

REVIEWS

16
FEATURES peacock Pr'\r;ter\he e 238
ishi saurus 10f : 0
o i for 10 TJ\TJ\: Intelligent Machine e
Basic ROM Image Crea e REGULAR \TE
BUG Graph Plotter (72)
s ifier Editor's Jottings 5
Disc File \dentil® s i
A Good Report ng Points Arising A
¢ Research RISC User 55
b Minus Character 3 postoeg . 56
Creaing 2 Pl Bestof Bf E@g
: se - : Hints an
First Gour ing System Routines 34 personal Ads s
Using Operating Uity 37 gypscriptions & Bac -
script Screen mp Magazine Disc/Casse
gl 0 Bug in Maste' DFS 42 S & TIPS
The CLOSE# 2 H\NT
512 Forum Directing Print 00 the Z)\as\er
rkspact .
Worksnop - 4o ZeroPa® o { ;de Numbers in Wi+
o Compiler (Part 1) paging Wilhou
Writng & . 52 Ghosting Lefters
REEBUG BIngO Double BUf

PROGRAM INFORMATION

All listings published in BEEBUG magazine are
produced directly from working programs. They are
formatted using LISTO 1 and WIDTH 40. The space

following the line number is to aid readability only,
and may be omitted when the program is typed in.
However, the rest of each line should be entered
exactly as printed, and checked carefully. When
entering a listing, pay special attention to the

difference between the digit one and a lower case |
(L). Also note that the vertical bar character (Shift \)
is reproduced in listings as |.

All programs in BEEBUG magazine will run on any
BBC micro with Basic II or later, unless otherwise
indicated. Members with Basic I are referred to the
article on page 44 of BEEBUG Vol.7 No.2 (reprints

B=1.97|565699!tc
Tl=(B“3*l) days

T

15=120.18 days

Fig-2.2 The Roche yortical gpace gysten.

££f.££f.E{£££££££'L£££££££££££££f.£f.££

££
UOTRHX? Disc/File Xdenti(ier
££££££££££££££££££££££££££££££££££££
pDate § Tue,24 oct 1989
Disc Format OFS 80 Tracks
Disc Title

prive 2 0
££££££££££££££££££

muc:mimuu

Filename Tupe Length gtatus .
££££££££££££££££€£££££E££££C££££££££

pata
Basic
Data
pata
pata
Basic
Basic
Basic
Basic
Data
pata

f available on

advised t 'ecei‘n of an AS S

fitted to 3‘:53:‘18 to Basic IL ﬁ), and are strongly

programs are m:u.el' should be hz’me i :‘:{l;mcuwr
> efore the

Program
will not fu
based system. S ctiOn On acasscte

Program n s e one bal
8
eeds at least bank of

Where a
program

this is indi gram requires a

5 icated certai

article (as sho bg' symbols at thenb:(;'i‘ﬂg;lrai(m’

1 opposite). An nning of th i
y other re % sideways RAM.
quirements

are referred to
-explicitly in th

e text of the arti

rticle.

Pmsm

i

only. s for Master 128 and Com
pact

=2 DB

Laitors Jottings

NEW BEEBUG OPEN DAY

We are now planning a further Open Day to take place on
Sunday 3rd December starting again at 10am. We hope
that this will not only enable us to meet even more
members than before, but provide an excellent
opportunity for your Christmas shopping. So far Acorn
Computers, Acorn User, Colton Software, Computer
Concepts, Computerware and Minerva Software have all
confirmed that they will be present to demonstrate their
latest products. Note the date in your diaries now - full
details are being circulated with the magazine.

A feature of the Open Day will be BEEBUG’s own Car Boot
Sale where a wide variety of end-of-line products, demo
equipment and other items will be on sale at low, low
prices. This is a genuine sale and will cover books,
manuals, software and hardware of all kinds.

Although the Open Day provides an excellent opportunity
to purchase goods from us pre-Christmas, with all the
benefits of staff on hand to advise you, our mail-order
service will be fully available to satisfy the needs of those
unable to attend in person.

We guarantee that all orders received by 14th December
will be despatched in time for Christmas (stock
permitting). Don't forget that you can also use our FAX
number, (0727) 60263, for sending credit card orders to
us.

BEEBUG SUMMER COMPETTTION

In the July issue of BEEBUG we announced our Summer
Competition with a first prize of an A3000 colour system,
generously provided by Acorn. A number of other
companies including Clares Micro Supplies, Colton
Software, Computer Concepts and Minerva Software have
also donated prizes for the runners up.

There were many entries from both BEEBUG and RISC
User members, which have taken much longer to evaluate
than expected, but we have now been able to select a
winner whom we believe achieved the best program
overall. He is Paul Warren of Bridgwater in Somerset who

4

used a BBC model B. The runners up are Dr.R.Murphy
(BBC model B), Mr.P.Dodgshon (model B), Mrs.A.Miskin
(Master) and Mr.G.Hopkins (model B).

We hope to publish more details of the winning entries in
due course, but it is interesting to note that although an
equal number of entries was received from both BEEBUG
and RISC User members, only four Archimedes owners
reached the final short list of twenty.

BEST OF BEEBUG

Over the last twelve months BEEBUG magazine has
produced a number of software products, under the
general title Best of BEEBUG, the latest being Applications
1I (first announced last month). The aim of these products
is to collect together a selection of previously published
programs on a particular theme, and to supply these with
documentation as appropriate to members at a low price
(relative to any commercial value).

In each case, the programs are updated in the light of any
improvements or extensions which have subsequently
come to light, with any further extensions or
enhancements which we believe to be desirable. As such,
the resulting discs offer except value for money.

The following discs are currently available:

Applications £5.75
General Utilities £5.75
ASTAAD 3 (CAD) £9.95
Basic Booster £6.00
Applications IT £5.75

Further details on these products and how to order them
are included elsewhere in this issue.

BEEBUG MAGAZNE DISC

As we approach Christmas we are aiming to increase your
entertainment by including some additional items on the
monthly magazine disc. For this issue, we have provided
Clowns, an intriguing arcade style game that will test your
keyboard skill to the utmost. The disc still remains at the
same price of £4.75 (inc. VAT).

Beebug November 1989

STRANDED BY ROBICO

Already well known for its adventure games, Robico
has launched a further game for the BBC micro called
Stranded. In fact this is not completely new but an
extensive rewrite of the former Heyley release of the
same name. There is also a brand new Archimedes
version as well. Prices (disc only) are £17.95 inc. VAT
for the BBC and Master versions, £29.95 inc. VAT for
the Archimedes version. Robico are at 3 Fairland Close,
Llantrisant, Mid Glamorgan CF7 8QH, tel. (0443) 227354

GET INVOICED WITH APRICOTE STUDIOS
Apricote Studios has now made available version 3 of its
popular and successful Account Book (reviewed in
BEEBUG Vol.7 No.5). Moreover, Apricote has also
released a new complementary package called simply
The Invoice Program. This is menu driven like the
Account Book with four sub-menus covering invoices,
customer database, statements and utilities. Either
package costs £27.95 each, or the two together for £49.95
(inc. VAT in both cases). versions of both packages are
now available too for the Archimedes at the same prices.
Contact Apricote Studios at 2 Purls Bridge Farm, Manea,
Cambs. PE15 OND, tel. (035 478) 432.

MORE THAN JUST A STOCKING FILLER
More budget business software has also been
announced by Topologika, better known perhaps in
the games market. Its new Stock Pack is claimed to be a
fully featured business administration package with
versions for PC compatibles, the Archimedes range
and for BBC micros. Stock Pack deals with invoices,
payments, customer balances and debtors, price lists,
and stock control. All versions of the software cost just
£29.95 inc. VAT from Topologika at P.O. Box 39,
Stilton, Peterborough PE7 3RL, tel.(0733) 244682.

ACORN RELEASE NEW PRODUCT FOR
THE MASTER

In an unexpected move Acorn Computers has
announced the release of a new 1Mbit ROM for the
Master 128 series. This is a plug-in replacement for the
existing Acorn ROM. The new ROM provides support
for international character sets, and incorporates an
improved version of the ADFS disc system which runs

Beebug November 1989

News News News News News News

at about twice the speed of the original. There is also
auto-relocation for Basic and Edit when using co-
processors, format and verify in ROM, and a faster
version of Basic which is understood to be the same as
that fitted to the Master Compact. The new ROM will
retail at £44.85 inc VAT. Interestingly, Acorn will not
(for the time being at least), be fitting the new ROM to
new Masters. Acorn Computers are at Cambridge
Technopark, 645 Newmarket Road, Cambridge CB5
8PD, tel. (0223) 214411.

MORE RESOURCES FOR SCHOOLS

At its third Conference, this time entitled IT Across the
National Curriculum, RESOURCE (the Doncaster based
consortium of local education authorities from South
Yorkshire and Humberside) was due to show off its
latest products. These include Perfus, a set of materials
for secondary language work, Moving, a pack for lower
primary science, and Earth in Space, a compilation of
materials for secondary science classes. For more details
contact RESOURCE at Exeter Road, Doncaster DN2 4PY.

SUPERIOR SOCCER

Strategically announced in the run up to Christmas, by
Superior Software, a continuing supporter of the BBC
micro, is its latest game Superior Soccer combining the
best of the arcade soccer games with all the features of
football management games. Superior expect this to be a
top seller this year. Prices range from £9.95 for Electron
and BBC micro cassette, £11.95 for BBC micro 5.25” disc,
to £14.95 for 3.5” disc for the Master Compact. All prices
include VAT. Superior are at P.O.Box 6, Brigg, South
Humberside DN20 9NH.

512 MICE

A mouse driver specially written for the 512 board has
been released by a small company called Tull Computer
Services. This driver will at last allow 512 users to use a
mouse with many standard PC applications, instead of
using the keyboard. It is particularly useful with some
programs such as DeluxePaint I which will not work at
all without a mouse attached. We hope to be able to
review this in the future through our 512 Forum pages.
The mouse driver with supporting manual costs £30
inclusive from Tull Computer Services, 49 Gammons
Lane, North Watford, Herts WD2 5BY. B

5

Instant Publishing

Dorian Goring explains how he electronically mixes readily available sources of text
and graphics in instant publishing.

Making the most of what you’ve got in an
innovative and imaginative way is nothing
new, but applied to information technology it
opens up a cluster of hybrid possibilities.

ORACLE 108 Fri 9 Jun ITVY 1627:12
Rest of the news.........
POLAND: SOLIDARITY,

GOVT IN VYOTES DEAL

The Polish govermment and Solidarity
have clinched a deal to overcome the
crisis caused by the failure of top
Communists to get elected to parliament

Solidarity leaders agreed during eight
hours of talks not to block a
government plan to fill 33 vacant seats

The 33 officials failed to score more

than the 50% needed for election to the
Sejm (lower house) despite standing un-
contested on a National List of 35 VIPs

Reforms would have been in jeopardy
because the Sejm would have had fewer
than the 460 members stipulated.
PR
I[Newsfile ILive At Five Sport TV Guide
A teletext page contents gives all the

information you need

The ‘Kida’ front page
emulation illustrated
here was composed
within a desktop
publishing environ-
ment using a BBC
Master. The words
were downloaded
from BBC2’s Ceefax
news pages, and the
pictures were digi-
tised from BBC1’s
Nine O’clock News
on the same day in
early June.

The Polish government and voligarity
have clinched a deal to overcome the
crisis caused by the failure of top
Comunists to get elected to parliarent

Solidarity leaders agreed during eight
hours of talks not to block a
governrent plan to fill 33 vacant seats

The 33 officials failed to score more

than the 587 needed for election to the
Sein (lover house) despite standing un-
contested on a Hational List of 35 VIPs

Reforms would have been in jeopardy
because the Sejn would have had fewer
than the 468 rerbers stipulated,
The teletext file loaded
This hybrid approach into a word processor
also highlights how computer technology
makes repetition redundant. Apart from
constructing the headlines and subheads

6

(produced within AMX StopPress Felttip page
font), no drawing or typing was involved - at
least, not by me! From start to finish, it took a
couple of hours to do.

Teletext data comes ready typed, so there’s not
much point re-typing it! Likewise, graphically
presented summaries (e.g. Polish Election
Results, and British Nationality Act 1981) won't
gain by being re-drawn.

(R Is I s Shanghai remaing militant

IRBY: Cof E “Saddened” by accusations over hostages

You can use your favourite desk top
publishing package

Teletext and viewdata systems are updated by
the minute. This kind of instant publishing can
form the basis of a school’s pilot in publishing a
daily newspaper. Local news and features are
added hour-by-hour so that the paper could be
ready for sale and distribution as students left
the building at the end of the school day. You
can’t get more topical than that!

And, in Art, it is also a very efficient way of
teaching page layout and design - the complex
art of fitting page elements together such as
rules, pictures, body-text, headlines, working
white, clip-art, and tint panels, into a pleasing
and harmonious composition.

Spin-off already means there’s a local school

piloting a newspaper jigsaw game where
students compose pages from items in a box

Beebug November 1989

Instant Publishing

A digitlsed image

Planning the page —
based on the ‘Kida’ idea, or
coming through a computer
teletype emulation. And, I've
used Oracle’s astrology pages
for the school’s parent-teacher
magazine. Using this method it
is easy to generate a valuable
resource of electronic words
and pictures, not just in news,
for use across the curriculum.

From a Media Education view
point, a hybrid approach to
educational technology is an
important attitude to establish
in any educational estab-
lishment’s policy on cross-
curricular IT.

Here, it means thinking of each
teletext page as a string of
ASCII codes mixed with control
codes. Think of a TV picture as
a string of dots. Scanners and
digitisers effectively remove
picture controls so the data can
be formatted to suit the
graphics mode you’re working
in. Likewise, it is possible to
remove controls from teletext
pages leaving a file which can
be loaded into a word processor
and manipulated.

One drawback to the hybrid
approach is that often there is no

Beebug November 1989

commercially available software. So, like many
teachers, I researched BBC Basic and wrote my
own ‘grab and strip” program (called Grablt) for
spooling teletext pages for word processing.

This program (see end of article) accesses
teletext pages via a GIS BBC Advanced Teletext
Receiver, strips control codes, producing a file
that can be imported straight into your
favourite DTP software in galley strip form.
You can then access television news and
download pictures to go with the stories
collected. This way, you can quickly build up
an interesting, up-to-the-minute front page.

CHINESE CRISIS

prei— GIVES, G0\
AT\ STRONG AS Y,

1

2

va saddened”
accusations over hostages.

Gy

out the fate of @hree gfssip
1al s m lhﬂ
A BBC correspon:
concluded that t
he underst ands
W Rafsanjani

> m'nrv
ad

dead and |
br Runoie wrote to
this inforsstion.

.
A Church of fioflill said teaight they

T
; LU w

& - «
Commmists to get elected to p: n on a Mational List M 15 Py

Solidarity leaders agreed during ei
hours of talks not to block a
government plan to fill 33

Shanghai ns ailitant
ftudents in Shanghai

orns would have been in jeopardy
o e the Sejm would have had fewer
than

seats 460 nevbers stipulated.

Pro-democe Li Prog on TV | At

have appeafed for a general strike and Chinese Premier Li peared on y hw
held memorial marches to honour the television for the first h- since the

gewt 3 ~ . wend massacre in Peking.) Bﬂ\)::h Nﬁ(ﬂ\d
e ey ol a¥ing-troop:

government , aﬂ\mls and the police who had been sent into the capital to 8\

owere all too put an end to the pro-demooracy 5

\
!

desonstratyGis. ;)

He said he hoped the trooes would \

continve to work hard to preserve peace i

and order in the capital. t

A sound recordist and cameraman were

roughed up by the police while filming

in Peking this mornina

They urud D«w Xiaoping and Li Per
to visit Vietnam - one of the few
countries that supported them.

Many Chinese cities have been brought
to a standstill by demonstritors who
have set up barricades and refused to
90 to work

Instant Publishing

Digitised images and spooled teletext have
further advantages when used within a DTP
environment. Having most of the work done
for you concentrates attention on page
composition.

No DTP environment can turn a novice into a
successful page layout artist overnight, but the
hybrid approach is a useful ‘top-down’
approach, putting the whole before its parts.

USING THE GRABIT PROGRAM

The program listed at the end of this article
allows suitable text screens to be downloaded
from Ceefax or Oracle, and then strips out all
control characters leaving just plain text for
editing with your word processor as described
above. Alternatively, previously saved teletext
screens may also be converted to plain text.

Type the program in and save it. When run, it
first asks for the name of the new plain text file
to be created. You are then asked if you want to
load teletext pages from Ceefax or Oracle. If
you answer “Y’, you will then be 4sked to enter
a list of the pages required. For each page enter
first the service (BBC1, BBC2, ITV1, ITV2)
followed by Return, and then the number of the
page required (three digits). If a page has sub-
pages you may specify how many are to be
loaded by following the page number with ‘S’
and the number of sub-pages, for example:
11985
for five sub-pages of page 119.

The entries can be repeated, giving service first,
then page(s), terminating input with ‘/’. The
pages will then be downloaded, converted to
plain text and saved in the file specified. Note,
no allowance is made for any corruption on
down-loaded pages.

If, instead of broadcast teletext, you opt for
previously saved screens, you will be asked to
input a list of these, one at a time, as with
broadcast pages. On terminating input with */’,
the screens specified will be loaded, stripped, and
saved as plain text in the file given at the start.

Note, file names are restricted to 7 characters for
compatibility with the DFS, but the program can
easily be modified to accept longer file names
by changing the value of numb in line 110.

8

[bt Wris i 25719

CHINESE CRISIS

PM GIVES HK GOYERNOR
STRONG ASSURAN(ES

British Nationality
Act 1981

Mo 1o resmond 19 ong

—
| Statys of Brinsh

| Dependent Territory|
Citizens |
| No rignt of aboge | iv
in Britain "
Kome Secretary

Shanghai remains miftant

'-°U1TS
- Conhuripts SENAE:ndmcm

Cof E “saddened” by
accusations over hostages

Final Acopy

Do check the copyright of material taken from
various sources. BEEBUG cannot be held
responsible for the consequences of
unauthorised use of any such material.

10 REM Program GrabIt

20 REM Version Bl.1l

30 REM Author Dorian Goring

40 REM BEEBUG November 1989

50 REM Program subject to copyright

100 MODE7:0N ERROR CLOSE#0:MODE7:REPOR
T:PRINT" at line ";ERL:END

110 vpU23,1,0;0;0;0; :numb=7

120 AS$="BBC1BBC2ITV1ITV2"

130 B$=CHRS (&94)+CHRS (&B7) +STRINGS (&25
, CHRS (&A3)) +CHRS (&EB)

140 C$=CHRS (&94)+CHRS (&F5) +STRINGS (&25
, CHRS (&F0)) +CHRS (&FA)

150 D$=CHRS (&94) +CHRS (&B5) +CHRS (&86)

160 E$=CHRS (&94) +CHRS (&EA) :F$=CHRS (&8D

) +CHRS (&81) +"GrabIt"
110
180 REM Menu

190 PROCbox

Beebug November 1989

Instant Publishing

200 PRINTTAB(0,9);"New filename ";:INP
UTname$:IF LEN (name$)<1 OR LEN(name$)>nu
mb GOTO 200

210 REPEAT:CLS:INPUTTAB(0,9)"TV Telete
xt (Y/N)?2"tv$:UNTIL INSTR("YyNn",tv$)

220 tv$=CHRS$ (ASC(tv$)AND&SF)

230 dBASE=0PENOQUT ("X") :sfile%=0PENOUT (
name$)

240 :

250 REM Enter data

260 CLS:R%=1

270 REPEAT

280 IF tv$="N" PRINTTAB(0,9)"SCREEN na
me "+STRS (R%)+":"; ELSE PRINTTAB(0,9)"TE
LETEXT data "+STRS (R%)+":";

290 MS$="":P%=0:PRINTTAB(16,9) STRINGS (n
umb, ".") :PRINTTAB(16,9) ;

300 REPEAT:G%=GET ‘

310 IF G%=&7F AND P%>0 VDU8,46,8:MS$=LE
FTS$ (MS,P%-1) :P%=P%-1 ELSE IF G%>=32 AND
G%<127 AND P%<numb M$=M$+CHRS (G%) :P%=P%+
1:VDU G%

320 UNTIL G%=&0D OR G%=&2F:IF G%=&2F G
0TO 430

3305

340 REM check data

350 IF (tv$="N" AND LEN(M$)>0) GOTO 40
0

360 IF LEFTS (M$,1)<"A" GOT0370 ELSE IF

INSTR (A$,M$)<>0 GOTO400 ELSE GOT0290

370 IF LEN(M$)<4 M$=MS$+"S3F7F"

380 IF (MIDS(MS,4,1)<>"S") OR (LEN (M$)
<5) GOT0290

390

400 FOR count%=1 TO LEN (M$) :BPUT#dBASE
,ASC (MIDS$ (M$, count$,1)) :NEXT

410 IF tv$="N" BPUT#dBASE, &23 ELSE BPU
T#dBASE, &20

420 PRINTTAB (25,R%) ; CHRS (R%+48) ;">";M$
:R$=R%+1 :

430 UNTIL G%=&2F

440 :

450 REM keep it

460 BPUT#dBASE, &7F :EXT#dBASE=PTR#dBASE
:CLOSE#dBASE

470 PRINTTAB(0,15) ;CHRS$ (&83) ;"OK? Y/N
":VDU7:VDU31,9,17:IFGET$="N"CLOSE#0 :RUN

480 :

490 REM Read database

500 dBASE=OPENIN ("X")

510 Ms___'l n

520 IF EOF#dBASE GOTO 770

530 G$=CHRS (BGET#dBASE) : IF G$=" " GOTO

570 ELSE IF G$="#"CLS:0SCLI("LOAD "+M$)
:PROCstrip:GOT0510

540 M$=MS$S+G$:G0T0520
Halt
560 REM Grab it
570 p$=M$
580 :
590 REM Get tetetext service
600 IF LEN(p$)<5 OSCLI("TTXON ") :0SCLI
(p$) :0SCLI ("TTXOFF ") :GOT0510
610 s$=MIDS (p$,5,LEN (p$)) : IF s$="3FTF"
GOTO 670
620z
630 REM Subpage
640 count%$=1
650 IF count%<10 THEN zero$="000" ELSE
zero$="00"
660 sub$=STRS (count$%) :p$=LEFTS$ (p$,3) +z
ero$+sub$
670 PRINT STRINGS(7,"™ ™);TAB(0,0)"P"+p
$:REM print page addr
680 OSCLI("TTXON ") :OSCLI("HON 0 ")
690 OSCLI ("TPAGE "+p$)
700 OSCLI ("TRANSFER FFFF7000 ")
710 OSCLI("DISPLAY FFFF7000 ")
720 OSCLI(“TTXOFF ")
730 PROCstrip
740 IF s$="3F7F" GOT0510 ELSE IF count
$<VAL (s$) count$=count %+1:GOT0650
750 GOT0510
760 0
770 REM End
780 EXT#sfile%=PTR#sfile%:CLOSE#sfile%
:CLOSE#0
790 MODE7
800 END
810
1000 DEF PROCbox
1010 CLS:FOR r%=2 TO 3:PRINTTAB(28,r%);
F$:NEXT
1020 PRINTTAB (0, 4)BS; TAB(0,22);C$
1030 FOR r%=5 TO 21:PRINTTAB(0,r%)D$;TA
B(38,r%)ES$:NEXT
1040 vpU28,3,21,37,5
1050 ENDPROC
1060 :
1070 DEF PROCstrip
1080 FOR row%=&7C00 TO &7FBF STEP &28
1090 IF ?row%>&8E AND ?row%<&A0 GOT0980
1100 FOR screen%=row% TO row%+&27
1110 ?screen%=(?screen% AND &7F)
1120 IF ?screen%<&20 ?screen$=&20
1130 BPUT#sfile%, ?screen%
1140 NEXT screen$%
1150 BPUT#sfile%, &0D
1160 NEXT row%
1170 ENDPROC

)

Beebug November 1989

Basic ROM Image Creator #»

Put your Basic programs into sideways RAM or ROM with this utility
from Peter Cumberland.

This Basic ROM Image Creator (BRIC) allows
you to create ROM images of Basic programs.
It is also possible to convert assembler
programs that use large chunks of Basic. The
resulting ROM image may be loaded into
Sideways RAM (SWR) if you have it, or blown
into an EPROM.

+% BEEBUG BRIC 2.51 %%

ROM Title:BasicTest
Author :Peter Cumberland
Command %BEEBUG

By Peter John Cunberland

Converting a Basic program to a ROM image

BRIC also ensures a simple way of getting your
programs into Sideways RAM or ROM. The
method by which you load the image into
Sideways RAM depends on which type of
machine you are using. On the model B you
should consult your SWR User Guide. If you
are using a Master or a Compact then you
should use the *SRLOAD command:

*SRLOAD <rom> 8000 <x> Q I

where <rom> is the ROM image filename
stored on disc and <x> is the ROM slot.

Once the ROM image has been installed or
loaded into sideways RAM, a simple user-
selected star command is all that is required to
reload the Basic program back into main
memory and start immediate execution. Being

10

in ROM format also ensures that the Basic
program is always instantly available for use.

Type in the listing and save it as BRIC. Now run
the program and you will be prompted to
supply all the information required. BRIC first
asks you to enter the name of the Basic program
which you want to convert (and then press
Return). The specified program will be
*LOADed into memory at 3700.

The next question asks for the PAGE address.
This is the address at which you would like the
image to load back. On the model B with DFS
this is normally &1900. On the Master and
Compact it is &E00.

¥¥ BEEBUG BRIC 2.51 4

ROM image created
Load BasicR into SRAM.
To recall type, ¥BEEBUG

Press any key to exit!

By Peter John Cunberland

The program reports when the ROM image
is complete

Next, the text window will clear and you will
be requested to enter the ROM name. This can
be up to 10 characters in length. The name will
subsequently be displayed in response to the
*ROMS command (and others).

