

FEATURES

SplineText 8
ites !
TS‘ing\\g yariables and Procedure ¢
in SWR on a Mode! -
ex . i
‘iAo\Iersa\'\\e Charactef ‘Sgr\:c;r) =
Practical Assembl r(-
Decimal quee o %%
S
Fr;res;\;?;rs ~gm-Up (Part 43
i g\?vr'\\ée A Backup\ Utility46
‘ e
M?Js'\c Programming n Amp .
(Part 3)

PROGRAM INFORMATION

All listings published in BEEBUG magazine are

produced directly from working programs. They are
formatted using LISTO 1 and WIDTH 40. The space

following the line number is to aid readability only,
and may be omitted when the program is typed in.
However, the rest of each line should be entered
exactly as printed, and checked carefully. When

Adventure Games
REGULAR \TEMS :
Editor's Jottings :
News . .
Points Arising r
Bulletin Boayds 57
Hints and TipS A
RISC User 5
Best of BEEBUG i
Postbad v 6602
sonal AdS
Psfbscr'\pf\ons & Back \ssues e
Magazine Disc/Cassete
H\NTS & TIPS
BBC Micro
ZB?E%UG Toolkit on the Master
Recorﬂ'\gur'mg the Master

difference between the digit one and a lower case |

(L). Also note that the vertical bar character (Shift \)
is reproduced in listings as |.

entering a listing, pay special attention to the

All programs in BEEBUG magazine will run on any
BBC micro with Basic II or later, unless otherwise
indicated. Members with Basic I are referred to the
article on page 44 of BEEBUG Vol.7 No.2 (reprints

HELV ETICA

\\\\.E\\E“\\\\\EE\\N
Nm\NETEXT

onte ‘ ts
Hnj‘rq" "‘r_‘ e T | ad 4 bli?ztﬁu
: e set‘o“,“gm

Press & &Y to choose & opt'mn

1 2/thoice BA
Question 9 - (... \eve :
queeze & TuAbeY petueen these tvo: “ 2., Level 2/Choice

| e B
7. Leiel 20k i
p. 00091 4 Lewe 2/Choice

5
ot n to premus menu

Correct, well dore. 5., Retur

Press space bar to continue

available on receipt of an A5 SAE), and are strongly
advised to upgrade to Basic Il. Any second processor
fitted to the computer should be turned off before the
programs are run.

Program will not function on a cassette-
based system.

; Program needs at least one bank of
Where a program requires a certain configuration, sideways RAM. :
this is indicated by symbols at the beginning of the
article (as shown opposite). Any other requirements
are referred to explicitly in the text of the article.

NN e

Program is for Master 128 and Compact
only.

= i

Lditors Jottings

THE BEEBUG RETAIL CATALOGYE

It has been our regular practice over many years now to
mail out a Retail Catalogue with each issue of BEEBUG
magazine. As readers will be aware, the catalogue has
considerably increased in size over the last 12 months,
culminating in the 72 page summer edition which you
should have received with the May issue of BEEBUG.
Because of this, we will no longer publish and send out a
new version of the catalogue with every issue. Instead, the
full catalogue will be sent out three or four times a year,
with short supplements in between where this is
appropriate.

So before you lift the phone to find out where your latest
catalogue is, please check to locate last month'’s issue, and
keep that for reference until you receive the next
catalogue, due in September. If you have lost or mislaid
the summer edition we can supply a further copy on
request. We hope that in this way we can provide a more
comprehensive mail-order service, and improve on the
competitiveness of our prices.

EDIKT

I'would like to remind all readers of the new EdiKit ROM
which we launched last month. Based on the successful
series of articles by Bill Hine, and incorporating all the
routines from our previous Basic Booster, this provides an
excellent toolkit of functions and routines which will be of
help to all Basic programmers, and at a special low price
for BEEBUG members. Furthermore, the coding has been
tested and suitably modified so that EdiKit will function
correctly on the model B, The Master 128 and Master
Compact, and with the latest Master ROM. EdiKit is
available as an EPROM ready to plug in, or as a ROM
image on disc for loading into sideways RAM. Full details
and order information are elsewhere in this issue.

ASSEITES VERSUS DISLS

Recent correspondence with a BEEBUG member has
surprised us as it suggests that there are still a good many
users of BBC micros who rely solely on cassettes for their

4

storage requirements. Now this was not unreasonable

when the Beeb was first launched with even the cheapest

disc drives costing upwards of £400. Today, it is possible |
to come across brand new drives for as little as £50, and [
the enormous increase in ease of use that results is worth

every penny.

Discs are also much more reliable, offering facilities
such as immediate and random access to files which
cannot be matched by any cassette system. Anyone
contemplating the upgrade should note that they will
require to ensure that their machine is fitted with a disc
interface, in order to connect the disc drive unit to the
micro. Details of interfaces and drives are given in our
Retail Catalogue, and we have a Fact Sheet: BBC Micro
Disc Upgrade which gives more detailed information on
what is required. The small ads in BEEBUG can also be
a useful source of add-ons.

512 CO-PROGESSOR

Checking through this month’s batch of members’ small ;
ads I was struck by the number of wanted ads from ‘
readers seeking 512 co-processors. Fortunately, there were i
also several ads offering complete systems with a 512, so
hopefully both sales and wants will find their needs

satisfying. It would appear that there is a steadily growing
interest in the facility to add MS-DOS capability to a BBC

micro, and it would be nice to think that Robin Burton’s

regular column on the 512 in BEEBUG has had something

to do with this.

IF MUSK BE THE FOOD OF LOVE

This issue marks the conclusion of Ian Waugh's short
series of articles on programming in Ample, the language
for Hybrid Technology’s Music 5000. Like the 512 co-
processor, this is another minority interest, but again one
which has its devoted band of followers. If there is
sufficient interest we are quite prepared to consider
further articles by Ian, or even a regular column as with
the 512. It's up to you.

Beebug June 1990

NEW SHOWS FOR ENTHUSIASTS

A new series of shows for computer enthusiasts has been
launched in London. Known as the All Formats Computer
Fair the first event was held on 10th February, and the
second such event took place on 28th and 29th April. As
the name implies, these fairs are intended to cover a range
of different home computers. Starting with the next fair,
there will be an Archimedes ‘village’ within the fair
catering for Acorn enthusiasts. This show will take place
on 9th and 10th June, at the New Horticultural Hall,
Westminster, London from 10am till 5pm on the first day,
and until 4pm on the second. Admission is priced at £3 per
person. For further information contact John Riding on
(0225) 447453 or Mike Hayes on (0457) 875229.

The first All Formats Computer Fair

COMPUTER SHOPPER SHOW EXPANDS
The Computer Shopper Show scheduled for December 1990
has been expanded to four full days and will now run
from Thursday 6th December to Sunday 9th December.
The venue has also been moved to the Wembley
Conference Centre, such was the success of the inaugural
show last December at Alexandra Palace. We understand
that Acorn has booked a stand at the show, and BEEBUG
will be there as well (stand]25). For more information
contact Mike Cowley on 061-480 9811.

BBC ACORN USER SHOW

Just a reminder that this year’s BBC Acorn User Show,
usually considered the premier event for Acorn enthusiasts,
is due to take place at the New Horticultural Hall,

Beebug June 1990

News News News News News News

Westminster, from 7th to 9th September. Again, both Acorn
and BEEBUG will have a presence (BEEBUG is on stand 74).

MINERVA MOVES HOUSE

Software house Minerva has announced a move to new
offices. The new address is (unsurprisingly) Minerva
Software, Minerva House, Baring Crescent, Exeter EX1 1TL.
The telephone number remains the same at (0392) 437756,
as does the fax number, (0392) 421762.

INDEFATIGABLE SUPERIOR

Yet another Play it again Sam collection of games has been
released by software games house Superior. The latest
offering is number 13 in the sequence and comprises
Barbarian 11, Hyperball (a brand new release), Pandemonium
(a Peter Scott special now available for the first time on the
Master or Electron), and a favourite classic, Percy Penguin,
whose eponymous hero continues his battle against the
Snobees. Play it again Sam 13 costs £9.95 on dual cassette,
£11.95 on 5.25” disc, and £14.95 on 3.5” disc for the
Compact. Superior are at P.0.Box 6, Brigg, South
Humberside DN20 9NH, tel. (0652) 58585.

AMPLINEX FOR MUSIC LOVERS

Readers of lan Waugh's recent series of articles on
Programming in Ample, the language of Hybrid
Technology’s Music 5000, may be interested to know of the
existence of Amplinex, a group for devotees of this system.
Amplinex operates as an information exchange, and
publishes a regular bi-monthly disc with a combination of
text, graphics and sound all fully integrated for the Music
5000 environment.

To join Amplinex, send a blank formatted DFS disc (40
track users send one double sided or two single sided), a
self-addressed label and return postage, and £5.00 to
Amplinex, 26 Arbor Lane, Winnersh, Berks RG11 5]D.
Anyone contributing to Amplinex gets the next issue free.

AN OVATION FOR BEEBUG

Readers may be interested to know that BEEBUG’s own
full-featured DTP package for the Archimedes (called
Ovation) is due for release about now. Priced at just £99.00
inc. VAT for BEEBUG and RISC USER members, the
software should be available this June. For more
information contact BEEBUG on (0727) 40303.

5

SplineText

David James offers a method of producing outline fonts on the BBC.

INTRODUCTION

SplineText is a utility program, designed to run
on any BBC Model B, B+ or Master, together
with a standard Epson-compatible printer.
When run, the program asks the user for a
string and then outputs it on the printer in
Helvetica typestyle at any size up to 8”x7” per
letter. The definitions are not stored as bit-maps
like the standard 8x8 pixel BBC character set,
but as a set of co-ordinates of points on the
outline of each letter, which are then joined up
either by straight lines or by a curve. I have
used Roger Burg’s spline routines from
BEEBUG Vol.7 No.2 with a small step value for
accuracy.

If you have a flood-fill routine in ROM (such as
that in the Computer Concepts Graphics ROM
or the Acorn GXR) or on disc, you can use this
to fill the character. Remember, though, that
large, filled characters take their toll on your
printer ribbon! My solution to this is to remove
my printer ribbon and use carbon paper, which
gives excellent results. Each character is drawn
on the screen and then sent to the printer by a
special machine-code dump routine which
directly accesses the screen for speed.

INSTRUCTIONS

First of all, type in listing 1 and save it as
“Splinel”. This program assembles the code for
the fast screen dump and then chains in the
main program. The dump routine is 256 bytes

long and, to speed up printing, uses a 768-byte
buffer. The code is stored at &2F00, the buffer is
between &2C00-&2EFF, and HIMEM is lowered
to &2C00 to protect this area from the Basic
stack. This configuration allows the program to
run on all models. Model B owners should
delete line 750, while for a Master you need not
include lines 760-770.

Now enter the second listing and save it as
“Spline2”, taking care to enter the encoded
character definitions carefully. Do not renumber
the program or the computed RESTORE in line
1350 will not be correct. The PLOT command in
line 2590 effects a flood-fill on the Master;
model B owners should replace this command
with one appropriate to their own graphics
ROM if they have one. The subject of flood-
filling for the model B was also covered in
BEEBUG Vol.5 No.3 and Vol.6 No.3.

The program can now be run by typing CHAIN
“Splinel”. If you have made any mistakes in
typing the data for any character, this will
become apparent when you try to print it, so it
is a good idea to check all the characters by
printing each one out once the program is
complete.

TECHNICAL INFORMATION

The shape of each character is defined by giving
a sufficient number of points on the outline,
along with the type of curve (spline or line)

m
iR

50 0

Beebug June 1990

SplineText

OEENE

A WORTRWNLE TER FhOH BcEBlt

Ol
HELVETICA

NI Sllae=s [=

SPLINETEXT

the width of the character in
comparative units. For example, ‘A’
would signify a width of 65 units, ‘a’
would be 97. These are not absolute
values, but merely describe the
relative widths of the characters to
each other. If you are adding a new
character to the list it is up to you to
choose a relative width based on its
relationship to characters already
present.

The next string gives as many points
as are necessary to flood-fill the letter
properly (normally just one). Each
string of points which then follows is
preceded by ‘S’ (meaning use a spline
to join them) or ‘L’ (use straight lines).
The definition is terminated with ‘E’.

needed to join them up. For example, the letter S
is given as 2 S-shaped splines and 2 short
straight lines to join them. The given points are
restricted to a 55x55 grid, so we can store each
point as 2 ASCII characters, representing the x
and y positions on the grid. The values of these
characters are found by the formula:
character=CHRS (48+2*coord)
but the interpolation between them isn’t
restricted to this grid.

The program uses the symmetry of letters to cut
down the amount of data required in some
cases; for example, we only need define the top-
left hand corner of the letter ‘O’ to describe it
fully. We also give the computer the width of
the character, and the co-ordinates of one or
more points to use as the start point for flood-
filling (the exclamation mark is the only
character for which we need 2 points).

CHARACTER DATA

The data statements given in the listing define
capital letters A-Z, full stop, comma and
exclamation mark. The first string of a data line
is always 3 characters long, and supplies the x-
axis of symmetry (zero means the letter is not
symmetrical in the x-axis), the y-axis of
symmetry (zero means not y-symmetrical), and

Beebug June 1990

The letter width as specified by the user when
the program is run, refers to a letter of average
width; so a seven-letter word with a letter
width of one inch is not necessarily going to be
seven inches long. Also, to aid spacing between
letters, the width of each letter is rounded up to
the nearest ninth of an inch - this has a
negligible effect on how the printed phrase
looks, however.

Listing 1

10 REM Program Splinel

20 REM Version B1.0

30 REM Author David James

40 REM BEEBUG June 1990

50 REM Program Subject to copyright

100 adr=&70:1len=&76:dots=&77
110 S%=&2C00:C%=&2F00

120 FOR I%=0 TO 2 STEP 2

130 P%=C%: [

140 OPT 1%

150 .setadr LDA adr:STA asl+l
160 LDA adr+1:STA aslt2:RTS

180 .asl ASL &FFFF,X:RTS
200 .blockl6 LDA #0:LDX #0

210 .L1 JSR asl:ROL A
220 CPX #&06:BNE L2

SplineText

230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750

PHA:LDA #&78:CLC

ADC asl+l1:STA asl+l

LDA #&02:ADC asl+2:STA asl+2
PLA

.L2 INX:INX

CPX #&10:BNE L1

.endblockl6 LDY &78

STA (&74),Y:INY

STY &78:BNE rts

INC &75:.rts RTS

.block48 LDA #0:TAX:TAY
.L3 JSR asl:BCC L4
CLC:ADC (&72),Y

.L4 INX:INY

CPY dots:BNE L3

JMP endblockl16

.data

EQUD &030C30C0
EQUD &10204080
EQUD &01020408

.blockdo LDA dots:CMP #&10
BNE not16

LDA #&07:.l0o0pl6 PHA

JSR setadr:JSR blockl6
PLA:SEC:SBC #1

BPL loopl6:RTS

.notl6

LDA#data MOD256:STA &72
LDA#data DIV256:STA &73
LDA dots:CMP #8

BNE not8

LDA &72:CLC

ADC #&04:STA &72

.not8 LDA #7

.loop48 PHA:JSR setadr
JSR block48

PLA:SEC:SBC #1:BPL loop48
RTS

.main

LDA #&00:STA &74:STA &78

LDA #S% DIV 256:STA &75
.mainloop JSR blockdo

LDA #&08:CLC:ADC adr:STA adr
LDA #&00:ADC adr+1:STA adr+l
DEC len:BNE mainloop:RTS

]

NEXT

REM Model B owners delete line 750
CHAIN"Spline2"

760 *KEYQ"LO.""Spline2"" |M*T, |MFOR L$%=
0 TO &1700 STEP 4:L%!&E00=L%!PAGE:NEXT:P
AGE=&E00 |[MO. |MRUN |M"

770 #ix 138 0 128

Listing 2

10 REM Program Spline2
20 REM Version Bl.1
30 REM Author David James
40 REM BEEBUG June 1990
50 REM Program Subject to copyright
60 @
100 code%=C%:store%=S%:main=code%+&9C:
adr=670:len=&76:dots=&77 ,
110 DIM X%(25),Y%(25) ,apeX%(25),apeY% (
25)
120 MODE 7:PROCheader:PROCgetparams
130 MODE 0:HIMEM=§2C00
140 VDU 2:*FX3, 64
150 FOR loop%=1 TO LEN(M$):CLS
160 let$=MIDS$ (M$, loop%,1) :PROCdrawlett
er(let$)
170 IF let$<>" " PROCdumpletter
180 NEXT:VDU 3,7:END
190 ¢

1000 DEF PROCheader

1010 FOR I%=0 TO 1

1020 VDU 157,129,141 :PRINT"
V1.1 by David James"

1030 NEXT:VDU 31,0,24,157,129:PRINTSPC1
0" (C) BEEBUG 1990";:VDU 28,0,23,39,2

1040 ENDPROC '

1050 ¢ ,

1060 DEF PROCgetparams

1070 REPEAT PRINT'" Your message ";

1080 INPUT LINE M$:UNTIL LEN (M$)>0

1090 REPEAT PRINT'" Width of letters (i
nches) ¢ ;

1100 INPUT "" xsize:UNTIL xsize>0

1110 REPEAT PRINT'" Height of letters (
inches) :":

1120 INPUT "" ysize:UNTIL ysize>0

1130 REPEAT PRINT'" Letters filled (Y/N
) N ‘

1140 INPUT "" YNS:UNTIL INSTR ("YyNn", YN
$) '
1150 £ill%=(YN$="Y" OR YN$="y") :xdpp=4
1160 IF xsize>7 . 1111 xsize=7 1111
1170 IF xsize<=(32/9) THEN xdpp=2
1180 IF xsize<=(16/9) THEN xdpp=1
1190 ydpp=3:IF ysize>8 ysize=8
1200 IF ysize<=(16/3) THEN ydpp=2

SPLINETEXT

Beebug June 1990

SplineText

1210 IF ysize<=(8/3) THEN ydpp=1

1220 ysc=(ysize/ydpp) *1279*3/ (8*28)
1230 ENDPROC

1240 ¢

1250 DEF PROCscalex

1260 xs=xsize:realx=xs*xmax/29

1270 adjx=INT(0.5+realx*9)/9

1280 xs=(adjx*xs)/realx ,
1290 xsc=(1024*xs*9)/ (16*xdpp*29)

1300 xsc=(xmax*xsc-4) /xmax

1310 ENDPROC ‘

1320 ¢

1330 DEF PROCdrawletter (letter$)

1340 IF letter$=" " THEN PROCls(lOB*x51
ze) : ENDPROC

1350 RESTORE (2610+10*(INSTR(“ABCDEFGHI
JKIMNOPQRSTUVWXYZ. !, ", letter$)))

1360 READ S$,fill$

1370 XS=FNt (1) YS“FNt(Z) xmax=FNt (3)
1380 PROCscalex

1390 REPEAT READ N$

1400 IF NS<>"E" READ S$:L%= (LENSS)/2
1410 IF N$="S" PROCspline ELSE IF N$= v
" PROCline

1420 UNTIL N$="E"

1430 IF f£ill% PROCfill

1440 ENDPROC

1450 :

1460 DEF PROCline

1470 PROClinel(0,1,0,1)

1480 IF XS<>0 PROClinel (2*XS,-1,0,1)
1490 IF vS8<>0 PROClinel(0,1,2%YS,-1)
1500 IF XS<>0 AND YS<>0 PROClinel(2*XS,
=1,2%YS,~1})

1510 ENDPROC

1520

1530 DEF PROClinel (xc, xm, yc, ym)

1540 x=FNd(1,xc,xm) :y=FNd (2, yc, ym)
1550 MOVE FNy (y) ,FNx (x)

1560 FOR N%=1 TO L%-1

1570 x=FNd(1+2*N%, xc, xm)

1580 y=FNd(2* (N%+1),yc,ym)

1590 DRAW FNy (y) ,FNx (x)

1600 NEXT N%

1610 ENDPROC

1620 :

1630 DEF PROCspline

1640 PROCsplinel(0,1,0,1)

1650 IF XS<>0 PROCspline1(2*XS,-l,O,1)
1660 IF YS<>0 PROCsplinel (0,1,2*YS,-1)
1670 IF XS<>0 AND YS<>0 PROCsplinel (2*X
S,=1,2%08,-1)

1680 ENDPROC

1690 :

1700 DEF PROCsplinel (xc,xm,yc,ym)

1710 FOR N%=0 TO L%-1

1720 x=FNd(1+2*N%,xC,xm) : Y% (N%+1) =FNx(x
)

1730 y=FNd(2* (N$+1),yc,ym) : X% (N%+1) =FNy
(y)

1740 NEXT N%

1750 FOR J%=1 TO L%

1760 apeX%(J%)=((X% (J%) *4) -X% (J%+1) -X% (
J%-1)) /2

1770 apeY%(J%)=((Y%(J%)*4)—Y%(J%+1)-Y%(
Js-1)) /2

1780 NEXT

1790 MOVE X%(1),Y%(1)

1800 FOR J%=1 TO L%-2

1810 FOR n=0 TO 0.5 STEP .02

1820 N=1-n:m=n*2:M=1-m

1830 IF J%=1 PROCsimplebow (J%)

1840 IF J%>1 PROChalfbow

1850 NEXT : NEXT

1860 FOR n=0.5 T0 1 STEP .02

1870 PROCsimplebow(J%-1)

1880 NEXT n

1890 DRAW FNrx(X%(J%+1)),FNry (Y% (J%+1))
1900 ENDPROC

1910 ¢

1920 DEF PROCsimplebow (J%)

1930 DRAW FNrx (FNbowX (J%,n)) ,FNry (FNbow
Y(J%,n))

1940 ENDPROC

1950

1960 DEF PROChalfbow

1970 LOCAL BowX,BowX2,BowY,BowY2

1980 BowX=m*FNbowX (J%,n)

1990 BowX2=M*FNbowX (J%-1,n+.5)

2000 BowY=m*FNbowY (J%,n)

2010 BowY2=M*FNbowY (J%-1,n+.5)

2020 DRAW FNrx (BowX+BowX2) ,FNry (BowY+Bo
wY2)

2030 ENDPROC

2040 :

2050 DEF FNbowX (J%,n)

2060 LOCAL X%,X2%,apeX%

2070 X%=X%(J%) :X2%=X% (J%12)

2080 apeXl%=apeX% (J%+1)

2090 =((X%+(n*(apeX1%-X%)))*(1-n))+((ap
eX1%+ (n* (X2%-apeX1%))) *n)

2100 ¢

2110 DEF FNbowY (J%,n)

2120 LOCAL Y$%,Y2%,apeY%

2130 Y%=Y% (J%) :Y2%=Y% (J%+2)

2140 apeYl%=apeY% (J%+1) J

Beebug June 1990

SplineText

2150 =((Y%+(n* (apeY1%-Y%))) *(1-n)) +((ap
eY1%+(n* (Y2%-apeY1%))) *n)

2160 :

2170 DEF FNx(pos)=1023~xsc*pos

2180 DEF FNy (pos)=ysc*pos

2190 DEF FNrx(x):IF x<0 THEN =0

2200 IF x>1279 THEN =1279 ELSE =x

2210 DEF FNry(y) :IF y<0 THEN =0

2220 IF y>1023 THEN =1023 ELSE =y

2230 :

2240 DEF FNt (P%)=(ASC(MID$ (S$,P%,1))-48
)

2250 DEF FNd(P$%,c,m)=c+m*FNt (P%)

2260 :

2270 DEF PROCdumpletter

2280 ?dots=16/xdpp

2290 1lines%=INT(.99999999+ (4+xmax*xsc)/
64)

2300 len%=INT(.99999999+28*ysc/16)

2310 PROCAump:PROCls (20*xsize)

2320 ENDPROC

2330 ¢

2340 DEF PROCdump

2350 FOR Y%=0 TO (xdpp*lines$%)-1

2360 IF xdpp=1 x%=&500*Y% ELSE IF xdpp=
2 x%=6280*Y% ELSE x%=6280* (Y$ DIV 2)+4*(
Y% MOD 2)

2370 'adr=&3000+x%:?len=len% .

2380 CALL main:PROCprint:PROCls (1)

2390 IF xdpp=1 !adr=63001+x%:?len=len%:
CALL main

2400 PROCprint :PROCls (23)

2410 NEXT Y%:ENDPROC

2420 :

2430 DEF PROCls (L%)

2440 vbu 1,279, 1,51 ,1,18,1,13,1,10

2450 ENDPROC

2460 :

2470 DEF PROCprint

2480 VDU 1,27,1,90,1, (8*1en%*ydpp) MOD&
100,1, (8*1len%*ydpp) DIV&100

2490 FOR I%=0 TO (8*len%-1)

2500 FOR J%=1 TO ydpp

2510 VDU 1,I%?store%

2520 NEXT , :ENDPROC

2530 :

2540 DEF PROCfill

2550 S$=fill$:FOR F%=1 TO LENSS STEP 2
2560 fx%=FNx (FNt (F%))

2570 fy%=FNy (FNt (F%+1))

| 2580 REM Replace next line with call to

your usual routine,

| 2590 PLOT 133, fy$, fx%

2600 NEXT:ENDPROC

2610 :

2620 DATA LOh,22,L,L;D;@101DgLg, L, LUFCL
0,8

2630 DATA 00 ,22,L,N1010gNg,S,NgVdz£\ [[
TWO, S, WO]H_@QZ5N1,L, JRRREZJZ, S, JZMYOVMSJIR
, L, L=@=@GLG, S, LGPEQBP?L=, E

2640 DATA 0Ld,J2,S,dFb>X4K0>44>0L, S, UFR
AK>DAAFQL, L, dFUF, E

2650 DATA OLb,22,L,0L01M1,S,M1X5£2bL, L,
@L@>F>, S, F>LRQERL, E

2660 DATA 0L*,22,L,0M01°1~?@?@GZGZM, E
2670 DATA 00Z,22,L,01@1@CVCVQRQEYZYZgO0g
01,E

2680 DATA 00d,J2,S,YTR2K0>44>0L4Z>dKhXd
bZdR, S, UCQ?K>DAAF @LARDWKZRWUR, L, UCNCNNAN
d121Y7,L,dRUR, E

2690 DATA LLh,22,L,0N01@1@CLC,E

2700 DATA 8L@,22,L,0M0181,E

2710 DATA 00X,D2,L,HCHgXgXE,S,0E2;75D1Q
5V;XE, L, OEQIQIGC, S, @CARD?G@HC, E

2720 DATA 00d,22,L,010g@g@VOgbgPRA1R1DE
@AQ101,E

2730 DATA 00%,22,L,010g@gRAXAX101,E
2740 DATA M0j,22,L,M1G1>P>1010gFgMJ, E
2750 DATA 00£,22,L,010gAg0I0g£qg£101ANAL
01,E

2760 DATA KLf,K2,S,K0>44>0L,S,K?DBAGRL,
E

2770 DATA 00 ,22,L,LB@B@1010gLg, S, LgVd\
* U\KVELB, L, IN@N@ZIZ, S, IZMXOTMPIN, E

2780 DATA 00f,J2,S,K0>44>0L4Z>dKhXdbZ fL
b>, L, b>£>£0K0, S, K?DBAGRLAQDVKYRVUQVLUGRB
K?,E

2790 DATA 00f,22,L,FC@CR1010g0g,S,0qg [at
W°NXI,S,XI[F*A ; 3al,l,alPl,S,PIN=KBFC,L
, IM@M@YIY, S, IYMNOSMOIM, E

2800 DATA 00\,F2,S,\WZ SeFh9%e2 OWOU209H
FDIAG=D<A=?A, S, 0A2993F0532%9\BZISPFTCWE [H
\K[MW, L, \WMW, L, ?A0A, E

2810 DATA G0*~,2f,L,G121?Y0Y0gGg,E

2820 DATA I0b,2f,L,0D0g@g@D,S,@DB?I=,S,
0D1<65=110,E

2830 DATA HOf,2f,L,HD@g0g?1H1,E
| 2840 DATA TOx,2f,L,TON1=10g?gFCMgTqg,E
| 2850 DATA KLf,22,L,KVDg0g=L,E
| 2860 DATA KOf,2f,L,KSBgOgBEB1K],E
| 2870 DATA 00g,22,L, \g0g0YHY0?01\1\?D?\Y
i\g,E
| 2880 DATA 00>,22,L,01>1>20701,E
| 2890 DATA 00>,225H,L,01>1>20201,L, 4E0Y0
| f>f>Y:E4E,E
| 2900 DATA 00>,44,L,0302>2>3;0407303,E (8

[

10

Beebug June 1990

Turmites

Grimble Gromble brings us another fascinating excursion into the world of
recreational mathematics.

