

1580 .NoFlush 2130 LDY FnTable,X:BEQ NotFn

1590 LDA Flagl:AND#6:BNE SingleKey 2140 CMP FnTable,X:BEQ FnFound

1600 LDA Flagl:AND#1:BEQ GetInitiallLen 2150 INX:INX:INX:BNE FnLoop

1610 .SingleKey LDY#1:STY MLen 2160 .FnFound

1620 LDA#13:STA(LineAddr),Y 2170 LDA FnTabletl,X:STA Temp

1630 LDA Flagl:AND#4:BEQ NotOnlySpecKey 2180 LDA FnTablet+2,X:STA Temp+l

1640 LDA Flagl:ORA#64:STA Flagl 2190 JMP (Temp)

1650 .NotOnlySpecKey 2200 .NotFn

1660 LDA Flag2:ORA#1:STA Flag2 2210 PHA:LDA Flagl:AND#64:BEQ NoSpecK
1670 LDA Flagl:ORA#1:STA Flagl 2220 PLA:PHA

1680 LDA Flagl:AND#6:BEQ GetInitiallLen 2230 LDY#15:CMP (zp),Y:BNE NoSpeck
1690 LDA Flag2:AND#&E7:STA Flag2 2240 PLA:LDA Flag3:0RA#16:JMP Return
1700 .GetInitiallLen 2250 .NoSpecK

1710 LDY#0 2260 LDA Flagl:AND#32:BEQ NoHelpK
1720 .LenLoop 2270 PLA:PHA

1730 LDA(LineAddr),Y:INY:BEQ SetZeroLen 2280 LDY#16:CMP (zp),Y:BNE NoHelpK

1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090

CMP#13:BNE LenLoop:DEY:STY Len
CPY MLen:BCC LenOkay

LDY MLen:STY Len
LDA#13:STA(LineAddr),Y
.LenOkay

LDY#18:LDA (zp),Y

CMP#&FF :BNE NotAtEnd:LDA Len
.NotAtEnd

STA CurPos

LDY#4:LDA(zp),Y

CMP#&FF :BEQ NoMovePrompt
TAX:INY:LDA(zp),Y:TAY:JSR MoveXY
.NoMoveP rompt
LDY#8:LDA(zp),Y:STA Temp
INY:LDA(zp),Y:STA Temp+l

ORA Temp:BEQ MovelInput

JSR MessTemp

.MoveInput

1DY#6:LDA(zp),Y

CMP#&FF :BEQ NoMoveInput
TAX:INY:LDA(zp),Y:TAY

JSR MoveXY

.NoMoveInput

LDA#134:JSR OSByte:STX XC:STY YC
LDY#0:JSR DispLine

LDA Flag2:BPL NotJustDisplay
JMP Return

.NotJustDisplay

LDY CurPos:JSR MoveCur
.ReadLoop

JSR OSRACh:BCC NotEscape
LDA#126:JSR OSByte

LDA Flagl:BMI ReadLoop
ILDY#0:STY Len
LDA#13:STA(LineAddr), Y

LDA Flag3:0RA#128:JMP Return

2290
2300
2310
2320
2830
2340
2350
2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
2460
2470
2480
2490
2500
2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640

LDY#12:LDA(zp),Y:STA Temp
INY:LDA(zp),Y:STA Temptl

ORA Temp:BEQ NoHelpMess
LDY#0:LDA (Temp) , Y: TAX

INY:LDA (Temp),Y:TAY:JSR MoveXY
CLC:LDA Temp:ADC#2:STA Temp

BCC NOHI:INC Temp+l

.NOHI

JSR MessTemp

.NoHelpMess

PLA:LDA Flag3:0RA#4:JMP Return
.NoHelpK

PLA:CMP#32:BCC NotValChar
CMP#127:BCC ValidChar
.NotValChar

PHA:1DA Flagl:AND#16:BEQ NextChar
PLA:LDY#17:STA(zp),Y

LDA Flag3:ORA#8:JMP Return
.ValidChar

PHA:CMP#32:BNE NotSpace

LDA Flagl:AND#8:BNE NextChar
BEQ CharChecked

.Not Space

LDA Flagl:AND#4:BEQ NotSpecOnly
PLA:PHA

LDY#15:CMP (zp), Y:BNE NextChar
.NotSpecOnly

PLA:JSR CheckChar:PHA:BCS NextChar
.CharChecked

LDA Flag3:AND#1:BEQ DoShuffle
LDY CurPos:CPY Len:BNE NoShuffle
CPY MLen:BEQ NextChar

INC Len:INY:LDA#13:STA(LineAddr),Y
BNE NoShuffle

.DoShuffle:LDY Len

CPY MLen:BEQ NextChar:INC Len

Beebug August/September 1989

31

A General Purpose Line-Input Function

2650 .Shuffle LDA(LineAddr),Y:INY:STA(L
ineAddr),Y:DEY:DEY:CPY#&FF :BEQ NoShuffle
+CPY CurPos:BCS Shuffle

2660 .NoShuffle PLA:PHA:LDY CurPos:STA(
LineAddr),Y

2670 LDY CurPos:JSR DispLine:INC CurPos

2680 PLA:LDA Flagl:AND#1:BNE SKReturn

2690 PHA

2700 .NextChar PLA:JMP NotJustDisplay

2710 .SKReturn LDA Flag3:0RA#32

2720 .Return

2730 LDY#3:STA(zp),Y

2740 LDY#14:LDA Len:STA(zp),Y

2750 LDY#18:LDA CurPos:STA(zp),Y

2760 LDA#228:LDXStat4:JSR OSByteWrite

2770 LDA#227:LDXStat3:JSR OSByteWrite

2780 LDA#226:LDXStat2:JSR OSByteWrite

2790 LDA#225:LDXStatl:JSR OSByteWrite

2800 LDA#4:LDXCursor:JSR OSByteWrite

2810 LDY# (Dummy-Cursor-1) : LDX#0

2820 .PullLoop

2830 PLA:STA Cursor,X:INX:DEY

2840 BPL PullLoop

2850 RTS

2860 Neeree

2870 .OSByteWrite
2880 LDY#0:JMP OSByte
2890 .MoveXY
2900 JSR CurOff:LDA#31:JSR OSWrCh
2910 TXA:JSR OSWrCh
2920 TYA:JSR OSWrCh:JMP CurOn
2930 .MessTemp
2940 JSR CurOff:LDY#0
2950 .MTLoop
2960 LDA(Temp),Y:INY:BEQ MTRet
2970 CMP#13:BEQ MTRet
2980 JSR OSWrCh:JMP MTLoop
2990 .MTRet JMP CurOff

3000 .DispLine
3010 JSR MoveCur:JSR CurOff

3020 .DispLoop:LDA(LineAddr),Y

3030 CMP#13:BEQ BlankChar

3040 JSR Hide:JSR OSWrCh

3050 INY:BNE DispLoop

3060 .BlankChar

3070 TYA:PHA:LDX#32

3080 LDA Flag2:AND#64:BEQ NoDot :LDX#46

3090 .NoDot

3100 CPY MLen:BEQ EndDisp

3110 TXA:JSR OSWrCh:INY:BNE NoDot

3120 .EndDisp

3130 JSR CurOn:PLA:TAY:RTS

3140 .Hide

3150 PHA:LDA Flag2:AND#32:BEQ NoHide

3160 PLA:LDA#42:PHA

3170 .NoHide PLA:RTS

3180 .MoveCur

3190 TYA:PHA:CLC:ADCXC:TAX:LDY YC
3200 JSR MoveXY:PLA:TAY:RTS

3210 .FnTable

3220 OPT FNEntry(136,Left)

3230 OPT FNEntry(137,Right)

3240 OPT FNEntry(138,Down)

3250 OPT FNEntry(13,Down)

3260 OPT FNEntry(139,Up)

3270 OPT FNEntry(127,Delete)

3280 OPT FNEntry(9,Insert)

3290 OPT FNEntry(15,0verWrite)
3300 BRK

3310 .ShiftControl

3320 LDX#&FF:JSR KeyboardScan:BEQ Shift

Down

3330 LDX#&FE:JSR KeyboardScan:BEQ Contr

olDown

3340 LDA#0:RTS
3350 .ShiftDown
3360 LDA#&FF :RTS
3370 .ControlDown
3380 LDA#1:RTS
3390 .KeyboardScan

| 3400 LDY#&FF:LDA#129:JSR OSByte:CPX#&FF
{RTS

3410 .Left

3420 JSR ShiftControl

3430 BEQ JustLeft:BMI SLeft:BPL CLeft
3440 .Justleft

3450 LDA CurPos:BEQ ReturnFn

3460 DEC CurPos:LDA#8:JSR OSWrCh

3470 .ReturnFn

3480 JMP ReadLoop

3490 .SLeft

3500 LDY#0:STY CurPos

| 3510 .ShiftReturn

3520 JSR MoveCur:JMP ReadLoop

3530 .CLeft

3540 LDY CurPos:BEQ ReturnFn

3550 .ShiftLeft

3560 LDA(LineAddr),Y:PHA

3570 TYA:SEC:SBCCurPos:TAY

3580 PLA:STA(LineAddr),Y

3590 CMP#13:BEQ EndShiftLeft

3600 TYA:CLC:ADC CurPos:TAY:INY:BNE Shi

ftLeft

3610 .EndShiftLeft

3620 LDA Len:SEC:SBCCurPos:STA Len

3630 LDY#0:STY CurPos

3640 .CtrlReturn

3650 JSR DispLine:LDY CurPos:JMP ShiftR

eturn

3660 .Right

32

Beebug August/September 1989

A General Purpose Line-Input Function

3670 JSR ShiftControl

3680 BEQ JustRight:BMI SRight:BPL CRigh
t

3690 .JustRight

3700 LDA CurPos:CMP Len:BEQ ReturnFn
3710 INC CurPos:LDA#9:JSR OSWrCh

3720 JMP ReadLoop

3730 .SRight

3740 LDY Len:STY CurPos

3750 JgMP ShiftReturn

3760 .CRight

3770 LDA#13:LDY CurPos:STA(LineAddr),Y
3780 STY Len

3790 JMP CtrlReturn

3800 .Down

3810 LDA Flag3:ORA#32:JMP Return

3820 .Up

3830 LDA Flag3:0RA#64:JMP Return

3840 .Insert LDA Flag3:BEQ ReturnFn
3850 LDA#2:STA Flag3:JMP Return

3860 .OverWrite LDA Flag3:BNE OWRet
3870 LDA#3:STA Flag3

3880 .OWRet

3890 JMP Return

3900 .Delete

3910 LDY CurPos:BNE IsDP:JMP ReturnFn
3920 .IsDP DEY:LDA(LineAddr),Y:INY
3930 CMP#ASC".":BNE ShuffleD

3940 LDA NumFlag:AND#&7F:STA NumFlag
3950 .ShuffleD LDA(LineAddr),Y:DEY:STA(
LineAddr),Y

3960 INY:INY:CMP#13:BNE ShuffleD

3970 DEC Len:DEC CurPos:LDY CurPos:JMP
CtrlReturn

3980 .CheckChar

3990 PHA

4000 LDA Flag2:AND#24:BNE Numeric

4010 LDA Flag2:AND#1:BEQ NoCapify

4020 PLA:CMP#ASC"a":BCC NoCap:CMP#ASC"z
"+1:BCS NoCap

4030 AND#&DF

4040 .NoCap PHA

4050 .NoCapify LDA Flagl:AND#2:BEQ RetC
CcP

4060 PLA:CMP#ASC"Y":BEQ RetCC:CMP#ASC"N
":BEQ RetCC

4070 .RetCS SEC:RTS

4080 .RetCCP PLA

4090 .RetCC CLC:RTS

4100 .Numeric PLA

4110 CMP#ASC"0":BCC NotDigit

4120 CMP#ASC"9"+1:BCC RetCC

4130 .NotDigit PHA:LDA Flag2

4140 AND#16:BNE ExtraNumeric:PLA:SEC
4150 :RTS

4160 .ExtraNumeric

4170 PLA:CMP#ASC"-":BEQ FirstPos
4180 CMP#ASC"+":BEQ FirstPos

4190 CMP#ASC".":BNE RetCS

4200 LDXNumFlag:BMI RetCS

4210 PHA:TXA:ORA#128:STA NumFlag:PLA
4220 BNE RetCC

4230 .FirstPos

4240 LDY CurPos:BNE RetCS:BEQ RetCC
4250 .CurOn LDA#1:BNE CurOnOff

4260 .CurOff LDA#0

4270 .CurOnOff PHA:LDA#23:JSR OSWrCh
4280 LDA#1:JSR OSWrCh:PLA:JSR OSWrCh
4290 TXA:PHA:LDX#7:LDA#0

4300 .Zeroes JSR OSWrCh:DEX:BNE Zeroes
4310 PLA:TAX:RTS

4320] :NEXT

4330 ENDPROC

4340 DEF FNEntry (V%,A%) : LOCALO%

4350 0%=2* (Opt DIV2)

4360 [OPTo%:EQUBV%:EQUWA%:]

4370 =Opt

Listing 2

10 REM Program Input Function Demo
20 REM Version B1.00

30 REM Author Gareth Williams

40 REM BEEBUG August/September 1989
50 REM Program subject to copyright

100 MODE3:HIMEM=HIMEM-&500
110 PROCLoad
120 PROCDemo
130 END
140 :
1000 DEF PROCLoad
1010 F$="EdLine"
1020 OSCLI ("LOAD "+F$)
1030 Mc=HIMEM
1040 ENDPROC
1050 :
1060 DEF FNEditLine (P$,PX%,PY%,I$,IX%,1
Y%,L%,H$,F1%,F2%,Disp%)
1070 ParBlk?1=F1%
1080 ParBlk?2=F2%-128*Disp%
1090 IFDisp% ParBlk?3=0 ELSEParBlk?3=Pa
rBlk?3 AND1
1100 ParBlk?4=PX%
1110 ParBlk?5=PY%
1120 ParBlk?6=IX%
1130 ParBlk?7=IY%
1140 ParBlk!8=PromptMessage
1150 ParBlk!10=InputBuffer

Continued on page 50

L]

Beebug August/September 1989

33

This month the Comms Spot
is a mixture of news items
and general information on
what’s happening on the
comms scene at the
moment.

The Micronet database on Prestel has recently
undergone a change of ownership. Formerly it
was controlled by Telemap and was part-
owned by British Telecom. Now it has become
wholly owned by BT and forms part of their
Dialcom subsidiary. To coincide with this
change, Micronet has moved its headquarters
from the smoke and grime of the city at Herbal
Hill in London, to the new Dialcom offices near
rural Apsley in Hertfordshire. Their full
address is now: Dialcom House, Brindley Way,
Hemel Hempstead, Herts HP3 9RR, and their
telephone number is (0442) 237788.

Still on the subject of Micronet, they now have a
very active BBC Microbase area on their
database thanks to the efforts of the new editor,
Paul Vigay. Do give it a look next time you log-
on as there is plenty of interest for most Beeb
and Arc owners. I must comment that it does
have a fair bias towards the Arc but then this is
only natural. The new telesoftware gateway
problems now seem to have been resolved and
there are plenty of free programs to download
for Beeb owners, with a growing quantity for
the Arc, too.

Prestel has recently announced details of
forthcoming changes to its Mailbox Email
facility. So extensive are the changes and
extra facilities, that subscribers have been
sent a small booklet outlining their use.
Space here does not permit a full run down
on what is to be offered, but this includes
multiple mailboxing using a mailing list of
recipients, notification of receipt, multi-frame
mailboxes and the ability to automatically
download all your mailboxes to one file

34

The Comms Spot

by Peter Rochford

when using a micro with the right kind of
software. Of course good old Prestel is not
providing all these new goodies free of
charge. However, use of most of the existing
mailbox facilities will remain free. Perhaps
when the new system is under way, I will
take a closer look at the developments in a
future Comms Spot.