The next question asks for the author’s name,
so enter your own name here. Then BRIC asks
for the star command which will activate your

Beebug November 1989

Basic ROM Image Creator

program. Enter just the name - you don’t need
the asterisk. Whenever this command is issued,
your program will be instantly available, and

you can also just list or run your program.

The final question asks for the disc file name for
the ROM image. Enter a name and press
Return. Your image will then be stored on disc,
and the program will advise you on how to

reload it.

And there you have it, the easy way to get your

programs into Sideways RAM or ROM.

Note: An additional short program is included

on the magazine disc called TESTB which you
may use to test out BRIC.

10 REM Program BRIC

20 REM Version B2.51

30 REM Author Peter J Cumberland

40 REM BEEBUG November 1989

50 REM Program subject to copyright

607

100 ON ERROR VDU22,7:REPORT:PRINT” at
line “;ERL:END

410 *FX 229,1

120 MODE7:VDU23,1,0;0;0;0;

130 w$=CHR$135

140 FOR x =0 TO 1

150 PRINTTAB(1,x) ;CHR$141CHRS$132CHRS15
7CHR$131; SPC2”** BEEBUG BRIC 2.51 **

“;CHR$156

160 NEXT x

170 PRINTTAB(1,21);

180 PRINTCHR$141CHR$132CHR$157CHRS$131”
By Peter John Cumberland “;CHR$156

190 PRINTTAB(1,22);

200 PRINTCHR$141CHR$132CHR$157CHR$131”
By Peter John Cumberland “;CHR$156

210-PROCbOx(2;49, 35,3, 3,7)

220

230 K%=1:0%=10:0SBYTE=&FFF4

240 INPUTTAB(1,1);”Program Name :"F$

250 OSCLI (“LOAD “+F$+” 3700”)

260 S%=&C00:F%=&C20:$F%=F$+CHRS (13)

270 S%?0=F%MOD256:5%?1=F%DIV256:A%=5

280 X%=S%MOD256:Y%=S%DIV256:CALL&FFDD

290 CALL&FFDD

300

310
320
330
340
350

360 :

370
380
390
400
410

420 :

1000
1010
1020
1030
1040
1050
1060
1070

1080 :

1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390

J%=5%710+256*S%?11

DIM P (4) :HIMEM=&3500

J%=J%+&100

INPUTSPC1”PAGE address &“Loc$
r%=EVAL (“&”+Loc$) :0%=r% DIV 256

REM Main PROCedure’s start here
PROCinput

PROCassemble

PROCsaverom

END

DEF PROCinput:CLS:PRINT
INPUT”ROM Title:”T$
T$=LEFT$ (T$, Q%) :R$=LEN (T$)

INPUT”Author :”A$
AS=LEFTS$ (AS, Q%) :B%=LEN (A$)
INPUT”Command *”C$

C$=LEFTS$ (C$,10) : com$=LEN (C$)
ENDPROC

DEF PROCassemble:VDU 21

FOR begin%=0 TO 2 STEP 2
P%=63500

[

OPT begin%

BRK:BRK:BRK:JMP &8030

]
?P%=682:P%=P%+1:?P%=(9+R%) :P%=P%+1
?2P%$=00:P%=P%+1: $P%=T$:P%=P%+R%
?P%=00:P%=P%+1:?P%=628:P%=P%+1
?P%=§43:P%=P%+1:?P%=629:P%=P%+1
$P%=A$:P%=P%+B%:P%=63530

[OPT begin%

CMP #&04:BEQ branch

RTS

.end

PLA:TAX:PLA:TAY:PLA:RTS

RTS

.branch

PHA:TYA:PHA:TXA:PHA

]

2%=P%+3

FOR bc%=1 TO com%

[

OPT begin%

LDA (&F2),Y:CMP #&00

BNE end:INY

]

NEXT bc%

[

OPT begin$

Beebug November 1989

11

Basic ROM Image Creator

1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920

LDA (&F2),Y:CMP #&0D:BNE end
LDA #0%:STA &71:LDA #&82:STA &73
ILDA #&00:STA &70:STA &72
LDY #&FF

.continue

]

I%=P%

[

OPT begin%

LDA &73:CMP #&00

BEQ Lloop:INY

LDA (&72),Y:STA (&70),Y
CPY #&FF:BNE continue
INC &71:INC &73

CLC:BCC continue

.Lloop

INY:CPY #&00:BEQ fini
LDA (&72),Y:STA (&70),Y
CLC:BCC Lloop

SEid

LDX #&00:LDA #&82:1LDY #&50
JSR &FFF4

LDY #&41:JSR OSBYTE

LDY #&2E:JSR OSBYTE

LDY #&3D:JSR OSBYTE

LDY #&26:JSR OSBYTE

]

L=LEN (Loc$)

IF L=3 THEN Loc$="0"+Loc$
FOR J=1 TO 4

P (J)=ASC (MID$ (Loc$,J,1))
NEXT J

[

OPT begin%

LDY #P (1) :JSR OSBYTE
1LDY #P(2) :JSR OSBYTE
1DY #P(3) :JSR OSBYTE
IDY #P(4):JSR OSBYTE
LDY #&D:JSR OSBYTE

LDY #&4F:JSR OSBYTE

LDY #&4C:JSR OSBYTE

LDY #&44:JSR OSBYTE

LDY #&0D:JSR OSBYTE

LDY #&52:JSR OSBYTE

LDY #&55:JSR OSBYTE

LDY #&4E:JSR OSBYTE

LDY #&0D:JSR OSBYTE
PLA:TAX:PLA:TAY:PLA

ILDA #138:1LDX #0:JSR OSBYTE
ILDY #10:JSR OSBYTE

LDY #ASC”0”:JSR OSBYTE
LDY #ASC”L”:JSR OSBYTE
LDY #ASC”D”:JSR OSBYTE

1930 LDY #13:JSR OSBYTE

1940 LDY #ASC”R”:JSR OSBYTE

1950 LDY #ASC”U”:JSR OSBYTE

1960 LDY #ASC”N”:JSR OSBYTE

1970 LDY #13:JSR OSBYTE

1980 LDA #&00

1990 RTS

2000]

2010 NEXT begin%

2020 VDU6

2030 FOR begin%=1 TO com$%

2040 ?2%=ASCMIDS (C$,begin%, 1)

2050 Z%=2%+7:NEXT begin%

2060 A=(J%DIV256)+&82

2070 B=(J%MOD256)

2080 I%?3=A:1%?24=B

2090 ENDPROC

2100 ¢

2110 DEF PROCsaverom:CLS:PRINT

2120 INPUT SPC1”Enter filename:”Fn$
2130 IF LEN(Fn$)>7THENVDU7:G0T02120
2140 IF &200+J%<&4000 THEN I$="4000"
2150 IF &200+J%<&2000 THEN I$="2000"
2160 IF &200+J%<&1000 THEN I$="1000"
2170 IF &200+J%<&400 THEN I$="400"
2180 OSCLI(“SAVE “+Fn$+” 3500+”+IS$+” D9
CD 8000”)

2190 CLS

2200 PRINT’/SPC1”ROM image created”

2210 PRINT’SPC1”Load “;Fn$;” into SRAM.
2220 PRINT’SPC1”To recall type,”;CHR$13
1; Il*ll;cs

2230 PRINT’’SPCl1”Press any key to exit!
2240 *FX:229,0

2250 £$=GET$:CALL '-4

2260 ENDPROC

2270

2280 DEF PROCbox (a%,b%,c%,d%,cl%,c2%)
2290 VDU26

2300 FOR y%=d%+1 TO b%-1

2310 PRINTTAB (a%,y%)CHRS (144+c1%) "5”CHR
$(128+c2%) ;

2320 PRINTTAB (c%-2,y%)CHRS$ (144+c1%) CHRS
(106) w$;

2330 NEXT

2340 PRINTTAB(a%,d%)CHRS (144+c1%)CHRS (6
0) STRINGS (c%-a%-3,”, ") CHRS (108) w$;

2350 PRINTTAB (a%,b%)CHRS (144+c1%)CHRS (4
5) STRINGS (c%-a%-3,”, ") CHR$ (46) w$;

2360 VDU28,a%+3,b%-1,c%-3,d%+1,12

2370 ENDPROC B

12

Beebug November 1989

A BEEBUG Graph Plotter (2)

by Robin Murphy

In part 1 of this article, published last month, an
easy-to-use graph plotting program was
described which was capable of drawing the
graphs of functions. This second part extends
its repertoire to the graphs of relations, families
of curves, and those defined parametrically and
using polar co-ordinates.

Before typing in the new listing it is prudent to
rename last month’s program GRPLOT1 by

typing:

*RENAME GRPLOT1 GRPLOTO
so that it continues to be available if things go
badly wrong. It should then be loaded, the
additional program lines entered and the whole
re-saved as GRPLOT1. Once again care should
be taken to use the same line numbers as used
in the listing.

Plotting Quadratics

When GRPLOT is run it should behave exactly
as before except that a greater variety of
equations can now be processed.

CARTESIAN RELATIONS

Provided that they can be evaluated at most
values of x and y, and they represent, at worst,
a quadratic in either x or y, the program will
plot the graphs defined by relations between x
and y. Equations suitable for the default scales
are:

Beebug November 1989

X+2Y=10 linear in X and Y
XXY=12 linear in Y
XX-3XY-2YY=9 quadratic in X and Y
4-XX=X/Y quadratic in X
Note that:
X/Y+Y/X=3 would be “TOO HARD!”
but rearranged into:
XX+YY=3XY it becomes quadratic.

The numerical methods used to solve the
relations are prone to rounding errors and this
can spoil the ‘smoothness’ of some graphs. That
of:

(X=0.5) (VY =28)=0
is a typical example.

Plotting will always be much quicker if the
equation is entered in the form X=... or Y=...
permitted last month.

FAMILIES OF GRAPHS

There are many common ‘one parameter’
families of graphs that we meet in mathematics.
These represent a set of curves or lines which
include a single letter in their definition. Give
different values to the letter and you get a
different graph of the family. Common
examples are:

y=mx lines of gradient m
y=x" different powers of x
x?+y?=r? circles of radius r

The program will plot such families as long as
the letter used is K. You will be asked to enter
the starting value of K (K1), the stopping value
(K2) and the step (dK), before any plotting
takes place.

Entries suitable for the default scales are:
Y=KX -2 to.2 by .5
Y=X"K 0todby 1
XX+YY=KK 10 to 4 by -3

Remember that the Escape key is available if
you want to interrupt the plotting.

13

A BEEBUG Graph Plotter

PARAMETRIC GRAPHS

Parameters are also used to describe points on a
particular curve. The program will plot such
curves provided the parameter used is ‘t’. A
very simple pair of parametric equations is:

x=t

y=t?
Choose any value for t and these give the co-
ordinates of a point on the curve. This curve is

in fact the parabola y=x2. Parametric form
provides the only way of defining some
curves.Such equations must be entered giving
the x formula first, a colon, and then the y
formula. You should type ‘@ to enter a ‘t’ in the
equation.

Plotting Families of curves

You will also be asked to enter the starting and
stopping values of t before any plotting can
take place.

Suitable examples for the default screen (using
degrees) are:

X=10C0S@:Y=5SIN@ 0 to 360
X=8SIN (2@) : Y=8SIN (3@) 0 to 360
X=10@/ (1+@+QQ) :Y=10/(1+@Q@) -5 to 5

Note that the program automatically
substitutes ‘t” in place of ‘@ for the screen
display. The parametric form may also be used
to draw a graph which is defined differently on
different intervals. For example, plot:

y=(1 if -10<x<=1
(tx 1f 1<x<=5
(25/x if 5<x<=10
14

Plotting equations in parametric form

by:

X=Q:Y=1 -10 to 1
then:

X=Q:Y=X 1 to 5
then:

X=Q@:Y=25/X 5 to. 10

POLAR CO-ORDINATES

These describe the position of any point in
terms of its distance (r) from the origin, and the

direction (®) measured anticlockwise from a
reference line (see figure). If r is negative, it is
measured in the opposite direction so that (5,0)
and (-5,180) correspond to the same point Q in
the figure.

Figure 1. Use of polar co-ordinates

The angle ‘theta’ is entered into the equation by
pressing the ‘@ key (this is again automatically
replaced for the screen display). Some entries
suitable for the default scales are:

Beebug November 1989

A BEEBUG Graph Plotter

R=3+6C0SE@ 0 to 360 degrees
R=10SIN@ 0 to 180 o
R=8COS (3@) 0 to 180 ¥
R=5SIN@"2 0 to 360 %
R=Q+SIN(5Q) 0 to 4m radians

A typical plot using polar co-ordinates

PROGRAM DETAILS (PART 2)

NEW PROCEDURES

draw

join points on graph of quadratic
relation if close enough.

harder draw parametric or polar graphs.

horiz draw horizontal line at y value.

quadratic initiate the solution of the quadratic
relation.

range allow input of the range of a
parameter (and step in the case of
K).

solve use method of differences to form a
quadratic eqution, then find its
solutions v and V.

vert draw a vertical line at x value.

NEW FUNCTIONS

degree use method of differences to
find degree of x, or y, in the
equation. There are four
possibilities: 0, 1, 2, or >2.

eval calculate left-hand-side minus

right-hand-side of equation for
current x and y values.

Beebug November 1989

1030 IFINSTR($I%,M$)OR("R"=CHR$?I%) PR
OCharder :GOTOD

1040 K=TRUE:L=0:d=1

1050 F%=INSTR($I%,"K") : IFF$X$=M$:M$="K
":PROCrange:M$=X$:a$=51%:L=U:d=w:K=u-d

1230 W=FNdegree(.1,0) :Z=FNdegree (0, .1)

1240 IFW=00RZ=0:ENDPROC

1250 IFZ=1:F=1.5;ENDPROC

1260 IFW=1:F=1:ENDPROC

1270 1IFZ=2:F=2.5:ENDPROC

1280 IFW=2:F=2:ENDPROC

1320 1I=FNeval (X, z) :G=FNeval (X, z+1):IFI
=0ANDG=0 : PROCvert (f*X)

1330 =z+I/(I-G)

1360 I=FNeval(z,Y):G=FNeval(z+l,Y):IFI
=0ANDG=0:PROChoriz (g*Y)

1370 =z+I/(I-G)

1380 DEFFNeval (X,Y)

1390 =EVALS$K%-EVALS$J%

1420 IFF:W=u-4:IF INT(F)=1THEN1600

1430 IF INT(F)=2THEN1700

1440 IFW=0THEN1480

1450 IFW=1:PROCvert (FNx(1)*f) :ENDPROC

1460 IFW=2:F=1:2Z=z:PROCquadratic:IFc:P
ROCvert (v) :PROCvert (V) :ENDPROC

1470 F=-1:M$="Can't find X" :ENDPROC

1480 IFZ=0:F=-1:M$="SILLY!" :ENDPROC

1490 IFZ=1:PROChoriz (g*FNy (1)) :ENDPROC

1500 IFZ=2:F=.5:Z=z:PROCquadratic:IFc:
PROChoriz (v) :PROChoriz (V) : ENDPROC

1510 F=-1:M$="Can't find Y":ENDPROC

1520 DEFPROCvert (X)

1530 MOVEX, k :DRAWX, H:ENDPROC

1540 DEFPROChoriz(Y)

1550 MOVE], Y:DRAWJ, Y:ENDPROC

1700 1=TRUE:c=0

1710 C=1710:IFW>U:C=D:ENDPROC

1720 FORW=W+4 TOU STEP4

1730 Z=W/t:PROCquadratic

1740 IFc=0AND1>0PROCdraw(p,q,m,n) :1=0:
NEXT : ENDPROC

1750 IFc=01=0:VDU7:NEXT :ENDPROC

1760 IFF=2P=v:M=V:Q=W:N=W:ELSEQ=v:N=V:
P=W:M=W

1770 IF1=0PROCdraw(P,Q,M,N) :ELSEIF1>0P
ROCdraw (p, q,P, Q) :PROCdraw (m,n,M,N) : IFc<1
:PROCdraw (p, q,M,N) :PROCdraw (m,n, P, Q)
1780 p=P:m=M:q=Q:n=N:1=1:NEXT

1790 ENDPROC

1800 DEFPROCquadratic

1810 IFF=INT(F):PROCsolve (FNeval(z-1,2
) ,FNeval (z,2) ,FNeval (z+1, Z)) ELSEPROCsolv
e (FNeval (2,z-1) ,FNeval (Z,z) ,FNeval (Z,z+1
))

15

Peacock Printer

Reviewed by Dorian Goring

Product Peacock Printer

Supplier

Datassistance

83 Main Street, Great Boughton,
Cockermouth,

Cumbria, CA13 0YJ.

Tel. (0900) 825503

£8.95 inc.VAT

Price

Colour separation is a very interesting and
creative computer graphics topic (see my article
Multi-Colour Printing in BEEBUG Vol.8 No.4),
and it provides a cheap way of getting colour
from a standard ‘black & white’ dot matrix
printer.

HARDWARE

You need a set of coloured ribbons to fit your
printer (about £5 each, and available for most
dot-matrix printers), and software including a
printer driver to turn your colour graphics into
separate printable screéns.

The maximum number of ribbons you will
need is four - yellow, magenta, cyan, and black.
These are the industry standards in colour
printing. So, for a total outlay of about £30
(including software) you could be printing
professional colour, and save the cost of
updating your printer!

SOFTWARE

There are several pieces of software available
for colour separation using a BBC computer, if
you are prepared to search. Two I've previously
used were downloaded from Ceefax’s
Telesoftware service before its sudden demise.
Now, Datassistance are marketing Peacock
Printer, which most timely fills a vacant
technology gap.

Peacock Printer is a fairly simple yet powerful
and effective means of translating screen colour
in any graphics mode into multi-coloured
hardcopy for under £30 (including ribbons,
available separately).

16

HOW IT WORKS

The idea behind it is that the same sheet of
paper makes several passes through the printer,
each time with a different coloured ribbon and
colour screen. It is not a difficult process to
understand and has a wide number of
applications.

The program uses the red function keys to
enable you to select which parts you want
printed in a particular colour, with pauses to
allow you to insert the appropriate coloured
ribbon. It then prints these parts, and
automatically re-aligns the paper (using
reverse-feed on Epson compatibles) and centres
the print head ready for the next colour.

HIDDEN DIFFICULTIES

Technically, the software works well (apart
from a couple of tiny bugs in the printer driver
code, but only single density printing is
possible, more’s the pity). It is reliable, and
fairly simple in operation, but there are
important ‘hidden’ difficulties, and omissions
in the documentation (A5 format, 8 pages,
folded). These can cause misunderstandings
regarding operation (printer set-up and
specification), and limit creative exploitation.

In order for the function keys to work (and to
exit from the program!), your printer must be
on-line with paper installed. This is an
unnecessary limitation. Initially, I wanted to
explore colour possibilities, and experiment
with different colour combinations in different
modes just to see how it all worked and the
effects I could create.

However, being forced into using my printer, I
discovered my Citizen 120D Epson compatible
does not have reverse feed, and that the software
off-centred the printhead. I therefore had to
remember to draw registration marks on the
paper each time so that I could accurately re-
align for the next pass. No mention of possible
incompatibility and what to do about it is made
in the documentation.

Beebug November 1989

Peacock Printer

If reverse-feed doesn’t work, press the form-
feed button several times to eject the paper
rather than manually turning the platten. This
should also correctly centre the printhead.

PEDAGOGY OVERLOOKED

The ability to explore a package is very
important because it allows you to get the ‘feel’
of the process through trial and error before
using it in earnest. Peacock Printer takes some
time to understand, particularly the use of the
function keys. This important pedagogical
aspect appears to have been entirely
overlooked.

POOR DOCUMENTATION
Unfortunately, the document’s wording makes
the process sound more complicated than it is.
Apart from function key f6 (used to set the
printer working) and f9 (quit program), four
other keys do all the work. Keys f0 and f1 are
toggle switches used to identify physical and
logical colours, while f2 is used to cycle through
logical colours, and f3 assigns a particular
physical colour to a particular logical colour.

Multi-coloured printout (in monochrome here)
from Peacock Printer

Confused? I was! Sentences such as “Pixels of
the current LOGICAL colour remain
unblanked, regardless of any other pixels with
the same physical colour” are quite difficult to
understand first time round and should be
avoided.

I couldn’t help feeling that the documentation
could have clarified this confusion rather than
adding to it. Also, some attempt should have

Beebug November 1989

been made to provide a context or background
to understanding what colour separation
actually is, how it works, and why it is
important. And it would be helpful if the
software contained some demonstration
examples with which to experiment.

COLOUR THEORY

It is helpful to know, for example that the
printing industry has its own long established
traditions, generally employing four standard
inks as the primary colours - yellow, magenta
(light red), cyan (light blue), and black - on
standard white paper.

In-between colours (the secondaries orange,
green, violet) are created by over-printing
primary colour on primary colour (yellow +
cyan = green). Colours can be darkened by
printing more of the same colour on top (i.e.
magenta over-printed with magenta makes
red).

SILK-SCREEN PROCESS

Peacock Printer closely emulates silk screen
print-making (generally associated with colour
artwork and posters in advertising), and could
provide an effective introduction to the process.
This important educational area is not
mentioned in the documentation.

The software effectively creates these different
colour screens automatically, leaving you to
cycle through the colours looking for realistic or
creative colour combinations.

CONCLUSIONS

Peacock Printer is an imaginative piece of
programming that should be snapped up by
education (Art, and Science for theory of colour
and light demonstrations to name but two), and
those interested in colour graphics but unable
to afford a colour printer. Seriously, it is a
fascinating topic and highly creative. Give it a
whirl!

Unfortunately, this package is let down by poor
documentation, though I understand that
there’s a revised and enhanced version on the
way. So, if you want something a little different,
try Peacock Printer and colour separation.
Maybe you’d like to send us your results?

17

Disc File Identifier

Alan Mothersole describes a comprehensive utility for identifying and analysing the
contents of your discs.

Have you ever rummaged through boxes of discs
and come across some that you had forgotten all
about? Even doing a *CAT leaves you none the
wiser. If you use a Master or BBC converted to
the ADFS it becomes even more of a problem to
sort through the directories and files.

There have been several utilities to catalogue
discs and attempts to identify files, but these
have been predominantly for DFS users. This
two-part series will ultimately cover the needs
of both filing systems by constructing a disc
and file analysing program called WOTAMI.
This month we start with the skeleton program
and code to handle DFS format discs.

By inserting a disc into a drive, WOTAMI will
attempt to identify the types of files on it as
follows:

BASIC

ROM Image

VIEW

ViewSheet

ViewStore

Text

Directories (ADFS)

Machine Code/Data

THE PROGRAM

The program listed here should be typed in with
the line numbers exactly as shown and saved to
disc as ‘WOTdfs’. This program will only work
with the DFS at present. The additional routines
for ADFS users will be given in Part 2.

OPERATION

Run WOTdfs and wait for the menu to be
displayed. Insert the disc to be analysed into a
drive. If any disc surface other than 0 is required
use <O> from the main menu to change it.

Pressing <R> will read the filenames and
identify them. All the files on the selected side
will be identified. Once the disc has been read a
summary of the files will be shown beneath the
menu.

18

As of now there is only one way of displaying
the information. <S> will display a list of the
files together with their identification, length,
lock status, disc size and title. However, an
additional facility will be presented in Part 2.

Hard copy can also be obtained by using <P>
from the main menu. The resulting printout
could be cut out and slipped inside the disc
sleeve for future reference.

NOTE: WOTdfs cannot guarantee to identify
all files correctly. For example if a ROM image
has been saved via a buffer at &3000 its load
address may not be &8000.

FUTURE EXPANSION
In Part 2 of this series, additional routines will be
added to allow both ADFS and DFS discs to be read.

B=2.974560699etc
T1=(BA3+1) days

T5=20.18 days

Fig-2,2 The Roche Vortical Space Systen,

Analysing the contents of a disc

In addition, a powerful routine called “Wotami’
will be used to interrogate the identified files
and give further useful information on the
contents of Basic REMs, ROM Image header
information, View comments and text file data.

TECHNICAL DETAILS

The program is in Basic and includes a number
of O.S. calls to read parameters such as disc
filing system, directory names, disc title, disc
filenames and address details.

Beebug November 1989

Disc File Identifier

ELECEEEEPEEEEEEEECEereererereererees
WOTANI? Disc/File Identifier

: Tue,24 Oct 1989
: OFS 80 Tracks

Date

Disc Format
Disc Title
Orive

: 0
EEECEREEFEEEEFEEEERECEEEEFEFEErerees

Length Status

Disc contents displayed

MAIN PROCEDURES

PROCinit - Define arrays and variables.
PROCinit2 - Clear arrays and reset totals.
PROCmenu - Main screen menu.

PROCfs - Read computer filing system.
PROCreaddfscat - Read all filenames from
selected DFS disc.

PROCreadcsd - Read currently selected directory.
Default is $.

PROCdtitle - Read disc/directory title.
PROCreadad - Read load, execution addresses
and file length.

PROClock - Find which attributes are set.
PROCchBasic - Check if file is Basic by
examining if first byte is &0D. PROCchROM -
Check if file is ROM image - is load address =
&8000?

PROCcView - Check if file is in View format.
PROCcText - Check for Text file. If both load and
execution addresses are not &FFFF or the execution
address is &FFFF, or load address is &0 and
execution address is &FFFF then file contains text.
PROCcVST - Check if file is ViewStore data file
by reading from end of file for its end-of-data
marker (&01).

PROCCcVSHT - Check if file is ViewSheet data file
(second byte is &03). PROCshow - Gives
summary list of all files.

PROCcheck - Main routine for identifying files
after checking for directories. The sequence
chosen is ROM, Basic, View, ViewSheet,
ViewStore, Text while any other files are declared
as machine code. As soon as file is correctly
identified the checking ceases and the next file is
examined.

