

REVIEWS

30
FE AT U RES Games Review v m
picuous Consumption Husic 5000 Synthesis
Cons e
art 1) 1 R \TE
T(\‘\Je Lorenz Atractor REGULA :
ADFS Directory Examiner & e :
Command File Creator News 50
EEBUG Survey: 18 Points AnSing 54
\Word Processing (Part2) o) RISCUse 57
Wocr)kshop' gearching (part 1) Dosibad - 56%
| - Persona
Ly onitor (Part 112 yjpys and Tis 62
A Machine F)Ode M Subscriptions &ga::e\;:ues .
First Cours$. et e DsEC?
ing Tex
5???2:& nory Bast28 HINTS g TIPS
Thanktsz‘fr i 46 i R%\Mrs Macros
i ASsHnRe : Routine
Quad- BUG Crossword 50 |mproved Move Down
Solution \tc;\ © et P t4) :
ractica 0
Psp\‘meT ext Revisited

PROGRAM INFORMATION

All listings published in BEEBUG magazine are

produced directly from working programs. They are
formatted using LISTO 1 and WIDTH 40. The space
following the line number is to aid readability only,

and may be omitted when the program is typed in.
However, the rest of each line should be entered
exactly as printed, and checked carefully. When
entering a listing, pay special attention to the

difference between the digit one and a lower case |

(L). Also note that the vertical bar character (Shift \)
is reproduced in listings as |.

All programs in BEEBUG magazine will run on any
BBC micro with Basic II or later, unless otherwise
indicated. Members with Basic I are referred to the

article on page 44 of BEEBUG Vol.7 No.2 (reprints

A rotating LorentZ [

tycle 2
Points 10600

PREPATE L s
syt
P

ok

i

oS

gaERew

aaao®
Lae®
wr

oo
o
=

press Escare to terninate

jon & Comnmnan File pption
b —=======

€862
optio
Lib.

===
o IM
creat

Games Review

Music i5000] SYI“'HE5|SEI! Uﬁiversol
50Y undo delete prin\ copy exit

picture Music
g i v) r’yrrpm, pr

This file illustrates what can be done usind one of the poyer Fonts. There i
ide range of Pouer Fonts, vorking umsm Vordpouer. to handle text for
ce and foreidt 1anguages (including Greek and Russian)«

Laitors Jortings

BEEBUG AT THE BBG ACORN USER SHW

This is our two month issue of BEEBUG, covering both

the months of August and September. As such it is the

last issue before the BBC Acorn User Show which takes
place in early September (see News page for details).

As is our custom, BEEBUG will have a large stand at
the show manned by staff from all departments.
However, on this occasion our stand will be in two parts
back to back, with one half devoted to displays and
demonstrations of our latest hardware and software
products, while the other half will provide our usual
service covering BEEBUG and RISC User magazines,
retail sales and technical advice.

So, whatever your needs, if you want to discuss recent
articles and programs in BEEBUG (and RISC User), find
out about our own latest hardware and software
products, or seek advice on your next purchase, there
will be somebody who can answer your questions.

A major new product for BEEBUG is Ovation, a
professional quality DTP package for the Archimedes
range. If you want to find out what good quality DTP
software should look like then visit our stand and find
out. We hope you will find the experience both
informative and interesting, even if you are not yet
hooked on DTP (or the Archimedes).

And if you wish to do no more than pass the time of day
with us, or just say ‘hello’, then we will still be more
than pleased to see you.

CONTRIBUTING TO BEEBUG

BEEBUG is a magazine which, more than many, relies
quite heavily for its content on the efforts and
contributions of its readers. We value these highly, as
they help to make the magazine the success that it is.
Now much as we like to receive contributions, our

4

interest is sometimes a little dented by the fact that
some readers obviously enjoy setting us little puzzles.
‘Guess whether this disc is 40 or 80 track, DFS or ADFS
format’ does wear a little thin after a while. So too does
the challenge of the reader who would be anonymous:
‘Can you find the text file on this disc in which I have
put my name and address (if you are lucky), and I'll also
let you try and work out which word processor I used'.

Now this no doubt all seems like a little harmless fun,
but with the number of contributions which we receive
we unfortunately have little time to play these games,
much as we might wish to.

Can I therefore ask all intending contributors to send
with their disc details of the format of the disc, a list of
the files it contains, and the purpose or function of
each. If you can supply printed listings, preferably
already in magazine format, and printout of any
accompanying article, then we would be really pleased.
And of course, if you help us to understand and to use
your contribution, then we are likely to be in a more
sympathetic frame of mind when we come to evaluate it.

BEEBUG COPRGT

Can I remind you that the copyright of all programs
published in BEEBUG magazine, and on the magazine
disc belongs to BEEBUG, unless explicitly stated
otherwise. That means that as a subscriber to BEEBUG
you are fully entitled to use any of our programs.
However, this does not entitle you to copy and distribute
the programs to others. After all, why should they
receive for free what you have paid for? We are most
concerned about the possibility of BEEBUG (or RISC
User) programs appearing as Public Domain (PD)
software, or on bulletin boards for downloading by all
and sundry. We would therefore appreciate any
information that members may be able to provide to
allow us to track down any abuse of our copyright.
M.W.

Beebug August/September 1990

News News News News News News

BEEBUG MAKES HISTORY

BEEBUG readers will no doubt be as amazed as we
were when we received the photograph reproduced
here, showing a section of the Berlin Wall, alas (!) so we
are told, now removed. The _
picture was sent by BEEBUG |f
member John Hancock who
actually created the slogan
himself. He says that it was
about 200 yards from the
Brandenburg Gate on the
East German side of the wall
and was seen by many
thousands of tourists and
East Berliners over several
months until that section of
the wall was recently
dismantled. Apparently the
BEEBUG display was unique, and no other company,
East or West, took advantage of what must have been
one of the world’s prime advertising sites. What the East
Berlin inhabitants made of it though we shall probably
never know.

SHOW TIME

Show time for BBC micro fans is fast approaching. First
to kick off the season will be the latest All Formats
Computer Fair at the New Horticultural Hall,
Westminster, London from 4th to 5th September 1990.
Bargain prices are expected to attract computer fans
from all over Europe, and an Archimedes Village is
expected to be a feature of this show.

The BBC Acorn User Show, the only show dedicated to
the Acorn market, is also due to take place at the
Westminster Exhibition Centre (New Horticultural Hall),
London from 7th to 9th September 19%0. The exhibition
organisers claim that the venue will be transformed with
wall to wall carpeting and quality stands. Acorn
Computers will have a feature stand on the dais
overlooking the main area, with on-going information
sessions and displays. BEEBUG will also be at this show.

PANDA HELPS CHILDREN IN NEED
Panda Discs has announced a second Children in Need

Music 5000 disc to be launched at the BBC Acorn User

Beebug August/September 1990

Show. The disc, containing pieces from various
programmers, costs £6.00 inc. p&p from Panda Discs,
Four Seasons, Tinkers Lane, Brewed, Stafford ST19 9DE.
All profits from the disc will be donated to charity.

For Dutch enthusiasts (and
everyone else), the Big Ben
Club in Holland will be
holding its 8th annual Yearly
Open Day at the
Community Centre ‘De
Kiekmure’, Tesselschadelaan
1, Harderwijk, the same
venue as was used in 1987.
Several British magazines
and software houses have
regularly supported this
event (including BEEBUG),
and the day is always full of interest and well attended.
Contact for the Big Ben Club is Harry Linsen,
Gommerskepel 24, 2151 RA Nieuw-Vennep, Netherlands
(FAX 010 (31) 7034-38895).

