

23

FEATURES Games Review 3

:) : Chaos
dingto an Arch\medes 10 Learning at\aou; Review 51
Kpg‘v?ord Hightighte 3 Cde Analys AR IT EMS
) 0s UL
Order Out _Ot i{gs Within View 18 REG ‘ 4
goft Function o (Pat 2 20 ggitor's Jotings 5
'ChotomOUS w m News 54
‘\)J\ g the ROM Fiing ST o4 Rscuser
Part2) Pleasure 28 points Arising
ofics for Pleas 92 Postoad
Stgt\agg Characters 12810 255 est of BEEBUG
il Course - \mproving g4 Hinsand Tips
First U ms (Part 2) personal AdS "
| Rasic Progrd 37 gubscriptions 8 Back lssu
- Edit Part 3 42 jaqezine DisclCaset® z
| 5i2fonum HINT S & TIP
| o Compler (Part4) f;s cony Catelogue i WOrB¥e
Writing ; ROM (Par\ 2) Hard OP‘I e Files 0N & Master
Master Display ™ 54 proecing VIEW ' - ote
BEERUG Education Convering @ Niodl®

Quick Circle

PROGRAM INFORMATION

All listings published in BEEBUG magazine are difference between the digit one and a lower case |
produced directly from working programs. They are (L). Also note that the vertical bar character (Shift \)
formatted using LISTO 1 and WIDTH 40. The space is reproduced in listings as |.

following the line number is to aid readability only,

and may be omitted when the program is typed in. All programs in BEEBUG magazine will run on any
However, the rest of each line should be entered BBC micro with Basic I or later, unless otherwise
exactly as printed, and checked carefully. When indicated. Members with Basic I are referred to the
entering a listing, pay special attention to the article on page 44 of BEEBUG Vol.7 No.2 (reprints

1488 DEF P‘\I\C\is‘.'.l‘.&\.ﬂ\li
1:59‘!% [TFOR 128 1 n'.?“\\“ll(x*
1518 DEF F\\g!kcm(vs) '.‘\E\‘EM:VEH JUNTIL TNSTR
,CHRSG)78:
1515 ¢
1528 DEF Fhenter(h ¥
1538 LOCAL 16119208
1939 c$=t\\“513*t“ﬁ'ﬂ *WRS?'(‘.\\‘SHS
1548 sFed L
{COLOURL2S JPRINTTRBLX A
wsn-.mmm(x L0108
i getchalys)
=127 KD LEN0S?® THEN 0¥

\,nS.v$,vS)

JPRINTTRBLX)

gelect ak
selection \
F A
= THEN

7t
Display Bl
frile "Readiie’ -l
1 \
Clear fherete |
gptions
New directory
i (880
= THEN 189
1648 $FR4
1658 COLOURL:
1668 208
1665 ¢

COLOURLZE (PRINTTRBLX

Characters 128 to 191 are nowi-

continue:
108223

statistics for Pleasure

? "ws;svmm
=\.Eﬂ$(n5.\.€\\o$-h :!R‘l\\“hB(x'LEIuS'\,
5127 AN LENoSU THEM u$=0$#t“k$ﬁ'.\’m“€\\\\im
N SFC(\)‘.‘&BU,W
= S,H\“l"hﬁ(x.\n;os;
=1 ELSE TF L

AEps)" "

L {COLOURL28
1,441 snenus(l) (NERT 1;ENDPROC

(vs.m\\mw R v

Lo gf INSTRCES

) {CHRSL

489 THEN f1a02-100
bi ";us;smm—\ms)

CHRS(130) CHRSLIL # t
CHRS(13E CHRS(13D) =]

CHRSLL3D) *

1

Printing Characters 128 10 255

Laitors Jortings

THE ARGHMEDES

You will find that this issue of BEEBUG contains the
first of two articles devoted to the problems, questions
and decisions facing any BBC micro owner who is
contemplating making the change to an Archimedes.
This is in direct response to letters which we have
received from readers, some of which have appeared in
our Postbag pages. We feel that this is an important
subject which is likely to be of interest to many owners
of BBC micros, and thus quite a legitimate topic for
BEEBUG.

It does not mean that we are in any way intending to
dilute the future content of BEEBUG by catering for the
Archimedes as well. Indeed, as we have said previously,
the strength of BEEBUG must surely lie in the weight of
support which it continues to provide for BBC micro
owners, in sad contrast to many other magazines whose
interest seems increasingly to focus more and more on
the Archimedes. RISC User, BEEBUG's sister magazine,
concentrates on that range. We hope, too, that in
forthcoming issues we shall be able to provide much of
interest in line with the results of the reader survey
which we carried out last year.

EDUCATIONAL SUPPORT

One area where BBC micros continue to be used in
large numbers is, of course, in education, and further
evidence of that was forthcoming at the BETT exhibition
in January where many educational computing
companies had much to show that was relevant to the
BBC micro.

Over the last twelve months, we have also tried to help
teachers and others by publishing a variety of programs
which we hope will have found a good role both at school
and in the home. Programs like Centres of Gravity, AC
Circuits, Big Text Displays, Foreign Language Tester,
Mathematical Transformations and others. And many of
these programs have applications outside education as
well.

4

All of this is in addition to our bi-monthly BEEBUG
Education which takes a broader look at the educational
scene as it relates to BBC micros.

We shall be continuing this theme through 1990, witness
recent programs on Dichotomous Keys and Statistics, and
would welcome any further contributions for this area of
the magazine.

OPEN DAYB VERSUE SHOWS

BEEBUG did not attend the BETT show referred to
above. In the past we have attended many shows,
particularly those which have been Acorn-specific.
However, both last year and we believe this year, only a
single Acorn-specific show, the BBC Acorn User Show,
has been scheduled. Partly as a result, we have held two
very successful open days on our own premises. We are
now considering what our future policy towards shows
should be, particularly with regard to the kind of
presence which we should have (selling a wide range of
computer products, demonstrating just our own
software, etc.). We would be interested to hear the views
of BEEBUG members on this issue.

MEMBERSHP (ARDS

Some members of BEEBUG have queried whether or not
they have been sent the correct membership card. In
fact, we use the same membership card for both
BEEBUG and RISC User members. Confusion also arises
because BEEBUG is both the name of this magazine,
and the name of the organisation which publishes both
magazines, and provides all membership services
including retail, technical support, and our own software
range. Membership cards show both the names BEEBUG
and RISC User at the top, together with your name,
membership number and expiry date (the last month of
your current subscription). It is advisable to keep your
card handy as it is essential to quote your membership
number if asked when you deal with BEEBUG. Note that
joint BEEBUG/RISC User members receive just one
card.

Beebug March 1990

MORE SHOWS FOR ACORN FANS

Two more shows for users of Acorn computers have come
to our attention. The First Alternative European
Microcomputer Show will take place at Seeheim-Jugenheim
near Darmstadt in West Germany on 28th April. The
organisers promise that this will cater for Sinclair, Acorn,
Cambridge Computers, Amstrad/Schneider and other
“alternative” computer systems. For more information
contact Stephan Michels or Dirk Schéfer at Kasinostrasse 25,
D-6100 Darmstadt, West Germany.

Closer to home Acorn has announced the fifth annual
computer networking conference to be held at the
University of Keele from 9th to 11th July. The range of
Acorn Networks ‘90, as the event is to be called, will be
wider than that of previous events, and will address
broader-based solutions for curriculum and administration
and non-schools related applications, in addition to the
usual focus on education, healthcare, special needs,
business and government. For more information contact
Sarah Scott at Acorn Computers Ltd, Fulbourn Road,
Cherry Hinton, Cambridge, or tel. (0223) 245200.

PANDERING TO MUSICAL TASTES

After just 6 months in operation, the number of Panda
music discs for Hybrid Technology’s Music 5000 system
has now reached a total of 13. The latest two discs,
released in the new year, comprise Morments in Time by The
Noige, whose work is well known from bulletin boards
and is very much in the genre of Jean Michel Jarre. The
13th disc consists of the complete Rendevez suite, made
famous at the Jean Michel Jarre concert in Houston and
shown worldwide on television. Tracks from two other
Jarre pieces, Oxygene and Equinox are also included. All
Panda discs cost £5.50 inc. VAT, p&p from Panda Discs,
Four Seasons, Tinkers Lane, Brewood, Stafford ST19 9DE.

IMPROVING YOUR MUSICAL OUTPUT

Hybrid Technology, the doyen of the BBC micro music
world, has released a further product in the form of the
Music 5000 Synthesizer Universal at £99. This adds high
quality stereo sound to any standard music software
package that might otherwise rely entirely on the built-in
sound system. It provides 16 synthesized instruments, with
the ability to play up to 8 of these at once (including drums).

Beebug March 1990

News News News News News News

Excellent reproductions of natural instruments and 100%
perfect tuning greatly improve the appeal and accuracy of
any musical software, particularly appropriate in an
educational environment. Fine tuning and transposition
allow perfect harmony with classroom instruments, and
stereo, ensemble and reverberation effects add a superb
final touch for record-quality accompaniments to live
performances. For more information contact Hybrid
Technology, 273 The Science Park, Cambridge CB4 4WE,
tel. (0223) 420360.

GAMES FOR THE BBC MICRO

Ever supportive of the BBC micro and its games markef,
software house Superior Software has announced two more
releases, a single game The Last Nirja 2, and its latest compilation
Play it Again Sam 12. Superior’s policy of packaging collections
of previously released games looks like catching up
with itself in the near future. Play It Again Sam 12 contains
The Last Ninja, claimed as the number one hit game of 1989,
and the forerunner of The Last Ninja 2, the other release.

The compilation disc also contains By Fair Means or Foul, a
boxing simulation, Skirmish a jousting game, and Blagger a
version of the classic Alligata game. Both releases are
available on tape, 5.25" and 3.5" disc (£9.95, £11.95, and
£14.95 respectively) covering the model B, Master 128,
Master Compact and Electron (cassette only), and are
reviewed in more detail elsewhere in this issue. Superior
Software is at P.O.Box 6, Brigg, South Humberside DN20 9NH,
tel. (0652) 57807.

ESSENTIAL SOFTWARE FOR 512 USERS

Essential Software, in which Robin Burton author of our
512 Forum has an interest, has now released further utility
discs for the 512. These comprise a general purpose mouse
driver at £12.95, a screen print package which operates in
40 column mode to give shaded screen dumps of four
colour screens, or in 40 or 80 column mode to give a ‘full
speed’ print of mainly text screens, costing £14.95, and a
virtual screen system which prevents star commands from
corrupting the DOS screen (£14.95).

All prices include VAT, p&p. All items, and further
information on these and forthcoming products, are
available from Essential Software, P.O.Box 5, Groby,
Leicestershire LE6 0ZB. B

5

Upgrading to an Archimedes

Mike Williams investigates the advantages and disadvantages of this major step
in this two-part article.

Several BEEBUG readers have written in
recently seeking advice which might help them
decide whether upgrading a BBC model B or
Master 128 to an Archimedes is worthwhile.
Many users of such machines have often made
a substantial investment in their system, and
are loath to throw that away. However, an
Archimedes in any form,

models of the Archimedes, but owners of the
BBC micro and Master series contemplating
upgrading may well wish to consider one of the
earlier A310 models (it is not worth considering
an A305 machine with just 0.5Mbytes of
memory unless it has been upgraded to IMbyte
in which case it is effectively an A310).

and that includes the
A3000, is such a very
significant advance over
the older systems that the

Standard Memory

Maximum Acorn Memory

cost may well be justified.

Maximum Other Memory
In th@s article we will l?e Floppy Disc
looking at what is

Hard Disc

involved, and with the
help of two actual case
studies, looking in some
detail at what may be
gained and what is lost.
At the end, though, you
have to make the decision

Serial Interface
Cost ex. monitor

Cost inc. monitor

* A new colour monitor costs £217.35

A310 A3000 A410/1 A420/1 A440/1
1Mbyte 1Mbyte 1Mbyte 2Mbytes 4Mbytes
1Mbyte 2Mbytes 4Mbytes 4Mbytes 4Mbytes
4Mbytes 4Mbytes 4Mbytes 4Mbytes 4Mbytes
800K 800K 800K 800K 800K

Int. Ext. Int. 20Mbytes 50Mbytes
Yes Opt. Yes Yes Yes
£640.00 £746.35 £1378.85 £1953.85 £2873.85
? £963.70 £1596.20 £2171.20 £3091.20

on whether to upgrade
based on your own
priorities. We can help by clarifying possible
areas of concern, and providing as much
information as possible.

We shall start by summarising the main
characteristics of the Archimedes, emphasizing
those points where the Archimedes is
distinctively different. We will then look at the
compatibility between the Archimedes and
older BBC micros, and the problems of
attempting to transfer software. Lastly we will
consider two actual case studies to highlight the
potential advantages and disadvantages.

THE ARCHIMEDES RANGE

Let’s be quite clear about one fact from the
outset. Despite their obvious visual differences
the A3000 and the Archimedes 400/1 range are
all part of the same family, using the same RISC
chip set and using the same operating system
(RISC OS) and other software. In what follows,
my remarks apply equally to all machines
unless any differences are highlighted. The
A3000 and 400/1 series represent the current

6

Table.1 Configuration and price of Archimedes models

The basic configurations of the different models
are shown in table 1 (all prices include VAT).
Although 4Mbytes of memory has been the
maximum memory for any Archimedes until
recently, 8Mbyte upgrades are now beginning
to appear (Watford Electronics). The costs
shown are for a basic system, with or without
colour monitor, without any additions or
upgrades. The price shown for an A310 is that
for a secondhand machine as supplied by
BEEBUG with 3 month’s warranty. New A310s
are also still available at prices from £1102.85.
However, there are certain differences between
the A310 and the 400/1 series which might not
permit the older machine to benefit from all
future upgrades.

The RISC chip set is the heart of any
Archimedes comprising MEMC (memory
controller), VIDC (video controller), IOC
(input/output controller) and the ARM
processor. The A3000 and 400/1 series employ
a newer version of MEMC (version 1A) which
is about 12% faster than that in the 300 series. If

Beebug March 1990

Upgrading to an Archimedes

you are planning to buy a secondhand A310
you may wish to upgrade MEMC (which must
be done by a dealer) at a cost of £75.38.

DISC DRIVES

All models are supplied with a single 3.5”
internal floppy disc drive. The 420/1 and 440/1
also have a hard disc drive already fitted. The
410/1 has a built-in interface making an
internal hard disc an easy upgrade. An internal
hard disc may also be added to an A310, but an
interface must be fitted at the same time, and a
backplane (see under Interfaces for more on
this). Alternatively, you can add a second 3.5”
internal floppy drive to an A310 or A410.

The Archimedes series

Another route for hard disc drives is to fit a so-
called SCSI interface. This permits faster and
much larger capacity drives to be connected
(170Mbytes for example), but these will
normally be external to the Archimedes.
Smaller capacity SCSI drives can also be fitted
internally, except on an A3000 where the size of
the casing means all hard discs must be
connected externally.

MEMORY

Memory is the area which often causes the
greatest concern. A 1IMbyte Archimedes will
allow all current software to run, but in some
cases may quite severely limit what can be
achieved (e.g. the size of document to be
handled by a word processor), and reduces the
opportunity for multi-tasking (the facility to
have several applications in operation at the
same time). However, it all depends very much
on what you want to do, and many owners are
entirely satisfied with a IMbyte machine.

Beebug March 1990

Potential users who are likely to make heavy
demands on their machine should consider
2Mbytes, either from the outset, or as a future
upgrade. Some models can only be enhanced to
4Mbytes of memory by installing non-Acorn
(Watford Electronics, CJIE Micros,
Computerware etc.) memory upgrades. All of
these are better fitted by a dealer, and with
some it is essential. You should also consider
carefully the effect of any such third-party
upgrade on the warranty offered by Acorn.
However, those aspiring to a machine such as a
440/1, but with limited finance, may find that a
secondhand A310 upgraded with SCSI or ST506
hard disc and 4Mbytes of memory may prove a
cheaper option, provided any problems
associated with non-Acorn upgrades can be
accommodated. Alternatively, the 410/1 and
420/1 can both be readily upgraded to near
440/1 specification.

INTERFACES

All Archimedes come with a printer port, an
RGB analogue port for connection to a suitable
monitor, a monochrome video output and a
miniature stereo jack socket. All systems, except
the A3000, also have a serial port fitted as
standard (a 9-pin D-type socket). For the A3000
about £20 buys the two extra chips needed (the
socket itself is fitted as standard).

All other forms of interface are extra and on the
A310 and 400/1 series involve the use of a
backplane (an optional extra on the A310). This
fits vertically across the width of the
Archimedes, and interface cards, or podules as
they are often called, are fitted at the back of the
Archimedes, automatically slotting into the
backplane. Typical interfaces include the I/O
podule which provides a BBC style user port,
analogue port and IMHz bus (there is also an
optional MIDI interface which can be added),
MIDI podule, SCSI interface, and various
podules for scanners and video digitisers. There
is also a ROM podule providing a ROM filing
system, though this feature appears not to be
popular with Archimedes owners.

The position with the A3000 is distinctively
different when it comes to interfacing. In
principle all is the same, but the physical shape
and size of the A3000 means that the same
podules as used with other models in the

7

Upgrading to an Archimedes

Archimedes range will not fit the A3000, at least
not directly. The A3000 offers two alternatives.
There is a built-in mini-podule interface. At
present a user port and MIDI podule
(combined), and SCSI interface are available.
There is also an edge connector at the rear of
the A3000 which offers the possibility of
connecting an interface box in which standard
Archimedes podules could be fitted. At present
only one such box appears
to be available (from
Oak Computers), but
specifically for connecting a

very major part of RISC OS. However daunting
this may sound, or seem, at the outset, even the
most experienced of Beeb users will rapidly
find themselves adapting to the new ways,
because they are the easiest and most efficient
way of controlling the machine.

If you long for the friendly world of your BBC
micro it is still there, but hidden underneath the
Desktop. Quitting the
Desktop can put you into
Basic, the same familiar
BBC Basic but with

SCSI interface. Other
interfaces for the A3000 are
likely to appear in time.

THE ARCHIMEDES
IN OPERATION

Any BBC user faced with
an Archimedes for the first
time is in for something of
a shock. When you switch
on there is no longer the
customary blank screen
with its simple message in
the top left-hand corner.
Instead you are faced with
the much vaunted Desktop.

significant enhancements,
and the world of star
commands. Most things
that you could do on a BBC
micro can still be done in
the same way on the Arc,
but there are so many new
things to learn as well.
Again, the wealth of new
functions and features can
be off-putting initially until
you get more used to them.

MEMORY USAGE
Even the Master 128 has a
maximum of only 128K of

Initially this consists of a
uniformly grey screen with
a bar (called the icon bar)
running across the foot of the screen. To the left
of the icon bar will be icons representing the
disc drives currently installed. To the right are
two other icons, the palette and the task
manager. This is not the place to provide a
detailed description of the Desktop and its
associated functions, but a few additional
words are merited.

Every Archimedes has a mouse as standard,
and this is the device which you rapidly
become accustomed to for controlling many of
the machine’s functions. The Desktop uses
windows and icons (in full colour) to show
what is happening at all times. Click on a drive
icon and a window opens to show icons
representing the files and directories (the
Archimedes uses only the ADFS) on that disc.
Further clicking can reveal menus allowing
copying, deleting, renaming of files, etc.
Clicking on programs causes these to be run.
All of this is controlled by the Wimp manager, a

8

The A3000 system

memory compared to the
1Mbyte or more of the
Archimedes. The contrast is
even greater when you bear in mind that even
on a Master, only 32K of memory exists as
normal RAM, and even part of that is used by
the operating system as work space; another
32K exists as shadow RAM and private RAM,
and then there is sideways RAM/ROM as well.
The position on the model B is even more dire,
though many owners have fitted sideways and
shadow RAM to enhance their systems. For
comparison with the Archimedes one should
consider all Beebs as 32K machines.

As a result of the limited memory available,
much of the software developed for the BBC
micro has been in ROM to avoid reducing even
further user memory. Think how limited word
processing would be if View or Interword used
16K of user RAM.

The situation on the Archimedes is quite

different. Switch the machine on, and even in a
IMbyte machine you have immediately got

Beebug March 1990

Upgrading to an Archimedes

some 750K of user RAM available. Think of the
size of Basic program you could develop!
Because of this (apparent) abundance of
memory, there are no such features at all as
shadow RAM, sideways RAM or whatever. All
memory usage shares the same main memory
(workspace, screen memory, relocatable
modules - a bit like the old ROMs - and more).
As a result, memory is not divided up on a
fixed basis, but allocated dynamically as
required. Thus your Basic program may well
not always run in the same area of RAM - so no
more peeks and pokes!

Any major piece of Archimedes software will
normally exist as an application, the rough
equivalent of the old ROM-based approach.
Once installed, applications are allocated part
of memory, and appear visibly as icons on the
icon bar. Given sufficient memory, and you
would be surprised how quickly even IMbyte
can be used up, several applications can exist in
memory together, each associated with one or
more windows concurrently on the screen. This
makes it very easy to switch from one to
another. Indeed the integration of software
applications is a major feature of the Archimedes.

For example, you may create data in a
spreadsheet application, export part of the data
into a graph package, transferring the the
result to a drawing package for embellishment
before incorporating the graph as an
illustration on the page of your current word
processed document - and it really can be as
simple as it sounds, well nearly.

COMPATIBILITY

One of the issues that confronts anyone
contemplating upgrading to an Archimedes is
that of compatibility. How much of what you
have, both hardware and software, can be used
on an Archimedes. I hope, if I have explained
things clearly enough, you will already be able to
answer some of these questions for yourself now.

HARDWARE

Let’s take hardware first. The Archimedes uses
3.5” discs and the ADFS. Whatever you are used
to, this is what you will be using in the future.
You are most likely to be using 5.25” discs with
your Beeb, and most users still use the DFS.
What you will probably want to do is to transfer
the contents of your 5.25” discs to 3.5” discs on

Beebug March 1990

the Archimedes, but don’t waste time and effort
on things you will no longer need or use.

There are two ways of doing this. If you are
able to keep your BBC system for a short while,
purchase of a serial link kit from BEEBUG (cost
£17.25) allows the two machines to be
connected together via their serial ports (and
this applies to the A3000 as well if the serial
interface chips have been fitted). Files can then
be transferred from one system’s discs to the
other’s (including transfer from DFS to ADFS).

4lFile 'ReadHe’
Select all
Clear selection
Options
New directory
fpen parent
Count

Desktop display showing Applications disc 1

Alternatively, a disc buffer can be purchased
(available also for the A3000 very soon) at a cost
of £33.25 allowing your existing 5.25” drive to be
connected to the Archimedes. If you were
previously using the DFS system you will need
to purchase the BEEBUG DFS Reader (cost £9.90)
for the Arc, to read discs in that format (ArcDFS
from Dabs Press is another more recently
available solution). Continuing to use an existing
5.25” drive can be a cheap way of providing
additional disc storage for an Archimedes, and
maintains compatibility with fellow Beeb users.

Any printer which you have been using will
more than likely work just as well with the
Archimedes (but do check with the supplier of
the Archimedes, or check with BEEBUG's
Technical Department), but you will need to
obtain a new connecting cable as the
Archimedes uses a 25 pin D-type connector.

On the other hand, any existing colour monitor
is unlikely to be suitable. The Archimedes uses

Continued on page 22

9

Keyword Highlighter

Andrew Rowland presents a utility to help you keep up with the MacJoneses!

If you have seen advertisements for BBC Basic on
the Apple Macintosh, you may have been impressed
by the way listings are displayed. Keywords are
shown in a bold font, variables etc. in a lighter
one. Not to be outdone, I immediately began to
think of a way to achieve this on the BBC itself.

The utility presented here was the outcome. In
modes 0 - 6 it lists Basic programs with
keywords and REMs in the normal font and
everything else in a light font, while giving you
the same degree of control as with the normal
LIST command. This is not just for the sake of
emulating the BBC's more up-market cousin; it
makes a program far more readable, particularly
if there are few spaces in it, or if capital letters
have been used for variables.

Type in the listing and save it before running. The
machine code generated by the program uses less
than one page of memory, starting at &A00,
although this address may be altered to suit your
particular requirements by amending line 120.

Running the program instalis a *LINE command
which takes exactly the same parameters as LIST
- that is, it can be used on its own or with the line
numbers to be listed, and on a Master it even
responds correctly to *LINE IF, in the same way
as LIST IF (but note that the space after *LINE
must be included). Lines can be copied using the
cursor keys in the normal way. As a bonus, if you
have a printer that prints italics for the codes 160
- 255, a similar effect can be obtained on paper.
You may need to alter some DIP switches to get
italic instead of graphic characters.

If you find that the routine interferes with some
programs that use function keys, or cursor keys
with Ctrl, press Break before using the program
concerned, and do not run that program a second
time without pressing Break again in between.

HOW IT WORKS

The first job is to create the light font, which is
done by PROCfont. This creates a thin version of
each character from ASCII 32 to 126, but with an
ASCII code 128 higher, i.e. from 160 to 254. On a

10

model B, this would normally require PAGE to
be reset to a higher value, thus losing memory.
However, assuming that PAGE is set at &1900 as
is normal for a disc-based machine, we can rob
the DFS of some of its workspace, and use &1300
to &15FF for the character definitions. This does
mean, however, that no more than one file can be
open at once and PAGE may be set no lower
than &1600. The user definable characters 129 to
159 are left free for your programs.

(NEXT 1:ENDPROC
OR vé="" OR INSTR(cS

-1) {PRINTTRBCx+LENoS#L, y) ;CHRS1

+CHR$G: PRINTCHRSG ;
TAB(x,y);

A program listing showing the effect of the
Keyword Highlighter

Next, we need to find a way of switching from
the normal font to our new one at the right
moment, without writing a large amount of code.

You are probably aware that Basic stores
keywords as a single byte code, known as a
token, which has a value greater than 127. As
LIST displays your program on the screen, it
prints the letters of variables and procedure
names normally, but expands each token into
the appropriate keyword. While it is doing this,
it stores the value it is working on - either a
normal letter or a token - at location &37. It is
easy to intercept the routine which writes
characters on the screen (OSWRCH) by
changing the vector situated at &20E. A quick
look at &37 will tell us whether a normal letter
or part of a keyword expansion is being printed.
PROCmc is responsible for doing this. The
OSWRCH vector is diverted via vduentry (line

Beebug March 1990

Keyword Highlighter

1690), and then continues by jumping to the
original contents of the vector. This enables some
additional code of our own to be executed before
the OS carries out its normal routine. Line 1800
takes a look at &37. If it contains a number above
127, a jump to exit is executed, which prints the
character normally. Otherwise, the character has
128 added to it (by setting the top bit in line 1870)
so that it will be printed in the new light font.

There is, however, one exception to this. The
contents of strings between quotation marks
must be printed normally: the string may contain
user defined characters or teletext control codes
which should not be interpreted as keywords. In
this case, the contents of &37 are not valid, and so
whenever a quotation mark is detected, &37 is set
to zero to ensure the whole of the string is
printed in the light font (lines 1750 - 1770).

The Master treats REM lines in a similar way to
characters between speech marks, but the
model B treats them as normal lines (which is
why teletext colour codes appear as keywords
on listing). We want to ensure REMs stand out,
so we set a flag, remflag, whenever &37 is found
to contain the token for REM (line 1830). This
stays set until a carriage return marking the end
of the line is printed (lines 1710 - 1740), and
until then everything is printed normally.