Beebug November 1989

10 REM Program WOTAMI

20 REM Version Bl.3

30 REM Author Alan Mothersole

40 REM BEEBUG November 1989

50 REM Program subject to copyright

MODE7:master=INKEY (-256) =253
ONERROR GOTO 10050

PROCinit

PROCmenu

END

DEF PROCinit
LOCAL I%
VDU23,1,0;0;0; :@%=6

1030 buffer%=&7000

1040 DIM block% 20,buf% 20,C% 18,S5% 18,
blk% 20,block 18,name 11

1050 DIM name$(47),load(47),ex(47),leng
th(47),lock$ (47),type% (47) , type$ (8)

1060 z$="**********“

1070 FOR I%=1 TO 8:type$ (I%)=z$:type$(I
%) ="":NEXT

1080 dr%=0:tt$="":csd$="$":read=FALSE:f
max%=47 :namax%=10

1090 RESTORE 10000:FOR I%=1TO8:READ typ
e$ (I%) :NEXT

1100 sx$=CHR$133+CHR$157+CHR$131:sy$=CH
R$1324CHR$157 :Date$=""

1110 IF NOT master THEN INPUT'"Enter cu
rrent date: "Date$

1120 ENDPROC

1130 %

1140

1150

1160

1000
1010
1020

DEF PROCinit2

LOCAL 1%

FOR I%=0T0550:buffer%?I%=0:NEXT
1170 FOR I%=0 TO 46
1180 name$ (I%)=z$:name$(I%)="":1lock$ (I%
)="ExEAT . Jock$ (I%)="":type% (I1%)=0
1190 NEXT
1200 ba%=0:ro0%=0:vi%=0:sh%=0:st%=0:tx%=
0:mc%=0:di%=0:prt=FALSE:dlen%=0:tk%=0:fr

ee%=0
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340

ENDPROC

DEF . PROCmenu

LOCAL A%,T%:quit=FALSE
REPEAT
CLS:PROCtitle:PRINT
PROCcen (CHR$131+" Select Option:")
PRINT

RESTORE 10010

READ Y

FOR T%=1TO Y

READ A$

PRINTTAB (12) CHR$130;A$
NEXT

19

El

Disc File Identifier

1350 IF read THEN PROCupdate

1360 A%=GET:A%=A% OR &20

1370 IF A%=114 PROCreadcsd:PROCdtitle:P
ROCread:PROCcheck : read=TRUE

1380 IF A%=115 CLS:VDU14:PROCshow:VDU15

1390 IF A%=112 PROCprint

1400 IF A%=111 PROCoptions:PROCreadcsd:
PROCdtitle

1410 IF A%=42 PROCstar

1420 IF A%=113 CLS:PROCcen (CHR$131+"Are
you sure (Y/N) ?"):AS$=GETS:IFAS="Y"ORAS
="y" THEN quit=TRUE

1430 UNTIL quit

1440 ENDPROC

1450

1460 DEF PROCtitle

1470 LOCAL K%

1480 CLS:FORK%$=1TO2:PRINTsy$; :PROCcen (C
HR$131+CHR$141+" WOTAMTI ?") :NEXT

1490 PRINTsy$; :PROCcen (CHR$130+" Intel
legent Disc Reader") :PROCfs

1500 f$="DFS"

1510 PRINTsx$;"File System : ";CHR$134;
£$;TAB(23) CHR$131; "Drive : ";CHR$134;dr%
1520 PRINTsx$;"Directory : ";CHR$134;

csd$, 'sx$;"Title s MO CHRS134; tES

1530 ENDPROC

1540 :

1550 DEF PROCupdate

1560 LOCAL I%

1570 PRINTTAB(0,17)sy$; :PROCcen (CHR$131
+"Files on Disc")

1580 b=19

1590 FOR I%=1 TO 7 STEP 2

1600 PRINTTAB(2,b)CHR$134;type$ (I%) ; TAB
(10,b) ":";CHR$131; TAB(22,b) CHR$134; type$
(I3+1) : TAB(30,b)" :"; CHRS 131

1610 b=b+1

1620 NEXT

1630 PRINT;TAB(13,19)ba%;TAB(33,19) ro%;
TAB(13,20) vi%; TAB(33,20) sh%; TAB(13,21) st
%;TAB(33,21)tx%;TAB(13,22)mc%; TAB (33,22)
di%

1640 PRINT'sy$;

1650 PROCcen (CHR$131+" Total ¢ "+3T
R$ (nof%-di%)+CHR$11+CHRS$11)

1660 ENDPROC

1670 :

1680 DEF PROCfs

1690 dfs=FALSE:A%=0:X%=0:Y%=0

1700 IF (USR(&FFDA) AND &4)=&4 THEN dfs
=TRUE

1710 ENDPROC

1720

1730 DEF PROCread

1740 PROCinit2:CLS

1750 PROCdfscat

1760 ENDPROC

L

1780 DEF PROCdfscat

1790 LOCAL A%,B%,C%

1800 PROCcen (CHR$131+"Reading DFS Filen
ames")

1810 ?2&70=dr%:X%=&70:Y%=0:A%=&7E:CALL&F
FF1

1820 free%=!&70:IFfree%>520000 THENtk%=
80 ELSE tk%=40

1830 ?&70=dr%:!&71=buffer%:?&75=3:2&76=
§&53:2&77=0:2&78=0:2&79=34

1840 X%=&70:Y%=0:A%=&7F :CALL&FFF1

1850 nof%=(buffer%?&105)/8

1860 C%=buffer%+8

1870 FOR A%=0 TO nof%-1

1880 IF ?C%<>32 name$ (A%)=""

1890 FOR B%=0 TO 7:name$ (A%)=name$ (A%)+
CHR$ ((C%?B%) AND127) :NEXT

1900 name$ (A%)=RIGHTS (name$ (A%),1)+"."+
LEFTS (name$ (A%) ,7)

1910 C%=C%+8

1920 NEXT:CLS

1930 ENDPROC

1940 :

1950 DEF PROCreadcsd

1960 LOCAL Y%:csd$=""

1970 A%=&6:X%=b1k%MOD256:Y%=b1k%DIV256
1980 ?blk%=0:blk%!1=buf%:CALL &FFD1

1990 dr%=buf%?(1)-48

2000 t=buf%?(2)

2010 FOR Y%=3 TO 2+t

2020 temp$=CHRS$ (buf%?(Y%))

2030 csd$=csd$+temp$

2040 NEXT

2050 ENDPROC

2060 :

2070 DEF PROCdtitle

2080 LOCAL t,A%,X%,Y%

2090 tt$=""

2100 A%=&5:X%=b1k%¥MOD256:Y%=b1k3DIV256
2110 ?blk%=0:blk%!1=buf%:CALL &FFD1
2120 t=buf%?(0)

2130 FOR Y%=1 TO t

2140 temp$=CHRS (buf%? (Y%))

2150 tt$=tt$+temp$

2160 NEXT

2170 ENDPROC

2180 :

2190 DEF FNgdata

2200 info$=""

2210 REPEAT

2220 data=BGET#C%

2230 IF data>&7E THEN data=&20

2240 IF data>=&20 THEN info$=info$+CHRS$
(data)

2250 UNTIL data<é&20

20

Beebug November 1989

Disc File Identifier

2260

=info$

227002

2280
2290
2300
2310

DEF PROCreadad(Z%)

LOCAL A%,X%,Y%

Sname=name$ (Z%)

?block=name MOD 256:block?l=name D

IV 256

2320

A%=5:X%=block MOD 256:Y%=block DIV

256:CALL &FFDD

2330
2340
10
2350
2360
2370
2380
2390
2400
2410
2420
="L"
2430
2440

2580
F8000
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690
2700
2710

load (2%)=(block!2)
ex(Z2%)=(block!6) :1length (Z%)=block!

lock=block!14
PROClock
ENDPROC

DEF PROClock
lock$ (2%)=""
IF (lock AND &0)=&0 THEN lock$(Z%)

IF (lock AND &8)=&8 THEN lock$ (Z%)
ENDPROC

DEF PROCchBasic

IF type%(I%)=8 ENDPROC
basic=FALSE

C%=0PENUP (name$ (I%))

data=BGET#C%

IF data<>&0D CLOSE#C%:ENDPROC
CLOSE#C%

basic=TRUE

IF basic THEN type%(I%)=1:ba%=ba%+

ENDPROC

DEF PROCChROM

IF type%(I%)=8 ENDPROC

IF load(I%)=&8000 OR load(I%)=&FFF
THEN type%(I%)=2:ro%=ro%+1l
ENDPROC

DEF PROCcView

IF type%(I%)=8 ENDPROC
C%=0PENUP (name$ (1%))
data=BGET#C%

IF data<>&80 CLOSE#C%:ENDPROC
data=BGET#C%

IF data<>&43 CLOSE#C$%:ENDPROC
type% (I%)=3

CLOSE#C%

vi%=vi%+l

ENDPROC

27204

2730
2740
2750

DEF PROCcText
IF type%(I%)=8 ENDPROC
IF (load(I%)=-1 AND ex(I%)=-1) THE

N ENDPROC

2760
27170

ypes (I%)=6:tx%=tx%+1

2780

21790,

2800
2810
2820
2830
2840
2850
2860
2870
2880
2890
2900
2910

ENDPROC

2920

:st¥=st%+l

2930
2940
2950

IF ex(I%)<>-1 THEN ENDPROC
IF load(I%)=0 AND ex(I%)=-1 THEN t

ENDPROC

DEF PROCcVST
enddata%=&01:pad%=&00

LOCAL ptr%,data%

C%=0PENUP (name$ (I%))
ptr¥=EXT#C%

REPEAT

ptr¥=ptr%-1

PTR# C%=ptr%

data%=BGET#C%

UNTIL (data%<>pad%)OR (ptr%=0)
CLOSE# C%

IF (data%<>enddata%)OR (ptr%=0) THEN

IF data%=enddata% THEN type% (I%)=5

ENDPROC

DEF PROCCVSHT

C%=OPENUP (name$ (I1%))

FOR J%=1 TO 2

data=BGET#C%

NEXT

IF data=&03 THEN type% (I%)=4:sh%=s

CLOSE# C%
ENDPROC

DEF PROCoptions

LOCAL A, T%:ex=FALSE

REPEAT

PROCtitle:PRINT

PRINTCHR$131; :PROCcen ("Change :"):

RESTORE 10020

READ Y

FOR T%=1 TO Y

READAS$: PRINTTAB (12) CHR$130;A$
NEXT

A=GET:A=A OR &20

IF A=100 PROCchdrv

IF A=120 ex=TRUE

UNTIL ex

ENDPROC

DEF PROCchdrv

PROCfs

LOCAL A

PRINT' 'TAB (6) CHR$131; "Drive No.? "

REPEAT
A=GET:A=A-48

Beebug November 1989

21

Disc File Identifier

3260 UNTIL A>=0 AND A<6
3270 PRINTTAB(20)A

3280 A$=STRS$ (A)

3290 dr%=A

3300 OSCLI("DRIVE "+A$)
3310 new=TRUE

3320 ENDPROC

3330

3340 DEF PROCshow

3350 LOCAL I%

3360 IF read=FALSE ENDPROC
3370 IF prt THEN VDU2

3380 PROCline:PRINT

3390 PROCcen ("WOTAMI? Disc/File Identif

3400 PROCline

3410 IF Date$="" Date$=LEFTS (TIMES, 15)
3420 PRINT"Date : ";Date$

3430 PRINT"Disc Format : ";

3440 PRINT"DFS ooEk%:" Tracks™

3450 PRINT"Disc Title = ¢ ";tt$

3460 PRINT"Drive sAtvdry

3470 PROCline

3480 PRINT'"Filename Type Length
Status"

3490 PROCline

3500 PRINT

3510 FOR I%=0 TO nof%-1

3520 PRINTname$ (I%);TAB(11)type$ (type%(
I%)),length(I%);TAB(29)~1lock$(I%)
3530 NEXT

3540 PRINT'

3550 PROCline:PRINT

3560 PROCcen ("Number of files :
nof%-di%))

3570 PRINT'

3580 dfree%=free%-dlen%

3590 PROCcen ("Space used = "+STRS (dlen%
)+" bytes")

3600 PRINT:PROCcen ("Space free = "+STRS
(dfree%) +" bytes") :PRINT

3610 PROCline:VDU3:PROCky

3620 ENDPROC

3630 ¢

3640 DEF PROCcheck

3650 LOCAL I%

3660 IF nof%=0 ENDPROC

3670 PROCtitle

3680 PRINT'

3690 PROCcen (CHR$131+"Identifying Files
"

)

3700 PRINT'

3710 PROCcen ("Please wait ...")

3720 FOR I%=0 TO nof%-1

3730 PROCreadad (I%)

3740 dlen%=dlen%+length (I%)

3750 IF type%(I%)=0 PROCChROM

"+STRS (

3760 IF type%(I%)=0 PROCchBasic

3770 IF type%(I%)=0 PROCcView

3780 IF type%(I%)=0 PROCCVSHT

3790 IF type%(I%)=0 PROCCVST

3800 IF type%(I%)=0 PROCCText

3810 IF type%(I%)=0 THEN type%(I%)=7:mc
$=mc%+1

3820 NEXT

3830 ENDPROC

3840 :

3850 DEF PROCprint

3860 LOCAL A

3870 IF read=FALSE ENDPROC

3880 prt=TRUE

3890 PROCtitle:PRINT

3900 PROCcen(CHR$134+"Print Options")
3910 PRINT

3920 RESTORE 10030

3930 READ Y

3940 FOR T=1 TO Y

3950 READ A$:PRINTTAB(12)CHR$130;A$
3960 NEXT

3970 REPEAT

3980 A=GET:A=A OR &20

3990 UNTIL A=115 OR A=119 OR A=120
4000 IF A=120 THEN prt=FALSE:ENDPROC
4010 IF A=115 PROCshow

4020 prt=FALSE

4030 ENDPROC

4050 DEF PROCstar

4060 CLS:PRINT'"*":INPUTstar$
4070 OSCLI (star$) :PRINT':PROCky
4080 ENDPROC

4100 DEF PROCcen (t$) :PRINTTAB (18- (LENt$
) /2) t$:ENDPROC

4110

4120 DEF PROCtime(t) :TIME=0:REPEAT:UNTI
L TIME>t :ENDPROC

4130 :

4140 DEF PROCky:PROCcen ("Press any key"
) :A=GET : ENDPROC

4150 :

4160 DEF PROCline:PROCCen(STRING$(36,"_
")) :ENDPROC

4170 :

10000 DATA Basic,ROM,View, VSheet,VStore,
Text,Data,<DIR>

10010 DATA 6, (R)ead Disc, (S)how Files, (P
)rint Files, (O)ptions, (*) Command, (Q)uit
10020 DATA 2, (D)isk Drive,e(X)it to Menu
10030 DATA 2, (S)how, e (X) it

10040 :

10050 VDU3:CLS:REPORT:PRINT;" at line ";
ERL:END IB

22

Beebug November 1989

A Thesaurus for the Beeb

Mike Williams reviews Keyword, a new product from Swift Software for
aspiring wordsmiths.

Product
Supplier

Keyword

Swift Software

6 Ennerdale Road,
Stockport, Cheshire SK1 4NR.

Tel. 061-477 8405

£9.95 (40 track 5.25" disc)

£19.95 (80 track 5.25" DPS disc or 3.5 ADFS disc)
Prices include VAT and p&p.

Price

At one time word processors were simple to use
and straightforward in application. Nowadays the
opposite is too often true. However, there are
certain features which have proven invaluable. The
first of these was some form of spelling checker,
now an essential component of almost any word
processor that claims even modest respectability.

The latest and growing demand is for a thesaurus.
Printed versions have been in existence for a long
time, Roget’s Thesaurus probably being the best
known. This allows you to look up any word in an
alphabetical index which directs you to a section
containing similar, equivalent or related words and
phrases. Such a thesaurus can be a boon to anyone
who undertakes much writing.

Until now, I have been unaware of any such
software for the BBC micro (or even the
Archimedes), but Swift Software has galloped to the
rescue with Keyword, which is available in versions
on disc for all Acorn micros.

The software is supplied in a smart looking pack,
but the documentation, though well printed,
amounts to no more than two A5 sides of
instructions. Pressing Shift-Break boots the
software.

Enter a keyword and press Return twice to be
presented with a list of possible categories. Use the
cursor keys to select the one of your choice and
press Return again to be presented with a
corresponding list of words. Using the cursor keys,
more words can always be selected from the list
displayed, for further associations.

As well as searching for synonyms and antonyms,
you can also type in, say ‘th’, and see displayed all
words beginning with these two letters. It is also
possible to browse through the 10,000 or so words
which Keyword claims to provide (the 40 track
version has 5000 words).

Beebug November 1989

In use the access times seemed acceptable, but I do
have two points of criticism. The first may be
considered temporary, in that it relates to the
documentation. I did not find this really sufficient at
the outset, and I learnt to use the package more by
trial and error. Moreover, on my system at least, the
main example used in the documentation fails to
work as described!

KEYWORD <) Swift Softuware

penetrating
penetration
perceptive

My other disappointment concerns the method of
operation. I would have liked to access Keyword
while working on a document, in the manner of
Computer Concept’s Spellmaster. Unfortunately,
this appears impossible. Instead, you must save
your document, boot Keyword and do your
searching. Then reload your word processor and
original document. This seems to me to be a
significant weakness in an otherwise admirable
product. I understand from Swift Software that a
ROM-based version is under development which
will overcome this problem, and which will be
available to existing purchasers for the cost of post
and packing as an upgrade. Keyword also requires
that its own disc be always available, as only parts
of its dictionary are ever loaded into memory at any
time.

In principle, this is an excellent product, offering as
it does the facilities that many users increasingly are
asking for in conjunction with a word processor.
However, until the suppliers do produce a version
which integrates better with the word processor of
your choice, then I for one will still be reaching for
my printed edition of Roget’s Thesaurus when the
need arises. B

23

A Good Report

Andrew Roland explains how to enhance the error reporting in your programs,
by emulating the REPORTS keyword of the Archimedes’ Basic V.

“To err is human, but to make a real mess-up you
need a computer.” It is one of my philosophies of
life that as mistakes are inevitable, you might as
well learn to deal with them as quickly and
painlessly as possible. Here are two ideas for
making those programming errors more bearable.

The first is really just a tip. Do the error handling
parts of your programs just print an error
message and line number, and stop at that? Why
not get the computer to list the line causing the
trouble as well - at least while you’re still
debugging the program? One way of doing this is
shown in listing 1.

Listing1

10 REM Listing 1
20 ON ERROR GOTO 1000
30 rubbish

1000 ON ERROR OFF

1010 REPORT:IF ERL PRINT” at line “;ERL
1020 OSCLI “Key0 LIST “+STR$ (ERL)+”|F|M”
1030 *FX21

1040 *FX138,0,128

1050 vpu21

1060 END

Unfortunately, you can’t just type LIST ERL - you
have to convert the value of ERL into a string
using STR$, as in line 1020, which is used as part
of a function key definition. Line 1040 then inserts
the function key’s code into the keyboard buffer
just as if you had actually pressed f0, and the next
time an error occurs, the whole line is listed on
the screen.

Even better, why not use Paul Pibworth’s Basic
Line Editor from BEEBUG Vol.8 No.2? If you're
like me, you get to hate cursor-copying whole
lines just to alter one small mistake. If you change
line 1020 of that program to:

1020 OSCLI”KeyO CALL &7719|M”+STRSERL+” |M”

and engage the editor with *ED, the offending
line will go straight into a word processor style
line editor - that’s what I call time saving! By the

24

way, CALL &7719 assumes you have not altered
the addresses in Paul Pibworth’s program - if you
have, it may need adjusting.

ERROR MESSAGES

The second idea is concerned with how error
messages appear after your program has been
completed, and a user encounters a problem like
‘Disc full’. How many professional looking
programs are spoilt by tatty error messages! For
example, have you ever tried (or wanted) to do
this in mode 7, hoping to get a red error message?

100 PRINT TAB(0,23);CHRS(129);"Brror — %;
110 REPORT

Of course, it won’t do what it’s supposed to
because REPORT always insists on starting a new
line first (try it and see). What’s more, if you want
double-height letters, you're really stuck, unless
you own an Archimedes - then you could use the
pseudo-variable REPORT$. This gives you access
to the error message as a character string,
allowing you to process and manipulate it in any
way you choose.

But how can we Model B and Master owners read
an error message into a string? The traditional
answers to this problem tend to involve lots of
machine code and calls into the Basic ROM,
which changes with every new version of Basic.
The answer I came up with is short and sweet. If
you just want to type in the program and dazzle
your friends with your technicolor error
messages, you can skip the explanation all
together.

USING THE PROGRAM

We cannot create a variable called REPORT$
(variables may not start with a keyword) so we
will use a function instead - FNreport. This is
given high line numbers (from 30000) so that it
can be added to your own programs without line
number clashes. Later, you will only need lines
30000 onwards, but for the time being enter all of
Listing 2, including the demonstration at the
beginning. Be careful to save the program before
running it - better safe than sorry.

Beebug November 1989

S e A U i T TN bl P T Y

r]

A Good Report

Listing 2

10 REM Program REPORTS$ simulation
20 REM Version 1.00

30 REM Author Andrew Rowland

40 REM BEEBUG November 1989

50 REM Program subject to copyright

100 ON ERROR GOTO 180
110 CLS

120 DIM buffer 8

130 PRINT’ “REPORTS$ DEMO”
140 PRINT”Press ESCAPE “;
150 REPEAT UNTIL FALSE
160 END

180 ON ERROR OFF

190 mode=?&355

200 IF mode=7 PROCcentre (CHR$129+CHR$1
41+FNreport+” “,22) :PROCcentre (CHR$129+C
HR$141+FNreport+” “,23)

210 IF mode<7 PROCdouble (0,30,FNreport
)

220 PRINT

230 END

2490 ¢

1000 DEF PROCcentre (AS$,Y)

1010 LOCAL X:X=(39-LENAS$) DIV 2

1020 PRINTTAB(X,Y)AS;

1030 ENDPROC

1040 :

1050 DEF PROCdouble (x,y,AS$)

1060 LOCAL A%,X%,Y%

1070 osword=&FFF1

1080 PRINTTAB (X,y):

1090 X%=buffer MOD 256

1100 Y%=buffer DIV 256

1110 A%=10

1120 FOR I%=1 TO LEN A$
. 1130 ?buffer=ASC(MIDS (AS,I%))

1140 CALL osword

1150 VDU 23,254,buffer?l,buffer?l,buffe
r?2,buffer?2,buffer?3,buffer?3,buffer?4,
buffer?4

1160 VDU 23,255,buffer?5,buffer?5,buffe
r?6,buffer?6,buffer?7,buffer?7,buffer?8,
buffer?8

1170 VDU 255,8,11,254,10

1180 NEXT

1190 ENDPROC

1200 :
30000 DEF FNreport
30010 LOCAL P%,Q%,X%,Xtemp, entry
30020 Q%=&900:store=Q%+&20
30030 FOR pass=0 TO 2 STEP 2
30040 P%=Q%

30050 [OPT pass

30060 .Xtemp EQUB 0 \ make pointer zero
30070 \ enter here via OSWRCH vector
30080 .entry

30090 \ skip any VDU 10’s

30100 CMP #10:BEQ out

30110 LDX Xtemp

30120 STA store,X \ and store it

30130 INC Xtemp \ add 1 to pointer
30140 .out RTS

30150]NEXT

30160 REM keep old contents of vector
30170 oldv=!&20E

30180 REM divert OSWRCH vector

30190 ?&20E=entry MOD 256

30200 ?&20F=entry DIV 256

30210 REPORT

30220 IF ERL PRINT” at “;ERL:ELSE PRINT
30230 !&20E=0ldv:REM restore vector
30240 =$(store+l)

Beebug November 1989

Try the program in mode 7, and then in mode 1.
When you press Escape, the corresponding error
message is read into a string and then printed in
double-height letters (regardless of mode). Two
useful procedures are used in the demonstration:
PROCcentre(A$,Y) (line 1000) which centres a
string at line Y; and PROCdouble(x,y,A$) (line
1050) which prints a string in double-height
letters at co-ordinates (x,y). This only works in a
graphics modes.

When you are satisfied that all is well, delete lines
10 to 1200 and save the procedure as, say, Report.
When you start a new program, load Report, type
AUTO and start writing. Alternatively, consult
the User Guide for instructions on merging it
with one of your existing programs.

FNreport can be used exactly like a normal string
variable. You can PRINT it, split it with LEFT$()
and RIGHT$() and even write lines like:

IF INSTR(FNreport,”Escape”) THEN...

How about that for readability? The most useful
thing I have used it for was in a program I was
writing for a blind friend with Superior’s Speech!
The line: L

OSCLI (“*SAY “+FNreport)

spoke out every error message, so he always
knew what was going wrong. The only limitation
is that it cannot be used in a second processor.

25

A Good Report

HOW ERROR MESSAGES ARE PRODUCED
When considering how to implement a REPORT$
emulation, my first thought was to look at what
the computer does when it comes across your
latest typing mistake. Well, it stops what it’s
doing and makes a note of where the error
message is (the message is in fact a string
somewhere in memory); that is, it stores the
address of the start of the error message in two
locations - &FD and &FE. It then continues
execution after the last ON ERROR statement, but
it doesn’t actually print the message on the screen
until it meets a REPORT.

So I wrote a program to recover the address from
these locations and read the message into a
variable, report$, a letter at a time, until it meets
a zero, which marks the end of the message
(Listing 3).

Listing 3

10 REM Listing 3
20 ON ERROR GOTO 1000

1000 address=?&FD+?&FE*256

1010 I%=0:report$=""

1020 REPEAT I%=I%+1

1030 A%=address?1%

1040 IF A%>0 report$=report$+CHRSA%
1050 UNTIL A%=0

1060 PRINT report$

And most of the time this works. Messages like
‘Syntax error’ and ‘No such line’ appear
beautifully. But I soon found that messages like
‘No REPEAT’ or ‘Bad MODE’ did odd things. The
reason is that Basic does not store keywords as
individual letters, but gives each one a number
(called a token). All the tokens are numbers above
127, so 128 is the token for AND, 129 is DIV and
so on. When you list a program, Basic expands
the tokens again to read properly. This means that
programs take up less memory and run faster, but
when tokens appear in error messages they rather
defeat our purpose - they have to be expanded
before report$ can be used.