Sadly, I have to report that the Viewtel
database on Prestel has just announced that it
is not intending to renew its contract with
Prestel. Instead, it is to transfer its operation
to the Istel network. Viewtel state that its
withdrawal is due to changes in Prestel’s
policy towards the operation of Information
Providers (IPs), with which it cannot, or is
not, prepared to comply. Viewtel have been on
Prestel since its inception and can justifiably
claim to have been the first company in the
UK to provide ‘an electronic newspaper’.
Their pages offered a mixture of news of all
kinds along with general features and
entertainment.

This move by Viewtel follows other notable
departures from Prestel over the last year
or two, due to the changes in Prestel’s
policies towards IPs. Amongst these was
the Viewfax database which catered largely
for BBC micro users. Remember Ramlink
and Tubelink that provided such a great
service to Beeb owners ?

Another major IP that chose to quit for the
same reasons was Timefame, who were also
an early pioneer in the field of viewdata.
Their lively and popular database provided
many areas of interest and in particular, did
much for the users of micros. Timefame
went on to set up its own online system
called Epnitex which I have mentioned
before in the Comms Spot. I am sure that
Viewtel will be very much missed as was
Timefame.

Beebug August/September 1989

The Comms Spot

Personally, I am disappointed and surprised
that Prestel continues to make decisions that
result in companies, who have provided such
an interesting and important contribution to
Prestel and formed part of its success, to leave.
Who's next ?

Surely the departure of these databases
only weakens and dilutes what Prestel
offers the majority of domestic users, and
will lead to a decline in the number of home
users. Already, the decision by Prestel to
increase its charges, and the increase in
Micronet charges, have led to a significant
number of home micro users abandoning
the service altogether. Unless Prestel
rethinks its policy, this trend will, I am sure,
continue and the future begins to look
bleaker all the time.

On the subject of departures, it is not only
Prestel that suffers from them. Dialcom’s
other online system, Telecom Gold, used to
host the Microlink database belonging to
Database publications which catered for
micro enthusiasts whilst providing low cost
access to Gold’s Email facility and other
services. Microlink has now decided to
change like Viewtel, to the Istel system,
again due to Dialcom’s policies and
attitudes. With the migration of so many of
the better services to Istel, I will shortly
take a look at Istel in the Comms Spot and
report on what else it has to offer.

Those who use Telecom Gold will be
interested to know that at long last moves are
being made to provide access at 2400 baud. At
the moment, users in London with the luxury
of V22bis modems can sample high-speed
Gold on a test number; 01-203 3033. When the
service is fully operational, it will offer MNP
error correction to level 5. Along with this,
you will be able also to download and upload
using a number of error-checked protocols
including Xmodem.

I recently did a feature on SID, Acorn’s own
information database. The news is that SID
continues to expand and is now operating
with new custom written software running on
Archimedes computers. It is, I believe, the
intention in the future to provide a system of
networked Arcs for SID, where each user who
dials in will be connected to his own
individual Arc! Further rumour has it that in
the not too distant future, access to SID will be
by gateway from Micronet’s database on
Prestel. At the moment, unless you are a
subscriber to SID and use the Fastrak network,
you have to dial direct to Cambridge for
access. If the gateway story is true, then we
can hopefully look forward to cheap local
access and a really useful facility for users of
Acorn machines. The only question is, whether
there is going to be some heavy charges for
accessing the service. Let’s hope not.

B

See you next month!

BEEBUG

will be in the ACORN VILLAGE at

THE PERSONAL
COMPUTER
SHOW

27 5ERT - 1 QOT 1889
EARLS COURT LONDON

See you at the show

BEEBUG

will also be at the

COMPUTER
SHOPPRER

SHOW" g g

at the Alexandra Palace, London N22

24-26 November 1989

See you at the show

Beebug August/September 1989

35

¢

Daisy-Chained ROMs

Sebastian Lazareno and David Spencer show how you can make more efficient use of
sideways RAM.

With the increased ownership of sideways
RAM, helped a lot by its inclusion in the Master
and Compact, there has been a corresponding
increase in programs that run as ROM images,
both in BEEBUG and other magazines.
However, most of these programs are at most
2K long, and it seems very extravagant to tie up
an entire 16K bank of sideways RAM with each
one. The ideal solution would be to collect
together a number of such ROM images, and
arrange them so that they can all be loaded into
the same sideways RAM bank. Fortunately, this
can be done relatively easily, and the technique
will be described here together with the pitfalls
to look out for.

Before explaining the technique, we need to
take a quick look at the format of a sideways
ROM, or more particularly, the header that is
placed at the start of a ROM. Full details of this
can be found in the Master reference manual
part 1, or the Advanced User Guide. However,
all we need to know is that the first six bytes of
the ROM image (at addresses &8000 to &8005)
form two jump instructions. The first of these is
the language entry point, and is used to enter the
ROM if it is being started up as the current
language. The second jump (at &8003) is the
more important, and forms the service entry
point. The operating system calls this for tasks
such as claiming workspace, and interpreting
unrecognised star commands.

The way in which we will combine several ROM
images into one is to make the service entry of
each ROM call the service entry of the next one
before performing its own processing. In this
way, the service entry of each constituent ROM
will be called in turn, with the last ROM in the
list executing its service code first. To see how
this can be done, we will take as an example the
Versatile ROM Manager from BEEBUG Vol.7
No.8 (itself a ROM image), and link this to Disc
Access ROM from the Workshop article in Vol.8
No.2. Listing 1 shows the relevant section from
the source code of the ROM Manager.

The three BRK instructions in line 160 signify that
the ROM has no language entry point, while the

36

130 FOR opt=4 TO 7 STEP 3
140 P%=&8000:0%=HIMEM:Q%=0%
150 [OPT opt

160 BRK:BRK:BRK

170 JMP service

.service
CMP #1:BEQ servicel
CMP #4:BEQ serviced:RTS

280
290
300

Listing 1. Fragment of ROM Manager

JMP in line 170 is the service entry jump. This
jumps to the routine starting at line 280 which
decodes the various service calls. All we need to
do is assemble the second ROM image (the Disc
Access ROM in this case) to start immediately
after the first ROM (the ROM manager). We will
then link the service handler of the first image
into the second. This is shown in figure 1. To link
the two images, we will add the instruction:
JSR image2+3

as the first instruction of the service routine in
the first ROM image (the ROM manager). The
value image2 is the address at which the second
ROM image is assembled (as shown in figure 1).

Now, when a service call is issued, our
combined ROM image will be entered at
location &8003 (assuming no higher priority
ROM claims the call). This then jumps to the
service routine proper, which in turn
immediately calls the service entry point of the
second image. The second ROM image will
perform all its service handling, and execute an
RTS when in has finished. In a normal ROM
this would return to the operating system.
However, in our linked images it returns to the
service routine of the first ROM image, which
subsequently executes and then returns to the
operating system.

PUTTING INTO PRACTICE

The best way to clarify this daisy-chaining
process is actually to try it out with our chosen
ROM images. Incidentally, the original
programs for both the ROM manager and the
Disc Access ROM are provided on this month’s
magazine disc with which to experiment.

Beebug August/September 1989

Daisy-chained ROMs

The first step is to find out the length of the
ROM manager image. To do this, load the
source code and run it. This will assemble the
ROM image and leave the code pointer P%
pointing to the first location after the assembler
program. In this case, printing the value of P%
(in hex) should give the result &8279. However,
we need to add the JSR instruction to call the
second ROM image, so this will increase the
length by three bytes. Therefore, the second
ROM image will need to be assembled to start
at location &827C, and the service code of the
first image must perform a JSR &827F
instruction. We can now add the line:
285 JSR &827F

to the ROM manager source code and
reassemble it. This will automatically save the
ROM image with the name ‘"MANAGER'. As a
double check, you can print the value of P%
and make sure that it is indeed &827C.

8000
service ROM ok d)
routine calls r second Image
second ROM Stnos returns to
Image | g27¢C first
disc
access
ROM
8472

Figure 1. Chaining two ROM images together

Having done this, the second ROM image now
needs to be assembled. To do this, load the
source code for the Disc Access ROM and
change line 150 to read:
150 P%=&827C:0%=code

and run the program. This will assemble the
ROM image to start at address &827C (rather
than &8000), and save it to disc as ‘DiscROM’.

The final stage in the process is to physically
link together the two ROM images. This is best
done by loading the images into memory one
after another, and then saving them as a single
image. To do this you need to find the lengths
of the two saved images (using *INFO), and
then load them into memory and save the
result. For example, with our two images, this
could be done using:

*LOAD Manager 1000

*LOAD DiscROM 127C

*SAVE Combined 1000 +472

Beebug August/September 1989

The combined ROM image can then be loaded
in the same way as any other ROM.

So far we have only considered two ROM
images, buts clearly the technique can be
extended to as many images as will fit in the
16K of a single ROM. In this case, the first
image calls the second, which immediately calls
the third and so on.

POSSIBLE PROBLEMS

There are a number of limitations with this
techniques which must always be considered.
First of all, only the first ROM in the daisy-chain
can have a language entry. This will not in general
cause many problems because the vast majority of
‘short’ ROMs will be service-only types.

The second consideration is the priority of
ROMs. Normally, ROMs in higher numbered
positions have higher priority which means
that they receive unrecognised star commands
and the like before the lower ROMs. In a
combined ROM image, the first constituent
image has the lowest priority, and the last has
the highest. This is because of the way that
service calls ‘leap’ through to the last image,
and then ‘ripple’ back through each of the
service routines.

Another possible problem arises from the fact
that many ROM images designed to be used in
sideways RAM (as opposed to ROM) make use
of the unused portion of the sideways RAM
area for workspace. For example, the Partial
Renumber from BEEBUG Vol.7 No.7 uses the
workspace immediately after the ROM image
in which to store the program’s line numbers.
If such a ROM is included in a daisy-chain then
it will need to be modified so that it uses
workspace positioned after all the other images,
rather than immediately after itself.

A final problem to look out for is a ROM which
claims private workspace using service call &22
(or 2 on a model B). ROMs claiming memory in
this way store a pointer to their workspace in
location &DFx, where x is the ROM number in
hex. Clearly, when several ROM images exist in
a single ROM slot, they can’t all use this one
location. In this case it will be necessary to alter
the individual images so that one claims as
much workspace as is needed by all of them,
and then each uses its own portion of this. [g

37

Using a Video Digitiser

Rupert Thompson offers a program to simplify using the Watford Electronics
Video Digitiser.

The Watford Electronics Video Digitiser is a
very useful upgrade for the humble model B.
However, the ROM based commands provided
to operate the system are intended to be used in
bigger programs. One reason for this is that if
you grab an image in immediate mode, it will
be ruined by the prompt being printed before
you can save the screen. The program
presented here provides a front-end for the
digitiser, as well as simplifying the setup
procedure. Unfortunately, the program only
works in MODE 0, and the top display line is
lost for the menu, although this is allowed for
when dumping and saving the picture.

The Digitiser utility in use

Start off by entering the listing and saving it.
Before running it, make sure that the digitiser
ROM is installed and active, and that the
digitiser is connected to both the computer and
a suitable camera. The red ‘Sync’ light on the
digitiser should flash periodically to indicate
this. If it doesn’t, check that everything is
connected and powered up, and make sure that
you are using the video out and not RF out
sockets on the camera. When the program is
RUN you see eight options which are selected
by moving the cursor to that which you require
and pressing the Space Bar. In subsequent
menus, ESCAPE returns you here, although this
will not work at other times.

38

GRAB gives a further menu. From here the
following options are available:

Snapshot grabs a single picture at the next
sync pulse. (Equivalent to *IMAGE).

Multiple continuously grabs images until
the Space Bar is pressed.

Delay makes the computer wait a specified
length of time before an image is grabbed.
This lets the operator take a picture of
himself, and is equivalent to the option
available on some still cameras. A delay of
about fifteen seconds is usually adequate.

Negative causes the next picture grabbed to
be in photographic negative mode. This is
equivalent to the ‘N’ option with *IMAGE.

DUMP allows the following to be accessed
from a menu:

Epson dumps the current screen to an Epson
compatible printer (Equivalent to
*IMPRNT).

Sparkjet dumps to an Acorn/Olivetti
Sparkjet printer (Equivalent to *OPRINT).

Aspect allows the Aspect Ratio of the dump
to be altered, and defaults to 100. (See page 9
of the Digitiser Operating Manual for more
information).

IMSAVE and IMLOAD are the equivalents of
*IMSAVE and *IMLOAD, saving and loading
screens in compressed form. However, such
screens are of no use to packages such as AMX
Pagemaker, so the options SCRSAVE and
SCRLOAD save and load ordinary,
uncompressed MODE 0 screens.

A final word about using digitised images with
art programs - they will expect the image to be
saved as a normal screen (use the SCRSAVE
option. For an existing screen, the program can
load it using IMLOAD, and resave it with

Beebug August/September 1989

Using a Video Digitiser

SCRSAVE). In addition AMX Pagemaker (Stop
Press) requires that the image be a photo-
graphic negative. Thus you should use the
Negative option *IMAGE N) when grabbing a
picture for Pagemaker, or if you wish to use a
screen which was previously grabbed not as a
negative, you can load the screen into
Pagemaker, open a window around it and use
the Invert Window option to convert it.

10 REM Program Digitiser Front End
20 REM Version B1.0

30 REM Author Rupert Thompson

40 REM BEEBUG August/September 1989
50 REM Program subject to copyright

100 MODEO
110 PROCvar
120 ON ERROR CLS:REPORT:END
130 exit%=FALSE
140 REPEAT:PROCmenu:UNTIL exit%
150 MODE7
160 *FX229
170 END
1010
1020 DEFPROCvar
1030 c$=CHR$13+CHR$127
1040 DIMmenus$ (8)
1050 im$="":asp$="100"
1060 VDU23,1,0:0:0:0:
1070 *FX229,255
1080 ENDPROC
1090 :
1100 DEFFNbar(x,y,n,m$,f,1) :LOCALI,t,c$
1110 *fx4,]1
1120 PROCextract (m$,n)
1130 IF f THEN PROClist
1140 Q=0:nv=0:REPEAT:COLOUR129:COLOURO:
PRINTTAB (x, y+Q) ;" ";menu$ (Q) ; SPC (1-LENme
nu$ (Q)) ;
1150 REPEAT:G=GET
1160 IFG=&8B THENnv=Q-1
1170 IFG=&8A THENnv=Q+1
1180 IFnv<0 THENnv=0 ELSEIFnv>n THENnv=
n
1190 UNTILG=&8A ORG=&8B ORG=32 ORG=&88
1200 COLOUR128:COLOUR1 :PRINTTAB (x,y+Q) ;
" ".menu$ (Q) ; SPC(1-LENmenu$ (Q)) :Q=nv:UNT
ILG=32 ORG=&88:IFG=&88 THENQ=100
1210 *fx4
1220 =Q
1230 .
1240 DEFPROClist:COLOUR1:COLOUR128
1250 LOCALI

1260 FORI=0 TOn:PRINTTAB (x+1,y+I);menu$
(I) :NEXTI:ENDPROC

1270 ¢

1280 DEFFNgetcha (v$) :REPEAT:G=GET:UNTIL
INSTR (v$,CHRSG) >0 ORv$="" ORINSTR(c$,CHR
$G)>0:=G

1290 :

1300 DEFFNenter (x,y,1,0$,v$,p$)

1310 c$=CHR$13+CHR$&88+CHRS&8A+CHRS&8B+
CHR$9+CHRS$&87+CHRS127

1320 LOCAL1iS$:i$=0$

1330 *fx4,1

1340 COLOURO:COLOUR129:PRINTTAB (x,y) ;"
":p$;SPC(142)

1350 x=x+LENp$+2:PRINTIAB (X,y) ;0$;