Our next task is to implement a star command to
perform the listing - we hardly want the routine
to be active all the time as it would play havoc
with normal output. The most convenient
method to use is *LINE, which is provided by the
operating system specifically to run a resident
machine code routine, and so the OS does all the
hard work. Lines 1380 to 1670 implement the
*LINE command, which first diverts the
OSWRCH vector to vduentry, then uses the
equivalent of *FX138,0,n to poke “LIST” into the
keyboard bulffer, followed by any parameter you
typed after the *LINE. In order to keep the
appearance neat, it turns off screen output while
it does this: omit line 1450 to see it happening.

Next, of course, the routine must turn itself off at
the right time by resetting the OSWRCH vector
to its old contents. Line 1630 ensures that a zero is
poked into the keyboard buffer, which is detected
at line 1700 when the listing is finished. But it

Beebug March 1990

isn’t that simple. What if you press Escape before
the listing ends? The routine would be left active,
and the same would happen if you typed a
parameter containing an error. To deal with this
eventuality, the break vector BRKV, which
handles all errors, is diverted to break (line 2010)
which restores the OSRWCH vector before
passing control to Basic’s error handler.

One last problem must be solved. If you were
simply to use cursor editing to copy lines
displayed by the routine, the program would be
corrupted: all your variables would be replaced
by codes above 127 and interpreted as tokens. To
make the program watertight we must intercept
another vector, this time the OSRDCH vector,
RDCHY, which is responsible for handling cursor
copying. A short piece of code at entry (line 1940)
checks to see if the code returned by OSRDCH is
160 or above, and if so, subtracts 128 from it by
resetting the top bit to zero.

Finally, line 110 provides you with a Macintosh-
like paper-white screen. If you prefer the BBC's
good old white on black you can omit this line.

10 REM Program .>KEYhlt
20 REM Version 1.00
30 REM Author Andrew Rowland
40 REM BEEBUG December 1989
50 REM Program subject to copyright
60 :
100 VDU 14
110 VBU-19,0,7:0:0:19,1.0:0;
120 MC%=&A00
130 PROCfont
140 PROCmc
150 PRINT'"Syntax: *LINE n,n (as LIST)
"t llReadyll
160 END
110 =
1000 DEF PROCfont
1010 IF NOT FNmaster PROCfontflags
1020 FOR pass=0 TO 1
1030 P%=MC%
1040 [OPT pass*2
1050 LDA #32:STA &80
1060 .loop
1070 JSR thin
1080 INC &80:LDA &80
1090 CMP #127:BNE loop
1100 RTS
1110 .thHin
1120 LDX #&80:1LDY #0:LDA #10
1130 JSR &FFF1:LDX #8

11

Keyword Highlighter

1140 .tloop 1720 STX temp:TAX
1150 ILDA &80,X:LSR &80,X 1730 CMP #0:BEQ end
1160 AND &80,X:STA &80,X 1740 CMP #32:BCS nctrl
1170 DEX:BNE tloop 1750 LDA #0:STA remflag:JMP exit
1180 LDA #23:JSR &FFEE 1760 .nctrl
1190 LDA &80:0RA #&80 1770 CMP #quote
1200 JSR &FFEE:LDX #0 1780 BNE over
1210 .loop2 1790 LDA #0:STA &37
1220 INX:LDA &80,X:JSR &FFEE 1800 .over.
1230 CPX #8:BNE loop2 1810 LDA remflag:BNE exit
1240 RTS 1820 LDA &37
1250]NEXT 1830 CMP #rem:BNE notrem
1260 CALL MC% | 1840 INC remflag
1270 ENDPROC 1850 .notrem
1280 : 1860 CMP #128:BCS exit
1290 DEF PROCmc 1 1870 TXA:ORA #&80:TAX
1300 oswrch=&FFEE:osbyte=&FFF4 | | 1880 .exit
1310 quote=34:rem=§F4 | | 1890 TXA:LDX temp
1320 wrchv=&20E:brkv=£202 | | 1900 JMP (store)
1330 rdchv=6210:userv=6200 [1910 .end
1340 FOR pass = 0 TO 1 1920 JMP unhook
1350 P%=MC% 1930 .entry
1360 [OPT pass*2 1940 JSR !rdchv
1370 .userentry 1950 PHP:CMP #128+32:BCC ok
1380 CMP #1 \ is it *LINE? 1960 AND #&7F
1390 BEQ lineok | 1970 .ok
1400 JMP !userv | 1980 PLP:RTS
1410 .lineok | | 1990 .break
1420 STX &72:STY &73:\ set VDU vector | | 2000 JSR unhook
| 1430 LDA #vduentry MOD &100 2010 JMP !brkv
1440 STA wrchv 2020 .unhook
1450 LDA #vduentry DIV &100 2030 PHA:LDA store
1460 STA wrchv+l:\ turn off screen [2040 STA wrchv
1470 LDA #21:JSR oswrch | 2050 LDA store+l:STA wrchv+l
1480 \ flush keyboard buffer | 2060 PLA:RTS
1490 LDA #21:LDX #0:JSR osbyte | 2070 .temp
1500 \ poke "L." in k/b buffer | | 2080 EQUB 0
1510 LDA #ASC"L":JSR poke [2090 .remflag
1520 LDA #ASC".":JSR poke | 2100 EQUB 0
1530 \ poke string following 2110 .store
1540 \ *LINE into k/b 2120 EQUW !wrchv
1550 ILDY #0 2130]NEXT
1560 .strlp | 2140 ?userv=userentry MOD &100
1570 LDA (&72),Y - 2150 userv?l=userentry DIV &100 |
1580 CMP #13:BNE strov | | 2160 ?rdchv=entry MOD &100
1590 LDA #6:JSR poke:LDA #13 2170 rdchv?l=entry DIV &100
1600 .strov { 2180 ?brkv=break MOD &100
1610 JSR poke ? 2190 brkv?l=break DIV &100
1620 INY:CMP #&0D:BNE strlp 2200 ENDPROC
1630 \ poke zero to 2210 :
| 1640 \ reset VDU vec | 2220 DEFFNmaster
1650 LDA #0 | 2230 =INKEY-256=253 OR INKEY-256=245
1660 .poke | | 2240 :
1670 PHA:STY temp:TAY | | 2250 DEF PROCfontflags
1680 LDA #138:LDX #0:JSR osbyte | | 2260 A%=131:*FX 20,3
1690 LDY temp:PLA 1 | 2270 B%=(USR (&FFF4)AND&FFFF00) /256
1700 RTS | | 2280 IF PAGE<B%:PAGE=B%:CHAIN"KeyH1lt"

| 1710 .vduentry | 2290 ENDPROC B3]

12 Beebug March 1990

Order Out Of Chaos

Jim Vernon explains how to investigate the world of chaos using a BBC micro.

‘Ordered’ chaos has recently become a subject
of fascination for mathematicians, and of
practical value in many highly diverse fields,
from turbulence in flow along pipes to chemical
reactions and weather forecasting. It has links
with fractals, the Mandelbrot set and Julia sets.
The three programs in this article give an
introduction to the subject, and can be readily
expanded for more complex work.

ITERATION

The basis of this whole field of mathematics is
iterative calculation, of which an early example
was Newton’s method for successive approximation
to the roots of an equation. In its broadest terms
the one-dimensional formulation is:

X(nt+l) = £(X(n))

where n is 1,2,3,4 up to any number, usually large,
and f(X(n)) is any function of X(n). Each
approximation is calculated from the previous
one, with the calculated values converging to a
result. Note that X(n+1) is sometimes written X
subscript n+1, but this can lead to confusion with
Xn+1. X(2) is calculated from X(2)=f(X(1)),
X(3)=£(X(2)) and so on, the previous value of X(n)
being inserted in the function to get the new value.

The computer is ideally suited to iterative
calculations. In Basic the formula becomes:
X=£(X),

for any function f since, when this line is acted
upon, X acquires the value of the function using
the previous value of X for the calculation, so
that if X(n) is the old value of X the new value
is X(n+1). Repeated ‘n’ times, by means of a
FOR-NEXT or REPEAT-UNTIL loop, without
any need to change the statement of the
function, the iterative value of X(n) can be
calculated up to any value of n.

For the purposes of this article the function
used will mainly be:

f(X) dc X i(1=X)
where ‘¢’ is a constant in the range 0 to 1. To
avoid confusion “’ is used to stand for multiply.
In terms of the calculation of X(n+1) from X(n),
the formula can be written:

X(n+l) = 4c.X(n).(1-X(n))

’

Beebug March 1990

The starting value of X, (X(1)), must be between
0 and 1, and c also below 1. This function,
known as the logistic difference equation, arises in
population studies, where X(1) can represent
the population at, say, year one, X(2) the
population at year two and so on. ¢ is some
constant, determined by the environment, and
not affected by population size, which
represents the rate of growth. Iterated over a
number of years, the formula shows how the
population can rise and fall with time, other
things remaining equal.

Listing 1 - the program CHAOSI - is a
straightforward simple iteration of this formula. It
progressively calculates the value of X(n) as n
increases, using any specified value of ¢ (C), and
with any chosen initial value of X (IX). Provision
is made for the screen display to start after any
particular value of n (T%) has been reached, thus
making it easier to examine the value of X(n) for
high values of n. The formula to be used is placed
in an FN function (line 1020). The iteration is
based in this case on a REPEAT-UNTIL loop (lines
210-280), and any key press will give the value of
the next iteration. The process can be stopped at
any value of n by pressing Escape.

Listing 1

10 'RVEVMWl"rogram CHAOS1

20 REM Version Bl1.2

30 REM Author Jim Vernon

40 REM BEEBUG March 1990

50 REM Program subject to copyright
60 :

100 ON ERROR:PROCerror:END

110 MODE3
120 PRINEBI'®
;) "

| 130 PRINT' '"Equation is iterated up to
any desired value of n."

140 PRINT'"Any initial number of itera
tions can be skipped before printing sta
res.”

150 PRINT'"From then on press any key
for next iteration.”

160 INPUT'' "Value of constant c (<1)
" C

’
170 INPUT"Initial value of X (<1)",IX

X(n+1)=4*C*X(n) *(1-X(n)

13

Order Out Of Chaos

180 INPUT "No. of initial iterations n
lot to be printed ",T$

190 PRINT'"PRESS ANY KEY FOR A NEW CAL
|CULATION OF X(n)"

200 N%=0 :X=IX

210 REPEAT
220 REM 1st. T% iterations not printed
230 IF N%>T% THEN Y=GET:PRINT"n = ";N%
z,.ll X(n) = "X;ll C - ";C
| 260 N3=N%+1

| 270 X=FNformula (X)

280 UNTIL FALSE

290 END

1000 :

1010 REM Reiteration equation

1020 DEF FNformula(Z)=4*C*Z*(1-Z)
1030 :

1040 DEF PROCerror

1050 VDU7:REPORT:PRINT" at line ";ERL

i 1060 ENDPROC

Listing 2

Using this program it will be found that if c is
less than 0.25, iteration rapidly reduces X(n) to a
very small value. If ¢ is between 0.25 and 0.75,
as n increases X(n) approaches a limiting value,
given by the formula 1-1/4c, whatever the
starting value of X. As c is increased beyond
0.75 X(n) does not settle down to a single value.
At values just in excess of 0.75 it has 2 values,
alternating between them, then, at progressively
higher values, it cycles through 4, 8, 16 and so
on. ¢ has to be increased by only small amounts
to get these results, and preferably a large
starting number for n specified. When c reaches
0.8925, X(n) becomes chaotic, with a wide range
of apparently random values.

Progress towards the limiting value for X(n),
when it occurs, is illustrated graphically by listing
2 - program CHAOS2. In this, up to 3 starting
values of X between 0 and 1 can be specified with
any one value of c in the range 0 to 1. The number
of iterations can also be varied, the larger the
number the more certain it is that the limiting
value will be reached, but the less clear are any
early fluctuations. After input of the start values
(lines 180-240), axes are drawn, with the value of
n along the bottom and X(n) vertically (lines 280-
310). To the left of the diagram, the limit value of
X(n), calculated by the formula 1-1/4c, is drawn
(lines 330-360). The iterations are calculated and
plotted by the procedure in line 430, the formula
again being defined in a function.

14

10 REM Program CHAOS2

20 REM Version B1.2

30 REM Author Jim Vernon

40 REM BEEBUG March 1990

50 REM Program subject to copyright

100 ON ERROR:MODE7:PROCerror :END
110 MODE1l
120 PRINT'" X(ntl)=4*C*X(n)*(1-X(n))"®
130 PRINT'"This program graphs the val
ue of X(n)"'"against the number of itera
tions (n)."'"Opportunity is provided to
use up to"'"3 different start values of
X'H
140 PRINT'"It also shows the limit val
ue of X(n)"'"for large n."
150 PRINT'"c can be varied to show the
effects on"'"the limit value of X. High
er values"'"of c above 0.75 show the inc
rease in"'"number of X's limits."
160 DIM IX(3):DIMK(3)
170 REM Input constants, start value(s
) etc.
180 INPUT'"Value of constant c",C
190 INPUT"Number of iterations to be s
hown",D
200 INPUT"Number of graphs(l to 3)",G%
210 FOR N% =1 TO G%
220 PRINT"Graph ";N%;: INPUT "-Start v
alue of X",IX(N%)
230 NEXT
240 INPUT"Name of File",AS$
250 CLS
260 REM Graph title, axes (with 10 div
isions) and ranges
270 PRINT TAB(15,1);AS$
280 PROCaxis(300,150,300,950)
290 FOR Q%=1 TO 10: PROCaxis(300,150+Q
%$*80,310,150+0%*80) :NEXT
300 PROCaxis(300,150,1100,150)
310 FOR Q%=1 TO 10: PROCaxis (300+Q%*80
,150,3004+0%*80,160) :NEXT
320 REM Graph of limit value
330 XLIM=1-1/(4*C)
340 PRINTTAB(0,5)"X(LIM)"
350 MOVEO, XLIM*800+150: DRAW150,XLIM*
8004150
360 PROCaxis(200,100,200,950)
370 REM Insert ranges of values
380 PRINTTAB(18,22) "Value of C=";C
390 PRINTTAB(8,2);"1":PRINTTAB(7,15)"X
(n) " :PRINTTAB(8,27) ; "0"
400 PRINTTAB(9,28);"1":PRINTTAB(17,28)

"Tterations (n)":PRINTTAB(34,28) ;D

Beebug March 1990

Order Out Of Chaos

410 REM Calculate X(n) for each n and
graph values

420 FOR N%=1 TO G% :K(N%)=N%

430 PROCgraph (IX(N%),K(N%))

440 REM Delay to allow first graph to
be viewed

450 FOR Q%=1 TO 5000:NEXT

460 REM Repeat for graphs 2 and 3

470 NEXT

480 OSCLI("SAVE "+AS$+" 3000 8000")

490 END

1060

1010 REM FN defines formula for reitera
tion

1020 DEF FNformula(Z)

1030 :

1040 DEF PROCgraph (XP,K)

1050 GCOL 0,K

1060 REM XP is start value of X, K dete
rmines colour

1070 MOVE 300,XP*800+150

1080 X=XP

1090 FOR M=1 TO D

1100 X=FNformula (X)

1110 Y=(X)*800+150

1120 R=M *800/D+300

1130 DRAW R,Y

1140 NEXT

1150 ENDPROC

1160 :

1170 DEF PROCaxis (A%,B%,G%, H%)

1180 MOVE A%,B%

1190 DRAW G%,H%

1200 ENDPROC

1210 ¢

1220 DEF PROCerror

1230 VDU7:REPORT:PRINT" at line ";ERL

1240 ENDPROC

=AXCk7*(1-7)

Running the program with 3 values of X, it
can be seen that whatever the start value of X
the graph eventually reaches the same limit,
for any fixed value of ¢ between 0.25 and
0.75. Figure 1 is a typical example. Beyond
c=0.75, using only one start value of X, the
graphs show how X(n) moves between a
number of values - 4 in the case of figure 2.
However, listing 3 - program CHAQOS3 - gives
a clearer picture of what is happening as ¢
increases, by graphing X(n) directly against
values of c.

In the program CHAOSS3, after input of initial
values (lines 170 - 230) and the drawing of the

Beebug March 1990

GRAPH1

XLIMD

lue of C=0.6

" Itevatlons(n)
Value of C=0.

axes (lines 260 - 330), the input values are also
printed to provide a permanent record. The
chosen range of values of ¢ (C0,C1) is then
divided into the specified number of points on
the ¢ axis (D%) and for each value the iterative
values of X(n) are calculated, up to the chosen
limit for n (M%), again using an EN function
(lines 350 - 390).

GRAPH2

X(LIM>

| i |' ﬁ'| ."ll W !|

|'I I ||\
1 |r||u'|f i

Value of C=0.88

Iterations(n)

Population oscillates between four levels

Provision is made for the first T% values to be
ignored for graphing purposes, and the
remainder are plotted on the vertical axis,
provided they fall within the range of X(n)
selected (X0,X1) (lines 410 - 480). All the values
from iterating X(n) between T% and M% are
thus plotted against that particular value of c.
There could be many such values for any one
value of ¢, though as we would expect for
values of ¢ between 0.25 and 0.75 there is often
only a single value, so that a single point is

15

Order Out Of Chaos

printed (M%-T%) times on the same spot. C is
then increased to the value of the next point on
the c axis, by another FOR-NEXT loop, and the
process repeated (line 500) until the whole
range between C0 and C1 has been covered.

Listing 3

10 REM Program CHAOS3

20 REM Version B1.2

30 REM Author Jim Vernon

40 REM BEEBUG March 1990

50 REM Program subject to copyright

100 ON ERROR:PROCerror:END
110 MODE1l
120 PRINT'" X(n+l)=4*c*X(n) *(1-X(n))

130 PRINT'"This prog. graphs X(n) agai
nst"'"changing c. Ranges of X and of c a
nd"'"the initial value of X can be chose
n'"

140 PRINT'"The range of c is divided i
nto D%"'"intervals and X is iterated M%
times"'"for each value of c and those wi

| thin"'"the defined range of X graphed."

150 PRINT'"The total number of iterati
ons per"'"value of ¢ (M%) and the number

to be "'"ignored (T%) can also be varie
Ed.®
160 REM Input constants, ranges etc.

170 INPUT!"Limits of ¢ (<1) (=C0,C1)%,
{ Co,C1

180 INPUT"Limits of X (<1) (=X0,X1)",X
| 0,X1

190 INPUT"Initial X (=IX)",IX
200 INPUT"No. of points on C axis(D%)"
,D%
210 INPUT "Total No. of iterations per
val.c(=M%)",M%
220 INPUT"No. not to be printed(T%)",T
230 INPUT"NAME of File",A$
240 CLS
250 REM Draw axes (with 10 divisions),
mark ranges etc.
260 PROCaxis(200,150,200,950)
270 FOR Q%=1 TO 10:PROCaxis (200,150+Q%
| *80,210,150+0%*80) :NEXT
280 PROCaxis(200,150,1000,150)
290 FOR Q%=1 TO 10:PROCaxis (200+Q%*80,
[150,200+Q%*80,160) :NEXT
300 PRINT TAB(10,0);A$
310 PRINT TAB(0,2);X1:PRINT TAB(0,15)"
| X(n)":PRINT TAB(0,27) ;X0 |
| 320 PRINT TAB(5,28);C0O:PRINT TAB(19,28

16

|)"c":PRINT TAB(30,28);Cl

330 PRINT TAB(0,30)"M3=";M%;"
£:0 ¢ DE=NPRAT Tty

340 REM Calculate values of ¢ and reit
erated values of X(n)

350 K=C1-C0:P=K/D% :L=X1-X0

360 FOR C=C0 TO C1 STEP P

370 X=IX

380 FOR N% = 1 TO M%

390 X=FNformula (X)

400 REM First T values of X(n) not sho

: T$="T

410 IF N%<=T% GOTO 480
420 REM From N%>T% start plotting
430 Y%=(X-X0)*800/L+150
440 R%=(C-C0)*800/K+200
450 REM X(n) not plotted if outside ch
osen range

460 IF Y%<150 OR Y%>950 GOTO 480

470 PLOT 69,R%,Y%

480 NEXT

490 REM Same calculations and plot for
next value of ¢

500 NEXT

510 OSCLI("SAVE "+AS+" 3000 8000")

520 END

1000 :

1010 REM Formula defined

1020 DEF FNformula(Z)=4*C*Z*(1-Z)

1030 :

1040 REM Procedure for drawing lines to
make axes etc.

1050 DEFPROCaxis (A%,B%,G%,H%)

1060 MOVE A%,B%

1070 DRAW G%,H%

1080 ENDPROC

1090 =

1100 DEF PROCerror

1110 VDU7:REPORT:PRINT" at line ";ERL
1120 ENDPROC

Many interesting graphs can be drawn with this
program. To start with, the effect can be
examined of including the initial values of X(n)
i.e. T% is made 0 or a small number. Figure 3
shows the result when M% =8, T% =0 and IX =
0.9. The picture is that of several polynomial
functions fluctuating with increasing amplitude
as c increases and the beginnings of a chaotic
state when c¢ is near to value 1. By
experimenting with different values of IX and
low values of M% and T%, a wide range of
graphs is obtained, basically similar to figure 3
but with differing frequencies and amplitudes.

Beebug March 1990

Order Out Of Chaos

GRAPH3

: Dx=888 : IX=8.9

As M% is steadily increased, and with T% kept
at 80% to 90% of M%, the fluctuations of figure 3
disappear and a different picture gradually
emerges. Beyond M%=100 and T%=90 no further
major change develops but there is greater clarity
in some regions. At this level changing the initial
value of X (IX) has no effect. Figure 4, with
M%=250 and T%=220, is a typical example of the
final picture. It gives a visual confirmation of the
results already obtained from the program
CHAOSI, with first a single line for X(n), then a
succession of bifurcations starting at ¢ = 0.75 and
eventually chaos. As c increases, when bifurcations
occur they are arranged vertically i.e. they occur at
the same value of ¢ whatever branch they are on.

GRAPH4

8.7 c S

Mx%Z=258 : T%=228 : DZ%Z=488 : IX=8.1

The path of X(n) as it forks and forks again can be
further studied by magnifying figure 4, using
reduced values of the ranges X0,X1 and C0,C1 X’s
limited range is only for the purposes of the graph,
the iterative calculations still cover the full range

Beebug March 1990

of X from 0 to 1). Table 1 gives the values of C0,C1
and X0,X1 for insertion into the program CHAOS3
which will steadily magnify the nodes at the top of
figure 4, until a magnification of 10000 times is
reached. M% and T% have to be increased at these
high magnifications to make the position of the
nodes clear, so that even if the value of D is kept at
400, the program may take several hours. It is
worth it, however, to see that no matter how high
the magnification, bifurcation continues with the
broad shape remaining the same.

co - Ct X0 - Xt IX M (i
0 1 0 1 0.9 10 0
0.7 1 0 1 0.9 10 0
0.7 1 0 1 05 1000 950

0.8 0.9 0.8 0.9 0.5 500 475

0.89 0.8928 0.89 0.893 0.3 2000 1900
0.892 0.8926 0.892 0.8924 05 4000 3800
0.8924 0.8925 0.8924 0.8925 0.5 5000 4700

From printouts of these various graphs, the values
of c at the nodes can be measured reasonably
accurately. Table 2 gives measured values of c for
the first 6 groups of nodes and shows how the gap
between the values of ¢ rapidly falls away. The
dedline is in fact geometric, with a dividing factor
whose limit for a very large number of forks is
4.669... (Feigenbaum’s constant). The figures in the
last column of Table 2 are all close to this figure.

Value of Distance 1st. distance

¢ at node apart of nodes divided by 2nd.
075

0.11236
0.86236 4.753
0.8860 fprci 4.626
0-89111 S i 4A776
0'89218 i 4-280
; 0.00025 ;

0.89243

There are even more interesting aspects to this
program; however, space dictates that these will
have to be left to next month. In the meantime,
see what you can discover for yourself.

WORKS OF REFERENCE
CHAOS - Making a New Science by James Gleick,
Sphere Books 1989 (see review in this issue).

Exploring the Geometry of Nature by Edward
Reitman, Windcrest Books 1989.

17

Soft Function Keys Within View

Peter Vince explains how to make more use of the function keys with View,
and improve the efficiency of your word processing.

If a word or phrase is to be used
often while editing with View, it
is possible to program a function 23
key with this string. This will
not only save some time for us

WRITE (OUTPUT, 23)

READ (INPUT, 24) X
24 FORMAT (A7)

£ HOW MANY CHAR. TO SEARCH IN INPUT RECORD 00001150
00001160

FORMAT ("ENTER FILE TYPE™) 00001170
00001180

00001190

common two-fingered typists,
but will also reduce the number of errors
caused by trying to type the recurring phrase
too quickly. This is especially true if the text
being edited is a source listing for a computer
program.

The manual for View version 3.0 explains the
procedure on page 112, but there is no mention
in the View Guide or Into View for View 2.1,
even though the technique works just as well
there. The function keys are already used by
View for its various commands, both by
themselves, and with the Shift or Control keys
pressed. The fourth combination, using both
Shift and Control together, isn’t used however,
and so by issuing the OS command *FX228,1
from the command screen, pressing Ctrl-Shift-
fkey will cause that key to be expanded as a
soft key, and any programmed string to be
entered into the text.

By way of an example, I was recently typing in
a Fortran program, and the print statement is
rather more complicated than in Basic. From
the command screen the following lines were
entered:

*FX228,1
*KEY5"WRITE (OUTPUT, "

so every time I needed a write statement, I
merely pressed Ctrl-Shift-f5, followed by what I
wanted to be printed.

This program had eight-digit line numbers (at
the end of each line). For ease of entry, only the
last four digits were typed in, as the preceding
zeros could be added afterwards. The following
extract from the program shows some of the
line numbers preceded with their zeros:

18

However, entering the four zeros on every line
was going to be very tedious. The zeros were
therefore programmed into f5, but it was still
tricky to release the Shift and Control keys and
then move down to the next line and back to
the beginning of the new line number. What
was needed was the ability to program in not
only text characters, but also cursor key
movements. This is all clearly explained in the
Wordwise manual, but not in that for View.

If “cursor editing” is turned off with *FX4,1,
then the left cursor key gives a character whose
is value 138. I made a guess that this might
have the desired effect, but as this code is
greater than 128, a rather complicated character
sequence is needed to tell the operating system
to put that byte into the soft key buffer. It is
explained on page 142 of the BBC micro User
Guide (Chapter 25 - Programming the Red User
Defined Keys), and on page 16 of the Advanced
User Guide, that |! used in a *KEY definition
adds 128 to the value of the following byte
(where “1” is the character to the left of the
cursor keys obtained by pressing Shift and “\"
together). The value wanted was 138, i.e. 128 +
10, so “I!1]” is required to program code 138
into a function key (where ‘1] represents Ctrl-J
which has code 10).