First there was LIFE, then there were Mathematical
Worms (see BEEBUG Vol.7 No.4), and now we
meet Turmites.

Some time ago I wrote a program, simulating
Turing machines, which was really too
complicated for publication. Since then an
article has appeared in Scientific American
(Computer Recreations by A.K.Dewdney p.124-
127 September 1989) exploring the world of
two-dimensional Turing machines and its close
relative, the turmite.

A two-state turmite

Based on this I have produced a program
encompassing the essential principles, which is
simple to use, and produces a intriguing
graphical display without any need to delve
into abstruse mathematics.

The turmite lives alone in an infinite two-
dimensional world of square cells. Its behaviour
depends on two factors; the colour of the cell it
is occupying and the state the turmite is in.
Given these two values the turmite carries out a
simple procedure: firstly it changes (or not) the
colour of the occupied cell, next it makes a turn
(or not) and advances by one cell, and finally it
switches to a different state (or stays the same).
This process is repeated ad infinitum.

The turmites simulated by the program listed
here can use up to 8 colours (the limits of the

Beebug June 1990

BBC micro) and 26 states, though in theory
these would be unlimited. Even so this will
provide enormous scope for exploring these
fascinating creatures. Of course, it is not
necessary to use all of them. The main
restriction is really the limited screen area
which here kills the turmite when it reaches the
screen boundaries. It is easiest to display (and
manipulate) the relevant information as a table
(corresponding to a Turing machine).

USING THE PROGRAM

The program should be typed in and saved
before running. It first displays the decision
table ready for editing. Each of the table entries
defined by current cell colour (0-7 along the top)
and present state (A-Z down the left side)
contains three symbols. The first is the colour (0-
7) to which the cell is to be changed. Next is the
direction the turmite turns (forward #, right >,
back v and left <) before advancing one cell, and
finally the next state (A-Z) the turmite adopts.

The following keys may be used in edit mode
and a reminder is displayed:

0-7: Set colour to leave cell.
Cursor keys: Set direction to turn.

A-Z: Set next state to adopt and move
cursor to next column.
f0-f3: Move cursor left, right, down and
up respectively.
Return: Move cursor to beginning of next

TOw.

f4: Set turmite running. World initially
colour 0 and turmite facing to
right of screen in state A.

f5: Save decision table to named file.

f6: Load decision table from named file.

f7: Reset decision table to default.
There are several reasons for
using the default as you will see.

* Execute * command. Press Return

alone to get back to edit mode.

Once the turmite is running (f4), pressing the ‘S’
will temporarily suspend the turmite’s activity
while the screen display is dumped to a file

11

Turmites

called SCRn, where n starts at 0 and increases
by one each time the ‘S’ key is pressed. The
value of n starts at 0 for each run so if you want
to keep results from more than one run, use the
* facility to rename the files between runs.

333333333>3> W&

NI¥ NLCXECC-HUDDTOZIMRWGHIOTMOODD
3333333323333333> &

S DD TOZIrReHIRTMOORD

N NNSNNNNNNNNNNNNNNNNNNNNN NN

2333333333333 333333> &

DI NCXECS=HUIDTVOZIMNrREHIOTMOODD

-

SOOIV DORODODWH
333333333333333333333330Av ®
NCXECC=HNIDTOZIIMFRGHIOTMOODID
BEAARBERALRARBAIRDILD
u;a;v;a;mmmmmmmmmma\mmmmma
2333333333333 333333333333> N
NCXECC-HUDDTOIIr RGHIOTMOOmD

33333

NEXECC=NDIDTVOZTIMREGHIOTMOOWD =

A0 NCXECC=HUDIDTOZIrRHIOTMOOWD
£

r-o
O NNNNNNNNNNNNNNNNNNNNNNN N

B
B
c
D
E
F
G
H
1
3
K
L
7]
N
0
P
@
R
S
T
u
U
W
X
v
2z
o
d

n
£

oY AUNNNTANAANNANAAANNNNANANANN

2
|
A
A
|
|
~
A
A
~
~
~
~
~
~
A
A
A
A
A
~
|
Al
|
'
~
~
i
a
al

A 3333333333333>)>

MO ARARAA

"

The decision table

Pressing ‘X’ at any time will exit from run mode
and return you to edit mode (the turmite
display will then be lost).

If the turmite reaches the edge of the screen, a
beep will sound and the cursor will reappear at
the top left of the screen. Pressing any key will
then return you to edit mode or ‘S’ will provide
a final screen dump first.

Make sure you have room on the disc(s) for any
dumps first. You can run some of these turmites
for hours (if not days) and it's soul rending to
request a dump only to have the display wiped
before you’ve finished and be told ‘Not enough
room’. Each dump uses 20k (&50 sectors).

CREATING TURMITES

Well, that’s the program, what about some
turmites to play with? First, a convention. Since
only some of the colours and states are
normally used, any decision tables shown will
only include the top left corner relevant to the
turmite. For example:

1<A 0"B
1>A 1>A

is a two-state turmite (first row - state A, second
row - state B) using two colours (first column -
colour 0, second column - colour 1). As an
example of the ease of entry, the above turmite

12

is entered with the following sequence of key
presses (no spaces):

1<AD0*>BReturn 1 >A 15 A

where the <, A and > symbols represent the
corresponding cursor keys at the top right of
the keyboard. Now press f4 to see the turmite
draw an unusual spiral.

Even single-state turmites can display complex
behaviour as demonstrated by:

1<A 0>A

Those of you who used mathematical worms
will get a strong feeling of deja-vu. You should
notice several resemblances in behaviour
despite the radically different environment and
rules employed. Perhaps even more curious is
another single-state turmite:

1>A 2>A 3<A 0<A

which produces a symmetrical design (it runs for
hour after hour before hitting the screen edge so
be warned; use ‘X’ if you can’t take any more).

A complex three-state turmite

There are only two more pieces of advice I'm
going to give. Firstly, unlike worms, turmites
can cover the same ground repeatedly. This
means they can get stuck in loops, some of
which can be quite long in execution. If you're
not sure if this has happened, move on to a
different one. There are so many possibilities,
why waste time on a doubtful one?

Lastly, you may want to see just where a turmite
has been and this can be difficult since sometimes
it colours cells black and the background is black

Beebug June 1990

Turmites

too. You can overcome this by using one extra
colour and doubling the number of states. Take
the first two-state turmite mentioned above:

1<A 0"B
1>A 1>A

Increase the colour numbers by one and shift the
decisions one column to the right. For each used
state, in column 0 enter 1v and the character of
an unused state (different for each used state).
Now for each new state, go across the columns
entering the colour corresponding to the column,
v/, and the used state for which this state was
employed. You should end up with:

IvCiZ<hE1eB
1vD 2>A 2>A
OvA 1vA 2vA
OvB 1vB 2vB

It sounds complicated but the reasoning is quite
straightforward as you will see if you manually
trace the action of this and the original through
a few steps, bearing in mind that in the new
display the colour numbers are one greater than
in the old display.

10 REM Program Turmite

20 REM Version Bl.1

30 REM Author Grimble Gromble

40 REM BEEBUG June 1990

50 REM Program subject to copyrlght
60
100 PROClnit PROCreset
110 ON ERROR MODE 7:PROCerror:IF end%
END ‘ :
120 REPEAT

130 MODE 1:Q%=FNe

140 IF Q%=1 MODE2: PROCturmlte

150 IF Q%=2 PROCsave

160 IF Q%=3 PROCload

170 IF Q%=4 PROCreset

180 IF Q%=5 MODE 7:PROCoOs

190 UNTIL FALSE

2000«

1000 DEF PROCinit

1010 LOCAL I%,T%:N%=0

1020 DIM c%(7,25),d%(7,25) ,8%(1,25)
1030 DIM x%(3),y%(3),2%(3),d$ (3)

1040 FOR I%=0 TO 3 '
1050 READ x%(I%),y%(1%),2%(I%),d$(I%)
1060 NEXT

1070 gq%=-67:k%=-82:£%=128:*FX225,128
1080 ENDPROC ‘

1100
1110
1120
1130
1140
1150

| 1160
| 1170

1180
=8%

1190
1200
1210
1220
1230
1240
1250

1260
1270
1280
1290
1300
1310
1320
1330
1340

1360
1370
1380
1390
1400
1410

1430
1440
1450
1460
1470
1480
1490
1500

1510
1520

1530
1540
1550
1560
1570
1580
1590

1090 :

+3)

G%-48)

DATA 8,0,3,""

DATA 0,-8,1,">"

DATA -8,0,2,"v"

DATA 0,8,0,"<"

DEF PROCreset

LOCAL C$,S%

FOR C%=0 TO 7:FOR $%=0 TO 25
C%(C%, S%)=C%:d% (C%, 5%)=0:5%(C%, 5%)

NEXT Sk, c:
ENDPROC
DEF PROCerror

LOCAL V%:end%=FALSE
CLOSE#0:*FX4,0 '

IF ERR<>17 REPORT:PRINT" at line "

;ERL : end$=TRUE : ENDPROC

PRINT"Continue (Y/N/*)2";
REPEAT

V= INSTR("NnYy*“,GETS)
UNTIL V%

IF V%=5 THEN PROCos

IF V$>2 THEN ENDPROC
PRINT "N" '
end%=TRUE : *FX225, 1
ENDPROC

1350

DEF PROCos

LOCAL G$:CLS:VDU14

REPEAT

INPUT LINE'"*"GS$:0SCLI(GS)
UNTIL G$.." n

ENDPROC

1420 ¢

DEF FNe

LOCAL C%,S5%,G%,0%:0%=0

PROCshow: *FX4, 2

*FX 21,0

REPEAT

PRINTTAB (4*C%+8, S%+2) ;

G%=GET '

IF G%>=48 AND G%<=55 THEN PROCcol (

IF G%>=£f%+12 AND G%<=f%+15 THEN PR

0Cdir (z%(G%- (£%+12)))

IF G%>=65 AND G%<=90 THEN PROCstat

e (G%-65)

IF G%=13 THEN C%=0:5%=(S%+1)MOD26
IF G%=ASC("*") THEN Q%=5

IF G3=f% C%=(C%+7)MOD8

IF G3=f%+1 C%=(C%+1)MOD8

IF G%=f%+2 S3%=(S%+1)MOD26

IF G%=f%+3 S3%=(S%+25)MOD26

IF G¥>=f%+4 AND G%<=f%+7 Q%=G3-(f%

Beebug June 1990

13

Turmites

1600 UNTIL Q%:*FX4,0

1610 =0%

1620 :

1630 DEF PROCshow

1640 LOCAL C%,S%:CLS

1650 PRINT"Colour"'"State"

1660 FOR C%=0 TO 7

1670 PRINTTAB (4*C%+9,0) ;C%;

1680 NEXT

1690 FOR S%=0 TO 25

1700 PRINTTAB (5,S5%+2) CHRS (ASC("A") +5%) ;
1710 FOR C%=0 TO 7

1720 PRINTTAB (4*C%+8,S%+2) ;c%(C%,S%) ;d$
(d%(C%,S%)) ;CHRS (ASC("A") +s% (C%, S%)) ;
1730 NEXT C$%,S%

1740 PRINTTAB(0,29)"Colour:0~7 Directio
n:Arrows State:A-Z2";

1750 PRINTTAB(0,30) "Cursor Movement:f0-
f3 and Return";

1760 PRINTTAB(0,31)"Run:f4 Save:f5 Load
:f6 Reset:f] 08:*";

1770 ENDPROC

1780 :

1790 DEF PROCcol (V%)

1800 c%(C%,S%)=V%:PRINT;V%;

1810 ENDPROC

1820 :

1830 DEF PROCdir (V%)

1840 d%(C%,S%)=V% |

1850 PRINTTAB (4*C%+9,S%+2)d$ (V%) ;

1860 ENDPROC

1870 @

1880 DEF PROCstate (V%)

1890 s%(C%,S%)=V%

1900 PRINTTAB(4*C%+10,S%+2) CHRS (ASC ("A"
1 +V%) ;

1910 C%=(C%+1)MOD8

1920 IF C%=0 THEN S%=(S%+1)MOD26

1930 ENDPROC

1940 :

1950 DEF PROCturmite

1960 LOCAL C%,D%,S%,X%,Y%,exit%

1970 X%=640:Y%=512:exit$=FALSE

1980 vpu 23,1,0:0:0;0;

1990 REPEAT

2000 C%=POINT (X%,Y%)

2010 IF C%=-1 OR INKEY (q%) THEN exit%=
RUE:GOT02080

2020 IF INKEY (k%) THEN PROCscr

2030 GCOL 0,c%(C%,S%)

2040 PLOT 69,X%,Y%:PLOT 65,0,4

2050 D%=(D%+d% (C%,S%))MOD4

2060 X%=X%+x%(D%) :Y$=Y%+y% (D%)

2070 S%=s%(C%,S%)

2080 UNTIL exit%

2090 VDU 23,1,1:0:0;0;

2100 IF C%=-1 THEN VDU 7 ELSE ENDPROC
2110 C%=GET AND &DF

2120 IF C%=83 PROCscr

2130 ENDPROC

2140

2150 DEF PROCscr

2160 OSCLI("SAVE SCR"+STRS (N%)+" FFFF30
00 +5000™)

2170 N%=N%+1

2180 ENDPROC

2190

2200 DEF PROCsave

2210 LOCAL F$,F%,C%,S%

2220 F$=FNfile("Save")

2230 IF F$="" THEN ENDPROC

2240 F%=O0PENIN (F$) :REM Check file exist
s

2250 IF F% THEN CLOSE#F$%:IF FNcheck THE
N ENDPROC

2260 F%=0PENOQUT (F$)

2270 FOR C%=0 TO 7:FOR $%=0 TO 25

2280 PRINTH#F%,c%(C%,5%),d%(C%,5%),s%(C%
1 5%)

2290 NEXT S%,C%

2300 CLOSE#F%

2310 ENDPROC

2320 ¢

2330 DEF PROCload

2340 LOCAL F$,F%,C%,S5%

2350 F$=FNfile("Load")

2360 IF F$="" THEN ENDPROC

2370 F%=OPENIN (F'$)

2380 FOR C%=0 TO 7

2390 FOR S%=0 TO 25

2400 INPUT#F$%,c%(C%,S5%),d%(C%,S%),8%(C%
15%)

2410 NEXT

2420 NEXT

2430 CLOSE#FS%

2440 ENDPROC

2450

. 2460 DEF FNfile (P$)

2470 LOCAL FS:CLS

2480 PRINT PS." File: ";

2490 INPUT""F$

2500 =F$

2510

2520 DEF FNcheck

2530 LOCAL G$

2540 PRINT'"File exists. Overwrite (Y/N
ity

2550 REPEAT

2560 G%=GET AND &DF:G$=CHRS (G%)

2570 UNTIL INSTR("YN",G$)

2580 PRINT G$ »
2590 =(G$="N") B

14

Beebug June 1990

Storing Variables and Procedures in SWR
on a Model B

Expand your programs by using sideways RAM for storing additional procedures,
JSunctions and variables. Norman Smith explains.

GENERAL

In BEEBUG Vol.6 No.6, Graham Crow
demonstrated how to store and overlay Basic
procedures, functions and variables on the
Master 128 and Compact using sideways RAM.
These programs, of course, could not be used
directly on the model B as its lacks the
SRDATA, SRWRITE, and SRREAD commands,
and the multiple sideways RAM banks, but the
principle was interesting and useful enough to
investigate the possibility of producing similar
features for the earlier machine when fitted
with sideways RAM.

The accompanying programs are all based on
the original ones and produce the same results
using the Aries B-12 ROM/RAM board with
one bank of 16k RAM which is fitted in slot 0
on this board. With a change in value of one of
the variables, there would not appear to be any
reason why other ROM/RAM boards with the
RAM in slot 15 or any other position should not
work correctly. Of course, the extra memory is
restricted to 16k but this can still be a worth-
while extension to the normal user RAM area.

ENTERING THE PROGRAMS

The programs, which have had the
amendments and additions commented, should
be typed in and saved, before running. For
convenience, the complete programs (not just
the amendments) are listed here. Listing 1 is the
procedure/function overlay program, while
listing 2 comprises the variable storage
program. Each program not only implements
the relevant routines but also provides a
complete working example.

PROCEDURE/FUNCTION OVERLAYS
The principle on which this is based is that a
number of functions or procedures are saved
individually as files on disc. Normally these
files will have the same names as the functions
or procedures which they contain. When an
overlay program is run, the additional
procedures and functions are loaded into

Beebug June 1990

sideways RAM (their names are included in a
DATA statement in the main program). When
any one of these functions or procedures is
called it is dynamically loaded from sideways
RAM into user RAM and executed. Each
function or procedure called in this way
overlays (overwrites) any previously copied
into user RAM.

To experiment with this technique, type in and
save, with the names shown, the following
procedure definitions (taken from the original
article):

10000 :

10010 REM "CHART"

100205

10030 DEF PROCchart

10040 PRINT''"CHART OVERLAY"
10050 ENDPROC

Save this file as “Chart”

10000 :

10010 REM "EDITOR"

10020 :

10030 DEF PROCeditor

10040 PRINT''"EDITOR OVERLAY"
10050 ENDPROC

Save this file as “Editor”

10000 :

10010 REM "FILER"

10020 :

10030 DEF PROCfiler

10040 PRINT''"FILER OVERLAY"
10050 ENDPROC

Save this as “Filer”

Now run the program from listing 1. This loads
the three procedures above into sideways RAM.
From the menu which is then displayed on the
screen, selecting any one of the three options
causes the corresponding procedure to be
loaded from sideways RAM to main memory
before it is executed.

15

Storing Variables and Procedures in SWR on a Model B

To use the technique with your own programs
follow the format of listing 1. Note that
LOMEM (in line 110) must be set so that it will
always be above the program plus the longest
overlay. Line 1050 is set to the number of
overlays, and line 1110 is a DATA statement
containing the names of the overlay files.
PROCinit sets up the sideways RAM ready for
use, and PROCloadSWR loads the overlay
routines into sideways RAM. PROCappend
loads an overlay from sideways RAM adding it
to the end of the main program. PROCexecute
calls the relevant procedure depending upon
the menu choice (PROCmenu).

VARIABLES IN SIDEWAYS RAM

The program in listing 2 shows how the same
principle may be applied to the storage of
variables in sideways RAM, though this is
generally of less use. It stores an example of
each of five different data types (byte, double
byte, integer, real, and string) in sideways
RAM, and then reads the same data back again.
This is handled by five short procedures
(starting at line 1320) and five functions (at line
1610 onwards). The demonstration is
performed by PROCdemo at line 1140. When
storing a value in sideways RAM it is up to the
user to determine where this should go, just as
with the use of indirection operators in Basic.
This should become clear if you examine the
coding of the demonstration routine.

PROGRAM DETAILS

With due acknowledgement to Graham Crow,
these routines follow the original format and
line numbers of his programs. The necessary
changes are to the mode - mode 7 has been
used in the example, setting the slot number
using the variable B% to the required bank, and
replacing the OSCLI calls to SRWRITE and
SRREAD by procedures calling a short machine
code program assembled at &A00. Using only
one bank of sideways RAM makes the SRDATA
call superfluous anyway.

The procedures PROCsrwrite and PROCsrread
poke the original parameters into a work area
starting at &70 to be used by the machine code
which is then activated by CALL mcopy. These
procedure calls replace the original OSCLI calls.

16

PROCEDURE OVERLAY PROGRAM

There are few changes apart from that to the
mode, and the addition of B% at line 1020 (set to
the required sideways RAM slot number), the
procedure calls and definitions, and
PROCassemble. Also, at line 1380 in this program,
&8000 must be added to the variable ad %.

VARIABLE STORAGE PROGRAM

The same changes as the procedure overlay
program have been made plus the following
points. The variables A%,X%,Y%,0% or P%
should not be used (line 1060 et seq) for
variable A, - the original A% has been replaced
by V% in this program. The addresses in line
1220 - PROCs(“Any string”,&4000) - and line
1290 - PRINT...FNs(&4000) - should have the
&4000 reduced in value as this address is at the
top limit of the sideways RAM - &3800 has
been used in the program. Of course, any or all
of these data addresses may be changed to suit
personal requirements.

CONCLUSION

The overlay system is very effective compared
with disc-based overlay systems. When applied
to a BBC model B it does not appear to slow
down its response to any great extent when
compared with procedures or functions held in
normal user RAM. It should be noted that to
speed up the response even further (subject to
memory availability, the value of LOMEM and
the length of each procedure or function),
several compatible routines with consecutive
line numbers could be saved under one
filename and then loaded as one file. The first
named one should be the master procedure,
which then calls the others as appropriate.

A possible alternative for RAM/ROM extension
boards with several banks of SWR would be to
add an extra parameter to PROCsrwrite and
PROCsrread containing the pertinent values of
B% to address each active SWR slot.

Listing 1

10 REM Program SWR Procedure Overlays
20 REM Version B0.3

30 REM Author Graham Crow

40 REM Amended for BBC Model B

50 REM and Aries B-20 RAM/ROM board
60 REM Author N.L.Smith

Beebug June 1990

Storing Variables and Procedures in SWR on a Model B

70 REM BEEBUG June 1990
80 REM Program subject to copyright
a0
100 MODE 7
110 LOMEM=§4000
120 REM LOMEM must be > top of main
130 REM program + longest overlay
140 PROCinit
145 PROCassemble
150 PROCloadSWR
160 REPEAT
170 PROCmenu
180 PROCappend
190 PROCexecute
200 UNTIL FALSE
210 ¢
1000 DEF PROCinit
1010 REM set up SWR bank in slot 0
1020 B%=0 :REM adjust to suit SWR board
1030 T%=TOP :REM Procs load at T%-2
1040 S%=0 :REM SWR address for overlays
1050 N%=3:REM No of overlays
1060 DIM FS$(N%) :REM overlay filenames
1070 DIM L% (N%) :REM overlay lengths
1080 DIM R%(N%) :REM SWR address
1090 RESTORE 1110
1100 FOR J%=1 TO N%:READ FS$ (J%) :NEXT
1110 DATA CHART,FILER,EDITOR
1120 ENDPROC
1130
1140 DEF PROCloadSWR
1150 REM loads overlays into SWR
1160 FOR J%=1 TO N%:0SCLI("LOAD "+F$(J%
)+" "+STRS~T%)
1170 Z%=OPENUP FS$ (J%)
1180 L%(J%)=EXT#Z%:CLOSE#2%
1190 PRINT'"LOADING "F$(J%)" (";L%(J%);
" bytes) INTO SWR AT"
1195 PRINT"ADDRESS ";~(32768+S%)
1200 PROCsrwrite
1210 R%(J%)=S%:5%=S%+L% (J%)

1220 NEXT

1230 PRINT';N%;" overlays now in SWR. P
ress any key for demo...":IF GET

1240 ENDPROC

1250 ¢

1260 DEF PROCmenu

1270 CLS:PRINT''"MAIN MENU"

1280 PRINT'*1 . CHART"!'M2 . .EITERE

1290 PRINT"3...EDITOR"'"4.. . END"!'!"Whic
h? ‘l;

1300 REPEAT G%=GET-48

1310 UNTIL G%>0 AND G%<5

1320 IF G%=4 CLS:?(T%-2)=&D:?(T%-1)=&FF
:END

1330 ENDPROC

1340 :

1350 DEF PROCappend

1360 REM appends overlay at TOP-2

1370 len%=L% (G%) :ad%=R% (G%)

1380 ad%=ad%+&8000:PROCsrread:ENDPROC

1390 :

1400 DEF PROCexecute:CLS

1410 IF G%=1 PROCchart

1420 IF G%=2 PROCfiler

1430 IF G%=3 PROCeditor

1440 PRINT"Press any key ":IF GET

1450 ENDPROC

1460 :

1470 DEF PROCsrwrite

1480 ?&70=TOP MOD 256:?&71=TOP DIV 256:
2&72=S% MOD 256:?&73=&80+(S% DIV 256):?&
74=B%:2&75=L% (J%) DIV 256:2&76=L%(J%) MO
D 256:IF 2&75=0 2&77=0 ELSE ?&77=1

1490 IF ?&76=0 ?&79=0 ELSE ?&79=1

1500 CALL mcopy

1510 ENDPROC

1520 :

1530 DEF PROCsrread

1540 ?&70=ad% MOD 256:?&71=ad% DIV 256:
2&72=(TOP-2) MOD 256:?&73=(TOP-2) DIV 25
6:7&74=B%:?&75=1en% DIV 256:2&76=1en% MO
D 256:IF 2&75=0 ?&77=0 ELSE ?&77=1

1550 IF ?&76=0 2&79=0 ELSE ?&79=1

1560- CALL mcopy

1570 ENDPROC

1580 :