I didn’t really fancy typing in the 127 different
keywords and their tokens, especially when Basic
can do it for you. But how? If I type REPORT, the
error message, complete with expanded
keywords, only appears on the screen. How can I
read them into a string?

26

The solution lies in the fact that there is an
operating system routine which writes letters on
the screen, which the manuals call OSWRCH -
Operating System WRite CHaracter. Every time
we print a letter, whether it’s using VDU 65,
PRINT CHR$(65) or PRINT “A” (all of which
produce the same thing) we use OSWRCH. You
can try it yourself by typing:

A%=65:CALL &FFEE

You should see an ‘A’ appear, as 65 is the ASCII
code for A. &FFEE is OSWRCH'’s call address,
and Basic is kind enough to pass the contents of
A% to any routine we call (See also this month’s
First Course article). REPORT uses OSWRCH too
when it prints an error message, sending in turn
the ASCII code of each letter to appear on the
screen.

VECTORS

Wouldn’t it be nice if we could intercept
OSWRCH and store the letters instead?
Fortunately the operating system provides a
convenient means of doing this using a vector. A
vector is a pointer to an operating system routine.
It consists of two bytes in memory which contain
the address of the actual routine we want. It's a
bit like finding the location of the last clue in a
treasure hunt. It might be a tree at the end of your
street, and pinned to it is a note saying that the
treasure is hidden in the garden shed - the tree
doesn’t hide the treasure itself, but has the
address of the real thing. If we were to cheat by
altering the clue to say the treasure was in the
kitchen, anyone following us would go to the
wrong place and never find the treasure.

In the computer, the ‘treasure’ is the operating
system routine which displays letters on the
screen, the ‘tree’ is the vector, which for
OSWRCH is at &20E/ &20F, and the ‘kitchen’ will
be a very short machine code routine we will
supply, which stores the letters in a string. Just
what we want!

HOW THE PROGRAM WORKS

FNreport starts at line 30000 (listing 2), so we’ll
begin there. It starts by assembling the short
routine I referred to earlier, but note that it
doesn’t execute this code yet. My program uses
page &900, but you can move it to any convenient
location: it only makes temporary use of this area

Beebug November 1989

A Good Report

and it can be used for other things outside
FNreport.

Line 30170 keeps a note of the present contents of
the vector - the address of the ‘real’ OSWRCH -
and then lines 30190-30200 alter the vector to
point to our replacement routine. The REPORT
and PRINT statements in lines 30210-30220 cause
repeated calls to be made to our routine - one for
every letter that was to appear on the screen, but
will now not do so. Each time, the pointer Xtemp
is incremented and the letters stored one after
another starting at store. Finally, we restore the
original contents of the vector, or we won’t be
able to PRINT again (line 30230).

The procedure exits by returning the string
starting at store+1. Why that +1? Well, remember
that our original problem was that REPORT
always starts a new line at the beginning? It does
this by doing the equivalent of a VDU 10,13 - that
is, move down a line then go to the beginning of
the line. The 10 is skipped by our machine code
(line 30100), but the 13 stored, so we need to
retrieve the string after the 13.

Points Arising....Points Arising..

USING ASSEMBLER (Part 4)
BEEBUG Vol.7 No.6
The example program given in this issue fails to
work correctly on a model B, because the function
key definitions in lines 1700 to 1730 are too long. To
produce a working program change these as follows:
1700*KEYOV.21|MV.6:I.”hhmm “A$:2&72=0:2&7
3=EV. (“&”+RI.AS$,2)):2&74=EV. (“&"+LE.A§, 2))
:CA.&906:CA.&900:A%=5:CA.&903|M
1710*KEY1V.21|MV.6:P.”Stopped” :CA.&906|M
1720*KEY2V.21|MV.6:P.”Restarted”:CA.&906:
CA.&900:A%=5:CA.&903|M
1730*KEY3V.21|MV.6:P.”Zeroed”:2&72=699:2&
73=£99:2&74=699 |M

Make sure you enter no spaces other than those
clearly shown above.

LEARNING FOREIGN LANGUAGES
(BEEBUG Vol.8 No.2)

If the foreign character definitions are to be used on
a model B, then changes are needed to make the
definition programs work correctly. Change line 110
to read *FX20,6 not *FX20,1. Then add two new lines
after this command:

Beebug November 1989

.Points Arising....Points Arising....

Just one more point: your REPORT statement
must end by starting a new line - PRINT does this
automatically unless you end the statement with
a semi-colon - so that a 13 can be stored as an end
of string marker; hence the ELSE PRINT in line
30220.

So there we have it - now your Beeb is as good as
an Archimedes. Well, nearly! And you've
mastered a technique which can be used for more
than just error messages. Anything which can be
printed can be stored in this way, so long as it
ends with a Return and is no longer than 254
characters.

My final offering is a program which reads the
lines of a program into a string, and speaks them
using Superior Software’s Speech! (Listing 4 -
magazine disc/tape only). However, Speech!
doesn’t cope very well with all the weird and
wonderful things programs can contain - I leave
solving that problem to you! For more examples
of ‘speaking’ programs, see the Bingo caller
elsewhere in this issue.

112A%=131:P%=((USR&FFF4) AND&FFFF00) DIV256
114IF PAGE<P% THEN PAGE=P%:CHAIN”French”
Alternatively, raise the value of PAGE by at least
&600 before loading and running a character
definition program (see also BEEBUG Vol.7 No.5).

ACES HIGH (BEEBUG Vol.8 No.4)

As a result of some last minute changes, the
program as listed is too long to run in a model B
without alteration. To achieve this, just add the
following lines to the original:
70*K.0*TAPE | MF.1%=0 TO TOP-PA. S.4:1%!
&E00=!(1%+PA.):N.| MPA.=&E00 | MRUN
80IF PA.>&E00 OSCLI"FX 138,0,128”:END

FONT DESIGNER

(BEEBUG Vol.8 Nos.4 & 5)
A function implementing an OSCLI call was
inadvertently omitted from the printed listings. The
simplest solution is to add these lines to the
complete program:

6400 DEF PROCos (p0$)

6410 OSCLI (p0$)
6420 ENDPROC B

27

Ultra Intelligent Machine

Reviewed by Peter Rochford

Product UIM

Publisher The Fourth Dimension
P.0.Box 4444, Sheffield.
Tel. (0742) 700661

Price £19.95 (5.25" disc) inc. VAT

£21.95 (3.5" disc) inc. VAT

I find it remarkable that at this stage in the
history of the Beeb, anyone would ever release
another so-called ‘mega-game’ for the machine.
What else can you do that could possibly top
the classic Elite ?

However, The 4th Dimension must seem to
think that its new release UIM (Ultra Intelligent
Machine) has all the right ingredients. Taking
two years to write, UIM represents a lot of work
and a great deal of confidence that the finished
product will capture the imagination of those
who use the Beeb for entertainment. UIM can
be best described as an underwater Elite. There
is no getting away from it, the influences and
similarities are all there.

The scenario of the game is set in the future,
when the greenhouse effect has caused life on
land to become intolerable. The people have
taken to the oceans, and in their quest to
colonise their new underwater world, have
created a replicator robot to work at depths that
they cannot. As its name suggests, the robot
self-replicates and it is this ability that
ultimately leads to disaster, when they start to
reproduce in a form that is mutated and able to
attack and overrun their human masters. Your
mission is to find the Ultra Intelligent Machine
(UIM), a device that will wipe out the
replicators and save the world.

You must pilot your submarine around the
great oceans starting from the port Anase and
venturing to any one of 256 networks and
65,000 ports. At each port you can buy and sell
goods to arm your submarine with a host of
add-ons to help you in your quest.

Of course, on your way, you will meet a great
deal of resistance to your passage. These enemy
craft come in a huge range of shapes and levels
of power and weaponry.

28

As in Elite, you must choose carefully what you
attack and when. Your submarine will need the
right armaments and the right navigational aids
if you are to be successful. All this depends on
skilful travelling and trading. Trading goes well
beyond mere commodities, and includes stock
market speculation, for example.

What more can I say about this game? It IS
underwater Elite. But the scale of the game is
much vaster than Elite, and should take those
who buy it a lot longer to complete. The graphics
are very similar, being 3D vector, but if anything
they are coarser, although still excellent.

It is difficult to sum up this game. Why should
you buy it if you have Elite and have already
exhausted your interest in that? Why indeed?
My own personal feelings are that it is too
much of a copy of Elite to become a success. It
has all been done before. Elite was
revolutionary when released and took everyone
by storm. Now we take games and graphics of
that kind much more for granted.

If you still have an interest in Elite then UIM
may be for you. Take a look at it before you buy.
You will, however, need a Master to run it, or a
Model B with at least 16K of sideways RAM.

Archimedes owners may be interested to know
that a much enhanced version of the game
(price £29.95) will be available shortly for them,
and naturally it is claimed that it will make
good use of that machine’s graphics and sound
capabilities. 3

e

Beebug November 1989

Amateur Research (2)

John Belcher continues his forthright account of science
and the role of the amateur researcher.

THE NON-EXISTENT-SPACE AGE

A little-known feature of this exciting space age
is that space, apparently, as such no longer
exists. Not even in the dictionary! It was finally
laid to rest with its epitaph provided by the
headlines in an American newspaper, saying
“Don’t Bring Back The Aether”!

This aether was originally held to be a medium
which made possible the propagation of light
waves - or in more general modern terms,
electromagnetic waves - through space. Today
we would recognise such a medium as having
the properties of permittivity and permeability.
René Descartes, no less, went further and
suggested that the aether created vortices in
space which accounted both for planetary
rotation and orbital motion.

The Michelson-Morley experiment, however,
soon put an end to all that. Michelson reasoned
that if the aether did exist, and if we were
travelling through it, then measurement of the
velocity of light in two directions should
indicate our velocity relative to it. The result of
the Michelson-Morley experiment unexpectedly
showed no difference in the velocity of light
measured in the two directions. “Ergo”, the
cognoscenti proclaimed, “the aether does not
exist!”

What Michelson, et al, had conveniently
overlooked, was the possibility of the aether
surrounding the planet attaining the same
rotational motion as the planet itself, in true
Cartesian fashion! Understandably, to suggest
at this stage, dear reader, that the planet attains
the motion of the surrounding aether, is
perhaps asking too much of your gullibility. But
you might with advantage bear it in mind.

Subsequent to Michelson, we had the Einstein
era, where ‘everything was relative’; where
houseflies walked around the boundless space
of oranges; and space-travel became the secret

Beebug November 1989

of eternal youth! Or so re-hash journalism told
us. Meanwhile, space is our oyster, so let’s
make what we can of it while there is still time.

Key in and save program BPROG2, and run it,
but don’t press anything yet!

THE GRAVITATIONAL CONSTANT
The dimensions of G, the universal
gravitational constant, are 1/(density*time”2).
Today this is taken to describe the results of the
‘big bang/, i.e. the ‘density of space’ - a right
misnomer if there ever was one - and ‘Hubble
Time’ since the ‘bang’ itself.

The question which surely should have been
asked is, “What has Hubble Time and the
density of space got to do with Newton’s
Equation?”, i.e. Fg=G*M0*M1/R1"2.

Be that as it may, if we combine this equation
with Fi=M1*V1/2/R1, we finish up with the
equation involving Kepler’s Law:
G*MO0=4*PI*R1/3/T1/2
Now let G=1/(d0*t0/2), and rearsanging:
MO /t072 = 3*PI*(4*P1/3*R143*d0) /T122
= 3*PI*m0/T142.

Examining this equation carefully, we find on
the left-hand side a mass, M0, together with its
rotational period, t0; and on the right-hand side
an apparent mass, m0, together with its
rotational period, T1.

The apparent mass, m0, is a spherical volume of
space, of radius equal to R1, and of a density
equal to d0. One of Descartes’ vortices, in fact,
nicely illustrated in Fig-2.1.

When the body is first formed as a coherent
mass, T172=t02, and the density of the body is
D0=3*PI*d0, which I take to mean the density of
the newly created matter in terms of the potential
density of the space from which it is formed (not
to worry, it all comes out in the wash).

29

| &

J—

Amateur Research

I’ll demonstrate. Let t0=86164.09056, the
sidereal rotation period of the Earth in seconds.
Then d0=1/(G*t072)=2.0184 kg m?. If we
compare this potential-density of our
surrounding vortex, with the density of dry air,
Dair=1.2928 kg m?, we find close agreement!
The agreement is even closer for the very cold
air at -97 degrees C as shown on your monitor
(press any key)!

“Big deal!” you will say. How can a medium of
this low a density support the mass of the
Earth? Very well, compare their relative masses.
Let M0=5.9742E24 kg: Let R1=3.84404377E8 m:
Quite a bit larger, but by how much?

THE SPACE-MATTER EQUATION
Admittedly, up to this point, what has been
said is no more convincing than ‘Hubble time’
and the ‘density of space’. Let M1=7.3483E22
kg, the mass of the Moon.
Then MO/M1=81.300, and m0/M0=80.385.
Hence:

MO0=SQR(m0*M1)

This equation - notice the geometric mean again
- defines a Cartesian vortical space system in
terms of its enclosed matter and space.
Furthermore, it relates the masses of the
primary body, M0, and the secondary body, M1,
by way of the potential mass of the vortex, m0.
The overall situation can of course be seen by
reference to Fig-2.1.

Yes, I know! I've fiddled the figures somewhat.
But then we are using a simple model. We
assumed the general application of Kepler’s
Second Law, and assumed the Moon’s orbit to
be circular.

Kepler’s Second Law refers to a point-source
Moon. Hence, Let r1=1.7379E6 m, the Moon’s
radius, then R1’=R1+r1

Let e1=0.055, the eccentricity of the Moon’s
orbit. The length of its semi-minor axis,
b=R1"*SQR(1-e172). Thus,

mO0=4*PI/3*(R1"*R1"*b)*d0 = 4.8605E26 kg,
and m0/M0=81.358

30

HO = SER(aleN1)

The Carte:

Fig-2.1

ertical Space Systea.
Fig. 2.1

A problem which arises here is the ultimate
shape of the vortex. Is it a spheroid? An oblate
spheroid? Or even a prolate spheroid? They all
give different solutions.

THE MULTI-ELEMENT TO SINGLE-
ELEMENT SPACE-SYSTEM TRANSFORM
This Transform opens up a whole new world of
physics. What it does do is to replace a many-
bodied space-system with its two-bodied
equivalent, such as the Earth-Moon system.
Despite all the frustration and time that went
into its derivation, the Transform is delightfully
simple.

1. The equivalent mass of the primary:
MO0=MO

2. The equivalent mass of the secondary system:
ME=M1+M2+..+MN

3. The equivalent orbital radius of ME:
RE=(R1*R2*.*RN)*(1/N)

You will, of course, recognise our old friend,
unit radius (press any key)!

THE SUN’S ROTATIONAL PERIOD
We on Earth find it difficult to measure the
sun’s rotational period by way of its
photosphere rather than its denser core. So we
will attempt to determine the rotational period,
ts, of the sun, Msun, by way of the Space-
Matter Equation and the Multi-Body
Transform.

Beebug November 1989

Amateur Research

Let Msun=1.9891E30 kg. Let Mp=Msun/743,
the total mass of the secondary system. Then
msun=Msun*743.

Let RU=3.242*1.49597892E11 m

dsun = msun/(4*PI/3*RU”3) = 3.093E-3 kg m?
tsun = SQR(1/(G*dsun))
= 2201213 secs = 25.477 days

This you will see is in good agreement with the
published figure of 25.380 days - bearing in
mind that we assumed the sun’s vortex to be
spherical and not spheroidal.

THE ROCHE VORTICAL SPACE-SYSTEM.
René Descartes’ concept of vortices envisaged
each body being encircled by its own vortex,
and the vortices of adjacent bodies ‘rolling’
around each other to produce orbital motion.

One similarly misunderstood Frenchman was
one Edouard Roche who, some 150 years ago
researched differential gravitational force, an
inverse-cube-law force. This led to the concept
of the Roche Limit, whereby a massive body
sets up strains in the surrounding medium,
resulting in discontinuities - or fractures - in the
medium concerned.

Of course, the scientific world made a pig’s-ear
of the whole concept, giving rise to science
fiction concerning the Moon being torn from
the Pacific Ocean, and the formation of Saturn’s
ring system (c/f Cassini’s Division and unit
radius). The concept has now fallen into disuse.

My own research demonstrates that there are
two main aspects of the Roche Limit, one
involving non-rotating bodies, and one
involving rotating bodies. The latter situation
gives rise to the whole range of phenomena
intuited by Descartes, and much more besides -
gravitational (or Roche) waves, the latitude
effect of sunspots, high-altitude jet-streams, and
SO on.

A major breakthrough has been the corrected
Roche Constant, which - bearing in mind the
ubiquitous constant PI - is given by:

B = 2*P1/((3*PD"*(1/3))

Beebug November 1989

In the Earth-Moon system, Roche fractures form
Cartesian vortices around each body, their radii
being in the ratio (Mearth/Mmoon)”(1/3):1 =
4.3321:1, as shown in Fig-2.2. At the point where
they touch, a satellite orbiting the Moon has the
same period as a satellite orbiting the Earth, i.e.
Ts=20.07 days.

0TANI?

Fig. 2.2

The Moon and its vortex, is held to the Earth
and its vortex, by mutual gravitational
attraction. The Earth attempts to swing the
Moon'’s vortex around in a circle in 20.10 days.
The Moon does likewise, albeit in the opposite
direction as seen from the Earth. The resulting
situation is similar to the old problem of a snail
climbing out of a well, and slipping back one
metre for every four metres it climbs. At the
end of some 26 days or so, the Moon’s vortex
completes its orbit around the Earth. By the
way, bear in mind that this is a circular orbit
(press any key).

Hold on, you will say, Tmoon=27.32166140
solar days! Of course! My calculation gives the
orbital period for a system at rest! But because
we in the Earth-Moon system are not at rest,
time dilation predicted by Einstein becomes
apparent, and Tmoon = beta*T1. Thence,
knowing that beta=1.000099430, one can
calculate the absolute velocity of the Solar System
et al to 10 significant figures! -

Explanation? We are measuring translational

motion - which is relativistic, in terms of
rotational motion - which is not relativistic.

31

Amateur Research

But to get back to more important issues. The
time taken for a Roche Wave to travel from the
Earth to the Moon and back, taking care not to
be reflected at the Roche discontinuity but to
cross over where the two vortices touch, is
Tmoon=2*R1/Vr, where Vr is its velocity. We
find this velocity to be, Vr=325.7m s, the
velocity of SOUND in that somewhat cold air!
Remember?

Now the velocity of sound is defined in terms
of Vsound = SQR(elasticity/density). We know
the potential-density of the surrounding Space,
d0=2.0201 kg m*. What then is ‘X’ in the
equation Vr = SQR(X/potential-density)?

A possibility I fancy is ‘viscosity’. That said,
here is a chance for you, the reader, to do your
own bit of amateur research. Come up with a
‘viscous’ hypothesis using Kepler’s Law to
determine the velocity gradient of the medium,
and you're in with a good chance!

RETROSPECT AND PROSPECT

Well, we have looked at the concept of space
and vortical space-systems, and have
apparently seen a need to change our minds
concerning Descartes’ contribution to ‘non-
material’ physics. Next month we shall be
looking at the concept of force.

10 REM Program BPROG2

20 REM Version B1.0

30 REM Author J.C.Belcher

40 REM BEEBUG November 1989

50 REM Program subject to copyright
60 :

100 MODE4:G=6.6732E-11:t0=86164.09056
110 PRINT''TAB(6) "THE GRAVITATIONAL CO

NSTANT, G"''
120 d0=1/(G*t0”2) :PRINT"The potential-
density of Earth's Space"''SPC7"= ";d0'

130 tempC=((1.2928/d0)-1)/0.00367:PRIN
T"The temperature of Earth's Space i
n"''"terms of dry air"''SPC7"= ";tempC;"

deg-C"' :PROCpause

140 PRINT''TAB(8)"THE CARTESIAN VORTEX
"''TAB(4)"& THE SPACE-MATTER EQUATION"''

150 M0=5.9742E24:R1=3.84404377E8:m0=4*

PI/3*R173*d0:M1=7.3483E22 :PRINT"m0 =
"m0'*"MO/M1 = "MO/M1''"m0/MO = "mO/MO'

160 r1=1.7379E6:Rla=R1l+rl:el=0.055:b=R
1la*SQR(1-e172) :m0=4*PI/3* (R1la”2*b) *d0:PR
INT"The value of m0/M0 when a spheroidal
"!'"yortex is assumed = "m0/MO0:PROCpause

170 PRINT''TAB(6)"THE SUN'S ROTATIONAL

PERIOD"''':Msun=1.9891E30:Mp=Msun/743

180 msun=Msun*743:RU=3.242*1.49597892E
11:dsun=msun/ (4*PI/3*RU"3) :tsun=SQR(1/ (G
*dsun)) :PRINT' '"dsun = "dsun;" pot-kg m"
=308 Ecun. = "tsun; " 'secs”"

190 tsun=tsun/(3600*24) :PRINT" ="
tsun;" days"''"The published value for t
suntrLn = 25.380 days":PROCpause

200 PRINT''TAB(12)"THE ROCHE VORTEX"'

210 B=2*PI/((3*PI)"(1/3)) :N=(MO/M1)" (1
/3) :Rs=N/ (N+1) *R1:Ts=SQR ((4*PI"2*Rs"3) / (
G*M0)) :Ts=Ts/(24*3600) :PRINT'"The orbita
1 period of a satellite at the"'"Roche v
ortices = "Ts;" days"'

220 PRINT'"'The snail climbing the wal
1'!"' ' 'TAB(5) "Increment"TAB (20) "Elapsed
time"':atime=0

230 FORI%=0 TO 5:dtime=Ts*(1/N"I%):ati
me=atime+dtime:PRINT"N*";I% TAB(5)dtime
TAB (20) atime :NEXT

240 PRINT''"The simple answer! (Ts*N/(
N-1))"':atime=Ts*N/(N-1) :PRINTTAB(6) ati
me;" days":PROCpause

250 PRINT''TAB(6)"THE ABSOLUTE VELOCIT
Y OF SPACE"'':T1=(B”3+1) :PRINT"The theor
etical value of T1"''SPC7"= ";T1;" days"

260 Tmoon=27.32166140:PRINT'"The measu
red value of T1"''SPC7"= ";Tmoon;" days"

270 beta=Tmoon/T1:PRINT'"The time dila
tion resulting from this,"''"puts the va
lue of beta"''SPC7"= ";beta''

280 ¢=2.99792459E8:v=SQR (c"2-(c"2/beta
~2)) :PRINT"From which the ABSOLUTE VELOC
ITY of the"''"Solar System"''SPC7"= ";v/
1000;" km/sec":PROCpause

290 PRINT''SPC5"THE VELOCITY OF A ROC
HE WAVE"'':Vr=2*R1/(Tmoon*24*3600) :PRINT
"The mean velocity of a Roche Wave that"
'""travels to the Moon and back is found
nrin to be s "Vr;"m SA_l"

300 PRINT''"This is the velocity of S
OUND in a cold"''"environment"''''':END

310

1000 DEF PROCpause:PRINT TAB(13,31)"Pre
ss any key":A$=GET$:PRINT TAB(13,31);SPC
13:CLS : ENDPROC

32

Beebug November 1989

s

Creating a Plus-or-Minus Character

Sebastian Lazareno explains how to add a useful character to the screen or printer
repertoire.

A useful symbol which is missing from the
Beeb’s keyboard and normal character set is ‘+'.
The program listed here, PLUSMIN, creates a
machine code routine, saved as pm, which
allows a user-selected character to be displayed
as ‘+’ both on screen (except in mode 7) and on
an Epson RX80 printer (and other similar
printers). Simply type the program in and save
as usual, before running the program to create
the code.

The program works by intercepting the Write
Character vector, and substituting for the
selected character a string of codes which
temporarily redefine CHR$129 and control the
printer. CHR$129 is redefined with a VDU23
string, printed, and restored to its original
definition with another VDU23 string. These
characters have no effect on the printer. The
printer’s HX-20 Graphics Mode is selected,
CHR$159 printed, and Graphics Mode
deselected. These characters are each preceded
with CHR$1 and have no effect on the screen,

180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430

LDA wrchv:LDX wrchv+l

CMP #start MOD256:BNE store
CPX #start DIV256:BEQ message
.store

STA owv:STX owv+1l:PHP:SEI
LDA #start MOD256:STA wrchv
LDA #start DIV256:STA wrchv+l
PLP

.message

LDX #key MOD256:LDY #LEN mes$
JSR pmes:JSR pm:JMP osnewl

.start

CMP key:BNE wrch

BIT &26A:BMI wrch \ chk vdu q
PHA:TXA:PHA:TYA:PHA

JSR pm

PLA:TAY:PLA:TAX:PLA

RTS

.pm

LDX #oldef MOD256

LDY #oldef DIV256

LDA #10:JSR osword

LDX #vnew MOD256:LDY #wrch-vnew
.pmes

" % " 440 LDA code,X:JSR wrch
or if the printer is off. 450 INX:DEY:BNE pmes
If the ‘+’ is spooled from Basic (or from 228 l_‘gy EQUS mes$
Wordwise Plus with an embedded command), 480 .vnew
the spooled file will contain the control codes 490 EQUB 23:EQUB cc:EQUD &187E1818
and will always print + when it is *TYPEd. If 500 EQUD &7E0018:EQUB cc
the ‘+’ is spooled from the Wordwise Plus g;g ""l’(ljdeQUB 23
menu, the ori-ginal charact.er will be stored, so 530 égUBecc:EQUD ~1:EQUD -1
the spooled file can be edited but pm must be 540 .pcode
active for a correct display. 550 EQUD &6D011B01:EQUD &9F010401
560 EQUD &6D011B01:EQUW 1
Once the code to generate the ‘+’ character has 570 .wrch EQUB &4C \ JMP
been saved to disc, typing *pm at any time will 580 .owv EQUW !wrchv
be sufficient to re-activate it. 590]
600 NEXT
10 REM Program PLUSMIN 610 REPEAT
20 REM Version B1l.1 620 PRINT”Select key for “;
30 REM Author Sebastian Lazareno 630 CALLpm
40 REM BEEBUG November 1989 640 A=GET:PRINT” “CHR$A
50 REM Program subject to copyright 650 UNTIL A>31 AND A<>127
60 : 660 ?key=A:CALLcode
100 cc=129:code=£900 670 PRINT”Save code ? “;
110 wrchv=&20E:0sword=&FFF1 680 IF INSTR("“Yy”,GET$)=0 PRINT”N":END
120 osbyte=&FFF4:0snewl=4FFE7 690 PRINT"Y”
130 mes$=" prints * 700 OSCLI”SA.pm”+FNh (code)+FNh (owv)
140 MODE6 710 END
150 FORpass=0 TO 2 STEP 2 720 :
160 P%=code 1000 DEF FNh(A%)
170 [OPT pass 1010 =" FF”+RIGHT$ (“000”+STR$~A%,4)
Beebug November 1989 33

st

Using Operating System Routines

This month, Mike Williams explores, in simple terms, the value of

course

As you may be aware,
your BBC computer runs under the control of
an operating system. Without this you would be
reduced to communicating with your computer
in the most primitive way, possibly just in
binary, and you would find yourself obliged to
write your own routines for what may seem the
most elementary of functions, such as keyboard
input, or saving a program.