1360 REPEAT:G=FNgetcha (v$)

1370 IFG=127 ANDLENo$>0 THENoS=LEFTS (0$
,LENoS$-1) :PRINTTAB (x+LENo$+1,y) ; CHR$127;

1380 IFG>31 ANDG<127 ANDLEN0$<1 THENoS=
0$+CHRS$G: PRINTCHRSG;

1390 IFG=&87 THENo$="":PRINTTAB(x,y) ;SP
C(l) ;TAB(x,V);

1400 IFG=9 ANDoS$="" THEN0S$=1$:PRINTTAB (
X, V):08;

1410 UNTILG=13 OR(G>&87 ANDG<&8C)

1420 flag=1:IFG=13 ORG=&8A THENflag=-1
ELSEIFG=&89 THENflag=-100

1430 *fx4

1440 COLOURL:COLOUR128:PRINTTAB (x-LENp$
=2, %) ;" Nepbilt 65, SD0 (14 L -TENGS

1450 =o0$

1460

1470 DEFPROCextract (m$,n)

1480 LOCALt,I:t=0:FORI=0TOn:menu$(I)=""
:REPEAT:t=t+1:c$=MID$ (m$,t, 1) :menu$ (I)=m
enu$ (I)+cS$:UNTILcS="*":menu$ (I)=LEFTS (me
nu$ (I),LENmenu$ (I)-1) :NEXTI:ENDPROC

1490 :

1500 DEFFNlotus (m$,n)

1510 LOCALQ,I

1520 PRINTTAB(0,0);SPC(80);

1530 *fxd, 1

1540 PROCextract (m$,n) :FORI=0 TOn:PRINT
TAB(1*10,0) ;menu$ (I) :NEXTI

1550 Q=0

1560 REPEAT:REPEAT:COLOURO:COLOUR129:PR
INTTAB (Q*10, 0) ;menu$ (Q) ; SPC (9-LENmenus$ (Q
)); :G=GET:UNTIL G=&88 ORG=&89 ORG=32 ORG
=27

1570 COLOUR1:COLOUR128:PRINTTAB(Q*10,0)
;menu$ (Q) ; SPC (9-LENmenu$ (Q)) ;

1580 IFG=&88 ANDQ>0 THENQ=Q-1 ELSE IF G
=§£89 ANDQ<n THENQ=Q+1

1590 UNTILG=32 ORG=27

1600 *fx4

Beebug August/September 1989

39

Using a Video Digitiser

1610 IFG=32 THEN=Q ELSE=-1

1620 :

1630 DEFPROCmenu:LOCALQ

1640 Q=FNlotus ("Grab*Dump*IMSave*IMLoad
*SCRSave*SCRLoad*OSCLI*Quit*",7)

1650 IFQ=0 THENPROCgrab

1660 IFQ=1 THENPROCdump

1670 IFQ=2 THENPROCimsave

1680 IFQ=3 THENPROCimload

1690 IFQ=4 THENPROCscrsave

1700 IFQ=5 THENPROCscrload

1710 IFQ=6 THENPROCstar

1720 IFQ=7 THENexit%=TRUE

1730 ENDPROC

1740 ¢

1750 DEFPROCgrab:LOCALQ

1760 im$=""

1770 REPEAT

1780 Q=FNlotus ("Snapshot*Multiple*Delay
Negative", 3)

1790 IFQ=0 THENOSCLI ("WIMAGE "+im$)

1800 IFQ=1 THENREPEAT:OSCLI ("WIMAGE "+i
m$) :UNTIL INKEY (30)=32

1810 IFQ=2 THENPROCdelay

1820 IFQ=3 THENPROCnegative

1830 UNTILQ<3

1840 ENDPROC

1850 :

1860 DEFPROCnegative

1870 IFim$="N" THENim$="" ELSE im$="N"

1880 ENDPROC

1880 :

1900 DEFPROCdelay:PRINTTAB(0,0);SPC(79

1910 D%=VALFNenter(0,0,2,"","0123456789
","Delay (Secs):")

1920 PRINTTAB(0,0);SPC(80);

1930 PRINTTAB(0,0);"Counter: ";:TIME=0:
REPEAT :PRINTTAB (10, 0) ; SPC(2) ; TAB(10,0) ; (
(D%*100) -TIME)DIV100:UNTILTIME=D%*100

1940 OSCLI ("WIMAGE "+im$) :ENDPROC

1950 ¢

1960 DEFPROCdump : LOCALQ

1970 REPEAT

1980 Q=FNlotus ("Epson*Sparkjet*Aspect*"
r2)

1990 IFQ=0 THENPROCprint ("WIMPRNT")
2000 IFQ=1 THENPROCprint ("WOPRINT")
2010 IFQ=2 THENasp$=FNasp
2020 UNTILQ<2

2030 ENDPROC

2040 :

2050 DEFFNasp

2060 LOCALvS

2070 PRINTTAB(0,0) ;SPC(80);

456789", "Aspect Ratio:") :UNTILVALvS>0 AN
DVALv$<=200

) ;"Press any key to begin dumping ...";:
G=GET :COLOUR129:PRINTTAB (0, 0) ; SPC(80) ; :C
OLOUR128

n)

00 7FFE")

00")

2080 REPEAT:v$=FNenter (0,0, 3,asp$,"0123

2090 =v$

2100

2110 DEFPROCprint (p$)

2120 PRINTTAB(0,0);SPC(80) :PRINTTAB (0,0

2130 OSCLI (p$+" "+asp$)

2140 ENDPROC

2150

2160 DEFPROCimsave

2170 f$=FNfile

2180 PRINTTAB(0,0) ;SPC(80);

2190 IFf$<>"" THENOSCLI ("WIMSAVE "+f$)
2200 ENDPROC

2210 ¢

2220 DEFPROCimload

2230 f$=FNfile

2240 IFf$<>"" THENOSCLI ("WIMLOAD "+f$)
2250 ENDPROC

2260 :

2270 DEFFNfile:LOCALfS$

2280 PRINTTAB(0,0);SPC(80);

2290 f$=FNenter(0,0,9,"","","File-name:

2300 PRINTTAB(0,0) ;SPC(80);

2310 =f$

2320 :

2330 DEFPROCscrsave

2340 f$=FNfile

2350 IFf$<>"" THENOSCLI ("SAVE "+f£S+" 30

2360 ENDPROC

23170 :

2380 DEFPROCscrload

2390 f$=FNfile

2400 IFf£S$<>"" THENOSCLI ("LOAD "“+£S$+" 30

2410 ENDPROC
2420 :
2430 DEFPROCstar
2440 CLS:REPEAT
2450 PRINT’ : INPUT"*"m$:PRINT:0SCLI (m$)
2460 PRINT'"Press any key to continue";
2470 UNTILGETS<>"*"
2480 CLS:ENDPROC
2490 :
2500 DEFPROCerror
2510 PRINTTAB(0,0) ; SPC(80) :REPORT
2520 PRINT". Press any key";:G=GET
2530 ENDPROC
@

40

Beebug August/September 1989

512

by Robin Burton

Since writing the
last Forum I've been
busy copying BBC
BASIC discs and
several points arise which are worth
mentioning, so there’s a slight change of plan
this month.

Dos+

RULES OF PLAY

First I must thank everyone who included a
letter with their disc. Even if it was only a note
to observe the formalities, the courtesy was
much appreciated. It helped to make the job
much more pleasant and personal.

The second point is that a number of Forum
readers are recent converts to the 512 and/or to
BEEBUG. As many said, it's the only magazine
to cater for the 512 regularly. And so shall it
continue with the enthusiasm you’ve shown.
You might like to know that almost 140 copies
of BBCBASIC have been dispatched to date,
and more discs are still arriving.

Newer readers might therefore have missed
these items which were included about six
months ago, so here they are again. Bear with
me because I may have another offer in a
month or two.

You may not all realise it but I do the disc
copying and letter answering myself. I'm not
employed by BEEBUG and it makes a
difference. If you write to me and expect a
direct reply these are the rules. You must
supply adequate return postage and packaging.
Packaging should either be self addressed, or
should include a suitable label, with sufficient
postage to cover any items to be returned.

Quite a few will have had excess postage to pay.
Sorry, but if I offer free software and a free
copying service, I do not pay the postage as well.

Overseas readers can send international
postage coupons instead of stamps - get them
from your post office. As you don’t know our

Beebug August/September 1989

512 Forum

postal rates just send the same value as it cost
you to write to me. If it’s not exactly right I'm
not too worried. As I said last time, all I ask is
that you make the effort.

For example Heinrich Lamm generously sent 10
Deutschmarks saying have a drink with the
change. I did Heinrich, especially welcome as it
was so warm, but the bank also charged me half
its value to change it. Adrian van der Veen sent
an extra disc instead of postage, which I thought
was a reasonable offer. Professor Isaacson sent a
sterling bank draft from Capetown, also all
right, except it was payable to BEEBUG not to
me, so a minor complication there.

In fact the majority of you did things right, for
which I thank you. With this number of discs to
copy and return anything that simplifies the job
is welcome. A minute or two saved on each
one, even writing out your address, soon adds
up to a considerable amount of time. This leads
me nicely to the next point.

DISC FORMATS

This time I'm not complaining, especially since
I didn’t specify a particular 512 disc format in
the article, but after copying a few discs lately I
found some of the figures interesting. Perhaps
you might think so too - I'd never timed such
an operation before.

So as to make the copying operation as fast as
possible I created a 300K RAM disc and put all
the BBCBASIC files into it, which left 68K of
RAM disc unused. Point number one - although
the files actually contain 186K or so of real data,
the files occupy 232K plus. The minimum DOS
file allocation size (one cluster) accounts for the
‘missing’ 46K.

This is worth remembering if you want to find
the amount of space occupied by a directory or
a group of files on disc. The normal ‘DIR’
command gives you only the total free space
remaining for the whole disc, not the amount
used (or left) by a directory.

41

512 Forum

‘SDIR’ will give you the space used by the
contents of a directory, but this time it’s the
total size of the data in the files, not the total
disc space allocated to them. As in the
BBCBASIC copying exercise, it's easy to ‘lose’
50K or so. The more small files there are, the
bigger the total discrepancy.

It may seem a small point, but I created a batch
file to set up the disc copy, so I allowed 300K
for the RAM disc simply because I knew it
would be more than big enough. There’s just no
straightforward way to find out exactly how
much space is needed, other than adding
together the sizes of all 59 files, rounding up
each as appropriate, so I didn’t.

DISC SPEED

A RAM disc is by far the best way to do this
sort of mass copying job, because it's several
times quicker than a winchester (no tube, you
see) and many, many times faster than floppies.
The first figure I noted was the time to copy the
files to the RAM disc from my 800K master
disc. This was the first job for each copy session
and it took 48 seconds.

Most of you sent an 800K disc - not very
surprising, we all know it’s the quickest format,
don’t we? Well, it seems we don’t. I had several
360K discs, two of 720K and perhaps a dozen or
more of 640K. Thankfully the rest were 800K.

As I said, I've never bothered to time the
different formats before, I know that 800K is the
quickest and use nothing else unless there are
special reasons. Well, when you’ve got 15 or 20
discs a day to copy you have to find something
else to do, so I timed each of the different
formats, especially after coming across the first
640K disc (to be honest at first I thought it was
faulty). Here are the results:

800K - 2 mins 12 secs (1)

720K - 3 mins 51 secs (1.75)
360K - 4 mins 52 secs (2.21)
640K - 7 mins 48 secs (3.48)

The figure in brackets is the time as a multiple
of the 800K’s time. Interesting? I thought so. As
an extra experiment I also tried an 800K to 800K

42

copy with the same data but using the disc
backup in ‘DISK’ and it took 4 minutes 48
seconds. Of course I couldn’t use this for two
different formats. As not everyone labelled their
disc with its format, file to file copying was the
only method guaranteed to work for all discs.

I suppose if I'd been asked beforehand I would
have forecast that 360K would be the slowest, if
not by very much. Since the copy was from a
RAM disc that ‘accounts for very little time, in
fact just about 4 seconds for 200K. The
remainder of the time is attributable to the
floppy disc. Regardless of the RAM disc’s
contribution, the differences can be explained
only by the different formats.

It really puts things in perspective when you
realise it would still be quicker to first re-format
640K discs to 800K and then to copy them. For
this reason I didn’t time a 640 to 640 file copy. I
leave it to you if you want to know; I'm happy to
remain ignorant. I know why the 640K time is so
poor, but I'd never thought about it before. The
only 640K DOS disc I possess is my boot disc.

So why is 640K so slow? The answer is that it's
the only 512 disc format that uses the ADFS
ROM in the Beeb. Whatever the strengths of
Acorn’s ADFS, speed isn’t one of them. A while
ago I disassembled 6502.5YS and was interested
to see that no IBM or CP/M formats go
anywhere near ADFS - obvious really, but as
I've said, it’s one of those things you never
think about until there’s a reason.

You’ll find the more files on a 640K disc the
worse performance becomes. With only a dozen
files it’s not too bad, with 60 it's abysmal, with
a couple of hundred I don’t want to know. This
is due to the way the (DOS) directories and files
are managed in ADFS. ADFS sees the DOS disc
as a single file, so reading or updating of files or
directories is done (by DOS) using byte access
only. This is the way a hard disc is handled too,
but with a Winchester’s speed it hardly matters;
with floppies it does.

You can try these test yourself if you're curious
and you’ve some spare time. You may get
slightly different results, but they’ll be close - I

Beebug August/September 1989

512 Forum

don’t use Acorn’s ADFS because it’s so slow.
For example, I just loaded Acorn’s ADFS into
sideways RAM and booted DOS from floppy.
The result including executing the
‘AUTOEXEC’ file was 1 minute 3 seconds for
Acorn and 38 seconds using my normal ADFS.
‘Acorn formatted’ 640K copy times are longer
too, but for all the non-ADFS formats the
results should be about the same.

What does all this lead to? Two things. First, if
you habitually use 640K discs (or the other sizes
to a lesser degree) do yourself a big favour and
convert your discs to 800K immediately. Not
only will you find you have a number of spare
discs, DOS applications and files will load very
much faster. The second point? If you should
have cause to send me a disc, please - only 800K
in future.

PROBLEM SOLVER UPDATE

Thanks to everyone who contributed to this.
Overall the view is rather mixed, some are
happy with it, some not so. This leaves us more
or less where we were in the last Forum. I know
that at the rate of one Forum per month,
developments appear slowly, so here’s a
progress update.

I wrote to Shibumi Soft again on June 10th and
received a reply yesterday, July 4th. Further
correspondence is needed, but with luck there’ll
be something more final in the next Forum. My
advice for now is to hold on, but if you can’t
wait bear in mind the points most commonly
mentioned by Forum readers and (mostly)
confirmed by Shibumi Soft:

1. It runs better with DOS+ 1.2, and is decidedly
delicate with 2.1 in all machines.

2. Use it only with applications that don’t work
without it. There is a list, not supplied as
standard, so you're left with trial and error for
problem packages. It can definitely cause
problems with programs that do run correctly
otherwise.

3. One or two packages (Elite) do run with it,
but take about four minutes to start after
loading. That’s long enough to think it has

Beebug August/September 1989

failed or hung, perhaps it hasn’t. Go and make
a cup of coffee then see how it’s getting on
afterwards.

4. It does not work with the PC+, with either
DOS+ 1.2 0r2.1.

5. It's copy protected, therefore you can’t run it
from a hard disc, nor can you make a back up

copy.

6. The ‘menu’ mentioned in the documentation
doesn’t exist. (They say it’s invisible!)
Operation is from the DOS prompt and is not
confirmed, nor can current settings be
interrogated or displayed. This is perhaps the
worst point; you're left entirely in the dark even
if everything is alright.

7. I still can’t get it to run correctly, even with
1.2 (Shibumi Soft say four others are in the
same position and they don’t know why).

And Finally...

Roger Gelder (who’s also had no luck with
Problem Solver) writes asking if anyone has
information on graphics packages for the 512.
He’s heard that TURBO CAD V.1 is OK and
knows of Ventura, but naturally is mostly
impressed by its price. Information please, (not
on GEM) if you use a graphics package.