1590 DEF PROCassemble

1600 FOR opt%=0TO2STEP2:P%=&A00

1610 [OPT opt%

1620 .mcopy LDA &F4:STA &78:LDA &74

1630 STA &F4:STA &FE30:LDX #0

1640 CPX &77:BEQ smallp

1650 .pagelp LDY #0

1660 .bytelpl LDA (&70),Y:STA (&72),Y

1670 INY:BNE bytelpl

1680 INX:INC &71:INC &73

1690 CPX &75:BNE pagelp

1700 .smallp LDY #0

1710 CPY &79:BEQ fin

1720 .bytelp2 LDA (&70),Y:STA (&72),Y

1730 INY:CPY &76:BNE bytelp2

1740 .fin LDA &78:STA &F4:STA &FE30:RTS

1750]NEXT:ENDPROC

Listing 2

10 REM Program SWR Variable storage
20 REM Version B0.7

30 REM Author Graham Crow

40 REM Amended for BBC Model B

50 REM and Aries B-20 RAM/ROM board
60 REM Author N.L.Smith

70 REM BEEBUG June 1990

80 REM Program subject to copyright

Beebug June 1990

17

Storing Variables and Procedures in SWR on a Model B

90 1480 DEF PROCr (num,ad%) :REM write real
100 MODE 7 1490 A=num
110 A=0:REM assign A at start 1500 PROCsrwrite(V%,5)
120 PROCinit 1510 ENDPROC
125 PROCassemble 1520 -
130 PROCdemo 1530 DEF PROCs (str$,ad%) :REM write str
140 END 1540 LOCAL len%
150 : 1550 $M¥=str$
1000 DEF PROCinit 1560 len%=LEN(str$)+1:PROCb (len%,ad%)
1010 REM set up SWR bank 1570 ad%=ad%+1
1020 REM SWR in slot 0 1580 PROCsrwrite (M%, len%)
1030 B%=0:REM adjust to suit board 1590 ENDPROC
1040 : 1600 :
1050 REM assign address of variable A 1610 DEF FNb(ad%) :REM read byte
1060 REM to some variable eg V% 1620 PROCsrread(V%,1)
1070 V%=LOMEM+3 1630 =?V%
1080 : 1640 :
1090 REM reserve string storage space 1650 DEF FNbb(ad$) :REM read 2 byte
1100 REM must be longer than string+l 1660 LOCAL bl%,b2%
1110 max%=100:DIM M% max% 1670 bl%=FNb (ad%) *256:b2%=FNb (ad%+1)
1120 ENDPROC 1680 =bl%+b2%
1130 : 16890 ¢
1140 DEF PROCdemo 1700 DEF FNi(ad%) :REM read integer
1150 PRINT'"DEMONSTRATION OF WRITE/READ 1710 PROCsrread (V%,4)
SIDEWAYS RAM"' 1720 =!V%
1160 : 1730 ¢
1170 REM write data to SWR 1740 DEF FNr (ad%) :REM read real
1180 PROCb (&E, &0) :REM single byte 1750 PROCsrread(V%,5)
1190 PROCbb (4FE99,&1000) :REM two byte 1760 =A
1200 PROCi (1234567,&2000) :REM integ 1710 =
1210 PROCr(-1234.567,&3000) :REM real 1780 DEF FNs(ad%) :REM read string
1220 PROCs ("Any string",&3800) :REM str 1790 LOCAL len%
1230 s 1800 len%=FNb(ad%) :ad%=ad%+1
1240 REM read data from SWR 1810 PROCsrread (M%,len%)
1250 PRINT"Byte:"TAB(13)"&";~FNb(0) 1820 =$M%
1260 PRINT"Double-byte: &";~FNbb (&1000) 1830 -
1270 PRINT"Integer:"TAB(13);FNi(&2000) 1840 DEF PROCsrwrite (0%, len%)
1280 PRINT"Real:"TAB(13);FNr(&3000) 1850 2&70=Q% MOD 256:2&71=0% DIV 256:?&
1290 PRINT"String:"TAB(13)FNs (&3800) 72=ad% MOD 256:?&73=&80+(ad% DIV 256) :2&
1300 ENDPROC 74=B%:?&75=1en%:CALL mcopy
1310 1860 ENDPROC
1320 DEF PROCb (num$%,ad%) :REM write byte 1870 ¢
1330 ?V%=num% 1880 DEF PROCsrread(Q%,len%)
1340 PROCsrwrite (V%,1) 1890 ?&70=ad% MOD 256:?&71=&80+(ad% DIV
1350 ENDPROC 256) :26&72=Q% MOD 256:2&73=Q% DIV 256:7&
1360 : 74=B%:?&75=1en%:CALL mcopy
1370 DEF PROCbb (num%,ad%) :REM write 2by 1900 ENDPROC
te 1910 '«
1380 LOCAL bl%,b2% 1920 DEF PROCassemble
1390 b1%=num$DIV256:b2%=num$MOD256 1930 FOR opt%=0TO2STEP2:P%=&A00
1400 PROCb (b1%,ad$%) :PROCb (b2%,ad%+1) 1940 [OPT opt%
1410 ENDPROC 1950 .mcopy LDA &F4:STA &76:LDA &74
1420 1960 STA &F4:STA &FE30:LDX #0
1430 DEF PROCi (num%,ad%) :REM write int 1970 1LDY #0
1440 !'V%=num% 1980 .lp LDA (&70),Y:STA (&72),Y
1450 PROCsrwrite (V%,4) 1990 INY:CPY &75:BNE lp
1460 ENDPROC 2000 .fin LDA &76:STA &F4:STA &FE30:RTS
1470 : 2010]NEXT:ENDPROC
18 Beebug June 1990

Fog Index

David Jupe shows how to tell the difference between a legal document
and an article in the tabloid press!

These days we have word processors and
spelling checkers, but there is a general lack of
other software which can be used to examine
and analyse text. The program described below
attempts to overcome that by analysing the
complexity of a document.

A word processor is often used to prepare a
speech or an article to be presented to other
people. How easily they will understand it will
depend on how complicated it is. Difficulty in
understanding will depend on the nature of the
subject and the logical complexity. It will also
depend on the length and complexity of the
words and sentences used. If the sentences are
long, with many subordinate clauses, they will
be more difficult to follow than if they are short.
Similarly if big words are used these are also
more difficult to take in than short words.

In America they have come up with the idea of
a “Fog Index” which can be calculated for a
text. The more difficult the text is to
understand, the higher the index. The program
FOG listed here will determine the Fog Index of
a piece of text held as an ASCII file on disc. It is
written to ignore Wordwise control characters,
but may be used with text produced by any
other word processor so long as it is an ASCII
file. This can usually be achieved by spooling
the file, or from View by saving the file without
rulers (either by deleting them first or by using
WRITE with the markers set to exclude them).

The program uses a combination of word
count, sentence count, and big-word count to
determine the Fog Index. Big words are, with a
few exceptions, those of three syllables or more.
Where a word ends in “ed” or “es” this is not
included in the syllable count. It is not easy in a
short program to determine how many
syllables there are in a word; the program uses
the rough rule of equating the number of vowel
groups (the letter y being treated as a vowel)
with the number of syllables, and this seems to
be quite adequate. Occasionally it does not
work, and words such as “sometimes” and
“therefore” are treated as big words though

Beebug June 1990

they really are not. However, this may be
balanced out by words such as “area” and
“denying” which have three syllables but are
counted as small words. Words ending in “e”
and “le” are treated in a special way.

The formula for the Fog Index is:
0.4 x ((T/S) + (B x 100)/T)

where:
T = total word count
S = sentence count
B = big-word count

Splitting a long sentence into two (or more)
shorter ones will reduce the Fog Index.
Replacing big words by shorter ones will also
have the same effect. Of course, one has to be
careful not to destroy the meaning of the text.
Examples of word replacement might be “nice”
for “delightful”, “chew” for “masticate” and so
on. On many occasions a big word cannot be
avoided.

Text with a Fog Index value below 10 is very
easy to understand; with 12 it is moderately
difficult; with 16 and above it is sure to put
people to sleep. Legal documents with words
like “hereinafter”, “aforesaid” and
“nevertheless” tend to have a high Fog Index.
The tabloid press tends to have a low Fog
Index.

Type the program in and save it as FOG. To find
the Fog Index of a text file load the program,
then place the disc containing the text file into
the current drive. Typing RUN will cause the
catalogue to be displayed, and the name of the
file may now be entered. As the text is analysed
it will be displayed on the screen, a sentence at
a time, with the word count for the sentence on
the following line. Big words are highlighted in
red. At the end of the analysis the word,
sentence, and big-word counts are shown,
together with the Fog Index.

The end of a sentence is determined by the
presence of a full stop in a string of characters

19

Fog Index

containing a letter. Question marks,
exclamation marks and semicolons have the
same effect and are treated as sentence
terminators. Abbreviations which contain or are
terminated by a full stop can fool the program
into believing that it has found a short sentence,
so it is best to edit these out first.

Sentences are only counted if they contain at
least one word. Words are strings of letters,
terminated most frequently by a space or a
punctuation mark. A word may include an
apostrophe or hyphen; thus “o’clock” or “semi-
detached” would be counted as one word. In
numeric or monetary strings the full stop is
treated as a decimal point and not as a sentence
terminator. Expressions such as “ABCD1234”,
“+5.23”, “£1,000” and “-” are not counted as
words.

Examination of a long text may be interrupted
by using the Escape key, and an analysis will be
carried out on the complete sentences read so
far. An analysis really needs at least 100 words
to give a sensible result and, although the
calculations will still be carried out on shorter
texts, the results for a word count of less than
100 should not be treated as reliable.

Because of the lack of regularity in the English
language, a program such as this is always
capable of tuning and improvement. However
there must, in the end, be a compromise
between speed, accuracy and size.

This article, ignoring the title and formula, has
a Fog Index of 11.5 so it shouldn’t be too
difficult to follow!

10 REM Program Fog

20 REM Version B1.0

30 REM Author David R. Jupe

40 REM BEEBUG June 1990

50 REM Program subject to Copyright

100 sentence_count=0
110 ON ERROR GOTO 1930
120 *KEYORUN |M

180 PROCreadchar

190 UNTIL EOF# (channel)
200 PROCword

210 CLOSE# (channel)

220 PROCreport

230 END

1000 DEF PROCreadchar

1010 REM Read next character from text

1020 value=BGET# (channel)

1030 char$=CHRS (value)

1040 printable=(value>&20 AND value<&T7F
)

1050 sentence=((INSTR(".",char$) AND (1
etter status OR wordS="")) OR (INSTR(";!
2", char$)))

1060 word=(value=&20 OR value=&A OR val
ue=6&D)

1070 punctuation=INSTR("™()'[]{}"",:~.;!
2", chars) >0

1080 control=(value<&21 AND NOT (value=
2 OR word))

1090 letter=((value>&40 AND value<&5B)
OR (value>&60 AND value<&7B)):IF letter
THEN letter status=TRUE

1100 IF printable AND NOT (letter OR pu
nctuation) THEN word status=FALSE

1110 IF printable THEN PROCaddchar

1120 IF sentence THEN PROCword: PROCsen
tence ELSE IF value=2 THEN PROCword: PRO
Cskip ELSE IF word OR control OR value>&
7E THEN PROCword

1130 ENDPROC

1140 :

1150 DEF PROCaddchar

1160 REM Add the character to the word

1170 word$=word$+char$

1180 char_ status=INSTR("aeiouyAEIOUY",c
har$) >0

1190 IF char status AND vowel status=FA
LSE THEN syllable count=syllable count+l

1200 IF char status THEN vowel status=T
RUE ELSE vowel status=FALSE

1210 ENDPROC

1220 =

1230 DEF PROCskip

1240 REM Skip Wordwise controls

1250 REPEAT

1260 value=BGET# (channel)

1270 UNTIL EOF# (channel) OR value=7 OR
value=&D

1280 ENDPROC

1290 .

130 MODE7 1300 DEF PROCword
140 *CAT 1310 REM Analyse a word
150 PROCinitialize 1320 IF word$="" THEN PROCreset :ENDPROC
160 PRINT 1330 print_word$=word$
170 REPEAT 1340 char$=RIGHTS (word$,1)
20 Beebug June 1990

Fog Index

1350 IF INSTR("()'[]{}"",:-.!2:", chars)

AND LEN(word$)>1 THEN word$=LEFTS$ (word$
, LEN (word$) -1)

1360 IF NOT letter status THEN word sta
tus=FALSE

1370 IF LEN(word$)>1: suffix$=RIGHT$ (wo
rd$,2) : leftS=LEFTS (suffix$,1): right$=R
IGHTS (suffix$,1): IF (left$="e" OR left$
="E") AND (right$="d" OR right$="D" OR r
ight$="s" OR right$="S") THEN syllable c
ount=syllable count-1

1380 IF LEN(word$)>1 AND (RIGHTS (word$,
1)="e" OR RIGHTS (word$,1)="E") THEN end$
=RIGHTS (word$,2) : leftS$=LEFTS$(end$,1): I
F INSTR("aeiouyAEIOUY",left$)=0 THEN syl
lable count=syllable count-1

1390 len=LEN (word$): IF len>2 THEN righ
t3$=RIGHTS (word$,3) : IF right3$="ied" OR

right35="IED" OR right3$="ies" OR ri
ght3$="IES" THEN syllable count=syllable
_count+1

1400 IF len>3 THEN right4$=RIGHTS (word$
,4) : right1$=RIGHTS (right4$,1): IF right
1$="S" OR right1$="s" THEN right3$=LEFT$
(right4$, 3)

1410 IF len>2 THEN IF (RIGHTS(right3$,2
)="1le" OR RIGHTS (right3$,2)="LE") AND NO
T INSTR("aeiouyAEIOUY",LEFT$ (right3$,1)

THEN syllable count=syllable count+l

1420 IF LEN(word$)>1 AND syllable count
<1 THEN syllable count=l

1430 IF word status AND syllable count>
2 THEN big 1 word | count=big word count+l

1440 IF word status AND LEN (word$) >0 TH
EN word « count—word count+1

1450 IF (llne+LEN(pr1nt word$)) >39 THEN

PRINT:line=0

1460 IF LEN(print word$)>0 THEN line=(1
ine+1+LEN (print word$))MOD40

1470 IF syllable count>2 PRINTCHRS(129)
; ELSE IF LEN (print word$)>0 PRINTCHRS (1
35) ¢

1480 PRINTprint word$;

1490 PROCreset

1500 ENDPROC

1510 ¢

1520 DEF PROCsentence

1530 REM End of sentence reached

1540 PRINT'CHRS (131)"(",word count," wo
rds) "

1550 IF word count>0 THEN sentence coun
t=sentence_count+l

1560 total word count=total word count+
word count

1570 word count=0

1580 total big word count=total big wor
d count+big word count

1590 big word count=0

1600 line=0

1610 ENDPROC

1620 :

1630 DEF PROCinitialize

1640 @%=1

1650 INPUT'"Enter text file name: "file
$

1660 channel=0OPENIN (file$)

1670 sentence count=0:total word count=
0:word count=0:total big word count=0:bi
g word count=0

1680 line=0

1690 PROCreset

1700 ENDPROC

1910 :
| 1720 DEF PROCreset

1730 REM Initialize variables

1740 syllable count=0:word$=""

1750 vowel status=FALSE:word status=TRU
E:letter status=FALSE

1760 ENDPROC

1770 :

1780 DEF PROCreport

1790 REM Final report

1800 @%=6

1810 PRINT''CHR$ (131)"Text file name ="
CHRS (135) file$

1820 PRINTCHRS (131)"Sentence count ="CH
R$ (135) sentence_count

1830 PRINTCHRS (131) "Word count ="CH
R$(135)total word count

1840 PRINTCHRS (131)"Big-word count ="CH
R$(135)total big word count

1850 @%=&20108

1860 IF sentence count>0 THEN index=0.4
* ((total word count/sentence count)+(tot
al big word count*100/total word count))

ELSE index=0

1870 PRINTCHRS (131) "FOG index =¥t
IF index<10 THEN PRINTCHRS$ (130); ELSE IF

index>12 THEN PRINTCHRS (129); ELSE PRIN
TCHR$ (131) ;

1880 PRINTindex" ";

1890 IF index<10 THEN PRINT" (Safe value
)"' ELSE IF index>12 THEN PRINT" (TOO HIG
|H)"' ELSE PRINT" (Moderate)"'
| 1900 IF total word count<100 THEN PRINT
| CHRS (129) CHRS (136) "Word count too small"
‘ 1
| 1910 ENDPROC
I 1920 ¢
| 1930 REM Errors
| 1940 IF ERR=222 THEN PRINT"File not fou
‘nd"""PRESS Key f0 to re-run"'
| 1950 IF ERR=17 THEN PROCreport

1960 IF ERR<>222 AND ERR<>17 THEN REPOR
| T:PRINT" at line ";ERL
1970 CLOSE#0:END

Beebug June 1990

21

A Versatile Character Editor

Jonathan Ribbens describes a comprehensive and versatile character definer
with many useful features.

One of the useful features of BBC Basic is the
facility for the user to define his own characters
using the VDU23 statement. This not only
allows characters which are not part of the
machine’s default character set to be defined as
required, but also allows graphics characters to
be created which have many applications,
particularly as icons in all manner of programs
(they are used in the program listed here), and
in games. Furthermore, groups of more than
one character can be defined in order to
construct larger graphics objects.

Object @

L - Load set of obj
S - Save set of ob
++t4 - move left/r

Using the character editor

However, any new character definition has to
be drawn out on paper and manually converted
into a set of eight numbers to be included in the
VDU23 instruction. This can be tedious, and
lacks flexibility if you need to re-edit a
character once defined, and it does not help
when trying to define groups of two or more
characters.

That’s where the comprehensive character
editor listed here will come in useful. It allows a
block of three by three characters (here called
an object) to be defined visually on screen
together, and up to ninety characters can be
defined altogether at one time. Character
definitions can be saved in a form which
permits further editing if required, but also

22

creates a spooled file containing the complete
VDU23 definitions for direct incorporation in
any program of your own.

To use the program, simply type it in and save
it before running it. The screen display shows
an enlarged block of three by three characters,
with the normal-sized version alongside
(initially blank of course), details of the current
editing mode, and space at the foot of the
screen of other information or messages.

The functions of the character editor are all
single key operations as shown in table 1.

Cursor keys Move cursor

D Draw mode

E Erase mode

M Move mode

Return Plot a single pixel

Delete Delete a single pixel

< Select previous object

> Select next object

Escape Quit/abort function

H Help

w Wipe object

R Read character values from
pre-defined character

| Input VDU23 values from
keyboard

C Copy one object to another

S Save objects

L Load objects

Table 1. List of key functions

There are three basic modes of operation. In
Draw mode, using the cursor keys will leave a
trail of set pixels. In Erase mode, this will leave
a trail of unset pixels, and in Move mode it
leaves pixels as they are unless you press
Return or Delete (see table). Any function can
be aborted by pressing Escape.

Each object of three by three characters is
numbered on the screen starting at zero. The
keys marked ‘<’ and ‘>’ (note, use these keys
without pressing Shift) will move backwards or

Beebug June 1990

A Versatile Character Editor

forwards to the next object. When the Copy
option is used, the specified object (by number)
is copied into the current object definition on
screen. Wipe simply clears the current object
(after due warning).

As well as defining characters on screen,
definitions can also be input in two other ways,
by entering the VDU23 values directly from the
keyboard, or by specifying a character code which
has already been defined in the computer with a
VDU23 statement. Thus, if you run the character
editor immediately after running a program
which has defined its own characters, you can
easily pick these up in the character editor.

If you select the Save option, you are asked
whether you want to save the characters in a
file which can be re-edited, or in a file to be
EXECed. If you select a file to be re-edited, you
can load the characters back in again later (by
using the Load option).

If you select the EXEC file option, you are asked
for the Basic line numbers to give each
definition, the line number increment, the file
name, and the start VDU23 ASCII value (this
will normally be 224 - see the user guide). This
is so that the designs can be readily
incorporated into your own programs. You may
also choose whether or not to include characters
which are completely blank. This is so that you
can have a four by four object, for example, and
be able to have it on the grid as you would see it
in your program. If you choose to include blank
characters, then all 90 definitions will be
produced, and you may subsequently need to
delete any which are not wanted.

Finally, the program incorporates its own Help
system. When invoked, just press the space bar
to cycle through the help information.

USING THE CHARACTER DEFINITIONS
Character definitions which have been spooled
out to a file (see above) may be incorporated
into any other program using the *EXEC
command. Once defined, a character may be
displayed on the screen in character position
(x,y) using:
PRINTTAB (x,y) CHRS$(n)

Beebug June 1990

If multiple-character objects are to be used, it is
best to pre-construct the object. For example:
OB1$=CHRS (nl) +CHR$ (n2) +CHRS (10) +CHR$ (8)
+CHRS$ (8) +CHR$ (n3) +CHRS (n4)
would create a two by two object from
character definitions n1, n2, n3 and n4. The
sequence 10, 8, 8 after the first two characters
moves down one line and back two positions
ready for the second row of two characters.
These codes appear in the list of VDU codes in
the user guide. For more precise positioning,
VDUS allows characters to be placed at the
graphics cursor using the MOVE instruction.

PROGRAM NOTES
The procedures and functions used in the
program are as follows:

PROCinit Initialise screen, characters
and arrays

PROCquit Close files and reset Escape
and cursor keys

PROCedit Main loop

PROCdisplay(n) Display object ‘n’ on the grid

PROCplot(n) Set or unset pixel at current
position

PROCmini(x,y,n) Set or unset pixel on real-size
grid

PROCsave Select format for saving

PROCclear Clear message area

PROCload Load a character file

PROCsavea Save informat for re-editing

PROCsaveb Save in format for EXECing

PROCsavebl Called by PROCsaveb

PROChelp Display help messages

PROCread Read an already defined
character to the grid

PROCtile(n,x,y) Display a single ‘tile’ (after
Reading or Input)

PROCinput Input VDU23 values

PROCwipe Wipe the current object

PROCcopy Copy one object to another

FNchar(x,y) Returns character number for
piece of grid

FNsure Returns TRUE or FALSE
according to whether the user
wants to quit or not

FNin Input routine

23

A Versatile Character Editor

10 REM Program CharEdit
20 REM Version Bl1.1
30 REM Author Jonathan Ribbens
40 REM BEEBUG June 1990
50 REM Program subject to copyright
60 :
100 ON ERROR MODE7:PROCquit:IF ERR=17
END ELSE REPORT:PRINT" at line ";ERL:END
110 MODE4
120 PROCinit:PROCedit
130 PROCquit :MODE7:END
140 :
1000 DEF PROCinit
1010 vDU19,0,4;0;
1020 vDu23,1,0:0:0:0;
1030 VDU23,128,129,0;0:0;129
1040 vDU23,129,-1;-1;-1;-1;
1050 vDu23,130,-1,128,128,128,128,128,1
28,129
1060 wDU23,131,-1,1,%,1,1,1,1,129
1070 Vpu2s3,132,199,1 1,1,1,1.1, -1
1080 vDU23,133,129,128,128,128,128,128,
128,-1
1090 vDu23,134,-1,0;0;0;129
1100 vDU23,135,129,1,1,1,1,1,1,129
1110 vDU23,136,129,0;0;0;-1
1120 VDU23,137,129,128,128,128,128,128,
128,129
1130 vpu23,138,0,32,96,254,254,96,32,0
1140 VDU23,139,0,8,12,254,254,12,8,0
1150 vDpU23,140,48,120,252,48,48,48,48,0
1160 vDU23,141,48,48,48,48,252,120,48,0
1170 DIM ob%(9,2,23)
1180 *Fx4,1
1190 *Fx229,1
1200 ENDPROC
1210 ¢
1220 DEF PROCquit
1230 *Fx4
1240 *FX229
1250 CLOSE#0
1260 ENDPROC
1270 :
1280 DEF PROCedit :LOCAL K%
1290 P%=0:X%=0:Y%=0:M3%=0
1300 PROCdisplay (P%)
1310 vDU31,30,15:PRINT"Press H"
1320 vDU31,30,16:PRINT"for HELP"
1330 REPEAT:REPEAT:*FX15 1
1340 COLOURI:PRINTTAB (30,4);:IF M%=0:PR
INT"Move " ELSE IF M%=1 PRINT"Draw " ELS
E IF M%=2 PRINT"Erase"
1350 VDU31,X%,Y%:VDU23,1,1;0;0;0;
1360 K%=GET:IF K%>96 AND K$%<123 K%=K% A
ND &DF
ki

1370 IFK%$=136 IFX%>0 X%=X%-1

1380 IFK%=137 IFX%<23 X%=X%+1

1390 IFK%=138 IFY%<23 Y%=Y%+1

1400 IFK%=139 IFY%>0 Y3%=Y%-1

1410 IFK%=46 IFP%<9 P%=P%+1:PROCdisplay
(P%)

1420 IFK%$=44 IFP%>0 P%=P%-1:PROCdisplay
(P%)

1430 IFK%=68 M%
1440 IFK%=77 M%
1450 IFK%=69 M%=
1460 IFK%=13 OR M%=1 PROCplot (1)

1470 IFK%=127 OR M%=2 PROCplot (0)

1480 IFK%=83 PROCsave

1490 IFK%=76 PROCload

1500 IFK%=72 PROChelp

1510 IFK%=82 PROCread

1520 IFK%=73 PROCinput

1530 IFK%=87 PROCwipe

1540 IFK%$=67 PROCcopy

1550 UNTIL K%=27:UNTIL FNsure

1560 ENDPROC

1570 ¢

1580 DEF PROCdisplay (P%)

1590 LOCAL X%,Y%,2%,V%,W%,U%

1600 vDU23,1,0:;0:0:0;

1610 FOR X%=0TO2:FOR Y%=0T02

1620 FOR Z%=0TO7:V%=0b% (P%, X%, Y3*8+2%)

1630 VDU31,X%*8, Y$*8+2%

1640 FOR W%=0TO7:U%=(V% AND (2"W%))
1650 COLOURL:IF U% VDU129 ELSE VDUFNcha
r(W%,2%)

1660 PROCmini (X%*8+W%,Y%$*8+2%, SGNU%)

1670 NEXTW%,Z%,Y%,X%:COLOURL

1680 PRINTTAB(30,2);"Object ";P%

1690 vDU23,1,1;0;0;0;30:ENDPROC

1700 ¢

1710 DEF FNchar (X%,Y%)

1720 IFX%=0 IFY%=0 =130

1730 IFX%=7 IFY%=0 =131

1740 IFX%=7 IFY%=7 =132

1750 IFX%=0 IFY%=7 =133

1760 IFY%=0 =134

1770 IFX%=7 =135

1780 IFY%=7 =136

1790 IFX%=0 =137

1800 =128

1810,

1820 DEF PROCplot (V%) :VDU31,X%,Y%

1830 COLOURL:IF V%=0 VDUFNchar (X$MODS8,Y
$MOD8) ELSE VDU129

1840 PROCmini (X%, Y%, V%)

1850 IF V%=0 ob%(P%,X% DIV8,Y%)=0b% (P%,
X% DIV8,Y%) AND (NOT(2” (X% MOD8))) :ENDPR
oc

1
0
2

24

Beebug June 1990

A Versatile Character Editor

1860 ob% (P%,X% DIV8,Y%)=0b%(P%,X% DIVS,
Y%) OR 2" (X% MOD8) :ENDPROC

1310 -

1880 DEF PROCmini (X%, Y%,C%)

1890 GCOLO,C%

1900 PLOT69, 964+X%*4,832-Y%*4

1910 ENDPROC

1920 :