The Computer Shopper Show, 6th to 9th December 1990 at
the Wembley Conference Centre, will also feature a
major Acorn presence, and an Acorn Village for third
party suppliers. Acorn will also be running a
conference of seminars alongside the exhibition proper.
BEEBUG will also have a stand at this show.

LET'S COMPUTE

Claimed to be the world's first computer comic, Let's
Compute was launched by Database Publications in July
this year. Aimed at the 8 to 14 age group, the monthly
magazine aims to present the world of computing to
youngsters in comic strip format - learn BBC Basic with
cartoon characters ROM and RAM,; get the lowdown on
Logo. The magazine costs 99p.

ACORN NEWS

Acorn has recently announced details of its latest scheme
to allow teachers and teaching support staff to purchase
an A3000 or Archimedes 420 system at a discounted
price. Full details of this scheme can be obtained from
BEEBUG, or any approved Acorn dealer. B

5

Conspicuous Consumption (Part 1)

Ralph Maltby describes a program which monitors the fuel consumption of your car.

There have been a number of published
programs to calculate the fuel consumption of a
car. None that I have seen has offered all the
features that I wanted, so I set about writing my
own. It turned out to be rather longer than I
had expected but it is at least reasonably easy to
use and has proved to give useful warnings of
deterioration in car performance. The results
can be shown in tabular and graphical formats;
the latter will be described in the next issue.

The program was originally written to take
advantage of the Shadow RAM on the Master.
However, it is possible to use it on a model B by
splitting into two programs, with the second
part covering the plot routines. Listing 1 gives
the Master version excluding the plot routines
for the graphical display. Modifications to suit
the model B are in Listing 2. The next issue will
cover the plot routines for both.

Fuel consumption is computed both as an
overall figure from the first entry up to the
present, and over the last 1000 miles or so. It is
tabulated in miles per gallon and in miles per
litre; dedicated Europeans could easily modify
the program to show litres per 100 km, by
replacing line 2740 with:
2740 D$=STR$ (28409/mpgall% (entry%)) :D$
=LEFTS$ (D$, 4)

and similarly altering line 2770 but using F$
and mpglast% instead. Table 1 shows the data
in tabular format; Figure 1 shows the graphical
display which will be described in Part 2.

The “1000 miles or so” is chosen arbitrarily as a
compromise between the excessive scatter
produced by calculating at each tank-full and
the need to show reasonably short-term
variations. It is assumed that at regular
intervals you will fill the tank to a well-defined
level (e.g. completely full or until the pump
cuts out); these I have termed reference Fills.
At each reference fill the program goes back
1000 miles and then seeks the previous

6

reference fill. It uses the data there for the start
of the short-term calculation. How far back it
has to go depends on how often reference fills
are recorded but the result is better than
making the calculation between subsequent
fills.

Figure 1

The example shown in Figure 1 illustrates the
noticeable short-term effects of intermittent
ignition trouble. Here the smooth line is the
cumulative fuel consumption from new, and
the jagged line is for the previous 1000 miles.
The dips in December are caused by cold
weather and shorter journeys, combined, in
December 88, with the ignition trouble
mentioned above. The latter can be seen again
in April 89. The catastrophic dip in November
89 coincides with the conversion to “green”
petrol during a cold snap.

USING THE PROGRAM

The most important point to consider, of course,
is that you must keep a reliable record of
mileage, dates and fuel bought. You must also
try to keep your reference fills fairly frequent
and regular. In between these reference fills you
can have part-fills if this is more convenient,
which must also of course be logged. Since
there are still some pumps which deliver in
gallons, the fuel added can be entered as

Beebug August/September 1990

Conspicuous Consumption

gallons or litres. It doesn’t matter when this
data is entered into the program, as long as you
keep a careful record of all fills until the data
file is updated. Each data entry session must
finish with a reference fill,

PROGRAM INFORMATION

If you are intending to use the program on a
model B you should be careful to retain the line
numbers as used in the Master version of
Listing 1. Listing 2 contains

however. Obviously, the PETROL CONSUKPTION all the alterations and

calculations produced by || w o consumpTION mumce || additions for the model B.

the program will not be jmman | A Lo

accurate until the data is i B ¥R U s 0 oos When running the Master
to dat L By ol R w st data fil

up to date. (0 By L 2 M version, one data file is

P : B Bs w0 BE oW ;ZZ'.; ; d, d_thi i

% wrts by i LR] roted and this records
e program starts 0 : : 0 the essential input data.
i s bl o o P

asking if the data file disc || 12 wlesler 323 u 28 esr 4w Dates are converted to

ol " 13 22.08.87 32.0 7.05 28.6 6.30 4553 -

is ready. This can be the 16 s B L Ha 2 B integers and the fuel

d. .f th . 16 16.10.87 31.4 6.91 29.1 6.41 5897 b h . l . 1. d b

PrOgraifciisCR e icicals B oEare e v Wn §n an ought is multiplied by

plenty of space on it. It 2 onhy W g% us fa | g 100 so that all the data can

then asks for the “car be recorded as integers.

reference” - this will be Table 1 This economises on disc

used as the name for the data file. Anything
will do but part of the car registration number
is a suitable identifier.

If you are starting a new file you will be asked
for the initial data; the

space and facilitates searching for amendments
to data. All fuel data are converted to gallons
for the records and for the purposes of
calculation. A second data file is required for
the model B to carry over the calculated data to

the Plot program. Provision is
program needs to know the Specimen Entries made for this in Listing 2
date and mileage at the Date Miles Fuel Reference? || which automatically prefixes
starting point, and obviously | 29.05.87 394 Full Start the file name with a ‘b’. Note
the tank must be filled to | BERE B ek | X that CLOSE#0 is avoided
your chosen reference level 18:02227 1?25 g?:“ Y throughout because of the
at this point. 220687 1451 413L Y bug in the Master’s DFS.

110787 1778 490L Y
Once this has been done a }gg;g; ;ggg zggt ; The procedure names are
menu appears, and there are || 17.07.87 2404 320L Y intended to be self-
plenty of prompts to guide | 20.07.87 2745 916 N explanatory and there are no
you through. You will often || 290787 2940 e Y obscure constructions. The
"] 7[/ 3 o s

see “Is this OK?” after Table 2 only function - FNkey(K$) - is

entering data, because I
found that I made a significant numbers of
errors when entering a large amount of data.
There is an Amend option for those errors which
slip through.

Table 2 is a copy of the car log for the first few
points of the example shown in Table 1. You
may find it useful to use this for a trial run in
order to get used to the system. On this month'’s
magazine disc there is a data file called
Consump, which contains about 90 entries,
starting with those in Table 1.