MS DOS UTILITY

We have included an MS DOS utility by
Bernard Hill on this month’s disc called
FIND.EXE. This will locate a specified string
within an ASCII file by listing all lines
containing the given string. A documentation
file is also included on the disc.

The files will need to be transferred to the
Master 512 using:
A:
GETFILE :1.FINDEXE FIND.EXE /DISC
GETFILE :1.HOWUSE HOWUSE.DOC /DISC

The documentation file also describes a second
MS DOS utility which we expect to include on
next month’s magazine disc.

B
43

44

Spin a Disc (5) ‘

David Spencer continues his series on disc systems with a look at the
way DFS and ADFS use the disc space.

So far, we have concentrated
on the way the disc
controller lays out the fields
on a disc. This month we
will turn our attention

towards the filing systems,

and show how they make
use of the disc space when
storing files.

START AT THE BOTTOM
The way in which DFS uses
disc space is much simpler
than the method used by
ADFS, so we will start with
the former. A DFS disc has a
directory structure which is
essentially flat. This means
that while files can be in
different directories, all
these directories appear
together in a single
catalogue - there is no
concept of one directory
being contained within
another. Because of this very
simple structure, the only
information DFS needs to
store on disc (apart from the
files themselves) is a
catalogue which contains
the information for each file,
including where it can be
found on disc. From this,
DFS can locate any file, and
also deduce how much free
space is available on the
disc, and where it is
associated.

The DFS catalogue takes up
the first two sectors on track
zero of each disc (or each
side for a double sided disc).

Table 1 shows the format of these two sectors.
The first eight bytes of each sector contain
information which is common to the disc (or
the side of the disc) as a whole.

The disc title is as set using *TITLE, and if it is
less than twelve characters long then the extra
bytes are filled with zeros. The Master sequence
number is the number which appears after the
title when the disc is catalogued. This indicates
how many times the disc has been written to
since it was formatted. It is stored in a format
known as Binary Coded Decimal (BCD) which
means that the byte is split into two four-bit
nibbles, each holding a digit of the number in
binary. For example, the number 68 would be
represented by the BCD value 0110 1000. The
next byte holds the number of catalogue entries
(the number of files on the disc). This is
multiplied by eight so that it can act as an index
into the rest of the catalogue, as we will see
shortly. The size of the disc is represented by a
ten bit number which holds the total number of
sectors on the disc. As each sector is 256 bytes
long, this is simply the disc size (in K) times
four. Therefore for a 200K disc, the size in
sectors is 800 (&320). The final piece of
information held in the catalogue header is the
boot option, as set by *OPT 4.

The remainder of the two catalogue sectors are
split into 31 entries of sixteen bytes - one for
each possible file. Each entry is split between
eight bytes in the first sector, and eight in the
second. Therefore, the first file’s entry
occupies bytes 8-15 of both sectors, the second
bytes 16-23 and so on. For each entry, the first
seven bytes contain the file’s name, which is
padded with spaces if it is less than seven
characters. The eighth byte contains the
directory letter, and also a bit indicating
whether the file is locked against deletion or
not. This is indicated by setting bit seven of
the byte. Therefore, for a locked file in

Beebug August/September 1989

Workshop - Spin a Disc

directory ‘$’, the eighth byte would contain
ASC”$” + &80 which is &A4.

The eight bytes of each entry contained in sector
1 contain the load and execution address of the
file, its length, and the sector number at which it
starts. The exact format is shown in table 1.

One thing to note is that the load and execute
addresses are only allocated 18 bits, while
internally 32-bit numbers are used.
Furthermore, it is usual for addresses of the
form FFFFxxxx to refer to the Beeb itself, and
any other address to refer to the second
processor. With the 18-bit addresses of the DFS,

the top sixteen bits are reduced

Sector 0
Bytes Contents
0-7 First eight bytes of title
8-14 First filename
15 First directory character and lock bit

Sector 1
Bytes Contents
0-3 Last four bytes of title
Master sequence number

Bits 4-5: *OPT4 boot option
Bits 0-7 of load address
Bits 8-15 of load address
10 Bits 0-7 of exec address

11 Bits 8-15 of exec address

12 Bits 0-7 of file’s length

13 Bits 8-15 of file’s length

O NG

Bits 4-5: Bits 16-17 of the file’s length

15 Bits 0-7 of the files start sector

Bytes 8-15 are repeated for up to 31 entries

Number of catalogue entries multiplied by eight
Bits 0-1: high two bits number of sectors on disc

14 Bits 0-1: Bits 8-9 of the start sector of the file
Bits 2-3: Bits 16-17 of the file’s load address

Bits 6-7: Bits 16-17 of the file’s execution address

Bytes 8-15 are repeated for up to 31 entries

down to just two, and addresses
of the form 3xxxx refer to the
Beeb, and any other to the
second processor.

ADFS DISCS

With ADFS discs, the situation
is a different kettle of fish as
they say. ADFS supports a
hierarchical directory which
means that a directory can
contain a number of sub-
directories, which in turn can
contain further sub-directories
ad infinitum (well up to the
limit of disc space). Therefore it
is not possible to have a single
disc catalogue stored in a fixed
place on the disc. Instead, each
directory is stored on the disc in
much the same way as a normal
file, the only exception to this
being the so-called root
directory. This is the top level
directory, and is always stored
in sectors two to six of the disc.

Table 1. The DFS catalogue structure

You might expect the catalogue to be stored in
alphabetical order of filenames, as this is how it
appears when *CAT is used. However, this is
not the case and instead it is stored in the order
in which the files are stored on the disc, with
the last file first. The reason for this is that it is
then much easier for the DFS to work out how
many free sectors are on the disc, and how they
are distributed. Therefore, whenever an entry is
added to, or removed from, the catalogue, it is
re-ordered so as to keep the entries in the
correct sequence.

Beebug August/September 1989

The whereabouts of all the other

directories is determined by

their entry in their parent’s
directory. In other words, a sub-directory can be
thought of as a file, the contents of which are
the sub-directory.

Table 2 shows the contents of an ADFS
directory. You will see that all the space from
byte 5 to 1226 contains the details of up to 47
entries. Unlike with DFS, the load and
execution addresses are the full 32 bits long.
The master sequence number for the
directory (stored in bytes 0 and 1274) is
similar to that used under DFS, and the

45

Workshop - Spin a Disc

master sequence number stored for each
entry is an indication of the order in which
the files were written. The four bytes which
spell ‘Hugo’ appear at the start and end of
the directory, and these are used to indicate
that this is indeed a directory. It is when
these are corrupted that a Broken Directory
error occurs. Incidentally, Hugo comes from
Hugo Tyson who wrote the original version
of ADFS. The file attributes (R, W, L etc.) are
coded into the file’s name, by setting or
clearing bit 7 of the first five characters. The
meaning of these bits is:
1st char - Bit 7 set => R attribute set
2nd char - Bit 7 set => W attribute set
3rd char - Bit 7 set => L attribute set
4th char - Bit 7 set => object is a
directory (else it is a file)
5th char - Bit 7 set => E attribute set

If the name is less than ten bytes then it is
terminated with a carriage return, and the
remaining bytes are ignored. The same
encoding applies to the directory name (bytes
1228-1237) which is the same as the name of
the directory in its parent. This is different to
the directory title (bytes 1241-1259) which is as
set with *TITLE. The only other entry is the
start sector of the parent directory held in
bytes 1238-1240. This is used when a ‘'
appears in a pathname, meaning the parent
directory. For the root directory, its parent is
itself, so *CAT $.” will in fact merely catalogue
the root.

THE FREE SPACE MAP

Another consequence of having multiple
catalogues is that it is no longer possible to
locate the free space on a disc by examining the
catalogue. (Well it is, but it would be a very
lengthy process because the catalogue for each
directory would need to be examined.) Instead,
ADFS maintains a free space map (FS map)
which holds details of all the areas of free space
on the disc. This map is stored on the first two
sectors of the disc (sectors 0 and 1 of track 0),
and is read into memory when the disc is
*MOUNTed. This allows ADFS to access it
quickly without having to re-read the disc

46

Bytes Contents

0 Directory sequence number
1-4 The string “‘Hugo’

5-14 Filename of the first file
15-18 Load address of first file
19-22 Exec address of first file
23-26 Length of first file

27-29 Start sector of first file

30 Sequence number of first file

Bytes 5 to 30 are repeated for up to
47 entries

1227
1228-1237
1238-1240
1241-1259
1260-1273
1274

Set to zero

Directory name

Start sector of parent
Directory title

Reserved (set to zero)
Directory sequence number
(Must be same as byte 0)
The string ‘Hugo’

Set to zero

1275-1278
1279

If there are less than 47 entries, then the
first byte after the last entry is set to zero
to indicate this.

Table 2. The ADFS directory format

every time. However, each time a file is saved
the free space map is updated and this is
written back to the disc so that it is in a
consistent state.

The format of the free space map is relatively
straightforward. The first 246 bytes of sector
0 hold 82 three-byte entries, these giving the
start sector for each area of free space on the
disc. The corresponding 246 bytes of sector 1
hold the lengths of the free spaces. In
practice there are unlikely to be as many as
82 separate chunks of free space, and
therefore only a portion of the entries will be
used. Of the remaining bytes, bytes 252 to
254 of sector 0 hold the total number of
sectors on the disc. For a 40 track single
sided disc this will be &280, while for an 80
track double sided disc it is &A00. Byte 254
of sector 1 holds a pointer to the end of the

Continued on page 58
Beebug August/September 1989

¥ 4 Aces High & ¢

Geoff Steeper describes a delightfully simple game of patience known as Aces High.

This is a form of patience often called Aces High
and the rules are quite simple. The object of the
game is to remove all the cards from the table, and
finish with the Aces at the head of each column.

Just type the program in and save it before you
start to play. The cards are dealt four at a time
one to each of four columns. A card can only be
(R)emoved if there is a card of the same suit
and a higher denomination at the bottom of one
of the other columns. Aces are the highest value
followed by Kings, Queens, Jacks and Tens,
with the other cards in descending order. If one
column is empty then any card from the bottom
of another column can be (M)oved into the
empty space. This is important because it can
give access to other cards that can then be
removed. When the cards at the bottom of each
column are of different suits then four more
cards must be (D)ealt.

This process continues until all the cards have
been dealt. If you get all the Aces to the top and
there are cards still left in the deck, you must
continue until all the cards have been dealt. You
then must continue to make legal moves until
only the four Aces remain, one in each column,
the position known as Aces High.

Although it may sound complicated, this is a
delightfully simple yet addictive game of
patience.

Beebug August/September 1989

10 REM Program ACES HIGH

20 REM Version B0.6

30 REM Author Geoff Steeper

40 REM BEEBUG August/September 1989
50 REM Program subject to copyright

100 ON ERROR MODE7:REPORT:PRINT" at 1i
ne ";ERL:END

110 DIMcards$ (4,13) :DIMsuit$ (4,13)

120 PROCdefine:MODE1

130 REPEAT:PROCinit

140 REPEAT

150 IF deck%=0 VDU7:PRINTTAB(1,29)"You

still have a Legal Move";:GOT0190

160 PROCdeal

170 COLOURO:COLOUR130

180 PRINTTAB(1,29);deck%;" Cards Left
in Deck "

190 REPEAT:REPEAT

200 OK=0:PROCreval

210 IF rowl%<4 rowl%=2:card$(1,0)="W":
suit$(1,0)="w"

220 IF row2%<4 row2%=2:card$(2,0)="X":
suit$(2,0)="x"

230 IF row3%<4 row3%=2:card$(3,0)="Y":
suits(3,0)="y" -

240 IF row4d%<4 rowd%=2:card$(4,0)="2":
suit$(4,0)="z"

250 COLOURO:COLOUR130

260 PRINTTAB(1,30)" (R)emove or (M)ove
or (D)eal or (Q)uit"

265 Move$=CHRS (GET AND &DF)

270 UNTIL Move$="R" OR Move$="M" OR Mo
ve$="D" OR Move$="Q" :PRINTTAB (0, 30) SPC39

280 IF Move$="R" PROCrem

290 IF Move$="M" PROCmove

300 IF Move$="Q" CLS:GOT0130

310 IF gone%=48 Move$="D"

320 UNTIL Move$="D"

330 UNTIL deck%=0 AND suit$(1,0)<>suit
$(2,0) AND suit$(1,0)<>suit$(3,0) AND su
it$(1,0)<>suit$(4,0) AND suit$(2,0)<>sui
t$(3,0) AND suit$(2,0)<>suit$(4,0) AND s
uit$(3,0)<>suit$ (4,0)

340 PROCfinish

350 UNTIL key$="N"

360 MODE7

370 END

380 :

1000 DEF PROCinit

1010 deck$%=52:gone%=0

1020 rowl%=2:row2%=2:row3%=2:rowd%=2
1030 vDU23,1,0:0:0:0;

47

Aces High

1035 vpu19,2,2,0,0,0

1040 *FX11,0

1050 COLOUR130:CLS:COLOUR(:PRINTTAB (12,
10);"A €k S H I G H":TAB(12,17) :"By .G
eoff Steeper";TAB(4,25)"Press 'SPACE' to

Shuffle and Deal";

1060 REPEAT UNTIL GET=32:CLS

1070 PRINTTAR(7,0);:"1":TaAB(15,0):"2";TA
Bl23,0):"3"; TAB(31,0) : "a"

1080 shuffled$="AHACADAS2H2C2D2S3H3C3D3
S4HAC4DAS5H5C5D5S6H6C6D6STHTCTD7S8HBCEDS
S9HICIDISTHTCTDTSIHICIDISQHQCODQSKHKCKDK
sll

1090 PROCshuffle:PROCshuffle

1100 ENDPROC

1110 ¢

1120 DEF PROCshuffle

1130 deck$="":FOR shuffle%=51 TO 0 STEP
-1

1140 random%=RND (shuffle%) :deck$=deck$+
MIDS (shuffled$, 2*random$+1, 2) :shuffled$=
LEFTS (shuffled$, random%*2) +RIGHTS (shuffl
ed$, (shuffle%-random%) *2)

1150 NEXTshuffle%:shuffled$=deck$

1160 ENDPROC

1170 :

1180 DEF PROCdeal

1190 col%=0

1200 FOR col=1 TO 4

1210 col%=col%+1l

1220 card$=LEFTS$ (deck$, 1) :deck$=RIGHTS (
deck$, LEN (deck$) -1) : suit $=LEFTS$ (deck$, 1)
:deck$=RIGHTS (deck$, LEN (deck$) -1)

1230 xcoord%=8*col%-4

1240 IF col%=1 row%=rowl%:rowl%=rowl%+2
:card$ (I, (rowl%-2) /2)=card$:suit$ (1, (row
1%-2) /2)=suit$

1250 IF col%=2 row%=row2%:row2%=row2%+2
:card$ (2, (row2%-2) /2)=card$:suit$ (2, (row
2%-2) /2)=suit$

1260 IF col%=3 row%=row3%:row3%=row3%+2
:card$ (3, (row3%-2) /2)=card$:suit$ (3, (row
3%-2) /2) =suit$

1270 IF col%=4 row%=row4%:rowd%=rowd%+2
:card$ (4, (rowd%-2) /2)=card$:suit$ (4, (row
4%-2) /2) =suit$

1280 PROCdisplay

1290 deck%=deck%-1

1300 NEXT col

1310 ENDPROC

1320 :

1330 DEF PROCdefine

1340 vpu23,224,0,8,28,62,127,62,28,8

1350 VDU23,225,0,54,127,127,121,82, 2

8,8
1360 VDU23,226,8,28,62,127,127,127,28,6

1370 VDU28,227,8,28 28,107,127,107,8,28
1380 ENDPROC

1390 :