1930 DEF PROCsave:LOCAL A%

1940 COLOUR1:VDU31,0,25

1950 PRINT"SAVE"''"Save in A. format f
or re-editing"'SPC(9);"B. format for EXE
Cing"

1960 *FX15 1

1970 REPEAT A%=GET AND &DF:UNTIL A%=65
OR A%=66 OR A%=27

1980 PROCclear

1990 IFA%=65 PROCsavea

2000 IFA%=66 PROCsaveb

2010 PROCclear:ENDPROC

2020

2030 DEF PROCclear:LOCAL I%

2040 FOR I%=24T030

2050 PRINTTAB(0,I%);SPC40; :NEXT

2060 PRINTTAB(0,31);SPC39;

2070 VDU30:ENDPROC

2080 :

2090 DEF FNsure:LOCAL A%

2100 COLOUR1:vDU31,0,25

2110 *EXi15 1

2120 PRINT"QUIT"''"Press any key to qui
t, or Escape to carry on editing"
2130 A%=(GET<>27) :PROCclear:=A%

2140

2150 DEF PROCload:LOCAL F$,F$%

2160 COLOUR1:VDU31,0,25

2170 PRINT"LOAD"''"Enter filename: ";

2180 F$=FNin:IF F$="" PROCclear:ENDPROC

2190 F%=OPENIN(F$)

2200 IF F%=0 PRINT'"File not found - Pr
ess any key":F%$=GET:PROCclear:ENDPROC

2210 PRINT!'"lLoading ..."

2220 FOR P%=0T09:FOR X%=0TO02:FOR Y%=0TO
23

2230 ob$% (P%,X%,Y%) =BGET#F% :NEXT, ,

2240 CLOSE#F%:PROCclear:P%=0

2250 X%=0:Y%=0:M%=0:PROCdisplay (P%)
2260 ENDPROC

2210 ¢

2280 DEF FNin:LOCAL S$,A%:5%=""

2290 VDU23,1,1;0:0;0;

2300 REPEAT:*FX15 1

2310 A%=GET

2320 IF A%=127 IF LENSS$>0 S$=LEFTS$(S$,L

E

’

’

’

G

NS$-1) :VDU127

2330 IF A%>31 AND A%<127 IF LENS$<30:5%
S$+CHR$A% : VDUA%

2340 UNTIL A%=13 OR A%=27:VDU23,1,0;0;0

;0

2350 IF A%=27 PRINTSTRINGS (LENS$, CHR$8)
STRINGS (LENSS," ") ;STRINGS (LENSS$, CHRS8)
l'<Escape>I' :=" "

2360 PRINT:=S$

2310 ¢

2380 DEF PROCsavea

2390 LOCAL P%,X%,Y%,F$,F%:VDU31,0,25
2400 PRINT"SAVE IN FORMAT FOR RE-EDITIN
"iinEnter filename: ";:F$=FNin:IF F$=""

:ENDPROC

2

D

2410 IF F$="":ENDPROC

2420 PRINT'"Saving ..."

2430 F%=0PENOUT (F$)

2440 FOR P%=0T09:FOR X%=0T02:FOR Y%=0TO
3

2450 BPUT#F$%,0b% (P%, X%, Y%) :NEXT,,

2460 CLOSE#F%:ENDPROC

24170 :

2480 DEF PROCsaveb:VDU31,0,25

2490 LOCAL P%,X%,Y%,F$,F%,A%,B%,D%

2500 PRINT"SAVE IN FORMAT FOR EXECing"'
"Enter filename: ";:F$=FNin:IF F$="":EN
PROC

2510 INPUT"Enter first line number: "L%
2520 INPUT"Enter increment: "I%

2530 INPUT"Start character: "C%

2540 PRINT"Omit blank Characters (Y/N):

2550 REPEAT:A%=GET AND &DF:UNTIL A%=89

OR A%=78:A%=(A%=78)

’

2560 PRINTTAB(0,VPOS)"Saving ..
:VDU21

2570 OSCLI"SPOOL "+ES

2580 FOR P%=0T09:FOR Y%=0T02
2590 FOR X$=0T02:D$%=FALSE

2600 FOR B%=0TO7

2610 IF ob%(P%,X%,Y$*8+B%)>0 D%=TRUE
2620 NEXTB%:IF D% OR A% PROCsavebl:C%=C

s

3+l

2630 NEXT X%,Y$%,P%

2640 *SPOOL

2650 VDU6

2660 ENDPROC

2670 :

2680 DEF PROCsavebl:LOCAL A%

2690 PRINT;L%;"VDU23,";C%; :L$=L%+I%
2700 FOR A%=0TO7

2710 Vi=ob% (P%, X%, Y$*8+A%)

2720 V%=(V% AND1)*128+ (V3 AND2) *32+ (V%

Beebug June 1990

25

A Versatile Character Editor

AND4) *8+ (V% ANDS8) *2+ (V% AND16) /2+ (V% AND
32) /8+(V% AND64) /32+ (V% AND128) /128
2730 PRINT :",":V%:

2740 NEXT A%:PRINT

2750 ENDPROC

21760 ¢

2770 DEF PROChelp:LOCAL A%

2780 COLOUR1:VDU31,0,25

2790 PRINT"HELP"''"L - Load set of obje
cts"'"S - Save set of objects"';CHR$138;
CHR$139;CHR$140;CHR$141;" - move left/ri
ght/up/down"

2800 *FX15 1
2810 A%=GET:PROCclear:VDU31,0,25

2820 PRINT"HELP"'

2830 PRINT"Return - Plot a point™
2840 PRINT"Delete - Erase a point"

2850 PRINT"M - Move mode"

2860 *FX15 1
2870 A%=GET:PROCclear:VDU31,0,25
2880 PRINT"HELP"'

2890 PRINT"E - Erase mode"

2900 PRINT"D - Draw mode"

2910 PRINT"I - Input VDU 23 values”

2920 *EX1H 1

2930 A%=GET:PROCclear:VDU31,0,25

2940 PRINT"HELP"'

2950 PRINT"R - Read from character in m
emory"

2960 PRINT"C - Copy from object"

2970 PRINT"W - Wipe object"

2980 *FX15 1

2990 A%=GET:PROCclear:VDU31,0,25

3000 PRINT"HELP"'

3010 PRINT"< - Move to previous charact
er"

3020 PRINT"> - Move to next character"

3030 PRINT"I - Input VDU 23 values"

3040 *FX15 1

3050 A%=GET:PROCclear :ENDPROC

3060 :

3070 DEF PROCread:COLOURI1:VDU31,0,25

3080 A%=X% DIV8:B%=Y% DIV8:PRINT"READ"'

3090 LOCAL X%,Y%,C%,D%,V3%

3100 PRINT"Enter character to read: ";:
C%=VALFNin:IF C%=0 PROCclear:ENDPROC

3110 ?&70=X%:2&71=Y%:2&72=A%

3120 ?6900=C%:X%=0:Y%=9:A%=10:CALL&FFF1
3130 X%=2670:Y%=2&71:A%=2672

3140 FOR D%=0TO7

3150 V%=?(&9014D%)

3160 V%=(V% AND1) *128+ (V% AND2) *32+ (V%
AND4) *8+ (V% ANDS8) *2+ (V% AND16) /2+ (V% AND
32) /8+ (V% AND64)/32+ (V% AND128) /128
Wi

3170 ob%(P%,A%,B%*8+D%)=V3

3180 NEXT D%:PROCclear

3190 PROCtile(P%,A%,B%) :ENDPROC

3200 :

3210 DEF PROCtile(P%,A%,B$)

3220 LOCAL U%,V%, W%, 2%

3230 FOR z%=0TO7:V%=0b% (P%,A%,B%*8+2%)
3240 VDU31,A%*8,B%*8+2%

3250 FOR W%=0TO7:U%=(V% AND (2°W%))
3260 COLOURL:IF U%:VDU129 ELSE VDUFNcha
r (W%, 2%)

3270 PROCmini (A%*8+W%,B%*8+%%, SGNU%)
3280 NEXT W%, 2% :ENDPROC

3290 :

3300 DEF PROCinput:COLOUR1:VDU31,0,25
3310 LOCAL A%,AS$,B%,D%,V%

3320 A%=X% DIV8:B%=Y% DIVS

3330 PRINT"INPUT"

3340 FOR D%=0TO7

3350 VDU31,0,27

3360 PRINT"Enter value for row ";D%+1;"
« N,

3370 VDU31,22,21,32,32,32,31,22,21

3380 AS=FNin:IF A$="":PROCclear:D%=8:NE
XT D%:ENDPROC ELSE V%=VALAS

3390 V%=(V$ AND1)*128+ (V% AND2) *32+ (V%
AND4) *8+ (V% AND8) *2+ (V% AND16) /2+ (VS AND
32) /8+ (V% AND64) /32+ (V% AND128) /128

3400 ob%(P%,A%,B%*84D%)=V5% '
3410 NEXT D%:PROCclear

3420 PROCtile (P%,A%,B%) :ENDPROC

3430 :

3440 DEF PROCwipe:LOCAL A%,B%

3450 COLOUR1:VDU31,0,25

3460 PRINT"WIPE"''"Press any key to wip
e, or Escape to carry on editing"
3470 *FX15 1

3480 A%=GET:PROCclear:IF A%<>27:FOR A%=
0TO02 :FOR B%=0T023:0b% (P%,A%,B%)=0:NEXT B
%,A%:PROCdisplay (P%)

3490 ENDPROC

3500 :

3510 DEF PROCcopy:LOCAL A%,B%,F%

3520 COLOUR1:VDU31,0,25

3530 INPUT"COPY"''"Copy from which obje
ct: "F3

3540 IF F%<0 OR F%>9 PROCclear:ENDPROC
3550 PRINT'"Press any key to copy, or E
scape to carry on editing"

3560 *EA15 1

3570 A%=GET:PROCclear:IF A%<>27:FOR A%=
0TO2:FOR B%=0T023:0b% (P%,A%,B%)=0b% (F$%,A
%,B%) :NEXT B%,A%:PROCdisplay (P%) .
3580 ENDPROC B

26

Beebug June 1990

Practical Assembler (Part 2)

by Bernard Hill

As promised in last month'’s article this time we
are looking at error handling. We shall also be
having a look at macros, and how they can be
implemented in BBC assembler.

ERROR HANDLING

There is a special instruction on the 6502
microprocessor to enable any operating system
built around this microprocessor to handle
errors in a simple way. This instruction is BRK,
and has an opcode (the value it becomes when
assembled) of 0 - so you can always substitute
the shorter “BRK” instruction for any “EQUB
0”. When the 6502 executes a BRK instruction it
jumps to a routine whose address is always
kept in &FFFE-&FFFF. Don’t confuse BRK with
the Break key, however. The Break key is hard-
wired to the ‘reset’ line on the microprocessor,
and when this is connected a jump is made to
the location whose address is held in &FFFC-
&FFFD. As a consequence, therefore, any 6502
system must have ROM rather than RAM at the
top end of its memory so that these values can
be ‘burnt in’ to the four locations &FFFC-
&FFFF, and this also explains why CALL
1&FFFC is equivalent to pressing Break.

But to get back to BRK. The routine in the BBC
operating system which handles BRK has also
been coded to produce a standard error number
(in Basic called ERR) and error message from
the bytes which follow the BRK instruction.
These must be coded as follows:

BRK

one byte ERR number

error message

one zero byte to terminate the message

For example, if we have a piece of code which
is to perform integer division, then we would
probably want to generate an error if the
divisor were zero. This might look like:

LDA divisor
BNE over \ jump over error if <>0
BRK

Beebug June 1990

EQUB 255

EQUS "Division by zero attempted"
EQUB 0

.over

This is a very simple way of programming
error-handling, and examples can be seen in my
articles *FIND and *DFIND (BEEBUG Vol.8
Nos.7 and 10) where bad commands and non-
existent files produce error messages. The error
number you use is your concern and usually
doesn’t matter unless you want to trap it in
Basic with an ON ERROR statement. It’s a good
idea, though, to use error numbers outside the
range of values used by Basic (1 to 45), the
operating system and the DFS (189 to 254).
Popular choices are 0 and 255.

One exception to this is Escape handling. When
a machine code program runs it cannot be
interrupted unless the author arranges it to be,
and the easy way to do this is to test for Escape
having being pressed. Provided Escape has not
been disabled with *FX229,1 then, on Escape,
the interrupt handler arranges that the top bit
of location &FF will be set. This can therefore be
very easily tested for in a program at
convenient places with a piece of code like this:

BIT &FF \ test location &FF
BPL over \ top bit was not set
BRK

EQUB 17

EQUS "Escape"

EQUB 0

.over

You’ll find this device also in the articles
mentioned above, where it is also necessary
before issuing the error to close down the open
file.

ERRORS IN SIDEWAYS RAM
As I warned in last month’s article, when
producing a program for sideways RAM, error

27

Practical Assembler

trapping is not quite so easy. This is due to the
fact that when processing the BRK, the
operating system pages the language ROM
back in so that we would be reading a spurious
error message from the language ROM rather
than the one where the error occurred. The
usual solution is to copy the BRK, the error
number and message into the bottom of the
stack (&100) and JMP there to execute it:

\ Escape handling...

BIT &FF:BPL over

LDA #0:STA &100 \ the BRK instruction
LDX #0

.1p LDA error,X:STA &101,X

BEQ fin \ the message ends with 0 byte
INX:JMP 1p

.fin JMP &100 \ perform the error
.error EQUB 17:EQUS "Escape"+CHRS$0

MACROS

In most assembler systems available on
microcomputers the concept of a ‘macro’ is well
established. This is a shorthand method for
producing in the code a commonly-executed set
of assembler instructions. For instance, the
saving of A, X and Y registers on the stack is
accomplished with:

PHA:TXA:PHA:TYA:PHA
or, in 6512 (Basic IV) we can use:
PHA:PHX:PHY
This set could perhaps be called “PUSHALL”.

In BBC Basic we have the ability to define
assembler macros by jumping back into Basic
and there are two ways of doing this, using
OPT or EQUS:

1.The normal use of OPT is to set the
assembler option number, and it is common
to use the variable ‘opt’, ‘pass’, ‘pas%’ or
similar. So if we have the line:

OPT FNpushall

in our code, and:
DEF FNpushall
[OPT opt:PHA:TXA:PHA:TYA:PHA:]
=opt

28

(assuming our assembly loop variable is
called ‘opt’), then when assembled this will
produce the five instructions defined in
FNpushall. Note the ‘dummy’ assignment to
return ‘opt’ as the function value.

2. Using EQUS is very similar, and there is little
to choose between this and OPT, except that
this method needs only one change if you
ever change the name of your assembler loop
variable:

[... assembler code ...
EQUS FNpushall
L)

DEF FNpushall
[OPT opt:PHA:TXA:PHA:TYA:PHA:]

—nn

Note that we assign the dummy function in
this case to the null string to avoid the EQUS
producing spurious assembled code.

It is important to realise that this idea does not
save any space in the final assembly. We still
produce 5 bytes of code whether we explicitly
include the PHA...PHA in the middle of our
program or use FNpushall. But it does save us
space in the program which contains the source
code, and as a refinement we can even include
parameters to the function. For instance, it is
common in some programs to store integers in
two consecutive bytes and so there is a need to
copy them to other locations. I frequently use
the macro:

DEF FNcopy2(a,b)
[OPT opt:PHA:LDA a:STA b
LDA a+l:STA b+l:PLA:]

which copies two consecutive bytes to another
two consecutive bytes. We could call it with, for
example:

EQUS FNcopy?2 (&20E, savevec)

which would save the contents of the BRK
vector at &20E-&20F into a location
presumably defined elsewhere. Obviously we
can restore it with:

EQUS FNcopy2 (savevec, &20E)

Beebug June 1990

s T ek e Il Gt SR B e AR o SR b e R TR S e R LA e B = B e S L Sl S

Practical Assembler

Note in passing that we save the A register at
the beginning of the macro (PHA), and restore
it at the end (PLA). This is a very good idea,
because then this macro can be used in any
program at all with impunity. Structured
programs in assembler follow exactly the same
principles as in a higher-level language: to
make every macro, subroutine or procedure
completely self-contained and to make no
assumptions about anything which happens
outside itself.

Listing 1 contains a definition of a macro for a
very common but rather tedious assembler
operation: printing a string. Here we can use
the value of the return string of the EQUS
function to good effect and so call the macro
with the string to be printed as its argument.
Note that even though looping is performed
there are no labels defined in the macro: these
should not be included in macros since calling
the macro more than once in the same program
will cause confusion in the assembler between
the differing instances of the label.

Don’t be put off by the appearance of relative
jumps (“P%+17") in line 1030 - the value of the
offset from P% which is required is very easily
calculated by using P%+0" and doing a test
assembly with a listing. You can then calculate
the correct value to be substituted from your
listing. After a while you become proficient at
byte-counting in assembler, and anyway it only
needs to be done once when you create and test
the macro. You can use it for evermore in your
programs once created and tested!

HINTS SECTION

As mentioned in the first article in this series,
we are starting a small hints section with each
article. There are a number of small points
which don'’t easily fit in anywhere else and so
can be gathered together into one place. So
here’s this month’s:

1. You can re-use label names as long as you are

jumping backwards since the assembler
always takes the last definition as the current

Beebug June 1990

one. This is particularly useful in loops where
a small backward loop can always be called
“.loop’ without bothering to think of new
names (as examples see the same articles as
mentioned above).

2.When interfacing to Basic, you can pick up
input values from the resident integer
variables A% to Z% rather than through the
complications of CALL parameters. A% is
found at &404-407, B% at &408-40B etc. This
is particularly handy in debugging and
testing small modules.

Thus, for example:
A%=N
CALL sort

.sort LDA &404 \ = A% MOD 256
Listing 1
10 REM Practical Assembler
20 REM Version B1.00
30 REM Author Bernard Hill

40 REM BEEBUG June 1990
50 REM Program subject to copyright

100 DIM code 100

110 x$="Example print macro"+CHR$13
120 FOR opt=0 TO 3 STEP 3

130 P%=code

140 [OPT opt

150 EQUS FNprint (x$)

160 EQUS FNprint (" (C) BEEBUG 1990"+CHR

170 RTS
180 1]
190 NEXT

210 CALL code
220 END

1000 DEF FNprint (a$)

1010 [OPT opt:PHA:TXA:PHA

1020 LDX #0

1030 LDA P%+17,X

1040 JSR &FFE3

1050 INX:CPX #LENa$

1060 BNE P%-9

1070 PLA:TAX:PLA

1080 JMP P%+3+LENa$

1090]:=a$

29

Apricote Studios’ Personal Accounts

Reviewed by Mike Williams

Product Personal Accounts

Supplier Apricote Studios
2 Purls Bridge Farm,
Manea, Cambs PE15 OND.
Tel. (035 478) 432

Price £14.95 inc.

I must start this review by making a confession.
Many years ago, or so it seems, I reviewed a
number of home accounts packages for the BBC
micro, and found nothing that appealed. Partly
as a consequence, when I was writing the Filer
database system which was published in
BEEBUG in several instalments, one of the
modules I included was for home banking. It
has served me, and I hope others well, and I
have now been using this regularly for about
five years. Of course, it does all I want, and in a
very simple fashion. Thus any commercial (and
rival) package has much to live up to!

Apricote Studios’ Personal Accounts is supplied
on disc with a 20 page A5-sized manual. The
software runs in mode 7, and despite the
author’s claims, I cannot approve of all the
colour combinations (green text on a white
background, for example). Mode 7 also limits
descriptions of entries more than I would wish,
and this field must contain both description
and cheque number, if you feel that it is
important to enter both (as I do if I am
subsequently going to reconcile my computer
record with the bank’s statement). However,
mode 7 makes the maximum amount of
memory available which is important here as a
complete file is loaded into memory for use,
and then re-saved afterwards. This, of course,
imposes a more modest upper limit on the total
number of transactions that can be contained in
one file, compared with one accessed directly
from disc, but this is most unlikely to be a
problem for this application.

Personal Accounts starts with a main menu from
which files may also be loaded and saved (a
demo file is supplied and used to good effect in
the documentation by way of example). The
most frequently used option is likely to be that
for entering transactions.

30

Each transaction is dated, and this is streamlined
to avoid unnecessarily repetitive input, and also
requires code letters to classify the transaction
according to the form of income or expenditure.
The codes you choose to use are displayed
below the transaction panel, and switch
automatically between income and expenditure
as required. Finally a transaction is marked with
a status (paid, unpaid, reconciled or blank).

Personal Accounts is intended to cover all your
income and expenditure, and thus entries can be
attributed to one of ten accounts, of which your
bank current account would be one. All entries
can be easily edited, or deleted (by deleting the
date for that entry). One excellent feature is that
entries out of date order are immediately
inserted into the correct position by date, thus
always maintaining transactions in the correct
order. Dates are also checked for validity.

A search facility enables you to search on any
field in a transaction record. The search is case
sensitive, which can be a hindrance if you are
inconsistent in your descriptions, and the
method of handling sub-string searches
requires constant re-input of the search string.
However, you will probably not need to make
much use of this facility, and for what it does it
is quite easy to use.

Handling standing orders and direct debits is
one of the messier aspects of computerised
home banking. Personal Accounts allows a
maximum of 20, which from experience I would
suggest is insufficient. For example, many
regular payments involve one unique payment,
and several equal ones. Over two years this can
mean four separate entries in the standing
orders list. In practice, with Personal Accounts it
is preferable to have only one entry at a time for
any one payment, so that additional editing and
entry of standing orders is required.

Effectively, you create a separate list of
standing orders/direct debit payments. You
then manually insert appropriately dated copies
of these into your transaction records as and
when required. In my view this is quite
unacceptable - one of the major reasons I use a

Beebug June 1990

Apricote Studios' Personal Accounts

computer-based home accounts system is so
that once I have told the computer the details
of all my standing orders and direct debits, it
will remember when to include them in a list of
transactions. Admittedly, the software’s author
addresses this issue quite forcibly in his
documentation, but I have to say that in my
view his reservations can be overcome, and
this has been proven to my satisfaction over
the past five years.

t1=First ~ f2=Last ~ Data+{3-4=Search
Date :Description
01.01.90 Wages
02.01.90 Bank Receipts
04.01.90 Petrol
19.01.90 100987 Trnsfer

3 Income Headings F

3 i:Inte m: q: u:

B n:
ki 0:0the
1

r: v
s:Item w:
: :Pres t:Tax x:
:Curre 1:Visa 2:Depos 3:Build 4:Cash
s 6: £ 8: 9
Standing Orders Etc : TRE=More
Select when entering Date
Long Life D/D ¢ I 24.65 P
0.00
0.00
: 0.00
§ 0.00

The main data entry screen

Other options in the main menu allow you to
enter and edit income and payment headings,
and standing order/direct debit details.
Another option summarises the different
accounts you set up (current, building society,
Access, Visa, cash etc.) showing current
balances, which is quite handy. This is the
screen where you also specify opening balances.

The remaining main menu option concerns the
creation of reports and statements. All reports
are displayed on the screen, and may be
selectively sent to a printer. Reports all use an
80 character line, but the screen display is still
limited to 40 characters. The result is most
confusing, and tends to give an amateurish feel
to the software. It also means that no more than
three transactions are visible on screen at any
one time. In reports, all codes are replaced by
the correct descriptions, but the limits of the 40
column entry mode are then readily apparent.
The screen display also scrolls straight through

Beebug June 1990

to the end unless you manage to press the space
bar at the right moment to stall this, a less than
satisfactory method in practice. You don’t
always want to print a report just to check a
small detail (assuming you have a printer
anyway), and a paged rather than scrolling
display would be more effective here.

Various search criteria enable reports to select
which accounts, payment or income headings
are to be included, and what information is to
be sent to a printer. The report option also
includes the facility to carry current balances
and all other settings forward to a new file (for
the start of a new year for example).

The documentation, though brief, is actually
quite good. The descriptions are clear and
down to earth, and guide you easily through all
the options. There are some grammatical errors
which should have been spotted, but these are
few. The only weakness is the lack of any
technical detail, the maximum possible number
of transactions per file, for example.

CONCLUSIONS

Many readers may feel I have been too hard on
this package, but I explained my credentials at
the outset. I need a system which is simple and
straightforward in use, and which does not rely
on my memory (other than to enter
transactions) nor on my ability (or lack of it) at
basic arithmetic. Personal Accounts does not
fulfil all my requirements, particularly in its
poor handling of standing orders/direct debits,
and the limitations of a 40 column screen for
entry and reporting. However, it is easy to use,
and what it does it does well.

I looked forward to this review with keen
anticipation. I am disappointed that I cannot
report more favourably. The software is by no
means expensive, and undoubtedly has quite a
lot going for it, but it does not suit me. And after
eight years in the life of the BBC micro I also
believe we have a right to expect something a
little more sophisticated, particularly when you
bear in mind that the 3.5” ADFS version of
Personal Accounts will, and is intended to be, run
on an Archimedes, as well as the Master
Compact I used for this review.

However, the author says he guarantees a
refund of your money if you are not fully
satisfied, so you have little to lose. B]

31

It is not uncommon for children of even twelve
or thirteen to have no real understanding of
decimal numbers, especially of place value after
the decimal point. This may be true despite the
four rules - addition, subtraction, multiplication
and division - being handled competently. It is
at a later stage that problems arise.

The program presented here is designed to test
a pupil’s ability to cope with decimals in a
challenging way and also, with the help of
teachers or parents, to indicate problem areas
and their solutions.

USING THE PROGRAM
You will first need to type in
and save the program as
listed, paying particular
attention to the DATA lines.
The program should not be
renumbered as the RESTORE
in line 2190 depends upon the
DATA starting at lines 5000,
6000 and so on.

Question 9

When first run, instructions
are offered which invite pupils
to squeeze a decimal number
(not fraction) between two
given numbers. Occasionally, children have
thought that they have to provide a number
exactly half way between the two numbers
displayed and, although this is rare enough not
to justify another screen of instructions, it does
need watching out for.

A choice of difficulty is then offered. The easy
level starts with two numbers which call for a
simple integer answer and leads up to the two
given numbers being consecutive whole
numbers requiring a decimal answer for the
first time. The highest level of difficulty, on the
other hand, would demand a full
understanding of place value and careful

32

DECIMAL SQUEEZE

Your answer: 0. 00091
Correct, well done,

Press space bar to continue

The squeeze program in operation

Decimal Squeeze

‘ This month'’s educational program tests children’s understanding of decimal
numbers, but will likely challenge adults too. Gordon Moxon explains.

thought to master. It would be a fairly easy
task to alter the data so as to tailor the
standard of questions to suit the attainment
level of pupils.

Data is entered as twenty pairs of numbers for
each difficulty level, the first number in the pair
being the lower number each time. Data for
level one must start at line 5000, for level two at
6000 and so on. PROCchoice (lines 2090 to 2200)
may be altered to allow for more or less levels
of difficulty provided that the data lines for
each additional level are
numbered correctly. The error
trapping in line 2180 would,
of course, also have to be
adjusted accordingly.

Squeeze a nunber betueen these tuo:

After twenty questions (set in
line 1300) the user is offered
the opportunity to see a list of
any questions he/she may
have got wrong. No stress is
placed upon what is wrong for
the sake of it. Rather a record is
kept to enable pupils and
teachers or parents to discuss
the cause(s) of mistakes at the
end of each set of questions. A
record is also kept of each attempt, including level
of difficulty, score out of twenty and time taken.