Beebug August/September 1990

simply a convenient way to
deal with Z$=GET$; K$ is usually “YyNn” but
“CcMm” also occurs. The first two characters
return TRUE, the second two return FALSE and
anything else is ignored.
Listing 1

10 REM >FuelCon

30 REM Version B1.0

40 REM Author Ralph Maltby

50 REM BEEBUG Aug/Sept1990

60 REM Program subject to copyright
70 :
100 *SHADOW 0

Conspicuous Consumption

110 MODE7

120 PRINTTAB(9,9) ; CHR$131;CHR$141; "FUE
L CONSUMPTION";TAB(9);CHR$131;CHR$141;"F
UEL CONSUMPTION";TAB(11,12)CHR$134"Maste
r version":Z=INKEY (150) :CLS

130 REPEAT PRINTTAB(0,15);CHR$131"Is t
he data file disc ready?(Y/N)":UNTIL FNk
ey ("YyNn")

140 DIM date$(200),date%(200),mile% (20
0) ,newfuel% (200) ,newfuel (200) ,mpgall% (20
0) ,mpglast%(200) ,bignewfuel% (200)

150 PROCinit

160 ON ERROR MODE7:PROCerror

170 REPEAT PROCmenu

180 CLS:PRINTTAB(5,14)CHR$131;"Do you
want to exit?(Y/N)"

190 UNTIL FNkey ("YyNn")

200 PRINTTAB(5,14)CHRS$131; "Program end
ed"STRINGS (12, ™ ") :END

2100 ¢

1000 DEF PROCinit

1010 CLS:entry%=0:fuel=0

1020 newfuel (0)=0:flag%=0

1030 CLS:PRINTTAB(0,10);CHRS131;"Enter
car reference: ":INPUTTAB(22,10)file$:CL
S

1040 PRINTTAB(7,10)CHR$131"Do you alrea
dy have";TAB(3,12) CHR$131"this data file
on disc?(Y/N)":IF FNkey("YyNn") THEN CL
S:PROCreload(7) :ENDPROC

1050 CLS:PRINTTAB(4,10)CHR$134"Space wi
11 be reserved for";TAB(10)CHR$134"the d
ata file";TAB(2,15)CHR$134"Please make s
ure that there is ";TAB(8)CHR$134"room o
n your disc"

1060 PRINTTAB (4,24)CHRS$131"Press SPACE
BAR to continue":Z=GET

1070 CLS:PRINTTAB(8,10)CHR$131"Are you
sure? (Y/N)";TAB(6,12)CHR$131" (it will w
ipe any file"'SPCICHR$131"of the same na
me)":IF FNkey("YyNn") THEN PROCopenfiles
:CLS:PROCenter ELSE CLS:GOT01040

1080 ENDPROC

1090 :

1100 DEF PROCmenu

1110 REPEAT CLS:PRINTTAB(8,3);CHRS$129;"
OPTIONS AVAILABLE"

1120 PRINTTAB(10,5);CHR$131;"1.Enter Da
tall

1130 PRINTTAB(10,7);CHR$131;"2.Tabulate
results"
1 1140 PRINTTAB(10,9) ;CHRS$131;"3.Plot Dat
]all

1150 PRINTTAB(10,11) ;CHR$131;"4.Amend D
ata"

1160 PRINTTAB(10,13);CHRS$131;"5.Exit"

1170 PRINTTAB(7,19);CHR$134;"Enter opti
on number"

1180 Z$=GETS$:IF Z$="1" THEN CLS:PROCent
er

1190 IF Zz$="2" THEN CLS:PROCtab

1200 IF Zz$="3" THEN CLS:PROCplot

1210 IF Z$="4" THEN CLS:PROCamend

1220 UNTIL Z$="5":ENDPROC

1230 :

1240 DEF PROCenter

1250 IF entry%=0 THEN PROCnew

1260 entry%=0:REPEAT entry%=entry%+1:UN
TIL date% (entry%)=0:entry%=entry%-1

1270 PRINT"Date of last reference fill
";dates$ (entry%)

1280 entry%=entry%+l:lastentry%=entry%

1290 CLS:PROCenterfuel:CLS:PROCenterdat
e:PROCentermile:PROCspan:PROCcalc

1300 PROCsaveline (1) : ENDPROC

1810 te

1320 DEF PROCnew

1330 PRINT'''"Enter starting date"

1340 PROCdate

1350 INPUT'''"Enter starting mileage "

mile% (0)

1360 PRINT"Is this OK?"

1370 IF NOT FNkey ("YyNn") THEN CLS:PRIN
T"Re-enter miles":GOT01350:ELSE CLS

1380 bignewfuel% (0)=0:PROCsaveline (0)

1390 ENDPROC

1400 :

1410 DEF PROCenterfuel

1420 LOCAL Q$

1430 IF flag% word$="next" ELSE word$="
last"

1440 PRINTTAB (4,2);CHR$131; "Enter each
re-fill quantity"

1450 PRINTTAB (4, 3) ;CHR$131;"since ";CHR
$134;date$ (entry%-1) ;CHR$131;"and end wi
th" :PRINTTAB (8) ; CHR$131;word$+" referenc
e fill":PRINT

1460 INPUT "Quantity ",newfuel

1470 PRINT" Is this OK2"

1480 IF NOT FNkey("YyNn") THEN CLS:PRIN
T"Re-enter fuel":GOT01460

1490 PRINT"Gallons(G) or Litres(L)?"

1500 IF FNkey ("GgL1")THEN Q$="G" ELSE Q
$=IIL"

1510 PRINT newfuel;Q$;"
/N) "

Is this OK?(Y

8

Beebug August/September 1990

Conspicuous Consumption

1520 IF NOT FNkey("YyNn") THEN CLS:PRIN
T"Re-enter units":G0T01490

1530 IF Q$="L" THEN newfuel=.22*newfuel

1540 newfuel (entry%)=newfuel (entry%) +ne
wfuel

1550 bignewfuel% (entry%)=100*newfuel (en
try%)

1560 PRINTCHR$131;"Was that a reference

fillz"

1570 IF NOT FNkey("YyNn") GOT01460

1580 ENDPROC

1580 ¢

1600 DEF PROCenterdate

1610 PRINT'':PRINTCHR$131;"Enter date o
f reference fill":PRINTTAB(7)CHR$131"aft
er "CHR$134date$(entry%-1)

1620 PROCdate

1630 ENDPROC

1640 :

1650 DEF PROCentermile

1660 INPUT"Enter miles at reference fil
1 ",mile% (entry%)

1670 PRINT"Is this OK? (Y/N)"

1680 IF NOT FNkey("YyNn") THEN CLS:PRIN
T"Re-enter miles" :GOT01660

1690 IF mile% (entry%)<1000 THEN mpglast
% (entry%)=0:begin%=0:temp%=entry%

1700 ENDPROC

1710

1720 DEF PROCspan

1730 temp$=entry%

1740 IF mile% (entry%)<=1000+mile%(0) TH
EN mpglast$% (entry%)=0:begin%=0:temp=ent
ry%:ENDPROC

1750 REPEAT entry%=entry%-1

1760 UNTIL mile% (temp%)-mile%(entry%)>=
1000

1770 begin%=entry%:entry%=temp%

1780 ENDPROC

1790 :

1800 DEF PROCcalc

1810 fuel=fuel+newfuel (entry%)

1820 fuel%=100*fuel

1830 plusfuel=0:entry%=begin%

1840 REPEAT entry%=entry%+l

1850 plusfuel=plusfuel+newfuel (entry%)

1860 UNTIL entry%=temp%

1870 mpgall% (entry%)=100* ((mile% (entry%
)-mile%(0))/fuel)

1880 IF mile%(entry%)<1050 THEN mpglast
% (entry%)=0 ELSE mpglast% (entry%)=100*((
mile% (entry%)-mile% (beging%)) /plusfuel)

1890 ENDPROC

1900 :