But it didn’t work as expected - that code in fact
simulated pressing the Delete key! After some
trial (and a lot of error), it transpired that
“111X” would give the desired effect, and that
“111Z" gave the cursor-down command. Thus
to get the desired effect function key f5 needed
to be programmed as follows:

*KEY5"00001 X VXV IX] ! X |20

Beebug March 1990

Soft Function Keys Within View

after which, positioning the
cursor on the beginning of the Code Sequence Key Effect
first line number, ensuring insert (136) |'H Escape Go to command screen
mode was on (Ctrl-f4), and (137) Jl Return Go to start of new line
s _Qhifr (138) |1lJ Delete Delete character before cursor
pressing Ctrl-Shift-f5 repeatedly, (139) 1K Tab Insert TAB code
caused the zeros to be added as (140) L (f0) Format block
required. (141) |'|M (1) Go to top of text
(142) |IN (f2) Go to bottom of text
: - (143) 'O (f3) Delete end of line
While searching for the (144) 1P (t4) To start of line
approprlate sequence, it became (145) lile] (15) To end of line
apparent that all of the function (146) |'|R (f6) Insert line
key operations of View, and (147) s (7 Delete line
thy Pf th (;N th (148) T (f8) Insert character
SElei BUe B e R ine) et (149) Ny (19) Delete character at cursor
keys, could be simulated by the (150) 11\ (f10) No effect
same method. Table 1 shows the g:g;; Hy EOfIIJY gODY S%'ecfd text
! eft-cursor ursor Bac
codes apd key sequences needed (153) (14 Right-cursor Cursor Forward
to obtain each effect (codes 128 (154) Miv4 Down-cursor Cursor Down
to 135, and 188 to 255 seem to (155) 1 Up-cursor Cursor Up
have no function), from which it (156) m (Shiftf0) T
can be seen t.hat eliiey W01:11d (157) i (Shift-f1) Swap case
give the equivalent to Shift- (158) [(Shift-f2) Release Margins
Cursor-Left (go back to start of gggg }:I_ gﬂ‘m; Erelﬁ}_e rt1ct> ::haracter
¥ 5 ! ift- ighlig
word), which would be easier (161) In (Shift15) Highlight 2
than all the backspaces used (162) M (Shift-16) Go to Marker
above. (163) |1# (Shift-{7) Set Marker
(164) |'$ (Shift-f8) Edit command
: : (165) 1'% (Shift-f9) Delete command
Thl;. B O T (166) |1& (Shift-f10) (No effect)
sophisticated edltmg.strmgs can (167) j (Shift-Copy) Insert current ruler
be pre-programmed into the ten (168) 1 (Shift-left) Back to start of word
function keys, to be invoked (169) D] (Shift-right) Forward to start of next word
g e (170) I (Shift-down) Down a screenful
subse'quentl)f by pressing Shift (171) I+ (Shift-up) Up a screenful
Ctrl in conjunction with the
appropriate function key. (172) 1N, (Ctrl-f0) Delete block
173 I- Ctrl-f1 Next match
Furth.ermore, a grs)u‘p'of common g . 4; {!. § Chl: l—f2; Forxmat sk
fur}chon key def{mtlons can be (175) |\ (Ctrl-3) Justify mode
written as a Basic program, to (176) |'0 (Ctrl-f4) Insert mode
define the function keys before g;g; {:; %gir”gg gelfi?li]'n ruler
2 : ; ! rl- plit line
even entering View. The ultimate (179) |13 (Ctrl-7) Concatenate lines
in automation is to set up a !Boot (180) |'4 (Ctrl-18) Mark as ruler
file on your View disc which (181) |'5 (Ctrl-f9) (No effect)
- . . 182 ! 1-f1 No effect
automatlcally Chalr}s th1§ program g - 83; = !673 gggl Cg;)n i gNg gﬁ:gt;
before entering View itself. For (184 |18 (Ctri-left) Go to beginning of line
example: (185) |'9 (Ctrl-right) Go to end of line
(186) I (Ctrl-down) Go to bottom of text
*BASIC (187) 1% (Ctrl-up) Go to top of text
CHAIN"KeyDefs"
*View

Table 1. Key sequences for soft key definitions

For a more extensive discussion of the possibilities of ~ the two part article on this subject entitled Getting
using the soft keys with View, readers are referred to a Better View in BEEBUG Vol.4 Nos.9 &10. g

Beebug March 1990 19

Dichotomous Keys

L—

(Part 2

Rupert Thompson concludes the description of his expert system.

Last month we introduced a program to edit
and run simple dichotomous keys. The routines
we described are fine as they stand, but it
would be nice to have some more powerful
editing techniques. These are provided by this
month’s routines. Type in and save the listing
carefully, then merge it with last month’s
program using the following sequence of
commands:

*SPOOL Dich2

LIST

*SPOOL

LOAD"Dichl"

*EXEC Dich2

SAVE"Dich"
or replace “Dich” in the last line with your own
filename. No amendments need to be made to
last month’s listing.

QUESTION CHAINS
By virtue of the dichotomous structure, each
question may point to two others below it in
the key. Thus a chain of questions soon builds
up. However, the simple editor presented last
month merely treated each question
individually, not as part of a chain. With this
month’s listing in place the editor automatically
chains the questions to one another, a process
which is totally invisible to the user. Consider
the following arrangement, for example:

Question 1 (Root Level) points to

Question 2 and Question 3

Question 2 (Up to Question 1)

Question 3 (Up to Question 1)

Question 4 (Root Level)

When question 1 is edited, questions 2 and 3 are
automatically connected to it in the chain. Now
when you are in edit mode, as well as the
question you are editing, the next level up in the
chain is displayed above it on the screen. This
makes constructing a key considerably easier.

A question is designated Root Level if it is not
connected to an earlier question, otherwise the
number of the earlier, or parent, question is given.

20

The Up Lev option moves back one step up the
chain.

ROUTING

The techniques available for routing are very
powerful. The simplest are connected with
chaining.

Suppose that in the above example you re-
define question 1 to point to 3 and 4, omitting 2
from the chain. Question 4 will be connected up
automatically, but question 2 still thinks that it
too is part of the chain. In fact it is not, and
question 1 will never call it, but when editing
question 2, question 1 will still be displayed
above it on the screen, and Up Lev from 2 will
go to 1. To remove 2 from the chain, select
Go To, choose question 2, select Routing and
then Connect. Since no other question points to
2, it will be removed from the chain. However,
had it been pointed to by another question, but
was still not part of the chain, then Connect would
hook it in.

Since any keys designed with last month’s
listing will not be chained up, the effect of
Connect can easily be demonstrated by selecting
it for questions 2 or 3, for example. However,
the easiest way to chain a whole key is with the
Re-Chain option. This will attempt to connect
each question in turn to the question which
points to it. This is very useful if the chain
becomes corrupted in some way.

RE-ROUTING
Suppose that you want to move a question
from one position in a key to another. You
could do this manually, but it would be
very tedious. Instead, select Routing and
then Re-Route to perform the transplant
automatically. For example:

Question 1 points to 2 and 3

Question 2 points to 5 only

Question 3 points to 6 and 7

Question 4 (un-chained)

Beebug March 1990

Dichotomous Keys

could be transformed to:

Question 1 points to 4 and 3
Question 2 (un-chained)
Question 3 points to 6 and 7
Question 4 points to 5 only

Thus question 2 has been moved to position 4,
and the chain re-connected automatically. Be
warned, though, that re-routing question 1 will
prevent the correct operation of the key.

Dichotonous Keys : PLACES (6)
Prev @ Mext @ Uplev Edit 6o to Print Routing Stop
One Level Up - Question 1 (Root Level)
Qstn : Is it in Yorkshire

Yes - 2

This Level - Question 2 (Up to Question 1)

Ustn : Does 1t have (letters

Yes - Halifax Ho -5

Please enter the above information. Press RETURN at each field.

This technique can be used to swap the positions
of questions in the key. You may remember from
last month that one spare question was created
when the key was set up. This can be used to
swap two questions without erasing one of
them. For example, consider a file containing 20
items. Only 19 questions are needed, leaving
one, number 20 say, free. The following sequence
will swap questions 3 and 7

(i) re-route question 3 to question 20
(ii) re-route question 7 to question 3
(iii) re-route question 20 to question 7

Thus the unused question acts as a temporary
store. You will notice that once again the whole
chain has been re-connected.

The final utility this month is a routine to print
out the key onto paper. Simply select Print for a
paper copy in a similar format to that shown at
the start of Part 1.

Beebug March 1990

Finally, it will be helpful to discuss some ideas
on the use of keys. They are very easy to use,
even for non-experts. The program presented
here is a type of Expert System - it has a
knowledge base from which ordinary people
can identify anything known to the system.
Thus the program has a practical use in
addition to providing a demonstration of
Artificial Intelligence. For example, you could
let a group of pupils identify chemical
compounds for themselves with the help of a
key. Alternatively, a medical knowledge base
could be used for self-diagnosis. This is in fact
being tried in some surgeries, although the
knowledge base needs to be very large, and the
doctor must only use the diagnosis as a second,
not always entirely reliable, opinion. This is not
to suggest that the key will get it wrong, but
that the patient might well give a wrong
answer, and a life could be at stake!

Bear in mind, of course, that a key can only
identify something it knows - if you need proof
of this, try to identify a circle with the key
shown in Part 1, and see what result you get!

2200 IF Z=2 AND ptr>0 THEN gstn=ptr

2230 IF Z=5 THEN PROCprintkey

2240 IF Z=6 THEN PROCroute

2830 PROCchain

2850 DEF PROCchain:IF VALyes$>0 THEN I=
VALyes$:PROCreadrec (I) :ptr=gstn:PROCwrit
erec(I)

2855 PROCreadrec (gstn) : IF VALno$>0 THEN

I=VALno$:PRCreadrec(I) :ptr=gstn:PROCwr
iterec(I)

2860 ENDPROC

2865 DEF PROCconnect

2870 LOCAL I,n:I=0:n=0

2880 REPEAT:I=I+1:PROCreadrec(I):IF VAL
yes$=gstn OR VALno$=qstn THEN n=-1

2890 UNTIL I=ite% OR n:IF NOT n THEN I=
0

2900 PROCreadrec (gstn) :ptr=I

2910 ENDPROC

2920 DEF PROCroute

2930 LOCAL Z

2940 lotus%=-1

2950 Z=FNlotus ("Re-Chain*Connect*Re-Rou
tert 2.-1,-1,0)

21

Dichotomous Keys

2960 IF z=0 THEN PROCrechain

2965 IF Z=1 THEN PROCconnect:PROCwriter
ec(gstn)

2970 IF Z=2 THEN PROCreroute

2980 ENDPROC

3180 DEF PROCprintkey

3190 IF NOT FNsure("Print out Key.") TH
EN ENDPROC

3200 LOCAL I

3210 PROCwindow(3,-1) :VDU2

3220 PROCcent ("Dichotomous Keys
es)

3230 PROCcent (" ("+STRSite%+" Items)")
3240 PRINT:FOR I=1 TO ite%

3250 PROCreadrec(I):IF ptr>0 OR I=1 THE
N PROCentry

3260 NEXTI

3270 VDU3:CLS:ENDPROC

3280 DEF PROCentry:PRINT

3290 PRINTTAB(S) ;I;TAB(9);q$

3300 PRINTTAB(9);"If YES then ";FNifyes
(yes$)

3310 PRINTTAB(9);"If NO then ";FNifyes
(no$)

3320 ENDPROC

3330 DEFFNifyes(0$) :IF VALo$=0 THEN ="i
t is "+o$ ELSE ="go to Question "+o0$
3340 DEF PROCcent (0$) :PRINTTAB ((80-LENo

T

$) /2) ; 0% :ENDPROC

3420 DEF PROCreroute

3430 LOCAL I

3440 PROCwindow(6,-1) : I=VALFNenter (22,0
+3,"","0123456789", "Move this Question (
"+STR$gstn+") to Question")':CLS

3450 IF I=0 OR I>ite% THEN CLS:ENDPROC

3460 IF ptr>0 THEN p=ptr:PROCreadrec (pt
r) : IF VALyes$=qgstn THEN yes$=STRSI ELSE
no$=STR$I

3465 IF p>0 THEN PROCwriterec (p)

3470 PROCreadrec (gstn) :PROCwriterec(I)

3480 ptr=0:q$="":yes$="":n0$="":PROCwri
terec(gstn) :gstn=I

3490 PROCreadrec(gstn):I=VALyes$:IF I>0

THEN PROCreadrec(I) :ptr=gstn:PROCwriter
ec(I)

3500 PROCreadrec (gstn) : I=VALno$:IF I>0
THEN PROCreadrec (I):ptr=qstn:PROCwritere
c(I)

3510 ENDPROC

3520 DEF PROCrechain:g=gstn

3530 PROCwindow(3,-1) :PRINTTAB(30,8);"C
haining Question ";:FOR gstn=2 TO ite%:P
RINTTAB (48, 8) ;gstn:PROCreadrec (gstn) : IF
gS$<>""AND yes$<>""AND no$<>""THEN PROCco
nnect :PROCwriterec (gstn) =

3540 NEXTqgstn:gstn=q:ENDPROC B

Upgrading to an Archimedes (continued from page 9)

an analogue RGB connection (to obtain up to
256 colours on the screen at any one time). The
Beeb uses a TTL system via DIN connectors.
However, if you have a monochrome monitor
which works from the BNC or UHF sockets,
then this will work just as well with the
Archimedes, though you will miss the pleasure
of all those extra colours of course. If you
decide to keep your Beeb, you can usually use
an Arc colour monitor with it with a suitable
lead.

If you are buying a new colour monitor for an
Archimedes then you have a choice between
the standard colour monitor and costing about
£220, or a so-called multi-sync monitor, which
doubles the horizontal resolution allowing
several additional high resolution screen modes
to be used, but at a cost of some £520.

You should have realised by now that any
sideways ROM or RAM boards, shadow RAM
boards and similar have no place on an

22

Archimedes (though ROM-based software may
still be usable). Likewise, teletext adaptors and
second processors cannot be carried forward to
the new system. However, any modem which
you have may well be usable with an
Archimedes, though you will need a new
connecting cable. The controlling software may
still be usable (but see Software Compatibility
next month).

If you use any equipment which connects to the
user port, analogue port or IMHz bus, then you
may still be able to use that (by buying an I/O
podule), but there may be a problem with any
controlling software, more than likely if it is
ROM based. You will need to check this area
individually.

Next month I will conclude this article by
considering the important question of software
compatibility, as well as looking at the promised
case studies, and a comprehensive summary of the
whole question of upgrading. B]

Beebug March 1990

Yet another Play It Again Sam! We are now up
to number 12 in this apparently never-ending
series of four-game

bells out of your opponent. There are
different legitimate punches and moves you
can make, but if they fail you can always
throw in the odd dodgy one when the referee
isn’t looking. This game is again not easy to
master, needing the use of some nine keys. A
joystick, to my mind, is a ‘must’ unless you
are blessed with the manual dexterity of
Fagin.

Next we have Skirmish. This is a version of the
old arcade classic ‘Joust’. The game consists of
guiding a knight around the screen on the back
of a large bird, while being attacked by other

such birds. To add to

compilations from
Superior. This one
features two oldies,
Skirmish and Blagger,
plus two fairly recent
releases, By Fair
Means or Foul and
The Last Ninja. The
inclusion of the latter

wwa 001000

your troubles there are a
few Pterodactyls also
intent on doing you
harm. It is quite a simple
game with rather sparse
graphics, but nevertheless,
very addictive.

two on this compila-

Lastly, we have Blagger.
This is a real oldie

tion is surprising as
they are really not
that old.

The Last Ninja is a game based on the theme of
martial arts, where you guide your man in his
quest to reach the inner sanctum of the palace
of Lin Fen. You must collect objects and
weapons along the way to help you achieve
your goal. As usual, there are many hazards to
contend with, puzzles to solve, and assailants
to overcome. The game features some nice
graphics with good animation. However, game
play can be a bit of a trial at first with the
number of key combinations to learn and
remember.

By Fair Means or Foul is a boxing game that
can be played by one or two players. The

general idea of this game is to knock hell’s

Beebug March 1990

which was originally
released by Alligata

way back in the Beeb’s early days. It is a
platforms and levels game where the object is

23

Following last month’s program, which created
the ROM header for the ROM Filing System,
this month’s program, RFSload, will allow you
to load any suitable machine code and Basic
programs, or EXEC files, into RFS memory
(sideways RAM) using the ROM header.

The new program should be typed in and
saved. Before attempting to use RFSload, make
sure that you have already installed the RFS
ROM image header, produced by last month’s
program, in a suitable RAM bank and pressed
Ctrl-Break. Once a suitable RFS header, or an
already partially full RFS, has been installed
(you can always add additional files to an
existing RFS system), RFSload will then load
one or more selected files in turn into memory
at &4000. It formats each file with the necessary
header blocks and CRC data, as it is written to
sideways RAM in the RFS format.

The format the RFS uses is exactly the same as
the CFS (Cassette Filing System) format. The
file data is split into blocks of 256 bytes. The
first and last blocks of each file are formatted
with a header block, which contains the file
information, as well as the Cyclic Redundancy
Check (CRC) data for the current block. For
further details about the RFS refer to the User
Guides or The BBC Micro ROM Book.

ROGRAM INFORMATION

When run, the program first prompts for the RFS
Title as shown by *ROMS and the RAM bank
number. This information is then checked to
ensure that the wrong RAM image is not written
to. After this PROCsrl requests the start address
in sideways RAM at which to load the files. This
is marked by an end-of-RFS marker byte (&2B).
If this address is not known, entering an invalid
address, outside the range &8100 to &BFDO, will
simply cause PROCgetmark to catalogue the
RFS and find the marker for itself.

When the position of the end-of-RFS marker
has been verified, a REPEAT-UNTIL loop then
calls PROCarrange until there are no more files

24

th

to be loaded. This procedure checks the filing
system in use, and sets the input verification for
the “Load File” prompt. When this prompt
appears, it is possible to use most OS and filing
system commands to select, change or
catalogue the directory.

When the “Any more Files to Load” prompt is
answered with ‘N’, the program terminates and
gives the necessary information to save the RAM
image to disc. All that now remains is to press
Ctrl-Break to let the OS know that it has a ROM
Filing System active. Type *ROM and use *EX, or
*CAT with *OPT1,2 to check the file information.
The RFS image can always be loaded back into
sideways RAM at a later date, and the files it
contains accessed using the documented RFS
commands (*CAT etc), once the RFS has been
selected with the *ROM command.

The program will run in mode 7 with PAGE at
&1900 on a model B, provided that sideways
RAM has been fitted. However, it may be
necessary for you to alter each occurrence of the
Master’s *SRWRITE command (contained
within OSCLI statements) to suit your type of
sideways RAM (refer to the instructions
supplied with this). Also the character validation
in FNverchr(“4567”,1) at line 2060, will need to
be changed if the RAM banks are not labelled 4,
5, 6 and 7. The correct numbers for the RAM
banks should be inserted in their place.
TECHNICAL INFORMATION

For the sake of ease and speed I have used
assembler, not only for Cyclic Redundancy
Checking and RFS search procedures, but also
for the OSFILE parameter block and RFS
header block procedures, with one pass and the
OPT variable set to zero.

The program is well error trapped by the relevant
messages and also PROCerrs. This is to ensure
that any wrong commands that might be given
or filing system clashes are recoverable. The
“Y/N’ prompt can usually be answered ‘Yes’,
unless there is a fault in the program listing itself.

Beebug March 1990

Using the ROM Filing System

Owing to the slow access speed of the RFS, it
seems pointless to put long programs in the RFS,
although a file can spread across any two
consecutive RFS banks as long as the block
numbers are concurrent. Personally I tend to use
it for printer, disc and debugging routines that
are usually needed when a different filing system
is in use from the one which contains them.

As written, RFSload is best used if the files you
wish to write to the RFS are in the current
directory. This then allows the maximum
number of characters for the file name, and it
will be loaded into the RFS with this name.

When the command *-ROM-LIBFS is used on a
Master, the RFS will be searched for a file
automatically, if it is not on the current filing
system. Also, it can be used in a temporary
manner by using **ROM-RUN <fsp>.

If a machine code program called !BOOT is
written and loaded into the RFS, then when
*ROM followed by Shift-Break is used, the RFS
will automatically *RUN the !BOOT file (just as
with any other filing system).

Remember that when any files are run or loaded
from the RFS, it will remain “Paged In” as the
current filing system, so if your own program
requires DISC or other ROM access then the
relevant OS commands will have to be inserted
at the start of the program before loading it into
the RFS in the first place (with RFSload).

10 REM
20 REM
30 REM
40 REM
50 REM

Program RFSload

Author Jon Keates

Version B3.03

BEEBUG March 1990

Program subject to copyright

100 MODE135

110 HIMEM=&3FFF

120 @%=4:VDU23,1,0;0;0;0;

130 osfile%=&FFDD:osrdrm$=&FFB9
140 oswrch%=&FFEE:osbyte%=4FFF4
150 osnewl$%=&FFE7:0sargs%=&FFDA
160 fload%=64000:crc%=&900:smark%=
170 hblok%=&930:fblok%$=&960

180 fname%=&980:footer%=&990
190 valid$="":FOR A%=32 TO 126
200 valid$=valid$+CHRS (A%) :NEXT
210 ON ERROR PROCerrs

&900

Beebug March 1990

220 REPEAT PROCinfo
230 trom$="":2&F6=609:2&F7=680:Y%=ramb

240 REPEAT C%=(USR(osrdrm%) AND &FF)

250 IF C%<>0 trom$=trom$+CHRS (C%)

260 ?2&F6=?&F6+1:UNTIL C%=0 OR ?&F6=614

270 IF trom$="" OR trom$=CHR$255 trom$
="NOTHING"

280 IF title$<>trom$ PROCmess (0,trom$+
" is in RAM bank "+STR$~ramblk%) ELSE PR
OCmess(-1," ... Verified.")

290 UNTIL flag%=TRUE

300 PRINTTAB (2, 6) "RAM bank : "CHR$130;
ramblk%;
310 PRINTTAB(16,6)CHR$135"RFS .. : "CH

R$130;title$

320 REPEAT PROCsrl

330 UNTIL flag%=TRUE

340 VDU26:mleft%=&BFFF-srload%

350 ON ERROR PROCerrs

360 PROCchek

370 REPEAT flag%=TRUE

380 PRINTTAB(28,9)~mleft?

390 PRINTTAB(3,23)" End of RFS maker
at "CHR$129;"&"; ~srload%; SPC5

400 PROCarrange

410 mleft%=&BFFF-srload%:PRINTTAB (28,9
)~mleft%

420 PRINTTAB(3,23)CHR$132"Any more Fil
es to load .. Y/N :%;

430 REPEAT ans$=GET$:UNTIL INSTR,"YyNn
", ans$)>0

440 UNTIL INSTR("Nn",ans$)>0

450 VDU28,0,22,39,12,12

460 PRINT''"To Save RFS Image use

n

470 PRINT''"*SRSAVE ";title$;" 8000 ";
~srload%+1;" ";~ramblk$

480 END

490 :

1000 DEF PROCarrange

1010 A%=0:Y%=0:X%=&80

1020 IF (USR(osargs%) AND &FF)=4 Imt%=
ELSE 1lmt%=10

1030 vpu28,0,22,39,12,12

1040 PRINT''SPC6;"Load File 2 ..."
1050 PRINT''CHR$133SPC6;:file$= FNverchr
(valid$, Imt%)

1060 IF LEFTS$(file$,1)="*" PROCoscom:EN
DPROC

1070 PROCloadfile

1080 IF flag%=FALSE VDU26:ENDPROC

1090 PRINT''" File info ";~(flen
$DIV256) ;" ";~flen¥

1100 ptr%=fload%:bnos%=0

1110 REPEAT

1120 IF flen%<257 THEN status%=&80:mark

25

Using the ROM Filing System

er%=&2B:blen%=flen%iELSE status%=&00:ﬁ$;4u; -igiaggfiagag;érload%¥(P%:hbld£%{747

&

ker%=623:blen%=256

1130 IF status%=&80 OR bnos$%=0 PROChead
block ELSE srload%=srload%+1

1140 OSCLI"SRWRITE "4+STR$~ptr%+" +"+STR
1$~(blen%)+" "+STRS~srload$+" "+STRS$~ramb
1k$%

1150 srload$=srload%+blen%

1550 ENDPROC

1560

1570 DEF PROCparablok

1580 $fname%$=file$

1590 P%=fblok%

1600 [OPT 0

1610 EQUW fname%:EQUD fload$

1160 ?&8B=ptr%:?&8C=(ptr% DIV 256) : ?2&8F 1620 EQUD 0:EQUD 0:EQUD 0
=blen% 1630]

1170 CALLcrc% 1640 ENDPROC

1180 ?footer%=2&8E:footer%?1=2&8D:foote 1650

r%?2=marker%

1190 OSCLI"SRWRITE "+STR$~footer%+" +3
"+STR$~srload%+" "+STRS$~ramblk$%

1200 srload$=srload%+2:flen%=flen%-blen

1210 bnos%=bnos%+1:ptr¥=ptr%+blens

1660 DEF FNlastbyte

1670 IF flen%>256 sets%=2 ELSE sets%=1

1680 IF flen%>512 ext%=((flen% DIV 256)
+(flen% MOD 256=0))-1 ELSE ext3%=0

1690 =srload%+ ((LEN(file$)+23) *sets%)+f
len%+ext%*3

1220 UNTIL status$=&80:SOUND1,-12,160,6 | 1700 :

:VDU26 | 1710 DEF PROCmess (er%,prt$)
1230 ENDPROC ‘ 1720 vDU7,12

1240 : 1730 PRINT''CHR$131" teprts

1250 DEF PROCloadfile

1260 PROCparablok
| 1270 A%=5:X%=fblok%:Y%=(fblok% DIV 256)
| 1280 IF (USR(osfile$) AND &FF)<>1 PROCMm
ess(0," File not found .. ") :ENDPROC

1290 ladr%=fblok%!2

1300 xadr%=fblok%!6

1310 flen%=fblok%!10

1320 eof%=FNlastbyte

1330 IF eof%>&BFFF PROCmess (0,"file too

big for RFS RAM ...") :ENDPROC

1340 PROCparablok

1350 A%=&FF:X%=fblok%:Y%=(fblok% DIV 25

1740
1750
1760
1710
1780
1790
1800

PROCwait (2) :VDU26
flag%=er%:ENDPROC

DEF FNverchr (test$,num$)
PRINT SPC (num%) ;CHRS$124;
FOR a%=0 TO num%:VDU8:NEXT
LOCAL G%,got$:got$="":*FX15

1810 REPEAT G3%=GET

1820 IF G%=127 AND LEN(got$)>0 VDUS, 32,
8:9ot $=LEFT$ (got$, LEN (got $) -1)

1830 IF LEN(got$)=num% G3%=13

1840 IF INSTR(test$,CHRS (G3)) got$=got$
+CHRS$ (G%) : VDU G%

6) i 1850 UNTIL G%=13 AND LEN (got$)>0
1360 CALLosfile$ i 1860 =got$
1370 ENDPROC ; 18707
1380 ¢ } 1880 DEF PROCwait (t%)
1390 DEF PROCheadblock | 1890 T$=TIME:REPEAT UNTIL TIME>T$+100*t
1400 P%=hblok% | $
1410 [OPT 0 ‘ 1900 ENDPROC
1420 EQUB &2A:EQUS fileS:EQUB &0 1910
1430 EQUD ladr%:EQUD xadr$ 1920 DEF PROCoscom
1440 EQUW bnos%:EQUW blen% f 1930 vDU12,14
1450 EQUB status%:EQUD eof% 1940 requ$=RIGHTS (file$,LEN(file$)-1)
1460] 1950 OSCLI requ$
1470 ?&8B=hblok%+1:°2&8C=(hblok% DIV 256 ‘ 1960 PRINT''" Press any Key to contin
) | et
1480 ?&8F=(LEN(file$)+18) | 1970 G=GET:VDU12,15,26
1490 CALLcrc% | | 1980 ENDPROC
{=1500-[OPT 0 { 1990
1510 EQUB ?&8E:EQUB ?&8D 2000 DEF PROCinfo
Ed500] | 2010 CLS:PRINT
1530 OSCLI"SRWRITE "+STRS~hblok%+" "+ST 2020 PRINTCHRS$S141CHRS$134SPCT"RFS RAM

'R$~PS4" "+STR$~srloads+" "+STRS~ramblk%

26

Beebug March 1990

Using the ROM Filing System

2030 PRINTCHRS$141CHR$134SPC7"RFS RAM
LOADER"

2040 VDU 28,0,22,39,12,12

2050 PRINT''SPC6"RAM bank ? .. ";

2060 rm$=FNverchr ("4567",1)

2070 ramblk%=VAL (rm$)

2080 VDU12

2090 PRINT''SPC6"RFS name ? .. ";

2100 title$=FNverchr(valid$,10)

2110 ENDPROC

2120 ¢

2130 DEF PROCsrl

2140 PRINTTAB(3,9)"Available RFS Memory

: "CHRS$129"&3FFF"

2150 VDU 28,0,22,39,12,12

2160 PRINT''SPC6"Sideways RAM start add
ress .. "

2170 PRINT'SPC7"or enter FF for search.

2180 PRINT''CHR$133SPC8"&";

2190 side$=FNverchr("0123456789ABCDEF",
4)

2200 srload%=EVAL("&"+side$)

2210 IF srload%<&8100 OR srload%>&BFDO
VDU7 :PROCgetmark

2220 ?&F6=srload%:?&F7=(srload% DIV 256
) :Y%=ramblk$%

2230 IF (USR(osrdrm%) AND &FF)<>43 PROC
mess (0,"End of RFS not found ...") ELSE
| PROCmess (-1,".... Verified at &"+STR$~s
;rload%)

‘ 2240 ENDPROC

f22s0 o

i 2260 DEF PROCgetmark VDU12
!