When children first learn about numbers, they
quickly (and correctly) appreciate that the
larger the number of digits used the greater the
value of the number. Hence, for example, 93231
is bigger than 932. If later, place value is not
fully understood, decimal numbers with many
digits are often regarded as being large
numbers and this is likely to be a frequent
source of error. For example, 8.84 will be
considered smaller than 8.83501 and even
0.009766 would be thought a large number! It is
surprising how children who are able

Beebug June 1990

Decimal Squeeze

mathematicians find the tasks set by this
program difficult until their woolly thinking is
clarified.

In over eighteen months of extensive classroom
use the program has proved most useful in
identifying and solving pupils’ misconceptions
about decimal numbers. It will not do this
unaided, however, and pupil - teacher/parent
interaction is vital.

PROGRAM NOTES

To assist entering the printed listing into the
computer error trapping is include at line 100
and lines 190 to 220. As it stands, Escape will
then abort and return to the start (but without
repeating the instructions) while pressing Shift-
Escape will immediately terminate the
program.

If you want to make the program proof against
interruption, remove this error trapping (when
the program has been fully tested), and also
remove the word REM at the start of lines 1190,
1210 and 1250. When this is done, pressing
Escape or Break merely re-runs the program -
the only way to terminate execution is to press
Ctrl-Break.

10 REM Program Decimal Squeeze

20 REM Version B1.3

30 REM Author Gordon Moxon

40 REM BEEBUG June 1990

50 REM Program subject to copyright

100 MODE7:ON ERROR GOT0190

110 PROCinit:PROCinstr

120 FOR go=1 TO 15

130 PROCchoice

140 PROCquestions

150 PROCscore:IF go=15 THEN PROCend EL
SE IF exit%$ go=15

160, NEXT go:MODE7:0SCLI ("FX4") : *FX229

170 END

180 ¢
190 MODE7

200 IF ERR=17 AND NOT INKEY-1 THEN GOT
0120

210 REPORT:PRINT" at line ";ERL

220 END

230

1000 DEF PROCbox (X$,X%,Y%)

1010 Z%=LEN (X$)+2

1020 a$=CHRS$150+CHR$104+STRINGS (2%, CHRS
44) +CHR$52

1030 b$=CHR$150+CHR$106+CHR$135+X$+CHRS
150+CHRS53

1040 c$=CHR$150+CHR$42+STRINGS (2%, CHR$4
4) +CHR$37

1050 PRINTTAB (X%, Y%)a$

1060 PROCdbl (b$,X%-1,Y%+1,32) :PRINTTAB (
X%,Y%+3)c$

1070 ENDPROC

1080 :

1090 DEF PROCdbl (X$,X1%,Y1%,C%)

1100 PRINTTAB (X1%-1,Y1%)CHR$141;CHRSCS;
X$; TAB(X1%-1,Y1%+1) CHR$141; CHRSC%;X$; :VD
Ul1

1110 ENDPROC

1120

1130 DEF PROCtitle

1140 CLS

1150 PROCdbl (CHR$150+CHR$157+CHR$132+CH
R$141+"DECIMAL SQUEEZE "+CHR$156,8,1,3
2)

1160 ENDPROC

1170 :

1180 DEF PROCinit

1190 REM ON ERROR RUN

1200 *Fx4,2

1210 REM *FX229,1

1220 VDu23,1,0:0:0:0

1230 DIM AS$(20),BS$(20),C$(20),E(20) ,AWS
(20) ,BWS (20) , CWS (20)

1240 DIMS(15),F(15),min$ (15),SECS(15)

1250 REM *KEY10 O.|MRUN|M

1260 ENDPROC

1270

1280 DEF PROCquestions

1290 S$=0:W=0:TIME=0

1300 FOR X=1 TO 20

1310 PROCtitle

1320 XX$=STRS$ (X)

1330 READ A$(X),BS$(X)

1340 IF LEN(AS(X))>LEN(BS (X)) E(X)=LEN(
A$(X))+2 ELSE E(X)=LEN (BS (X)) +2

1350 PROCdbl ("Question "+XX$,1,4,130)

1360 PROCdbl ("Squeeze a number between
these two:",1,7,130)

1370 PROCbox (A$ (X),3,10)

1380 PROCbox (B$ (X),24,10)

1390 PROCdbl ("Your answer: ",4,15,130)

1400 PROCinput

1410 IF VAL(CS(X))<VAL(B$ (X)) AND VAL(C
$ (X)) >VAL(AS (X)) PROCright ELSE PROCwron

g

Beebug June 1990

33

Decimal Squeéze

1420 NEXT X

1430 ENDPROC

1440 :

1450 DEF PROCright

1460 PROCdb1 ("Correct, well done.",8,19
,1381)

1470 PROCspace

1480 S=S+1

1490 ENDPROC

1500 :

1510 DEF PROCwrong

1520 W=W+1

1530 start$="No, "+C$(X)+" is equal to
"

1540 IF VAL(CS$(X))> VAL (BS$ (X)) PROCdbl (
"No, "+C$(X)+" is greater than "+B$(X),1
+19,129) ELSE IF VAL(C$(X))<VAL(AS$(X)) P
ROCdbl ("No, "+C$(X)+" is less than "+AS(
X),1,19,129)

1550 IF VAL(CS$ (X))=VAL(AS (X)) PROCdbl (s
tartS+AS(X),1,19,129)

1560 IF VAL(CS$(X))=VAL(B$ (X)) PROCdbl (s
tart$+BS(X),1,19,129)

1570 PROCerrors

1580 PROCspace

1590 ENDPROC

1600 :

1610 DEF PROCinput

1620 E=E(X) :CS=""

1630 REPEAT

1640 P$=GET$:P=ASC (P$)

1650 IFP=46 AND INSTR(CS,".") VDU7:GOTO

1700

1660 IF (P>47 AND P<58 OR P=46) AND LEN
(C$)<=E C$=C$+P$:vDUL41,P,8,8,10,141,P,1
1:GOTO 1700

1670 C=LEN(CS$)

1680 IF P=127 AND C=0 VDU7:GOTO 1700

1690 IF P=127 C$=LEFTS$(C$,C-1) :C=C-1:VD
uiz2j,9,10,127,8,11

1700 UNTIL P=13 AND LEN(C$)>0

1710 C$(X)=C$

1720 ENDPROC

1730

1740 DEF PROCscore

1750 PROCtitle

1760 S$=STR$ (S) : T=TIME/100

1770 MIN=INT(T/60) :MIN$=STR$ (MIN)

1780 SEC=T MOD 60:SECS$=STRS$ (SEC)

1790 IF MIN=1 MINS$=MINS$+" minute " ELSE

MINS$=MINS$+" minutes "

1800 PROCdbL ("You got "+S$+" right out
of 20,7, 17,130)

1810 PROCdAbl ("in "+MINS+"and "+SECS$+" s
econds", 6,9,130)

1820 IF S>18 AND FF<>52 PROCdbl ("Excell
ent, now try the next level",2,11,130)
1830 IF S<15 PROCdAbl("Now try the same
level again®,6,11,130)

1840 PROCdbl ("Do you want to check your
errors",3,14,129)

1850 PROCABI("(Y/N)?",17,16,129)

1860 REPEAT:W$=CHRS$ (GET AND &DF) :UNTIL
w$=llYll OR wsz’lN"

1870 IF W$="Y" PROCshowerrors

1880 PROCrecord

1890 IF go<15 PROCagain

1900 ENDPROC

1910 :

1920 DEF PROCinstr

1930 PROCtitle

1940 PROCdbl ("Do you want instructions
(y/n)2",4,9,131)

1950 REPEAT:W$=CHR$ (GET AND &DF) :UNTIL
W$="Y" OR ws__."N"

1960 IF W$="N" ENDPROC

1970 PROCtitle

1980 PROCdbl ("This program tests your k
nowledge of",1,5,134)

1990 PROCdbl ("decimal numbers.",1,7,134
)
2000 PROCdbl("You will be given two num
bers and you",1,9,134)

2010 PROCdbl ("have to type in a number
that 48" 1,11,134)

2020 PROCdbl ("between the two numbers a
nd not equal",1,13,134)

2030 PROCdbl ("to either of them. You mu
st put in a",1,15,134)

2040 PROCdbl ("decimal number and not a
fraction.”,1,17,134)

2050 PROCdbl ("There are 20 questions al
together.",3,20,130)

2060 PROCspace

2070 ENDPROC

2080 :

2090 DEF PROCchoice

2100 FOR K=1 TO 20:AWS$ (K)="0" :NEXT

2110 PROCtitle

2120 PROCdbl ("Which level of difficulty

do you want?",1,5,131)

2130 PROCAb] ("1."+CHR$134+"Easy", 10, 8,1
30)

2140 PROCdbl ("2."+CHR$134+"Medium", 10,1
0,130)

2150 PROCdb1 ("3 "+CHRS134+"Difficult® 1
0,12,130)

2160 PROCdb1 ("4."+CHR$134+"Very difficu
it 10,14,130)

2170 PROCdbl ("Type the number required"

34

Beebug June 1990

Decimal Squeeze

,8,18,129)

2180 REPEAT:F=GET:UNTIL F>48 AND F<53:F
F=F:F=F-44

2190 RESTORE F*1000

2200 ENDPROC

2210 :

2220 DEF PROCspace

2230 PROCdbl ("Press space bar to contin
ue”,6,23,129)

2240 REPEAT:UNTIL GET=32

2250 ENDPROC

2280 ¢

2270 DEF PROCagain

2280 PROCtitle:exit%=FALSE

2290 PROCdbl ("Do you want another go (Y
/N)2",5,12,129)

2300 REPEAT:V$=CHRS$ (GET AND &DF) :UNTIL
V$=|IYII OR V$="N"

2310 IF VS$="N" exit%=TRUE

2320 ENDPROC

2330 :

2340 DEF PROCerrors

2350 AWS (X)=AS$ (X) :BWS (X)=B$ (X) :CWS$ (X)=C
$(X)

2360 ENDPROC

2370 :

2380 DEF PROCshowerrors

2390 PROCtitle

2400 IF W=0 PROCdbl ("You made no mistak
es!",9,10,130) :PROCspace :ENDPROC

2410 IF W>14 PROCdbl("You are either on
the wrong level",1,10,129)

2420 IF W>14 PROCdbl ("or you need help
with decimals",3,12,129) :PROCspace:CLS
2430 PROCdbl ("1st Number 2nd Number
Answer",1,4,130)

2440 PROCdb1 (STRINGS(35," "),1,6,131)
2450 FOR J=0 TO 20

2460 IF AWS(J)<>"O0"PRINTTAB (4)CHR$134;A
W$ (J) ; TAB (19) BWS (J) ; TAB(28) CHR$129; CWS$ (J
)
2470 NEXT J

2480 PROCspace

2490 ENDPROC

2500 :

2510 DEF PROCrecord

2520 CLS

2530 PROCdbl (CHR$150+CHR$157+CHR$132+CH
R$141+"DECIMAL SQUEEZE RECORD "+CHR$156
15,1,32)

2540 S(go)=S:F (go)=FF:min$ (go) =STR$ (MIN
) :SEC$ (go) =SEC$

2550 IF LEN(SECS$(go))=1 SEC$(go)="0"+SE
C$(go)

2560 PROCdb1 ("Go Level Score

Time",3,3,130)

2570 PROCdb1 (STRINGS(35," "),1,5,131)
2580 FOR G=0 TO go

2590 PRINTTAB (3)CHR$134;G; TAB (13) CHRSF (
G) ; TAB(23) S(G) ; TAB(31)min$ (G) ; ":"; SECS (G
)
2610 NEXT

2620 PROCspace

2630 ENDPROC

2640 :

2650 DEF PROCend

2660 PROCtitle

2670 PROCdAbl ("You have completed 15 att
empts.",3,10,131)

2680 PROCdAbl ("Re-run the program to try
again.”,3,14,131)

2690 PROCspace

2700 ENDPROC

2710

5000 DATA 234,245,46,56,6998,7003,345,3
46,21,210

5010 DATA4.5,4.6,0.007,0.009,78,78.1,99
.9,100.1,6998,6999

5020 DATAS.5,5.6,0,0,1,19,19.1,24,25,4,
75,4.16

5030 DATAB.5,6.5,300,300.2,3.9,4,76,16.
2,0.01,0.08

5040 :

6000 DATA4.5,4.6,0.007,0.009,78,78.1,99
.9,100.1,6998,6999

6010 DATA0.58,0.6,27.6,27.7,3.3,3.4,2.9
(3,3.8,2 82

6020 paTAD 1,0.2,7.09,7.11,7.38,1.38,0,
34,0.35,1.45,1,46

6030 DATA1.029,1.03,4.6,4.66,7.23,7.233
,0.01,0,02,18.117,18,118

6040 :

7000 DATA0.72,0.73,1000,1000.1,0,29,0.3
,0.299,0.3,0.36,0.63

7010 DATAB.72,8.722,99,99.09,3.8,3.801,
0.0009,0.001,0,0.0001

7020 DATA1987,1988,0.058,0.0582,11.011,
11.0121,19,19.7,0.804,0.80405

7030 DATA7000,7000.1,9.204,9.24,9.201,9
.202,180,182,2.70,2.701

7040 :

8000 DATA 266.1,266.11,57.88,57.98,0.07
.0.0705,7,7.0001,1.7299,1.73

8010 DATA0.0538,0.05382,27.08,27.8,42.0
01,42.0011,0,0 0001,3.57,3.9

8020 DATA99.99,99.999,8.008,8.080,30,30
.001,1,1.01,0.08,0.06

8030 DATA67.1,67.101,8642.3,8652.3,6.84
,6.84001,26.77,26.78,7.63,7.6:003

Beebug June 1990

35

by Paul Pibworth

course

Most of us are
accustomed to menus of
one sort or another. Primarily, they can be used
in programs to give the user an element of
choice. If the user is the programmer, then the
menu system will always seem easy to handle.
The crunch comes when others have to use the
same program. If there are many options in a
menu, the user, especially if unsympathetic,
tends to develop a glazed expression, as though
mesmerised by the screen. It is just an extension
of the phenomenon which afflicts many of us
(well at least me) when presented with decision
making and information overload. The answer
is to simplify the process, by means of
structured questions, or choices. This technique
is used on some forms, which contain
instructions such as “If NO go to question 8”.

The program presented here is a menu system,
which implements a more structured approach
to menus as outlined above. It is designed to be
adapted for your own use, and to illustrate
some of the programming techniques used for
the benefit of First Course readers. If it is typed
in and run, it will give a demonstration of how
the menu system works. It can then be saved
for incorporation into your own programs later.
In order to use it, you need to know what you
want to do, and a little of what happens in the
program.

In principle, the menu system is organised so that
the number of visible choices is kept to a sensible
and reasonable limit at any one time. Choosing
any option may lead to a further sub-menu and
the process can be repeated with further levels of
sub-menu if required. This hierarchical menu
system ensures that only a limited number of
choices are presented on screen together.

There needs to be a balance between offering a
choice of, say, 1 from 2, and, at the other
extreme say, of 1 from 10. I have chosen 1 from
a maximum of 5 (but always making the fifth
one an exit route of some kind). Once you get to
know the program, it can be changed to allow a
choice of 1 from 3, or 1 from 5 (or whatever else

36

A Menu Routine

you prefer). This would need changes being
made to the procedure PROCmenu, together
with appropriate changes made in the number
of parameters sent and received, as you will see
in due course.

LEVEL 1 LEVEL 2 LEVEL 3

Choice AA

Choice A

Choice AB

Choice BAA

Choice BA
Choice BAB

Choice BB

Choice B

Choice BC

Choice BD

Cholce C

Choice DA

Choice D Choice DB

Choice DC

Figure 1

However, your first need is to draft a plan such
as figure 1. The system can be designed entirely
to suit your own requirements, and is quite
versatile. You will see in my example that
choice C leads to no further choices, yet choice
B leads to a further 4 choices, one of which
leads to a third sub-menu. The text for each
menu option is placed in a DATA statement,
and my (somewhat artificial) choices are listed
from line 600 onwards.

The program works by reading the text of the
choices (i.e. the options as they will be
displayed on the screen for each menu), from
the DATA statements into a string array called
menu$. This is accomplished in lines 100 to 160.
By subsequently including the array position as
a parameter in the procedure PROCmenu, the
appropriate text is displayed.

Beebug June 1990

%

First Course

The program has been written for mode 7, so
the string variables in the array contain a colour
code, and code 141 to give double height
characters. The colour code has been included
as the first value of each DATA statement. This
and the ‘141" could be omitted and the program
adapted for other modes if you wished. In
addition, the first DATA statement is used to
create a completely blank menu entry when
required, and the next two entries are likely to
be standard requirements for all menu systems
based on this program. From then on, REM
statements have been included with the data at
intervals, as a reminder, to indicate the array
positions of the following option choices.

A menu (or sub-menu) is displayed on the
screen using the procedure PROCmenu. This
has five parameters being the array references
of the five options to be displayed. Usually, the
fifth option will be ‘Return to previous menu’
or ‘Exit system’ (the latter in the top-level
menu - i.e. level 1 - only). The blank option,
entry 0 in the array, may be used whenever a
menu is to contain less than five options.

MENU
Press a key to choose an option
1....Level 2/Choice BA
..Level 2/Choice BB

..Level 2/Choice BD

1.

3....Level 2/Choice BC

4

3....Return to previous menu

Second level menu display

The menu demo begins at line 180 by clearing the
screen and displaying a menu. The one shown is
determined by the value of Z% which is initially
set to FALSE (value 0) at line 190. Thus the top-
level menu is specified in line 270 using the text
from menu$ in positions 3, 4, 5,6, and 7.

To complement PROCmenu, which displays a
menu of specified options on the screen, the
function FNmenu returns a value indicating
which choice has been made, and this is

Beebug June 1990

assigned (suitably modified) to Z% to determine
the next menu (or sub-menu) to be shown. The
parameter used with FNmenu is a string
indicating which options are valid. Thus the
top-level menu specified in line 270 allows five
options (12345), but the sub-menu for the first of
these (see figure 1 again) allows only three (125).
The whole of the menu system is contained in a
REPEAT-UNTIL loop (lines 200 to 450).

Study lines 270 to 310. The values of Z% from
the first choice must be from 100 to 500 (hence
the multiplier of 100). If Z% is 100, then line 280
is invoked, so that Z% then leaves with a value
of 110, 120, or 150. A value of 200 would
become 210, 220, or 250, which in turn would
modify 210 to 211, 212, or 215, whereas 300
would not be subjected to further change. The
order of these statements is critical and follows
the values for Z% - the 100s first, then the 200s
and so on. A value of 500 indicates an exit from
the menu systems altogether, assuming that the
level 1 menu includes this as the fifth option.

You need to know the final values of Z% to use
in the second half of the loop, i.e. lines 330 to
440. This is where the action for each of the
eleven choices shown in figure 1 is finally
determined. In the demo, each choice merely
displays the name of that option, but in practice
each would probably call a different procedure
to perform the appropriate operation.

I included PROCpause in the program for
effect, but it is not essential. By changing the
value of the multiplying factor in line 1190, you
can slow down or speed up the rate of
appearance of the options on the screen.

Finally, to summarise the whole system, start
by constructing a plan, as in figure 1, and then
write your “choices” on the lines of the
diagram, before transferring them to the DATA
lines. Modify the parameters used by
PROCmenu and FNmenu, and then try a run,
before you add your own procedures in lines
280 and following. Because, as it stands, each
choice calls the same procedure, the text of your
choice will be displayed. The value of Z% is
also displayed on the screen, and indicates the
pathway followed by the user; e.g. 212 shows
the choices 2, then 1, then 2. As soon as it is up
and working, replace my PROCone by your
own procedures, and you won'’t look back.

37

First Course

10 REM Program FCMenu 690 :
20 REM Version B2.2 700 REM array 8-9
30 REM Author Paul Pibworth 710 DATA 131,1....Level 2/Choice aA
40 REM BEEBUG June 1990 720 DATA 131,2....Level 2/Choice AB
50 REM Program subject to copyright 430
60 ¢ 740 REM array 10-13
100 d$=CHR$141 750 DATA 131,1....Level 2/Choice BA
110 DIMmenus$ (20) 760 DATA 131,2....Level 2/Choice BB
120 RESTORE 770 DATA 131,3....Level 2/Choice BC
130 FOR I%=0 TO 18 780 DATA 131,4....Level 2/Choice BD
140 READcode%,menu$ 790 :
150 menu$ (I1%)=dS$+CHRScode%+menu$ 800 REM array 14-16
160 NEXT 810 DATA 131,1....Level 2/Choice DA
170 820 DATA 131,2....Level 2/Choice DB
180 MODE7 830 DATA 131,3....Level 2/Choice DC
190 Z%=FALSE 840 :
200 REPEAT 850 REM array 17-18
210 CLS 860 DATA 131,1....Level 3/Choice BAA
220 PRINTTAB(12,1)CHR$131;CHRS141;"M E 870 DATA 131,2....Level 3/Choice BAB
N " 880
230 PRINTTAB(12,2)CHR$131;CHRS$141;"M E 1000 DEF PROCmenu(a%,b%,c%,d%,e%)
N DY 1010 cLS
240 PRINTTAB(0,4) ;menu$ (1) ; TAB(0,5) ;me 1020 PRINTTAB (2,1) ;menus$ (a%)
nu$ (1) 1030 PRINTTAB (2,2) ;menus$ (a%)
250 vDU28,0,24,39,6 1040 PROCpause (1)
260 IF 2%=215 Z%=200 ELSE Z%=FALSE 1050 PRINTTAB(2,4) ;menu$ (b%)
270 IF Z%=FALSE PROCmenu(3,4,5,6,7):2% 1060 PRINTTAB(2,5) ;menu$ (b%)
=FNmenu ("12345") *100 1070 PROCpause (1)
280 IF 2%=100 PROCmenu(8,9,0,0,2) :2%=F 1080 PRINTTAB(2,7) ;menus$ (c%)
Nmenu ("125") *10+100 1090 PRINTTAB (2, 8) ;menu$ (c%)
290 IF Z%=200 PROCmenu(10,11,12,13,2): 1100 PROCpause (1)
Z2%=FNmenu ("12345") *10+200 1110 PRINTTAB (2,10) ;menu$ (d%)
300 IF Z%=210 PROCmenu(17,18,0,0,2) :2% 1120 PRINTTAB(2,11) ;menu$ (d%)
=FNmenu ("125") +210 1130 PROCpause (1)
310 IF 2%=400 PROCmenu(14,15,16,0,2):2 1140 PRINTTAB(2,13) ;menus (e%)
%=FNmenu ("1235") *10+400 1150 PRINTTAB (2,14) ;menus (e%)
320 VDU26,12 1160 ENDPROC
330 IF 2%=110 PROCone (menus$ (8)) 1170 ¢
340 IF Z%=120 PROCone (menu$ (9)) 1180 DEF PROCpause (t%)
350 IF Z%=211 PROCone (menu$ (17)) 1190 T=INKEY(t%*10)
360 IF Z%=212 PROCone (menu$ (18)) 1200 ENDPROC
370 IF Z%=220 PROCone (menu$ (11)) 1210 ¢
380 IF 2%=230 PROCone (menu$(12)) 1220 DEF FNmenu(a$)
390 IF 2%=240 PROCone (menu$ (13)) 1230 REPEAT:Z$=GETS$:UNTILINSTR (a$,2$)>0
400 IF z%=300 PROCone (menu$ (5)) 1240 =VAL 2$
410 IF Z%=410 PROCone (menu$ (14)) 1250 ¢
420 IF 2%=420 PROCone (menu$ (15)) 1260 DEF FNend
430 IF Z%=430 PROCone (menu$ (16)) 1270 CLS
440 IF Z%=TRUE THEN Z%=FNend 1280 PRINTTAB(10,10) ;CHRS$131;"You are a
450 UNTIL Z%=500 bout to quit®
460 CLS 1290 PRINTTAB(11,12);CHRS$130;"Press Y t
470 PRINTTAB(15,10) "END" ¢ confirm"
480 END 1300 C$=INKEYS$ (500)
490 : 1310 IF C$="Y" OR C$="y" THEN =TRUE
600 DATA 0,"" 1320 =FALSE
610 DATA 130,Press a key to choose an 1330 :
option 1340 DEF PROCone (a$)
620 DATA 129,5....Return to previous m 1350 C18
enu 1360 PRINTTAB(8,8);a$!
630 REM array 3-7 1370 PRINTTAB(8,9):a$
640 DATA 131,1....Level 1/Choice A 1380 PRINT SPCl7"2%=":2%
650 DATA 131,2....Level 1/Choice B 1390 PRINT SPCl4'"Press a key"
660 DATA 131,3....Level 1/Choice C 1400 T=GET
670 DATA 131,4....Level 1/Choice D 1410 ENDPROC =
680 DATA 129,5....Exit System B
38 Beebug June 1990

%)

Designer Shoot-’Em-Up (Part 2)

Alan Wrigley concludes his description of Al Harwood’s designer game routines.

In last month'’s article, we showed you how to
define the sprites for your game, and listed the
source program for the machine code routines.
To complete the picture, you need to create the
screens for the game, and this is what we shall
concentrate on this month.

ENEMY MOVEMENTS

The first stage in defining the screens is to
create an ASCII text file which will contain
instructions about screen colours, which objects
are to start where, and how they will move. The
first part of this file will consist of a number of
one-line instructions which specify the
movements. This is followed by a further
section for each screen,
specifying the screen
colours, how many
enemy sprites, their
starting positions on
the screen, and which
movement instruction
to start from. Thus the
instruction list in the
first part of the file can
contain movement pat-
terns for any number of
sprites, whose starting
positions can be speci-
fied later.

Movement instructions are taken from the
following list:
skip - no function; used to slow down
movement.
left - moves enemy 1 unit left.
right - moves enemy 1 unit right.
up - moves enemy 1 unit up.
down - moves enemy 1 unit down.
explode - enemy is killed.
man - moves enemy 1 unit towards
player’s position.
bom - enemy drops a bomb.
>n - cycles back n instructions in the
program (where n<128).

Beebug June 1990

SC: 88516 LY :8 LE:C

A screen from the sample game given in figure 1

All these instructions except the last can be
abbreviated to the first letter (note that it must
be lower case). So a sample program might be:

1

R e

>6

which would simply make three moves left then
three moves right in an infinite loop. Much more
complex movements can of course be built up.
For example, you could move an enemy sprite in
a zig-zag pattern, dropping bombs and speeding
up as it goes, then
finally diving straight
for the player.

Remember that all
these instructions must
occupy a line each,
with no blank lines in
between. After the
movement . patterns
have been defined,
however, you must
leave a blank line be-
fore defining the rest of
the screen information.

SCREEN DISPLAY

The next part of the file should be repeated for
each screen you wish to include in your game.
The instructions this time (again one per line)
are:

1. screen colours (x,y,z)

2. sprite number (from your sprite file)
3. x position (0-39)

4. y position (0-30)

5. map position

2-5 repeated for each sprite that will appear
on this screen.