1910 DEF PROCreload (mode%)

1920 LOCAL d$:U%=0:*FX229,1

1930 PRINTTAB (0,12)CHR$134"Please wait
for loading to complete"

1940 PRINTTAB (0,19)CHR$131"Loading entr
y" :PRINTTAB (4) CHR$131"No."

1950 U%=OPENUPfile$:entry%=-1

1960 REPEAT entry%=entry%+l

1970 IF mode%=7 THEN PRINTTAB(8,20)CHRS
131;entry%

1980 INPUT#U%, date%(entry%),mile% (entr
y%) ,bignewfuel% (entry%)

1990 newfuel (entry%)=bignewfuel% (entry%
) /100

2000 d$=STRS$ (date% (entry$%))

2010 IF LEN(d$)=5 THEN d$="0"+d$

2020 date$ (entry%)=LEFTS (d$,2)+"."+MID$
(d$,3,2)+"."+RIGHTS (d$,2)

2030 IF entry%>0 THEN PROCspan:PROCcalc
2040 UNTIL date% (entry%)=0

2050 lastentry$=entry%-1

2060 CLOSE#U%:U%=0:*FX229,0

2070 ENDPROC

2080 :

2090 DEF PROCsaveline (A%)

2100 LOCAL d$:U%=0:*FX229,1

2110 U%=OPENUPfile$

2120 PTR#U%=(entry%) *15

2130 PRINT#U%,date%(entry%),mile% (entry
%) ,bignewfuel% (entry%)

2140 CLOSE#U%:U%=0:*FX229,0

2150 IF A%<2 GOTO 2200

2160 newfuel (entry%)=bignewfuel% (entry%
) /100

2170 d$=STRS (date% (entry%))

2180 IF LEN(d$)=5 THEN d$="0"+d$

2190 date$(entry%)=LEFTS$(d$,2)+"."+MID$
(d$,3,2) +"."+RIGHTS (d$,2)

2200 entry%=0:fuel=0

2210 IF A%>0 THEN fuel=0:FOR entry%=1 T
0 lastentry%:PROCspan:PROCcalc:NEXT

2220 ENDPROC

2230 :

2240 DEF PROCtab

2250 VDU14:PRINTTAB(7)CHR$134; "Press SH
IFT to scroll"

2260 PRINTTAB (6,2) ; "DATE"; TAB(15) ; "CONS
UMPTION"

2270 PRINTTAB (16, 3); "OVERALL"; TAB(28,3)
;"LAST1000m1"

2280 PRINTTAB(15,4);"mpg";TAB(22,4) ;"mp
1"; TAB(29,4) ; "mpg"; TAB (36, 4) ; "mpl" : PRI

Beebug August/September 1990

Conspicuous Consumption

NT

2290 FOR entry%=1 TO lastentry$

2300 PRINTTAB(0) ;entry%;TAB(4) ;date$ (en
try%) ; TAB(14) ;mpgall% (entry$%)/100; TAB (21
) s INT(.22*mpgall% (entry%))/100; TAB(28) ;m
pglast%(entry%)/100; TAB (35) ; INT (.22 *mpgl
ast% (entry%)) /100

2310 NEXT

2320 PRINT'':VDU15:PRINTTAB (4) ; CHR$134;
"Do you want a print out?(Y/N)":IF NOT F
Nkey ("YyNn") THEN CLS:ENDPROC

2330 CLS

2340 PRINTTAB(0,5)CHR$131;"Is the print
er connected and ON?"

2350 IF NOT FNkey ("YyNn") CLS:GOT02320
2360 PROCprinttab:ENDPROC

2370

2380 DEF PROCdate

2390 INPUT "DAY",day$,"MONTH (1-12)",mo
nth$, "YEAR 19"year$

2400 IF LEN(month$)<2 THEN month$="0"+m
onth$

2410 IF LEN(day$)<2 THEN day$="0"t+day$
2420 date$ (entry%)=day$+"."+month$+"."+
year$

2430 date% (entry$%)=VAL (day$+month$+year
$)

2440 PRINTdate$ (entry$);"
OK2"

2450 IF NOT FNkey("YyNn") THEN CLS:PRIN
T"Re-enter date":GOT02390

2460 ENDPROC

2470 :

2480 DEF FNkey (K$)

2490 LOCALK$%:REPEAT:K$=INSTR ("@"+K$, GET
$) DIV 2:UNTIL K%:K%=K%-2

2500 =K%

2510

2520 DEF PROCprinttab
| 2530 LOCAL AS$,CS,D$,ES,FS,GS
| 2540 vDU2,1,27,1,69

2550 PRINTTAB (29) "PETROL CONSUMPTION"
2560 PRINT':PRINTTAB(4)"No"TAB(11)"DATE
"TAB(41) "CONSUMPTION"TAB (69) "MILEAGE"
| 2570 PRINT:PRINTTAB (29) "OVERALL"TAB (49)
"LAST 1000ml1"

2580 PRINTTAB (27) "mpg"TAB (35) "mpl"TAB (4
9) "mpg"TAB (57) "mpl"

2590 FOR entry%=1 TO lastentry%

2600 A$=STRS (entry%)

2610 IF entry%>9 AND entry%<100 THEN A$
[=" "+A$

Is this

2630 C$=STRS (mpgall% (entry%)/100)

2640 C$=LEFTS$ (C$,4)

2650 D$=STR$ (INT (.22*mpgall% (entry$))/1
00) :D$=LEFTS$ (DS, 4)

2660 E$=STRS (mpglast$% (entry%)/100)

2670 E$=LEFTS$ (ES, 4)

2680 F$=STRS (INT(.22*mpglast$ (entry%))/
100) :F$=LEFT$ (F$,4)

2690 G$=STRS (mile% (entry$))

2700 PRINTTAB(3)AS$TAB(9)date$ (entry%)TA
B(26) CSTAB(35)D$STAB (48) ESTAB (57)FSTAB (69
)G$

2710 NEXT:PRINT''''':VDU3 :CLS

2720 ENDPROC

2730

2740 DEF PROCamend

2750 flag%$=1

2760 PRINTTAB(11,7)CHR$131"Enter the nu
mber"TAB (4, 9) CHR$131"of the entry to be
corrected"

2770 PRINTTAB(0,19)CHR$134"This can be
found from the Tabulation"TAB(9,22)CHRS1
34" (KESCAPE> for MENU)":INPUTTAB(18,14),
entry%

2780 CLS:PRINTTAB(0,12)CHRS$134"Now ente
r correct data for that entry":Z=INKEY (2
00) :CLS

2790 newfuel (entry%)=0

2800 PROCenterfuel :CLS:PROCdate

2810 PROCentermile:PROCsaveline(2)

2820 ENDPROC

2830 =

2840 DEF PROCopenfiles

2850 LOCAL N%

2860 CLS:PRINTTAB(0,12)CHR$131"Please w
ait for files to be configured"

2870 pad%=0:U%=0PENOUTfile$

2880 FOR entry%=1 TO 600

2890 PRINT#U%,pad%

2900 IF entry%MOD12=0 PRINTTAB(3,23)"*"
TAB (2,23)" "

2910 IF entry%$MOD12=6 PRINTTAB(2,23)"*"
TAB(3,23)" "

2920 NEXT:entry%$=0:CLOSE#U%:U%=0

2930 ENDPROC

2940 .