Now any operating system is itself no more
than a computer program, usually written in
machine code and rather more complex than
the average user program. Like any other
program, the operating system consists of a
large number of procedures or routines each
performing a specific task. Because of their
more general usefulness, many of these
routines are documented, and may be accessed
by the user, not only in assembler, but also from
Basic. What is more, some of these routines
provide functions which are simply not
available in Basic. Thus learning how to call
such operating system routines from within
Basic can actually expand the range of tasks
which your program can accomplish.
Sometimes there is quite simply no other way.

That is what we shall be looking at in this
article - how a Basic program can call a machine
code routine, together with an investigation of
some of the more useful operating system
routines which are available. Don’t be put off -
you don’t need to know how to program in
machine code or assembler to use these calls.

You may already have come across operating
system routines with references to OSBYTE
calls, OSRDCH, OSWORD and the like. If you
haven’t, and these names seem somewhat
daunting, bear with me and all will be revealed
in due course.

CALLING O.S. ROUTINES FROM BASIC

The first thing which we have to do is to learn
the basic principles of calling machine code
routines from within Basic, and this applies to

34

calling operating system routines from within Basic.

any machine code not just operating system
calls. There are two keywords in Basic provided
for this purpose, CALL and USR. These are
quite similar but with one fundamental
difference: USR returns a value to the host Basic
program, whereas CALL does not, rather like
the difference between the use of procedures
(PROC) and functions (FN) in Basic.

Before we go any further we need to
understand just a little about the 6502
processor, which is the heart of any BBC micro.
This processor has a number of registers,
specific locations each of which can hold a
single byte. The three most important are the A
register (accumulator), the X register and the Y
register.

When a machine code routine is called, the
accumulator, X and Y registers are often used as
a means of passing information to the routine.
Basic uses the variables A%, X% and Y% for the
same purpose with CALL or USR.

If there is a need to send more than three values
to a machine code routine this can be achieved
using CALL. In this case matters become a lot
more complex. An area of memory is reserved
for the extra values or parameters which must
follow a predefined format. However, this is all
becoming much too complicated for the needs
of this article and so we shall ignore any such
complications.

The USR keyword is used like a function call in
Basic and returns four values, the contents of
the four registers P, Y, X, and A. These four
bytes are returned as a single four-byte number.
If we require any of these values individually,
then the four bytes have to be separated as we
shall see later.

The final point to understand at this stage is the
manner by which any particular routine is
identified when it is to be called. This is done
by including with CALL or USR the memory

Beebug November 1989

First Course - Using Operating System Routines

address of the start of the required routine. For
example, if a routine starts at address &3000 (in
hex), then in Basic we could write:

CALL &3000
or alternatively:

P%=USR (&3000)
Note how the USR function has to return a
value to a variable.

Now a numeric address like &3000 is not very
memorable, or descriptive in any way of the
routine being called, so most programmers like
to use a name instead. Thus:

readch=&3000

CALL readch
This has the advantage that the numeric
address only has to be assigned once to the
variable readch, but it can be called as many
times as required.

Most operating system calls are also given
names, again as a memory aid, but Basic will
not recognise the routine unless the name is
correctly associated with the proper numeric
address. For example, the OSBYTE call that I
referred to much earlier is actually located at
address &FFF4. Thus a program will likely
have near its start a statement like:
OSBYTE=&FFF4
From then on, but only then, we can write:
CALL OSBYTE
whenever we need to call that routine.

Of course, not all programmers bother to make
this assignment, so you will often see things
like:

CALL &FFF4
or:

CALL &FFF7
If you are not familiar with the hexadecimal
address it is very difficult to know what such a
program is doing.

USING OPERATING SYSTEM CALLS
I want to start with a simple example, but one
I hope which you will find easy to follow, even
if it is redundant in many cases. In Basic I and
later versions of Basic there is a statement
OSCLI This is a way for a Basic program to
execute a star command, but without some of
the disadvantages. Let’s take a typical
example.

Beebug November 1989

Suppose we have a program written in Basic
which will save the state of screen at intervals
determined by the user. We want the first
screen to be saved with the name Screenl, the
second with the name Screen2 and so on. If the
file names can be given explicitly, i.e. as:

*SAVE Screenl 7C00 8000 7C00 7C00
then there is no problem. But suppose we
want to embed such a statement in a loop of
some kind so that each time round the loop, if
some key is pressed a new screen will be
saved.

We need to use some variable, say S%, which
will initially be set to 1, and be incremented
each time a screen display is saved. There is no
way that this can be done in a straightforward
*SAVE command. The solution is to use OSCLIL:

S%=1
<start of loop>

OSCLI(“SAVE Screen”+STR$ (S%)+” 7C00
8000 7C00 7C00”) :S%=5%+1

<end of loop>

Each time the OSCLI statement is executed, the
string enclosed in brackets is treated as a star
command. The value of S% determines whether
Screenl, Screen?2 etc is to be used.

Now you may be wondering what this has to
do with machine code routines called from
Basic. Well, first of all, OSCLI is simply a Basic
keyword which itself calls a machine code
routine of the same name with start address
&FFF7.

Furthermore, in Basic I, the keyword OSCLI
was unavailable in Basic. Thus the only way to
perform the task described above was to call
this machine code routine from within Basic.
Here’s how it can be done.

First of all it is necessary to reserve some bytes

of memory for the command string, such as:
DIM os 50

which reserves 50 bytes starting at address os

(Basic determines just where this is - it doesn’t

matter to us). The equivalent code now looks as

follows:

35

First Course - Using Operating System Routines

DIM os 50
OSCLI=&FFF7
S%=1

<start of loop>

$0s="SAVE Screen”+STRS (S%)+” 7C00 80
00 7C00 7C00”

X%$=0s MOD 256

Y%=o0s DIV 256

CALL OSCLI

<end of loop>

X% holds the low byte of the address of the
command string (obtained with MOD), while
Y% holds the high byte of the address (obtained
with DIV). The OSCLI routine performs a task
rather than returning any information, so the
CALL statement is entirely adequate (as
opposed to using USR).

I present this merely as an example which I
hope you have followed alright, as most
readers will now be using Basic II or later
versions. Nevertheless, it is a useful example
for demonstrating the use of operating system
calls in Basic, and the only method available in
Basic I.

Now let’s have a look at another of the other
calls which are available to us. In fact all the
*FX calls which we can use in Basic are
examples of calls to the routine called OSBYTE.
In this case, the value in the accumulator (the
value assigned to A% before calling the routine)
determines which OSBYTE call is used.
Naturally, the FX calls are easier to use, but
there are many more OSBYTE calls than there
are FX equivalents.

Most of the OSBYTE calls which do not have FX
equivalents are those which return a value of
some kind, something which FX calls cannot
do. One useful one is OSBYTE 135. This returns
the character at the current cursor position on
the screen. There is no other way of achieving
this from within Basic.

After the call, the X register holds the ASCII
value of the character in the specified position.
Because a value has to be returned, we must
use USR this time rather than CALL.

In fact, we can parcel the whole lot up in a
convenient Basic function to read the character

36

in any specified position (X,Y), thus (assuming
OSBYTE has been previously defined before the
function is called):

DEF FNreadch(X,Y)

LOCAL A%,X%,0ldX,o0ldY
01dX=P0S:01dY=VPOS
VvDU31,X,Y

A%=135

X%=USR (OSBYTE)

X%=(X% AND &FF) DIV &100
VDU31, 0ldX, 01dY

=CHR$ (X%)

Because OSBYTE 135 reads the character in the
current cursor position, the cursor must first be
moved to the (X,Y) position given. For later
reference, the initial position of the cursor is
saved in (oldX,oldY) first. A% (for the
accumulator) is set to the value of this OSBYTE
call. After calling the routine, the value
returned is assigned to X%. We want the value
from the X register, which is the next to lowest
byte of the returned value, extracted with the
AND and DIV operators (see below). The
cursor is then returned to its original position
before the routine exits with the required
character.

For example, in mode 3 we could write:
AS$=FNreadch (20, 20)

which would assign to the variable A$, the

character currently in position (20,20) on the

screen, leaving the cursor wherever it was

before the call was made.

To finish this month, I want to explain in more
detail how the four bytes returned by USR may
be separated. In fact two steps are required in
most cases, firstly using a mask to separate the
required eight bits (represented as two
hexadecimal digits) from the rest of the number,
and secondly shifting those bits to form the
correct number. The mask required is shown in
figure 1 (in practice leading zeros can be
omitted). After separation it is necessary to shift
the eight bits to the rightmost position, and this
can be achieved by dividing (in hex) by &100,
&10000, or &1000000 as appropriate. The value
of the A register is already in the rightmost
position and does not therefore need shifting.

continued on page 58

Beebug November 1989

A Postscript Screen Dump Utility

Following our previous introduction to the PostScript language, Willem van Schaik describes a
program to convert a graphics screen dump into a PostScript file for output to a laser printer.

INTRODUCTION

When you have the opportunity to use a
PostScript printer, it only takes a short while
before you want to use it for high-resolution
screen dumps. If you use the printer for
desktop publishing, incorporating BBC screen
dumps in your publications becomes another
desirable feature. Because of the flexibility of
PostScript it is quite easy to build in facilities
for scaling and inverting images, and other
functions for picture manipulation.

Most people who have tried programming with
the PostScript “page description language”,
will have kept to the use of vectorized
drawings and fonts. This way of addressing
PostScript printers gives a high output quality
coupled with maximum flexibility.

Besides the use of vectors, PostScript also has
commands for the use of bitmaps. For readers
who do not know the difference: a vectorized
description of a picture can be looked at as a
collection of move, draw and plot commands,
like those in BBC Basic, while a bitmap
definition of the same picture is the resulting
screen-image which will be displayed on a
monitor, but which can also be saved or
printed.

A screen dump is essentially a bit image, where
all objects consist merely of pixels on the screen
(rather than in the form of lines and vectors).
Screen dumps can be both saved and printed.

The purpose of the program listed here is to
provide a means of converting graphics screen
dumps (that is, screen dumps in modes 0, 1, 2, 4
and 5) into equivalent PostScript files. These
files can then be output to a PostScript laser
printer connected to your Beeb, or transferred

Beebug November 1989

to any other system which uses a PostScript
printer.

POSTSCRIPT IMAGE COMMAND

In general, screen dumps consist of many pixels
(visible points on the screen), where one or
more bits are needed to define the colour or
grey-scale of each pixel. What varies from one
computer to another is the order in which the
pixels are processed (by row or by column, for
example,) and the starting point (upper left-
hand corner with a BBC). The BBC micro also
has an intricate way of mixing the bits that
define two or four pixels.

A mode 2 demo screen output to a laser printer

In the PostScript language, the image command
is used to establish a bit-mapped picture. The
image command requires 5 parameters: first the
number of lines and the number of pixels on
each line, then the number of bits per pixel.
With this parameter the number of greys can be
changed - when 1 is chosen for this parameter, a
black and white picture is created like a BBC
mode 0 screen - the maximum is 8 (bits per
pixel), allowing 256 possible grey-values.

37

A Postscript Screendump Utility

The fourth parameter is a so-called
transformation matrix (see Introducing
PostScript, BEEBUG Vol.8 No.4 p18). In this
screen dump program, the transformation
matrix is used to change the BBC format, where
the picture starts with the upper left-hand
corner, into the PostScript way where the lower
left-hand corner comes first. The last parameter
is a PostScript procedure which contains the
picture data. If everything is alright, the size in
bits will be the number-of-lines x pixels-per-line
x bits-per-pixel. I have used what PostScript
calls a hexadecimal string for the picture data.
This means that for each 8 bits, two bytes are
needed (00 to FF).

If nothing is done before the image command is
given, the result will be a picture one PostScript
unit in size. This is 1/72 inch by 1/72 inch. To
get a larger picture, some scaling is needed
using the PostScript scale command. To get a
well proportioned picture the horizontal scaling
is set to 1.25 times the vertical scaling factor.

CREATING A POSTSCRIPT SCREEN DUMP
Not many BBC owners are likely to possess a
PostScript printer, but may have the possibility of
using such a printer connected to another
computer (in the office say). Thus I have chosen
an off-line approach for creating a PostScript
screen dump.

The first step is to create a screen dump file on
disc. This can be accomplished in your own
(Basic) programs by including, at the right point,
the statement:

*SAVE DUMP 3000+5000 0000 3000
when the picture is in mode 0, 1 or 2, or for
modes 4 and 5:

*SAVE DUMP 5800+2800 0000 5800

To convert this to a PostScript file type in and
save the PostScript screen dump program listed
at the end of this article. When you run the
program it will prompt for the necessary
information:

1. The file name of the screen dump (in our
example DUMP).

38

2. The mode of screen: 0,1, 2,4 or 5.

3. The file name of the PostScript file (for example
P.DUMP) to be created. Take care that there is
plenty of room on the disc, as these files are large
(as much as 160K in some modes).

4. When the picture is to be incorporated into a
desktop publishing system, a so-called
encapsulated PostScript file is needed. Normally
answer N(o) to this question.

5. You can rotate the picture to a landscape format.
For some DTP packages this leads to problems,
but normally the answer to this question is Y(es).

6. The width of the resulting picture must be given
in millimetres.

7. To save toner in the laser printer, a picture with
white lines on a black background can be
inverted.

8. A small black border around the picture can be
optionally added.

When all of this is done, the PostScript file will
be generated on screen, and at the same time
spooled to disc, which can take some time. The
resulting file can then be transferred to the
computer to which the printer is connected. Note:
Kermit is one effective way of transferring files
between systems. When the destination is an
IBM-PC (or compatible), take care that the end-of-
record of a BBC spool file is <OA><0D> as the PC
uses <0D><0A> as end-of-record. The same file
can also be output to any PostScript printer
directly connected to your BBC micro.

PROGRAM DETAILS

Looking at the program, most of the procedures
are self-explanatory. However, a few tricks were
needed to convert from a BBC style of bitmap
to a PostScript one. The different ways of pixel
sequencing (PostScript being much more
straightforward), is solved by the nesting of the
loops in lines 270-290 and the calculation in line
300.

FNconvert performs the most important part of
the program. In BBC modes 1 and 5, the two bits

Beebug November 1989

A Postscript Screendump Utility

that define one pixel are spaced 4 bits apart. This
is converted in line 7050 to the PostScript format
where the 2 most significant bits define the first
pixel and the next 2 its neighbour, and so on. In
mode 2 things are even more complicated. The
first step is to unravel the odd and the even bits.
This results in two nibbles defining two pixels.
Then the RGB values must be resequenced. The
simplest way is to use an array which is
initialized in PROCinit. Keep in mind that in
PostScript, &0 is black and &F is white. Further,
the flashing colours are set equal to the non-
flashing ones.

The array p2% in PROCinit is filled with some
powers of 2, which results in a large performance
improvement.

The last part to explain is the PostScript
BoundingBox in lines 5070-5090. With the
BoundingBox, a DTP package can find out which
part of the page contains the picture it must
include. Therefore it is defined in the PostScript
default co-ordinate-system: (0,0) is the lower left-
hand corner of the page using a unit-size of
1/72 inch. After the %%BoundingBox:
comment, the co-ordinates of the lower left-
hand corner and of the upper right-hand corner
of the picture must be given. To accomplish this
some calculations caused by the possibility of
scaling and rotation are needed.

WHAT’S NEXT?

In a following article I will give another method
to address a PostScript printer. When all screen
drawing commands in a BBC Basic program are
replaced by procedure calls that generate the
PostScript equivalents, we can really make use
of the high resolution provided by laser-
printers.

10 REM Program PostScript screendump

20 REM Version B 1.6

30 REM Author Willem van Schaik

40 REM BEEBUG November 1989

50 REM Program subject to copyright

60:-;

100 ON ERROR CLOSE#0:0SCLI (“SPOOL”) :RE
PORT:PRINT” at line “;ERL:END

110 MODE 7
120 PROCinit
130 PROCinput
140 PROCparam(mode%)
150 base%=&2C00
160 OSCLI(“LOAD “+filename$+” “+STR$~(
base%))
170 OSCLI(“SPOOL “+postfile$)
180 PROCprolog
190 PRINT “300 420 translate”
200 IF rot% THEN PRINT “90 rotate”
210 IF bor% THEN PROCborder
220 PRINT ;wix%;” neg “;wiy%;” neg tra
nslate”
230 PRINT ;2*wix%;” “:2*wiy%;” scale”
240 PRINT ;pix%;” 256 :bpp%;" [*;pix%
P00 22560 2561 T
250"
260 p%=0
270 FOR line%=0 TO 31
280 FOR row%=0 TO 7
290 FOR col%=0 TO pix%*bpp%-1 STEP 8
300 scrbyte%=?(base%+pix%*bpp%*lines+r
ow%+col%)
310 psbyte%=FNconvert (mode%, scrbyte$%)
320 IF inv% THEN psbyte$%=255-psbyte$
330 IF psbyte%$>&F THEN PRINT ;~psbyte$
; ELSE PRINT ;0;~psbyte%;
340 p%=p%+2 : IF p%=80 THEN PRINT:p%=0
350 NEXT col%
360 NEXT row%
370 NEXT line%
380 :
390 PRINT”>} image”
400 IF NOT eps% THEN PRINT”showpage”
410 OSCLI (“SPOOL”)
420 END
430 :
1000 DEF PROCinit
1010 LOCAL i%
1020 DIM p2%(7)
1030 FOR i%=0 TO 7
1040 p2%(i%)=2"i%
1050 NEXT i%
1060 DIM mo2col% (15)
1070 FOR i%=0 TO 15
1080 READ mo2col%(i%)
1090 NEXT i%
1100 DATA O,4,8,14,1,7,11,15,0,4,8,14,1
P b
1110 ENDPROC
1120 =
2000 DEF PROCinput

Beebug November 1989

39

A Postscript Screendump Utility

2010 PRINT STRINGS (4,”-");” BEEBUG Post
Script Screen Dump “;STRINGS (4, ”-")

2020 REPEAT

2030 INPUT’”Screen dump filename: “ fil
ename$

2040 sc%=0PENIN(filename$)

2050 UNTIL sc%<>0

2060 CLOSE# sc%

2070 REPEAT

2080 INPUT “Mode of screen dump : “ mod
e%

2090 UNTIL mode%$>=0 AND mode%<>3 AND mo
de%<=5

2100 REPEAT

2110 INPUT “Postscript file name: “ pos
tfile$

2120 ps%=OPENIN (postfile$)

2130 CLOSE# ps$%

2140 IF ps%<>0 THEN INPUT “Replace file

<Y/N>: “ yn$: rpl%=FNyn(yn$) ELSE rpl
%=FALSE

2150 UNTIL ps%=0 OR rpl%

2160 INPUT “Encapsulated <Y/N>: “ yn$
: eps%=FNyn (yn$)

2170 INPUT “Rotate dump
: rot%=FNyn(yn$)

2180 INPUT “Width dump in wm. : “ widt
h

2190 INPUT “Dump inversed <Y/N>: “ yn$
: inv%=FNyn (yn$)

2200 INPUT “Add border

: bor%=FNyn (yn$)

2210 PRINT’STRINGS (40,”-")
2220 wix%=width*36/25.4
2230 wiy%=width*36/31.75
2240 ENDPROC

2250

3000 DEF FNyn (answer$)

3010 IF INSTR(“ Yy”,answer$)>1 THEN =TR
UE ELSE =FALSE

3020 :

4000 DEF PROCparam(mode%)

4010 LOCAL i%,dummy$

4020 FOR i%=0 TO mode%

4030 READ dummy$%,pix%,bpp%

4040 NEXT i%

4050 REM mode,horiz.pixels,bits/pixel
4060 DATA 0,640,1

4070 DATA 1,320,2

4080 DATA 2,160,4

4090 DATA 3,0,0

<Y/N>: “ yn$

<Y/N>: ™ yn$

4100 DATA 4,320,1

4110 DATA 5,160,2

4120 ENDPROC

431305

5000 DEF PROCprolog

5010 PRINT “%!PS-Adobe-1.0"

5020 PRINT “%%DocumentFonts:”

5030 PRINT “%%Title: “;postfile$

5040 PRINT “%%Creator: Acorn BBC Screen

Dump”

5050 PRINT “%%Pages: “;

5060 IF NOT eps% THEN PRINT “1” ELSE PR
INT M0

5070 PRINT “%%BoundingBox: “;

5080 IF rot% THEN PRINT ;300+wiy%+1;” “
; 420-wix%-1;” “;300-wiy%-1;” “;420+wix$%
+1

5090 IF NOT rot% THEN PRINT ;300-wix%-1
P N A2 0=wiy =1 e B00FwixS+l ; 1N 420 ¢
wiy%+l

5100 PRINT “%%EndComments”

5110 PRINT “%%EndProlog”

5120 ENDPROC

51307

6000 DEF PROCborder

6010 PRINT “0 setgray”

6020 PRINT “newpath “

6030 PRINT ;wix%+1;” neg “;wiy%+l;” neg

moveto”

6040 PRINT ;wix%+1;” “;wiy%+1;” neg lineto”

6050 PRINT ;wix%+1;” “;wiy%+1l;” lineto”

6060 PRINT ;wix%+1;” neg “;wiy%+l;”
lineto”

6070 PRINT “closepath fill”

6080 ENDPROC

6090 :

7000 DEF FNconvert (mo%,sb%)

7010 LOCAL i%

7020 IF mo%=0 OR mo%=4 THEN =sb$%

7030 pb%=0

7040 FOR i%=0 TO 3

7050 IF mo%<>2 THEN pb%=pb% + (sb%ANDp2
%$(1%)) *p2%(i%) + (sb%AND (p2%(i%)*&10))DI
Vp2%(3-1%)

7060 IF mo%=2 THEN pb%=pb% + (Sb%ANDp2%
(2*1%))DIVP2% (i%) + (Sb%ANDp2% (2*i%+1))*
pP2%(3-1%)

7070 NEXT i%

7080 IF mo%<>2 THEN =pb% ELSE =mo2col% (
pb%DIV&10) *&10 + mo2col% (pb¥MOD&10)

7090 B

40

Beebug November 1989

The Best of BEEBUG

Basic Booster ROM

Super Squeeze A program compressor.

Partial Renumber A very useful utility which renumbers a
selected block of lines.

Textload and Textsave Save and load a Basic program as text.

Program Lister List any program direct from a file.
Resequencer Rearrange the lines in a Basic program - line
numbering is automatically adjusted.

Smart Renumber Renumber a program so that procedures start
at a particular line number.

File satd Toggf? e e (ut] § Fore Fle, ool gt R0 T8

Applicatioms Il Dise

Share Investor
A program which assists decision making when buying and selling stocks
and shares.

Label Processor

Design, save and print labels at any size on an Epson compatible printer.

3D Landscapes
Create computer-g d three di ional landscapes with this program.
Monthly Desk Diary

A month-to-view calendar which can be used on-screen or printed out.

Real Time Clock v
A real time digital alarm clock displayed for all BBC micros.

Running Four Temperatures AS TALAID
A program for calibrating and plotting up to four temperatures. Enhanced ASTAAD CAD program with

Crossword Editor ¢ full mouse and joystick control,
Design, edit and solve crosswords with this program. built-in printer dump

Julia Sets speed improvement
Fascinating displays of Julia sets, the extensions of the Mandelbrot set. STEAMS image manipulator

Foreign Language Tester Keystrips for ASTAAD and STEAMS
Define foreign characters and test your knowledge of foreign languages. Comprehensive user guide

Sample picture files

Applications I Dise
o Business Graphics ¢ Video Cataloguer Gemeral Utilities Dise
o World by Night and Day e Phone Book o Printer Buffer * ¢ ROM Controller e Sprite Editor/Animator
o Page Designer o Personalised Letter-Heads e Multi-Character Printer Driver for View e Mode 7 Screen Editor
e Mapping the British Isles o Selective Breeding e Multi-Column Printing e Epson Character Definer
o Appointments Diary e The Earth from Space o BEEBUG MiniWimp t+ e ROM Filing System Generator
o Personalised Address Book * Master series only. 1 Requires sideways RAM.

P e e S O S B e
Please rush me my Best of BEEBUG disc at the members price of £5.75 (non-members price £15)
(ASTAAD disc - members price of £9.95, non-members price £19.95)
Applications II Code 1411A (80 track DFS) d Applications II Code 1412A (3.5" ADFS) a
Basic Booster ROM Code 1403A J Basic Booster Disc Code 1402A a
ASTAAD Code 1407A (80 track DFS) ASTAAD Code 1408A (3.5" ADFS) |

|
General Utilities Disc Code 14054 (80 track DES) B General Utilities Disc Code 14134 (35" ADFS) |

Applications I Disc Code 1404A (80 track DFS) Applications I Disc Code 1409A (3.5" ADFS) W

Name

Address Price £
Postage £ .60
Memership No Total £

I enclose a cheque for £ OR please debit my Access, Visa or Connect account, Card
No v / / Expiry. { Signed

Send to: BEEBUG Ltd, 117 Hatfield Road, St Albans, Herts AL1 4]S. Telephone (0727) 40303.