39

Designer Shoot-'Em-Up

The screen colours are the standard BBC screen
colours in the range 1-15. Three numbers must
be specified, with commas between them, e.g.
4,5,6. The sprite number is the same number as
that used in the sprite file you defined last
month. The x and y positions specify the
starting position on the screen, and the map
position refers to the instruction number at
which to start, from the list of movement
instructions in the first part of the file. Note that
you must not allow sprites to move off the
screen or you might get unpredictable effects.

So the second part of the file might look like
this:

4,56

2

10

10

0

2

20

10

13
which defines screen colours 4,5 & 6; places
sprite 2 at position 10,10 and starts its movement
at instruction 0; and places a second copy of
sprite 2 at position 20,10 and starts its movement
from instruction 13. There must be a blank line
between each screen definition, and the end of
the file must be marked by two blank lines.

The text file can be prepared by any word
processor which has the facility to save text as
an ASCII file. A sample text file is shown in
Figure 1. For reasons of space, the file has been
compressed; normally each instruction would
occupy one line. This game requires three
enemy sprites to be defined (nos. 2,3, & 4).

Now type in listing 3 and save it as ScrnAsm.
When the program is run, it will prompt you
for the filename of your text file, and will
convert the instructions into the data necessary
to construct the screens. When finished, you
will be prompted for a filename for the
resulting screens file.

Finally, type in listing 4, replacing DEMOscr
and DEMOspr in lines 1870 and 1880 with your

40

own screen and sprite filenames. Save the
program as Loader.

i1l lbsuudrderdrrrriinnerau
rurudddill]ldladldl»i]ss
§ 888858893688 m> rssdssr
8 9gdssresdassrsedseryss
dssrssdssraadmb>l 1] 11
il b1l L1l 1] a0y oy
rrrrrrrrrrrrrzrezrpilsss
S 8SS8SsS58S8s8sss8ssssssssbdl
dlidldldlidldlbildildldl
dldldldldlimmmmmmmme s
888588883888 s8s888¢8s88s8shbh
drdrdrdrdrdrbrdrdrdr
drdrdrdrdrdrdmmmmmnmm
meblllbrrrberyryrbl 1l 1 316
123 2 10010 0 2 20 10 0 2 10 20 0 2 20

20 0.2 15 15 O

234 3 10 6 0 3 20 60 25 2 382 10 2 38
2 20 2 38 0 25 2 38

10 6 53 2 10 6 53 2 15 6

1671 2 5 6 53 2
53 3 30 15 95

53 2 20 6

345 3 20 6 135 3 20 6 138 3 20 6 142 3
20 6 146 3 20 6 150 3 20 6 154 3 20 6
197 3 20 6 201 3 20 6 205 3 20 6 209 3
20 6 213 3 20 9 217 3 20 9 221

245 4 30 8 054 10 8 115 3 15 16 261 3
25 16 261

Figure 1
PLAYING THE GAME

You should now have all the ingredients
necessary to play your game. These are:

1. A machine code program called Game,
which was assembled from listing 2 last
month.

2. A screen file, as described above.

3. A sprite file, created with the sprite
definer listed last month.

4. A Basic program called Loader.

To run the game, first set PAGE to &1900
(Master owners included), and then chain the
loader program. This will load all the necessary
files and start the game running. To play the
game, use Z and X to move the player, and
Return to fire a bomb. Have fun!

Beebug June 1990

E:_____________________————————————————————————:

Designer Shoot-'Em-Up

Listing 3

10 REM Program ScrnAsm

20 REM Version 1.0

30 REM Author Al Harwood

40 REM BEEBUG June 1990

50 REM Program subject to copyright

100 MODE7:PROCinit :PROCassemble :END
110

1000 DEF PROCinit

1010 1d=&3000:REM load address

1020 1le=&1000:REM length

1030 DIM wd$ (8),data le

1040 FOR A%=data TO datatle STEP 4

1050 !A%=0:NEXT

1060 FOR A=0 TO 8:READ wd$ (A) :NEXT

1070 PRINT'''CHR$131"PROGRAM ASSEMBLER"

"CHR$131M===========—=——=W 1 ICHRS] 30 "By
Al Harwood"''CHR$130"BEEBUG June 1990"'!'
'CHR$134;

1080 INPUT"Source code filename:"fn$

1090 OSCLI("E . "+fnsS)

1100 ENDPROC

1110 :

1120 DEF PROCassemble

1130 n=21:REPEAT INPUT"P>"a$

1140 g=-1:IF a$>""PROCasseml

1150 UNTIL g=-1:IF a$>"" ENDPROC

1160 s=1:REPEAT INPUT"C>"cS

1170 IF c$>""PROCassem2

1180 UNTIL c$=""

1190 CLOSE#0:*FX15

1200 INPUT"Enter filename:"fn$

1210 OSCLI("S."+fn$+" "4STRS$~data+"+"+S
TRS$~1le+" 0 "+STR$~1d)

1220 ENDPROC

1230 :

1240 DEF PROCasseml

1250 FOR a=0 TO 8

1260 IF wd$(a)=LEFT$(a$,1)g=a:a=8

1270 NEXT:IF g=-1 PRINT''CHR$131"No suc
h command"':CLOSE#0 :ENDPROC

1280 data?n=q

1290 IFg=8 data?n=128+VALMIDS (a$,2)

1300 n=n+1:ENDPROC

1810

1320 DEF PROCassem2

1330 data?s=(n+1d)MOD256:s=s+1

1340 data?s=(n+1d)DIV256:s=s+1

1350 ?data=?datatl

1360 FOR I%=n TO n+2:x%=INSTR(cS,",")

1370 a$=LEFTS (c$,x%-1)

1380 c$=MIDS (c$,x%+1)

1390 data?I%=VALa$:NEXT:n=n+3

1400 REPEAT INPUT"S>"a

1410 IF a THEN data?n=a:n=n+l:INPUT"X>"
d,"Y>"b, "M>"c:data?n=d:n=n+l:data?n=b:n=
n+l:data?n=(c+1d+20)MOD256:n=n+1:data?n=
(c+1d+20)DIV256:n=n+1

1420 UNTIL a=0

1430 data?n=255:n=n+1

1440 ENDPROC

1450 :

1460 DATA s,1l,r,u,d,e,m,b,>

Listing 4

10 REM Program Loader

20 REM Version 1.0

30 REM Author Al Harwood

40 REM BEEBUG June 1990

50 REM Program subject to copyright

100 HIMEM=&3000:PROCload:PROCinit
110 PROCenvelopes:REPEAT PROCtitles
120 PROCgame :PROCcompleted

130 PROChighscore:UNTIL FALSE

140 :

1000 DEF PROCinit

1010 A%=0:code=&1200

1020 s18="00000":525=51$:835=51$

1030 s4$=s1$:55%$=51$:n1$="A1 Harwood"

1040 n28=n1$:n35=n1$:n4$=n1$

1050 n5%=nl1$:s$="on "

1060 ENDPROC

1070 ¢

1080 DEF PROCtitles

1090 VDU 22,4,23;8202;0:0;0;

1100 REPEAT PROCtitlel

1110 UNTIL I=32:ENDPROC

1120 ¢

1130 DEF PROCtitlel

1140 VDU 12,19,1,0:0:

1150 PRINT'''''SPCI9FNdoub ("DESIGNER SHO
OT-'EM-UP") ' ' ' 'SPC13FNdoub ("By Al Harwoo
d") '' 'V 'SPC14FNdoub ("Press SPACE")

1160 PRINT''SPC9FNdoub ("or H to start o
n the")'''SPC5FNdoub ("highest level reac
hed so far") !

1170 VDO 19,1,1:0;:*FX15

1180 I=INKEY200:IF I=32 ENDPROC

1190 IF I=72 I=32:code=&1202:ENDPROC

1200 yDU 12,13 1, 0.0,

1210 PRINT''''SPC8FNdoub("In the game t
o move use:") '''SPC17FNdoub("Z and X")''
'SPC11FNdoub ("Hit RETURN to fire")''''SP
C12FNdoub ("The sound is")

1220 COLOUR 0:COLOUR 129

1230 PRINTTAB (25,14)FNdoub (s$)

1240 COLOUR 1:COLOUR 128

1250 PRINT''SPC6FNdoub ("To change this

Beebug June 1990

41

Designer Shoot-'Em-Up

use the S key")''''SPC14FNdoub ("Press SP
ACE")

1260 VDU 19,1,6;0;:*FX15

1270 REPEAT I=INKEY500

1280 IF I=83 OR I=115 s$=FNonoff:COLOUR

0:COLOUR 129:PRINTTAB(25,14)FNdoub(s$) :
COLOUR 1:COLOUR 128

1290 UNTIL I=32 OR (I<>83 AND I<>115)

1300 IF I=32 ENDPROC

1310 Vbu 12,19,1,0:0¢

1320 PRINT'''''SPC14FNdoub ("HIGH SCORE

S") ' 'SPCEFNdoub ("1. "+s1$+" "+
nl1$) "' 'SPCEFNdoub ("2. "+525+" "4
n2$) ' 'SPC6FNdoub ("3. "+s3§+" "t

n3$) :*FX200,3

1330 PRINT!'SPCoENdoub ("4, "hsdsd4
"+n4$) ' ' 'SPCEFNdoub ("5. "+s58+"
. "4n58) ' 1 SPC14FNdoub ("Press SEACE")

1340 VDU 19,1,3:0;

1350 I=INKEY400:ENDPROC

1360 :

1370 DEF PROCgame

1380 VDU 27,5,23:8202:0:0;0¢

1390 IF sS="on ":*EX210

1400 IF s$="off":*Fx210,1

1410 CALL code:code=&1200

1420 ENDPROC

1430

1440 DEF PROCcompleted

1450 IF ?&8B=0 ENDPROC

1460 VDU 22,4,23;8202:0:0;0:19,1,0;0;

1470 PRINT''''''SPC12FNdoub ("CONGRATULA
TIONS") 1 *FX15

1480 C=0:REPEAT C=C+1:IF C=8 C=1

1490 VDU 19,1,C;0; :UNTIL INKEY10>-1

1500 ENDPROC

1510 ¢

1520 DEF PROChighscore

1530 VOu 22,4,19,1,3:0;

1540 IF A%<?&87 A%=7&87

1550 sc$=CHR$?&70+CHR$?&71+CHR$?&72+CHR
$2&73+CHRS 2674 : sc=VALsc$

1560 IF sc>VALsl$ s58=s4$:545=53%:53%=s
28:528=518:515=5¢5:n58=n45:n48=n3S:n35=n
25:n2$=n1$:nl1$=FNname : ENDPROC

1570 IF sc>VALs2$ s5$=s4$:54$=53$:53%=s
28:52%=sc$:n5%=n4$:n4$=n3$:n3%=n2$:n2$=F

Nname : ENDPROC

1580 IF sc>VALsS3$ s5$=s4$:54$=535:53%=5
c$:n5$=n4$:n4$=n3$:n3$=FNname : ENDPROC

1590 IF sc>VALs4$ s5$=s4$:s4$=sc$:n5%=n
4§ :n4$=FNname : ENDPROC

1600 IF sc>VALs5$ s5$=sc$:n5$=FNname

1610 ENDPROC

1620 :

1630 DEF FNdoub (d$) :LOCAL A%

1640 X%=670:Y%=0:A%=10

1650 FOR D%=1 TO LENdS$

1660 ?&70=ASCMIDS(d$,D%,1) :CALL &FFF1

1670 VDU 23,159,7&71,2871,7612,2&12,2&1
3,7673,7674,7674,159,10,8,23,159, 2675, 2&
75,2676,2676,2677,2&77,7&78,2&78,159,11

1680 NEXT:=CHR$0

1690 :

1700 DEF FNname:CLS:PRINT'''''FNdoub ("Y
ou have a new high score")''''FNdoub ("En
ter your name: ")CHR$10;:*FX15

1710 n$="":REPEAT K=GET:IF K=13 n$=n$+S
TRINGS (11-LENn$," ") ELSE IF K=127 AND L
ENn$>1 VDU 8,32,8,11,32,10,8:n$=LEFTS$ (n$
,LENn$-1) ELSE IF K>31 n$=n$+CHR$K:PRINT
;CHRS$11FNdoub (CHRSK) CHR$10;

1720 UNTIL LENn$=11:CLS:=n$

1730 @

1740 DEF FNonoff

1750 IFs$="on ="off" ELSE ="on "

1760 :

1770 DEF PROCenvelopes

1780 ENVELOPE 1,1,43,0,0,100,0,0,126,0,
0,-126,126,126

1790 ENVELOPE 2,12,10,8,6,4,0,0,126,0,0
,-126,126,126

1800 ENDPROC

1810 ¢
1820 DEF PROCload
1830 REM Replace the first with

1840 REM programs filename,
1850 REM and second with the
1860 REM sprites filename.
1870 *L.DEMOscr

1880 *L.DEMOspr

1890 *L.GAME

1900 ENDPROC

HINT - FLAGGING EVENTS
(Vol.8 No.8)

It should read:
IF (M?A AND 2”B)=0 THEN M?A=M?A+2"B

Thanks to Mr.Burton-West of London for
at the bottom left of this page being incorrect. spotting this. B
42 Beebug June 1990

An accidental copying error led to the last line

by Robin Burton

I seem to have had a
number of letters
over the last month
or so from newer converts to the 512, so some
second hand 512s have found good homes with
Forum readers!

Some of these letters contained requests for
more basic hints and tips. I said a couple of
months ago, let me know what you want to see
in the Forum and these readers have done just
that. Because of that and also because it’s a
while since we did so, this month we’ll take a
look at a few basic DOS commands.

OUTSTANDING MATTERS

Before going on to DOS commands though, as
promised I'll carry on with a bit more
information about MS-DOS, supplied by my
anonymous correspondent (I'll call him Bill for
convenience).

As an addendum to last month’s DOS versions,
I have been told that Amstrad’s version of MS-
DOS doesn’t respond to this treatment, but that
release 2.2 of Tandon MS-DOS 3.2 definitely
does. Again though I must warn you to check
copyright agreements before you try it.

As I mentioned, this dodge leaves even less
memory than normal in the 512, so it’s no help
for general software use. Also, because the
operating system calls ultimately must still be
serviced by DOS Plus, if a program doesn’t run
in the 512 under DOS Plus on its own this trick
won’t provide a magical cure. In other words
whatever limitations DOS Plus normally
imposes still lurk behind the MS-DOS shell.

What you may find though, is that programs
you can’t install or configure on the 512 because
they check the version of DOS in use, may be
fooled into letting you set them up for eventual
use under DOS Plus. Most of the programs in
this category will produce a clear message of

Beebug June 1990

512 Forum

‘Requires MS-DOS version x” or ‘Incorrect
version of DOS’ or something of the sort.

However, not all programs will necessarily be
this helpful, and I've found that sometimes the
error message produced in DOS Plus has little
or nothing to do with the real problem. It seems
the authors simply didn’t think of DOS Plus
when they wrote their program and the error
message can be a bit of a lottery. If you have a
program that can’t be installed under DOS Plus,
even if you get a different message or even
none at all, it’s certainly worth trying to install
it again this way (unless you’ve already tried
configuring on a real PC and the resulting
system still doesn’t run).

For those without a Winchester, no doubt the
majority of 512 users, another problem also
occurs quite frequently when trying to install
PC software. Some programs insist on being set
up from drive C:. Why this is done I don’t
know. There’s no logical reason, and an equally
large proportion of PCs, again probably the
majority, don’t have a hard disc either.

There is, however, in MS-DOS a program called
‘ASSIGN’. This program permits the user to
nominate an existing drive to take on an ‘alias’
for another. In MS-DOS therefore, if you have
only floppies you can, for example, pretend that
drive B: is called drive C: to avoid this sort of
problem. There are other ways to overcome this
problem in the 512 directly in DOS Plus, as
some readers will know, but those who don’t
will have to read Bernard Hill’s reviews again
to find out about them (see Essential Software
reviews in Vol.8 No.5 and Vol.9 No.1).

The point is that if you have been able to load
MS-DOS as described, ASSIGN can be used in
the 512 for the purpose of software configuring.
ASSIGN will not, however, run directly under
DOS Plus.

43

512 Forum

Bill has configured Finesse version 1.1 using
this technique (he hasn’t yet tried version 2),
but warns that although Finesse then runs
under GEM 2 you’ll have to delete the desktop
accessories first to create enough free memory
in an unexpanded 512. Even so, he warns that
there’s only enough free space to load the three
smallest fonts (Swiss or Dutch), but apparently
it’s quite usable within this limitation.

Bill also says that it's not possible to use the
bitstream software supplied with Finesse
without a Winchester. The problem is that
there’s just not enough disc space, even with
800K floppies. He says, and I quote, “...it needs
about a megabyte just to install, and a
phenomenal amount to create fonts...”.

Bill also tells me that GEM 3 can be used too, but
it leaves even less free memory and so is even
more restrictive than version 2. If memory isn’t a
problem you should replace the standard CGA
driver with AcornBW.SYS from the 512’S GEM
disc, and then the mouse can be used
(presumably those with a Tull Mouse driver can
use that instead - I haven’t tried it myself, but
GEM 3 is shown in Tull’s manual as compatible).

DOS COMMANDS AGAIN

Now on to some of the basic commands in DOS,
starting with common disc commands. These
are, in the main, very easy to use and very
flexible, much more so than in the BBC's filing
systems, but I wonder how many of you have
fully explored them. If you haven’t you might be
making things harder than they need to be.

Let’s start with ‘COPY’. Suppose that you
wanted to copy all the files in the current
directory in drive A: to drive B:. Assuming
drive A: is the current drive, I wonder how
many of you would enter:

COPY, *,* B:
when

COPY A: B:

would do just as well. O.K,, that only saves one
character, but what about:
COPY . B:

44

e

You've all seen the single and double dots in a
directory display. In case you didn’t know the
single dot means the current directory and the
double dot means the parent of the current
directory. If you thought they were just for
decoration let me tell you they’re not, they are
very useful.

MOVING FILES

Suppose you're in a directory three levels down
from the root and want to copy all ‘EXE’ files to
the directory above the current one. Let’s
assume for simplicity that the directories are
called ‘DIRT’, ‘DIR2’ and ‘DIR3’, but bear in
mind that directory names are usually longer,
with more chances for typing errors. Doing
things the hard way you could enter the
command as:

COPY \DIRI1\DIR2\DIR3*.EXE \DIR1\DIR2

With longer names and done this way, it
becomes a very lengthy command. The first
point of course, and it’s one that you should all
have spotted at once, is that the current
directory name needn’t be specified at all. If
you don’t supply a directory name the current
one is used by default, which makes things a bit
better, but the command is still rather clumsy in
its revised form:

COPY *.EXE \DIRI1\DIR2

when you could much more easily and simply
used the double dots. In DOS these are the
equivalent of ‘A" in ADFS, meaning the parent
directory of the current one, so the command
can be made very much shorter and simpler by
entering:

COPY *.EXKE ..

with very little chance of error.

So far I've used copies to the same disc for these
examples, but if you actually want to move the
files to a different directory on the same disc,
rather than to duplicate them, this isn’t the
right way to do things. One reason is that you
need to delete the original directory contents

Beebug June 1990

512 Forum

afterwards, but worse is that during the copy
you need twice the disc space, and copying
takes a long time.

Far better is to rename files, when DOS only
needs to move the directory entries leaving the
original files intact. Clearly it’s very much
faster, it requires no extra disc space because
only one copy of the file ever exists, and there’s
no need to delete old versions afterwards
because there aren’t any. Our first command
therefore becomes:

REN *.EXE ..\

DIFFERENT DRIVES

Next, there are a few points to make about
copying between different drives. No-one was
surprised when I mentioned that the current
directory can always be defaulted. You
probably use the fact without even thinking
about it, especially on floppies when the
number and depth of paths tends to limit
complexity. Even so, when you issue a
command like:

COPY A: B:

remember you're actually telling DOS to copy
from the current directory in drive A: to the
current directory in drive B:, because you've
defaulted both of them. Yes, all very simple I
agree, but had you realised that the single and
double dots can also be used between drives?

For example, to copy all the files from the
current directory in the current drive (A:) to the
parent of the current directory in drive B: the
command can be simplified to:

COPY . Bt

which is just about as short as you could hope
for.

One criticism of these short-cuts is that they’re
rather cryptic, and it’s sometimes easy to
overlook just what's going on. This is quite
true, but it's always easy to copy the contents
of the wrong directory unless full and explicit
path names are specified. Of course, being in

Beebug June 1990

the wrong directory is a pretty elementary
mistake, but I'd guess that most hard disc
users, if not a few floppy users, would admit
they’ve done it at least once.

This prompts me to mention another easily
overlooked command, ‘CD’. As you know this
means ‘change directory’ if a directory name
is supplied with it, but how many of you
remember that it also means ‘current
directory’ and displays the current path when
it’s issued on its own? It can be very useful
when you're swapping frequently between
different discs and directories (and the phone
rings so that you forget where you’d got to
when you get back, as usually happens to
me). You can also apply it to other drives, so
that:

cd b

will display the current path for drive B;, so it’s
always easy to check where you are. The reason
that this facility is under-used is, I think, that
the BBC micro has no such facility. The current
directory isn’t visible, short of cataloguing the
discs.

I used copy to illustrate these short-cut path
names, but they can also be used with other
disc commands where appropriate. For
example, to delete files in the current directory
in drive B: you can type:

DEL B:

because again the “*.* isn’t necessary. Equally
you can use double dots, so that:

DEL B:..

deletes all files in the parent of the current
directory on drive B:, while:

L0 B,

will change the current directory in drive B: to
the parent of the previous one. Obviously you
need to take care with some commands, but
used sensibly they can save a lot of typing.

That’s it for this month, we’ll continue with
more DOS command facilities in the next
Forum. B!

45

Wordwise Plus Auto-Backup Utility[=

Brian Herbert describes a Wordwise Plus segment program which will automatically
maintain the last three generations of any text file as security against failure or corruption.

The object of the Wordwise Plus segment
program listed here is to allow Wordwise text
being edited in the main working area to be
stored to disc at the press of a key, but retaining
the previous version as a back-up. In fact, three
generations of given text file will be kept,
traditionally referred to as son, father, and
grandfather. They are here shortened to ‘S.” ‘E’
‘G’ so that each generation may be stored in a
different directory when using the DFS or
ADFS (for the latter, the directories must be
created in advance).

To enter the program, select Wordwise, and
type the program into segment 0. Then save
this with the name AutoSave (or similar). To use
the program at any time, it should be reloaded
into segment 0. Pressing Shift-f0 will then allow
text to be saved at any time and with a
minimum of effort, whilst still keeping earlier
versions of the text for retrieval if required. This
is most useful should more recent versions be
corrupted, or parts be inadvertently deleted.
Indeed, it is sometimes easier to return to an
earlier version than undertake significant re-
editing.

The program’s logic for storing a new
generation of a file, called TEXT say, is as
follows:

. If G.TEXT exists, it is deleted

. If ETEXT exists, it is renamed G.TEXT
. If S.TEXT exists, it is renamed FTEXT
. The latest version is saved as S.TEXT

B> W N =

The Autosave program may be invoked either
from the Wordwise menu, or from the text
screen by typing Shift-f0, and following the
screen instructions. You can abort the process,
or choose a different file name from the current
one. The program will also check that the text
has been previously saved, and ask for a new
file name if one is needed.

46

WARNING

The three generations of stored text should
never be locked using *ACCESS. Should this be
done, the *RENAME part of the program will
fail. Care must also be taken neither to exceed
the quota of files for the filing system, nor to fill
the disc, so causing the “Disc full” or “Cat full”
error messages to be given.

CONVERSION FOR ADFS OR OTHER
DRIVES

The segment program as listed will
automatically assume that drive 0 (DFS) is to
be used. If this is not the case, change the first
line of PROCDISC accordingly. For example,
to use drive 0 (ADFS) replace *DRIVE 0 with
*DIR :0 (and change the fifth to last line if
appropriate). This assumes the appropriate
disc filing system has been selected
beforehand.

TECHNICAL DESCRIPTION
The operation of the program relies on the fact
that the working file name (with directory) is
automatically stored in F$, and may be used
within the Wordwise language. It is, however,
necessary to manipulate F$ to extract the file
name without the directory letter.
Unfortunately, the Wordwise Plus language
does not allow manipulations such as MID$,
LEFT$ and RIGHTS$ (although Wordwise Plus 2
does) and other means must be used, as
outlined below. For example:

SELECT SEGMENT 9

CURSOR BOTTOM

TYPE F$
will write the contents of F$ at the bottom of
segment 9, finishing with the cursor on the
space after F$.

To find out if the second character of F$ is a full
stop, the following is added to the above

program:

Beebug June 1990

Wordwise Plus Auto-Backup Utility

L%=LEN (F$)
CURSOR LEFT L%-1
IF GCT$="." THEN PRINT "SECOND CHARACTER

I8 A FULL- STOPY
The actual file name may now be picked out by
reading each character as the cursor is moved
to the right.

REM Wordwise Plus Program AutoSave
REM Version 1.0

REM Author Brian K. Herbert

REM BEEBUG June 1990

REM Program subject to Copyright

PROCEMPTY
SELECT TEXT
DISPLAY

END

.EMPTY

IF HS$<>"" THEN FS$=HS
A%=1

IF FS="" THEN A%=0

IF A%=1 THEN PROCFIND
IF A%=0 THEN PROCNEW1

UNTIL I%=C%
DELETE LEFT L%
B$=2$

ENDPROC

.MENU

REPEAT

Y$="S. II+B$

X$=IIF. "+B$

WS="G. "+B$

REPEAT

CLS

VDU31,4,6

P. "Save file with name = ";
P, BS;

por 2N

vbu3l, 15,9

P, "Yes"

vbU31,15,11

P‘ "NO"

vpy31,15,13

P, "Abort"

D%=ASC (GCK$)

IF D%>90 THEN D%=(D%-32)
UNTIL D%=89 OR D%=78 OR D%=65
IF D%=89 THEN PROCDISC

PROCMENU IF D%=78 THEN PROCNEW
ENDPROC IF D%=65 THEN PROCABORT
UNTIL D%=89 OR D%=65
.NEW1 ENDPROC
CLS .
vDu3l,8,7 .ABORT
P. "File name undefined" CLS
vDU31,11,9 vDU31,11,7
P. "Press any key" P. "File not saved"
G%=GET vbu3l,11,9
7$="" P. "Press any key"
PROCNEW G%=GET
ENDPROC ENDPROC
.FIND .NEW
L%=LEN (F$) REPEAT
SELECT SEGMENT 9 CLS
CURSOR BOTTOM vbU31,2,7
TYPE F$ P. "File was loaded as name = ";
CURSOR LEFT L%-1 P. 78
B%=0 Vbusl, 2,9
IF GCT$="." THEN B%=1 P. "New file name = S.";
IF B%=1 THEN C%=L%-2 AS$=GLK$
IF B%=0 THEN C%=L% UNTIL LEN(AS$)>0 AND LEN (A$)<8
IF B%=0 THEN CURSOR LEFT 2 B$=A$
Zs="9 ENDPROC
1%=0
REPEAT .DISC
1%=1%+1 *DRIVE 0
2$=72$+GCT$ E%=0PENIN (Y$) Continued on page 52
Beebug June 1990 47

Music Programming In Ample (part 3)

Ian Waugh concludes this short series on programming in Ample with some ideas on
presenting your compositions in an attractive style.