2950 DEF PROCerror

2960 IF ERR=17 ENDPROC

2970 VDU22,7:PRINT"ERROR"

2980 IF U% THEN CLOSE#U%

3000 REPORT:PRINT" at line ";ERL:END

3010 ENDPROC

Continued on page 12

2620 IF entry%<10 THEN A$=" "+A$

10

Beebug August/September 1990

The Lorenz Attractor

by Danny Fagandini

As Jim Vernon explained in Order Out Of Chaos

(BEEBUG Vol.8 No0.9), the high speed iteration of
simple algebraic equations on personal
computers has made it possible for all of us to see
mathematical mysteries that have lain hidden to
us since the dawn of time. Chaos is now to hand,
but it is a very special form of chaos, one with an
internal order that we see expressed by Nature in
snowflakes, ferns, the convolutions of sea shells
and the battles of the species for the survival of
the fittest. Deep down in Jim Vernon’s programs
there lies 4.669201660910... the bifurcation
number. We know not from where it comes nor
what it implies. It is known as the Feigenbaum
number after the mathematician who first
spotted its universality on the Los Alamos
computers in the seventies.

Edward N. Lorenz had rather more
rudimentary computer facilities at his disposal
at MIT in the sixties. He was studying
meteorology and wanted to model turbulence
in the atmosphere. It was early days; computers
were lumbering beasts and tedious to program.
Lorenz cut, pruned and trimmed his equations
until he had a simple skeleton model that his
colleagues could not take seriously. A few
lightweight equations could not possibly tell
them anything they did not already know. The
fact that numbers could be crunched from them
in reasonable time seemed trivial.

However, Lorenz persevered and kept
stressing the strange patterns that his
crunching seemed to suggest. Looking at
columns of numbers is an acquired taste, so
few paid much attention. Those that did,
however, could not escape what was obvious
once prejudice had been overcome: simple
equations, iterated thousands of times, can
give totally unpredictable results. Far from
working towards finer and better weather
forecasting, Lorenz was proving that to be an
impossible goal. Might not the flutter of a
butterfly’s wings in Chicago be the start of a
deep depression in the Atlantic? We could no
longer be sure that that had to be pure fantasy.

Beebug August/September 1990

A rotating Lorentz Attractor

Cycle 2
Points 10600

Press Escape to terminate

Screen display produced by listing 1

Years later mathematicians laid down the
jargon of Chaos and talked at length about
Attractors, Phase Space and Julia and
Mandelbrot Sets. An attractor is a pattern that
results from lengthy iteration of a set of
equations. It can be a single point, a pattern of
many points, a loop or even infinity. Lorenz
was given his very own, personal, attractor by
general acclaim. Modern computer graphics
bring it home to us in colour and at speed,
tantalisingly in two dimensions only. At least,
so far...

Listing 1 is a program based on a version of
Lorenz’s equations published in the Canadian
journal ALGOrithm. There is plenty of phase
space left for experiment. The variable P% in
line 120 holds the number of points plotted in
each cycle. You can try altering this between
500 and 15000. Each cycle is plotted in a
different colour; for a monochrome display,
simply omit line 260.

Listing 1
1 10 REM Program Lorenz
1 20 REM Version Bl1.0
| 30 REM Author Danny Fagandini
40 REM BEEBUG Aug/Sep 1990
50 REM Program subject to copyright
60 it
100 MODEO
110 PROCtitle

11

The Lorenz Attractor

120 P%=5000:REM try 500 to 15000

130 h=0.01:2=0.06:x=0.06:y=0.06

131 frac=8/3:k=16:cycle=0:q=0

140 vDU23,1,0:0:0:0;

150 REPEAT

160 PRINTTAB(S5,8)"Press Space to rotat
e, else any other key to start"

170 gq=GET:UNTIL q

190 VvDU29, 620;512;

200 REPEAT C=0

210 REPEAT cycle=cycle+l

220 CLS:PROCtitle

230 PRINTTAB(5,5) "Cycle ";cycle

240 PRINTTAB (S5, 6) "Points ";P%*cycle

250 C=C+1:IF C=4 C=5

260 vpU19,1,€C,0,0,0

270 FOR N%=1 TO P%

280 PROCformula

290 IFq=32 THEN h=0.02:frac=7/3:PROCro
tate

300 PLOT 69, INT (k*X), INT (k*Y)

310 NEXT:UNTIL C=7

330 UNTIL FALSE

340 END

350

1000 DEF PROCformula

1010 x=x+10* (y-x) *h:X=x

1020 y=y+(28*x-y-x*z)*h:Y=y

1030 z=z+(x*y-z*frac)*h

1040 r=SQR(x*x+y*y)

1050 ENDPROC

1060 :

1070 DEF PROCrotate

1080 PRINTTAB(5,1)"A rotating Lorenz At
tractor i

1090 PRINTTAB(5,7)" "

1100 alpha=ASN (ABS(y) /r)+(cycle+2) * (SGN
(x*y)) *PI1/20

1110 X=r*COS(alpha) *SGN (x)

1120 Y=r*SIN(alpha) *SGN (y)

1130 ENDPROC

1140 :

1150 DEF PROCtitle

1160 PRINTTAB(5,1)"The Lorenz Attractor
n

1170 PRINTTAB(45,28) "Press Escape to te
rminate"

1180 ENDPROC B

Conspicuous Consumption (continued _from page 10)

Listing 2

10 REM >ModCon
20 REM Mods to FuelCon for model B
100 REM Omit up to and including this
Tine
120 PRINTTAB(9,9);CHRS$131;CHR$141; "FUE
L CONSUMPTION";TAB(9);CHR$131;CHRS$141;"F
UEL CONSUMPTION";TAB(11,12)CHR$134"Model
B version":Z=INKEY (150) :CLS
2870 U%=OPENOUTfile$
2890 PRINT#U%,0
2990 IF V% THEN CLOSE#V%
3020 :
3030 DEFPROCplot
3040 CLS:PRINTTAB(4,5)CHR$134"Calculate
d data will now be":PRINTTAB(10) CHR$134"
SAVED onto disc"
3050 PRINTTAB(3,11) ;CHR$131;"Is data-fi
le disc ready? (Y/N)":IF FNkey("YyNn")=0
ENDPROC
3060 PRINT'''':PROCsavedata
3070 CLS:PRINTTAB(1,5)CHR$134"Plot prog
ram will now be CHAINED"

12

3080 PRINTTAB(3,11) ;CHR$131;"Is program

disc ready? (Y/N)":IF FNkey("YyNn") THE
N PAGE=&1300:CHAIN"FPLOT-B"

3090 ENDPROC

31000

3110 DEFPROCsavedata

3120 *FX229,1

3130 V%=OPENOUT ("Temp")

3140 PRINT#V%,lastentry$%

3150 PRINT TAB(2,20);CHR$131; "Recording
entry No. "

3160 FOR entry%=0 TO lastentry$%

3170 PRINTTAB(22,20) ;CHR$131;entry%
3190 PRINT#V%,date$ (entry%),mile% (entry
%) ,mpgall% (entry%) ,mpglast% (entry%)

3200 NEXT:CLOSE#V%:V%=0:*FX229,0

3210 CLS:PRINTTAB(8,12);CHR$131;lastent
ry%;" entries recorded"

3230 PRINTTAB (4,20);CHR$134;"Press SPAC
E BAR to continue":Z=GET

3240 entry%=entry%-1

3250 ENDPROC

2
3
5 |

Beebug August/September 1990

ADFS Directory Examiner and Command File Creator

Use Vivian Stevens’ excellent utility to browse through the files on any ADFS

disc, and form command files for subsequent loading of selected items.