2270 PRINT''CHR$131SPC6"Invalid SRAM ad
dress.”

2280 PRINT''CHBS1315PCO9 " Seaching + . ="
2290 FOR pas=0 TO 1

2300 P%=smark%

2310 [OPT pas*2

2320 LDX #&D:LDY #(ramblk% EOR &F)
2330 LDA #&8F:JSR osbyte%

2340 LDA &F6:STA &70:LDA &F7:STA &71
2350 CPX #0:BEQ enter

2360 BRK:EQUS " ... RFS not found":BRK
2370 .newl

2380 JSR osnewl%:LDX #6:LDA #32

2390 .gap

2400 JSR oswrchf%:DEX:BPL gap

2410 .loop

2420 JSR getbyte:CMP #&0:BEQ endn

2430 JSR oswrch%:JMP loop

2440 .endn

2450 CLC:LDA &70:ADC #13:STA &70

2460 ILDA &71:ADC #&0:STA &71

2470 JSR getbyte:PHA

2480 JSR getbyte:STA &71

2490 PLA:STA &70

2500 .enter

2510 JSR getbyte

2520 CMP #&2A:BEQ newl

2530 CMP #&2B:BEQ mark

2540 BRK:EQUS " ... BAD RFS":BRK
2550 .mark

2560 DEC &70:RTS

2570 .getbyte

2580 LDA &70:STA &F6:LDA &71:STA &F7
2590 LDY #(ramblk% EOR &F)

2600 LDX #&E:LDA #&8F:JSR osbyte%
2610 LDA &F6:STA &70:LDA &F7:STA &71
2620 TYA:RTS

2630] :NEXT

2640 CALLsmark$

2650 srload%=2&70+2&71*256

2660 IF ramblk%<>(?&F5 EOR &F) PRINT''C
HR$129" WRONG RAM Bank !'":VDU7
2670 PRINT''CHR$130" End of RFS at &"
;~srload%;" RAM Bank "; (?&F5 EOR &F)
2680 PROCwait (3)

2690 ENDPROC

2700

2710 DEF PROCchek

2720 FOR pas=0 TO 1

2730 P%=crc%

2740 [OPT pas*2

| 2750 LDY #0:STY &8E:STY &8D:CLC

2760 .loopl
2770 LDA &8E:EOR (&8B),Y
2780 STA &8E:LDX #8
2790 .loop2
2800 LDA &8E:ROL A:BCC skip
2810 LDA &8E:EOR #8:STA &8E
| 2820 LDA &8D:EOR #16:STA &8D
2830 .skip

2840 ROL &8D:ROL &8E:DEX
2850 BNE loop2:INY
2860 CPY &8F:BNE loopl
2870 RTS
| 2880]

| 2890 NEXT

| 2900 ENDPROC
| 2910 :

2920 DEF PROCerrs

2930 REPORT

2940 IF ERR<>(Q PRINT''"
at line ";ERL ELSE END
2950 PROCwait (1) :*FX15
9960 PRINTYY = Continne +« +oo. o YN 7
2970 G=GET:IF (G AND &DF)=ASC"Y" ENDPRO
C ELSE STOP
2980 ENDPROC

Brror ":ERR;"

&

Beebug March 1990

l
i

Statistics can be fun - as this program is meant
to be - offering insight into the fluctuations of
repeated readings in science or of specified
values in technology. It demonstrates
Gaussian distributions (also known as
normal distributions). An example is the
distribution of IQ levels on either side of the
mean throughout the population.

In the program listed here, up to three variables
each with a normal distribution can be given
independent values for mean and standard
deviation. The program then shows how any
chosen function of those variables fluctuates. It
offers values for the mean and deviation of the
function and also displays - crawling up the
screen - histograms of the selected variables
and of the specified function.

The program can be used in two ways: firstly, to
give an insight into the way that statistical
variables fluctuate and how they can be shown
on histograms; and secondly, for study of the
(rather difficult) way in which the standard
deviation of a function of statistical variables
depends on the standard deviations of the
variables themselves:

The program is in pure Basic, so you only need
to type it in, save it, then run it. You can put it
to work straight away on the following
example, which is the easiest way to explain
what the program does.

Suppose that a rod is made of two parts, one
40mm long and the other 60mm long. Of course
the total length of the rod is 100mm. But now
suppose that in manufacture the lengths
fluctuate, the first part with a standard
deviation of 3mm and the second with a
standard deviation of 4mm. Suppose that the
varying lengths follow a normal (Gaussian)
distribution. What will be the deviation of the

28

combined rod? A manufacturer who expected it
to be 7mm would be unduly pessimistic!

What the program will do, given this example,
is to display histograms that grow as the
manufacture of the rods is simulated. Without
further mathematics, the standard deviation of
the lengths of the combined rods can be found.

ted hor xzontallg and
s uettlca ?
ca

are culated,

.38888
.808888
» or SHIFT to continue.
Trials:1829 C1829]

F: Mean 9.89832 and S.D. 1.13821.

When asked for a function, key in X+Y (i.e. the
total length of the composite rods), and then the
means and standard deviations of X as 40, 3
and Y as 60, 4. There is no need to specify the
number of trials when asked - just press Return.
As the program runs, the mean will naturally
approach 40 + 60 = 100mm. We can also see
what happens to the standard deviation.
Pressing Return again halts the program to
display the up-to-date values of the mean and
the standard deviation. Pressing Shift allows
the program to continue. By tapping Shift while
the program is running you can ‘capture’ the
values of mean and standard deviation at any
moment without halting the operation. Holding
down Shift displays the mean and standard
deviation continuously - at the cost of slowing
the program down. You can also single-step the
program by holding down Return and tapping
Shift.

Beebug March 1990

Statistics for Pleasure

There is a traditional divide between
mathematics, a priori and true of all possible
worlds, and science, tested empirically and
applying to our own world as it is. What we
have in this program, however, is empirical
maths! At any rate, I hope readers enjoy
watching the histograms grow and
experimenting with different functions.

PROGRAM OUTLINE
PROC Variables allows the function and the
means and standard deviations of its variables
to be input, and then uses dummy data to test
that EVAL will accept the function.
PROCInitialValues and PROCPicture set up the

histograms with suitable scaling.

At the start of the main REPEAT loop,
PROCfind calls FNGauss, which repeatedly
uses RND to churn out values of a variable
which is almost normally distributed with
mean of zero and standard deviation of unity.
Perhaps readers can offer a faster way of doing
this and speed the whole program up - for
those of us without an Archimedes!

PROCFind uses the values from FNGauss to
produce random variables X, Y and Z with the
specified means and standard deviations and
calculates from them values of the function F.
PROCdisplay slots values of X, Y, Z and F into
arrays for the histograms. PROCStat works out
and displays the mean and standard deviation
of F.

10 REM Program Gauss6l

20 REM Version B1.0

30 REM Author Michael Taylor

40 REM BEEBUG March 1990

50 REM Program subject to copyright
6lli:

100 @%=&02050A:Vscl=8:Read%=0

130 PP=RND (-TIME) :MODE4

160 vDU19,0,7,0;0;0;

165 vDU19,1,0,0;0;0;

170 DIM Xb(300),Yb(300),2b(300),Fb (300

190 ON ERROR:PROCErrorl

200 PROCVariables
210 ON ERROR:PROCError2

Beebug March 1990

220 PROCInitialValues

230 PROCPicture:VDU23,1,0;0;0;0;

240 REPEAT

250 PROCFind

260 PROCDisplay

270 IF INKEY-1:PROCStat:UNTIL FALSE

280 IF INKEY-74 OR Read%=Rmax% PROCSta
t :REPEAT UNTIL INKEY-1

290 UNTIL FALSE

300 END

310 =

1000 DEF PROCVariables

1010 CLS

1020 PRINT''"Write a formula, F, in the

notation of"'"Basic with three or fewer

variables"'"selected from X, Y, or Z (U
pper case)."

1030 PRINT'"An example could be F = X+Y
, in which"'"case key in X+Y. Use low va
lues of"'"variables (up to about 10), an
d standarddeviations of about 1 to 10 pe
rcent."

1040 PRINT'"Values outside these may be

accepted"'"but the picture may be poor.
"

1050 INPUT''"Write the wanted formula i
n Basic"'"notation: "Val$:X=1.132:Y=1.45
3:2=1.576:Test=EVAL (Val$)

1060 PRINT'"Give the mean and standard
deviation"'"of each variable."

1070 IF INSTR(Val$,"X")<>0 INPUT'"What
is the mean of X? "Xmn$:INPUT'"and the s
tandard deviation of X? "Xdv$:ELSE Xmn$=
nn :deszll "

1080 IF INSTR(Val$,"Y")<>0 INPUT'"What
is the mean of Y? "Ymn$:INPUT'"and the s
tandard deviation of Y? "Ydv$:ELSE Ymn$=
nmn :deszll "

1090 IF INSTR(Val$,"2")<>0 INPUT'"What
is the mean of Z? "Zmn$:INPUT'"and the s
tandard deviation of 2Z? "Zdv$:ELSE Zmn$=
mn :ZdV$=|l "

1100 INPUT'"How many trials? "Rmax%:IF
Rmax%=0 Rmax%=1E8

1110 XM$=TRUE : YM%=TRUE : ZM%=TRUE

1120 Xmn=VAL¥mnS$:IF Xmn$="" XM%=FALSE

1130 Xdv=VALXdv$:IF Xdv$="" XM%=FALSE

1140 Ymn=VALYmnS$:IF Ymn$="" YM%=FALSE

1150 Ydv=VALYdvS$:IF Ydv$="" YM%=FALSE

1160 Zmn=VALZmnS$:IF Zmn$="" ZM%=FALSE

1170 Zdv=VALZdv$:IF Zdv$="" ZM%=FALSE

1180 ENDPROC

1190 :

29

Statistics for Pleasure

| 1200 DEF PROCInitialValues

| 1210 IF INSTR(Val$,"X")<>0 AND XM$=0 OR
‘ INSTR (Val$,"Y")<>0 AND YM%=0 OR INSTR (V
‘als,"Z")<>0 AND ZM%=0 PRINT'"Not all of
|the means and S.D.s have beengiven. Plea
Qse run the program again.":END

1220 X=Xmn:Y=Ymn:Z=Zmn:Fmn=EVAL (Val$)
1230 Max=Xmn

1240 IF Ymn>Max Max=Ymn

1250 IF Zmn>Max Max=Zmn

| 1260 IF Fmn>Max Max=Fmn

| 1270 Hscl = 800/Max

| 1280 Xmpos=(Xmn*Hscl+140)

| 1290 Ympos=(Ymn*Hscl+140)

| 1300 Zmpos=(Zmn*Hscl+140)

| 1310 Fmpos=(Fmn*Hscl+140)

{ 1320 Fsum=0:Fsq=0

| 1330 ENDPROC

| 1340 :

| 1350 DEF PROCPicture

| 1360 CLS

| 1370 PRINT'™ X,Y,Z and F plotted horiz
lontally, and their frequencies vertica
Lizpr

| 1380 PRINT" Repeated values of F are c
|alculated," '™ where F = ":Val$

1390 IF XM% PRINT'" X:
[ndes P WoRdy
| 1400 IF YM® PRINT" Y:
id 8.D, ";Y¥dv
| 1410 IF ZM$ PRINT" Z:
{d°S.D. %yzdv
| 1420 PRINT'" RETURN to halt, or SHIFT
|to continue."':H$=P0OS:V%=VPOS:PRINTTAB (1
IS)®prials: "
1440 MOVE 20,80:DRAW 1259, 80
1450 MOVE 140, 65:DRAW 140,95
1460 MOVE 125, 60:VDU5:PRINT"o"
1470 IF XM% MOVE Xmpos-35, 60 :PRINT"X";
1480 IF YM% MOVE Ympos-15,60:PRINT"Y";
1490 IF ZM% MOVE Zmpos+5,60:PRINT"Z";
1500 MOVE Fmpos-15,30:PRINT"F" :VDU4
1510 W$=1032- (V%+4) *32
1520 VDU24,20;0;1259;W%;
1530 MOVE 20, 80:DRAW 20,W%
1540 DRAW 1259,W$:DRAW 1259, 80
1550 ENDPROC
1560
1570 DEF FNGauss:SS=0:FOR N%=1 TO 12
1580 SS=SS+RND (1) :NEXT:=SS-6
1580
1600 DEF PROCFind
1610 Read%=Read%+1

30

Mean ";Xmn;" a
Mean ";Ymn;" an

Mean ";Zmn;" an

1620
1630

IF XM% X=Xmn+Xdv*FNGauss
IF YM% Y=Ymn+Ydv*FNGauss

1640 IF ZM% Z=Zmn+Zdv*FNGauss

1650 FF=EVAL(Val$) :Fsum=Fsum+FF

1660 Fsq=Fsq+FF*FF

1670 VDU31,H%+32,V%:Q@%=0

1680 PRINT;"[";Read%;"]";:@%=&02050A

1690 ENDPROC

1700 :

1710 DEF PROCDisplay

1720 IF XM$ Xpos=X*Hscl+140:Xs%=INT ((Xp
0s-Xmpos) /4) +150: IF Xs%>299 OR Xs$%<1 END
PROC

1730 IF YM% Ypos=Y*Hscl+140:Ys$%=INT((Yp
os-Ympos) /4) +150:IF Ys%>299 OR Ys%<1 END
PROC

1740 IF ZM% Zpos=Z*Hscl+140:Zs%=INT((Zp
0s-Zmpos) /4) +150: IF Zs%>299 OR Zs%<1 END
PROC

1750 Fpos=FF*Hscl+140:Fs%=INT ((Fpos-Fmp
os) /4) +150:IF Fs%>299 OR Fs%<1 ENDPROC

1760 IF XM% Xb (Xs%)=Xb (Xs%)+1:Xn=Xb (Xs%
) *Vscl :MOVE Xpos, 80:DRAW Xpos, 80+Xn

1770 IF YM% Yb(Ys%)=Yb(Ys%)+1l:Yn=Yb(Ys%
) *Vscl:MOVE Ypos, 80:DRAW Ypos, 80+Yn

1780 IF ZM% Zb(Zs%)=Zb(Zs%)+1:Zn=Zb(Zs%
) *Vscl:MOVE Zpos, 80:DRAW Zpos, 80+Zn

1790 Fb(Fs%)=Fb(Fs%)+1:Fn=Fb(Fs%) *Vscl

1800 MOVE Fpos,80:DRAW Fpos,80+Fn

1810 ENDPROC

1826

1830

1840

1850

DEF PROCStat

@%=602050A

Frnn=Fsum/Read%

1860 Fdv=SQR (Fsq/Read%-Fmn"2)

1870 PRINT''" F: Mean ";Fmn;" and S.D
2 ll;de;"‘ "

1880 @%=0:VDU31,H%+22,V%

1890 PRINT;Read%;'!'

1900 ENDPROC

3910 3

1920 DEF PROCErrorl

1930 IF ERL=1050 PRINT'"The Function wa

s not well defined."''"Check that only t
he capital letters"'"X, Y and Z were use
d as variables."'"Press Return to try ag

[ain.":IF GET:RUN:ELSE PROCError2

| 1940 ENDPROC

1930 =

1960 DEF PROCError2

1970 CLS:VDU26:Q@%=&A:IF ERR=17 END:ELSE
REPORT:PRINT" at line ";ERL:END =
1980 ENDPROC -

Beebug March 1990

Learning about Chaos

Mike Williams reviews a book on the theory of chaos.

Chaos: Making a New Science
by James Gleick,
published in Cardinal by Sphere Books, 1989 at £5.99.

We have all become accustomed to the likes of
the Mandelbrot set and Julia sets appearing in
computer magazines from time to time (and
that includes BEEBUG). The fascinating visuals
that result have a powerful ability to intrigue and
mystify as order appears out of apparent chaos.

This month’s main feature program addresses
the subject more directly, and provides readers
with programs with which to explore a further
aspect of the theory of chaos. The book
reviewed here complements the program and
provides a comprehensive and popular treatise
of the whole subject. It is currently being
supplied by Logotron as part of an educational
software pack on the same subject for the
Archimedes.

For a start, this is not an easy book to describe
‘or summarise. That may be the consequence of
the American nationality of its author, as the
book, in my view contains a substantial
amount of redundant material and somewhat
boring biographical detail. For example, one
learns of Mandelbrot’s parents, Lithuanian
Jews, earning a living in ‘20s Warsaw as
clothing wholesaler and dentist! There is also
an account of how Mandelbrot came to invent
the word fractal while looking at his son’s Latin
dictionary!

The book begins by describing some early
experiments in theoretical numerical weather
forecasting, which led ultimately to the
realisation that infinitely small changes can
have significant consequences. This is referred
to as the butterfly effect, “the notion that a
butterfly stirring the air today in Peking can
transform storm systems next month in New
York”. Scientists had previously assumed that
order prevailed and that all systems were
describable ultimately, in mathematical
deterministic terms. The theory of chaos shows
that even apparently ordered systems can

Beebug March 1990

degenerate into chaos, often as a result of
minute changes, and yet out of such chaos
order can eventually reappear. This is
demonstrated by the work of Robert May,
whose studies of population growth form the
basis of the feature in this issue of BEEBUG
referred to earlier.

Another concept on which the book dwells at
length is how delving deeper and deeper into
detail reveals yet more of the same. The classic
example is that of a coastline - no matter how
much you magnify it, it continues to exhibit the
same level of indentation and roughness - a
measurement known as the fractal dimension.
This is true of the Mandelbrot set where
magnifying any small part reveals yet more
detail in a never ending quest.

There is more, much more, to be found in this
book which is a mine of fascinating
information, despite my criticism of its
inclusion of too much unwanted, largely
biographic, detail. English readers might also
find fault with its largely transatlantic outlook
and the way the whole treatise seems to be
woven around the lives of the human
participants.

Despite all of that, I found much that was of
interest, providing a welcome background and
context to what had previously been
fragmented (fractal?) glimpses of the world of
chaos described therein. The book runs to some
350 pages with 8 pages of glossy full colour
illustrations, plus many black and white
drawings. There are also over 300 notes on the
sources on which the book is based, including
many further references for those wishing to
pursue original material.

If you are at all interested in broadening your
knowledge of the Mandelbrot set and the world
of ordered chaos of which it is a part, then I
recommend this book despite my reservations
about some aspects of its style, and it’s certainly
good value for the price. 3

31

Many printers have printable characters in the
ASCII range 128-255. Often this range consists
of an italicised version of the normal set (32-
126); sometimes it contains the standard IBM
character set; and some printers can be
switched between the two.

Master series computers have an entirely
different set of characters in this range. If you
type in the following line you will see them
displayed on the screen:
FOR A%=128 to 255:P.;A%" "CHR$A%:N.

It can be useful to have a program which will
print this character set on a printer, and the
listing given here is designed to do just that. It
is called WYPIWYS (What You Print Is What
You See), and should work with any Epson-
compatible printer which has the facility to
download character definitions into the
printer’s memory (normally using the control
sequence ESC “&”). Unfortunately an exact
match is not possible as the Master set uses an
8x8 matrix for each character, whereas those in
the printer are arranged in an 8x11 matrix, but
with the requirement that adjacent points in
any row cannot be printed.

The model B does not have the extended
character set of the Master, but in its default
state it is possible for characters 128-159 to be
user-defined, using the VDU23 statement (see
the User Guide). Characters 160-255 can also be
defined, by allocating extra RAM in chunks of
one page (of 256 bytes) for each block of 32
character definitions. This requires the value of
PAGE to be increased, so there has to be a
trade-off between memory usage and the
number of characters you define.

The WYPIWYS program includes a procedure
(PROCdefineB) and a set of DATA statements
which re-define all the characters from 128 to
255 on a model B to be the same as on a Master.
However, you can choose how many characters

32

to re-define to suit your own requirements.
Each DATA statement contains 2 character
definitions, in the form of an 8-byte hex string,
starting at characters 128-129 in line 1610. The
fewer characters you define, the fewer lines
you have to type in! Simply alter last% in line
140 to the highest character to be defined, and
include the appropriate number of DATA
statements when you type in the listing. Then
before loading the program set the value of PAGE
as follows:

last%=159 no alteration to PAGE
last%=191 PAGE=PAGE+&100
last%=223 PAGE=PAGE+&200
last%=255 PAGE=PAGE+&300

When the characters have been defined,
PROCmodelBtest displays them on the screen.
Master owners need not type in these two
procedures, or the DATA statements!

Characters 128 to 191 are now:-

CHR$(138) = R CHR$(131
CHR$(134) = i CHR$(135

y=f

)
CHR$(138) CHR$(139)

)

)

8

CHR$(142) = & CHR$(143.
CHR$(146) CHR$(147
CHR$(158) CHR$(151)
CHR$(154) CHR$(155) = b
CHR$(158) CHR$(159)
CHR$(162) CHR$(163)
CHR$(166) CHR$(167)
CHR$(178) CHR$(171
CHR$(174)

1
r

T

t
CHR$(175) = ¢
CHR$(179) =/
i

)

)

CHR$(176))
CHR$(183)
)

)

CHR$(188)
CHR$(184)
CHR$(188)
)

CHR$(177)
CHR$(181)
CHR$(185
CHR$(189) = .

n

t
L]
£
u
§

CHR$(187
CHR$(191.

CHR$(186) = *
CHR$(198) =

- -

One instance in which this program may be useful
is when printing out program listings which
contain teletext control characters. These are
sometimes used in REM statements, or in PRINT
statements where insertion of a control character,
by using Shift or Ctrl with a function key, is easier
than typing in, say, ‘CHR$129". Normally when
such listings are printed the results can be chaotic,
with form feeds, carriage returns and other
control codes being sent to the printer.

Beebug March 1990

\

y

Printing Characters 128 to 255

PROCsetup first sends the appropriate codes to
the printer to notify it that characters are to be
downloaded. It then repeatedly calls
PROCreadchar for each character, which reads
the character definition using OSWORD 10 and
translates it from the horizontal bit-pattern
supplied into the vertical bit-pattern required
by the printer. The character is then
downloaded to the printer before calling
PROCreadchar for the next one.

When all the characters have been downloaded,
PROCtest causes the printer to print out all the
characters from 128 to 255 twice; firstly the
original character from the printer’s own set,
and secondly the newly-defined character.

PROCdefineB first makes a *FX20 call, with X
set to 0,1,2 or 3 depending on the number of
characters to be defined. The procedure then
simply unpacks the hex strings in the DATA
statements, and uses VDU23 to re-define the
characters.

10 REM Program WYPIWYS
20 REM Version B1.0
30 REM Author Lance Vick
40 REM BEEBUG March 1990
50 REM Program Subject to copyright
60

100 MODE3

110 ON ERROR:VDU3:WIDTHO:REPORT:PRINT"
at line ";ERL:END

120 master=(INKEY (-256)=253)

130 first%=128:1ast%=255

140 IF NOT master:last%=255

150 IF NOT master:PROCdefineB

160 IF NOT FNonline:PROCswitchon

170 PRINT'"WYPIWYS or"''"What You Prin
t Is What You See"'

180 PROCsetup:PROCtest

190 END

200 2

1000 DEF PROCsetup

1010 PRINT'"Redefining Characters 128 t
o “;last®

1020 vpuU2,1,27,;1,5634,1,0,1,0,1,0

1030 vpUl1,27,1,4&36

1040 VDU1,27,1,826,1,0,1,firsts,1,last?
1050 D%=&70:B%=&79

1060 X%=D%MOD256:Y%=D%DIV256:A%=10

1070 FOR C%=first% TO last%

1080 VDU1, &8B

1090 PROCreadchar (C%)

Beebug March 1990

1100 vpul, (B%?0 ORB%?1),1,0,1,B%?2,1,0,
1, (B%?3 OR B%?4),1,0,1,B%?5,1,0,1,B%?6,1
0l BRRT

1110 NEXT:VDU3:ENDPROC

1120 :

1130 DEF PROCreadchar (I%)

1140 ?D%=I%:CALL &FFF1

1150 FOR N%=7 TO 0 STEP-1

1160 V%=0:P%=2"N%

1170 FOR M%=0 TO 7

1180 V%=V%-2"M%* ((D%? (8-M%) AND P$%)>0)

1190 NEXT:B%?(7-N%)=V%

1200 NEXT:ENDPROC

2008

1220 DEF PROCtest

1230 VDU2:WIDTH80

1240 PRINT'"Characters 128 to ";last%

1250 PRINT"First Character is from Prin
ter's ROM"'

1260 PRINT"Second Character is Redefine
d version"'

1270 FOR C%=first% TO last$%

1280 PRINT"CHRS(":C%") ="

1290 FOR I%=0 TO 1

1300 VDU, 27515825, 1, 1%,1,0

1310 PRINTCHRS (C%)SPC3;

1320 NEXT:NEXT

1330 PRINT:VDU3:WIDTHO

1340 ENDPROC

1350 %

1360 DEF PROCdefineB

1370 RESTORE

1380 FOR C%=first% TO last%:VDU23,C%

1390 READ A$:FOR I%=0 TO 7

1400 VDU EVAL ("&"+MIDS (AS,1%*2+1,2))

1410 NEXT:NEXT

1420 PROCmodelBtest

1430 ENDPROC

1440 :

1450 DEF PROCmodelBtest

1460 PRINT'"Characters 128 to "STRSlast
%" are now:-"'

1470 FOR C%=first% TO last%

1480 PRINT"CHRS (";C%") = "CHR$ (C%)SPC7;

1490 NEXT:ENDPROC

1510 DEF FNonline:*FX21,3
1520 vDU2,1,0,1,0,3
1530 =(ADVAL-4=63)

1550 DEF PROCswitchon

1560 REPEAT:PRINT'"Printer not on-line"
1570 PRINT'"Switch on and press Space"
1580 REPEAT UNTIL GET=32

1590 UNTIL FNonline:ENDPROC

1610 bATA 66003C667E666600, 3C663C667E666600

1620 DATA 3F66667F66666700,3C66606060663C60
1630 DATA 0C187E607C607E00, 663C666666663C00

33

by Mike Williams

Last month I outlined
some of the ways in
which you can improve your programming in
Basic, and I dealt at some length with two
examples. The first was concerned with
enhancing the interface between the program
and the user - making the screen display more
slick and professional where input is
concerned. The second example was concerned
with redundancy, and I want to consider that
further this month.