I hope you found the ideas and techniques
discussed in the last two articles informative
and useful in your music. We'll end this short
series by looking at ways of presenting your
music and how to move through the Ample
environment from within a program.

CHAINING PROGRAMS

We'll begin by tackling the thorny problem of
chaining pieces. As you will have discovered, if
you load a program while one in memory is
already playing, the new program will
completely replace the old one so you can’t use
‘overlays’ to produce one continuous
composition (if you have succeeded in doing
this, please let us know). But what you can do
is to make one piece chain another so that a
series of pieces will load from disc and play
automatically, like an LP or cassette. As with
most things in Ample, there is more than one
way to do this.

The BeeBug Song
¢c) lan Waugh & Mozart 1990 & 1780

o e e o
MENUDISP starts at the top of the
screen and clears blank lines of the

menu preventing the display of graphics
or other non-menu text above the menu.
The solution is to add graphics AFTER
the menu but before the MENU word.

Using MENUDISP to display text

You can’t simply insert an instruction to load
and run the next program at the end of one of
the music parts because control will pass
through to the instruction before the piece has
finished playing. We have to hold up execution
of the instruction until the music has finished.
We can do this with the help of two Ample
words - QTIME and IDLE. In order to execute
music instructions, Ample reads a little way
ahead. QTIME returns the difference between
the player’s time and the system’s time. During
play this will be positive. IDLE does as its name
suggests - nothing. It is used simply to mark

48

time. For example, here’s a word which waits
for you to press the Ctrl key:

"Cwait" [REP(-2 QKEY)UNTIL(IDLE)REP]
Alter the QKEY value for other keys.

NOTE: All the programs listed with this article are
written in Ample and may be used only with the
Music 5000 system produced by Hybrid Technology.

Listing 1 - song

"RUNI' [] llwait n [] "mixﬂ [] "Var" []
"partl" [] "part2" [] Pchain® []

IIRUNII ["lZ"PLAY

chain

]
"chain" [REP(var #?)UNTIL(IDLE)REP
$2 "ll“songzllllLOAD R‘U’N"
]
"mix" [MBMIX
1 SHARE 1 VOICES

1 VOICE Upright 128 VOL 0 PAN
2 SHARE 1 VOICES

1 VOICE Upright 128 VOL 0 PAN
PNUM SHARE
]
"partl" [OFF var #!
SCORE 24,
0: CGeG cGeG dGEG cGeG

cAfA cGeG bGAG cGeG *
wait
]
"part2" [SCORE 24,
1: C/// B/G[b//12,CD 24,¢/ °/
A/// g/C/ g/8,£Gf12,eF 24,e/ *~/

]

"var" [GVAR

]

"wait" [REP(QTIME -100 #<)UNTIL(IDLE
) REP

ON var #!

]

Type in Listings 1 and 2 and save them as song
and song2 respectively. Don’t run Listing 1 until
you've saved it! With song2 on disc, run song. It
will play, and then song2 will load and run. Let's

Beebug June 1990

Music Programming In Ample

see how it works. var is defined as a variable, and
simply acts as a flag. It is turned off by part1 as
soon as the program is run. wait sits IDLEing
until 100 ticks past the last event (to give any
sustained notes a chance to die away), and then it
turns the var flag on. During this time, the RUN
word instructs the music parts to play and would
normally return to the % prompt, but it has been
caught by the chain word. This is IDLEing, too,
but it’s waiting for var to be switched on. When it
is, control passes through the REP(... JUNTIL(...
)REP loop to the following line which loads and
runs song2. $2 is used to discard the existing
command line. If you leave this out, a mistake
will be reported after song2 has loaded.

Listing 2 - song2

"RUN" []

"mix" []
"partzu [] .

Mpare {]

"RUN!! [II Z‘KPLA‘Y

]

mix" [MSMIX

|1 SHARE 2 VOICES

1 VOICE Upright 128 VOL 0 PAN

2 VOICE Upright 128 VOL 0 PAN

2 SHARE 1 VOICES

1 VOICE Upright 128 VOL 0 PAN

PNUM SHARE ,

]

"partl" [SCORE 48,

0: F208(C) elC) ()
a1y

12 () () el(C)

(2)dib) c(C) ()ell) ()
) ,
“paftZ" (SCORE 12,

0: A/BCDEFGAgfedcba g/ABCDEFGfedcbag
f/GABCDEFedcbagf e/FGABCDc///"///

]

This method of chaining programs is suggested
in the Ample Nucleus Programmer Guide and it
works fine. But you’ll notice that while the
program is waiting, you don’t have any control
over the keyboard, and you can’t use the
editors. Let’s look at an alternative method.
Remove wait and var from the song program
entirely. Redefine chain, and define a new word:

"chain" [REP(QTIME -100 #<)UNTIL(IDLE
)REP

$2 """song2""LOAD RUN" tab]

"tab" [£900 138 -12 CODE #2 #2]

Beebug June 1990

Put tab on the first line of partl and chain on the
last line (we’ll look at the tab word in a
moment). Save it as songl. You'll probably be in
the Notepad, so type RUN. You'll see the cursor
jump into the edit area, the music will play, the
cursor will jump out to the command line and
song2 will load and play. However, if you are
not in an editor when chain is activated, it won’t
work. You can use either method of chaining
depending on what you require. The first is
useful if you don’t want any listener
interaction/interference!

SYNCHRONISING TEXT AND MUSIC
Many Hybrid Music System owners use their
system to create arrangements of pop songs
and it seems like a good idea to have the lyrics
appear on screen as the music plays. If the
lyrics are inserted in the ‘right place’, beside the
notes, they will simply race ahead of the music.
This is another problem we can solve using
QTIME.

Listing 3
%o" [0U1

]
"w" [REP(QTIME O#<)UNTIL(IDLE)REP
]

"part9" [1, ‘w 24,

"This "O AA/\Aw llis "O AAw Nthe "O AAw
"Beebﬂo I\AAw “Bug 1Io I\w "so[lg.llo AAAAw

NL

"See llo AAAAW llhow “o AAw "it no AAw

Mearolc 0w
]
|IRUNI! ["129"PLAY
]

"lls "o “w "a"o ‘w "long."o

Load song (or song1) and REM out or remove the
words which chain song2. Add to this the words
in Listing 3 (don’t forget the modified RUN
word) and run it (apologies for the lyric content
but it serves to illustrate the procedure!). The
character ‘o’ is simply used as a shorthand
method of printing the text. The ‘w” is an IDLE
word - literally. The rests mark time between the
notes and have been arranged to match up with
the note output of partl. You will notice a short
rest - 1, - at the start of part9. This is to hold up
the output of the first word, “This”. It will
actually appear one tick later than it should but

49

Music Programming In Ample

it isn’t noticeable in this example. If timing is
crucial you can insert an equivalent rest at the
start of the other music parts.

This method can be used to synchronise
anything to the music, including other sounds
or animation. This is not as difficult as it may
appear. Characters can be defined using VDU23
(23 #OUT in Ample) and printed to the screen
with #OUT. For a very simple demonstration,
redefine ‘o’ as follows:

"o" [23#0UT 224#0UT 840OUT 12#0UT 10#0UT

9#0UT 8#OUT 120#0UT 12040UT 11240UT

31 #OUT 34 RANDL #OUT 24 RANDL #OUT

224 #OUT SP

$SOUT

]
Insert 4 MODE’ at the start of part9. It's hardly
Fantasia, but then it only took a few minutes to
write. The first two lines define character 244 as
a note, the next line uses VDU31 to site the
cursor at a random position on the screen, the
fourth line prints the note followed by a space,
and the last line prints the lyrics. Perhaps you
could write a simple game in Ample - and think
of the sound effects!

OSCLI
Ample supports OSCLI commands, and they
are very easy to implement. You can type in *
commands in command mode at the % prompt,
but within a word you must use OSCLI. If you
want to catalogue a disc from within a
program, here’s the word:

"cat" ["CAT" OSCLI]
You can also use OSCLI to load a screen
created with an art or graphics program which
could be an impressive loading screen for a
music album. The following will load a screen
into mode 3 (you must enter mode 3 first, of
course):

"pic" ["LOAD file 4000" OSCLI]

ENVIRONMENTAL CONTROL AND
MACROS

Let’s move on now and see how we can move
through the Ample environment from within a
program. Listing 4 demonstrates the process so
type it in and run it. You will see the program
go to the main menu, select Notepad, GET

50

Upright into it and step along to the amplitude
waveform.

Listing 4
"R[JN" []

"key" [} ” Skeyll []
"RUN" ["MAIN" $key 13 key
142 key % Cursor down

13 key % Return
"""Upright""GET"$key 13 key
9 key &% Tab

141 key 141 key 142 key

]
"key" [#B12 138 &FFF4 CODE #2 #2
]
"$key" [LEN FOR(1$- ASC key)FOR $2
]

The tab word used earlier uses CODE to call a
machine code subroutine which pokes the value
for the Tab key into the keyboard buffer. The
word key in Listing 4 is a general purpose word
for poking values into the keyboard buffer. $key

is used for words (text) which are converted into
ASCII values letter by letter before key is called
to poke them, too, into the buffer. Note the value
of 142 which is used for the down cursor key.
You might have expected this to be 138 but 142
is the value assigned by Ample.

You can use this technique to create macros for
a variety of applications - to enter an editor
before playing a piece of music, to GET a word
into an editor or to move around within an
editor. You could use it if you find you are
constantly re-editing a word during program
development or to force the program into the
Mixing Desk, for example, if you want the
listener to run it from there.

One key which can’t be simulated from within
a program is the Shift key. So having moved to
the waveform in the above example, you can’t
make the program ‘press Shift’ and select
another waveform. If you’ve discovered how to
do this, please let me know.

MENUS A LA CARTE

When you run a program it’s traditional for a
display screen to appear to tell the listener
something about the music and who wrote it.

Beebug June 1990

Music Programming In Ample

The screen may also hold a list of choices - a
menu - from which a selection can be made. The
jukebox menus which are loaded from Hybrid
discs by pressing f9 immediately spring to mind.

Listing 5

"els! [26 $0OUT % Restores default
windows 12 #0UT % Clears text
area

]

"menul" [7 MODE MENUDISP

%

%

%

$MENUDISP starts at the top of the
$screen and clears blank lines of the
$menu preventing the display of graphics
%or other non-menu text above the menu.
$The solution is to add graphics AFTER
%the menu but before the MENU word.

% RUN the program %"129"PLAY

30 #OUT DISPLAY

% The BeeBug Song

% (c) Ian Waugh & Mozart 1990 & 1780

150400 fEFfrfrfEffifrerfrrrrerreee sOUT
WEEELFEELESNSOUT MENU
]
"menu2" [clsNL23FOR(134#0UT
132#0UTNL) FOR
$Put Blue New Backgrnd codes down left
28#0UT 3#0UT 23#0UT 384OUT 2#0UT 30#0UT
VDU 28 - Define Text Window
NL NL NL DISPLAY

The BeeBug Song

by

Ian Waugh & Mozart

15740UT

oe

o

o of

$info available

"129"PLAY

]

"menu3" ["129"PLAY

cls NL NL NL 131 #OUT DISPLAY
The BeeBug Song

e oe

e oe

info available

“sregs® [NL 132 B0oUT 157 #OUT 138 40UT
% New Blue background

10 FOR({ SP)FOR % Spaces to center text
"Press RETURN" $OUT

SIN 82 % Wait for keypress

Smenu

]

Beebug June 1990

The construction of menus is described quite well
in the Music 5000 User Guide so I won’t go over
the basics again. The three main words used are
DISPLAY, MENUDISP and MENU. Listing 5
contains some ideas for varying your menu
displays. The first word, cls, restores default
windows and clears the text area. Ostensibly this
is to clear the screen ready for a menu display,
but it is also useful if you want to TYPE a word
and see it in full when in an editor. You could
insert a mode change instruction here, too.

menul is self-explanatory and shows how to
add graphics above the menu options.
MENUDISP would normally remove these.
menu2 may look more complicated but all it
does is to ‘stripe’ the left of the screen with
teletext codes so that the display is more
colourful. For something simpler, menu3 just
colours the heading.

The final word is very useful if you have more
than one screen of information to display. It can
be used to call a word specifically - in which
case you would unREM the menu word on the
last line (or substitute whichever word you
wished). But by not specifying a word to go to,
it can be used by several words, in which case

the body of a menu word may look like this:
%

o° o

Menu option
Menu option
Menu option
Menu option

optl press
opt2 press
opt3 press menu
opt4 press menu

o° o oP
S w N
o° o° o o°

oe

Options 3 and 4 would go back to the menu.

LP AND CD MENUS

Many Ample albums use the jukebox function
(f9) to display a menu of the pieces. It would be
easy to create an ‘LP’ menu in which you could
‘put the needle’ on any of the pieces and have
them play through to the end - or even cycle
continually from the top. Perhaps a more
interesting idea would be to create a ‘CD’ menu
which lets the listener select the order in which
the pieces play. Hint: you’d need to use an area
of memory which is not cleared when a new
program is loaded - such as &8E and &8F in
page zero.

51

Music Programming In Ample

Finally, on the subject of menus, being of an
inquisitive nature I really like to know a little
about the Ample programs I listen to and the
people who write them - why the program was
written, what problems had to be overcome
during programming, any special techniques
used and so on. Traditionally, such information
is held in an info word, and one of my pet hates
is to type info and be greeted with ‘Mistake’! So
this is a plea to all programmers to include
information in your programs.

IN CONCLUSION

I hope this short series has given you an insight
into some of the more advanced things you can
do when you move beyond the editors and start
to explore the Ample language. I've made several
references to the Ample Nucleus Programmer
Guide (£19.95 from Hybrid) and this is essential
reading for the Ample programmer.

A good way to investigate programming
techniques is to examine other people’s programs.
Other than the Ample albums released by
Hybrid, Panda and others (see reviews in

BEEBUG Vol.8 No0.10), an excellent source of
new ideas is available by joining the
AMPLINEX user group which produces a bi-
monthly magazine on disc - and written in
Ample. It costs a nominal £5.00 to join and each
disc is £2.00 UNLESS you contribute to that
issue (anything from an article to an instrument
definition) in which case it is free! I can’t
recommend AMPLINEX too highly.

Finally, if there are any aspects of programming
in Ample you would like us to cover in a future
series or if you want to comment on this series,
please write to the editorial address. If there is
sufficient interest then it may be possible to to
provide further coverage of the Ample scene.

ADDRESSES
Hybrid Technology Ltd., '

273 The Science Park,
Cambridge CB4 4WE. |
Tel. (0223) 420360, | AMPLINEX,
26 Arbor Lane, Winnersh,

Berks RG11 5JD.

B

Wordwise Plus Auto-Backup Utility (continued _from page 47)

CLOSE# E% CLS
IF E%>0 THEN PROCSAVE vbu3l,10,11
IF E%=0 THEN PROCDISC1 P. "Now saving file"
ENDPROC M%=OPENIN (W$)

N%=OPENIN (X$)
JDISC] P%$=OPENIN(Y$)
REPEAT CLOSE#0 .
CLS IF M%>0 THEN OSCLI "*DELETE "+W$
VDU31,5,6 IF N%>0 THEN OSCLI "*RENAME "+X$+" "+W$
P. Bs: IF P%>0 THEN OSCLI "*RENAME "+YS+4" "iXxS
P, " = file name is not in" SELECT TEXT '
VDU31,5,8 SAVE TEXT Y$
P. "directory S. on this disc." CLS
VDbU31,12,11 vDU3l,3, 1
P. "Carry on and save" P. "FILE SAVED WITH NAME = ";
vbyu3l,12, 13 P. BS
P. "Return to menu" vDbU31,10,9
F%=ASC (GCK$) P, "IN DIRECTORY = 5"
IF F%>90 THEN F%=(F%-32) VbU3l,10,11
UNTIL F%=67 OR F%=82 P. "IN DRIVE = ZERO"
IF F%=67 THEN PROCSAVE vbuU3l, 10,13
IF F%=82 THEN D%=0 P. "Press any key"
ENDPROC G%=GET

ENDPROC
. SAVE
52 Beebug June 1990

Adventure Games

by Mitch

LAST DAYS OF DOOM
Topologika
PO Box 39, Stilton,

Peterborough PE7 3RL.
Tel. (0733) 244682
£19.95 + 50p p&p (all formats)

I'm beginning to get seriously worried about
your mental condition. Only a fool would have
returned to Doom after your last fiasco. Yet here
you are again, bright-eyed and bushy-tailed,
just begging for something awful to happen.
Believe me, you won'’t have long to wait!

The planet Doom is dying - any fool can see
that. The crust is shuddering as if it were alive,
and belching volcanoes are turning the purple
sky black. Any adventurer with half a brain
would have turned the ship around, pointed its
nose at the nearest star cluster, and hit the
hyperdrive. But not you! Just because you
survived the first two episodes of the Doom
Trilogy, (Countdown and Return to Doom) it
doesn’t mean that you are invincible. It's also
fair to observe that crash-landing your ship into
a crevasse is hardly an auspicious beginning to
this final quest.

There is of course an ‘up-side’ to all of this
gloom and ‘Doom’; you do after all have your
trusty robot dog to help you. Although he tends
to be as much good as a chocolate tea-pot most
of the time, he does understand ‘Fetch’ so I
suppose he will come in handy.

Once you appreciate that there are armed
robots, all manner of fanged space creatures,
and lethal electronic defence mechanisms all
impatiently awaiting your arrival, you will
begin to get the message that the “Welcome
Mat’ is not an item which has gained much
popularity on this planet. In this all-text
adventure the writers have adopted the motto -

Beebug June 1990

‘Never give a sucker an even break’, and the
puzzles range from hard to mind-bending.

Not being content with the usual ‘Get’ and
‘Use’ style of puzzles, the authors seem to be
pushing our concepts of adventures into new
realms. Some of the mental challenges appear
to be derived as a result of conversations with
philosophers who have spent their declining
years discussing the number of angels who
should theoretically be able to balance on the
point of a pin. The upshot is a game which I
suspect will tax the average player
considerably, which is fine if you appreciate
what you are getting into, but otherwise it just
might break your heart.

Much of the action takes place amidst the
volcanic landscape of the planet, with
excursions into the ruined buildings of the long
dead inhabitants. Players of the previous Doom
games will recognise the familiar characters
and objects. The robots are back, as is the black
metal rod with the rusty star on the end. With
typical Topologika humour, the rod which had
one use in the first Doom game and two uses in
the second, now turns up with three uses. The
game has a surprising conclusion which will
certainly catch you unprepared, but it's going
to take a long time to see it.

Topologika has a record for quality adventures,
and this game follows the tradition. The
standard Help system is included on the disc,
and you can use this to obtain increasingly
specific nudges when you finally have to admit
temporary defeat.

Well, I feel that I have given you all the advice
that should be given. However, I can see from
the gleam of insanity in your eye that you are
impervious to reason, so I wash my hands of
you. I wish you luck because you are going to
need it. B

53

Board:
Location:
Tel. number:

Speeds:

Access times:

Board:
Location:
Tel. number:
Speeds:

Access times:

Board:
Location:
Tel. number:
Speeds:

Access times:

Board:
Location:
Tel. number:

Speeds:

Access times:

Board:
Location:
Tel. number:

Speeds:

Access times:

Board:
Location:
Tel. number:
Speeds:

Access times:

Board:
Location:
Tel. number:

Speeds:

Access times:

Board:
Location:
Tel. number:
Speeds:

Access times:

54

Bulletin Boards

Following on from last month's list, here is a further selection of bulletin boards which should contain material of interest
to BBC users. Do please let us know if you run a board, or know of one, which has not been listed.

Advance Opus
Hull

(0482) 586285
v23

24 hours

Co-op Board
London
081-316 6488
V22/22b/23
24 hours

The Desert
Chester
(0244) 550332
V21/22/22b
24 hours

Gaslamp
Rochdale

(0706) 358331
V21/22/22b/23
24 hours

Gnome at Home
London

081-888 8894
V23 viewdata

24 hours

LA.D.
Merseyside
051-733 1135

19.00-23.00

Kirklees Opus
Huddersfield
(0484) 665415
V21/22/22b/23
24 hours

Lambda

Edinburgh

031-556 6316
V21/22/22b/23/23v
24 hours

Board:
Location:
Tel. number:

Speeds:

Access times:

Board:
Location:
Tel. number:
Speeds:

Access times:

Board:
Location:
Tel. number:

Speeds:

Access times:

Board:
Location:
Tel. number:

Speeds:

Access times:

Board:
Location:
Tel. number:
Speeds:

Access times:

Board:
Location:
Tel. number:

Speeds:

Access times:

Board:
Location:
Tel. number:
Speeds:

Access times:

Board:
Location:
Tel. number:

Speeds:

Access times:

Please remember that nearly all these boards are run in the sysop's spare time for no profit.

Mininet
Cleveland
(0642) 672813
V21/22/22b/23
24 hours

North Yorks QBBS
Nidderdale

(0423) 868065
V21/22/22b/23

24 hours

Peacenet
Uxbridge
(0895) 448998
V23 viewdata
24 hours

Phantom
Barnsley
(0226) 340425
V21v/22v/23v
24 hours

Rivendell
Nottingham
(0602) 640488

22.30-06.00

The Sin Bin
Leeds

(0532) 661536
V23 viewdata
24 hours

Sirius

London
081-542 3772
V21/22/22b/23
24 hours

Tug I
Droitwich
(0905) 775191
V21/22/22b
22 hours

Beebug June 1990

Make a Date in Your Diary
For the

"New Products
*Old Favourites
*Workshops
*Seminars
*Demonstrations
“Daily Competitions
*Free Draws
*Fabulous Prizes

Find us close to Victoria Station at
The Westminster Exhibition Centre
(Horticultural Hall)

Elverton Street, London SW1

e
Friday 7th Sept12 noon to 7.00pm | RS

Saturdav 8th 10 t0 6.00 In association with
aturday 8th am to 6.00pm \/
Sunday 9th 10am to 6.00pm \I/ BBCACORN
MAGAZINE

Complete Range of BBC ACORN Hardware and Software

BOOK NOW, SAVE MONEY

For advance tickets fill in the coupon below and send with remittance to:-
SAFESELL EXHIBITIONS
Market House, Cross Road, Tadworth, Surrey KT20 5SR

Advance tickets:- Adults £3.50 Under 16's £2.50 At the door:- Adults £4.00 Under 16's £3.00
Please send Adult tickets at £3.50 each. Please send Under 16's tickets at £2.50 each

I enclose cheque / P.O.forf.... .. Payable to Safesell Exhibitions Ltd.

DON'T SEND CASH !!
/| PLEASE ENCLOSE A STAMPED ADDRESSED ENVELOPE

RISC USER

The Archimedes Magazine & Support Group

Risc User is enjoying the largest circulation of any magazine devoted solely to the Archimedes
range of computers. Now in its third year of publication, it provides support to schools,
colleges, universities, industry, government establishments and private individuals. Existing
Beebug members, interested in the new range of Acorn micros, may either transfer their
membership to the new magazine or extend their subscription to include both magazines.

A joint subscription will enable you to keep completely up-to-date with all innovations and
the latest information from Acorn and other
suppliers on the complete range of BBC micros.
RISC User has a massive amount to offer to

enthusiasts and professionals at all levels.

Here are just some of the topics covered in the most recent issues

of RISC User:

INTRODUCING C
A wide ranging new series on C, a major
programming language for the Archimedes.

WATCHDOG: ANTI-VIRUS
A Desktop application to help protect your hard and
floppy discs against viruses.

DESKTOP HOTKEYS: KEYBOARD WINDOW
CONTROL
A Desktop application which allows you to
manipulate windows on the screen directly from the
keyboard, using hotkey sequences.
GENESIS
A review of this impressive software package for
generating multi-media information systems.
ARC TO Z88
The second article on using the Arc in conjunction
with small portable computers.

" smm SCAVENGER |
[: HAND HELD SCANNER |

e

ASSEMBLER WORKSHOP
A major series for the more advanced ARM
processor programmer. The latest one offers a
program which displays information on parameters
passed by a CALL statement.

SCANNERS FOR THE ARC
A review of three different scanners.

MASTERING THE WIMP
A major series for beginners to the Wimp .
programming environment. The latest issue is
dedicated to Icons.

CD ROM FOR THE ARCHIMEDES
A preview of the latest innovation for the
Archimedes. ‘

INTO THE ARC
A regular series for beginners. The latest article is:
Avoiding errors with typed listings.

ARCADE
A round-up of the latest games for the Arc.

Don't delay!

Phone your instructions now on (0727) 40303

Or, send your cheque/postal order to the address below.
Please quote your name and membership number.
When ordering by Access, Visa or Connect, please
quote your card number and the expiry date.

As a member of BEEBUG you may extend your subscription
to include RISC User for only £8.10 (overseas see below).

SUBSCRIPTION DETAILS
Destination Additional Cost

UK,BFPO &Ch Is £ 810
Rest of Europe and Eire £12.00
Middle East £14.00
Americas and Africa £15.00
Elsewhere £17.00

RISC User, 117 Hatfield Road, St Albans, Herts AL1 4]S, Telephone (0727) 40303, FAX (0727) 60263

. e

IS, HIT, HITS

TS, s,

Z88 TO BBC MICRO

Colin Pither

When sending data from the Master or BBC
micro to the Z88 using the BEEBUG Z88 - BBC
Link software, the user is able to direct the
output to whichever RAM slot is required.
However, when receiving data, the choice of
drive on which to store the data is not
provided. Unless you select the option to
change the incoming filename, you have to
specify the drive each time a new file is
transmitted. The insertion of the following lines
into the Talk program on the Link disc will
provide the choice of drive whichever way files
are received:

392 PRINTTAB(0,6)"Which drive to receive
data? ";
393 d$=GETS$:IF d$<CHRS$ (48)
49) THEN 392
394 OSCLI ("MOUNT "+d$)

OR d$>CHRS (

To ensure that control is returned to drive 0 on
completion of the file transfer, insert the further
line:

127 *MOUNT 0

The request for a drive number will accept only
0 or 1, which is correct for a Master using the
ADFS. If you are using the DFS then increase
the CHR$(49) in line 393 to CHR$(51) and
replace ‘'MOUNT"’ in lines 394 and 127 with
‘DRIVE’. Because the new statement uses
screen line 6, the original line 395 will need the
parameters of the TAB instruction increased to
0,7).

The Link program can be further enhanced by
programming otherwise unused function keys
at the commencement of the Talk program to
.echo repeatedly used directories, file names etc.
A keystrip can then be made to reflect the
action of each function key used.

BEEBUG TOOLKIT ON THE MASTER

Charles Seager
There is one way of using the BEEBUG Basic

Toolkit on the Master. If you have a Basic II
ROM installed, ‘unplug’ Basic IV, and ‘insert’
Basic II, and Toolkit will then work.