One of the great advantages of the Advanced
Disc Filing System (ADFS) is its hierarchical
structure, which allows a sensible classification
of files within appropriately named directories.
But that property in itself can be a drawback
unless you are well organised and you are
prepared to be disciplined in the organisation
of your discs.

Progeny Directories :

CLARK
GORMAN
HERBERT
HOLTOH
KERTES
MURPHY
RANKIN
SEFTON
STEVENS
TEMPLEMAN

PIBWORTH
ROMWLAND
SHARMAN
TAYLOR
Hilliams

Path-Length :

disc fo *CAT fi *CDIR f2

Parent !X Progeny f¢

When you catalogue a disc, you see only the
files and directories present in the current
directory. Since this can contain up to 47 sub-
directories, and up to 128 levels of directories
are permitted, they can all too easily become
unmanageable. Remembering the location of a
particular file can become a major problem.

The program listed here, DirExam+, will allow
you to browse through the directory structure
of an ADFS disc, examining files as you
choose. In addition it offers a powerful facility
by allowing the creation of command files
which can then be used to load pre-selected
files. This is likely to prove of particular
interest to those using Edit on a Master for
program development. A command file is
effectively a list of files which can be used to
load the contents of those files when the
command file is executed (see later). To use the
program, simply type it in, save it, and then
run it.

Beebug August/September 1990

USING THE PROGRAM

DirExam+ allows you to browse through the
various directories on the disc, examining any
file you choose, and if you wish, you can add
the file details to a command file which the
program sets up. The program is controlled by
using the cursor keys together with Return. The
available options are always shown at the foot
of the screen.

The display includes only directory information
(parent directory, current directory, and any
progeny directories, together with the directory
path), filtering the catalogue data to remove
other filenames. It is therefore easier to get an
overall impression of the hierarchy structure.

At any point a full catalogue may be requested,
which will include a display of filenames in the
current directory, and it is from this level that
you have the option to inspect a chosen file (in
*TYPE or *DUMP format), or to append its
details to your command file, if one has been
created. A file may be selected by reference
number or by name, but in the latter case upper
and lower case letters must be specified
correctly for a match. A command file is created
in the root directory on pressing f9 for the first
time, and this is given the default name,
ICommand_F. Subsequent presses of the f9 key
will prompt you for a filename, and append
this file’s details to the command file.

Pressing Escape at any time will take you to the
directory display for the current directory,
while Shift-Escape will terminate the program
completely (but see later).

USING COMMAND FILES

If you are a keen programmer, then one way to
organise your programming activity is to build
up a library of useful routines in ASCII format
(using *SPOOL or whatever) on disc, which can
be appended to the program on which you are
working.

13

ADFS Directory Examiner and Command File Creator

An example might be an often used INPUT
routine like the FNinput in DirExam+. When
you begin coding your basic program, it is
useful to browse through the routines in your
personal library, and append them to your
growing program file.

Inspecting the contents of files individually is
easy enough, but if you need to append several
files to one another, moving between
directories, cataloguing directories and loading
the relevant files can become tedious.

A far better solution is to set up a command file
which will do the work for you. This can be
done with DirExam+ as described, and the
resulting command file will contain the names
of the files selected and the necessary
commands for loading the contents of these
files into Edit.

To set up a command file requires that the
ASCII values of the appropriate key presses be
written to “!Command_F” on disc. For
example, to create the file from scratch, Edit has
to be called, so the sequence of key presses
written to the command file is
“*EDIT”+CHR$(13). This is held as a string
variable, cf$, and is written to disc character by
character.

When a file is to be appended to those already
resident in Edit, I have chosen to have the new
file added “at the bottom” rather than having it
inserted at the start. Therefore the key press
Ctrl-Cursor-Down, or CHR$(174) is inserted
into the command file before a new file is
appended. The upshot of this convention is
that, when the command file is executed, the
cursor appears at the beginning of the last file
to be appended, which looks a bit strange when
you first encounter it.

Any file can, in theory, be loaded by a command
file, but in DirExam+, only files in the top 23
levels of the hierarchy can be included in the
command file. This is because the path (the root
to the current directory) is also held in a string
variable prior to being written to the disc. The
string length is limited to a maximum 255
characters, and each directory name could have

14

ten characters in it. (“$.”+22 directories (or a
terminal filename) of ten characters, each with a
“"” separator added, =255). This is no great
disadvantage, in fact, and if you wish, you
could get around the limitation by deleting
“+(10 AND 1%<23)” in line 1550. If you do this,
you will have to discipline yourself to keeping
the names of the directories through which you
move to reach your chosen file, to the bare
minimum for easy identification, and obviously
you will have to end each directory name with
the “*” wildcard character.

There is no limit as to how far down the
hierarchy you may browse; you may go as far
as the ADFS will allow directories to exist. The
variable level% indicates the level (vertically) at
which the current directory is found on the
disc; for the root directory, level%=0. At each
level the program displays the path to the
current directory. This is worked out each time
it is needed rather than being held as a string
variable, and is not therefore limited by how
many directories are encountered en route.
Note that paged mode is utilised to give you
the opportunity to inspect the display at leisure,
and you will need to press the Shift key in
order to scroll some displays.

On leaving the program (press Shift-Escape to
do this) you will be presented with the options
of immediately executing the command file or
of loading the file into the editor for direct
alteration. If you opt for the latter, do not forget
that the characters you see will look strange
because they represent key presses, and I
would suggest reading the relevant section in
the reference manual (R 16.1) if you propose to
use this facility.

PROGRAM NOTES

The listed version of the program uses the ON-
PROC structure, which works in Basic IV, but
will not be recognised by earlier versions of
Basic. If you have an earlier machine with
ADFS but do not have Edit, you may well find
the directory-browsing features of this program
useful, in which case you will have to rewrite
lines 180 and 2060, using an IF-THEN-ELSE
structure to redirect the program. Note also the
space after *BACK in line 1500.

Beebug August/September 1990

ADFS Directory Examiner and Command File Creator

10 REM Program DirExamt

20 REM Version Bl.4

30 REM Author Vivian Stevens

40 REM BEEBUG Aug/Sept 1990

50 REM Program subject to copyright

100 ON ERROR GOTO 220

110 MODE134:PROCinit

120 PROCscreen ("
aniser and Map ")

130 A%=0:Y%=0:X%=&70:IF (USR(&FFDA) AND&
FF)<>8PRINTTAB(7,10) "For use with ADFS o
nly"'':vDu23,1,1:0:0:0; :END

140 PROCdisc

150 REPEAT

160 IFkey$=CHRS$(27)PROCscreen (" ADF
S Directory Organiser and Map ")

170 PROCcontrol:PROCkey (key$)

180 ON ASC(key$)-245 PROCdisc,PROCcat_
command, PROCcdir, PROCback, PROCroot, PROCp
arent,PROCchild

190 UNTIL FALSE

200 END

210 =

220 IF ERR=17 AND NOT INKEY-1 THEN key
$=CHR$ (27) :GOT0150

230 IF INKEY-1 THEN PROCend:END

240 MODE7:REPORT:PRINT" at line ";ERL

250 *FX4

260 END

210 -

1000 DEF PROCcontrol

1010 CLS

1020 IF level%=0 parent$="None" ELSE pa
rent$=level$ (level%-1)

1030 PRINT® Parent Directory : ":p
arent$'" Current Directory : ";level
$(level) '

1040 PROCfindprogeny

1050 PROCprompt (" (Paged Mode-Press Sh
ift to scroll)’”)

1060 PROCprogeny:PROCpath

1070 control%(0)=245+(1 AND level%=0 AN
D cfp%=0)