1400 DEF PROCdisplay

1410 LOCAL temp,temp$,whole$,part,line$

,line, count,char

1420 IF card$="A" whole$="7*45*7" ELSE

IF card$="2" whole$="9*41*9" ELSE IF car
d$="3" whole$="9*20*20*9" ELSE IF card$=
"4" whole$="7*3%37x3*7" ELSE IF card$="5
" whole$="7*3*18*18*3*7" EISE IF card$="
6" wholeS$="7%3%]16*3%16*3%7n

1430 IF card$="7" whole$="7*3*4*11*3*16

*3%7" ELSE IF card$="8" whole$="7*3%4*11
*3*11#4*3+7" ELSE IF card$="9" whole$="7
3#9%3%4*4*3%9*3%7" ELSE IF card$="T"who
Le§="6*3% 444349344 *4* 346N

1440 IF card$="J" OR card$="Q" OR card$

="K" whole$="7*45*7"
1450 temp$=card$:IF card$="T" temp$="10

1460 whole$=whole$+"*":temp%=0:FOR coun

t%=1 TO LEN (whole$)-1

1470 IF MID$(whole$,count%,1)<>"*" AND

MIDS (whole$, count%$+1,1) <>"*" temp$=temp$
+STRINGS (VAL (MID$ (whole$, count%,1)) *10,"

ll)
1480 IF MIDS$ (whole$,count%,1)<>"*" AND

MID$ (whole$, count%+1,1)="*" temp$=temp$+
STRINGS (VAL (MID$ (whole$,count%,1))," ™)

1490 IF MIDS$ (whole$,count%,1)="*" temp$

=temp$+" xn

1500 NEXT count%:IF card$="T" whole$=te

mp$+10"

1510 IF card$<>"T" whole$=temp$+card$
1520 COLOUR131:COLOURL:IF suit$="D" cha

r$=224 ELSE IF suit$="H" char%=225 ELSE
IF suit$="S" char%=226:COLOURO ELSE IF s
uit$="C" char%=227:COLOURO

1530 FOR line%=0 TO 8:1ine$=MIDS (whole$

; (line%*7)41,17)

1540 FOR part=1 TO 7:IF MIDS$(line$,part

,1)="*" line$=LEFT$ (line$,part-1)+CHRS (¢
har%) +RIGHTS (1ine$, 7-part)

1550 NEXT part

1552 PRINTTAB (xcoord%, rows+line%);line$
1555 NEXT line%

1560 IF card$="A" PRINTTAB(xcoord%+2, ro

W%+4) ; "ACE"

1570 card$ ((xcoord%+4)/8,0)=card$

1575 suit$((xcoord%+4)/8,0)=suits

1580 ENDPROC

1590

1600 DEF PROCmove

1610 REPEAT:PRINTTAB(1,30);"Move Card f

rom Col.No,7";

48

Beebug August/September 1989

Aces High

1620 col%=GET-48
1630 UNTIL col%=1 OR col%=2 OR co0l%=3 O
R col%=4

1640 PRINTTAB(23,30);col%

1650 I%=1:REPEAT:move%=1%

1660 PROCcheckmove:I%=I%+1

1670 UNTIL OK OR I%>4

1680 IF OK=0 VDU7:ENDPROC

1690 PROCrem2

1700 card$=card$ (col%, (row%-2)/2) :suit$
=suit$ (col%, (row%-2)/2)

1710 card$ (move$,1)=card$:suit$ (move%,1
)=suit$

1720 IFmove%=1 xcoord%=4:rowl%$=rowl%+2

1730 IFmove%$=2 xcoord%=12:row2%=row2%+2

1740 IFmove%=3 xcoord%=20:row3%=row3%+2

1750 IFmove$=4 xcoord%=28:rowd%=rowd%+2

1760 row%=2:PROCdisplay

1770 ENDPROC

1780 :

1790 DEF PROCrem

1800 COLOURO:COLOUR130

1810 REPEAT:PRINTTAB(1,30);"Remove Card

from Col.No.?2";

1820 col%=GET-48

1830 UNTIL col%>=1 AND col%<=4

1840 PROCcheckrem

1850 IF OK=0 VDU7:ENDPROC

1860 PROCrem2

1870 gone%=gone%+l

1880 ENDPROC

1890 :

1900 DEF PROCrem2

1910 IF col%=1 PROCremove (4, rowl%) : row%
=rowl%:rowl%=rowl%-2

1920 IF col%=2 PROCremove (12, row2%) :row
$=row2%:row2%=row2%-2

1930 IF col%=3 PROCremove (20, row3%) : row
$=row3%:row3%=row3%-2

1940 IF col%=4 PROCremove (28, rowd%) :row
%=rowd%:rowd%=rowd%-2

1950 ENDPROC

1960 :

1970 DEF PROCremove (X%,Y$%)

1980 IF Y%<4 Y%=4

1990 cardS$=card$ (col%, (Y$-4)/2) :suit$=s
uit$(col%, (Y%-4)/2)

2000 FOR Step%=0 TO 8

2010 PRINTTAB (X%, Y%-2+Step%) SPC(8)

2020 NEXT

2030 IF Y%<=4 ENDPROC

2040 xcoord%=X%:row$=Y%-4:PROCdisplay

2050 ENDPROC

2060 :

2070 DEF PROCcheckrem

2080 IF col%=1 AND (suit$(1,0)=suit$(2,

Beebug August/September 1989

0) OR suit$(1,0)=suit$(3,0) OR suit$(1,0
)=suit$(4,0)) PROCcheckrem2

2090 IF col%=2 AND (suit$(2,0)=suit$ (1,
0) OR suit$(2,0)=suit$(3,0) OR suit$(2,0
)=suit$(4,0)) PROCcheckrem2

2100 IF col%=3 AND (suit$(3,0)=suit$(1,
0) OR suit$(3,0)=suit$(2,0) OR suit$(3,0
)=suit$(4,0)) PROCcheckrem2

2110 IF col%=4 AND (suit$(4,0)=suit$(1,
0) OR suit$(4,0)=suit$(2,0) OR suit$(4,0
)=suit$(3,0)) PROCcheckrem2

2120 ENDPROC

2130 :

2140 DEF PROCcheckmove

2150 IF move%=1 AND card$(1,0)="W" OK=1
2160 IF move%=2 AND card$(2,0)="X" OK=1
2170 IF move%=3 AND card$(3,0)="Y" OK=1
2180 IF move%=4 AND card$(4,0)="2" OK=1
2190 IF card$(col%,0)="W" OR card$(col%
,0)="X" OR card$(col%,0)="Y" OR card$(co
1%,0)="2" OK=0

2200 ENDPROC

2210 ¢

2220 DEF PROCcheckrem2

2230 IF VAL(card$(col%,0)) < VAL(card$(
1,0)) AND suit$(col%,0)=suit$(1,0) OK=1
2240 IF VAL(card$(col%,0)) < VAL(card$(
2,0)) AND suit$(col%,0)=suit$(2,0) OK=1
2250 IF VAL(card$(col%,0)) < VAL(card$(
3,0)) AND suit$(col%,0)=suit$(3,0) OK=1
2260 IF VAL (card$(col%,0)) < VAL(card$(
4,0)) AND suit$(col%,0)=suit$(4,0) OK=1
2270 ENDPROC

2280 :

2290 DEF PROCreval

2300 FOR C=1 TO 4

2310 IF card$(C,0)="A" card$(C,0)="14"
2320 IF card$(C,0)="K" card$(C,0)="13"
2330 IF card$({(c,0)="Q" card$(C,0)="12"
2340 IF card$(c,0)="J" card$(c,0)="11"
2350 IF card$(C,0)="T" card$(C,0)="10"
2360 NEXT C

2370 ENDPROC

2380 ¢

2390 DEF PROCfinish

2400 IF gone%=48 PRINTTAB(0,29);SPC119;
TAB(12,20) "ACES ARE HIGH";TAB(14,22)"WEL
L DONE" :VDU7:G0T02420

2410 PRINTTAB(1,29);"HARD LUCK - YOU HA
VE RUN OUT OF MOVES"

2420 VDU7:PRINTTAB(5,31);"Do you want a
nother go (Y/N)?";

2430 REPEAT:key$=CHRS (GET AND &DF) :UNTI
L key$="Y" OR key$="N"

2440 ENDPROC

]

A General Purpose Line-Input Function (continued from page 33)

1160 ParBlk!12=HelpMess

1170 ParBlk?14=L%

1180 ParB1k?15=135

1190 ParBlk?16=8

1200 $PromptMessage=P$

1210 $InputBuffer=I$

1220 $HelpMess=CHRS$ (40-LENH$/2)+CHR$23+
H$

1230 X%=ParBlk MOD256:Y%=ParBlk DIV256:
CALLMc

1240 Return%=(ParBlk?3)AND254:EditMode%
=(ParBlk?3)AND1

1250 =$InputBuffer

1260 :

1270 DEF PROCDemo

1280 DIM ParBlk 20,PromptMessage 80, Inp
utBuffer 255,HelpMess 255

1290 READ N%

1300 DIM P$(N%),PX% (N%),PY% (N%), Input$ (
N%) , IX%(N%),IY% (N%),Len% (N%),HS (N%)

1310 DIM Flagl% N%,Flag2% N%

1320 DIM ed$(1):ed$(0)="Insert ":ed$(
1)="Overwrite"

1330 FOR i%=0 TO N%-1:READ P$(i%),PX%(i
%) ,PY%(i%) , Input$ (1%), IX%(1%),IY%(i%),Le
n%(i%) ,H$(i%),Flagl%?i%,Flag2%?i%

1340 Dummy$=FNEditLine(P$(i%),PX%(i%),P
Y% (i%) ,Input$ (i%), IX%(1i%),IY%(i%),Len% (i
%) ,H$ (1%) ,Flagl%?i%,Flag2%?i%, TRUE)

1350 NEXT

1360 1%=0:PROCMode

1370 REPEAT:ParB1k?18=0

1380 REPEAT:Input$ (i%)=FNEditLine (P$(i%
) ,PX%(1%) ,PY%(1i%), Input$ (i%), IX%(i%),IY%
(1%),Len% (i%),H$(i%) ,Flagl%?i%,Flag2%?i%
,FALSE)

1390 IF Return%=2 PROCMode

1400 IF Return%=4 PROCHelp

1410 UNTIL Return%>15

1420 IF Return%=64 i1%=(i%-1) MODN%-N%* (
i%=0)

1430 IF Return%=32 i%=(i%+1) MODN%

1440 UNTIL Return%=16 OR Return$%=128

1450 ENDPROC

1460 :

1470 DEF PROCHelp

1480 TIME=0:REPEAT UNTIL TIME>250

1490 PRINTTAB (0,23)SPC(80) ; :ENDPROC

1500 i

1510 DEF PROCMode

1520 PRINTTAB(46,1)"Current editing mod
e is ";ed$ (EditMode%)

1530 ENDPROC

1540 ¢

1550 DATA19

50

1560 DATA"Surname®,1,1,"",15,1,25,"Ente
r your surname, e.g. PENNINGTON-SMYTHE",
&A0, §45

1570 DATA"Forename(s)",1,3,"",15,3,40,"
Enter your forename(s)/christian names,
e.g. Harvey Smedley",&A0, &44

1580 DATA"House name",1,5,"%",15,5,23,"E
nter the name of your house, if any, e.g
. Dunroamin", &A0, &44

1590 DATA"House number",1,7,"",15,7,4,"
Enter the number of your house, if it ha
s one",&A0, &44

1600 DATA"Street",1,9,"",15,9,23, "Enter
the name of the street",&A0, &44

1610 DATAMDistrictM 1,11, "% 15 11,23 "k
nter the name of the district",&A0,&44

1620 DATA"Town",40,5,"",54,5,25, "Enter
the name of the town",&A0,&44

1630 DATA"County",40,7,"",54,17,25,"Ente
r the name of the county",&A0,&45

1640 DATA"Postcode",40,9,"",54,9,9,"Ent
er your postcode, e.g. LU8 5TG",&A0,&45

1650 DATA"Type any digit™,54,11,"",69,1
1,1,"Digits are 0, 1, 2, 3, 4, 5, 6, 1,
8 or 9",&A9,&4A

1660 DATA"How many CSEs do you have?",1
,13,"",32,13,2, "Enter the number of C5E
passes you have",&A8,&4A

1670 DATA"How many O-levels do you have
?2*,1,15,"",32,15,2,"Enter the number of
O-level passes you have",&A8, &4A

1680 DATA"How many A-levels do you have
", 1,17,"",32,17,2,"Enter the nurber of
A-level passes you have", &A8, &4A

1690 DATA"Do you like football? (Y/N)",
40,13,"",78,13,1,"Well? Do you?",&A2,&44

1700 DATA"Are you a yuppie? (Y/N)",40,1
5,"",78,15,1,"Seek help if you answer 'Y
' to this question",&A2, &44

1710 DATA"Are you an estate agent? (Y/N
}",40,17,"",78,17,1,"Seek help if you an
swer 'Y' to this question",&A2,&44

1720 DATA"Would you mind answering extr
emely personal questions? (Y/N) ",1,19,"
",=1,-1,1,"Are you going to be a party-p
ooper, or a really swinging dude?",&A2,&
44

1730 DATA"Please enter the top secret p
dssword:",1,21,%%, -1 =1,15, "Only YOU kno
w the password -- I can't help you",&A0,
&64

1740 DATA"Press Copy to finish: ",57,21
1 "1,-1,1,"It's quite simple, press th
e Copy key when you've finished entering

data", &C4, &44 B

Beebug August/September 1989

RISC USER

The Archimedes Support Group

Our Risc User magazine is now in its second volume and is enjoying the largest circulation of any
magazine devoted to the Archimedes. The list of members seeking support from the Risc User group is
growing steadily and as well as private individuals includes schools, colleges, universities and industry and

government establishments. '

Existing Beebug members, interested in the new range of Acorn micros, may either transfer their
membership to the new magazine or extend their subscription to include both magazines. A joint
subscription will enable you to keep completely up-to-date with all innovations and the latest information
from Acorn and other suppliers on the complete range of BBC micros. RISC User has a massive amount to
offer, particularly at this time while documentation on the Archimedes and RISC OS is still limited.

Here are just some of the topics covered in more recent issues of RISC User:

THE ARM 3 ACORN DESKTOP
RISC PROCESSOR PUBLISHER
RISC USER DESKTOP DIARY An in-depth look by the
A multi-tasking Desktop diary designer of this exciting
facility. development. MASTERING THE WIMP
A major new series for
A MULTI-TASKING NOTE-PAD . beginners to the WIMP
A comprehensive RISC OS multi- programming environment.
tasking application which offers a INTO THE ARC

multi-page, multi-file notepad with
editing and printing facilities.

Series for newcomers to
the Archimedes.

RISC USER TOOLBOX

A comprehensive
e MOUSE MENU toolbox module
A general purpose WIMP || PARTIAL RENUMBER || for the Archimedes.

A Desktop utility to
convert basic
programs into their

based menu, which is fully UTILITY
RISC OS compatible. A machine code utility
for renumbering parts of

text equivalents and t
vice versa. THE R140 UNIX I dsal i)
WORKSTATION ARM CODE SINGLE
A look at Acorn's entry STEPPER
into the business An ARM code
market. debugging aid.

As a member of BEEBUG you may extend your subscription to include RISC User for only £8.50
(overseas see below).