Beebug June 1990

RECONFIGURING THE MASTER

Andrew Rowland

When it’s time to change the Master’s battery, it
is sometimes suggested that you spool the
configuration settings to disc. However, they
cannot be reset by EXECing the spool file!
Instead, use listing 1 to read bytes 1 to 50 of the
CMOS Ram, where the configuration data is
stored, and save them to a file called CMOS.

Then enter and run listing 2. This creates a
utility called RESET, which does the reverse of
listing 1, except in machine code (you cannot be
sure that Basic will be available).

Finally create a boot file which *RUNs RESET. If
your configuration settings become lost,
corrupted or tampered with, simply boot the
disc using Shift/D/Break. On a network, the
station number must also be set up with the
appropriate utility.
ListinﬁEI
10 REM .>SvCMOS

100 FOR I%=0 TO 49

110 B%=FNA(I%)

120 I%?&1900=B%

130 NEXT

140 *SAVE CMOS 1900+31

150 END

1805

1000 DEFFNA(X%) :A%=161

1010 =(USR(&FFF4) AND &FF0000) DIV &10000
Listing 2

10 M .>RESETba
2075

100 oswrch=&FFEE:osbyte=4FFF4

110 oscli=&FFF7:mc=&900

120 FOR pass=0 TO 3 STEP 3

130 P%=mc: [OPT pass

140 icli

150 EQUS "LOAD CMOS 1900":EQUB 13

160 .entry

170 LDX # cli MOD 256:LDY # cli DIV 256

180 JSR oscli:LDX #0:STX &70

190 .loop

200 LDA &1900,X:TAY:JSR send

210 INC &70:LDX &70:CPX #50:BNE loop

220 LDA #7:JMP oswrch

230 ¢

240 .send

250 LDA #162:JMP osbyte

260 JNEXT

270 A$="SAVE RESET "+STRS$~mct+" "+STR$~P
%+" "+STR$~entry

280 PRINT AS$:0SCLI A$

57

(Incorporating Basic Boostezr)

An indispensible utility ROM for all Basic programmers for the Master, BBC B and B+ (all with
sideways RAM). It contains eleven commands to help you with the editing and development of

Basic programs:

*FTEXT (find text) , *FBASIC (find Basic),
*FPROCEFN (find procedure/function) - three
FIND commands, designed to help locate lines of
programs according to their contents.

*LFROM (list eight lines of a program), *LPROC
(list procedure), *LFN (list function) - three
commands, which list out significant segments of a
program.

*RTEXT (replace text) and *RBASIC (replace
Basic) are find and replace commands directly
analogous to FTEXT and FBASIC.

*SYSINF (system information) - gives background
information on the system variables and their
sizes, together with the size of your program

*VARLIST (list program variables) - lists variable
names

*FKDEFS (function key definitions) - prints out
current function keys definitions.

3570LDA #ipbuff
3580LDA #ipbuff
3590.reinitbptr

bptr+1:RTS
A bptr+l:RTS

LDA#0:ADC tptr+l:STA tptr+l
.inittptr

toknloop LDA(tptr),Y
DA (bptr) , Y:ASL A:ASL A

>*Help Edikit

EdiKit 1.10

FBASIC <element>

FTEXT /<string>/

FPROCFN

LFROM <element>

LPROC <procname>

LEN <fnname>

RBASIC <element>/<element>

RTEXT /<string>/<string>/

VARLST [%]][<init letter>

SYSINF

FKDEFS

RENUMBER (<first>] [<last>] [<start>] [<inc>] [F]
CHECKORDER [<first>] [<last>

BRMOVE [<first>] [<last>] [<destination>]
BRCOPY [<first>] [<last>] [<destination>]
SQUEEZE :

SMARTNUMBER [<proc base>] [<gap>

BLIST <filename>

TEXTSAVE <filename>

TEXTLOAD <filename>

Including the updated
Basic Booster utilities:

SUPER SQUEEZE - A program compressor.

PARTIAL RENUMBER - A very useful utility which
renumbers a selected block of lines.

PROGRAM LISTER - List any program direct from a
file.

RESEQUENCER - Rearrange the lines in a Basic
program - line numbering is automatically
adjusted.

SMART RENUMBER - Renumber a program so that
procedures start at a particular line number.

TEXTLOAD AND TEXTSAVE Save and load a Basic
program as text.

N e e o e e el s o e o e e i e e e e e

EDIKIT (including Basic Booster) is available on:

Members Non-members

Members Non-members

*Upgrade:

3.5" ADFS disc Stock Code 1452a £5.75 £15.00 Stock Code 1455a £4.75 £6.33
40/80T DFS 5.25"™ disc Stock Code 1450a £5.75 £15.00 Stock Code 14532 £4.75 £6.33
EPROM Stock Code 1451a £7.75 £18.00 Stock Code 1454a £6.75 £9.00

* If you have previously purchased Basic Booster, return your original disc or EPROM to obtain an upgrade at the

reduced price.

Please add 60p p&p (UK only). For overseas check the Membership page in this magazine.

Phone your order now on (0727) 40303

or send your cheque/postal order to the address below. Please quote your name and membership number.
When ordering by Access, Visa or Connect, please quote your card number and the expiry date.

BEEBUG Ltd, 117 Hatfield Road, St Albans, Herts AL1 4JS. Telephone (0727) 40303.

A SIMPLER ‘CODE’ KEY

The recent program which implements the
equivalent of the Compact’s Code key (see
Vol.8 No.10) is a useful facility which also
works with the new Master ROM. However, it
seems, perhaps, over complicated by redefining
the Shift/0 key. All that is required is the @ key,
in that this key is rarely, if ever, used with the
Shift key. The @ character is produced
regardless of the setting of Shift or Caps Lock,
and without the use of Shift.

I have therefore amended the original program
to detect the input of Shift-@, and to convert
this to code 250, subsequently to be used to add
&80 to the ASCII code of the next key. The zero
key is unaltered, and the program appears to
work. Shift-@ followed by any other key
produces the code of that key plus 128, and the
character from the Master’s extended character
set.

To implement this, remove lines 220 to 300 from
the original program and replace with:
220 LDA character:CMP #ASC"Q":BNE exit
230 LDA #202:LDX #0:LDY #&FF
240 JSR osbyte:TXA
250 AND #8:BEQ exit
260 LDA #250:STA character
Neville Smith

RE-REGISTERING USED SOFTWARE
Buyers of used Computer Concepts Inter series
of ROMs etc. may be glad to know that CC
would appear happy for you to register as a
second user of an original Computer Concepts
software packages. Just write to them with the
registration number and your name and
address. I believe there is no charge for this.

Tim Sinclair

FINDING ROOM
I have recently received some discs of BEEBUG
Vol.6 and am having trouble with two games,
Knight Quest in No.10 and Dracula in No.6. In
both cases I get the message ‘No room’ after a
short while. I have a model B with Watford
DDFS and shadow RAM board. Your advice
would be appreciated.

J.D.Muddiman

It is not uncommon for programs to fail with ‘No
room’ if memory is tight. A solution can often be
found by setting PAGE to a lower value before

Beebug June 1990

loading the program. It is usually safe to set this to
&1200 (simply type PAGE=&1200), provided no
more than one disc file is open at any one time. If
you have shadow RAM fitted, then ensuring that
this is used should also resolve the problem. Locate
any MODE statements in the program and add 128
to the mode number before resaving.

UPGRADING TO AN ARC

Having upgraded to an A3000 I was very
interested in the articles on this subject in
BEEBUG (see Vol.8 Nos.9 & 10). I have a View
ROM and I find that this will not run
satisfactorily when using 65Tube, but it will run
with 65IHost. However, I find this so slow that it
is useless for serious work. 65Tube is a very
satisfactory medium for suitable programs which
appear to run much faster than on a BBC micro. I
have both Inter-Word and Spellmaster both of
which are fast and excellent pieces of software.

I would advise anybody who is thinking of
upgrading, and has BBC programs which they
want to continue to use, to see them working
on an Archimedes first.

H.McDonald

The version of View supplied in ROM image format
with the Master Compact works very well on the
Archimedes using 65Tube. Unfortunately, this disc-
based software is only available at a full price
(£55.77 to members). CC have now introduced full
ARM implementations of the Inter series, which are
to be preferred to the originals. However, users
contemplating an upgrade to an Archimedes should,
perhaps, ask themselves whether it is worth it if they
intend to continue using BBC micro software.

SAVING VIEW FILES WITHOUT RULERS
When attempting to use View to create the file
W.DATES for use with the Calenda program (see
BEEBUG Vol.7 No.7), it is quite easy to turn off
formatting and justification, but the rulers are
still present. Hence it seems to me that the
program is not suitable for use with View, as
claimed in the magazine.

C.A Martin

The text can be saved from View, without including
any rulers, by inserting markers at the start and
end of the text to be saved, and then using the
WRITE command instead of SAVE, thus:

WRITE W.DATES 1 2 B

59

Personal Ads

BEEBUG members may advertise unwanted computer hardware and software through personal ads (including
'wants’) in BEEBUG. These are completely free of charge but please keep your ad as short as possible. Although

we will try to include all ads received, we reserve the right to edit or reject any if

y. Any ads which cannot

be accommodated in one issue will be held over to the next, so please advise us if you do not wuh us to do this. We
will accept adverts for software, but prospective purchasers should ensure that they always receive original
copies including documentation to avoid any abuse of this facility.

We also ¢ bers’ B

s

Ads at the rate of 30p per word (inclusive of VAT) and these will be featured

separately. Please send us all ads (personal and business) to MEMBERS' ADS, BEEBUG, 117 Hatfield Road,
St. Albans, Herts AL1 4JS. The normal copy date for receipt of all ads will be the 15th of each month.

WANTED: Acorn Master 512 upgrade
complete with manuals, Gem discs,
mouse etc, and of course reasonably
priced, cash waiting. Tel. (0705)
371018.

Master 512 with Cumana CD800/S
dual 40/80T drive and plinth,
Viewstore, Interword and Spellmaster
ROMs. Disc-based software such as
Viewplot, Printerdriver, Office Master
and Office Mate, games on cassette,
User Guides and M128 reference
manuals, bound BEEBUG magazines
since vol. 3, all in excellent condition
with original packaging. All for £650,
Watford Beeb Video Digitiser plus
ROM and software £60. Tel. (06285)
20320 eves and w/e.

Books; New Advanced User Guide
£10, Master OS, A Dabhand Guide
(disc & book) £10. Disc's; Lancelot,
Time & Magik (both Level 9),
PowerPlay £6 each, Play It Again Sam
4&6 £5 each, Exile, Elite, Jet Set Willy
II £4 each, Galaforce, Icarus (master
version) £3 each. Tapes; Star Seeker,
Quest, Life of Repton, Acornsoft Hits
II, Hibyte, Planetoid Conversion, Rik
the Roadie, Rig Attack £2 each or all
for £10. Home Entertainment Centre
(Backgammon, Bridge, Chess etc) £10.
ROMs; MOS+ for Master £7, Exmon 11
(latest Master compatible) £10,
BEEBUG C £25, View Professional £40.
Dumb terminal (mono screen,
keyboard, RS232) £30, V23 modem
with scrolling and viewdata software
£25. WANTED: Music 5000. Tel. 01-
698 3772.

BEEBUG magazines, complete sets
from first issue to date with indexes,
all in BEEBUG binders, mint
condition, also Advanced User Guide
in 'Cambridge’ plastic binder. Bruce
Smiths' Micro Assembly Language.
Mini Office, Wordease & Masterfile I
on disc, the lot only £30 (owner
upgraded). Buyer collects from
Preston Lancs. Tel. (0772) 717017.

60

Archimedes A310, RISC OS, manuals
etc. boxed, as new - unwanted gift
£545. Acorn colour monitor £195, will
sell separately. Tel. (0234) 708463.

WANTED: 512 co-processor for
M128. Tel. (0831) 126435.

M512/1024 (Solidisk PC+) with dual
40/80 D/S DD, Zenith mono monitor,
View etc, cartridges; Master ROM,
WW+, CP, Wordease, MFII, I-Word, I-
Sheet, I-Base, DOS+ 2.1, GEM etc. Dabs
M512 Guide, Disc & Shareware. See
working. £500 o.n.o. Also BBC B with
TORCH Z80 disc pack (dual D/S
40/80). BBC MOS, extra RAM and ROM
box, Dataplus, Vufile, etc. CPM, Perfect
Writer, Speller, Calc, Filer, BBC BASIC
Z80 £350 o.n.o. Tel. 021- 308 0224.

Cumana CD200 dual disc drive,
SS40T, mains powered, original
packing, cable, manual, format disc,
perfect. £80. Tel. (0327) 702095.

BBC B version 1.2 with shadow RAM,
QFS, extension board, Cumana 40T
3.5" disc drive, £300 o.n.o. Tel. 071-736
5429.

Morley Teletext adaptor, 2 ROMs
manual and disc £60. Tel. (0442)
826079 after 7pm (24hrs).

BBC B 32k issue 7 with Acorn DFS
sideways ZIF & external speaker
socket. Microvitec colour monitor,
Watford 40/80T DS DD, Brother M-
1009 printer (one print dot missing),
Voltmace joystick, some software
(Island Logic Music System, Watford
Office Master, Signwriter), box of
unused 3M discs and box of
unbranded discs £300 o.n.o. will split.
Tel. (0742) 314364 or (0602) 706502.

M128, Microvitec colour monitor, twin
double sided 40/80T disc drive, ROM
cartridge, ROMs, Mini Office II,
Masterfax, Office Mate, AMX Super
Art, Image Art Package, A4 Forms

Designer, 6 Signwriter fonts, fontstyle,
many games and utilities, over 150
discs, 3x disc boxes, manuals part 1&2,
many books, bargain at £500. Tel.
(0748) 833944.

BEEBUG Master ROM £15, Hershey
Characters £7, Printwise I1 £10, Acorn
Viewstore £20, Acorn Viewindex £5,
Acorn PGD £5, Amx Extra Extra £10,
FSE Admin Xtra £8, Chauffeur Utility
£7. Tel. (0642) 311848.

Interbase, Intersheet, Interchart
ROMs & manuals in perfect condition,
£35, £20, £15. Tel. (0602) 722426.

Reference manuals parts 1&2 plus
advanced reference manual, Morley
AA board, 8 Master ROM cartridges,
various makes. Reasonable offers. Tel.
(04243) 4500.

WANTED: 8271 disc controller IC,
Watford DDFS board with DDFS
ROM, The original Acorn Music 500 or
Hybrid's Music 5000. All offers
considered. Tel. (0460) 74000 after 5pm
or weekends.

Epson MX printer with manual,
'GRAFTRAX plus' together with
'Dumpout 3' printer dump ROM for
BBC micro & books on graphics etc.
£120. Tel. (0286) 870689 eves.

A3000 for sale still boxed, as new £549,
E-Type, E-Type designer, Interdictor
for sale, £14, £10, £24 respectively
(0.n.0.). Tel. 081-560 7310.

WANTED: 512 board, pref. with
software and accessories. Write to; A
Urlberger, Waldheimstr. 57, 7302
Ostfildern-1, W. Germany.

BEEBUG Master Modem with
command ROM. Offers? Tel. (0705)
464631.

WANTED: Accompanying 5.25" disc
for the 'BEEBUGSOFT' members

Beebug June 1990

booklet for reasonable price. Tel.
(04882) 567 after 5pm or w/ends after
1pm.

New, cased, double-sided, Teac 40T
disc drive, would swap for Interword
and Intersheet ROMs. Tel. (0481) 56266
after 6pm.

M128 Turbo board £50, Intersheet,
System Delta, Watford ROM Manager,
all for M128. Also View 3.0 for B/B+
including printer-driver generator,
boxed. All original ROMs with
manuals. Offers? Tel. (0727) 67465.

BEEBUG magazines, complete from
May 87 (Vol.6 Iss.1) to date (Vol.8
Iss.10). Offers? Tel. (0491) 873618.

For sale all with full original
documentation. BBC B issue 7, Opus
DFS, 16K Sideways RAM, Care ROM
extension - £200 with free cassette
player, Opus dual DS 40/80T DD
including PSU £70, Z80 second
processor, plus business software £90,
Morley teletext adaptor £30, 64K
Micron Plus EPROM Programmer £40,
BEEBUG vols. 1-8 complete, plus
magazine discs vols. 5-8, £100. Tel.
(0264) 58659 weekends and after 6pm
daily.

Morley Teletext adaptor, ATS &
support ROMs, Manual £40, BEEBUG
cassettes Vol. 5 £10, Vol. 6 £12, Vol. 7
£15, Vol. 8 £18. Tel. 01- 393 4630.

Archimedes A310 base + RISC OS,
dual 3.5" disc drives, 5.25" disc drive
interface, 2-slot backplane, manuals,
box etc., PC Emulator, dual 5.25" disc
drive, Akther, 40/80T + manual £150,
buyer collects. Free to anyone who
calls to collect; BEEBUG Vols. 3-7
inclusive, also Opus 3" disc drive with
discs. Tel. (0276) 22031.

BBC Model B issue 7, £170. Tel. (0895)
621953 eves.

Archimedes A310 base with manuals,
backplane and fan, and BEEBUG MKII
external disc drive adaptor. Also some
business software and a few games.
Offers around £650. Tel. 081-540 8461.

Epson FX80, perfect working order,
with handbook and model B cable £55,
Genuine reason for sale. Tel. (0442)
56623.

M128 in Viglen case with double Opus
40/80T disc drives + Philips 7502
mono monitor + software £435 o.n.o.
Also Taxan 625 colour monitor £295

Beebug June 1990

o.n.o. all in excellent cond. Tel. (0268)
693770 eves.

BBC B issue 4, with 5.25" double DD
reads 40/80 D/S density discs,
Solidisk DFS and ADFS, Green
monochrome monitor, Quest Paint
ROM with mouse, Watford
ROM/RAM board with 48K, ROMs
include Dumpout 3 and Commstar.
Joystick too, - many disc games
including Exile, Repton Infinity,
Pipeline and Repton 1,2,3 A T.W.LF.S
and Life of Repton. Tape recorder with
leads, User Guide and Advanced User
Guide along with many BEEBUG
mags and Micro Users'. 5.25" lockable
disc case with many utilities and discs,
must sell all, new £1150, selling at£500.
Tel. (0279) 814448.

Send an SAE for a list of BBC
computer books, very reasonable
prices. Titles from easy programming
to machine code texts. Also some
games tapes and discs, good
condition, hobyist owner write to 118
Turners Road North, Luton, Beds.

Artroom, Ace, Digimouse £30,
Chauffeur £5, Speech! £5, Genie Junior
£10, bundle of children's programs
(cassettes) £5, original version of Elite
£3, Master ROM cartridge (ACP) £6,
Books; Assembly Language
Programming (Birnbaum) £6,
Programming the 6502 (Zaks) £6,
Creative Assembler (Griffiths) £3,
Master sideways RAM User Guide
(Smith) £6. Tel. (0302) 744005.

Archimedes floppy drive, boxed as
new, only used for 5 months. Includes
leads and new front panel. £95. Tel.
(04024) 40838.

BEEBUG Magazines complete and in
binders Vols. 1-3 £6 each, Vols. 4-7 £8
each. Worlds-Without-Words,
educational pack 4-10 yrs, as new £20.
Kinship (BBC Soft), family tree
program for M128, as new £20. Tel.
(0344) 55772 eves.

Convert your BBC Master into 512K
and run most PC software using
Acorn 80186 co-processor board
complete with latest DOS plus, mouse
and GEM Paint, GEM Draw & GEM
Desktop. £125. Also Acorn Viewspell
ROM £25 and ViewIndex disc £10, all
complete with manuals and
packaging. 086-732 8776.

BBC B ROMs, Commsoft, Beebdos,
Wordwise, Okimate 20, Watford DFS,
IFEL sideways RAM module each £10.

First Word Plus, issue 1, unused £25.
Tel. (0272) 730959.

WANTED: 512 co-processor, complete
kit if possible, including software &
case. Tel. (0703) 842646 (home), (0703)
662275 (work).

M128 computer £250, Microvitec 1451
colour monitor in plastic case £150,
Turbo co-processor £50, Watford
Electronics CLD800S 40/80 twin disc
drive £100, BEEBUG Master ROM £10,
Epson MX80FT3 printer £30. Tel.
(04747) 7724.

M128 Keyboard case, connecting cable
& dust cover £20, Beta Base & Utility
(DFS) £12, Disc Doctor, damaged pin
but operative £5, Sanyo cassette
recorder D101 with cables £15, all
original packing and manuals,
lockable disc box with 25 ADFS
reformatted discs, some rainbow £15,
postage extra. Tel. (0932) 226076.

Computer Concepts RAM podule
with 4X 32K RAMs £50 o.n.o. Watford
Electronics Digitiser £100. (both for
Archimedes) Tel. (0224) 535204.

Superart ROM, mouse & disc £35,
Interword ROM £25, Delta 3b twin
joysticks £10, 8 Superior Software disc
games £50 (will split), 4ft BBC to KX-
P1081 printer lead £3, BBC RGB
(Digital) lead £1.50, 7 assorted
cassettes £14 (will split), dust cover
(Beeb) £2. Tel. (0727) 35877.

WANTED: Downloaded CEEFAX
Telesoftware on disc, also BEEBUG
mags. Vol. 1 numbers 1, 2, 3, 4, 5, & 8.
Tel. (0482) 707099.

Master 512 with GEM software,
Cumana 40/80T disc drive with PSU,
AMX Super Art & Stop Press with
mouse, PMS Publisher DTP package
with 32 fonts, Acornsoft ISO Pascal
cartridge & Viewspell ROM, BEEBUG
Master & Dumpmaster ROMs, and
Studio Eight disc, Interword ROM.
ROMs housed in Care Electronics
cartridges, a few disc based games,
including Elite, plus over 40 blank discs
in library box, less than 2 yrs old and in
perfect condition, with manuals/boxes.
Over £800 new, will accept £450. Tel.
081-952 8460 after 6pm.

Diablo Daisy Wheel Printer model
630 (Commodore badged) surplus
to our requirements, serial interface,
high quality 45cps, spare ribbons
and daisy wheels, offers invited.
Contact Mike Williams at BEEBUG,
(0727) 40303.

61

£51.00

All overseas jtems aré sent
airmail. will accept

BEEBUG
117 Hatfield Road, st.Albans, Hert ALY 4JS
Tel. St.Albans (0727) 40303, FAX:

Manned on-Fri gam-5!
(24hr Answorphone 1

BEEBUG MAGAZINE {s produce
Editor: Mike Williams ‘ :
Asslstant EdItor: ristina Lucas ‘ good qualfy articles and
s cation In BEEBUG. All contributions
r page, but please give

Adventising: garah Shrive
Sheridan Williams
plication may be

Managing Editor:
All rights reserved. No part of this pY
reprodu without priof writien perm'\ss'\on of the Publisher-
The Publisher cannot accep ity whatsoever '
for errors in articles, s, Of &V isements pub\‘\shedA cassette, please In 3 bac
The opinions expressed 0° the page nal are In all communication.
those of the authors and do not necessartly represent those membership number.
o the Publisher, BEEBUG Limited.
Print

ed DY Newr\orth Pri

b (pLINE TEXT - A ility which allows you 1o print
messages Using outline or { |\ed He\v elica characers, any
scale of size UP \o 8"xT",0nan panb\e printer.

| TURMITE - This program creates an \mngumg g raphical
display an delves into the wor\d}o matical

FOG INDEX - An intriguing prog am, which allows you '
evaluate the complexity @ and ea of ndersxandmg of
any text.

A VERSAT\\.E CHARAC TER EDITOR - An application
tor defining new characters, graph\cs characters for
icons and groups of characters for graphic designs-

PRACT\CAL ASSEMBL ER (P\ 9) - A progr mwh\ch
demons\ the use of ma n Assermbly progra i

-An emena'\dng and challenging PFO-

WORDW\SE P\.US AUTO-BACK upuU Tty _The last three
versions of YoUr text are auto omatically s2' saved wuh this utifty-

MUS\C PROGRAMMING ! N AMPLE (px) ve Ample
progr d ons\raung chaining pieces nchron\smg

ommu‘ 5* of 3. 5 disc sV

cassette S! bscnp\\o
subscnpn n left10 LAl subscnpm sa

Deslgner
. pisC) + 80P P&

No.1, tapes

nd\ W\dua\ ord
EBUG H tield Road,

Shoot- Em—UR
P (30P p FO! H ADDIT\O

s since vol.1 No 0.10) & available atthe

pscription

NAL ITEM)

same prices-

O\IERSEAS
Cassett®

D!sc (5 vor 3.5")
0.00

£20.00
£39.00

=
AN

<

New

from

a
Acorn®

It consists of:
An A3000 Computer
The DR-DOS PC Emulator
First Word Plus v2 Word Processor
Genesis Information System
A Video explaining how to use the package
Information on the National Curriculum

Archimedes.
‘a multitude of benefits.

,order '

RISC User

RISC User is the world’s largest Archxmedes
Support Group, and publishes the leading
magazine devoted excluswely to the A3000 and

An annual subscnptaon is. £16.90 (UK) and carries

You may subscnhe at the sam time as placmg an

served basis.
BE ONE OF THE FIRST IN THE
COUNTRY WITH THIS SUPERB SYSTEM.

Learning Curve Computers are in
short supply - order yours now and
we will supply on a first-come first-

THE LEARNING CURVE
NEW - FROM ACORN

Save Over £185
The free software
bundled with this
package is worth £300,
and yet the entire system
costs only £115 more than
the standard A3000.

Ideal For Home &
Education

This system is tailor-
made for the home user with children. The
A3000 and other Archimedes systems are
increasingly used in schools and this all-
inclusive package with the excellent Genesis
software will supplement Information
Technology in the National Curriculum.

Just Right for Home & Business

A Word Processor is essential in all home
systems, and 1st Word Plus with its built-in
spelling checker is excellent. The new PC
Emulator also means that over 95% of PC
software (DBase, Lotus, Wordstar etc.) will
run on the A3000 straight away.

- 1 HOW TO FIND BEEBUG
1 ORDER FORM I BxcAar
I Please supply: Learning Curve Computer Only (£803.85) [J I Lt meediee AL A ol
: Learning Curve Colour System (£1033.80) [: BY TRAIN
Information about the Learning Curve System [} We are 10 minutes walk from St Albans City
i e Y I Station on the King’s C ine.
i A RISC User Subscription (£16.90 UK) O i K";g S B::‘”d .
ice ours 9am - m on -
1 : Showroom Hours 9am - 5:%0pm Mon - Sat
! Tenclose a cheque for £ (Please add £8 for courier delivery) i Showroom is open until 8pm on Thursdays.
| Or: Please debit my Access/Visa/Connect Card No / / / /1
: Card Expiry Date ____/ / Signature :
! Name RISC User/BEEBUG Memb No: :
| Address I
: Post Code :
B G e e e G e o e o e s e e e e e e

If you would like a leaflet on the Learning Curve Computer System write to:

BEEBUG Ltd 117 Hatfield Road, St Albans, Herts AL1 4]S. Phone (0727) 40303 Fax (0727) 60263