1080 control%(1l)=247:control%(2)=245+(3
ANDlevel%<47)

1090 control% (3)=245+ (4ANDback%<>0)

1100 control% (4)=245+(5ANDlevel%>0)

1110 control% (5)=245+(6ANDlevel%>0)

1120 control% (6)=245+(7ANDcount%>0)

1130 PROCprompt (FNmenu) :key$=""

1140 FOR N%=0 TO 6

1150 OSCLI"KEY"+STRS (N%)+" "+CHRS(contr
0l1%(N%)+ (control% (N%)=245)

1160 key$=key$+CHRS$ (control%(N%))

ADFS Directory Org

1170 NEXT:*FX21,0

1180 ENDPROC

1190 :

1200 DEF FNfileinfo(£f$)

1210 LOCAL X%,Y%

1220 $output%=£f$

1230 cntrl%?0=output$MOD256

1240 cntrl%?1l=output¥DIV256

1250 X%=cntrl¥MOD256

1260 Y%=cntrl%DIV256

1270 A%=5:A%=(USR (&FFDD)AND&FF)

1280 =A%

1290 :

1300 DEF FNgetfile

1310 LOCAL name$

1320 VDU26:VDU23,1,1;0;0;0;

1330 PRINTTAB(5,23) ; :name$=FNinput (10,3
3,126)

1340 VvDU23,1,0:0:0:0;

1350 PRINTTAB(5,22)"Is the filename cor
rect? (Y/N)"

1360 PROCkey ("yYnN")

1370 =name$

1380

1390 DEF FNsetup

1400 LOCAL ch%,cf$,ptr%

1410 ch%=OPENOUT ("$.!Command F")

1420 cf$="*EDIT"+CHRS (13)

1430 FOR ptr%=1 TO LEN(cf$)

1440 BPUT#ch%,ASC (MIDS (c£$,ptr%,1))

1450 NEXT

1460 cfp%=PTR#ch%:CLOSE#ch%

1470 =cfp%

1480 :

1490 DEF FNmenu

1500 menu$=" Options: Change disc "+CH
R$ (control%(0))+" *CAT "+CHR$(control%(l
))+" *CDIR “+CHRS (control%(2))+" *BACK
"+CHRS$ (control%(3))+" Root "+CHRS (cont
rol%(4))+" Parent "

1510 menu$=menu$+CHRS (control%(5))+" P
rogeny "+CHRS (control%(6))+" "

1520 =menu$

1530 :

1540 DEF FNmenu2 (p%, level$%)

1550 menu$=" To Inspect a file: *TYPE
WICHRS (253) +1 *DUMP "+CHRS (254) +" "4
MIDS ("Add to Command File Create Command

File ", ((20 AND p$%)+1),20)+CHRS (245+(10

AND level%<23))+" Escape to exit "

1560 =menu$

1570

1580 DEF FNname (count%,name$)

1590 LOCAL p%,ptr%

1600 ptr%=-1:p%=INSTR (name$, "*")

Beebug August/September 1990

15

ADFS Directory Examiner and Command File Creator

1610 IF p% name$=LEFTS$ (name$,p%-1)

1620 REPEAT:ptr¥=ptr$+l

1630 UNTIL ptr%=count%+l OR INSTR(dirs$ (
ptr$),name$)=1

1640 IFptr%>count¥name$=""ELSEname$=dir
$ (ptr%)

1650 =name$

1660 :

1670 DEF FNappend(file$)

1680 LOCAL ch%,cf$,ptr%,path$

1690 ch%=OPENUP(“$.!Command_F")

1700 path$=FNpath

1710 cf$=CHR$ (174)+CHRS (146) +pathS$+file
$+CHRS (13)

1720 PTR#ch%=cfp%

1730 FOR ptr%=1 TO LEN(cf$)

1740 BPUT#ch%,ASC (MIDS (cf$,ptrs, 1))

1750 NEXT:cfp%=PTR#ch%:CLOSE#ch%

1760 =cfp%

197000

1780 DEF FNpath

1790 LOCAL path$,ptr

1800 ptr%=0:path$="$."

1810 REPEAT

1820 ptr¥=ptr%+l

1830 IF ptr%<=level% path$=path$+LEFTS (
level$ (ptr%), INSTR (level$ (ptr$),™ ")-1)+
" on

1840 UNTIL ptri>level$

1850 =path$

1860 :

1870 DEF FNinput (len%, low%,hi%)

1880 LOCAL input$

1890 block%$?0=buffer%MOD256

1900 block%?1=buffertDIV256

1910 block%?2=1len%

1920 block%?3=low%

1930 block%?4=hi%

1940 A%=0

1950 Y$=block$DIV256:X%=block$MOD256

1960 CALL&FFF1:input$=Sbuffer%

1970 =input$

1980 :

1990 DEF PROCcat_command .

2000 PROCscreen(" File Examination & Co
mmand File Option")

2010 REPEAT

2020 PROCprompt (" (Paged Mode-Press Sh
1ft to scroll)")

2030 0SCHIT9

2040 PROCprompt (FNmenu2 (cfp%=0, level%))

2050 PROCkey (LEFT$ (CHRS (27) +CHRS (253) +C
HR$ (254) +CHR$ (255) , 4+ (level$>22)))

2060 IF key$<>CHR$ (27) ON ASC(key$)-252

PROCtype, PROCdump, PROCcommfile

2070 UNTIL key$=CHRS$ (27)

2080 ENDPROC

2080 ¢

2100 DEF PROCfindprogeny

2110 LOCAL N%,A%,C%,X%,Y%,file$

2120 FOR N%=0 TO 9 STEP 3:control%!N%=0
:NEXT

2130 count%=0

2140 REPEAT

2150 control%?1=string%MOD256

2160 control%?2=string%DIV256

2170 control%?5=1

2180 X%=control¥MOD256:Y%=control¥DIV25
6

2190 C%=0:A%=8:CALL (&FFD1)

2200 IF control%?5<=0 ?(string%+1l+?stri
ng%)=13:file$=$(string%+l) : IF FNfileinfo
(file$)=2 count%=count%+1l:dir$ (count%-1)
—fileS

2210 UNTIL control%?5>0

2220 ENDPROC

2230 -

2240 DEF PROCprogeny

2250 LOCAL ptr%,pdir$

2260 IF count%=0 pdir$="None" ELSE pdir
$=STRS$ (count %)

2270 PRINTTAB(3,3)"Progeny Directories
sl %epdirS?

2280 vpU28,0,19,39,8

2290 ptr$=0

2300 REPEAT

2310 IF ptr%<>count% ptr%=ptr$+1:PRINTT
AB(23-19* (ptr¥MOD2) +(ptr%>9)) ;ptr%;" ";d
1rs$(ptr-1);

2320 UNTIL ptr%=count%:PRINT':VDU28,0,1
9,39,3.

2330 ENDPROC

2340 :