-Course

By redundancy I mean locating areas within a
program which can be written more concisely
than might at first seem possible. The example
which I discussed last time showed how a
sequence of IF statements can often be reduced
to a single such statement, provided that the
conditions involve testing the same variable
each time. Of course, condensing a program in
this way may result in something which is less
readable, where the original intention (i.e. the
set of individual tests) has become obscured,
but the concept is well worth remembering, and
if a program is tight on memory space well
nigh essential.

When compiling the Postbag page for this issue,
I was reminded of another technique which is
far from obvious. The letter, if you want to refer
to it, shows a method for defining a ‘plus-or-
minus’ sign, as well as correct pound (£) and
hash (#) signs for a printer. In this case, a FOR-
NEXT loop easily copes with the requirements,
but what if you have a similar repetitive pattern,
but one which is not quite so regular?

Suppose, as an example, we want to output to a
printer in graphics mode, rather than in plain
text. To do this, it is necessary to send codes to
the printer which say we are printing graphics
(Escape-K, where K has ASCII code 75), how
many bytes of information are to follow (as two
bytes nl and n2), and then the bytes
themselves, for example:

vpui,27,1,75,1,11,1,0,1,135,1,140,1,100;
1,54,1,30,1,40,1,0,1,54,1;0,1,40,1,0,1,23,1,10

34

Improving Basic Programs (Part 2)

vpu1,23,1,95,1,10,1,0,1,196,1,110,1,112,
1,16,1,.14,:1,22;1,30,1,16,3;130,1,68,1,13,3,10

voui,21,1,15,1,10,1,0,1,182,1,120,1,100,
1240184, 1-34,10,2505 1.0, 38, 1; 34, 1, 34, 1,03, 1,10

Don’t worry about the precise effect of this - it
is unimportant as far as this article is
concerned. Note the alternate ‘1" in all three of
the above statements. In a VDU instruction, this
ensures that the following value is sent only to
the printer, not to the screen as well. Printing
graphics (and on other occasions) can involve
values which, if output to the screen, would
have undesirable effects.

Be that as it may, it seems a bit of a waste to
specify each ‘1’ individually. Why not, I
thought, have a loop which we go round three
times, once for each VDU statement, inside
which we have another loop which reads the
relevant codes from a DATA statement, and
sends them to the printer. Thus a simple
instruction like:

READ C%

VDU1, C%
could do all the work.

As a further refinement, we can see that each
VDU statement begins with the sequence
1,27,1,75" - which sends ‘Escape-K’ to the printer
- so why bother putting that in with the other
data; why not put it in the program? We can
treat similarly the 1,13,1,10 (carriage return, line
feed) which occurs at the end of each line - to
move the printer to the start of the next line. In
principle, our revised routine will look like this:

FOR I%=1 TO 3:VDU1,27,1,75

FOR J%=1 TO 13

READ C%:VDUI,C%

NEXT J%:VDU13,10:NEXT I%

DATA 11,0,135,140,100,54,30,40,0,54,0,40,0
DATA 10,0, 196,110,112, 16,14, 22, 30, 16,130 68
DATA 10,0,182,120,100,34,34, 34,250,34,34, 34

Of course, you may argue (and perhaps rightly)
that the original version was much simpler, and
easier to understand. I don’t disagree, in this
case, but it is the idea which is important.

Beebug March 1990

9

First Course - Improving Basic Programs

However, if you look at the original VDU
statements, you will see that the first contains
13 values to be sent to the printer (after the
initial codes 27,75), while the other two each
have 12 values. So our inner loop, in which the
variable J% counts from 1 to 13 will be wrong
for the second two VDU statements.

That might suggest that all our clever ideas will
come to naught. However, that is not so, and
although we have taken a little while to reach
this point, it is the crux of what I am talking
about. Suppose we want the FOR-NEXT loop
which uses J% to count from 1 to 11 the first
time and from 1 to 10 each of the other two
times. How can this be accomplished?

The solution depends upon the fact that on any
BBC computer the values of TRUE and FALSE
are represented by the values -1 and 0
respectively. Thus although we may think of a
condition like ‘I1%>1" as being either true or
false, it also has a value of either -1 or 0, and
that value can be used as such. For example we
could write:
13+(I%>1)

This would have the value 13 (if 1% is not greater
than 1, so that 1%>1’ is false with a value 0), or
12 (if 1%>1" is true with a value of -1).

This is just what we need in the example
described above, so we must replace the second
line of the routine with:
FOR J%=1 TO 13+(I%>1

This idea of using the value of a condition as
part of an expression is one that is well worth
knowing, so we’ll look at another example
before we finish.

Suppose you are writing a graphics program
which is to display a small cross on the screen
(representing the current position), which is to
be moved using the cursor keys. We will make
the cross 16 graphics units high and 16 graphics
units wide (remember, the graphics screen is
1280 units horizontally (from 0 to 1279), and
1024 vertically (from 0 to 1023).

To make the cross appear to move, according to
the pressing of the cursor keys, we will need to
use Exclusive OR plotting, drawing the cross
once to make it appear, drawing it a second time
to make it disappear, and then redrawing it in a

Beebug March 1990

new position. We will also assume that we start
from the centre of the screen. In outline, the
routine will look something like this:

*FX4,1

GCOL 3,1
X%=640:Y%=512
REPEAT
PROCcross (X%, Y%)
PROCmove
PROCcross (X%, Y%)
UNTIL FALSE

The *FX call disables cursor editing and causes
the cursor keys to generate ASCII codes (136 for
left, 137 for right, 138 for down and 139 for up).
The GCOL statement selects the colour for
plotting (this is the second value - the result
will depend on the mode used, but see later),
while the first value of 3 selects Exclusive OR
plotting (I won’t explain the precise details of
this; just accept that it does what I say). The
program then sets X% and Y% to the agreed
initial values.

We then have a REPEAT-UNTIL loop involving
three procedure calls (the procedures have yet
to be written). PROCcross draws a cross on the
screen. The first time it is called the cross will
appear, the second time it will disappear, and
so on. The procedure PROCmove checks to see
if a cursor key has been pressed and updates
X% and Y% accordingly.

Incidentally, this approach to programming is a
well recognised technique in its own right. Get
the broad outline of the program written first,
using procedure or function calls where
necessary to gloss over the smaller detail you
don’t want to bother about yet. When you are
satisfied that all is well, start looking at those
procedures, writing the definitions in more
detail.

Now back to our own program, and before we
proceed to fill out the two procedures, there is
an anomaly that must be taken care of. The
second call to PROCcross is intended to remove
the cross from the screen by re-drawing it in its
original position. But PROCmove may have
already updated the values of X% and Y% to
reflect a new position. We need to introduce
two additional variables, which I will call
0ldX% and 0ldY% to remember the previous

35

First Course - Improving Basic Programs

values of X% and Y%. The main loop will; now
look as follows:

REPEAT

PROCcross (X%, ¥%) :01dX%=X%:01dY%=Y%
PROCmove

PROCcross (01dX%,01dY%)

UNTIL FALSE

Now we can proceed. First of all PROCcross
can be written as follows
DEF PROCcross (X%,Y%)
MOVE X%-8,Y%: DRAW X%+8:Y
MOVE X%,Y%+8:DRAW X%, Y%-
ENDPROC
This really needs no further explanation. Now for
the second procedure, and this is where the idea
that I described previously will come into play.
First of all we need to decide something else.

8

Although the graphics screen runs from 0 to
1279 horizontally and 0 to 1023 vertically, we
cannot literally move one graphics unit at a
time. There is always a minimum step size
which depends on the mode in use. If you
specify a smaller step size than is possible on
the visible screen, you just stay where you are.
The vertical step size is always 4. The horizontal
step size can be 2 (mode 0), 4 (modes 1 and 4) or
8 (modes 2 and 5) - the other modes are not
graphics modes anyway. We will assume we are
using either mode 1 or mode 4, so that the
minimum step size is 4 in both directions. If you
are using a different mode then adjust the
horizontal step size in what follows.

The most obvious way of coding PROCmove is

as follows:
DEF PROCmove
S%=GET
IF $%=136 THEN X
IE Sg 137 THEN X%=
IF S%=138 THEN Y%=
IF $%=139 THEN Y%=
IF o<0 THEN X%=0
IF X%$>1276 THEN X%=
IF Y$<0 THEN Y%=0
IF Y$>1020 THEN Y%=1020
ENDPROC

Perhaps you were initially surprised by the last
four IF statements, but we have to make sure
that the centre of our cross remains on the screen
(you might, of course, want to have a more
restricted screen area). The reason for 1276 (not

36

1279) derives from the fact that, moving in steps
of 4, the highest value we can reach that is on the
screen is 1276. Similarly, the highest on-screen
value of the y screen co-ordinate is 1020.

Now let’s see how the first two statements

might be rewritten using the numerical value of

the test condition:
X$=X%+4* (S%=136)

and similarly for Y%:
Y$=Y%+4* (S%$=138) -4* (S%=139)

Remember that only one value for 5% is

possible at any one time. If you are not sure

about these two lines, try each possible value of

S% in turn, substituting 0 or -1 as appropriate

for each condition. For example, if S%=136

(cursor left), then the first line becomes:

X%$=X%+4* (-1) -4*(0)
ie. X%=X%-4-0
thus: X%=X%-4

-4*(5%=137)

So far so good, and if some other key should be
pressed on the keyboard, then our revised (and
original) version will ensure that the values of
X% and Y% remain unchanged.

However, we can take the idea of using logical
values even further. No matter how long a
logical condition becomes, the resulting value is
always either -1 or 0. So we can incorporate the
last four IF statements into our revised first two
lines as follows:

X%=X%+4* (5%=136 AND X%>0)-4*(S%=137 AND
X%$<1276)

Y$=Y%+4* (S%$=138 AND Y%>0)-4*(S%=139 AND
Y%$<1020)

When AND is used to join two conditions
together, the result is true only if both of the
individual conditions are true (-1); in all other
cases the final result is false (0). Again, I suggest
you try evaluating either expression above in
particular cases to verify their validity.
Moreover, we have reduced our original eight
lines to a mere two (albeit longer), not bad eh?

Using conditions as values can take a bit of
getting used to, but it can streamline your
programs as I have shown, and is the kind of
‘trick’ that can make you feel quite satisfied
when you can put it to good use, even if the
new version is sometimes less readable.

Beebug March 1990

EdiKit (Part 3)

L

Bill Hine continues the development of a programmer’s toolkit ROM for use with Basic
programs. EDIKIT3 adds five more commands to the EDIKIT ROM.

ENTERING THIS MONTH’S PROGRAM
There are some differences between the Basic II
(on the model B) and Basic IV (Master) versions
of this program. Note the address of insline in
lines 1030 and 1040; &BC8D for Basic II and
&BAEB for Basic IV. Line 4200 should be
omitted if you are going to run the program
with Basic IV; the whole of the routine tokline
(lines 4590 to 4660) is also unnecessary with
Basic IV. Where appropriate, substitute your
own SWR commands in lines 170 and 180.

Save this month’s program as EDIKIT3. Before
running it, ensure that the ROM image from
parts 1 and 2(Edirom &8000 to &9240) is
already loaded in a vacant sideways RAM slot,
and that in lines 170 and 180 you replace ‘X’ by
the same slot number (as last month). When
you run EDIKIT3 answer Y to the prompt
“SAVE and LOAD ROM?”; Edirom3 will be
overlaid in slot X’ from &9200 to &9630 and
the accumulated ROM from &8000 to &9830
will be re-saved as Edirom. Now press Ctrl-
Break to initialise the ROM. *H. EDIKIT should
print a list of commands and their formats.

USING THE NEW COMMANDS
*LFROM <element> lists eight lines of
program beginning with the first occurrence of
the specified element. An element of Basic is a
name (of a variable, function or procedure), a
Basic keyword, a numeric value, a quote string,
an OS star command, or an assembler label,
opcode or operand. All the rules about
wildcards and abbreviations which apply to
*FBASIC also apply to *LFROM,; for further
details see the notes on EDIKIT2 in the last
issue of BEEBUG Magazine (Vol.8 No.8). At the
end of the eight lines, you may choose either to
continue listing more of the program (press
Shift), or to start again at the next occurrence of
the specified element (press Tab). You may quit
by pressing Escape. This command can be very
useful for listing FOR loops, for example; just
enter *LEE. (note the abbreviations of *LFROM
FOR).

*LPROC <procname> (which may be shortened
to *LP.<procname>) lists the named procedure

Beebug March 1990

starting at the line in which the DEFPROC
occurs and ending at the first ENDPROC.

*LFN <fnname> (no abbreviation) lists out the
function with the specified name.

*RTEXT /<string1>/<string2>/ and *RBASIC
<elementl>/<element2> are find and replace
commands directly analogous to FTEXT and
FBASIC. The commands may be abbreviated to
*RT. and *RB. Both look for occurrences of the
first parameter, and print out in turn each line
which contains it. A pointer indicates the last
letter of the target word so that multiple
occurrences in one line will not be confused.

You are offered the option of replacing the first
parameter with the second (press R), skipping
over the current instance (press S), or aborting
the run by pressing Escape. If you choose to
make the substitution, the amended line is
printed again enabling you to check that the
desired effect has been achieved. Note that the
slash character is the normal delimiter for the
two parameters of RTEXT, but any other
character may be used as a delimiter (as for
FTEXT) so long as that character occurs three
times; otherwise an error will be signalled. The
use of three delimiters means that initial or final
spaces may be included in either parameter.
Note that the parameters to RBASIC are also
separated by a slash character but this may not
be varied; any leading or trailing spaces are
omitted.

Parameters to RBASIC may consist of any
element of Basic as defined in the discussion of
EDIKIT2. Keyword abbreviations may be used
but the star wildcard is not allowed; an error
message will be printed if you try. To substitute
one line number for another (following GOTO
etc.) you need only use the ~ character as a
marker in the case of the first parameter. Thus
*RB.72000/3300 will replace the line number
2000 with 3300.

Attempts to call any of the remaining
commands (VARLIST, SYSVARS, FKDEFS,
PCOMM ... ZCOMM) will result in a “Not
implemented” message at this stage.

37

EdiKit

130
| 140
| 150
| 160

REM Program EDIKIT3

REM Version 1.01

REM Author Bill Hine

REM BEEBUG March 1990

REM Program subject to copyright

MODE 7
start=69200:size=&600:DIMcode &630
PROCinitvars:PROCassemble
PROClinks

PRINT"SAVE and LOAD ROM? Y/N"
A=GET AND&DF : IFA<>ASC"Y"THENEND
OSCLI ("SAVE edirom3 "+STR$~code+"+

i“+STR$~(O%—code))

170
180
190
200

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330

| 1340 :

*SRLOAD edirom3 9200 X

*SRSAVE edirom 8000 9830 X
PRINT"Press CTL BRK to initialise"
END

210 ¢

DEF PROCinitvars
ipbuff=6600:ipbuff2=6680
buffer=6700

insline=&BC8D:REM BASIC II

REM =&BAEB:REM BASIC IV
page=&1D:top=6&12:commandln=&F2
nl=&0D:cr=nl:rem=&F4:def=&DD
proc=&F2:endproc=&El: fn=6A4:1f=¢E7
else=§8B:quote=ASC"""" :spc=ASC" "
esck=&8F : tabk=§9F : shiftk=6FF

oswrch=&FFEE : osnewl=&4FFE7
osbyte=&FFF4:0sword=&FFF1
oswrch=¢FFE3:0srdch=&¢FFEQ
romexit=§8803:escexit=68806
initscanft=&8809:scanprog=&880C
detokline=§880F:prntline=68812
prattext=&8815:notimp=68818
initbptr=4881B:initpptr=&881E
reinitbptr=68824:prnteoprog=6882A
initscanfb=&8C3F:initscanfkw=&8C42
ipbasparam=68C45:testdelim=68C48
testopcode=&8C4B

flags=&70:ay=671:ex=672:wy=673
strlen=&74:str2len=675:token=&76
tokn=&77:hitokn=&78:starttokn=&79
endtokn=6&7A:bptr=680:pptr=&84
scantype=&88:action=68A
ipdelim=&8C:diff=&8D:width=&8E
scrollmode=¢&8F

ENDPROC

DEF PROCassemble

1350
1360

1380
1390
1400
1410
03
1420
1430
1440
1450
1460
1470

1490
| 1500
S0
[1520
| 1530
| 1540
1550
1560
| 1570
| 1580
£E-1590

1600
| 1610
| 1620

1630
| 1640
| 1650
| 1660

1670

1680
| 1690
| 1700
[1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
| 1840
| 1850
| 1860
| 1870

FOR pass=4 TO 7 STEP3
P%=start :0%=code: [OPT pass

1370

.proccalls

JMP 1from:JMP lproc:JMP lfn

JMP rbasic:JMPrtext

.sysinf JMP &9800:.varlist JMP &98

.fkdefs JMP &9806:.pcomm JMP &9809
.gcomm JMP &980C:.rcomm JMP &980F
.scomm JMP &9812:.tcomm JMP &9815
.ucomm JMP &9818:.vcomm JMP &981B
.wcomm JMP &981E:.xcomm JMP &9821
.ycomm JMP &9824:.zcomm JMP &9827

1480 :

.1from

JSR svscrollmode:LDA#0:STA flags
JSR ipbasparam:JSR initbptr
LDA#1frnextmatch MOD256:STAaction
LDA#lfrnextmatch DIV256
STAaction+1:JSR initscanfb

JSR testopcode

JSR scanprog:JSR prnteoprog

LDA scrollmode:JSR oswrch
LDA#15:LDX#1:JSR osbyte:JMPromexit

.lfrnextmatch
LDAbptr:PHA:LDAbptr+1:PHA:TYA:PHA
JSR prnttext

EQUS"ESC:quit":EQUB spc:EQUB spc
EQUS"TAR:next match":EQUB spc
EQUB spc:EQUS"SHIFT:more":EQUW nl
LDX#8:JSR 1lfrlistlp
PLA:TAY:PLA:STAbptr+1:PLA:STA bptr
JSR detokline:RTS

.Lfrlistlp

TXA:PHA:JSR ptbasline:PLA:TAX
JSR reinitbptr:LDY#1:LDA(bptr),Y
CMP#&FF :BEQ lfroptns2

DEX:BNE 1lfrlistlp:JSR lfroptns
BEQlfrexit:LDX#8:JMP 1lfrlistlp
dfrexit RTS

.1froptns .ktloop

LDX#esck:JSR keytest :CPX#&FF

BEQ escpress:LDX#tabk:JSR keytest
CPX#&FF :BEQ tabpress:LDX#shiftk
JSR keytest :CPX#&FF:BNE ktloop
.shiftpress LDA#1:RTS

.tabpress LDA#0:RTS

.escpress JMP escexit

.1froptns2

JSR prnttext

Beebug March 1990

EdiKit

1880
1890
1900
1910
1920
1350
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
21170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360

| 2370

2380
2390
2400

| 2410

EQUS"End of prog - ESC:quit "

EQUS" TAB:next match":EQUWnl
.ktlp2

LDX#esck:JSR keytest :CPX#&FF
BEQ escpress:LDX#tabk:JSR keytest
CPX#&FF :BEQ tabpress:JMP ktlp2
.keytest
TXA:PHA:LDA#6&81:LDX#2:1DY#0
JSR osbyte:PLA:TAX
LDA#&81:LDY#&FF:JMP osbyte
.svscrollmode

LDA#&75:JSR osbyte
TXA:AND#4:LSRA:LSRA:STA ex
LDA#15:JSR oswrch

SEC:SBC ex:STA scrollmode

RIS

.iproc

LDA#proc:STA starttokn

LDA#endproc:STA endtokn
JSR lprocfn:JMP romexit

LEn

LDA#fn:STA starttokn
LDA#ASC"=":STA endtokn
JSR lprocfn:JMP romexit

.lprocfn LDA#0:STAflags
JSRipbasparam:JSRinitbptr:LDA#def
STAtokn:STAhitokn:JSR initscanfkw
LDA#checkpf MOD256:STA action
LDA#checkpf DIV256:STA action+l
JSR scanprog

.lpfexit

RIS

.checkpf

LDA (bptr), Y

CMP starttokn:BEQ checkname
CMP#spc:BNE lpfexit

INY:JMP checkpf

.checkname

INY:LDX#0:LDA (bptr), Y

CMP ipbuff,X:BNE lpfexit
.chkname2

INX:INY

LDA ipbuff,X:CMP#nl:BEQ chkname3
CMP (bptr),Y:BEQ chkname2

JMP lpfexit

.chkname3

LDA (bptr),Y:DEY

JSR testdelim:BNE lpfexit
.namesmatch

INY:LDA (bptr),Y

CMP#spc:BEQ namesmatch

Beebug March 1990

2420 CMP#ASC" ("
2430 CMP#nl:BEQ nextline
2440 CMP endtokn:BEQ nmexit

2450 CMP#ASC™":"

:BEQ brackets

:BEQ newstatemt

2460 JMP newstatemt+1
2470 .nmexit RTS
2480 .newstatemt

2490 INY:LDA (bp
2500 CMP#spc:BE
2510 CMP endtok
2520 JMP ptbasl

Er), Y

Q newstatemt
n:BNE restofstmt
ine

2530 .restofstmt

2540 CMP#nl:BEQ

| 2550 CMP#ASC":"

2560 CMP#if:BEQ
2570 INY:LDA (bp
2580 .brackets
2590 LDX#0

2600 .braklp
2610 INY:LDA (bp
2620 CMP#nl:BEQ
2630 CMP#ASC")"
2640 CMP#ASC"™ ("
2650 .braklp2
2660 INY:LDA (bp
2670 CMP#nl:BEQ
2680 CMP#ASC" ("
2690 CMP#ASC™)"
2700 TXA:DEX:BN
2710 JMP braklp
2720 .nextline
2730 JSR ptbasl
2740 CMP#&FF :BE
2750 BIT&FF :BMI
2760 LDY#3:JMP

nextline

:BEQ newstatemt
ifloop
tr),Y:JIMP restofstmt

| R 4

nextline

:BEQ newstatemt
:BNE braklp:INX

ErE, Y
nextline

:BEQ braklp2-1
:BNE braklp2
E braklp2

ine:INY:LDA (bptr),Y

Q eoprog:JSRreinitbptr
lpfesc

newstatemt

2770 .eoprog RTS
2780 .lpfesc JMP escexit

2790 .ifloop

2800 INY:LDA(bptr),Y
2810 CMP#nl:BEQ nextline

2820 CMP#ASC":"

:BEQ newstatemt

2830 CMP#else:BEQ newstatemt
2840 JMP ifloop

2850
2860 .rbasic
2870 LDA#0:STA

flags

2880 JSR iprbparams:JSR chekwild
2890 JSR initbptr

2900 LDA#options MOD256:STA action
2910 LDA#options DIV256:STA action+l
2920 JSR initscanfb:JSR testopcode
2930 JSR scanprog:JSR prnteoprog

2940 JMP romexi
2950+

t

EdiKit

2960
2970
2980
2990
3000
3010
3020
3030
3040
3050
3060
3070
3080
3090
3100
3110
3120
3130
3140
3150
3160
3170
3180
3190
3200
3210
3220
3230
3240
3250
3260
3270
3280
3290
3300
3310
3320
3330
3340
3350
3360
3370
3380
3390
3400
3410
3420
3430
3440
3450
3460
3470
3480
3490

40

.iprbparams

LDA (commandln) ,Y:LDX#0 :CMP#ASC" "
BEQ initlnnoflag:CMP#spc
BNEiprbploop:INY:JMP iprbparams
.initlnnoflag
LDAflags:ORA#4:STAflags: INY

JMP iprbparams

.iprbploop

LDA (commandln) ,Y:STA ipbuff,X
CMP#nl:BEQ rberr:CMP#ASC"/"

BEQ trspcloopl:INY:INX:CPX#128
BEQtoolong:JMP iprbploop
.trspcloopl

DEX:LDA ipbuff,X:CMP#spc

BNE iprbp2:JMP trspcloopl
.iprbp2

INX:LDA#cr:STA ipbuff,X:TXA

BEQ rberr:STA strlen:INY
.rbploop2

LDA (commandln) , Y:LDX#0:INY
CMP#ASC"~":BEQ rbploop2:CMP#spc
BEQ rbploop2:DEY:JMP iprbp2loop
.iprbp2loop

LDA (commandln) ,Y:STA ipbuff2,X
CMP#nl:BEQ trspcloop2:INY:INX
CPX#128:BEQ toolong:JMP iprbp2loop
.trspcloop2

DEX:LDA ipbuff2,X:CMP#spc

BNE iprbpexit:JMP trspcloop2
.iprbpexit INX:LDA#cr:STAipbuff2,X
STXstr2len:RTS

.rberr

LDX#0:LDA#104:JMP errexit
.toolong
LDA#106:LDX#t1ltext-detext

JMP errexit

.chekwild

JSR initpptr:JSR scanwild
JSR initpptr2:JSR scanwild
.swexit RTS

.scanwild

LDY#0:LDA (pptr),Y:CMP#quote
BEQ swexit:CMP#nl:BEQ swexit
.scanwlp

INY:LDA (pptr),Y:CMP#nl

BEQ swexit:CMP#ASC"*"

BEQ swerr:JMP scanwlp
.Swerr
LDA#105:1LDX#wetext-detext
JMP errexit

.rtext
JSR iprtparams

3500
3510
3520
3530
3540
3550
3560
3570
3580
3590
3600
3610
3620
3630
3640
3650
3660
3670
3680

3690

3700
3710
3720
3730
3740
3750
3760
3770
3780
3790
3800
3810
3820
3830
3840
3850
3860
3870
3880
3890
3900
3910
3920
3930
3940
3950
3960
3970
3980
3990
4000
4010
4020
4030

JSR prnttext :EQUS"Replace ":EQUBO
LDAipdelim:PHA:JSR oswrch

JSR initpptr:1DY#0:JSR ptrtextlp
PLA:PHA:JSR oswrch:JSR osnewl
LDX#3:JSR spaces:JSR prnttext
EQUS"with ":EQUBO:PLA:PHA

JSR oswrch:JSR initpptr2:LDY#0
JSR ptrtextlp:PLA:JSR oswrch
JSRosnewl:JSRosnewl : JSRreplacetxt
JMP romexit

.ptrtextlp LDA(pptr),Y:CMP#nl
BEQ ptrtexit:JSR oswrch:INY

JMP ptrtextlp:.ptrtexit RTS

.replacetxt

JSR initbptr:JSR initscanft
LDA#options MOD256:STA action
LDA#options DIV256:STA action+l
JSR scanprog:JMP prnteoprog

.iprtparams

LDA (commandln), Y:INY
CMP#spc:BEQ iprtparams
CMP#nl:BEQ rtperr

STA ipdelim:DEY:LDX#&FF
.rtparamslp
INY:INX:CPX#128:BEQ twolong
LDA (commandln) , Y

CMP#nl:BEQ rtperr

CMP ipdelim:BEQ plfin

STA ipbuff,X:JMP rtparamslp
.plfin

LDA#&0D:STA ipbuff,X:STX strlen
LDX#&FF

.rtparamlp2
INY:INX:CPX#128:BEQ twolong
LDA (commandln), Y:CMP#nl:BEQ rtperr
CMP ipdelim:BEQ p2fin

STA ipbuff2,X:JMP rtparamlp2
.p2fin

LDA#cr:STA ipbuff2,X

STX str2len:RTS

.twolong

JMP toolong

.rtperr

JMP rberr

.options

TYA:PHA:JSR prntline:JSRpointer
LDX#5:JSR spaces:JSR prnttext
EQUS" (R)eplace (S)kip ESC:quit"
EQUW spc