: SUBSCRIPTION DETAILS
Wlhigtan s Destination Adaihonil Cost

UK,BFPO &Ch Is £ 8.50
Rest of Europe and Eire £13.00
Middle East £15.00
Americas and Africa £17.00
Elsewhere £19.00

I wish to receive both BEEBUG and RISC User. Lenclose acheque for £ or alternatively

I authorise you to debit myACCESS/Visa/Connect account: / / / /

Stoned: L Expiry Date: / /

Send to: RISC User, 117 Hatfield Road, St Albans, Herts AL14JS, or telephone (0727) 40303

Font Designer (continued from page 12)

690 !F%=!F% EOR-1:NEXT haracter"; :E%$=0:C%=32
700 ON option% GOSUB 2760,2880,2930, 30 4110 xx%=x%:yy%=y%:x%=25:y%=2
10,3130,3240,3310,3380 4120 PROCcur (FALSE, TRUE)
710 UNTIL option%=9 4130 REPEAT
730 MODE7:*FX4 4140 IF INKEY-26 THEN PROC1t (TRUE)
740 *FX220,27 4150 IF INKEY-122 THEN PROCrt (TRUE)
750 END 4160 IF INKEY-58 THEN PROCup (TRUE)
760 4170 IF INKEY-42 THEN PROCdn (TRUE)
1100 *|" *x% STORF, CHAR *** " 4180 PRINT TAB(13,7)FNdec(3,C%)" - ";
780 : 4190 IF C%>126 THEN VDU32 ELSE VDU C%
790 C%=FNget (FALSE) 4200 IF INKEY-113 THEN E%=TRUE
800 IF C%=TRUE THEN 850 4210 IF p% AND INKEY-99 THEN E%=1:C%=1
810 PROCval:M%=FNaddrl (y%, x%) 4220 UNTIL INKEY-74 OR E%
820 FOR F%=0 TO 7:F%?M%=val% (F%) :NEXT 4230 PROCcur (FALSE, TRUE)
830 M%=FNaddr2 (C%) 4240 IF E%=TRUE THEN C%=TRUE
840 FOR F%=0 TO 7:M%?F%=val% (F%) :NEXT 4250 =C%
850 PROCreset 4260 :
860 RETURN 4270 DEF FNkey
870 : 4280 R%=FALSE
880 *|% *k& PICKUP| *%x " 4290 IF INKEY-33 THEN R%=1
890 : 4300 IF INKEY-114 THEN R%=2
900 C%=FNget (FALSE) : IF C%=TRUE THEN 99 4310 IF INKEY-115 THEN R%=3
0 4320 IF INKEY-116 THEN R%=4
910 M%=FNaddr2 (C%) 4330 IF INKEY-21 THEN R%=5
920 FOR y%=1 TO 8 4340 IF INKEY-117 THEN R%=6
930 V%=? (M%+(y%-1)) :B%=128 4350 IF INKEY-118 THEN R%=7
940 FOR x%=1 TO 8 4360 IF INKEY-23 THEN R%=8
950 IF V%>=B% V%=V%-B%:G%=TRUE ELSE G% 4370 IF INKEY-119 R%=9
=FALSE 4380 =R%
960 B%=B%/2:9r% (x%,y%)=6% 4390
970 PROCcur (FALSE,FALSE) :PROCplot (-G%) 4400 DEF FNaddrl (p0%,pl%)=6&5800+(p0%*&l
980 NEXT x%,y% 40) +(8*pl%)
990 PROCreset 4410 :
1000 RETURN 4420 DEF FNaddr2 (p%)=(font%-&100) +8*p%
1010 4430 :
3860 DEF FNval 4440 *|" *** PROCEDURES *** "
3870 V%=0:B%=128 4450
3880 FOR N%=0 TO 7 4540 DEF PROCescF
3890 G%=N%?wsl% 4550 esc%=FALSE:*FX220,17
3900 IF G% THEN V%=V%+B% 4560 ENDPROC
3910 B%=B%/2 4570
3920 NEXT 4890 DEF PROCreset
3930 =V% 4900 x%=xx%:y%=yy%:SOUND3,-14,200,4
3940 : 4910 *FX21
4040 DEF FNdec (p0%,pl%)=LEFTS$ (STRINGS (p 4920 PROCr_ins
0%,"0"),p0%-LENSTR$p1%) +STRSp1% 4930 ENDPROC
4050 4940 :
4060 DEF FNget (p%) 4950 DEF PROCr_ins
4070 LOCAL E% 4960 PRINTw2$;:PROCinstr(i%):PROCcl_win
4080 PROCcl _win:PROCescF 4970 ENDPROC
4090 SOUND2,-14,150,4 4980 :
4100 PRINT TAB(14,5)"Select"TAB(12,6)"C 4990 DEF PROCcl win

52 Beebug August/September 1989

Font Designer

5000
5010

VDU26
FOR F%=5 TO 8:PRINT TAB(12,F%)SPC9

;7 :NEXT

5020
5030
5040
5050
5060
5070
5080
5090

ENDPROC

DEF PROCfont

C%=font%

FOR F%=2 TO 28 STEP 2

FOR N%=25 TO 37 STEP 2

M%=FNaddrl (F%,N%)

FOR L%=0 TO 1:!M%=!C%:M%=M3%+4:C%=C

%+4 :NEXT

5100
5110
5120
5130
5140
5150
5160
5170
5180
5190
5200
5210
5220
5230
5240
5250
5260
5270
5280
5290
5300
5310
5320
5330
5340
5350

NEXT N%,F%
ENDPROC

DEF PROCmove (p0%,pl%)
FOR F%=0 TO &2FC STEP 4
F$!pl%=F%!p0% :NEXT
ENDPROC

DEF PROCspc

PROCcl_win

PRINT TAB(3,27)"'SPACE' continues"
REPEAT G%=GET:UNTIL INKEY-99
PROCcl_win

ENDPROC

DEF PROCval

FOR F%=0 TO 7:FOR N%=0 TO 7
N%?ws1l%=gr% (N%+1,F%+1) :NEXT
val% (F%) =FNval

NEXT

ENDPROC

DEF PROCshift (p%)

ON p% GOTO 5340,5370,5450,5480
T%=gr%(1,y%)

FOR F%=1 TO7:9r% (F%,y%)=gr% (F%+1,y

%) :NEXT

5360
5370
5380

gr%(8,y%)=T%:GOTO 5400
T%$=gr% (8,y%)
FOR F%=7 TO 1 STEP -1:gr%(F%+1,y%

=gr% (F%, y%) :NEXT

5390
5400
5410
5420
5430
5440
5450
5460

gr¥ (1, y%)=T%

XX%=X%

FOR x%=1 TO 8

PROCbit (NOTgr% (x%,y%))

NEXT

x%=xx%:GOTO 5540

T%=gr% (x%,1)

FOR F%=1 TO 7:9r%(x%,F%)=9r%(x%,F%

+1) :NEXT

Beebug August/September 1989

5470
5480
5490

=qr% (x%,F%) :NEXT

5500
5510
5520

)) :PROCcur (FALSE, FALSE) :NEXT

5530
5540
5550
5560
5570
5580
UNTIL
5590
5600
5610
5620
5630
5640
5650
5660
5670
5680
5690
5700
5710
5720
5730
5740
5750
5760
5770
5780
5790
5800
5810
5820
5830
5840
5850
5860
5870
5880
5890
5900
5910
5920
5930
5940
5950

gr% (x%,8)=T%:GOTO 5510
T%=gr% (x%,8)
FOR F%=7 TO 1 STEP -1:gr%(x%,F%+1)

gr% (x%,1)=T%:yy%=y%
yy$=y%
FOR y%=1 TO 8:PROCbit (NOTgr% (x%,y%

y3=yys
ENDPROC

DEF PROCbit (p%)

PROCplot (p%+1)
REPEAT:gr% (x%,y%) =NOT (gr% (x%,y%)) :
gr% (x%,y%) =NOT (p%)

ENDPROC

DEF PROCplot (p1%)

GCOLO, pl%

PLOT69, 520+ (x3*4) , 971~ (y*4)
ENDPROC

DEF PROCLt (p%)

IF sh% THEN PROCshift (1) :GOTO 5750
PROCcur (FALSE, p%)

IF p% THEN 5720
x%=x%-1:IF x%=0 THEN x%=8

GOTO 5750

C%=C%-1:x%=x%-2 |
IF x%=23 THEN x%=37:C%=C%+7 ‘
PROCcur (FALSE, TRUE)

ENDPROC

DEF PROCrt (p%)

IF sh% THEN PROCshift (2) :GOTO 5870
PROCcur (FALSE, p%)

IF p% THEN 5840

x%=x%+1

IF x%=9 THEN x%=1

GOTO 5870

C%=C%+1:x%=x%+2

IF x%=39 THEN x%=25:C%=C%-7
PROCcur (FALSE, TRUE)

ENDPROC

DEF PROCup (p$%)

IF sh% THEN PROCshift (3) :GOTO 5990
PROCcur (FALSE, p%)
IF p% THEN 5960
y%=y%-1

IF y%=0 THEN y%=8

53

Font Designer

5960 C%=C%-7:y%=y%-2

5970 IF y%=0 THEN y%=28:C%=C%+98

5980 PROCcur (FALSE, TRUE)

5990 ENDPROC

6000 :
© 6010 DEF PROCdn (p%)

6020 IF sh% THEN PROCshift (4) :GOTO 6110

6030 PROCcur (FALSE,p%)

6040 IF p% THEN 6080

6050 y%=y%+1

6060 IF y%=9 THEN y%=1

6070 GOTO 6110

6080 C%=C%+7:y%=y%+2

6090 IF y%=30 THEN y%=2:C%=C%-98

6100 PROCcur (FALSE, TRUE)

6110 ENDPROC

6120 :

6130 DEF PROCcur (p0%,pl%)

6140 IF pl% THEN 6190

6150 C%=gr% (x%,y%) :P%=FNaddrl (y%,x%)

6160 IF C% THEN p2%=&BD8181FF:p3%=68181
BDBD ELSE p2%=&818181FF :p3%=681818181

6170 IF p0% THEN p2%=&7E7EQQFF:p3%=&7E7
ETE

6180 !P%=p2%:! (P%+4)=p3%:GOTO 6210

6190 M%$=FNaddrl (y%, x%)

6200 FOR F%=0 TO7:F%?M%=(F%?M% EOR&FF) :
NEXT

6210 ENDPROC

6220 @

6230 DEF PROCwndw (pl%,p2%,p3%,p4%)

6240.!&70=p1%:!&72=p2%:!&74=p3%:!&76=p4
%

6250 CALL box%

6260 ENDPROC

6270 :

6280 DEF PROCinstr (p%)

6290 IF p% THEN RESTORE 6690 ELSE RESTO
RE 6800

6300 PRINT wl$;w0$

6310 REPEAT READ R$:PRINT R$:UNTIL R$="
"

6320 VDU26

6330 IF NOT(p%) THEN PROCshade(FNaddrl(
15+op%, 6))

6340 ENDPROC

6350 :

6360 DEF PROCshade (P%)

6370 FOR F%=0 TO 87 STEP 4:P%!F%=(P%!F%
) AND &AAS55AAS55:NEXT

6380 ENDPROC

6430 :

6440 *|" *** ERROR TRAP **x "

6450 :

6460 ON ERROR OFF:VDU7

6470 IF ?&24A<>?&24B OR ERR=254 THEN 66
00

6480 IF ERR=17 AND esc% THEN 6630

6490 VDU3,22,7,129

6500 IF ERR=17 THEN PRINT"PROGRAM STOPP
ED!":GOTO 6570

6510 PRINT"ERROR:"; :REPORT:PRINT" at 1i
ne "ERL

6520 *FX21

6530 L$="LIST "+STRSERL+CHR$6+CHRS$13

6540 VDU21

6550 A%=138:X%=0

6560 FOR F%=1 TO LEN (LS$) :Y%=ASC (MIDS (L$
+F%,1)) :CALL! &20A:NEXT

6570 *FXx4

6580 *EX220,27

6590 END

6600 VDU3,28,1,96,21,12 1)

6610 REPORT:VDU10, 13:PROCspc

6620 PROCinstr(i%) :GOTO 480

6630 PROCescF:PROCr ins

6640 *FX154,8

6650 GOTO 480

6660 :

6670 *| " *xk DATA kkx ¥

6680 :

6690 DATA f0 Store char.

6700 DATA f1 Load char.

6710 DATA f2 Invert window

6720 DATA f£3 Rotate window

6730 DATA f4 Mirror window

6740 DATA f5 Clear wndw/char

6750 DATA f6 Print chars

6760 DATA f7 Wipe whole font

6770 DATA f8 Exit

6780 DATA " 2 0 non W

6790 DATA 'SPACE' for more,™"

6800 DATA SHIFT +

6810 DATA f0 Select Disc

6820 DATA fl Select Tape

6830 DATA f2 Catalogue

6840 DATA f3 Load font

6850 DATA f4 Save font

6860 DATA f5 Store font

6870 DATA f6 *Command

6880 DATA f7 Restore font

6890 DATA f8 Exit

6900 DATA ™ ", v

6910 DATA 'SPACE' Returns,"" B

54

Beebug August/September 1989

Bagic Booster

The Best of BEBBUG

The Basic Booster ROM from BEEBUG is a selection of useful utilities to 'boost ' the Basic in your computer and give
more power to your programming,

Some of the utilities are enhanced versions of programs previously published in BEEBUG magazine, while others are

totally new. For those with no spare ROM sockets, Basic Booster is als 5 available on disc to load into Sideways RAM.

Partial
Renumber
< . A very useful utility which SPECIAL OFFER!
Super renumbers a selected block of Order your Basic
Squeeze lines. Ideal for adding extra Booster before the
A program compressor which lines to the middle of a 30 September and
can remove REMs, blank lengthy program. you can have it for
lines, spaces, and compress £6.00 (members
variable names. only)!

Textload and
R = o =z
. lTexitsave
Program Listes i
Save and load a Basic program as

List any program (including text. Saves the hassle of using
Archimedes Basic) direct from a file. *SPOOL and *EXEC.

Formatting can be controlled using the
same options as are available on the
Archimedes, including splitting multi-
statement lines, omitting line

numbers and listing keywords in
s ResSeQuUenesr
Rearrange the lines in a Basic
program. Any line, or block of
lines, can be moved or copied
Smart Renumbaer to any place in the program.
Line numbering is

Renumber a program to a automatically adjusted as
standard format with procedures blocks are moved.

starting at a particular line
number.

Please rush me my Basic Booster ROM/Disc:

Basic Booster ROM Code 1403A £6.00 Basic Booster Disc Code 1402A £6.00
Basic Booster ROM (non-members) £19.95 Basic Booster Disc (non-members) £18.95

Name

Address ROM/Disc (delete as necessary) £
Postage £ 0.60
Memership No Total £

I enclose a cheque for £ OR please debit my Access, Visa or Connect account,
Card No / / / Expiry. / Signed

Return to BEEBUG Ltd, 117 Hatfield Road, St Albans, Herts AL1 4]S. Telephone (0727) 40303.

First Course - Investigating Teletext Mode (continued from page 28)

1600 DEF PROCvline(x,yl,y2)
1610 LOCAL p

1620 FOR p=yl TO y2

1630 PROCpixel (x,p)

1640 NEXT p

1650 ENDPROC

1660 :

1700 DEF PROChline(x1,x2,y)
1710 LOCAL p

1720 FOR p=x1 TO x2

1730 PROCpixel (p,y)

1740 NEXT p

1750 ENDPROC

1760

Again, both these procedures use the pixel co-
ordinate system (0 to 79 horizontally, 0 to 74
vertically downwards). All of these procedures
are illustrated by the demonstration program
listed at the end. To run the demo, simply type
in all the procedures and functions as listed
above, together with the main program. Then
save to disc before running.

i NAME CO-ORDINATES
g PROCmsg1(x,y,c text$) 0to39, Oto24
! PROCmsg2(x,y,c text$) 0to39, 0to24
“i PROCframe(x,y,w,h) 0to39, 0to24
%PRDCMngnmndﬁaﬂle 0to39, 0to24
g"R(W(W>Ju¥4grutv\d(\l,x?,yAﬁ 0to39, 0to24
| PROCpixel(x,y) 0to79, Oto74
i PROCvline(x,y1,y2) 0to79, Oto74
é 0to79, O0to74

PROChline(x1,x2,y) ,
|

Table 1. List of Teletext procedures

As I said before, all the procedures and the
demo program are intended as examples of
what can be achieved. When using such
procedures do be aware of all the hidden
control codes in use, as the positions of
these can easily corrupt otherwise good-

56

looking displays. Pre-planning is the answer
here.