The CLOSE#0 Bug in Master DFS

Derek Gibbons explains the CLOSE#0 bug present in the Master DFS,
and presents a solution.

Reference is often made to the bug in the
Master’s DFS (version 2.24). This bug results in
data files (i.e. files opened for writing using
OPENOUT or OPENUP) being closed by
CLOSE#0 at their original size instead of at a
size which reflects the amount of data just
written.

For new files, this is not too bad as they are
closed at the default size of &4000 bytes, so at
least all the data written will, in most situations,
actually be present in the file. However, it
means that when the file is subsequently
opened for input, any attempt to read data on
an ‘UNTIL EOF#X’ basis will result in garbage
being read once the true end of data has been
passed.

On the other hand, if an existing file is re-used,
it will be closed by CLOSE#0 at its original size
even if more data is written than was originally
present. This means that the' tail-end of such
new data will be irretrievably lost.

The problem is illustrated by the program in
Listing 1 below where line 40 ensures that the
data file does not already exist; lines 80 and 140
show the extent of the data before the file is
closed; and lines 100 & 160 show the size of the
file after it has been closed. As the listing
stands, the file is &4000 bytes long on each
occasion, despite the fact that only &12 and &19
bytes are written respectively.

But now change line 90 to read CLOSE#X. On
both occasions the file is now &12 bytes long
and the tail-end of the longer string is lost, and
an EOF error is generated if an attempt is made
to read the longer string. Now change line 150
to also read CLOSE#X and see what should
really happen - on each occasion the file is
closed with a size equivalent to the data
written. Note that more bytes are used than the
number of characters in a string because of the
header bytes associated with each string (see
User Guide).

42

It must be emphasised that this problem only
arises with the use of CLOSE#0; if CLOSE#X is
used, as above, the file is closed correctly.
Unfortunately, even commercial programs often
use CLOSE#0 for simplicity, and may also use
CLOSE#0 at the start of a program to ensure
that no other files are open.

Listing 1

10 REM Progl

20 REM D.GIBBONS November 1989
30 :

40 *REMOVE TEMP

50 X=OPENOUT"TEMP"

60 S$="This is a string"

70 PRINT#X,S$

80 PRINT X;" contains - ";S$;" - ";~E
XT#X;" bytes long"

90 CLOSE#0

100 *I.TEMP

110 X=OPENOUT"TEMP"

120 S$="This is a longer string"

130 PRINT#X,S$

140 PRINT X:™ contains = ";S8;:" = .";-E&
XT#X;" bytes long"

150 CLOSE#0

160 *I.TEMP

170 END

Fortunately, as CLOSE#X does work correctly,
it is possible to simulate a correct CLOSE#0
by closing, or at least attempting to close, in
turn all the five files permitted by the DFS.
These will have ‘handles’ in the range 17 to
21, but any attempt to close a file which is not
open will cause a Channel error (error no.
222) so it is necessary to trap this error and
then ignore it.

In a program designed for universal use, it
would be preferable to check also that DFS,
rather than ADFS, is indeed in use (ADFS uses
different file handles and, in any case, the
CLOSE#0 error does not occur), and even that
the program is running on a Master rather than

Beebug November 1989

The CLOSE#0 Bug in Master DFS

say a Model B. It is assumed here, however, that
any program changes are being made because
the program is being run on a Master under the DFS.
The program in Listing 2 shows an answer to
the problem. This is not very elegant, and is
certainly not ‘structured’. It would be nice to
have a PROCcloseall or FNcloseall, but BBC
Basic inconveniently forgets virtually all
pointers when an error occurs, and this then
precludes the use of a procedure or function
(even a GOSUB) as well as REPEAT-UNTIL or
FOR-NEXT loops. Hence, this would appear to
be at least one situation where the ubiquitous
GOTO comes into its own!

Listing 2

10 REM Prog2
20 REM D.GIBBONS November 1989
30°%
40 *REMOVE TEMP
50 X=OPENOUT"TEMP"
60 S$="This is a string"
70 PRINT#X,S$
80 PRINT X;" contains - ";8$;™ = ";~E
XT#X;" bytes long"
90 add%=100:GOTO 200
100 *I.TEMP
110 X=OPENOUT"TEMP"
120 S$="This is a longer string"
130 PRINT#X,S$
140 PRINT X;" contains - ";S$;"™ - ";~E
XT#X;" bytes long"
150 add%=160:GOTO 200
160 *I.TEMP
170 END
18075
190 REM CLOSE#0 SIMULATION
200 N=22:*FX119
210 N=N-1:IF N=16 THEN GOTO add%
220 ON ERROR GOTO 250
230 CLOSE#N
240 GOTO 210
250 ON ERROR OFF
260 IF ERR=222 THEN GOT0210 ELSE PRINT
"Error ";ERR;"!at ";ERL
270 END

Lines 90 and 150 now contain the jumps to the
CLOSE#0 routine, with add% being used as a
return address pointer and set, in each case, to

Beebug November 1989

contain the line number of the next line (if the
routine is used only once in a program, add%
can be dispensed with and an explicit jump
back made at line 210). Lines from 200 onwards
contain the actual CLOSE#0 simulation, which
is simple enough to be more or less self-
explanatory. The most puzzling aspect may be
the FX119 command in line 200 which closes
SPOOL and EXEC files. This is required
because CLOSE#0 means literally close ALL
open files, including any EXEC or SPOOL files
which may be open, and this is indeed what
happens with a ‘good” DFS.

This brings to light another aspect of CLOSE#0
which occurs even with a good DFS. When a
!BOOT file or any other EXEC file is used to
chain a program, the !BOOT file is treated as a
data file and opened for input of the command
lines in sequence. The file remains open until
the Basic program has completed, control has
returned to the !BOOT file, and any subsequent
commands in the file have been executed.

Try the !BOOT file shown here with the original
program 1, and then again after changing lines
90 and 150 as above to CLOSE#X and re-saving
the program. Incidentally, this means that only
four actual data files can then be opened, rather
than the 5 permitted by the DFS, because the
!BOOT file is actually the first one. This is
another reason why some programs begin with
CLOSE#0.

*|| !BOOT DEMO

<l

CHAIN"Progl”

PRINT”returned to BOOT file”

In the CLOSE#0 simulation, if all files are
closed simply by sequential use of CLOSE#N,
when control is returned to the !BOOT file its
file handle will have been removed, but the OS
does not know that the file is no longer in use
for EXEC purposes. It therefore attempts to
read any subsequent commands from an
unopened file and a Channel error again
occurs. The *FX119 command corrects this
situation making things no worse than with a
‘good” DFS. s

5

43

®

by Robin Burton

As promised, this
Forum includes a
list of packages
known to run with
Problem Solver’s assistance. This is at the end
of the Forum for convenience, but first to more
‘traditional’ Forum matters.

The first snippet is that I understand Acorn no
longer charge for the DOS Plus 2.1 upgrade.
Send your original 1.2 discs to Acorn
Computers Ltd., Customer Services, Fulbourn
Rd., Cherry Hinton, Cambridge CB1 4]JN.

BATCH FILES AGAIN

It's a couple of months since we looked at the
'PATH’ command, so I thought it was time I
kept my promise to cover batch files again. We
also looked at the 127 byte buffer used to hold
the command tail, the parameters entered when
a program is first loaded. This time we’ll be
looking at precisely the other end of
proceedings.

In particular, I've had several letters requesting
information on ‘ERRORLEVEL, a point missed
entirely or poorly explained in so many DOS
guides (could it be that the authors aren’t sure
either - surely not!). At the same time we’ll
investigate a little more how DOS programs
work.

IF ERRORLEVEL

Most users are aware of this batch file
construct, and how to include the relevant line
in a batch file, but equally, many don’t know
how to use it. This is because good explanations
of what ‘ERRORLEVEL’ means and how it
works are few and far between. In fact it's quite
simple, if the information is gathered together
and given with an explanation, instead of being
scattered throughout reference books with an
assumption that you can make the connections
yourself, as is too common.

44

512 Forum

The main point to appreciate is how programs
terminate in DOS. Just like other DOS facilities
and functions, if performed legally, this
involves calling an interrupt. There are other,
‘dirtier’ methods of terminating, and there is a
range of termination functions, but for
illustration we’ll confine ourselves to one legal
technique. We'll consider the sort of program
that loads, carries out one or two specific
operations and then disappears, leaving its
memory free for further use.

Most of the programs that operate like this are
utilities, and are most frequently ‘COM’ files,
(or ‘CMDY, but more in a moment about these).
However, the principle applies equally to ‘EXE’
files, whether these are linked from object
modules originally written in assembler, or
compiled from high level languages like ‘C’,
Basic, Pascal or whatever. Any program which,
on final termination, can report overall success
or failure to DOS is therefore included. What
this topic doesn’t include are user errors
handled entirely within applications.

Let’s take for example a program which reads a
file, performs a specific operation (or several)
and then terminates. Examples of this type of
program are the 512 ‘FIND.EXE’ and
‘SORT.EXE’ utilities included on two recent
BEEBUG discs (Vol.8 Nos.4 & 5) - get the back-
issues out if you missed them. These programs
take a filename and one or more optional
parameters when they are called from the
command line, but then execute without further
user input until completion. Of course, if you
call the program manually and the parameters
are invalid, you are informed at once and you
simply re-enter them correctly.

On the other hand, if the program were to be
called by commands contained in a batch file
you wouldn’t be given the opportunity to re-
enter the parameters correctly. In any case
failure might have nothing to do with entered

Beebug November 1989

512 Forum

parameters, it might be a file error, the wrong
disc in a drive and so on.

More importantly, if left to itself, a batch file
will continue to execute subsequent
instructions, probably quite pointlessly and
possibly even dangerously if an earlier process
has failed. Of course, you can always sit and
watch the screen, issuing a hasty Ctrl-C when
you spot a problem, but as usual there’s a better
way.

PROGRAM TERMINATION

To fully understand how this better method (i.e.
ERRORLEVEL) works, we need to look at DOS
program termination.

If a program is written correctly, that is
according to accepted DOS standards, on
termination it should set a condition which can
be detected by the program or batch file that
called it. Primarily this condition (a numeric
value) indicates whether the program was
completely successful or not, but by varying the
value it can also be used to identify the
seriousness and type of any error.

Using machine code in our example, here’s
how it’s done. By the way, this applies only to
DOS. Remember that in DOS Plus we have
both CP/M (CMD) and MS/PC-DOS (COM)
programs. While CP/M has a similar facility,
it doesn’t work with ‘ERRORLEVEL'. CP/M
return codes can only be obtained by a calling
program, not by batch files, and they also
differ in that they are two bytes, not one as in
DOS.

We’ll ignore ‘terminate and stay resident’
functions such as INT 21h function 31h or the
now redundant INT 27h, as used by ‘pop-ups’
and programs like RAM discs. In the main,
programs don’t stay resident if they encounter
errors (although a return code is also passed
with INT 21h 31h).

For a permanent exit, programs can
terminate using one of two interrupt 21h

functions, 0 or 4Ch. INT 21h incidentally, is

Beebug November 1989

also commonly referred to as the general
function despatcher.

For those not too interested in the internals of
DOS or 80186 programming, INT 21h (which
simply means operating system call number
&21) can be regarded as a general purpose OS
call combining most of the facilities provided in
the BBC micro by OSBYTE, OSWORD and the
filing system calls. Registers (and sometimes
parameter blocks) are set up and the call is
made with a number to identify it.

Other interrupts exist for more specialised
purposes, but INT 21h provides most of the
facilities users require. It is used for console line
or character input/output, disc (directory,
sector, file and record) operations, program and
memory management as well as for
miscellaneous tasks like reading or setting the
system’s clock or date (it even includes
functions for intercepting and re-directing the
interrupt vectors!).

In order to end execution, a program can make
a call to one of three other interrupts, INT 20h,
27h or 21h using either function 0 or function
4Ch.

INT 21h function 0 is of no use if we want to
return a code (oddly enough called the return
code) to indicate success or failure, because it
doesn’t provide this capability. Interrupt 20h
is also a program termination call, but its use
is not recommended either. In fact these two
(and INT 27h) are all left-overs from DOS
version 1, and are retained purely for
compatibility with early software. For all
current purposes these calls are obsolete and
shouldn’t be used.

This leaves INT 21h function 4Ch, which has
been the recommended method of final
program termination since DOS version 2
appeared, and it still is. Here’s a short section of
source code which will show how it’s called in
a program. Several other ‘bits” would be needed
for assembly, but this extract is enough to
illustrate the point we're concerned with.

45

512 Forum

; Constant declarations

GFD

 F | equ 021h ; INT 21h
TERMINATE

equ 04Ch ; with return code

; Program code
This is the main
body of the program

exit: ; Common exit point
mov al, [Return_Code]B; The final result
mov ah, TERMINATE ; Set up terminate...
int G FD ; and do it!

; Variable declarations

Return Code db 0 ; Default zero

The constant declarations at the top simply
assign hex values 21 and 4C to the two names
given. Between these and the label ‘exit:’ the
main functions of the program would be coded,
including suitable displays to advise about
progress during execution.

In this example, I've assumed that whatever
happens in the main code, the program always
jumps to ‘exit:” to terminate. The variable
declared as ‘Return_Code’ at the bottom of the
source has a default value of zero, which means
successful execution. This is pre-set when the
code is assembled, but if during execution the
program detected an error the value would be
changed.

When execution arrives at ‘exit:’ the value now
in ‘Return_Code’ is moved into byte register
AL, which is where INT 21h function 4Ch
expects the return code to be placed. The next
line moves the value 4Ch into byte register AH
to identify the interrupt function required, and
the last line, ‘int G_F D, calls interrupt 21h,
which actually ends the program.

Within this call all file buffers are flushed (i.e.
pending output records are written to disc),
all files are closed, and the program’s memory
is freed for re-use. A few other things happen,
which needn’t concern us here, except to say
that control then passes back to the original

46

caller. This might be another program, a batch
file or you, by means of the DOS command
line.

If the caller was a program, the return code can
be obtained by means of INT 21h function 4Dh,
which will pass the return code back to the
calling program in register AL. The program
can then decide what action to take depending
on the value returned.

If the caller was a batch file the return code is
made available via the pseudo-variable
'ERRORLEVEL'. Again, by a suitable line in the
batch file, subsequent execution can be
controlled depending on the value returned
(see below).

If you call a program manually from the
command line, the return code should be
irrelevant, because the program should have
advised you of success or otherwise by a simple
confirmation or an error message.

Interestingly, however, you can still enter an ‘IF
ERRORLEVEL' statement manually and it will
work normally (with, of course, the exception
of jumping to a label - I hope I needn’t explain
that!). The format of the command, either
manually or in a batch file is:

IF ERRORLEVEL <value> <command>
where <value> is a number between 0 and 255
(although higher values can be entered), and
<command> is any DOS command except one
which is itself conditioned by another ‘IF'.

Note that there’s no ‘=" sign. If you include one,
you’ll get an error. The most useful
<command> of course is ‘GOTO label’, which
allows you to change the execution route. A
label can be any string ending with a colon, but
only the first 8 characters are significant. For
example:

LABELL:

LABEL2:
and so on would be acceptable, but:

LABELNUMBER1 :

LABELNUMBER2 :
would be treated as duplicate labels.

Beebug November 1989

512 Forum

IMPORTANT POINTS
The reason that this pseudo-variable is called
‘ERRORLEVEL, rather than ‘ERRORCODE’ or
something else is most important. You must
remember that IF ERRORLEVEL’ performs a
‘greater than’ test, not an equality test.
In other words:

IF ERRORLEVEL 4 <command>
actually means, “If the return code is equal to
OR GREATER than 4, execute the command”.

This means that when you test for each of
several results, you MUST test for the higher
values first. Put another way, a return code of
255 (the standard ‘general failure’ code) always
produces a “TRUE’ result no matter what value
you test it with up to 255.

A side-effect of this is that if <value> in the
statement is zero, i.e.:

IF ERRORLEVEL 0 <command>
<command> is ALWAYS executed. A value of
zero in this statement is therefore utterly
meaningless, since it always gives “TRUE’ for
any value, including zero. The easiest way to
remember this is that you can’t directly test for
success using ‘ERRORLEVEL, only for failure.

PROBLEM SOLVER APPLICATIONS LIST
This list is compiled from information supplied
by Shibumi Soft and 512 Forum readers. Where
version numbers were available they are
provided, but where omitted users should
exercise care.

Title Publisher

688 Attack Sub Electric Arts
Adventure Writer PD.

Alley Cat Syn Soft
Ancient Art of War

As Easy As 3.0 Trius

Autoroute NextBase

Brief Underware Inc
Bushido

Cashbook Freeway Ltd.
Charlie ChaplinUS Gold

Chiwriter Horstman
Cyrus Chess

Dancad 3D

Dark Side

DBase III+ Ashton Tate (1.2)
Deluxe Paint 2

Digger Windmill Soft
Digita Diary

Dream Hiuse Computer Easy
Driller

Droege PD.

Easy Boot

Elite Firebird

Falcon Spectrum

Fast Graph

First Publisher

Flight Simulator 2.13 Microsoft
Flight Simulator 3 Microsoft
Flodraw Dabs S.W.
Flowcharting Patton & Patton
Fontasy Prosoft
Formtool Bloc Developments
Formwork Analytex International

Framework II

Ashton Tate

Beebug November 1989

Title Publisher

Freefile S.W.

Freelance Graphic
Communications

French Teacher 1/2 Micro Tutor P.

Frogger

FSD 1IBM

Galaxy 2.3 Ominiverse

Game of Life Scientific G.

German Teacher 1/2 Micro Tutor P.

Graphing Assists IBM

Grime S.W.

Homebase Brown Bag Software

How’s Your Heart

Impact

Infidel Infocom

Infiltrator

1SS Calendar Plus 2.2

Jet

Leisure Suit Larry

Life Forms S.W.

Masterfile PC

Mandelbrot Generator PD:

Microsoft Chart Microsoft

Mindreader 2.0 Brown Bag Software

Mini Office Pers.

Mix C Compiler Analytical
Engineering

Mix C Editor/Trace Analytical
Engineering

Newsmaster 2

Newword Newstar

Osbit

Paperbase Deluxe

Payroll Micro-Aid

47

512 Forum

Title Publisher
Professional File

Professional Plan

Pango Sheng-Cheung L.
PC Draw Micrografix

PC Calc Buttonware

PC Man Orion Software
PC Outline

PC Storyboard IBM

PC Tools Deluxe 4.11 Central P. Soft
PC Tutor

PC File+ PD.

PCFile3 Py

Pipedream Colton

Pitstop Epyx

Planning Assistant IBM
Powermenu S.W.

Printshop Pixellite

Print Master

Process Engineering Package

Professional Write

Prolog2 LB.M.

Prospero Pascal

PSI Trader

Quadralien Logotron

Reflex Borland

Savoir Intelligent Software
Script IBM

Sorceror Infocom

Space Commanders Columbia

Spell Microsoft

Title Publisher
Starglider Firebird
Starquake Mandarin
Strip Poker Artwork

Strip Poker Electric Arts
Symphony 1.2 Lotus

Tas+ Database Megatech
Teed-Off 3.0 S.W.

Tennis

Test Drive Mastertronic
Topcopy Plus Innova Soft
Turbo Basic Borland

Turbo C 1.5 Borland

Turbo Calc Borland

Turbo Debug Borland

Turbo Pascal 3.0 Borland

Turbo Pascal 4.0 Borland

Turbo Prolog Borland

VP Graphics Paperback Soft
War Broderbund
Wizz Ball Ocean

Where in the World is Carmen Sandiego
Word Microsoft
Wordperfect 4.2 Wordperfect Corp.
World Class Golf

World Class Leaderboard Access/US Gold
World Tour Golf Electric Arts

Yes Chancellor

P.D. = Public domain
S.W. = Shareware

B

A BEEBUG Graph Plotter (continued from page 15)

1820 ENDPROC

1890 ENDPROC

AWx, y :ELSEc=c-1
1920 ENDPROC

1830 DEFPROCsolve (X,Y,Z)

1840 I=X-Y-Y+Z:IFABS(I)<1E-6THEN1880

1850 G=(Z-X)/I-z-z:Y=2*Y/I-z*(G+z) :X=G
/2 :2=X*X-Y:IF2<-1E-4c=0:ENDPROC

1860 IFZ<1E-4c=1:Z=0ELSEc=2

1870 wv=s* (-X+SQR(Z)) :V=-G*s-v:ENDPROC

1880 IFY<>X:c=1l:v=s*(z-Y/(Y-X)):V=1E9:
ELSEc=0:IFY:ELSEl=-1:IFF=2MOVEa*f, W:DRAW
A*f, W:ELSEMOVEW, B*g :DRAWW, b*g

1900 DEFPROCdraw (X,Y,X,y)
1910 IFABS(X-x)+ABS(Y-y)<&FFMOVEX,Y:DR

2080 Z=EVAL$J%

I=f*EVALSK% :G=g*Z

2120 NEXT:ENDPROC
2130 DEFPROCrange

2050 N=4:IFW*w>=U*w:C=D:ENDPROC
2060 FORW=W+w TOU STEPw:X=W:aa=W
2070 IFR%=0ANDt=laa=RADW

2090 IFt=1I=Z*f*COSaa:G=2*g*SINaa:ELSE

2100 IFN=5:IFABS(I-x)+ABS(G-y)>300N=4
2110 PLOTN,I,G:x=I:y=G:N=5

2140 PRINTTAB(10)M$"1="SPC(6)MS"2=";
2150 IFF%PRINTSPC(6)"dK=";

2160 PRINTTAB(13,1);:PROCinput (5)
2170 PROCconvert:u=EVALa$

2180 PRINTTAB(22,1) ;:PROCinput (5) s

2000

DEFPROCharder

2190

PROCconvert :U=EVALa$

2010 a$=FNswap($I%,M$,"xX")

2020 PROCconvert :PROCtype (1)

2030 t=INSTR("RX",CHR$?I%) :PROCrange

2040 W=u-w:C=2050:IFt=2:5K%=5J%:57%=$(
J%+INSTR ($J%, "="))

>2w=SGNw/ (1+14*R%)
2210 VDU13:ENDPROC

2200 IFF$PRINTTAB(31,1);:PROCinput (8):
PROCconvert :w=VALa$:ELSEw= (U-u) /200:IFt<

48

Beebug November 1989

The idea of a compiler is easy
- a utility that will take a
program in some language
and convert it to another
language. Normally, the
source program will be in a
high level language such as
Basic, C or Pascal, and the
compiler will output a
machine code program that is
equivalent to this. However,
in practice compilers tend to
be thought of as black boxes
which other programmers
write, and I'm sure that not
many people would be happy
if faced with the task of
writing one. The main reason
for this is that if you adopt the

‘try it and see’ approach for
compiler writing, you are
likely to spend a very long
time producing something
which only partly works - a

lesson learnt by many early

compiler writers. Instead,

compiler writing is a prime

example of a case where a

mathematical approach to

program design is needed.

These days, programmers can,

with the help of various

software tools, write bug-free

compilers for any language in

a very short time.

What we shall do in this series

of Workshops is to explain

some of the theory of

compilers, and wuse this

knowledge to write a simple

compiler which will take a

basic numeric expression and

generate a 6502 machine code

program to evaluate it. This

may seem a long way from a

compiler for a real language,

but the principles are the

Beebug November 1989

Writing a Compiler (Part 1)

David Spencer shows how you can write a simple compiler.

same, and it must be remembered that
expression evaluation is a major part of many
languages. To make our compiler as easy to
understand as possible, it will be written
entirely in Basic.

ANATOMY OF A COMPILER

We will start with a look at the traditional parts
that make up a compiler, as shown in figure 1.
Each part is referred to as a phase because
conceptually the source program can be
thought of as passing through each section,
with a final compiled version emerging at the
end.

source program

lexical
analyscr

syntax
analyser
analyser
manager - t handl.
5 intermediate code odlee
gencrator
code
optimiser

code
generator

target program

Figure 1. The phases of a compiler

The function of each phase will now be
described briefly.

The lexical analyser takes the program being
compiled character-by-character, and converts
it into a series of more manageable units called
tokens. For example, suppose you were hand-
compiling a Basic program and you come
across a PRINT statement. When working out
how to compile the statement it is more
important to know that the keyword PRINT has
been found than the letter P followed by R etc.

49

Workshop - Writing a Compiler

Therefore, the lexical analyser would replace
the letters P-R-I-N-T by a single number
indicating the keyword PRINT. This is very
similar to the tokenisation performed by the
Basic interpreter when a program is typed in.
Similarly, if you come across a number in the
program then initially it is only necessary to
know that it is a number - not its actual value.
Therefore the lexical analyser will replace the
number by the token that represents a number,
and store the actual value somewhere for later.
A similar argument applies to variable names.

The syntax analyser looks at the stream of
tokens coming from the lexical analyser and
attempts to match them against the various
constructs that make up the language. For
example, an UNTIL statement in Basic must be
followed by an expression and then a statement
terminator (end of line or colon). Upon
receiving the token for UNTIL, the syntax
analyser will check that indeed an expression
does follow. An obvious result of this process is
that syntax errors in the source program can be
detected, but far more importantly, this analysis
provides the basic information needed to
convert the program to machine code.

The intermediate code generator uses the
information gathered by the syntax analyser,
together with details such as variable names
and numeric values from the lexical analyser, to
create a compiled program in a pseudo
machine code. The reason for this step is that
most real machine codes contain so many
idiosynchracies that it is nigh on impossible to
compile the program directly.

The optimisation phase examines the
intermediate code and attempts to optimise it,
either by shortening it or speeding it up.
Finally, the code generator takes the optimised
intermediate code and converts it to the
appropriate machine code for the target
computer.