JSR osrdch:BCS optesc:AND#&DF
JSR oswrch:PHA:JSR osnewl:PLA

Beebug March 1990

EdiKit

4040 CMP#ASC"R":BEQ doreplace

4050 CMP#ASC"S":BEQ optexit:LDA#7
4060 JSR oswrch:PLA:TAY:JMP options
4070 .optexit

4080 JSR osnewl:PLA:TAY:RTS

4090 .optesc

4100 JMP escexit

4110 .doreplace

4120 LDA str2len:SEC:SBC strlen
4130 JSR movertn

4140 LDAex:SEC:SBC strlen:TAY:LDX#0
4150 .doreplp

4160 CPX str2len:BEQ drexit

4170
4180
4190
4200
4210

LDA ipbuff2,X:STA buffer,Y
INY:INX:JMP doreplp

.drexit

JSR tokline ; BASIC II only
JSR insertline:JSR detokline
4220 JSR prntline:LDA tokn:BNE optexit
4230 PLA:CLC:ADC diff:TAY:JSR osnewl
4240 RTS

4250 :

4260 .pointer

4270 LDA&30A:SEC:SBC&308:STAwidth
4280 INC width:LDXex:DEX:TXA

4290 .ptrmodlp

4300 CMPwidth:BCC prntptr

4310 SEC:SBCwidth:JMP ptrmodlp

4320 .prntptr

4330 TAX:JSR spaces

4340 LDA#ASC"~":JSRoswrch:JMP osnewl
4350 ¢

4360 .movertn

4370 STA diff:BEQ mvrtnexit

4380 BPL up:JMP down

4390 .mvrtnexit RTS

4400 .down

4410 LDAex:TAX:CLC:ADC diff:TAY

4420 .movedn

4430 LDA buffer,X:STA buffer,Y

4440 CMP#nl:BEQ movednexit

4450 INX:INY:JMP movedn

4460 .movednexit RTS

4470 .up LDXex

4480 .movetoeoline

4490 LDA buffer,X:CMP#nl:BEQ destindex

4500 INX:JMP movetoeoline

4510 .destindex

4520 TXA:CLC:ADC diff:TAY

4530 .moveup

4540 LDA buffer,X:STA buffer,Y:CPX ex
4550 BEQ moveupexit :DEX:DEY:JMPmoveup
4560 .moveupexit RTS

4570

4580 \ Lines 4660-4730 BASIC II only

Beebug March 1990

| Ol

4590
4600
4610
4620
4630
4640
4650
4660
4670
4680
4690
4700
4710
4720
4730
4740
4750
4760
4770
4780
4790
4800
4810
4820 :
4830 .ptbasline
4840 JSR detokline:JMP prntline

4850 :

4860 .spaces

4870 INX:LDA#spc

4880 .spcloop

4890 DEX:BEQ spcexit:JSR oswrch

4900 JMP spcloop

4910 .spcexit RTS

4920 .errexit

4930 STA &101:LDA#0:STA &100:LDY#0

4940 .errloop

4950 LDA detext,X:STA &102,Y:INX

4960 INY:CMP#0:BNE errloop:JMP &100
4970 .detext

4980 EQUS"Delimiters?":EQUB 0

4990 .tltext

5000 EQUS"Missing delimiters/Text too 1
ng" :EQUB 0

5010 .wetext

5020 EQUS"* wildcard not allowed"

5030 EQUB 0

5040 :

5050]NEXT:ENDPROC

5060 :

5070 DEF PROClinks

5080 P%=start+size:0%=codetsize

5090 FOR I%=0 TO 13

5100 [OPT 7:JMP notimp:]

5110 NEXT:ENDPROC]

.tokline

LDA#buffer DIV256:STA&38:LDA#5
STA&37:SEI:LDA#&51:STA &DE7
LDA#&89:STA&DES

LDX#0:LDY#&FF : LDA#&BB

JSR osbyte:STX&DE9
LDA#648:STA&230 : LDA#&FF : STA&231
CLI:JMP (&230)

.insertline

SEI:LDA#insline MOD256:STA&DE7
LDA#insline DIV256:STA&DES
LDX#0:LDY#&FF : LDA#&BB

JSR osbyte:STX&DEI
LDY#2:LDA (bptr) ,Y:STA&2A
DEY:LDA (bptr) ,Y:STA&2B
LDA#0:STA&2C: STA&2D
LDA#&48:STA&230 : LDA#&FF : STA§231
LDY#5:CLI:JMP (&230)

.initpptr2
LDA#ipbuff2 MOD256:STA pptr
LDA#ipbuff2 DIV256:STA pplr+l:RTS

-~ iy
512

by Robin Burton

After warnings of
doom and gloom for
some in the last
Forum I thought we should look at items of a
(slightly) lighter nature this month.

PROGRESS REPORT

I'm not sure that the 512 Technical Guide would
normally have a section of its own in the
Forum, but I've given it one because it's being
mentioned more and more frequently in your
letters lately. In case any newer Forum readers
don’t know the facts, I should first point out
that I'm the author of this particular book, so
having declared my interest I can now talk
about it and you can ignore me if you think it’s
an abuse of privilege.

Quite a few of you ordered this book from Dabs
Press some time ago and are wondering what
happened to it, why it's so long in arriving and
indeed if it ever will arrive. As I wrote it, I can
of course tell you. At the same time it might be
interesting to hear how books are produced and
eventually reach the reader. It’s not obvious
without a bit of thought, but there’s a great deal
more to it than simply writing a book and
sending it to a printer.

THE STORY SO FAR...

I finished the final section of the text last
September and it was duly forwarded to Dabs
for editing and so on, more of which in a
moment. In fairness to Dabs I should at this
point say that they’d hoped, even expected that
I would be able to complete this part of the job
much sooner and had based their advertised
publication date on that. Unfortunately, like
most of you, I still have to earn a living, and as
you’ll know this often interferes with things
you’d rather be doing, like using the 512 (or
even talking about it).

42

Following this, the text was sent for editing, a
job carried out by Sid Day, who you may like to
know is also (naturally!) a 512 Forum reader
(Hi Sid!). You should understand that editing a
book the size of the 512 Technical Guide (400+
pages at the last count) is no small or easy task,
but even so Sid had completed the job in about
a month. Thus, in early November it arrived
back at Dabs ready for typesetting, the next
stage in the process.

Typesetting is an extremely laborious, time
consuming task, and just like writing or editing
a book, there’s no way to automate the process.
As 1 said, most of us have to earn a living and
Dabs is no exception, therefore typsetting has to
be ‘slotted in’ between servicing orders,
answering queries, preparing for and attending
shows and generally keeping the business
running. Of course also in December comes that
great stealer of time, the Christmas break,
followed almost immediately by another
computer show, this time BETT at the Barbican
Centre.

This brings us up to date at the time of writing,
but with the added complication that changes
have taken place at Dabs over the Christmas
period which have definitely not assisted
production, rather the reverse. The changes
themselves are no secret, but I won’t turn the
Forum into a gossip column in spite of my
occasional excursions into story telling (like this
one) so you must either learn the details
elsewhere or remain in the dark.

I'm presently (January) expecting the typeset
proofs of the book to arrive here any day, when
my next job will be to check everything and
correct the inevitable errors which will have
crept in during editing or typesetting. I shall
then produce the glossary and finally write the
index and number the contents list, but only

Beebug March 1990

512 Forum

when the page numbers are guaranteed not to
change again. After that it’s back to Dabs for re-
setting of my late changes or additions.

Assuming this last check doesn’t cause page
renumbering, all that remains then is a final
check of the finished product. When this is
complete it’s on to the easy part, which is
getting the book printed, bound and on sale.
Depending on the printer’s workload at the
time, this usually means between one and two
months to first availability on the book shelves.

There you have the complete story. If you
ordered the book some time ago all I can say is
be patient a little longer. It will appear in due
course, hopefully pretty soon after you read
this issue of BEEBUG. In answer to those who
specifically queried the point, the book has
definitely not been either ‘shelved’ or cancelled.

MATTERS ARISING

One other specific query about the Technical
Guide which is frequently raised is the question
of whether or not it includes a 512 memory
expansion project. The answer to this is “Yes, it
does’. The reason for mention of this point is
that more and more over the last year or so the
512’s limited memory has proved a stumbling
block to running new software. Those who've
recently acquired a 512 are in many ways worse
off than the rest of us because they don’t have
ready access to ‘old’ software and never had the
chance to buy a PC+ either.

The reason for memory shortage being a more
common problem these days is simple. While a
‘standard’ PC or clone is limited to 640K of
memory and 256K or 384K was common only a
short time ago, PC systems with EMS
(Expanded Memory System) are much more the
norm nowadays. While the original 8086/8088
processor chips and their equivalents could
only address 640K of memory (which,
compared with CP/M Z80 based systems
seemed huge at the time), later chips aren’t so
limited. For example the 80286 can manage a

Beebug March 1990

theoretical 16Mbytes of memory. The problem
of course is, as usual, the software.

It’s interesting to note that, while computers are
often spoken of as mere boxes, just convenient
containers in which to run the all important
software, the truth is that in terms of
developments this view is absolutely incorrect.
Certainly some programs are better than others,
and certainly some are genuinely imaginative
or innovative, but the ultimate limit to what can
be achieved is always governed by the
hardware, primarily the processor chip.

The way that developments actually happen is
that processor manufacturers such as Intel or
Motorola compete with each other to produce
new and more sophisticated processor chips.
Following the arrival of such a new chip, the
PC manufacturers then compete to produce
new and better machines, followed by software
producers who write more complex and
sophisticated software to take advantage of the
new machines. So you see, the truth is that
software must always trail the hardware in
terms of capability. That's why I always smile
when I hear some supposedly informed and
expert individual saying “The hardware isn’t
important, it’s the software that matters”!

Back to the point. In 1985, as a result of
processor advances, the Lotus Development
Corporation in conjunction with Intel
announced the specifications for EMS. A while
later the Microsoft Corporation announced that
Microsoft Windows would be developed to
take advantage of EMS. To cut a long story
short this was produced for MS-DOS version 3
and EMS PCs. To maintain the compatibility
with earlier and more limited versions of both
DOS and processor, new extra commands were
provided by the processor chip to handle EMS
and overcome the previous 640K limit, while
retaining all the existing instructions.

If you're unfamiliar with how EMS works, the
easiest way to understand it is to liken it to the

43

.

512 Forum

Beeb’s sideways RAM. An area of memory is
logically mapped at a fixed location in the
addressing range of the machine, but it consists
of separate sections or blocks of RAM which
can be individually switched (paged) in or out
by the processor under software control. In
effect, although a PC may still only address
640K of RAM directly, the contents of some
parts of that 640K (in a 64K segment known as
the page frame) can be swapped with areas of
the extended memory in 16K chunks, in effect
giving overlaid main memory. To be able to do
this though, you need both the correct
processor and the correct operating system.

Well written software which can take
advantage of EMS while retaining
compatibility with earlier systems should
check the version of DOS and, if appropriate,
the type of machine to see if EMS is available.
If not then the program can resort to
restricting facilities or file sizes, or overlaying
programs or data from disc so that it can still
run. Unfortunately though, in some cases it
just won’t work without EMS.

I've digressed a little as usual, so if you're
thinking this isn’t much to do with the 512
perhaps I should explain. As processor chips
and PCs have expanded their capabilities,
applications software has tended to grow in
complexity (and memory consumption)
accordingly. One implication is that you may
upgrade to a later version of a package you
already use successfully in the 512 only to find,
if you're unlucky, that the new version won't
run at all.

Alternatively, if luck is with you, the new
package may run well enough, but may also
consume a great deal more memory. I've had
several letters on this topic and have recently
upgraded one of my own applications to find
the same thing. The ‘old’ version of the main
program was an ‘EXE’ file of about 105K, but
the new one, (which happily does work
perfectly by the way) is all of 226K.

44

Since an unexpanded ‘empty’ 512 has about
356K free with DOS Plus 2.1, it's easy to see that
the original program left about 250K free, but
the new one has just about cut this in half. This
needn’t cause problems with every package of
course, but with mine, for example, one
immediate problem is that many of my existing
files are now too big to load with the new
software. A secondary point is that I can no
longer load the on-line help at all unless I
haven't yet loaded a file, and using a DOS shell
from within the application, for example, to
copy a file or to format a disc, is also now a no-
go area more often than not. The all too
frequently seen response is now ‘Not enough
memory to load XYZ'.

One possible solution with an application like
word processing is to divide files into smaller
ones (using the old software) and simply have
more of them, but with something like a
spreadsheet or a graphics program for
example, this is likely to be totally out of the
question.

This brings us full circle. Upgrade your
software and, even if it runs successfully, it’s
possible that you’ll suddenly become acutely
aware of the shortage of memory in the 512.
The PC+ has been out of production for over a
year now, so apart from occasional second-
hand sales that's no help, but as I said earlier,
there is a memory expansion project in the
book.

POSSIBLE DEVELOPMENTS

Finally, on the same subject there is a possibility
of a new ready-made 512 expansion board
being produced, but this is a very expensive
undertaking and it won’'t go ahead unless the
numbers justify it. Note that THIS IS NOT an
advertisement and no further information will
be forthcoming just yet even if you ask for it,
but if you would be interested just drop me a
short note and say so. Your letter might very
well increase the chances of this product seein
the light of day. B

Beebug March 1990

We will start this month’s
article by presenting the
i i complete compiler program.
=t - This is given in listing 1.
M Rather than compiling an
expression directly into
machine code, the operation
is done in a number of
stages. The compiler itself
| generates a textual form of a
| Basic program containing
the assembler instructions
for the final machine code.
This then has to be converted
to a true Basic program, and
executed in order to produce
T Tha the actual machine code.

||| Before explaining any details
[1| about the compiler you
should try it for yourself.
Start by typing in and saving
the program. When you run
T it you are prompted to enter
an expression. This will then
be compiled into the textual
form of the assembly
language program. This is
both printed out as it is
compiled, and also saved
with the filename ‘Object’.
The command:
*EXEC Object

will load in the textual form
and convert it into a true
i Basic program, which can
il then be saved. It is
) m important that you have
o saved the compiler program

5 before performing this stage,
as it will be overwritten
: otherwise. Finally, running
. the object program will
5 1711 assemble the machine code

and save it with the name
‘Code’. Do not, however,
l attempt to run the machine

Beebug March 1990

1 Writing a Compiler (Part 4)

David Spencer continues his discussion of writing a simple compiler.

code at this stage. Incidentally, if the compiler
produces the messages Syntax error or
Mistake then this means that there is an error in
the entered expression, as described in the
previous articles in this series. On the other
hand, any errors in the compiler itself will be
reported in the normal way including the line
numbers at which they occur.

HOW IT WORKS

If you study listing 1 then you should be able to
recognise the general structure which was
described in last month'’s article. Added to this
are the procedures PROCerror and PROCmatch
also described last month, and the lexical
analysis function, FNlex, from the first part of
this series. The syntax-directed translation
methods described in last month'’s article are
incorporated into the routines that make up the
syntax analyser. For example, line 1210 handles
the unary negation operator. It calls
PROCfactor to parse whatever is being negated,
and then generates the instruction:

JSR negate
to perform the negation at runtime.

There are also a number of other procedures
which are concerned with code generation. Two
of these, PROCopen and PROCclose, generate
the standard preamble and postamble that is
common to the output program, regardless of
the expression being compiled, for example the
FOR-NEXT loop needed to implement two-pass
assembly. The procedure PROCput is used to
output each individual assembler instruction as
it is generated. A further procedure,
PROCdoconst, generates the instructions
necessary to stack a constant during the
execution of the compiled code.

If you look at the assembly language program
produced, you will see that the actual
instructions match the example given last
month with the exception that the final JSR
which is immediately followed by an RTS is
condensed into a single JMP instruction. This
so-called Tail Code Optimisation is a very simple

45

Workshop - Writing a Compiler

form of optimisation which all compilers of any
worth would perform as a matter of course.

LINKING AND LIBRARIES

At this stage you can try the compiler,
generating first an ‘Object’ file, and then the
‘Code’ file. However, if you try to run the
machine code it will just crash. This is not
because of a mistake in the compiler (hopefully),
but rather because the machine code generated
by the compiler is not directly executable. There
are three reasons for this, and we will examine
them in the remainder of this article.

Firstly, and most seriously, the compiled code
makes calls to various routines to execute the
compiled expression. For example, a routine
called add is required to perform any additions.
Similarly, the routines stack and print are
required to stack the operands and print the
result respectively. As it stands, the code
produced by the compiler simply doesn’t
contain these routines. Instead, when the
machine code is assembled, the calls to these
non-existent routines are assembled into calls to
arbitrary addresses. For example, the output
produced by the compiler contains the variable
declaration:

subtract=1
As a result, whenever the statement:

JSR subtract
is assembled it will generate an instruction to
call to address location 1. Clearly there is
unlikely to be an addition routine at this
address.

The second problem is that the code is
assembled to run from address location 0, as
defined by the sctting of the program counter
variable P% in the ‘Object’ file. Memory from
address 0 up to &8F is reserved for use by the
currently active language, such as Basic. This is
therefore not an appropriate place in which to
load an executable program.

Thirdly, the load address of the assembled
machine code doesn’t correspond to the
address at which it is designed to run. We have
already said that the code is assembled to run
from location 0, yet it will by default be loaded
at the same location at which it was stored
when it was assembled.

46

What we need is another program that takes
the output of the compiler, combines it with a
number of pre-written routines, such as the
addition routine, relocates the resulting code to
execute at a sensible address, and then saves
the final code in such a way that it will load at
the same address. These tasks are the job of a
utility called a Linker.

The way a Linker works is to look at the
machine code generated by the compiler and
identify any calls to non-existent routines. It
then locates the necessary routines in the
Runtime Library which is simply a collection of
all routines that may be called by the compiled
code. The appropriate routines are extracted
from the library and added to the end of the
machine code. The Linker then alters all the calls
to these routines so that they jump to the correct
place, and then relocates the entire result so that
it will run from a ‘sensible’ address. Finally, the
complete code is saved so that when reloaded it
will be at the correct address for execution.

In the final part of this series next month we will
develop the Runtime Library and Linker program.

10 REM > :4.$.Compiler

20 REM Program Expression Compiler
30 REM Version B1.0

40 REM Author David Spencer

50 REM BEEBUG March 1990

60 REM Program subject to copyright

80 ON ERROR OSCLI "SPOOL":REPORT:PRIN

T " at line “;ERL:END
90 INPUT "Enter Expression " input$

100 PROCopen

110 DIM consts (20)

120 constcount=0

130 minusflag=FALSE

140 tok=FNlex

150 PROCexpr

160 PROCmatch (0)

170 PROCclose

180 END

190 ¢

200 DEF PROCexpr

210 PROCterm:PROCexpr2

220 ENDPROC

230

240 DEF PROCexpr2

250 IF tok=ASC"+" PROCmatch (ASC"+") :PR

Beebug March 1990

Workshop - Writing a Compiler

OCterm:PROCput ("JSR add") :PROCexpr2

260

IF tok=ASC"-" PROCmatch (ASC"-") :PR

OCterm:PROCput ("JSR subtract") :PROCexpr2

270

ENDPROC

280 :

290
300
310

DEF PROCterm
PROCfactor:PROCterm2
ENDPROC

0=

330
340

DEF PROCterm2
IF tok=ASC"*" PROCmatch (ASC"*") :PR

| OCfactor:PROCput ("JSR multiply"™) :PROCter

m2
350

IF tok=ASC"/" PROCmatch (ASC"/") :PR

OCfactor :PROCput ("JSR divide") :PROCterm2

360

ENDPROC

570

380
390

value)

400

DEF PROCfactor

IF tok=1 PROCmatch (1) :PROCdoconst (
:ENDPROC

IF token=ASC" (" PROCmatch (ASC" (") :

| PROCexpr : PROCmatch (ASC") ") : ENDPROC

410

IF token=ASC" " PROCmatch (ASC" "):

PROCfactor :PROCput ("JSR negate") : ENDPROC

420
=430

PROCerror
ENDPROC

440 :

450
460
470
—MID$
| 480
490
| 500
| g AND

DEF FNlex

REPEAT

IF LEFTS$ (input$,1)=" " THEN input$
(input$, 2)

UNTIL LEFTS (input$,1)<>" "

IF input$="" THEN =0

AS$=LEFTS$ (input$, 1) : IF NOT minusfla
A$="-" THEN token=ASC" ":input$=MI

D$ (input$, 2) :=token

510

IF INSTR("+-*/",AS) THEN token=ASC

| input$:input$=MID$ (input$,2) :minusflag=F
’ALSE =token

520

IF INSTR("()",A$) THEN token=ASCin

LputS :input$=MIDS (input$, 2) :=token

530

IF INSTR("0123456789",A$)=0 THEN P

| RINT "Mistake":0SCLI "SPOOL":END

' [540
550
560

value=VAL (input$)
REPEAT
IF INSTR("0123456789",LEFTS$ (input$

,1)) THEN input$=MID$ (input$,2)

570

UNTIL INSTR("0123456789",LEFTS (inp

utsl 1)):0 OR inputszun

580
590

minusflag=TRUE
=1

600 :

610
620
630

DEF PROCerror
PRINT "Syntax Error"
*SPOOL

Beebug March 1990

640

END

650 :

660
670
680
690

DEF PROCmatch (template)

IF tok<>template THEN PROCerror
tok=FNlex

ENDPROC

700

710
720
730

DEF PROCput (out$)
PRINT SPC(6) ;out$
ENDPROC

740 ;

750
760
710
780
790
800
810
820

DEF PROCdoconst (number)

consts (constcount) =number
constcount=constcount+1
var$="op"+STRSconstcount

PROCput ("LDX #"+var$+" MOD &100"
PROCput ("LDY #"+var$+" DIV &100")
PROCput ("JSR stack")

ENDPROC

830 ¢

840
850
860
870
880
890
900

DEF PROCopen

*SPOOL Object

RESTORE

REPEAT READ data$

IF data$<>"" PRINT data$
UNTIL data$=""

ENDPROC

910

920
930
940

980

990
1000

DEF PROCclose
PROCput ("JMP print")
FOR F%=0 TO constcount-1

950 PRINT ".op";F%+1;TAB(6);"EQUD ";co
nsts (F%)
| 960 NEXT

970 PRINT "]NEXT"

PRINT "OSCLI ""SAVE Code ""+STR$~c

dee+"" "L STREA0SY

*SPOOL
ENDPROC

1010 =

1020
1030
1040
1050
1060
1070
1080
1090
1100
1119
1120
1130
1140
1150
1160

DATA "NEW"

DATA "AUTO"

DATA "REM Compiled object code"
DATA "DIM code 256"

DATA "add=0"

DATA "subtract=1"

DATA "multiply=2"

DATA "divide=3"

DATA "negate=4"

DATA "stack=5"

DATA "print=6"

DATA "FOR pass=4 TO 7 STEP 3"
DATA "P%=0:0%=code"

DATA " [OPT pass"

DATA "™ :r_;

47

As we mentioned in Part 1 (BEEBUG Vol.8
No.8), the Master Display ROM can be
extended to allow the start-up screen colours to
be configured. This is achieved through the
detection of ROM service calls 40 and 41; these
indicate an unknown *CONFIGURE or
*STATUS command respectively. With Part 2 of
the ROM installed you can select any of the
screen colours 0-7 for both foreground and
background, using *CONFIGURE FGND n, or
*CONFIGURE BGND n, and this information is
stored in the ROM’s private byte in CMOS
RAM. These options are added to the
configuration list displayed by *CONFIGURE.
The colour numbers can be displayed by
*STATUS, or by *STATUS FGND and *STATUS
BGND, and are accessed on any type of break
to set the colours using VDU19. This action has
to occur on any type of break because, unlike
shadow operation, VDU19 settings are reset
even by a simple break. As with all
*CONFIGURE commands, *STATUS will show
the changes immediately, but they do not
become effective until a hard break is actioned.

Listing 2 contains the necessary changes and
additions to last month’s program. Listing 1
from last month should NOT be renumbered as
the new lines are designed to interleave, and
some (lines 120, 1110, 1160, 1240, 1270 and 1840)
are actually replacements. These alterations
can either be made directly by working on the
original source program (after first taking a
copy!), or entered as a separate program and
then saved as an ASCII file (using the Master’s
EDIT facility, or the *TEXTSAVE command of
BEEBUG's Basic Booster ROM, in preference to
*SPOOL). Last month’s program can then be
loaded into memory and the ASCII file EXEC'd
in. Running the modified program will then
produce an image of the extended ROM.

LY ATTEDR ATIONIC IN DET
FALIERATIONS IN DE|

Line 120 changes the ROM name to MDR2;
lines 1110 and 1160 change the version

48

numbers; lines 1240-1260 re-organise the
actions on reset; line 1840 takes care of the
*STATUS and *CONFIGURE commands; and
lines 2090-2150 provide extra HELP
information.

Lines 2180-2430 change the screen colours by
first using Osbyte 161 to read the mode number
and shadow flag from byte 10 of the CMOS
RAM. If the mode is 7 or 135, no further action
is taken. For other modes, lines 2230-2240 use
Osbyte 161 again to read byte 30+n (where n is
the current ROM number, obtained from
location &F4). This CMOS location is
automatically reserved for the Master Display
ROM by the MOS, and is used here to store the
foreground and background colour numbers.

Lines 2250-2260 separate these and store them
in locations &91 and &92. The actual colour
changes occur in lines 2280-2410 where
VDU19,n,m,0,0,0 commands are generated.
However, if the foreground and background
colours have inadvertently been set to the same
value, the foreground colour is first changed
(line 2340) to be the complement of the
background colour and the new numbers are
stored in the CMOS byte (lines 2350-2360).

Line 2450 checks for ROM service call 41
(unknown *STATUS command); line 2470 gets
the colour byte as above; and lines 2480-2500,
2750-2810, and 2840-2900 check to see if either
‘FGND’ or ‘BGND’ follows the *STATUS
command. If either of these has been included,
lines 2690-2710 and 2720-2740 display the
colour number. If *STATUS has no parameters,
lines 2530-2660 extend the normal full status
display to show both foreground and
background information, while unrecognised
parameters result in a ‘bad command’ error.

If service call 41 is not detected, then line 2930

checks for service call 40 (unknown
*CONFIGURE command) and line 2950 checks

Beebug March 1990

Master Display ROM

|
|
|

the rest of the command line. Unrecognised text
gives ‘bad command’; no text at all extends the
normal full configure display to show the
syntax of the new *CONFIGURE commands
(lines 3000-3080); and ‘FGND’ or ‘BGND’,
followed by an optional space and a single
decimal digit, causes the corresponding colour
number to be set in lines 2960-2970 (if the
colour number is omitted from the command, a
‘bad command’ error again results). Finally, line
3100 (foreground) or 3150 (background) reads
the private byte once more; lines 3220-3240
(foreground), or 3300-3320 (background),
change the appropriate part of the byte, and
lines 3250-3270 write the new byte back to
CMOS RAM using Osbyte 162.