Finally, we have included an additional
program on the magazine disc for this issue,
a full Teletext Editor. This wvery
comprehensive program is written in
machine code, and is unsuitable for
publication in the magazine itself. Some brief
notes on its operation are included separately
in the magazine.

That concludes our present coverage of the Teletext
mode. I hope you have found it instructive. Next
month we shall be looking at something quite
different.

10 REM Program TeleProcs
20 REM Version B1.3
30 REM Author Mike Williams
40 REM BEEBUG August/September 1989
50 REM Program subject to copyright
60 ¢
100 MODE7:DIM val(2,1)
110 ON ERROR GOTO 340
120 VDU23,1,0:0:0:0;
130 val(0,0)=1:val(0,1)=2
140 val(1,0)=4:val(l,1)=8
150 val(2,0)=16:val(2,1)=64
160 PROCforeground(0,0,3,150)
170 PROCforeground(0,4,24,146)
- 180 PROChline (4,75,1)
190 PROCmsg2(6,1,130,"BEEBUG Teletext P
rocedures™)
200 PROChline (4,75,9)
210 PROCframe(2,4,18,10)
220 PROCframe (20,4,18,10) |
230 PROCframe(2,14,18,10) f
240 PROCframe (20,14,18,10)
| 250 PROCbackground(22,5,12,131)
| 260 PROCbackground(22,15,22,132)
270 PROCmsgl(25,9,129,"RED TEXT)
[280 PROCmsgl(25,19,131,"YELLOW ‘TEXT ")
| 290 PROCvline(21,13,70)
i 300 PROChline (5,38,56)
P31 0. VD28, 8,131 8,5
320 REPEAT:PROCpixel (RND(30),RND(22)):U |
NTIL FALSE ‘
330 :
340 MODE7:REPORT:PRINT" at line ";ERL
350 END
86l £

Beebug August/September 1989

BRIGHTENING UP THE LANDSCAPE

For those of us who only have the humble
model B, and use the 3D Landscape program
from BEEBUG Vol.7 No.9, and are fed up with
green/yellow fields, the extension below allows
the full four-level green shading (as on the
Master) with no expansion.

Type in the Master version of the program (or
re-convert the BBC version). Make sure the
move-down routine (lines 3000 to 3040) and
line 105 are present. Edit line 180 to set N%=16.
Then replace lines 2010 to 2070 with:

2010 DEF PROCshade (N%)
2020 IF N%=3 2&359=¢A
2030 IF N%=2 ?&359=&AF
2040 IF N%=1 ?&359=¢F
2050 IF N%=0 ?2&359=&A5

Delete line 2070, and if the ‘No Room’ error
occurs on re-running the program, delete lines
20 to 100 as well. There may be slight ‘dot
crawl’ on TV sets, but this is unavoidable. With
luck the TV can be tuned to minimise or
remove this problem.

Stephen Sexton

VERTICAL LINES IN PROGRAM LISTINGS
I have entered the DODECA game featured in
BEEBUG Vol.7 No.10, but I am experiencing
some difficulty in in entering line 3240, and in
particular the vertical lines. What do I need to
do to enter this line?

C.Green

The character to which Mr Green refers is the
vertical bar character with ASCII code 124. In our
program listings this appears as a single vertical
line, but on the screen (modes 0 to 6) it appears as a
divided vertical line, and is also shown in this form
on the computer’s keyboard. The relevant key is to
the left of the cursor left key and is a shift key
operation. In mode 7, this character is shown on the
screen as two parallel vertical lines.

Mr Green is not alone in asking this question,
which occurs more often than might be expected.
Hopefully this will clear the whole matter up for all
readers.

Beebug July 1989

<EB(

Q e @
1989

&
UPDATING MAGSCAN

I recently purchased a copy of your Magscan for
use with my Master 128. This was complete up to
volume 6, and I have subsequently been trying to
update it using View with the help of the volume
7 magazine discs (files MSCN701 etc.). So far I
have been unable to do this successfully following
the information in the instruction booklet which
comes with Magscan. Can you help?

EC.Wyllie

Using View, read in the file MSCN701 with the
command:
READ MSCN701

In edit mode, delete the blank line at the top of the
screen, and the ‘]" character at the end of the file.
Now read in MSCN702 and repeat the process,
doing the same for the remaining volume 7 updates.
However, you must make sure that there is a ']’
character at the very end of the complete file. Then
save this file as Vol7. You will also need to update
the value assigned to N% in line 110 of the
Magscan program to reflect the latest volume in
use, ‘7" in this case.

INDEXING WATFORD DOUBLE LENGTH CATALOGUES
Laurence Cox’s useful utility for indexing discs
(BEEBUG Vol.7 No.10) can be modified to read
the 62 file double-length catalogue provided by
Watford Electronic’s Disc Filing system by
altering and adding the following lines:

1140 J%=(names?5) DIV 8

1150 IF F%+J%+31>1000 THEN end=TRUE:ENDP
ROC

1172 pblock?8=3:CALL start

1174 J%=(names?5) DIV 8

1176 pblock?8=2:CALL start

1178 FOR I%=1 TO J%:F%=F%+1:FILES (F%)=FN
readstring (8*I%,8)+"#"+STRS (T%) :NEXT

Line 1140 corrects a bug in the original program
which has already been published (Points
Arising Vol.8 No.1 page 62).

L.Skilton

A number of readers have enquired about a
modification to allow this program to work with the
Watford DDFS, so we are pleased to be able to
publish Mr.Skilton’s update. B

57

Workshop - Spin a Disc (continued from page 46)

free space list, thereby specifying how many
free space entries there are, and byte 253
holds the boot option, as set by *OPT 4.
Finally, bytes 251 and 252 contain the disc
identifier. This is a sixteen-bit random
number to ensure that ADFS can distinguish
between discs enabling the system to give a
'disc changed' error. This is possible because
it is very unlikely that any two discs will
contain the same identifier.

The last byte on each of the free space map
sectors holds a checksum on that sector. If
this checksum ever becomes corrupted,
ADFS knows that the information in the free
space map cannot be relied on, and it
therefore prevents any further write
operations to the disc. The checksum for each
sector is calculated in a rather unusual way,
but the program below will calculate this for
a 256-byte block of memory starting at the
given address, and put the value in

automatically. One very important
consideration is that if you ever corrupt the
free space map, most likely using a sector
editor, then ADFS will not allow you to re-
write a corrected version! However, our Disc
Access ROM can write any sector to a disc,
regardless of the free space map.
Additionally, the ADFS Sector Editor
featured in BEEBUG Vol.8 No.3 has a feature
to automatically calculate the checksum.

WHAT USE IS IT?

You may be thinking that while all this
information is vital to the filing systems
themselves, it is of no practical use. However,
this is not the case, because such information
is essential when it comes to recovering
accidentally deleted files, or worse still, files
from a corrupted disc. In next month’s
BEEBUG we will take a look at this process,
and give some hints to speed up the recovery
process. B

TRECHNICAL EDITOR

Due to internal promotion
an exciting opportunity has arisen for a
Technical Editor to work on BEEBUG and its sister
magazine RISC User.
The work is hard and demanding, but at the same

and BEEBUG.
The successful candidate will be fully conversant

have experience in programming both in Basic and
machine code.
He/she will also have good literary knowledge and be
capable of writing reviews and articles
and editing the work of others.

If you believe you are the right person for the job,
then please send a full CV to:
The Personnel Manager, BEEBUG
117 Hatfield Road St, Albans,
Herts ALl 4J8S.

time extremely varied and interesting, with the Technical
Editor playing a major role in producing both RISC User

with the Archimedes and the BBC micro range, and will

ADVERTISING
TN

BEEBUG

For advertising details,
please contact

Sarah Shrive

on

(0727) 40303
or write to:

117 Hatfield Road,
St Albans,
Herts AL1 4JS

58

Beebug August/September 1989

Hly;% HIE{I% HILIW'I/'

5, ANTS, IS,

We present a further selection of hints and
tips for the BBC micro, Master and Compact,
rounded up by Mike Williams. Please
continue to send in your contributions for
this page. We pay £5 for each hint published
and £15 for the star hint.

*** STAR HINT ***

PRINTING AFTER SCROLLING

Al Harwood

Scrolling the screen in any direction can be
achieved by altering the contents of CRT
registers 12 and 13. If you use this method to
scroll, you cannot then immediately update the
screen display, as the operating system has not
been updated with the new screen position. To
do this, you need to put the new address for
screen top left in locations &350 (low byte) and
&351 (high byte).

This is demonstrated in the following example,
which uses the space bar to scroll the screen:

10 MODE 2:S%=HIMEM

20 PRINTTAB(0,5)" ... SCROLLING ..."
30 REPEAT:REPEAT:UNTIL GET=32

40 S%=S%+640:IF S%>&TFFF S%=HIMEM
50 vpu23,0,12,S% DIV 8 DIV 256

60 vDU23,0,13,S% DIV 8 MOD 256

70 2&350=S% MOD 256:2&351=S8% DIV 256
80 PRINTTAB(0,10)"I’'ve just moved!"™
90 UNTIL FALSE

S% is set to the address of that part of the screen
display to appear in the top left corner of the
screen, and this is incremented by 640 each time
the screen scrolls (lines 40 to 60). Line 70 updates
the system’s knowledge of the screen’s new
position so that the PRINT statement in line 80
correctly positions the text string each time.

LINE SPACING ON EPSON PRINTERS
R.Hadekel

Printers are generally geared to the American
11 inches by 8.5 inches paper format, and with a
default line spacing of 1/6 inch give 66 lines
per page. To print at one and a half line
spacing, issue the Epson control code sequence
27, 65, 18 (Escape A 18) giving a spacing of
18/72 inch = 1/4 inch or 44 lines per page (set
your word processor to the same page length).

Beebug August/September 1989

It is also possible to obtain approximately A4
size fan-fold paper, which allows 70 lines per
page at 1/6 inch spacing, the paper sheet height
being 11 2/3 inches. To obtain one and a half
line spacing is more difficult. The Epson Escape
sequence 27, 51,56 results in 56/216 inch line
spacing giving exactly 45 lines per 11 2/3
inches page. This spacing of 56/216 inch = 7/27
inch which is quite close enough to 7/28 inch =
1/4 inch (needed for accurate one and a half
line spacing).

ANSWERING THE USR CALL
J.Temple
The USR function in Basic can be used to call
any machine code routine (particularly
operating system routines) which return one or
more values in registers. The USR function
returns a single four byte number representing
the contents of the accumulator, X register, Y
register and status register. A simple way of
separating these four values is to assign the
returned value to memory location &70
(reserved for the user) by writing:
1&70=USR (address)
where address is the address of the routine being
called. The accumulator contents will then be
stored in &70, the X register in &71, the Y
register in &72 and the contents of the status
register in &73. These can be accessed with
indirection operators, thus:
A%=7670:X%=2671:Y%=2672:status=2&73

INSTANT ITALICS

Al Harwood

Use the following procedure in any program
for instant italic text in modes 0 to 6:

1000 DEF PROCitalic(text$)

1010 LOCAL A,A%,AS,X%,Y%

1020 FOR A=1 TO LENtext$:A$=MIDS (text$,A,1)

1030 ?&70=ASCA$:X%=&70:Y%=0

1040 A%=10:CALL &FFF1

1050 !'&79=&6A0070B9:!&7D=£60007099

1060 FOR Y%=1 TO 8:IF Y%=4 ?&7C=&2A:Y%=6

1070 CALL &79:NEXT

1080 VDU23,128,2&71,2&72,2&73,2&74, 2&75,
?&76,2&77,2&78,128

1090 NEXT:ENDPROC

The routine uses locations &70 to &80, and
redefines the character with code 128. B!

59

Personal Ads

BEEBUG members may advertise unwanted computer hardware and software through personal ads (including
'wants') in BEEBUG. These are completely free of charge but please keep your ad as short as possible. Although
we will try to include all ads received, we reserve the right to edit or reject any if necessary. Any ads which cannot
be accommodated in one issue will be held over to the next, so please advise us if you do not wish us to do this. We
will accept adverts for software, but prospective purchasers should ensure that they always receive original
copies including documentation to avoid any abuse of this facility.

We also accept members' Business Ads at the rate of 30p per word (inclusive of VAT) and these will be featured
separately. Please send us all ads (personal and business) to MEMBERS' ADS, BEEBUG, 117 Hatfield Road,
St. Albans, Herts AL1 4J8S. The normal copy date for receipt of all ads will be the 15th of each month.

BBC B 1.2 OS, 40T DD, 32k Watford
RAM, ATPL SWR board, AMX
mouse, ROMs, Super Art, Pagemaker,
View, Exmon II, Acorn GXR, Games
£275 o.n.o. Tel. 01-635 8405 after 7pm.

Taxan Kaga KP810 NLQ printer
with 6264 chip and Watford NLQ
designer ROM/Disc, good
condition, 8 assorted ribbons £150.
WANTED: Master 512 board & kit
Solidisk 1 meg if possible, serious
request for educational project. Tel.
(0767) 315443.

Mannesman Tally MT80+ (latest
model including italics), BBC lead,
manual and original packaging, £60
plus postage. Tel. (0932) 226076.

BBC Master 128, boxed in perfect
condition. Purchased from BEEBUG
and less than 1 year old. Includes
manuals disc and leads £340. Tel.
(0533) 712030 eves.

Games for model B, B+ and M128:
IMOGEN (40T) £5, The Life of
Repton (tape) £3.50, Play it Again
Sam (tape) £5, all originals in
original packaging and as new. Tel.
(0742) 553418.

BBC B iss 7 with Watford DFS; 32k
shadow RAM; Solderless ROM
board; 2 DS 80/40 5.25” drives;
Panasonic KX1082 printer; Zenith
amber monitor; Quest mouse; Video
Digitiser; plus View; ViewSheet;
ViewStore; Inter Mega ROM;
Spellmaster; View Printer ROM;
Waping Editor; ADT; Dumpout 3
plus lots of disc based games and
software £700 0.n.0. Will consider
splitting. Tel. (0785) 713855 after 6pm.

BBC B with Torch Z80 disc pack
and Torch Z80 Second Processor.
CPN in ROM. Amber Monitor £250
o.n.o. Tel. (0656) 860781.

60

WANTED: 512 co processor. Tel.
(0602) 201815 after 6pm.

Cumana double sided 80T disc drive
with integral power supply £35. Tel.
(0306) 889647 eves and weekends.

WANTED: 512k Co-Processor, also
BEEBUG vols. 1,5,6 and 7. Tel. (0902)
783299 after 6pm.

M128, single 40/80T drive, DMP
3000 printer, Acorn Prestel adaptor,
Music 500/5000 synthesiser, ROM
cartridges, BEEBUG 'C' reference
manuals, 30 discs many books and
mags £600. Tel. (0202) 693301.

Business Ad

PEACOCK PRINTER
for multi-coloured printing from a
BBC Microcomputer and an Epson-
compatible monochrome printer.

£8.95 from DATASSISTANCE,
83 Main Street, Great Broughton,
Cockermouth, Cumbria CA13 0Y]
(0900 825503).
Please state 40 or 80 track disc.

BBC B 1.2 OS 40T disc drive, 32k
Watford RAM, ATPL SWR board,
AMX mouse, ROMS: Super Art,
Pagemaker, View, Exmon II, Acorn
GXR. Games £275 o.n.o. Tel. 01-635
8405 after 7pm.

BBC B issue 3 incl. ROM board with
View, Viewsheet, Quest Paint (&
mouse) PMS Genie, Dumpout 3,
Stop Press & s/w RAM. Disc drive,
Microvitec colour monitor,
Nightingale modem. Microline
printer free to buyer. Tel. (0952)
610489.