Two areas which apply to the whole compiler
are the symbol manager which keeps track of
the numeric values and variable names put
aside by the lexical analyser, and the error
handler which deals with any errors detected,
and tidies up as much as possible.

50

In practice, the distinction between phases is
not as concrete as figure 1 suggests. For
example, the lexical analyser will nearly always
be a subroutine which is called by the syntax
checker when an input symbol is needed. The
optimisation phase may be missed out
completely, and it is very unlikely that the
intermediate code will be a palatable language -
more likely it will be some efficient internal
representation.

DOWN TO WORK

Having explained some of the fundamentals of
compilers, we can start to write ours. As we
proceed new techniques and methods will be
introduced as necessary. We will not follow the
structure of figure 1 exactly, but rather simplify
it. The optimisation phase will be dropped
completely, and the intermediate code
generator and the code generator proper will be
merged into a single step.

As a starting point we will develop the
lexical analyser for our compiler. As outlined
above, this will be in the form of a routine
called by the syntax analyser. The routine has
to return at least one value, namely the next
input token, and hence will be written as a
Basic function. The input symbols we have to
recognise are the numeric operators +,-,* and
/, the unary negation operator -, any valid
integer, and the (and) symbols for changing
precedence. It should be noted that from the
point of view of the syntax analyser, one
number is much the same as another - all that
is important is that it is a number, and not
say a ‘+’ operator. Therefore, the lexical
analyser will return a single token to
represent any number. However, the
compiler will need to know the actual value
of the number at the code generation stage,
so the lexical analyser must make a note of
the value. This will be done by storing the
value in a global variable.

There are many complex algorithms and
techniques for the semi-automatic generation of
lexical analysers. For example, UNIX-based
computers have a utility called ‘Lex” which
takes the definitions of the keywords, and other
tokens making up the language, using so-called
regular expressions as a shorthand notation, and

Beebug November 1989

Workshop - Writing a Compiler

generates the lexical analyser in the form of a C
function. However, for our simple lexical
analyser we can get away with a cut and thrust
method. Before doing this, we need to make a
couple of decisions.

Firstly, what effect does a white space character
have on the lexical analyser. (White space is the
term used to describe any characters which
are essentially formatting controls, such as
space itself and the tab character). Our lexical
analyser will totally ignore white space,
except in the case of a number, where a white
space character will mark the end of the
number. Secondly, what do we do with minus
and unary negation. Both operators are
traditionally represented by the ‘-’ symbol,
but are in fact totally different operators. We
can resolve this problem by using the
juxtaposition of the ‘-’. If the ’-’ follows a
number then it must be a subtraction operator,
while if it comes after another operator, or at
the start of an expression, then it represents
the negation operator.

The final decision is what values should be
returned by the lexical analyser function for
each input token. The chosen values are shown
in table 1.

TOKEN VALUE
‘4 43
=t (subtraction) 45
= 42
‘r 47
(negation) 95
“(40
‘) 41
number 1

Table 1. Lexical analyser return codes

The values for the arithmetic operators are
simply the ASCII codes of the characters
representing them, while the value for
negation is the ASCII code for an underscore
character. The value used to represent a
number is chosen arbitrarily, the only criterion
being that it is different to the values used for
any other tokens. A special token with the
value 0 is used to indicate the end of the input
string.

Beebug November 1989

Listing 1 shows the function implementing
the lexical analyser. It reads characters from
the global variable input$ which contains the
rest of the input line (in other words starting
with the next character to be looked at), and
returns the value of the token found. input$
has to be global in BBC Basic to allow it to be
changed by the function. The other global
variable used is minusflag, which is initially
set to FALSE to indicate that a ‘-’ will
represent negation, and is then changed as
necessary by the function. In the case of a
number, its value is stored in the variable
value. An extra piece of information attached
to a token like this is called an attribute of the
token. It should be easy to see how the
function in listing 1 works.

Listing 1

1000 DEF FNlex

1010 REPEAT

1020 IF LEFTS (input$,1)=" “ THEN input$
=MID$ (input$,2)

1030 UNTIL LEFTS (input$,1)<>”

1040 IFinput$="” THEN =0

1050 A$=LEFTS (input$,1) :IF NOT minusfla
g AND A$="-" THEN token=ASC” ”:input$=MI
D$ (input$,2) :=token

1060 IF INSTR(“+-*/”,A$) THEN token=ASC

input$:input$=MID$ (input$, 2) :minusflag=
FALSE:=token

1070 IF INSTR(“()”,A$) THEN token=ASC i
nput$:input$=MID$ (input$, 2) :=token

1080 IF INSTR(“0123456789”,A$)=0 THEN P
RINT “Mistake” :END

1090 value=VAL (input$)

1100 REPEAT

1110 IF INSTR(“0123456789”,LEFTS$ (input$
,1)) THEN input$=MID$ (input$,2)

1120 UNTIL INSTR(“0123456789”,LEFT$ (inp
ut$,1))=0 OR input$=""

1130 minusflag=TRUE

1140 =1

One important feature implemented by listing
1, but not mentioned yet, is error handling. If
the next character read from input$ doesn’t
match one of the operator symbols, and isn’t a
digit, then a lexical error has been detected. This
indicates that a meaningless input expression

Continued on page 58
51

BEEBUG Bingo

Al Harwood describes a system for printing bingo cards, and calling the numbers,
literally if you also have Superior’s Speech system installed.

There you are on that Sunday afternoon, just
finished the washing up from the Sunday roast,
nothing much on the tele, what to do? Fear no
more, here is the very answer in the form of
BEEBUG Bingo, no not the type held around
the corner every Saturday night, but a fully
computerised version.

Following are two listings which can either be
used separately, together or with Superior
Software’s Speech system.

The first listing is a bingo card printer, it prints
pages of bingo cards, each page contains ten
cards. The numbers on each card are randomly
allocated by the program. On running, you are
asked how many pages you want to print, at
this point set up your printer and enter the
number of pages you require. Once printed, the
cards should be cut out and kept.

The second program is a bingo number caller.
Once run, just press any key for it to start
calling numbers. As each number is chosen it is
displayed and is also marked off on the master
board, which covers most of the screen. So by
looking at the master board you can tell which
numbers have been previously called.

Pressing the space bar at any time will suspend
play until the space bar is pressed again.
Pressing Escape will abandon the current game
and start a new one, while pressing Shift-
Escape will exit from the program altogether.

This program can also be used in conjunction
with Superior Software’s Speech system. Just
*RUN the main Speech program first. Our
bingo program will recognise it, and as each
number is chosen it will literally be called out.

Beebug Bingo can be played by any number of

people, but each player should have the same
number of cards. As the numbers called out

52

match those on your bingo cards cross them off
and the first person to cross all their numbers
off wins.

Note: Lines 1120 and 1150 in the print program
switch underline mode on and off, and assume
an Epson compatible printer.

10 REM Program BINGO CARD PRINTER
20 REM Version B1.0
30 REM Author Al Harwood
40 REM BEEBUG November 1989
50 REM Program subject to copyright
60 :
100 MODE3:ON ERROR GOTO 150
110 DIM C(8,2),N(89)
120 PROCprinter
130 END
140 :
150 MODE7
160 IF ERR<>17 REPORT:PRINT” at line “
;ERL
170 END
180" 2
1000 DEFPROCcard
1010 FOR R=0 TO 2:FOR C=0 TO 8:C(C,R)=0
:NEXT,
1020 FOR N=0 TO 89:N(N)=1:NEXT
1030 FOR R=0 TO 2:FOR C=1 TO 5
1040 CO=RND(9)-1:IF C(CO,R)=-1 GOT01040
1050 C(CO0,R)=-1:NEXT,
1060 FOR C=0 TO 8:FOR R=0 TO 2
1070 IF C=0ANDC(0,R)=-1 REPEAT N=RND (9)
:UNTIL N(N-1) :N(N-1)=0:G0T01100
1080 IF C=8ANDC(8,R)=-1 REPEAT N=RND (11
)+79:UNTIL N(N-1) :N(N-1)=0:G0T01100
1090 IF C(C,R)=-1 REPEATN=RND(10)-1+C*1
0:UNTIL N(N-1):N(N-1)=0
1100 IF C(C,R)=-1 C(C,R)=N
1110 NEXT,
L120.VbU6, 1,27, 1545, 1,121
1130 PRINT SPC46; :FOR R=0 TO 2:PRINT’”|
“;:FOR C=0 TO 8:IF C(C,R)=0 PRINT SPC4”|
“; ELSE PRINT SPC(3-LEN(STR$(C(C,R))));C
(C,R);SPC1”|";
1140 NEXT, :PRINT’”|”SPC16”BEEBUG BINGO”
SPCL6 |«

Beebug November 1989

BEEBUG Bingo

1150°VDU6, 1, 27,1,45,1,0,2L

1160 ENDPROC

1170=¢

1180 DEF PROCpage

1190 vpU2,21

1200 PRINT’“BEEBUG BINGO CARD PRINTER,
By Al Harwood”’’

1210 FOR A%=0 TO 9:PROCcard:PRINT:NEXT:
PRINT/

1220 vDUS6, 3

1230 ENDPROC

1240 :

1250 DEF PROCprinter

1260°VDU19,1,2;0:

1270 CLS:PRINTTAB(28,3) “BEEBUG BINGO CA
RD PRINTER”TAB (34,5)”By Al Harwood”TAB (0
,10)”* Each page consists of ten Beebug
bingo cards”

1280 INPUTTAB(0,12)”Enter number of pag
es to be printed: “P

1290 PRINTTAB(0,14)“Are you sure (y/n)?
“; :REPEAT A$=GETS$:UNTIL INSTR(“YyNn”,A$)
:IF INSTR(“Nn”,A$) GOT01270

1300 PRINTTAB(0,16)“Pages still to prin
e

1310 FOR pages=P TO 1 STEP -1:PRINT pag
es;CHR$8; :PROCpage : NEXT

1320 PRINTTAB(0,18) “Bye.”’’ :ENDPROC

10 REM Program BINGO CALLER

20 REM VERSION Bl1.1

30 REM AUTHOR Al Harwood

40 REM BEEBUG November 1989

50 REM Program subject to copyright

100 *FX229,1

110 MODE7:0N ERROR GOTO 190
120 vpU23,1,0;0;0;0;

130 DIM N(89),cli 255

140 REPEAT

150 PROCscreen

160 PROCplay

170 UNTIL INKEY-1

SPC11”by Al Harwood”’CHR$141CHR$130”BEEB
UG BINGO”SPC11”by Al Harwood”’CHR$145STR
INGS (38,”£") ;

1030 FOR A=0 TO 8:PRINT:FOR B=1 TO 10:P
RINTCHR$131SPC (2-LENSTRS (A*10+B)) ;A*10+B
;SPC1; :NEXT, :PRINTCHR$145STRINGS (38, "p”)

1040 ENDPROC

1050 :

1060 DEF PROCplay

1070 FOR N=0 TO 89:N(N)=-1:NEXT

1080 PRINTCHR$134”Press any key to star
t game. Pressing”’/CHR$134”Escape will re
start, (use for a false”’CHR$134”start o
r when someone has won).”;

1090 IF GET PRINTTAB(0,22)SPC119;

1100 REPEAT

1110 REPEATN=RND (90) :UNTIL N(N-1) :N(N-1
)=0

1120 IF LEN(STR$(N))=1 Hl=1 ELSE H1=0

1130 IF N MOD10=0 V1=-1 ELSE V1=0

1140 H=N MOD10:IF H=0 H=10

1150 H=(H-1) *4:V=(N DIV10+V1) *2+4

1160 PRINTTAB (H,V)CHR$129TAB (17+H1,23)C
HR$141CHR$134;N; TAB(17+H1,24) CHR$141CHRS
134;N;

1170 PROCsay (N)

1180 key=INKEY (300) :IF key=27 F=1:GOTOl
220

1190 IF key=32 REPEAT:key=GET:UNTIL key
=32

1200 F=1:FOR N=0 TO 89:IF N(N) F=0

1210 NEXT

1220 UNTIL F

1230 ENDPROC

1240 5%

1250 DEF PROCsay (N)

1260 IF?&6A53<>ASC”s”0OR?&6A54<>ASC"a”0R
?2&6A55<>ASC"y"”ENDPROC

1270 DO=N DIV10:D1=N MOD10

1280 IF D0=0S$=STRS$N:GOT01320

1290 IF DO=1 RESTORE1340:FOR A=0 TO D1:
READSS : NEXT : GOT01320

1300 RESTORE1350:FOR A=2 TO D0:READS$:N
EXT

1310 IF D1 S$=S$+STRSD1

180 % 1320 $cli="*say”+S$:X%=cli MOD256:Y%=cl
190 MODE7 i DIV256:CALL&FFF7

200 REPORT:PRINT” at line “;ERL 1330 ENDPROC

210 END 1340 DATA ten,eleven,twelve,thirteen, fo
220 : urteen, fifteen,sixteen, sevnteen,ateen,ni
1000 DEF PROCscreen neteen
1010 CLS 1350 DATA twenty,thirty, fourty, fifty,si
1020 PRINT’CHR$141CHR$130”BEEBUG BINGO” xty, sevnty, aty,ninety 3

Beebug November 1989 53

Special Offer must end December 31st 1989

Upgrade to Wordwise Plus 2
for only £25.95 incl. VAT & UK postage.

Until the end of December 1989, Wordwise Most Wordwise support packages have the
Plus owners can upgrade to Wordwise Plus disadvantage that they occupy an extra

2 (WW+2) for only £25.95 fully ROM socket, and are often very slow. But
inclusive. (Normally £38.95) WW +2 replaces your existing

WW +2 i not just another Wordwise wook-processor chip: And whereas Wordaid
add-on. It is a complete word-processing (Watford Electronics) takes 45 minutes to
system which offers all the features of sort 200 addresses, WW + 2 takes 2 seconds!
Wordwise Plus, and much more besides.

New facilities include; 28 day money-back guarantee

* Supplied on a single 32K chip, compatible with all BBC micros (not A3000)
* Upgrades from Wordwise also available
* Menu-driven file access (works with DFS and ADFS)
* Mail-merge and label printing capabilities
* Runs all WW + segment programs, but faster. (Programs may even be tokenised
* Fixes "String bug" in Wordwise Plus. for extra speed and memory savings)
* Very fast and versatile data sorting
* Compatible with existing text files, segment programs and Spell Master
* Over 30 new keywords in programming language including eg MID$, LEFT$
* Over 12 new CTRL keys, such as;
CTRL/H Help option lists all CTRL keys
CTRL/X Search and replace (works in the segments t00)
CTRL/G Fast and convenient string search

CTRL/P Mark the current paragraph The WW+2 package
CTRL/Z Mark the word at the cursor As an upgrade from Wordwise
CTRL/L Delete the current line g‘;saiys‘:‘s‘ g;‘d"l‘fz";:’gmﬁ:}.‘)M’
CTRL/T Select the text area
Our 28 day money back guarantee
el ek e applies to all Wordwise Plus 2
purchases.

The following extracts from reviews

and letters concerning WW+2 are all A
on file and open to inspection. You can order WW+2 by telephone or in

writing. Official orders welcome. The two
"So good that I would recommend all | utility discs are normally 80 track

WW+ owners to upgrade”. "I have to | format. So when you order, please state
compliment you on the standard of whether 40 track discs are needed.

this upgrade”. "Delighted with all Prices (including VAT)

n
af ke exiiu commanyy, Upgrade from Wordwise Plus ~ £24.95

"A no-quibble money back Upgrade from Wordwise £47.15
guarantee. What haveyyou got Complete WW+2 package £56.35
to lose by checking it out?" Spell Master £51.00
(Micronet) 16K RAM module £16.50

Please allow £1 postage (UK)

IFEL, 36 Upland Drive, Derriford, Plymouth PL6 6BD (0752) 847286 E

PLUGGING THE GAP IN TELETEXT MODE
I found your articles on using teletext mode (First
Course, Vol.7 No.10 to Vol.8 No.4) very helpful.
However, you are wrong to say that you cannot
have double height text in a frame without a hole
appearing in the border. I had this difficulty at one
time, but the solution I discovered is very simple -
put the CHR$141 outside the frame. You can draw
the frame before or after printing any message, but
be careful not to overwrite any necessary control
characters.

John Waddell

It is good to have a solution to this problem at long
last. It just shows that even now you can still learn
something new about the BBC micro.

FAIR SHARES FOR ALL

One thing I cannot understand with BEEBUG is
how very clever additions to published programs
are merely printed in Postbag (for example,
Brightening up the Landscape and Indexing Watford
Double Length Catalogues in Vol.8 No.4) while others
are published under Hints & Tips for which the
contributor is then paid £5. While this is of little
consequence, I feel it is unfair.

Might I suggest that Postbag be restricted to
questions requiring replies or general
correspondence, and additions to programs and
useful hints be located where they should be, and at
least give some token reward, however minimal.
D.PDyer

Mr.Dyer has highlighted an anomaly which has
arisen quite accidentally, and which, until now, had
been overlooked. I propose, in future, to pay £5 for
all hints and letters published, with £15 for any
outstanding contribution on either page. So let’s be
hearing more from you, views, comments or
information as you wish.

Normally, technical information on the BBC micro
and third party software and hardware appears
under the Hints & Tips banner; general comment
on the Acorn world, BEEBUG magazine, and
articles and programs published in the magazine, is
put under the Postbag heading; while any errors
that come to light in published programs are
detailed in Points Arising. This is the system to
which we have been working for many years now.

READERS REQUESTS

I have been a subscriber since issue number one, but
I must confess that I have recently been wondering

Beebug November 1989

if the magazine is of any further use to me. If I could
learn just one thing from each issue, it would be
worthwhile.

Here are some suggestions for articles which would
make the magazine more valuable to me:

1. Sideways RAM - more information on its use

and relevance to Basic.

2. Keeping large arrays in Sideways RAM.

3. Information on the relative merits of other
high level languages, Lisp, Pascal, Forth or
whatever.

OSBYTE calls - a complete mystery.

Saving space on a model B.

A simple explanation of how the Beeb works.

An article on what is involved in upgrading

from a BBC micro to an Archimedes.
D.A.G.King

Specific requests from readers for future articles or
programs are always most useful. In many cases we
can respond positively (see this month’s First
Course article on OSBYTE and similar calls). If
other readers have particular topics they would like
to see covered (or maybe support or disagree with
those suggested by Mr.Dyer), or would like to offer
articles on these subjects for publication, then why
not write to us?

HELPING ONESELF

I have just typed in the Self-help utility from Vol.8
No.4. I find it excellent. It makes full use of
sideways RAM which I use, and I have combined it
with some of the previous sideways RAM utilities,
some of which I believe were also written by the
same author. Now I do not have most of my
sideways RAM unused, and I do not have to stop
what I am doing and load another disc just to look
up a telephone number for example. A star
command will do it all for me.

Loy Uk

I was thinking of stopping my subscription to
BEEBUG, as my Beeb is old and I thought forgotten
now that the Master, Archimedes and RISC have
taken over. If you can continue to support us BBC
users with such good software, then I will most
certainly continue to support your magazine. Please
pass on my thanks to Mr.Hill for his imaginative
and useful program.

Very few of the programs and articles we publish
are specific to the Master series, and BEEBUG will
most certainly continue to support all users with
the best that we can find and commission for the
magazine as long as there is demand for this. B

55

R1SC USER

The Archimedes Support Group

Our Risc User magazine is now in its third volume and is enjoying the largest circulation of any magazine
devoted to the Archimedes. The list of members seeking support from the Risc User group is growing
steadily and as well as private individuals includes schools, colleges, universities and industry and
government establishments.

T

Existing Beebug members, interested in the new range of Acorn micros, may either transfer their
membership to the new magazine or extend their subscription to include both magazines. A joint
subscription will enable you to keep completely up-to-date with all innovations and the latest information
from Acorn and other suppliers on the complete range of BBC micros. RISC User has a massive amount to
offer, particularly at this time while documentation on the Archimedes and RISC OS is still limited.

Here are just some of the topics covered in more recent issues of RISC User:

UNDER THE LID
A major series explaining
the hardware that makes up

the Archimedes.

FLOATING POINT
INTRODUCTION SET
An introduction to using Acorn's
floating point emulator.

INTRODUCING LASER
PRINTERS
Laser printers explained.

RISC USER DESKTOP DIARY
A multi-tasking Desktop diary
facility.

MASTERING THE WIMP
A major series for beginners to
the WIMP programming
environment.

INTO THE ARC
A beginners series.

ARM CODE SINGLE

A comprehensive multi-
tasking application which
offers a multi-page, multi-
file notepad with editing
and printing facilities.

A Desktop utility to convert
basic programs into their text
equivalents and vice versa.

THE ARM 3
RISC PROCESSOR
An in-depth look by the

RISC USER TOOLBOXTI.

L DESKTOP BASIC REEreEn
A MULTI-TASKING B HANDLER An ARM code
NOTE-PAD debugging aid.

A comprehensive
toolbox module

for the
Archimedes.

A DESKTOP HOTKEYS

UTILITY

An application providing
single key shortcuts from the
Desktop.

designer of this exciting
development.

Don't delay - Phone your instructions now on (0727) 40303

As a member of BEEBUG you may extend your subscription to include RISC User for only £8.50
(overseas see below).

SUBSCRIPTION DETAILS
Destination Additional Cost

UK,BFPO &Ch Is £ 8.50

Address:

Rest of Europe and Eire £13.00
.. Middls Eaie £15.00
.. Americas and Africa £17.00

Elsewhere £19.00

I wish to receive both BEEBUG and RISC User. I enclose a cheque for £ oralternatively

I authorise you to debit myACCESS/Visa/Connect account: / ! / i
Expiry Date: / /

Send to: RISC User, 117 Hatfield Road, St Albans, Herts AL1 4JS, or telephone (0727) 40303

Stened: h

HIB,I% HIﬂJSW Hlj’g% HIE,ISW Hw%

A miscellany of hints compiled by Mike
Williams.

DIRECTING PRINT ON THE MASTER

Andrew Rowland

The Master 128 allows you to change the
direction in which characters are printed on the
screen. Normally, text runs from left to right
(the X direction), and when it spills over the
edge of the screen, it moves down to the next
line (the Y direction). However, if you want to
label an axis of a graph with the text running
down the screen, it is not necessary to mess
around printing a character at a time or to
define a small text window: you can set the
computer to print downwards automatically. If
you want to use your word processor for a
language which writes from right to left, this
too can be achieved (on screen, anyway).

All you do is enter VDU 23,16,n| where n is
selected as appropriate from table 1. For
example, VDU 23,16,21 will move the home
position (the place PRINT TAB(0,0); takes the
cursor) to the top right of the screen and the
text is written from right to left. VDU 23,16,8 |
displays text down the screen Chinese-style. Of
course, it will not actually twist each letter -
each one is still displayed vertically. Add 1 to n
if you want scroll protect (like the
*CONFIGURE NoScroll option).

Direction

X X n Home
right down | 0 top left
left down | 2 top right
right up 1 bottom left
left up 6 bottom right
down right | 8| top left
down left 10 top right
up right |12 bottom left
up left 14 bottom right

Table 1. The setting remains in force when you
change mode, but is reset by pressing Break.

ZERO PAGE WORKSPACE

Andrew Benham

Machine code routines often need some zero
page workspace. Contrary to popular belief,
locations &70 to &8F are NOT reserved for the
user. Locations &00 to &8F are allocated to the

Beebug November 1989

current language: Basic allows the user &70 to
& 8F, but other languages may not (e.g. View
uses all locations from &70 to &8F, and can
crash if these are tampered with). If zero page
locations are needed, the original contents
should be restored afterwards (the exceptions
being &A8 to &AF which are allocated as star
command workspace - for both ROMs and
library routines stored on the current filing
system).

PAGING WITHOUT PAGE NUMBERS IN WW+
Jack Fish
Several segment programs are available which
enable multiple-copy printing of documents in
Wordwise Plus. When it is a single page one, it
is often a nuisance to have “Page 1” printed at
the foot. To enable page printing without page
numbers, the following commands are needed:

<green> EP <white>

<green> DF <green> CE <white> <space>
<space> <Return>
To mark the spaces use the default hard space
character ‘|’ (Shift-\ next to the cursor keys).
Finish the document with:

<green> BP
and nothing further at all.

GHOSTING LETTERS

Andrew Rowland

There is a quick way to ‘ghost” out characters in
two colour modes, which can be useful in pull-
down menus to indicate that an item is not
currently available. Simply use
2&D2=&AA:?7&D3=&AA and then print
normally. This causes alternate columns of each
character to be masked out, leaving dotty, but
legible text. To return to normal printing, use
?2&D2=0:?&D3=0. You can also get reverse
video with ?&D3=&FF, all this without
redefining characters and no loss of speed! If
Tube compatibility is required, use OSWORD 6
to write to I/O memory.

DOUBLE BLUR
P.Mudham
A quick way to achieve ‘double height’ text in
mode 1 on a BBC micro is to use the following
line:

vDuU 240,23,0,0,255,0,0,0,0,0,0
This re-programs the 6845 display registers to
produce the double-height (if blurred) effect. (3

57

Workshop - Writing a Compiler (continued from page 51)

has been found, and the function picks this out
and reports the error as a ‘Mistake’.

THE SYNTAX ANALYSER

Having designed and implemented the lexical
analyser, we can turn our attention to the
syntax analyser. As mentioned above, the
purpose of this phase is to check that a
sequence of input tokens forms a valid element
of the language in question, and determine
which element.

As an example, a FOR statement in Basic
(without the optional STEP) has the following
syntax:
FOR <var> = <expr> TO <expr>

The symbols FOR, =, and TO specify literal
tokens which must appear in the input string.
These are called terminals. On the other hand,
<var> and <expr> represent a variable name
and an expression respectively. Exactly what
series of input characters constitutes a variable
name or an expression will be defined
elsewhere in the compiler. These symbols are
called non-terminals. The syntax analyser knows
that for a FOR statement to exist it must be
made up exactly as above. For example, the
FOR must be followed by a variable name
which must be followed by an equals sign, and

so on. If the input string doesn’t exactly match
the template, then the input doesn’t represent a
FOR statement and the syntax analyser must
check further to see if it represents another
structure within the language.