Listing 2

*SAVE MDR2 5000+400 8000 8000
EQUB2

EQUS™ 1.2v"

CMP#&27 :BNEnotbreak : IMPbreak
.notbreak

JMPtryhelp

.duncol

JMPtrystatus

EQUS" Extended STATUS & CONFIGURE

120
1110
1160
1240
1250
1260
1270
1840
2090
2100
2120
2130
2140
2150
2180
2190
2200
2210
2220
2230
2240
2250
2260

A&92
2270
2280
2290
2300
2310
2320
2330
2340

EQUB13
EQUB13
EQUS"
EQUB13
EQUS"
.break
LDX#10:LDY#0:LDA#161:JSRosbyte
TYA:STA&90:AND#7:CMP#7 :BEQseven
JSRsbyte : JMPvdu

.sbyte

CLC:LDAromnum:ADC#30 : TAX
LDA#161:JSRosbyte

TYA:AND#7:STA&I1
TYA:AND#112:LSRA:LSRA:LSRA:LSRA:ST

Foreground via *CO. FGND n"

Background via *CO. BGND n"

RTS

.vdu

LDA#19:JSRoswrch

LDA#0: JSRoswrch

LDA&92 : JSRoswrch : LDA#0 : JSRoswrch
JSRoswrch : JSRoswrch

1DA&91:CMP&92 :BNEdifferent
EOR#7:STA&91:1LDA&92:ASLA:ASLA:ASLA

| :ASLA:0RA&91

2350 TAY:CLC:LDAromnum:ADC#30:TAX

Beebug March 1990

2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
2460
2470
2480
2490
2500
2510
2520
2530
2540
2550
2560
2510
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690
2700
2710
2720
2730
2740
2750
2760
27170
2780

LDA#162:JSRosbyte

.different

LDA#19:JSRoswrch

LDA#7:JSRoswrch

LDA&91 : JSRoswrch : LDA#0 : JSRoswrch
JSRoswrch: JSRoswrch

.seven

JMPduncol

.trystatus
CMP#41:BEQstatus:JMPtryconfig
.status
PHY:JSRsbyte:PLY
LDA(comline),Y:CMP#13:BEQpstatus
JSRtryf:BCCsfgnd
JSRtryb:BCCsbgnd

JMPrestore

.pstatus

LDX#0

.pfgnd

LDAfmess, X:JSRosasci
INX:CPX#9:BCCpfgnd

LDA&91 :ORA#48: JSRosasci:JSRosnewl
LDX#0 : JMPpbgnd
.fmess
EQUS"FGND
LDX#0

.pbgnd
LDAbmess, X:JSRosasci
INX:CPX#9:BCCpbgnd

LDA&92 :ORA#48: JSRosasci:JSRosnewl
JMPrestore
.bmess
EQUS"BGND
.sfgnd
LDA&91 :ORA#48:JSRosasci: JSRosnewl
JMPalldone

.sbgnd

LDA&92 :ORA#48: JSRosasci:JSRosnewl
JMPalldone

stryf
DEY : LDX#255

.loopf

INX:INY

2790 CPX#4:BEQsok

2800 LDA(comline),Y:AND#&DF:CMPfmess,X:
BEQloopf

2810 JMPfault

2820 .sok

2830 CLC:RTS

2840 .tryb

2850 DEY:LDX#255

2860 .loopb

2870 INX:INY

2880 CPX#4:BEQsok

2890 LDA(comline),Y:AND#&DF :CMPbmess,X:

<> (n=0-7)"

<n> (n = 0-7)"

49

Master Display ROM

| BEQloopb 3120 .cdone
| 2900 .fault 3130 JMPalldone
| 2910 SEC:RTS 3140 .cbgnd
| 2920 .tryconfig 3150 PHY:JSRsbyte:PLY:JSRspaces
| 2930 CMP#40:BEQconf:JMPrestore 3160 JSRbbyte:BCCcdone:JMPrestore
{ 2940 .conf 3170 .spaces
| 2950 LDA(comline),Y:CMP#13:BEQpconf | 3180 LDA(comline),Y:CMP#32:BNErtn
| 2960 JSRtryf:BCCcfgnd | 3190 INY:BRAspaces
| 2970 JSRtryb:BCCcbgnd 3200 .rtn
| 2980 JMPrestore 3210 RTS
2990 .pconf 3220 .fbyte
3000 LDX#0 3230 CMP#13:BEQnonum:AND#7
3010 .pet 3240 STA&91:LDA&92:ASLA:ASLA:ASLA:ASLA:
3020 LDAfmess,X:JSRosasci ORA&I91
| 3030 INX:CPX#23:BCCpcf 3250 .setconf
3040 JSRosnewl:LDX#0 3260 TAY:CLC:LDAromnum:ADC#30:TAX
3050 .pcb 3270 LDA#162:JSRosbyte:CLC:RTS
| 3060 LDAbmess,X:JSRosasci 3280 .nonum
| 3070 INX:CPX#23:BCCpcb 3290 SEC:RTS
| 3080 JSRosnewl:JMPrestore 3300 .bbyte
| 3090 .cfgnd 3310 CMP#13:BEQnonum:AND#7
3100 PHY:JSRsbyte:PLY:JSRspaces 3320 STA&92:ASLA:ASLA:ASLA:ASLA:ORA&I1
3110 JSRfbyte:BCCcdone:JMPrestore 3330 JMPsetconf B

Printing Characters 128 to 255 (continued from page 33)

1640 DATA 6600666666663C00, 7TEC39DB19DC37E0D 1950 DATA 1C1C363663637F00, 7F33303E30337F00
1650 DATA 0018387r38180000,00181CFE1C180000 1960 DATA 7E660C1830667E00, 7733333F33337700
1660 DATA 181818187E3C1800,00183C7E18181818 1970 DATA 3E63637F63633E00,3C18181818183C00
1670 DATA 30183C063E663E00,30183C667E603C00 1980 DATA 63666C786C666300,1C1C363663636300
1680 DATA 66003C667E603C00, 3C663C667E603C00 1990 DATA 63777F6B63636300, 63737B6F67636300
1690 DATA 66003C063E663E00, 3C663C063E663E00 2000 DATA 7E00003C00007E00, 3E63636363633E00
1700 DATA 00003FOD3F6C3F00,00003C6660663C60 2010 DATA 7F36363636363600, 7E33333E30307800
1710 DATA 0C183C667E603C00, 66003C6666663C00 2020 DATA 7F63301830637F00, 7E5A181818181800
1720 DATA 6600666666663E00,3018003818183C00 2030 DATA 6666663C18183C00, 3E083E6B3E083E00D
1730 DATA 3C66003818183C00,3018003C66663C00 2040 DATA 6363361C36636300, 3E086B6B3E083END
1740 DATA 3C66003C66663C00,3018006666663E00 2050 DATA 3E63636336366300, 7F636336361C1C00
1750 DATA 3C66006666663E00, 66006666663E063C 2060 DATA 18187E1818007E00,007E0018187E1818
1760 DATA 00663C66663C6600,3C603C663C063C00 2070 DATA 1818181818181800,3636363636363600
1770 DATA 3C663C0000000000,0000001818181818 2080 DATA 0066666666663C00,003C666666666600
1780 DATA 0000001F00000000,0000001F18181818 2090 DATA 00033E676B733E60, 00003B6E666E3B00
1790 DATA 000000F800000000, 000000F818181818 2100 DATA 1E33333E33333E60,000066361C183030
1800 DATA 000000FF00000000,000000FF18181818 2110 DATA 3C60303C66663C00,00001E301C301E00
1810 DATA 1818181800000000,1818181818181818 2120 DATA 3E0C183060603E06,00007C6666660606
1820 DATA 1818181F00000000,1818181F18181818 2130 DATA 3C66667E66663C00,0000181818180C00
1830 DATA 181818F800000000,181818F818181818 2140 DATA 0000666C786C6600,6030181C36636300
1840 DATA 181818FF00000000,181818FF18181818 2150 DATA 0000333333333E60,000063331B1E1C00
1850 DATA 000000070C181818,000000E030181818 2160 DATA 3C60603C60603E06,00003E6363633E00
1860 DATA 18180C0700000000,181830E000000000 2170 DATA 00007F3636363600,00003C66667C6060
1870 DATA 1800181830663C00,1800181818181800 2180 DATA 00003F6666663C00,00007E1818180C00
1880 DATA 366C0066766E6600,366C007C66666600 2190 DATA 0000733333331E00, 00003E6B6B3E1818
1890 DATA 187E181818181800,187E1818187E1800 2200 DATA 000066361C1C3633,0000636B6B3E1818
1900 DATA 1818180000000000,30180C0000000000 2210 DATA 000036636B7F3600,380C063E66663C00
1910 DATA 3F7B7B3B1B1B1F00,0000001818000000 2220 DATA 00316B46007F0000, 007E007E007E0000
1920 DATA 03030606761C0C00, AA55AA55AA55AA55 2230 DATA 071C701C07007F00, 060C7E187E306000
1930 DATA 3E63676B73633E00,1C3663637F636300 2240 DATA 701C071C70007F00, FFFFFFFFFFFFFFFF
1940 DATA 7E33333E33337E00, 7F63606060606000 B

50 Beebug March 1990

Cable Analyser Review

Alan Wrigley reviews the CA100 cable analyser from Electronic Innovations Ltd.

Product CA100 Cable Analyser

Supplier Electronic Innovations Ltd.
84 Kings Road, Berkhamsted,
Herts HP4 3BP.
Tel. (044286) 3146

Price £287.50 (inc. VAT)

The BBC micro, with its multitude of output
ports, has long been considered an ideal micro
for applications which involve an interface with
the outside world. As a result, many laboratories
and workshops have
BBCs busily beavering
away connected to
various items of test or
control equipment.

The CA100 cable
analyser is the latest
piece of test equipment
to appear on the market.
It may be of interest to
anyone who designs,
manufactures or services
cables in quantity, and
requires a quick but
comprehensive means of
testing them. It can also be used with an
Archimedes equipped with a user port podule.

THE PRODUCT

The prototype analyser supplied for review was
housed in a sturdy metal box, 250x180x70mm,
and appeared to be well constructed. It is
connected to the computer via a flying ribbon
cable which plugs into the BBC’s user port. No
external power connection is necessary. On the
front of the box are four 25-way ‘D’ connectors,
into which the cable to be analysed may be
plugged. A special interface PCB will be
separately available, which will plug into the
four ‘D’ plugs and will be drilled to
accommodate a wide variety of common
connectors, allowing the user to solder items to
the board to suit his own requirements.

Beebug March 1990

The prototype CA100 analyser

Supplied with the analyser is a software
package which provides a comprehensive
range of functions, to be described below. The
documentation provided with the prototype
was sparse, but full documentation will be
supplied with the production units.

THE SOFTWARE

Booting up the disc reveals the main menu,
containing 9 options. One of these allows you
to change various default settings, namely
colour or monochrome display, printer type,
and serial or parallel
output. You can set
these so that the
options you require
become the defaults
in future. The other
menu selections allow
you to manipulate
cable data in various
ways, as will now be
explained.

Each time a cable is
analysed, a set of data
will be produced,
known as the cableform.
This basically indicates which connectors at one
end of the cable are connected to which ones at
the other. All the software functions operate on
one cableform at a time, which is held in
memory. This is always referred to as the
“reference specification”, and may have been
derived from an actual cable under test, from a
cableform file held on disc, or entered manually
using the editor to be described later. The
reference specification may also be saved to
disc.

Once a cableform is in memory, an option from
the main menu allows you to list the pin
connections on screen, or to a printer. A further
option compares the data held in memory to a
cable currently plugged into the analyser and
displays any deviations between the two, again

51

Cable Analyser Review

with the option of a printout. Thirdly, you can
display the cableform graphically on the screen.
This shows all 100 pins, in two columns of 50 at
each side of the screen, with connecting lines
drawn where pins are connected by the cable.

Connect (KCOPY>) or delete (<DELETE>> 7
Ref. specification is “CABLE6”
<ESCAPE> TO MENU : <CTRL-P> TO PRINT

All these functions appear to work efficiently. I
was a little disappointed to find that setting the
default screen option to colour had no effect on
the cableform graphic display, which is simply
white on black (both on the model B and the
Master). This made it rather difficult to read a
complicated diagram, with many lines packed
closely together, on a medium-resolution
monitor.

The functions described so far are intended
to provide simple test operations which

CROSSWORD EDITOR
(BEEBUG Vol.7 No.4)

This does not correctly display a file longer
than 256 bytes (17 by 17) when reloaded. This

can be corrected by modifying the following
three lines as shown:

2040 PRINTTAB(26,0)mode$;" MODE":!&72=W
%:CALL&AOO

3350 LDA#&FF:STA&71:LDX#0:DEC&73

3370 TYA:PHA:LDY&71:CPY#0:BNE w:INC&73:
.w LDA (&72),Y

52

enable cable analysis to be carried out
quickly and conveniently, if necessary by
non-experts. For the more experienced user, a
higher level of sophistication is provided by
a Design Menu, which can be entered from
the main menu.

The design programs give you more control
over the analysis of the test cable, allowing you
to specify the number and size of the
connectors, which are then differentiated on the
graphic display. The display diagram may be
dumped to a printer, and also a cableform may
be edited manually, pin by pin. Unfortunately,
there were a number of problems with the
design suite software which made it difficult to
assess their worth. I was assured by the
manufacturers that these would be sorted out
before full production started.

The analyser itself is well made, giving the
appearance of being constructed to a
specification rather than a price. The basic
software functions are adequate for their task
and would be useful in situations where
standard cables need testing quickly. Provided
that the design programs are overhauled and
are able to do what is claimed for them, the
CA100 could be a useful tool, being certainly a
lot easier and faster to use than a continuity
tester. However, I feel that the price will deter
all except those who simply cannot manage
without its facilities.

Thanks to Joe Hakeney for discovering and
correcting this bug.

DISC FILE IDENTIFIER
(BEEBUG Vol.8 No.7)

Line 6310 should be amended to read:

UNTIL data=&0D OR data=&FF OR LEN (m$)=
255

to improve file type recognition.

Beebug March 1990

Risc User is enjoying the largest circulation of any magazine devoted solely to the Archimedes
range of computers. Now in its third year of publication, it provides support to schools,
colleges, universities, industry, government establishments and private individuals. Existing
Beebug members, interested in the new range of Acorn micros, may either transfer their
membership to the new magazine or extend their subscription to include both magazines.

A joint subscription will enable you to keep completely up-to-date w1th all innovations and
the latest information from Acorn and other - ” : T
suppliers on the complete range of BBC micros.
RISC User has a massive amount to offer to
enthusiasts and professionals at all levels.

Here are just some of the topics covered in more recent issues
of RISC User:

A WIMP FRONT END FOR THE BASIC "D!TOR
A utility which provides a WIMP Desktop front end
to the Basic Editor.

; PINEAPPLE'S COLOUR DIGITISER
A review of the new real-time colour digitiser for the
Archimedes.

ASSEMBLER WORKSHOP

| BITS AND PCS A major series for the more advanced ARM
Tips provided for the users of the PC emulator. processor programmer.
CREATING NEW SCREEN MODES DESKTOP PUBLISHING WITH DRAW
A utility which creates additional screen modes for How to use the Draw application for simple desktop
the Archimedes in the form of relocatable modules. publishing.
UNDER THE LID - INTRODUCING LASER PRINTERS
A major series explaining the hardware that makes A look at the workings of laser printers and Page
up the Archimedes. Description Languages.
POP-UP MENUS . MASTERING THE WIMP
I Add pop-up menus to non-Wimp programs. A major series for beginners to the WIMP
programming environment. This month - Forced
i Sk Sre Oroh window redraws,
work area scroll]y offet SCSI INTERFACES
(meakured downwards) What is a SCSI interface ? A comparative review of
SCSl interfaces for the Archimedes and A3000.
2R ool oy PROBING PASCAL ;
ol the | xandyco- A brief overview of the Pascal language and the two |
Xofiset el L compilers available for the Archimedes.
(W”Wu e A AT S S — e
visible area minimum x and y
co-ordinates (measured relative
to the graphics origin)
gmfh:sengin work area As a member of BEEBUG you may extend your subscription
to include RISC User for only £8.10 (overseas see below).

Don't delay! SUBSCRIPTION DETAILS

Phone your instructions now on (0727) 40303 Destination Additional Cost
Or, send your cheque/postal order to the adf:lress below. gith?uf;g:; d Eire 212(1)8
Please quote your name and membership number. Middle East £14.00
When ordering by Access, Visa or Connect, please Ainaicisand Affica £15.00
quote your card number and the expiry date. Elsewhere £17.00

RISC User, 117 Hatfield Road, St Albans, Herts AL1 4]S, Telephone (0727) 40303, FAX (0727) 60263

BEEBUG Education

by Mark K. Sealey

The whole of this month’s Beebug Education is
unashamedly devoted to a superb program
called Printbox from market leaders Logotron.
Recently merged with Longman, Logotron is
already renowned for both BBC and
Archimedes versions of LOGO, Pendown and
associated utilities, and Hyperbook as well as
the new and innovative Numerator. Printbox
should prove useful with children and students
over a wide range of ages.

Just as you might have thought that good,
child-centred software for the BBC micro was
on the way out, Printbox appears to fill a niche
in the market in a way which ought to make
teachers, presenters and lecturers, as well as
other computer enthusiasts, take notice.

Product Printbox

Supplier Logotron Ltd,
Dales Brewery, Gwydir Street,
Cambridge CB1 2LJ.
Tel. (0223) 323656

Price £29.00 ex. VAT (from 1st March)

Printbox comes either on ROM together with a
disc (for the BBC model B), or on two discs
(5.25” or 3.5”) for the Master 128 and Master
Compact machines. It enables you to produce
quality artwork in single page format with the
ability to design and edit layouts, incorporate
clip-art and use up to 16 fonts.

BASIC MENU AND STARTUP

The initial menu is well laid out. It offers you
the chance to change the working colours,
though it is easy to do this later on, and allows
access to Operating System (*) commands as
well as QUITting. The other options are ones to
edit an old page or begin a new page, browse,
and edit and load fonts as well as clip art.

This is a sensible arrangement, and the progress
to other menus in what is quite a sophisticated
functions structure, is as near ideal as can be.

54

There is one small exception when several
fonts, for instance, have been loaded. In order
to leave as much working space on the screen
as possible, just one line of text handles the
selection of these fonts. It soon becomes
necessary to scroll sideways, when a right
angle-bracket (>), used otherwise at times for
prompts, is not as intuitive as it might be. This
is a small point, though, and recourse to the
excellent 80 page manual will explain all.

DOCUMENTATION

Apart from the main manual, the
documentation comprises not only a function
key card, a diagram of the menu structure and
quick reference guide, but also a second,
exemplary, ideas book with all the sample fonts
and clip-art library for users to choose styles -
although it is possible to cycle through sections
of these as stored on disc. Given the price of the
package, these manuals alone should convince
potential users that they have a bargain here.

USE OF PRINTBOX

At the heart of operations is a “dotty box”,
really a scalable window which is extremely
easy to use. It is controlled by the cursor keys,
and surrounds the chunk of material you want
to work on. You can then copy, flip, move,
invert or even shrink/enlarge any piece of text
to achieve just the right effect.

Because this is so simple to manipulate, the
package is less one to show off the power of a
micro or the tricks of the programmer, but more
one to encourage the user to try and retry a
variety of effects until just what they want is on
screen. Even the most user-friendly full blown
DTP packages sometimes fall down here!

Once you are satisfied with what is in front of
you, it can be saved to a second data disc much
as you might expect. You can then proceed to
quit and/or print out your page. Once again,
Logotron has taken into account what is
actually available in schools in terms of

Beebug March 1990

BEEBUG Education

printers; dumps are provided not only for
Epson and Integrex but also NLQ, 24 pin and

Canon setups.

Sample printout using Printbox

In terms of the aesthetics of the finished
product, Printbox has a lot going for it. Effects
including shadow, different backgrounds and
borders are all excellent and easy to produce.
One result of this - and a pointer to the overall
flexibility of the product - is that mathematically
inspired graphics (maybe the sort of which
turtle graphics is capable) can be blended very
effectively with suitable text, both descriptive
and explanatory.

OTHER OPTIONS

A further feature of Printbox is that, quite
independently of other options, screens (from
LOGO, for example) can be grabbed to be
incorporated in Printbox artwork. One of the
sub-menus from the Edit Page (which you will
come to visit quite frequently) allows these to
be re-incorporated at any stage. Once again, the
manual is very clear in guiding you through
this process.

CLIP-ART

There is a clip-art editor which will be all the
more fun to use since the ‘icons” produced may
later find their way into the pupils’” work. Even
so, the quality of what is supplied as samples is
high. There are seven items relating to

Beebug March 1990

Christmas, for instance, twenty “Celtic”

patterns and some 100 small pictures in all. Not

only will these satisfy many less ambitious
pupils for some time, but also inspire more
confident ones to work at their own.

Into the bargain, the “Glue” utility, also on
disc, allows you to manage and manipulate
sprites - and rescale oversize ones. It is also
envisaged that Printbox will be used in
conjunction with word processors like
Pendown, from which it is easy to
incorporate text files; Printbox can also cope
with text flow from one box to another.

It is hardly surprising that with all these
features and the need, presumably, for
buffers, memory can be tight. There is a
memory report option in the main menu,
which helps monitor this. At the same time,
users would be advised to proceed
cautiously until familiar with just what can
be fitted in with various art/font/text
combinations.

Error reporting is more than adequate and also
well covered in the manual. There is also a
useful section describing why and how to build
boot files to load just the font and clip-art files
that are needed for any one project. This is a
nice touch since it will make life easier
whenever it is appropriate to have the right
files from many loaded automatically.

CONCLUSIONS

In practice then, this is software which can be
approached and learnt very easily. It sports
nearly all the features you would want in a
package of its kind. It works quickly and is
straightforward yet capable of sophisticated
and exacting results. Not only could infants get
to grips with computer “presentation” easily
and painlessly, but computer literacy or
secondary/FE art departments could make
imaginative and stylish use of it.

Given the features and the accessibility - thanks
to sample files and documentation, for instance
Printbox can be wholeheartedly recommended,
and represents uncommonly good value for
money. B

55

Games Review (continued from page 23)

to collect the various keys located around the
screens. There are moving objects to avoid
and puzzles to solve in achieving your task.
The graphics and sound are both good, and
key control is kept very simple. It is easy to
play in the early stages _

Ages in the Far East, to the 1990s in downtown
New York. Here your adversaries are somewhat
different, but are still just as difficult to
overcome. There are various levels to work
through in your quest, from the paths of
Central Park alive

and quickly becomes
quite addictive.

To sum up: this is one 18

of the better collections . ji
Superior has released o
in this series. The two
combat games are
good, provided they
are your type of game.
The other two are
probably of wider
appeal, and definitely
have that addictive feel.

The other new release from Superior is The Last

Ninja 2. This is the sequel to the original game,
as featured on Play It Again Sam 12. The
scenario has moved on in Ninja 2 from the Dark

EDIKIT

(BEEBUG Vol.8 Nos.7-9)

The articles and programs which make up the
EdiKit ROM refer to RAM bank ‘X’. A RAM
bank will normally be a number in the range 0
to 7 (certainly on a Master), but may take other
values (or letters) depending on make. Refer to
the manufacturer’s instructions, and use an
appropriate value (i.e. that of a vacant RAM
bank) in place of the ‘X’ where indicated in the
programs.

We apologise for the missing lines of text in last
month’s article in this series. However, all the
relevant information also appeared elsewhere
in the article.

MINEFIELD (BEEBUG Vol.8 No.8)
Owing to some last-minute amendments there
are a few errors in the listing, for which we
apologise. The following three lines should read:

56

it

0000y
THEN 00:00:29

Last Ninja 2

Points Arising....Points Arising....Points Arising..

with muggers, to the
streets of Manhattan
with its down and
outs.

I ' - SING -
ll"'“"
- HOLDING- |

it

Graphics and game
play in Ninja 2 are
very similar to the
original. If you
enjoyed the first game
then you will
probably like this one,
too. For myself, I
found the game
enjoyable but the key combinations, as in the
original, sometimes left me in a state of some
confusion with the inevitable loss of a life.
Don'’t let this put you off though. 3]

oints Arising...

100 ON ERROR GOT0230

2270 G%=&8C0:FOR A%=0 TO 9:READ AS$:C%=0
2300 NEXT:READ A$:FOR A%=0 TO 3:VDU 23,2
24+A%:FOR B%=0 TO 7:VDU EVAL("&"+MIDS (AS,
A%*16+B%*2+1,2)) :NEXT, : ENDPROC

BEEBUG MAGAZINE DISC

(Vol.8 No.8)

The menu program may fail to work correctly

on a model B or B+ because of insufficient

memory. To correct this, load the menu program

using LOAD”Menu” and amend line 70 to read:
70 DIM P% 3000 (not 5000)

and resave using SAVE”Menu”.

The Magscan file on this disc (Vol.8 No.8) was
incorrectly formatted. A corrected version is
included on this month’s disc along with the
Magscan file for this issue (Vol.8 No.9).

Hopefully, this clears up any outstanding
problems. =)

=2y

Beebug March 1990

eEB

Qf”

MORE MUGS

I was glad to see an article on MUGs in the
December issue (Vol.8 No.7). However, I think
that the statement that “in all games there is a
certain amount of violence” is incorrect and
misleading. While it is true that some games such
as Mirrorworld and Shades do encourage ‘fighting’,
there is no fighting at all in The Zone. Indeed, the
aim there is more to co-operate and be friendly
with the mobiles and other players. Similarly, in
Gods, there is very little fighting and much to be
gained by making friends with the other players.

sl

I would prefer to emphasize the fun of role-playing
in MUGs. Many players derive much enjoyment
from assuming a ‘persona’ and acting out the new
character in conversation and interaction with
others in the game. There have been many famous
and successful role-players in the games I have
been associated with, whether they be men
pretending to be women, people pretending to be
animals, someone playing a ghost or whatever.

The “full’ list of MUGs failed to mention
The Zone (01-994 9119), Trask (soon to be on Prestel,
or Shades (Prestel and 0342 810905). There are
probably others. As we saw at Adventure
Convention, there are plenty of new MUGs under
development, with something to suit anyone
adventurous.

Sheila Thomas (Malwen & Isolde)

ALTERNATIVE PLUS-OR-MINUS

[would like to suggest an alternative for creating a
Plus-or-Minus sign to that described by Sebastian
Lazareno in BEEBUG Vol.8 No.6. This is based on a
method I have employed for some time to cause
my Epson compatible Panasonic KX-P1081 printer
to match the ‘£ and ‘#’ keys on the keyboard. In the
program, the data at lines 180 and 190 define these
last two characters. I have chosen the backslash “\’
(CHR$92) to redefine as a @ in both the computer
and the printer (lines 160 and 200 respectively).

100 MODE 4:VDU2

110 FOR I%=1 TO 3:VDU1,27,1,121

120 FOR J%=1 TO 10

130 READ C%:VDU1,C%

140 vDU3

150 NEXT J%,1%

160 vDU23,92,8,8,127,8,8,0,127,0

170 END

200 DpaTA 35,40,0,254,0,40,0,254,0,40

Beebug March 1990

210 DATA 96,0,2,16,14,122,130,16,130,68
220 DATA 92,0,0,34,34,34,250,34,34,34
George Stenning

Thanks to Mr.Stenning for this alternative suggestion.
However, despite the fact that the Panasonic printer
referred to is often claimed to be Epson compatible, in the
above case this is not true. We give below a version of the
program which has been tested on an Epson FX80:

100

110

1,58,1,0,1,0,1,0

TO 3:VDUL,27,1,38,1,0
U1,2%,1,A%,1,
O 11:READ A%:

7 :,37,:,“,L 0,3
40,0,254,0,40,0,254,0,40,0,0

f,g,hu,la,ALI,‘3U 16,130, 08,J,J

2,0,0,34,34,34,250,34,34,34,0

The Epson requires more codes, as it needs to be
informed beforehand when characters are to be
downloaded, and the existing character definitions
must be accessed in advance. In addition, character
definitions require 11 bytes not 9. Line 150 prints-out
the redefined characters.

UNDERLINING THE POINT
I am not over familiar with the operations of a
computer. Recently when typing in some listings
from the magazine, there has been a small line as
shown in the following examples:

PROCcontrol it

BCC print_it
Can you please explain what this line means, and
how I show or type it when entering the program.

L.W Bates

The character referred to is the underline or
underscore character which appears on the keyboard
to the immediate left of the cursor keys and on the
same key as the pound sign. It has no particular
programming meaning, but is one of the very few
characters acceptable in procedure and variable names
in addition to the upper and lower case alphabet and
the digits. It therefore makes a useful spacer for
programmers wanting to use two (or more) word
names as in the examples.