Brother EB44 portable typwriter/
printer wp functions uses thermal
paper or ribbon with paper roll.
Mains transformer/Battery powered
£125 o.n.o. Tel. (0722) 29341.

BBC B disc drive and monitor,
choice of several machines DFS and
disc drive types. Monitors available
include Zenith Philips and Cub
colour. Various ROMs available eg.
Wordwise. Offers for systems
should start around £250 Tel. 01-253
4399 extn 3275 or weekends (0487)
814227.

WANTED: EPROM blower or
circuit diagram. Tel. (0442) 826079.

Watford ROM/RAM board 80K +
battery £35, PMS 6502 second
processor £35, Digimouse + driver
£20. ROMs for model B or Master:
GXR £10, PMS Producer £20,
Wordwise + and Wordaid £20, Forth
+ manual £15, Advanced control
panel £10. Tel. 01 388 0392 after 7pm.

Viglen 100K 40T SS D/D, good
condition, complete with instruction
manual £40. Tel (0727) 72865 after
6pm.

Epson RX80 F/T+ printer in good
condition, complete with lead to
connect to the BBC computer £100
o.n.o. Tel. (0332) 556381.

WANTED: 512K board + DOS 2.1+
DOS+ Problem Solver. Tel. 01-804
5984 after 4pm.

Vector 1&2 for BBC B tape to disc &
disc to disc utilities £10, LCL Micro
Maths for 0’Level revision. BBC &
Electron £10, Mewsoft A4 Forms
Designer 80T ADFS disc £6,
Superior/Acornsoft EXILE new £8,
Morley Master Smart cartridge new
£20, 'Morley: V2 ' EPROM
programmer new £18, Morley
EPROM utility disc new £3, 16K 21V
EPROMs (each) 27128 £2.50, 8K 21V
EPROMs (each) 2764 £1.30, Care
Master cartridge Quad 4*16K new
£8. Tel. (0784) 242817.

Beebug August/September 1989

BBC B + Z80 + 512 + SRAM. 1770
DFS + ADFS + Twin switchable
drives + speech. Philips CM 8833
colour/mono screen, Centronics
GCP printer. Many manuals £600.
Tel. (0570) 470763.

ISO Pascal £35 & Micro PROLOG
£40, both original Acornsoft
including all manuals, discs, box etc.
Programming in Prolog made
simple (book) £5, DS40T full-height
uncased drive £50 o.n.o. WANTED:
Watford 32k shadow RAM. Tel.
(0707) 45953 eves.

Nidd Valley Digimouse + pointer
ROM £20, INTER-BASE £30, INTER-
SHEET £10, BROM+ utility ROM
£11. Master 128. - Vines ROM
overlay board £11, Dabs MOS+
ROM £5, Reference manuals 1 & 2
£11, ROM cartridge £4. Beebugsoft -
Studio 8 £8, Masterfile II £8,
Billboard £3, Teletext Pack £3 - all
5.25 discs. Games 5.25 disc -
Elite/Exile/Life of Repton/Valley of
Lost Souls £20 the lot. Tel. (0462)
682961.

Business Ad

Problems with Metric Conversions?
"Going Metric"

- our latest disk for the BBC, will
answer your questions - only £6.95.
Can't get the Adult Education
programme you want?

Let us produce it for you.

For more information, contact:-
Simon Nixon
EFS Software
8, North Avenue, Layton,
Blackpool FY3 7BA.

WANTED: Interword ROM for BBC
B with instructions. Also, JUKI 2200
daisy wheels eg Pica, Tile Narrator.
Tel. (0903) 40531 after 5pm.

BBC Acorn DFS OS 1.2, 40/80 drive,
Educational Software £250 Z80
processor, manuals, software, £150.
Tel. (0883) 49657.

BBC B 128k, Watford twin D/D,
Microvitec monitor Hybrid Music
Synthesiser, Brother printer, ROM &
disc software and books. Tel. 01-521
7456m,for full list or offers.

WANTED: ViewSheet User Guide.
Tel. (0670) 860170.

1.2 psgre

Solve your compatibility problems using

go oo g
DOS+
Itenables the 512 board to run most IBM-PC programs that otherwise wouldn't run, emulaies the missing
keys that BBC model B users don't have and allows the saving of high-res screens from any program.

Problem Solver

PRICE: £24.95 (including program. user manual and 1 year free user support)

"What a great program- Problem Solver turned out to be.

... if you have a program that you use at work on the office PC and you want to get it up and
running on your model B or Master, it will seem worth it to you.

And if you want to play PC games, then you really will notice a difference.”

BBC Acorn User , May 1989, pages 129-130 (editorial review)

Lots of programs like Cat, Jet, Digger, Artwork's Swip Poker, ELECTRONIC ART's Gol, Driller, Dark Sile, Impact, Charlie
Chaplin, Test Drive, Infilrator, StarQuake, Bushido, Tennis, Frogger, all versions of MicroSoft's Flight Simulator, Osbit,
688 Atack Sub, Defender of the Crown, Quadralim, Yes Chancellor, Anciant Art of War, Adventure Writter, Dream House, AFT,
Droege, Dream, Delux Paint 2, Fontasy 208, News, PC Tutor, Lotus 123 2.0, Turbo Calc, Mandelbot Generator, Prosparo
Pascal, Turbo Pascal 4.0, Turbo C 15, Turbo Prolog, Prolog2, PC File+, Galaxy, Trendtex/2, Homebase 2.15, Mindreader,
DBASE Il plus, Pipedream, and many more will run like on an ordinary IBM PC

Available from Shibumi Soft, R. Prof. Camara Sinval 138, 4100 PORTO - PORTUGAL

Faulty disks will be replaced.

Payment can be made with an ordinary English cheque. Please add £3 for postage and packing.

BBC B OS 1.2 Watford DFS, Watford
twin DS 40T D/D Watford
Solderless ROM board incl. 2 off
6264 RAM Aries B20 Shadow RAM
Philips 12” Green monitor £350 will
split. Tel. 01-524 4239.

BBC B OS 1.2 with data recorder,
tape games (Revs & Thrust) in box,
joystick. Watford 3.5”/5.25” double
sided 40/80T drive and MKII DDFS.
Acorn ADFS, discs (Firetrack &
Bonecruncher) books and magazines
£420. Tel. (0302) 326084.

Master 128 inc MOS+, ADI, ACP,
Hyperdriver, Genie, Quest paint +,
mouse, 5.25” 80/40T drive, joystick
+ software, all manuals included,
cartridges. £390 o.n.o. Tel. (0254)
61492.

BBC Master 512 (IBM compatible),
Sanyo colour monitor, Twin 5.25”
Technomatic drives in plinth, Twin
3.5” Cumana drives, AMX MKIII
mouse, Joystick, PMS Genie cartridge,
Epson LX86 dot matrix printer, Vine
micros internal ROMboard, Viglen
ROM cartridge system, many ROMs
inc. Overview, Interword, BEEBUG
Master ROM, many manuals and
games software inc. Elite, Sentinel.
Complete system worth over £1900.
£1000 the lot. Tel. (0270) 666585.

Master 128 + 512K Co-processor,
DOS+ Gem suite + mouse, DSDD
dual 800k 5.25” disc drives,
Microvitec 1451AP colour monitor,
Brother HR15 printer, few games
and books £900 the lot. Tel. (0689)
70132 after 5pm.

Beebug August/September 1989

Master 512 with DOS+ V2.1, Acorn
mouse, 5.25” & 3.5” disc drives,
linked as a dual drive. Master
reference manuals 1&2, Dabs Press-
M512 User Guide + program disc,
M512 Shareware collection, MOS+,
Conversion kit, Sidewriter. Various
other books, some with discs.
BEEBUG C + standalone generator.
Disc box, 5.25” discs £650. Panasonic
KX-P1081 printer, incl. lead, £100.
Tel. (0924) 826483 p&p extra.

AMX Super Art + Mk3 mouse £40,
Master Turbo £70, Swivel Monitor
stand 14” monitor £10, Viewplot £10
all as new. Tel. (04243) 4500.

Genie Junior plus utilities disc £16,
ROMit for the BBC B £10. Tel. (0227)
369362.

WANTED: Floppywise Master and
Brom Plus ROMs with manuals.
Toolkit book by BBC Soft. Tel. (0294)
53648.

BBC B Viglen DFS and 40T SSDD
drive, Philips BM7502 12” high res.
green screen menitor, AMX mouse,
Wordwise plus, B-Bore, filer, all
manuals + advanced BBC user
guide, discs cassettes and full set
Beebug magazines £300 or will sell
seperately. (0734) 302441 eves.

Star LC10 colour printer (4 months
old) £190 with lead and two ribbons.
Archimedes games: Minotaur £8,
Startrader £10, Word Up Word
Down £10, Clare’s Arcade 3 £8,
Terramex £12, Pacmania £12. Tel.
041-956 6106.

61

and applications for membership I ewals, membership queries and orders for pack issues 10 the
address be! membership fees, including overseas, should be in pounds sterling drawn (for
heques) ON K bank. Merrioers may also subscrioe 10 RISC User at aspecial reduced rate.
BEEBUG SUBSCR\PT\ON RA BEEBUG & RISC USER

£ 15 & months (5 issues) UK only

£14.50 { year (10 issues) Ut BFPO, chl £23.00

£20.00 Rest of Europe & Eire £33.00

£25.00 Middle East £40.00

£27.00 Americas & Africa £44.00

£29.00 Elsewhere £48.00

BACK ISSUE PRICES (per issue)
sent

Volume Magaz
1 £0.40 .00
£0.50 £1.00
£0.70 £1.50

B)

BEEBUG
117 Hatfield Road, st.Albans, Herts AL1 4JS
Tel. St.Albans (0727) 40303, FAX: (0727) 60263

Manned Mon-Fri gam

(24hr Answerphone

-5pm
for

Col

BEEBUG MAGAZINE I produeed by BEEBUG L1d:

Editor: Mike Willi
Assistant Editor:

Technical E itor:
Technical Assistant: Glyn
Advertising: garah Shrive
Production Assistant: -
Membership secretary: Mandy Mileham
Managing Editor: Sherldan Willilams

o part of this pub\'\cai'\on may be
ced without prior writien permission of the Publisher.
t any vaspons'\b'\\i\y whatsoever

All r'\gh\sreserved. N

reprodu

The Publisher cannot accep

for errors in articles, . advertisements pu ished.

The opinions expressed on the pages of this journal aré

those of the authors and do not necessarily represent those
¢ she Publisher, BEEBUG Limited.

In
members!

Printed by New

to £50 per page:
ng substantial that

a
hip number.

hown opposite:

north-Burt Ltd (0234) 41

AND PACKING
d the cost of p&p as

nnecV Access/ Visa orders and subscr'lp\'\ons)

UG PROGRAMS AND

good quality articles and
EBUG. Al contributions
but pleasé give
you inten t

ontributors' is available on

disc or
"View",

BEEBUG
111

wd ()1
\SSN - 02683 -

LINE-INPUT

GENERAL P PURPOSE L
outine tor US e in your own

h\gh\y yersatile input 1

programs.

design and adit charact

FIRST COURSE (InV ting Telet
{05 on tel text with 2 program

concludi
demons\ralmg some

procedures.

A SELF- -HELP UTILITY -
a keyword help 1ad\'ny.

images providing &

ACES HIGH - 8 sim
paience-
MULT\-COLOUR PRINTING

colour print- _outs using ditfere!

USING AVIDEO DIG GITISER-8
atromend otheWaﬁ ord video

512 FORUM- aFIN

TEXT EDITOR R(ABo nus ttem) -
editing \e\etex\ screens.

ut\\ny tot designing 8 and
HAGSCAN _ bibliograp

ssel\e),

All this for
Back \ssues (5 25‘ dbc s\nce Vol.3 No.A
UK ONLY
35" Disc Cassette 5" Disc 4.5" Disc Cassett®
17, £30.00 £30. £20.00
56.00 £398.00

Cassette subsctl
per issue

FONT DESIGNER (pan 1)- gram allowing you 1
and comp\ete forts.

MATHEMAT\CAL TRANS FORMAT\ONS (p n2) -8
am demons nstrating M

ple yet absorbin

- a utility 0 produ
t coloured pnmer ribbons.

hy for this issue (Vol8

tions can
of the bscr'\pﬁo

FUNCTION - a

auca\

g version of
ce multi-

ch provides
d mser and simplifies

D utility for DOS Plus.

oomptehenswe

No.4).

4.7
35" disC since \Iol 5No.1

Aces Hig
5" d\sc) + 60p p p &p (30p for each additional \tem)
A No. \0) avallable at {he same prices

OVERSEA

with all

A3000’s and ﬁ

Archimedes
FROM BEEBUG
the Archimedes Specialists

COMPLETE CONFIDENCE

Quite simply this meansthat ifyour Archimedes goeswrong
within the first year, an engineer will call at your premises
within 24 hours 1o repair it. \f it cannot be repaired, @
replacement will normally be left.

Special Offers .
e Speedy Service MLy
Al ohnmedesAaooﬂ \We have anew showroomin St.Albans N AT’O NW’DE GOVE R AG E

andpurchase an i

ge will also Psaupp\y: Ar!isaig,s o where yog_f‘an see alnd try anyé of i‘he

acmania, Printer Lead, 1035 iscs systems. ey are always on isplay . .

P ekable Disc Box. In addton andinstock. S o Mail Order Service s ?nee.b“"g areusing CRAY %\FECT E‘Pg‘firs‘ Pt ﬂ'?"édﬁr‘]“‘fe
Siith a 410: First Word PIUS, wiha alsovery Cicient, with over 80% of aintenance Covet which is available throtg ou hol
A50Firstword Plusand pCEmulator orders goigg C tthe same day. 48hour of_mam\and UK. Simply makeone phone call and anengineer
and with a 440/1 First Word PluS, fully insured defivery charges on will call. There 1S no limit to the number of call-outs that you
PC Emulator and the Software completesystem arejust£7.00 and24 can make over the year.

Developers Toolbox. hour delivery £11.50- //“——
ALL ARCHIMEDES & A3000

0% nnan ce Technica’ suppon This service is included on all new A3000, A410, 1Agf%0 agg
th 1989.

As a licensed credit broker, Beebug Unlike many dealers we don't lose A440/1 systems soldb Beebugfrom Septemnber

can offer you 0% finance over interest as soon as you have made Y Y Sar i

mggm% %13'75:/??2 'a‘g éwpmy“ yiw g"‘““ase'TY"g canlas\ways It also covers the Acorn monitor if sold at the same time.

APR 28% over 12,24 o months. telep one our Tect nical Support

{sase phonetocheckine Y ambers Department ot Showroom for some PRICES BASE COLOUR

special offers with 0% finance- friendly and impartial advice- A3000 649.00 869.00
A410/1 1199.00 1419.00

_____.—// A420/1 1699.00 1919.00
ArcmmedesMagazme-ﬂlSCUser Q nnmmmnmmnnmm 7
heArchimedesand !
PRICE GUARANTEE V

RISC User is the |eading magazineé dedicated solely tot
A3000. For £14 50ayear (UK%. youwill receive this 56 page magazine packed
09
® \We will match any current price or offer available 2
from any other reputable Acorn dealer.

full of useful information, News, reviews, programs, hints and tips etc; mailed
times a year.

directly to your home 10
Ordering o
ock.meesareexcﬁustveofXAT,pleaseadd15%.We ‘ ‘ ‘ ‘ ‘ \ ‘ 0 ‘ 0 ‘ . ‘ ‘ ‘ ' ‘ \ “ . ‘ ‘ . ‘ ‘ ‘ ‘ " ‘

Allitems are currentlyinst
accept paymem by cash, cheque, Visa, ess, Connect etc as well as official

ccess,
prdefsA Youmay order by phone, faxor letter. Alternatively please phone formore
information. B
U G

117 Hatfield Ro
ad, St. Albans
Tel: 0727 40303 Fax: 0;*;;?02;; -

000009909

’JNHHH