That is all there is room for this time. In next
month’s Workshop we will introduce the
concept of Grammars - a very powerful method
for defining exactly the structure of a language,
such as what constitutes a FOR statement or an
expression. We will use this information to
build a working program.

FINDING OUT MORE

There is no way that a short series of articles
can explain the theory of compiler writing in
any depth. If you want to know more, then the
standard text on compilers is a book called
Compilers - Principles, Techniques and Tools, by
Aho, Sethi and Ullman (Addison Wesley
£19.95). This is the second edition of a book
colloquially known as the dragon book
because of its cover illustration. The book is
fairly heavy going, but doesn’t assume any
prior knowledge of the subject, although an
understanding of C is helpful in order to
follow the examples. B

First Course - Using Operating System Routines (continued from page 36)

USR | XX | XX] XX | XX |
A 00 00 00 FF
X 00 00 FF 00
Y 00 FF 00 00
P FF 00 00 00

Figure 1. Masks for extracting bytes from
value returned by USR.

For reference, the contents of the four registers
can be extracted as follows:

A%=USR (address) AND &FF

X%=(USR (address) AND &FF00) DIV &100

Y%= (USR (address) AND &FF0000 DIV &10000
P%=(USR (address) AND &FF000000 DIV &1000000

(L

58

where address is the address of the routine being
called. If you still feel somewhat unsure about
this process, then just treat the lines above as a
set of formulae which will give the right result
when needed.

That’s all I have space for this month. I suggest
you peruse further information on OSBYTE and
other machine code calls given in your manual,
and experiment to see what else you can
achieve. Next month I will investigate more of
the OS routines available to the Basic
programmer.

The idea for this First Course article came from
a BEEBUG reader. If you have any topics which
you would like to see covered in this series then
please write in and let me know. B

Beebug November 1989

Personal Ads

BEEBUG members may advertise unwanted computer hardware and software through personal ads (including
'‘wants') in BEEBUG. These are completely free of charge but please keep your ad as short as possible. Although
we will try to include all ads received, we reserve the right to edit or reject any if necessary. Any ads which cannot
be accommodated in one issue will be held over to the next, so please advise us if you do not wish us to do this. We
will accept adverts for software, but prospective purchasers should ensure that they always receive original
copies including documentation to avoid any abuse of this facility.

We also accept members' Business Ads at the rate of 30p per word (inclusive of VAT) and these will be featured
separately. Please send us all ads (personal and business) to MEMBERS' ADS, BEEBUG, 117 Hatfield Road,
St. Albans, Herts AL1 4JS. The normal copy date for receipt of all ads will be the 15th of each month.

Delta/Card Index ROM £30, Delta
Reference Guide £8, Delta Gamma
ROM £20, Delta Mailshot £8, Delta
Reporter £8, Delta Inter Link £8, (all
with manuals) Edword Superpack
£20, ‘Double View” BBC/B 2x ROM
£18, Mini Office II 80T + Dabs mini
driver + Dabs Guide £15, Multi Font
NLQ £8. All prices include P&P. Tel.
01-399 2865.

BBC B 1.2 issue 7 with 40/80T DS
Cumana drive, GXR ROM, BBC
Basic editor ROM, Solidisk 32
sideways/shadow board,
Dumpout3 ROM, Wordwise ROM,
50+ discs and box, books, mags,
Mini Office II ete. £300. Tel. (0602)
215126.

BBC Master 128 and dual 800k
40/80T DD in plinth £500. Acorn
teletext adaptor with ATS, free with
computer and disc drives.
Microvitec 1541 hi/res colour
monitor, all leads £200. Manuals;
Reference guides I & II, The New
Advanced User Guide, View, View a
Dabhand Guide, also magazines
(BEEBUG, Micro User, Acorn User).
Software; Elite, Barbarian, Strykers
Run, Ingrid’s Back, Modem Master,
Dumpmaster, Commstar 11, Watford
Pro Printer Driver. All boxed and in
excellent condition. Tel. 01- 992 0087
after 6pm.

Printwise, Spellcheck III, Wordease,
Discmaster, Quickcale, Forth
Language (cassette), Printmaster
(Epson), Toolkit, Tape to Disc ROM,
few 2764 EpROMs (new), Goulds
switched mode power supply,
manuals with software. Tel. (0254)
706127 after 11am.

BBC issue 7 with 1770 DFS/ADFS +
view £295, 80T DS disc drive + PSU
(400k) £90, Aries B32 Shadow RAM
board £55, Aries B12 + Adaptor +
RAM (6264) £28, Acorn Z80 2nd
processor + manuals £150, Acorn
cassette recorder £12, Star SG10

Beebug November 1989

Printer + Star Printmaster ROM
£160. Tel. (0403) 784976.

Archimedes 310 base system + RISC
OS, only 9 months old £650. Also
Epson RX80FT+ printer £110 o.n.o.
Tel. (0452) 500528.

BBC+ computer with Aries B32 and
B12, OS 1.2, Wordwise +, Spellcheck
11, Sciways, Wysiwyg +, Artist,
Toolkit, Graphics, Printmaster,
Commstar, Zromm, View and
Viewsheet (all ROMs). Paintbox II,
3D Graphics, Disc User, Betabase (all
discs). Printer Taxan/Kaga KP-810
(2 spare ribbons), Digimouse,
Demon modem, Microvitec Cub
colour monitor 1431, two Cumana
disc drives with PSU, Voltmace
joysticks (dual), three storey
computer desk, games on tapes and
discs, Books, magazines, BEEBUG
back issues and all manuals for
software. More than £2000 of
equipment in very good condition,
will accept £600 o.n.o. Tel. 061-794
2456.

WANTED: Bolt-on tractor feed for
Epson FX80, any reasonable price
paid. Tel. (0494) 447088.

BBC model B software, many games
(on tape) mostly £2 or less each. Tel.
(0945) 85 565 after 6pm.

BBC Master 128 + 512 co-processor.
40/80 T twin disc drive (mains
powered) Zenith hi/res mono
monitor + plinth. ISO Pascal ROM +
ROM pack + BBC and PC software
£650. Tel. (0252) 621930.

Unwanted/duplicate gifts; 1st
Word+ for Archimedes £50, AMX
Paint Pot for BBC £5, both unused
complete, in original packing. Tel.
(0742) 670866.

Epson FX80 printer, boxed with
manual, plus BBC software and
documentation £225. Tel. 01-444 0521.

AMX StopPress (DTP) boxed, brand
new (without mouse) £22. Tel. (0223)
321128.

Hewlett Packard Deskjet (laser
quality) printer, extra font module
and 4 new ink cartridges
(compatible with BBC, Archimedes
or PC reviewed BEEBUG 7.3) £475.
Pace Linnet modem £85, MS-DOS
sotware on 3.5” disc all suitable for
Archimedes running PC emulation,
Sage Retrieve Database £60, Ashton
Tate Byline Desk Top Publisher £75,
Smartcom III comms package £65,
New Advanced User Guide for BBC
£10, all as new and in makers boxes
and include insured delivery
anywhere in UK. Tel. (0536) 20 00 94.

Master 128 immaculate condition
with assorted software £300 o.n.o.
Tel. 041-638 4328 after 4.30pm.

WANTED: “Red Arrows” and
“Replicab” on 40T disc for BBC
master. Tel. (0673) 60892.

Epson MX80 F/T II/III printer.
Defective paper-feed, otherwise ok.
£50 o.n.0. Tel. 01-866 2030.

Interword V1.02 £27, Morley
Teletext adaptor complete with
manuals ROMs and seperate PSU
£67, Acorn 65C102 Turbo second
processor complete with Advanced
Basic by Tubelink £82, (or exchange
for 512 board) Acorn Z80 second
processor complete and as new £82
(or exchange for 512 board),
Advanced Disc User Guide £6. Tel.
051-647 5367.

80186 board with Watford co-
processor adapter and Dabs Press
book/disc £130, BEEBUG mags vols
1-7 complete with binders £40,
Master ROM (BEEBUG) £16, Morley
Programmer plus 6 x 27128 epROMs
and utility disc £20, Electron, Plus 1,
Plus 3, Philips green screen monitor,
View, Viewsheet £200. Tel. (0236)
723615.

59

Solidisk

and ADFS ROMs
supplied also £15 o.n.o.
Tel. 091-581 9989 eves.

BBC Master 128, Cumana
CS 400S 80T DS DD,
Archimedes RGB colour
monitor, Panasonic KX-
P1081 printer, all
purchased from BEEBUG
and less than 1 year old,
includes manuals and
leads £700 o.n.o. Tel.
(0202) 518361.

Epson RX80 F/T+ printer

WD1770/8271 disc
interface for BBC B (8271 not
supplied) for use with beebs already
fitted with 8271 DFS Solidisk DFS

with disc £12, REVS (4 track) £7,
Vols 1-7 BEEBUG with index in
binders - offers? prefer collect,
carriage extra. Tel. (0689) 57245.

INVOICING & ACCOUNTS

New: V3 of The Account Book now available.
Comprehensive small business accounts to trial
balance. VAT approved. Absolutely the easiest

program to use, with neat final books and hundreds of
reports. No entry limits. "The Account Book gets first
prize for both price and performance"- comparison in
Micro User-July "89. A true user -friendly program. It
succeeds admirably "-Beebug -Oct '88. And that was

Master 512, DOS+ V2.1, 5.25” & 3.5”
double sided 80T disc drives linked
as a dual drive, Master reference
manuals part 1&2, Dabs Press M512

Shareware collection,
MOS+, Conversion Kit,
Sidewriter, various
other books, some with
programs disc, disc
box, 5.25” discs, £570.
BEEBUG @ -
Standalone Generator
£30, Panasonic KXP-
1081 printer incl lead
£85. Tel. (0924) 826483
after 5pm.

Master 512 with DOS+
V2.1 5.25” & 3.5” drives

in good condition £100.
Tel. (0420) 83555.

Video Digitiser
(Watford) for BBC B or
Master with manual and
ROM, BNC lead to scart
plug included £75. Tel.
031 339 6979.

Technomatic double
sided dual DD 40/80T

Version 2, V3 has many new features. £27.95.

New: V2 The Invoice Program. The magazines havn't
had a chance to review this yet, but our customers
have, and they love it. Database, Invoices (unpaid and
paid), Statements (individual and automatic), Stock
presets, Debtor lists, Linking with The Account Book

and loads more £27.95.

l Special Offer: £49.95 if purchased together, |

double console, Acorn
med/high res colour
monitor, Shareware
collection, GEM etc,
Morley AA board,
BEEBUG Master ROM
Smart cartridge, AMX
mouse with StopPress
& Extra Extra DTP,
Revs 4 track, Aviator,
Typing Tutor etc. £725.

switchable. The unit is in
very good condition £135.
Tel. 02407 5670.

WANTED: Sinclair
Microvision, preferably
working, plus any data.
Tel. (0865) 59066. |

Master 128 Morley AA
board, Reference
manuals, 8 cartridges,
Viewstore, Viewspell,
Teletext adaptor, mouse,
joystick plus other books and
software total value £1100 will
accept £600 or will split. Tel. (04243)
4500.

512 co-processor fitted in Universal
2nd Proc unit, DOS V2.1, mouse,
User Guide, Dabs ‘Master 512 User
Guide’ & disc, Dabs Shareware
collection 1&2 (11 discs) £150. Acorn
Teletext adaptor, User Guide, ATS
ROM, collection of Telesoftware
Teletext integrated software
including Improved ATS ROM
image £60 or £200 the lot. P&P extra.
Tel. (0209) 843294 (0800-1700 hrs),
(0209) 842870 eves/weekends.

Master 512 excellent condition ¢/w
Dabs Shareware collection £400,
Viewstore/Cartridge£30,
Toolkit/Cartridge £10, Master ref
manuals 1&2 £15, Dabs View Guide

60

Apricote Studios
2 Purls Bridge Farm
Manea
Cambs
PE15 OND

Tel: 035 478 432 for information, help or to order.

Archimedes 310 entry with Acorn
backplane, RISC OS and PR manuals
£700, half priced software, Zarch,
Pacmania, Corruption, Terramex
and Jansons Drawing board, BBC B+
128 plus printer/cassette leads,
Delta 3B twin joysticks and various
tapes including Elite £300, Acorn
6502 second processor £70, Opus
40/80T double sided DD £70, Pace
Nightingale modem + Commstar
ROM £60, ROMs; Acorn ADFS £15,
Viewstore £25, B+ GXR £10, BCPL
package £20, disc software, Elite £8,
Revs £8, Acheton £8, Red Arrows £5,
Castle Quest £5, Clares Betabase £5,
or £550 for the lot. Technomat 10
MEG hard disc, includes power
supply plugs in IMHz bus £300, all
0.n.0. and in excellent condition
with original packaging and
manuals. Tel. 061-483 2983 eves.

Tel. (0980) 610303
eves/ weekends.

Archimedes 310 colour
system plus 1st Word+

[e £800, Logistix
e spreadsheet/database

£55 and Artisan Art 2
discs £30, Logotron
Logo £35, NEC P2200
24pin printer £195
o.n.o. Tel. 01-341 2187.

BBC B OS 1.2 Watford DFS, Watford
twin DS 40T D/D Watford
solderless ROM board incl. 2 off
6264 RAM, Aries B20 Shadow RAM,
Philips 12” green monitor £275 will
split. Tel. 01- 524 4239.

Viglen dual D/S 400k 40T D/D £45
o.n.0. Viewstore database in original
box £25 0.n.o. Tel. 01-642 6270.

ACP “Advanced Disc Toolkit” and
“Advanced ROM Manager” &
Watford “ROMspell”, Three original
ROMs and manuals £25 or £10 each,
also BBC Teletext adaptor with
ATROM, as new £55. Tel. (0943)
607425.

BBC B issue 7 operating system 1.2
without DFS but with disc and tape
software £150 o.n.o. Tel. (0734)
883872.

Beebug November 1989

WANTED: View ROM for BBC B
and Printwise disc 40/80T. Tel.
(0329) 280507.

Books, 40 for BBC up to BBC 128+
all mint. Send SAE for list to; Mr C
Harvey, April Cottage, Callow Hill,
Rock, Worcs, DY14 9XL.

Interbase still boxed £30 o.n.o. or
swap for Interword or anything
useful. Tel. (035 87) 229.

Master Compact, colour system,
plus A+B Computing 100 programs.
Mini Office II, Typing Tutor, Micro
Maths plus joystick £475 o0.n.0o. AMX
Super Art Mk III, mouse for Master,
128 boxed unused £40, Philips TP200
anti glare green screen monitor
boxed unused £70. Tel. 01-805 8791
after 6pm.

BBC +128K 1770 DFS2 23, ATPL
board, Autobeebaid ROM manager,
Viewstore, Wordwise+, TDROM,
approx thirty discs (ROMs, games,
utilities etc),mouse, joysticks,
Cumana 40/80T drive, many
manuals, Dabhand Guides, 75+
magazines £300 o.n.o. Tel. (0424)
445096 after 6pm.

BBC B issue 3, Basic 2, Watford
DFS, ATPL board, Watford 32k
shadow RAM, Wordwise plus,
Spellmaster, Spellcheck, Help,
Printmaster, Sleuth, Microware 80T
DS DD 800k disc drive, Microvietc
med res colour monitor 14” metal
case, Star DP510 printer, plinth,
swivel base, printer stand, covers.
Checked, in first class working order
with all manuals. Upgrading.
Bargain at £250 the lot. Tel. (0772)
717017.

Digimouse, Paintbox, Illustrator +
64k printer buffer ROM £45,
Knitware Designer £5, Master 128
version of Mini Office II £10. Not a
penny more Adventure including
novel, Indoor Sports, Play it again
Sam II, Last Ninja; games discs £20.
Tel. (0326) 562540 after 6pm.

BBC Master 128 £300, Cumana
40/80T DS DD drive £75, Morley
Teletext adaptor boxed as new
(unused) £75, Viewstore ROM and
manual boxed as new £15, Stop
Press £10, Elite, XOR, World War 1,
Star Wars, Spycat, Spitfire 40, Revs
& Revs 4 Tracks, Grand Prix
construction set, Superior collection
vol 2, Cheat it again Joe 1 £4 each all
10 for £35, Advanced User Guide,
Advanced Disc User Guide, BBC

Beebug November 1989

Micro book - BASIC, Sound, +
Graphics, Advanced programming
techniques for the BBC £4 each,
entire system £500. Tel. 01-228 0930.

Master 512 Second Processor (with
all discs + manual + Nid Valley
mouse + software tape sensible
offers invited, AMX Super Art
Master disc version (no mouse) £15.
Vine Micros Master REPLAY board
£10. Advanced disc Investigator
BBC/Master version £6. Exmon II
Master version £12. BEEBUG “C”
ROMs + disc + book £25. BEEBUG
tapes complete vols. 4 to 7 offers??
Also various books, please telephone
for more details. Tel. 01-494 1365
office hours only.

WANTED: Watford MKII EPROM
Programmer or TRS80 EPROM
programmer and or T004 cassette
software as published in “Everyday
Electronics” June 1983. Tel. (0526)
21539,

Acorn User issues 1-61, 23 binders +
A&B Computing 1984/5. Offers??
Tel. 01-263 0510.

Archimedes 310 with colour
monitor hardly used £550 o.n.0. Also
Pipedream software, cost £99 used
only twice will sell at £50. Tel. (0378)
72570 after 6.30pm,-or 01-553 8835
day.

Printer Ribbons suit Epson FT & RX
80 also Panasonic KX-P3131.
Ribbons are new, £2.50 each, can
post. Tel. (0420) 83555.

BBC issue 7 with Acorn DFS, ATPL
ROM board and sideways RAM,
View, Viewstore, Viewsheet, Toolkit,
Hyperdriver, Spellcheck and many
other ROMs, Cumana 40/80 double
drive with PSU, Solidisk eprom
programmer, Megamouse, Voltmace
joystick, many discs and books.
Would consider splitting. Price
includes carriage £580. Tel. (0403)
55400.

Doubleview £25. WANTED: (for
Master): ROM board 3 + Replay add
on + Master to B conversion. Tel. 01-
698 3772.

Master 512 in Viglen case and
detached keyboard, with Z80 co-pro.
Separate 40/80 twin disc plinth with
own PSU. Mono monitor, joysticks,
leads. Full set manuals, books,
original software, complete set
BEEBUG magazines, extras, all in
excellent condition £650 o.n.o.
(owner upgrading). Tel. 01-997 1218.

Electron plus 1, 40/80 disc drive
(BBC compatible), View, Lisp, Tape
to disc ROM, manuals, games,
joystick all £225 Tel. (0788) 73606
after 4:30pm.

BBC Master 128 £350, 512 board
with DOS+ 2.1 £100, Master
reference books 1&2 £5 each, 2
Master ROM cartridges £5 each,
Proword wordproc ROM disc and
manual £5, Twin 5.25” DS 40/80 disc
drive with PSU £100, 1 x 5.25” 80T
DD Beeb powered £40, 1 x 3.5” DD
caged bare drive can replace 5.25”
80T or for use with a PC as 720K £70,
Philips colour monitor CM8833 as
new £180, mono monitor 9” green
screen comp. video £18, 12”7 green
screen monitor composite video,
new tube £10, 7” white screen well
worn but works £8, all suitable for
Beeb. ZX81 and two 16k RAM packs
any offer?? ZX printer and seven
rolls of paper £10, Microdrive £10,
Interface £10, 40 Microdrive
cartridges 75p each, Tasword 2
wordprocessor £3. Tel. (0525)
210551.

Master reference manauals 1&2 £12,
Acorn 6502 second processor (with
original packing Hi-Basic & DNFS
ROMs and user guide) £65, Tube
link Advanced Basic ROM with
supporting disc and manual £15,
Acorn GXR ROM (BBC B) complete
with manual £8, Wordwise plus
complete with manuals £20,
Masterfile (Master ADFS version) £8,
BEEBUG Master ROM (boxed with
manuals £10, BEEBUG Toolkit ROM
£3, Care Quad cartridge £8, Care
Dual cartridge £4. Tel. (0384) 373928.

WANTED: Advanced Disc User
Guide. Tel. (04574) 5263.

Christian Computer Games and
Aids to Bible Study from The
Evangel Trust (a charity registered
in England). Bible based games for
all ages and Bible study packages
using the text of AV, TEV and NIV
together with databanks and
factsheets on background material.
Good range of BBC material for DFS
or ADFS. Send SAE for brochures
(A5 size) to The Evangel Trust, PO
Box 224, Kingston Upon Thames,
KT1 2NX.

Watford Solderless 12 ROM-RAM
board RB1201 with battery back up.
1988, unused, with instructions. List
£39. Offered at £20. Tel. (0530) 32619.

61

eries and orders for pack issues 1o the
s sterling drawn (for

renewals, membership QU
ees, including overseas, should be in pou!
subscrioe 10 RISC User a2 spec!

£48.00

All overseas items are sent
airmail. will accept
official UK orders for
subscriptions

Des\ina\'\on

UK, BFPO + chl
Europe + Eire
Eisewhere

t.Albans, Herts ALA 4JS
3. FAX: (0727) 60263

oad, S Al

727) 40303, FA
r am-5pmM
ne for connecV Acce

ss/Visa orders and subscr'\pl'\ons)

CONTRIBUTING 70 BEEBUG PROGRAMS AND

ARTICLES
We are aways e
rograms for publica ion i
Production Ass! used are‘paid for at up 10
Advertising: arah Shri us ‘wammg of an
Managing Editor: Sheridan Williams write. A eaflet 'NO
receipt of an A5 r :
lication may be Plea it your contributions on disc of
[ing "View",

Al rights reserved. No part of this pud
reproduced without priof written perm'\ssion of the Publisher.
The Publisher cannot acce! responsioiity whatsoever

for errors in articles, pro rams, 0 dvertisements pub\'\shed. n de

4 on the pages of this '\ouma\ are ase include 2 backup ¢
represent those | communication,
membership number.

The opinions expresse
and do not necessarlly

those of the author
BEEBUG Limited.

of the publisher,
Printed P

us item for Christmas!
hich converts

a progra
or use w\h Word -processors

pUBL
\e\e\ex\ files into p\a'\n
and DT
TOR - a utiity which allows
Basic programs-

- youto cre
- the complete

EBUG GRAPHPL L OTTER (Part 2
aphs of relations, tamilies of curves,
using polar o

programs plotting g p
raphs detined par metrically of by
ordinates.
pisc FILE \DENTIFIE R a useful u\\h\y for \denmymg
and analysing the cont (your DFSd
MIATEUR RCH (Part 1t 2) - explore the world of
the aether and Vv emoe with this momhs program-
D REPORT- allthe progr 1 the magazin
pB k error messages

" = L

DUMP UTILITY - oo nverts @
Pos\Scnp\ file for output on

US CHARA R- a utility
matics sign for display of

TING A PLU
which creates this useful mathe
. a program

pnn\mg
; ECL LOSE#0 BUG N MASTER DFS

wh\ch overcomes th\s well known pug inthe Master.
BEEBUG Bing sion of this popular
game.
MAGSCAN- pibliography for this isS!

BE
sseue), £4.75 (5" & 3. 5“ d\sc)+ op p&P
35" dis! c sil ,tapes s since VO 1.1 N \0) available at

- Al this for r £3.50 (¢
Back\ssues(5.25" dis cs\nceVolsN

o-an glectronic ver

issue (Vol8 No.6)-
EBUG Gra ph PI o
or each 8 additional \tem)
\ces

the same Pr

£33.00
of VAT and postag® as 8

Cassette subsC p ns can

per issue of t the s

FREE ON-SITE MAINTENANCE = ~_ 3

All new Archimedes and A3000 computers purchased through o] i) Bt L
Beebug include one years On-Site Maintenance. / A e
Beebug is the only Acorn dealer offering this service. o e

basnl

SEE BELOW FOR SPECIAL OFFERS
ACORN A3000 SERIES
0255G A3000 Entry System 649.00 S

0256G A3000 Colour System 838.00 E O
ARCHIMEDES 300 SERIES EF
0193G 310 Entry System 899.00 E
0195G 310 Colour System 108800 . g
ARCHIMEDES 400 SERIES P S
0260G 410/1 Entry System 1199.00 .
0261G 410/1 Colour system 1388.00 C B
0262G 420/1 Entry System 1699.00

0264G 420/1 Colour System 1888.00 | E
0275G 440/1 Entry System 2499.00 AL
0276G 440/1 Colour System 2688.00 L \?V

These prices exclude VAT
SPECIAL OFFER ON COLOUR SYSTEMS

All colour systems are now supplied with the
superior Phillips CM8833 monitor featuring
Stereo sound and video input. If you prefer
the Acorn monitor please specify when
ordering.

SPECIAL DISCOUNTS FOR TEACHERS

We are currently able to offer significant discounts to
teachers and Acorn Shareholders on computers.
Please phone for further information.

RISC USER & BEEBUG MEMBERS BUYING AN ARCHIMEDES SYSTEM WILL
RECEIVE FREE:

A3000 -On Site Maintenance, and items to the value of £46 (entry system) or £56 (colour system).
Members using the 0% finance offer receive On-Site Maintenance only.

310 - PC Emulator, Printer Lead, Ten 3.5” discs & Lockable disc box.

410/1 - On Site Maintenance, and items to the value of £105 (Entry system) or £120 (Colour system).
Members using the 0% finance offer receive free On-Site Maintenance only.

420/1- On Site Maintenance, and items to the value of £166 (Entry system) or £177 (Colour system).
Members using the 0% finance offer receive On-Site Maintenance and 10 x 3.5" discs.

440/1 - On Site Maintenance and items to the value of £259 (Entry system) or £269 (Colour system).
Members using 0% finance receive free On Site Maintenance, 10 discs in lockable Box & Interdictor

117 Hatfield Road, St Albans Herts AL1 4JS Tel: (0727) 40303 Fax: (0727) 60263