Another character which can cause similar problems,
particularly to newcomers, is the vertical bar
character (1), again to the immediate left of the cursor
keys and on the same key as the backslash (\). B]

57

w~ — Bottom:an

SUPER SQUEEZE A program compressor.
PARTIAL RENUMBER A very useful utility which renumbers a

selected block of lines.

PROGRAM LISTER List any program direct from a file.
RESEQUENCER Rearrange the lines in a Basic program - line

numbering is automatically adjusted.

RS A G A L BN O . SR M M SMART RENUMBER Renumber a program so that procedures start

e e
! T30
L9

SHARE INVESTOR
A program which assists decision making when buying and selling
stocks and shares.
REAL TIME CLOCK
A real time digital alarm clock displayed for all BBC micros.
RUNNING FOUR TEMPERATURES
A program for calibrating and plotting up to four temperatures.
CROSSWORD EDITOR
Design, edit and solve crosswords with this program.
LABEL PROCESSOR
Design, save and print labels at any size on an Epson compatible
printer.
MONTHLY DESK DIARY
A month-to-view calendar which can be used on-screen or printed out.
3D LANDSCAPES
Create computer-generated three dimensional landscapes.
FOREIGN LANGUAGE TESTER

Define foreign characters and test your knowledge of foreign languages.

JULIA SETS
Fascinating displays of Julia sets, the extensions of the Mandelbrot set.

¥ PRINTER BUFFER * ¥ SPRITE EDITOR/ANIMATOR

% MuLTI-CHARACTER PRINTER DRIVER FOR VIEW

¥ MoDE 7 SCREEN Eprror % MuLTi-COLUMN PRINTING
¥ EPSON CHARACTER DEFINER ¥ ROM CONTROLLER
¥ ROM FILING SYSTEM GENERATOR

% BEEBUG MmWimp 1

* Master series only. 1 Requires sideways RAM.

Applications I Code 1411A (80 track DFS)
Basic Booster ROM Code 1403A

ASTAAD Code 1407A (80 track DFS)
General Utilities Disc Code 1405A (80 track DFS)
Applications I Disc Code 1404A (80 track DFS)

] |

at a particular line number.

TEXTLOAD AND TEXTSAVE Save and load a Basic program as text.

MOVE Text Line Edge Outl § Fore Fix Recl fbs x= 1207.8 y= 686.8
File nane? SDOKE Scale: 1.88tines Vector: 143.7

(CINFORCED CARBON CARBON (RCC)

IGH TEMPERATURE , REUSRBLE SURFACE INSULATION (HRSI)
W TENPERATURE , REUSABLE SURFACE INSULATION (LRSI)

ATED HOMEX FELT (FRSI) REUSRBLE SURFACE INSULATION

TAL OR GLASS |

full mouse and joystick control
built-in printer dump

speed improvement

STEAMS image manipulator
Keystrips for ASTAAD and STEAMS
Comprehensive user guide

Sample picture files

¥ e ¥ I N N e

¥ BusiNess Graprics ¥ VIDEO CATALOGUER

¥ WORLD BY NichT AND Day ¥ PHONE Book

¥ PAGE DESIGNER ¥ PERSONALISED LETTER-HEADS

¥ MappING THE BRimisH Istes ¥ SELECTIVE BREEDING
¥ APPOINTMENTS DiARY ¥ THE EARTH FROM SPACE

¥ PERSONALISED ADDRESS BoOK

Applications II Code 1412A (3.5" ADFS) H|
Basic Booster Disc Code 1402A D
ASTAAD Code 1408A (3.5" ADFS) |
General Utilities Disc Code 14134 (35" ADFS)
Applications I Disc Code 14094 (35" ADFS) [

Please add p&p - 60p for the first item and 30p for every additional item.

Phome your order mow omn (0727) 40303
or send your cheque/postal order to the address below. Please quote your name and membership number.

When ordering by Access, Visa or Connect, please

quote your card number and the expiry date.

BEEBUG Ltd, 117 Hatfield Road, St Albans, Herts AL1 4]S. Telephone (0727) 40303.

IEJS HIEJ%

AT,

HIB}; » Hlﬂl:l{;l"SW

HARD COPY CATALOGUE IN WORDWISE

Tom Boyd

The following short program creates a machine
code utility which allows hard copy of any DFS
disc catalogue to be produced while using
Wordwise. Running the program saves the code
with the name ‘PD’. Provided this is on the
relevant disc(s) typing *PD will then print out a
copy of the contents of the current DFS disc.
The code is located at &900 (see lines 40 and
190), but this could be changed.

10 REM PRINT DIRECTORY
20 REM Author T.K.Boyd
S0
40 MC=&900
50 FOR C1=0 TO 3 STEP 3
60 P%=MC
70 [OPT C1
80 LDA #2:JSR &FFEE
90 LDX #MSG MOD 256
100 LDY #MSG DIV 256
110 JSR &FFF7
120 LDA #3:JSR &FFEE
130 RIS
140 .MSG NOP
150]
160 NEXT
190 12
180 A$="*."+CHRS (13
190 $(P%-1)=A$:L%=P%+LEN (A$)-&900
200 C$="*SA.PD 900 +"+STRS~(L%)
210 OSCLI C$
220 END

PROTECTING VIEW FILES ON A MASTER
David Holton

Although encryption programs usually work
by EORing a random byte value with each byte
of a file, a much simpler way exists for
preventing other users from seeing the contents
of your files.

View expects to find a carriage return (&0D) at
the end of a file, and if it doesn’t, it gives “NO
TEXT” and won’t change to the editing screen.
Thus to lock a file, use *APPEND to put a byte
other than &0D on the end. Type:
*AP. <filename>

and when the figure ‘1’ appears, type any
character(s) you like. I always use * (CHR$42),
because 42 is the answer to life, the universe
and_everything! Do NOT press Return, but
Escape. Now load the file and try to screen it.

Beebug March 1990

There is no easy way to remove the unwanted
character(s) when you want to unlock the file.
So use *APPEND again, but press Return in
response to the ‘1’, and then Escape in response
to the following ‘2’. This places an &0D
character at the end of the file. Load the file into
View and edit out the unwanted characters.

You can, of course, use *TYPE to see what's in a
NO TEXT file, but it should keep the
uninitiated out of your files.

CONVERTING A NIBBLE TO A BYTE

Kai Ng

The following routine may be of interest to
machine code programmers by providing an
exceedingly compact method of converting a
binary nibble into a hexadecimal ASCII
character.

.mshex LSR A:LSR A:LSR A:LSR A
.1shex PHP:SED
AND #&0F:CMP #&0A:ADC #&30
PLP:RTS

Thus JSR Ishex would apply conversion to the
lower 4-bit nibble of the accumulator register,
while JSR mshex would convert the upper
nibble.

QUICK CIRCLE

John McFarlane

Filled circles can be tedious and time-
consuming to draw using sines. The following
procedure uses Pythagoras’ theory which
relates the squares of the lengths of the sides of
a right-angle triangle. It will work in any
graphics mode. X% and Y% are the co-ordinates
of the centre, and R% the radius. Changing the
value of Z from 1 alters the width of the circle
to form an ellipse.

100 MODE 4

110 PROCcircle(100,640,512,2)
120 END

130

1000 DEF PROCcircle (R%,X%,
1010 LOCAL A%,B%,S%

1020 S%=R%*R%

1030 FOR A%=-R% TO R% STEP 4

1040 B%=SQR (S%-A%*A%) *Z

1050 MOVE X%-B%+4,Y%+A%:DRAW X%+B%, Y%+A%
1060 NEXT:ENDPROC 2

%,2)

59

Personal Ads

BEEBUG members may advertise unwanted computer hardware and software through personal ads (including
'wants’) in BEEBUG. These are completely free of charge but please keep your ad as short as possible. Although
we will try to include all ads received, we reserve the right to edit or reject any if necessary. Any ads which cannot
be accommodated in one issue will be held over to the next, so please advise us if you do not wish us to do this. We
will accept adverts for software, but prospective purchasers should ensure that they always receive original
copies including documentation to avoid any abuse of this facility.

We also accept members’ Business Ads at the rate of 30p per word (inclusive of VAT) and these will be featured
separately. Please send us all ads (personal and business) to MEMBERS' ADS, BEEBUG, 117 Hatfield Road,
St. Albans, Herts AL1 4JS. The normal copy date for receipt of all ads will be the 15th of each month.

WANTED: Would like some
assistance with Printwise 40T DFS
using preferably Interword. FOR
SALE: Watford sideways ROM/RAM
board with battery backed
16k sideways RAM (not
fitted) and 32k sideways

answer/dial, BBC Micro cable,
Comms software, manuals.
Unrequired gift, cost £179, sell £149.
Tel. (0952) 581407.

Aries B32 shadow RAM board £40,
Aries B12 ROM board with 2 x 16k
SWR £25, Interword (as new) £25,
PMS Multifont NTQ £20, extra fonts
for NTQ (2 discs) £8, Cumana
CS100 disc drive with PSU
£40, Viglen console for BBC B

RAM £25. Tel. (0525) 715013.
Master Turbo 128,

INVOICING & ACCOUNTS

with heavy duty PSU for two
disc drives £25, all as new
and complete with

Microvitec monitor DP35,
disc drives and single 3.5”
disc drive, 40 3.5” discs 90
5.25” discs, disc boxes,
mouse, Wordwise plus,
Spellmaster, Intersheet,
System Delta Plus, ROM
manager, Pagemaker, ROM
manager, View, Viewsheet,
Watford Utilities, Gemini
Mailist. Any offers? £650
complete. Tel. (0727) 47601.

BBC model B, Acorn DFS,
ATPL Sidewise ROM board,
Watford Elec. 32k Shadow
RAM board, Microvitec Cub
653 monitor, Acorn single
disc drive, pair of Voltmace
Delta B joysticks, Interword,

New: V3 of The Account Book now available.
Comprehensive small business accounts to trial
balance. VAT approved. Absolutely the easiest

program to use, with neat final books and hundreds
of reports. No entry limits. "The Account Book gets
first prize for both price and performance”-
comparison in Micro User-July "89. A true user -
friendly program. It succeeds admirably "-Beebug -
Oct '88. And that was Version 2, V3 has many new

features. £27.95.

New: V2 The Invoice Program. Database, Invoices
(unpaid and paid), Statements (individual and
automatic), Stock presets, Debtor lists, Linking with
The Account Book and loads more £27.95.
You will not be disapointed!!-See review BEEBUG

Dec'89.

instructions/manuals,
Masterfile II: Qucikcale:
Imogen: Fortress: Ravenskull:
Speech! all BBC 40 track disc
originals with manuals £4
each. Elite - BBC 40T disc, as
new with manuals £8,
Graphic Adventure Creator,
as new with manuals £10. Tel.
(0325) 463873 eves.

BBC software, Watford
ROMs: ROMspell, ROM
Manager, . BEEBfont,
TransfeROM @ £10 each.
BEEBUG discs: Qucikcalc,
Design @ £8 each, UIM game
(brand new) £14, Machine
Code Tutor (2xcass) £4, case

Intersheet and Interbase

l[Special Offer: £49.95 if purchased together. ||

w/leads for 5.25” floppy
drive (brand new) £10. Tel.

on ROM, Elite on disc, about
30 floppy discs. Full
documentation etc. for the
software £330. Tel. (0325)
333333.

Sinclair ZX81 computer, 16k
RAM, mains adaptor,

Apricote Studios
2 Purls Bridge Farm
Manea
Cambs
PE15 OND

Tel: 035 478 432 for information, help or to order.

(0923) 245537.

Panasonic KXP1081 printer
£85, Tandy daisy wheel
printer with tractor feed £225,
Acorn Z80 second processor
£120, Torch Z80 second

handbook, offers please.
Wordwise ROM £7, BEEBUG
Toolkit ROM £7, Dr Who &
Mines of Terror ROM & disc £7,
Basicode 2+ & programs £7, BEEBUG
Spellcheck disc £5, BEEBUG Masterfile
disc £5, Superior Software Speech! £7,
Cheetah Speech Synthesis module £7,
all with handbooks. Tel. (0262) 677555
(work) (0377) 42037 (home).

Logistix, SoliCAD, Graphic Writer,
System Delta Plus, Conqueror game.
Offers? Tel. 01-540 8461.

Microlink Multi-speed Modem
(V21/22/23), 32 number store, auto-

60

BEEBUG magazines, complete from
first issue to current with indexes, vols
1 to 6 in binders, remainder loose,
Offers? Tel. (044282) 4543.

BBC B v.g.c, cables, £250 of quality
software,educational/adventure/
entertainment, tape recorder plus
cables, nearly new Voltmace Delta 3b
twin joysticks manuals, books +
BEEBUG magazines 1985-1990 all
original. Worth over £700. £250 o.n.o.
Tel. (0473) 623448.

processor £40, AMX Stop
Press with mouse for Master
£35, Master manuals 1&2 £6
each, ROM holders for Master, various
£4 each, Taxan Green screen monitor
£30, Watford Apollo Modem with
software £50, Datachart modem 1223
with software £30. Also many other
BBC bits and pieces inc. books. Tel.
(0223) 872178.

Prism modem & ROM £25, BBC
second processor £20. Tel. 01-444 0915.

Cumana dual 40/80 disc drive £150.
Tel. (0223) 313385.

Beebug March 1989

B e T v s TR I [P e M e e I e e T I P I = (A e e R R e

Archimedes A440 without monitor,
RISC OS, 4Mb RAM 20Mb hard disc,
software £1,550 or reasonable offer.
CP80 printer £50. Tel. (0272) 736237.

Torch computer (model CF 240M)
with Hi-Res colour monitor and dual
720k 5.25” DS DD built in, separate
keyboard. Contains complete BBC
circuit board with DFS & 16K
sideways RAM in addition to native
Z80 based CP/M board. Built in
COMMS hardware. With manuals and
Torch software including Perfect
Writer, Perfect Filer, Perfect Calc,
Wordstar £350 plus postage or collect.
Tel. (0730) 67486 (Hants) eves or
weekends.

M128 with 5.25” dual drive (self
powered) and mono monitor, hardly
used £450. Tel. (0707) 269245.

Monitor: Microvitec 1431 TTL RGB
input, metal case as new £149. Tel.
(0943) 464824.

WANTED: Instant Mini Office II on
ROM. Tel. (0929) 424175.

Inter-Word ROM in original
packaging, mint condition, never used
£30, Also 25+ BBC games on cassette
inc. Citadel, Castle Quest, Moon
Cresta, whole lot £35. Tel. 01-229 5449.

BBC B issue 7, control Data DS 40/80
drive, manual and leads £270 o.n.o.
Tel. 061-766 6007.

WANTED: Pens for an Epson H1-80
“drawing machine”, or name/address
of a supplier. Tel. (0903) 40531 eves.

M128 with View, Philips monitor,
Viglen Teac 5.25” dual DD, switchable
40/80 with integral power supply, all
hardly used. Also CC Mega 3 ROM in
Care Master Quad ROM cartridge,
unused. Also, Pace Linnett 1200
modem and Commstar II
communications software and PSU,
unused. All complete with manuals
and cables. Tel. (0635) 47082.

Master 512 ver 2.1 Gem software +
mouse, Dabs manual + disc, Acorn
D/Rec. joystick, Plinth mounted 2X
5.25” DD/DS 40/80 SW D/drives,
Smart cartridge, Morley Teletext
adaptor + design 7, IMb MOS ROM,
BEEBUG CAD disc, BEEBUG mags &
binders, 5.25” DS DD D/drive aux
p/s, tape and disc games, Elite, Exile,
Thor etc. Master/Plinth, manuals,
leads, dust cover £650 inc. P&P. Tel.
(0444) 811716.

Multiprom EPROM programmer, for
8k, 16k, 32k, 64k, 128k, as new £27,
Dumpout 3 ROM £17, Viewspell ROM
£17, ADI ROM £12, all with manuals
and P&P included. WANTED: Master
system ROM, Morley AA board,

Beebug March 1990

Master circuit board or Master for
spares. Tel. 051-647 5367.

BBC B with DFS, 2 drives, ROM board
stuffed with goodies, colour monitor,
printer, modem, software inc. games,
BEEBUG from issue 1 and more £550
the lot, might split. Tel. 01-428 2841
eves and w/e.

Acorn 6502 second processor with
DNFS and Hi-Basic ROMs, manual
and original packing £65, Sleuth,
Printmaster, Source Manager and
Prestel ROMs £5 each, 50 BBC games
cassettes £70, Freefall, Elite, Revs etc.
on discs £4 each. Tel. (0782) 314053
eves and w/e.

Acorn Electron with Slogger ROM box
(+ utility ROMs, eg. Addcom, Elkman
T2P3), Plus 1 (+ View, Viewsheet
cartridges), Plus 3 (+ over 20 discs
with various programs), two good
joysticks, various commercial software
(Pascal, Repton 3, etc.) all equipment
in excellent condition and fully
documented £180 o.n.o. Tel. (0734)
751875 after 5.30pm.

BBC B OS 1.2 with over 200 games,
tape recorder and leads, lots of
magazines and 3 vols of BEEBUG.
Bargin at £210. Tel. (0932) 242960 7-9pm.

Archimedes 310 entry system, RISC
OS, Acorn 2-slot back plane, recently
overhauled, original packaging, manuals
and discs £600. Tel. (0206) 841119.

Acorn Master cartridges £7 each, Care
Quad cartridges £10 each, Original
double Acorn joysticks £13, ACP
Toolkit ROM £22, New Master ref.
manuals 1&2 £10 each, New BBC
Advanced User Guide £10, Sharewatch
ROM £30. Tel. 01-989 2666.

Master 128, dual 40/80T drives in
Viglen “PC” console, Microvitec
monitor, AMX mouse, joystick, EPROM
programmer and eraser, Overview,
Elite, Citadel £650. Juki 6100 daisywheel
printer £200. Tel. 01-977 9629.

Cannon laser printer cartridge slightly
used, no longer required, any
reasonable offer. Tel. (0299) 896845.

M128 monochrome monitor, twin
40/80 DD, Panasonic printer,
Interseries ROMs, all hand books £550
o.n.o. Tel. (0276) 22031.

Redboxes: a number of “Red Boxes”,
together with manuals, no longer
required, any offers? 1 red leader, 2
red one, and 4 red two are available.
Will sell as one lot. Tel. 01-223 6051
eves.

Morley 2Mb RAM disc plus Vu-Fax
software, instant loading and saving
brilliant! cost £400 accept £200 o.n.o.

must sell, also over 50 software
packages; games, music, utilities, for
details Tel. 091-529 4788.

M128 complete word processing
system, Mini Office II, Mini Office II
Utilities Disc + spell checker £20, The
Last Ninja (karate game) £5, (all on
disc), Bullseye quiz game on cassette
£2, Master 512 shareware vol. 1
unused £20, 1987 back issues of Micro
User and Acorn User £10. Tel. (0326)
240734 after 6pm.

BEEBUG's Basic debugger Sleuth
version 1.05a as new £7 0.n.0. inc. p&p.
Tel. (0962) 61102 after 7pm and w/e.

Seikosha GP250X printer currently in
use, offers? Tel. (0932) 783387.

Shinwa CP80 printer £80 plus
postageor collect (Exmouth). Tel.
(0395) 263638.

Defected to IBM, so have Master 512
surplus to requirements, no monitor
or disc drives, but includes software,
books, etc. for both M128 and M512
£330 o.n.o. for quick sale. Complete set
BEEBUG magazines in binders, FREE!
you pay postage. WANTED: User
manual for IBM Proprinter Model
4201. Tel. (0978) 759732 eves/wkends.

WANTED: M128 Compact with or
without monitor, in good condition.
Tel. (0753) 651990.

Epson MX-80 FT printer, hardly used
£85 o.n.o. Trackerball with drawing
package £15, Grafpad MK2 with
drawing software £45 o.n.o. Chiptester
digital integrated circuit tester, fits
BBCB or Master complete with
software and handbook £60 o.n.o. also,
not computerware but useful Roneo
electric duplicator with spares, make
me an offer! Tel. (0635) 297701.

M128, Turbo, 512 co-processor, dual
40/80 disc drive, Overview, View
Professional, Master ROM, Reference
manuals £670. Tel. (0709) 375135.

BBC B with OS.2 includes ADFS,
viewsheet viewstore, diagram II,
teletext, Advanced disc doctor ROMs
etc. 2x40/80 disc drives plus teletext
adaptor, co pro adaptor + DOS + Gem,
mouse, trackerball and joystick, over
200 discs and cassettes including
games, printmaster, wordwise, view
word processing packages, AMX etc.
books and magazines, offered
complete at £950. Tel. (0259) 216555
eves.

Wordwise + ROM complete with two
manuals and tutor tape £25, Intersheet
(32K ROM) complete with two
manuals and reference card £25. Tel.
01-348 1500 after 7pm and weekends.

61

Sel jications for M€
address be\ow
cheques) 01
BEEBUG SUBSCR\PT\ON RATES
ar (10 issues) UK, B

Rest of gurope & Eire
Mi dd\e East

mermbersh
members hp‘ nc\udmg
moers Ma subsc

ALt AJS

ad, S st.Albans ,
0303, x (0727) 60263

Ro
(0727) 403!

n-F Qam-spm
one for nnecV Access/ Visa O

ah Shrive
r: Sheridan Williams

Al rights reser _No part t of this pub\\cahon may be
without priof { rm ssion of the o Publisher.

odu
The Pub\\shet cannot & accept an
for errors in artc
The opinions express
those of the @ authof
of the Publisher

rams, r

on the pages ©
and do not necessall
BEEBUG Limited.

nbemh\p qu and orders s for
\d e in poun nds S

S U ratas|
BEEBUG & RISC USER

BFPO, chl

membership number.

Printed by Nawnonh-Bun 11d

back |
sterling dtawn (for
uced rate.

£25.00
£36.00
£43.00
£46.00
£51.00

All overseas: s are sent
airmail. H accept

official UK ord ors for
subscnphons and k
as

rders and subscri

jty articles 2 and
G Al contributions
1

o u intend to
vailable on

0234) 4111

'MARCH 1 990

ICASS

CONTENTS

rev @

ETTE

- A utility W lows you
Evﬁ h\gh\\ghte

One Leve

fstn + 18 it in Yor!

Dichotonous eys ¢ PLACES (3]

o to

Tetn WP Tev EOIt Print Touting StoP

1 Up - Question 1 (Root Level)

Ashire

Yo -3

yes - 1
jon 1

This Level - Questio? 2 (Up to duestio
stn b Does L Ve pters
¢ W -9

qes - Halifax

gywords and R

10 list programs with all K

you 0 investigate 1
changes ina ulatio

for designing
oweriu\ editing techniques-
The second
program in this seque nce allows y oad tiles 10
sideways using thY ROM header
program from pano a! \nc\udedior oonvemence
. A program which
d\sp\ays istogral emons\ra\\ng Gaussian (norma\)
distribution © of func t\ons of more than © one variable.
_ This program
allows youto '€ prod ce the Master's eXt ended character
amodel B and print it 00 poth machines-
commands 10

set on

the EDIKIT ROM.

morth's progr
youto cortig

comp!

No.9) and the

summer com

Back issues

Casse

{he theory ©
jon cau

expe ert sys\ems)

ram (also | incl
ure the start-up ¢

iler program disc

otte
ubscnpuo n left 10

which allow
of chaos, by © xp\onng the
sed by difter® rert ra! rates of growin-

- Last month's program
x\ended {0 include some

_ Three progra™

. An addition of five more

- An addmon 1o last

Juded on the disc), W
reen colours ony
_ The complete

our N\aster

cussed in {his series-
tor this issue (Vol.8
g No 8.
rogram from ouf

only

. Bibliography
rrected dat@ for Vol

- The wmmng p

petition. Program 0N disc

c0

(5.25" disc since Vol.3 No.1. 35" disC

ubscnp\\o ommu
A\l subscnp\\ons a

EEBUG,

4
Rep

x: Mean
¢i Mean

since Vol.5 No.1. 1a

25" of 3. 5 disc sV
nd \ndN\dua\ orders
H tfield Ro

infornation: Press RETURN at each field,

\’\nse enter the above

mous Keys

2 nd F plo otte all

hexr 6|equenoles uertlcal\‘
ualuﬁsv § F culated,

3.9 .50808

6.9 BBBBB

RETURH o halt. ontinue:
Tri 108293

Fi Wean 9.089832 an

B
Ualue of €=0

Order Out 0f Chaos

pes since Vol.A No.10) available

bscr'\p\ion on receipt of £1 70 pe

ad, st.Albans,

Herts A

atthe same prices:

¢ issué of the

L1 AJS.

The Beebug Master ROM is a powerful 32K ROM
developed to enhance the ADFS, sideways RAM, and
real-time features of the Master 128 and Master Compact.

¥ b
| OEERGSIFL £ COMD § OPMSTED ¥ FRE)
TN VT e L
i NI o O WS ST

Features include: A comprehensive Disc Front End, Multi- i Bt b goion

Option Panel, Diary with Calendar and Alarm. Plus a i [resitons W e
Printer Buffer using sideways RAM, a RAM Disc,
and a host of invaluable disc commands.

O Disc Menu Disc Commands
M Typing *MENU takes you straight to a full feature disc ~ The Master ROM boasts a wealth of
menu and front panel. This gives a readout of current new disc commands to help the user
M status and displays all the items in the current exploit the power of the ADFS with its
directory. Just select the file or directory of your nested directory structure. Commands
(. =) choice to be loaded and run. The menu also include: *BACKUP *WIPE *USED
A @ allows files to be marked for subsequent ~ *CATALL *FIND *FORMAT *BACKUP
N copying, renaming or deleting *MERGE *DIRCOPY *FCOPY *GOTO

Other Features

R O M Q Control Panel - displays all the Master's preset options as well as all

available ROMs. The cursor keys are used to move around the panel,
and to adjust the state of any items. Current status settings may be

The Command Driven saved away to disc for subsequent reloading at any time.

. . Q Printer Buffer - the Master ROM boasts a 16K-64K full
Communlcatlons ROM feature printer buffer. This uses sideways RAM in

Unlike much communications software, this 16K Melectable banks, sllawing you b el ki hoiments
: . whilst using the computer for another task.
ROM is command driven and has a very powerful QO Diary & Alarm - the Master ROM allows you to
extended command set. In addition, for ease of use, all keep a disc-based diary and alarm with
major features are available at the touch of a function reminders for any date in the year.
key. Because the ROM may be command driven it is U RAM Disc - a simple RAM disc of up to
exceptionally easy to link commands together in Basic 64K in length. Commands sre provided
i to save programs and memory to the
to meet your own individual needs. RAM dise
QO Text Terminal 0 Viewdata Terminal |
: Members Price
Use this terminal to access A full feature Viewdata)
Telecom Gold and thousands | Terminal giving access to £ 2 9 2
of bulletin boards worldwide. | thousands of pages in Prestel .
XMODEM file transfer allows | and other Viewdata services.
fon oo e 02 8nd 0 | viana Sk cod
P : A complete teletext editor, with 0087C
U Telephone Directory a full range of editing

Set up the name, number and | commands, on-screen help, and
modem configuration of your | 5 pixel editor.

favourite bulletin boards for G
easy recall at a later date. No | J Modem Compatibility

need to remember telephone | The standard version of Members Price
numbers any more, just type: Command is suitable for the

*CALL PRESTEL Magic Modem and similar £2 9 2 5
for example, and everything models (Demon, Apollo etc). =

will be done automatically for | The Hayes version is suitable for
you - even sign-on strings and | Hayes and other intelligent
passwords are entered. modems.

Stock Codes:
Command 0084C
Hayes Command 0073C