2350 DEF PROCpath

2360 LOCAL ptr%

2370 PRINT® Path-Length : ";level%+l'
2380 ptr$=0:PRINT" s";

2390 vpU28,0,19,39,VPOS+3- (2ANDcount ¥>=
22)

2400 REPEAT

2410 ptr¥=ptr¥+l

2420 IF ptr%<=level% PROCpathl

2430 UNTIL ptr$>level%:VDU28,0,19,39,3

2440 ENDPROC

2450 :

2460 DEF PROCpathl

2470 IF POS+LEN (LEFTS$ (level$ (ptr$%), INST
R(level$ (ptr$)," ")-1))>37 PRINT'" n:

16

Beebug August/September 1990

ADFS Directory Examiner and Command File Creator

| 2480 PRINT".™;LEFT$ (level$ (ptr$), INSTR(

\levelS(ptr%)," " =-1);
| 2490 ENDPROC
[2500 =
| 2510 DEF PROCcdir
| 2520 LOCAL name$
| 2530 PROCprompt ("
tltle: i
| 2540 VDU26

2550 REPEAT
| 25600 VBU23, 1,1 0:0:0;

2570 PRINTTAB(29,22);

2580 name$=FNinput (10,33,126)

2590 vDU23,1,0:0;0:0;

2600 UNTIL name$<>"" AND INSTR (name$,"*
ll)=0
2610

Input new directory

OSCLI"CDIR "+name$

2620 vDU28,0,19,39,3

2630 ENDPROC

2640 :

2650 DEF PROCback

| 2660 LOCAL temp%

| 2670 *BACK

2680 temp%=back%:back%=level%+l

2690 level%$=temp%-1

2700 ENDPROC

2710 ¢

2720 DEF PROCroot

2730 *DIR $

2740 back%=level%+1l:level%=0

2750 ENDPROC

21760 ¢

2770 DEF PROCparent

2780 *DIR * :

2790 back%=level%+l:level%¥=level%-1
2800 ENDPROC

2810 :

2820 DEF PROCchild

2830 LOCAL name$,dir%

2840 PROCprompt (" Input directory to b
e made ""current"" Name or Number:")
2850 VDU26

| 2860 REPEAT

| 2870 REPEAT

2880 vDU23,1,1;0;:0;0;

2890 PRINTTAB(18,23);:name$=FNinput (10,
33,126)

2900 VDU23,1,0:0,0:0;

| 2910 UNTIL NOT (VAL (name$)>count$ OR nam
e$=lloll)

2920 IF VAL(name$)=0 name$=FNname (count
i%,nameS) ELSE name$=dir$ (VAL (name$)-1)

| 2930 UNTIL name$<>""

| 2940 OSCLI"DIR "+name$

| 2950 back% level%+1 levels level%+1

Beebug August/September 1990

level$(level%) nameS

2970 vpu28,0,19,39,3

2980 ENDPROC

2990 '

3000 DEF PROCtype:PROCtask ("TYPE ") :END
PROC

3010 :

3020 DEF PROCdump:PROCtask ("DUMP ") :END
PROC

3030 :

3040 DEF PROCtask (task$)

3050 LOCAL name$
3060 REPEAT

3070 PROCprompt ("
wish to see?")

3080 name$=FNgetfile
3090 UNTIL key$="y" OR key$="Y"

3100 PROCprompt (" *"{LEFTS (task$,4)+
«“1ng file; 'Shift to seroll")

| 3110 CLS: 0SCLItask$+name$:VDU7

3120 PROCprompt (" End of File - Press S
PACE to continue")

3130 REPEAT:UNTIL GET=32:CLS

3140 ENDPROC

3150

3160 DEF PROCcommfile

3170 LOCAL name$

3180 IF cfp%=0 cfp%=FNsetup ELSE REPEAT
:PROCprompt (" Which file do you wish
to add?") :name$=FNgetfile:UNTIL key$="y
" OR key$="Y":cfp%=FNappend (name$)

3190 ENDPROC

3200 :

3210 DEF PROCkey (p$)

3220 REPEAT

3230 key$=GET$

3240 UNTIL INSTR (p$,key$)

3250 ENDPROC

3260

3270 DEF PROCprompt (prompts$)

3280 VDU26

3290 PRINTTAB(0,22);SPC(79);TAB(0,22);p
rompt$;

3300 vpu28,0,19,39,3

3310 ENDPROC

3320 :

3330 DEF PROCscreen(title$)

3340 LOCAL a$:VDU26

3350 VDU23,1,0:0;0;

3360 COLOUR1:VDU19,1,3;0;19,0,4;0;14
3370 a$=CHR$32+STRINGS (38,"=")

3380 PRINTtitle$'a$TAB(0,21)a$

3390 vDu28,0,19,39,3:CLS

3400 ENDPROC

12960 1

Which file do you

Continued on page 34

,4-
|

17

—

|
|
|
|
|
|
|
|

|

BEEBUG Survey
Word Processing

We conclude our survey of word processors for
the BBC micro and Master series by looking at
two later offerings, View Professional and
Wordpower. View Professional is interesting in
that it also functions as an integrated spreadsheet
and database as well as a word processor. It was
written by Mark Colton (the author of View) and
originally published by Acorn. However, the
current version of View Professional is now
marketed by Colton Software. View Professional
is also interesting as in the form of Pipedream it
is also available in versions for the Cambridge
Computer’s Z88, the PC, and as Pipedream 3 for
the Archimedes range.

Wordpower has proved particularly popular in
the educational market, and has also carved out
something of a niche for itself for applications
which require different character sets, as with
foreign languages and in scientific word
processing. The use of so-called Powerfonts has
considerably enhanced the value of this word
processor.

As before, we have asked two committed users
of View Professional and Wordpower to give us
their views. Again, all prices quoted include
VAT.

View Professional in use

Kai S. Ng explains the reasons for his choice of View Professional as his preferred
word processor.

I View Professional V2.0 (Colton Software) £75.38 '

About 8 months ago when I was looking
around for a computer upgrade to provide me
with the tool to write up research project
articles, the length of which can vary from a
few pages to dozens of chapters, I thought very
hard before I purchased View Professional (see
also BEEBUG Vol.6 No.4) to complement the 7
year old model B system I own.

I use View Professional in mode 3. Cursor
movements which bring new text to the display
window area are performed very rapidly
because View Professional uses hardware
scrolling when appropriate, or if a screen
update is necessary, the process responds
immediately to any keyboard entry. Cursor
movements are slower if you want some
columns and rows permanently displayed.

All features expected of a word processor are
implemented satisfactorily: reset line width and
tabs; justify left, centre and right; word wrap;
case swap; insert, erase, delete characters or
lines; move, copy and delete a block; overtype

18

or insert mode for text entry; word count,
search and replace, and more. When marking a
block, a whole line is highlighted, so juggling
text in your document usually requires
additional editing.

View Professional uses the red function keys to
give immediate access to the most frequently
used commands. Alternatively, the commands
can be typed in at the top of the screen after
invoking the command line interpreter with the
backslash “\’ character, (double backslash will
give you a backslash in your text). The
command mnemonics take some getting used
to, but the reference card and the generous 190
page spiral bound manual provide excellent
support. Inmediately the command interpreter
is invoked, you can enter any * command to
run your operating system utilities. You can
even *BUILD a sequence of View Professional
commands and execute them in a batch -
exactly like running an MS-DOS batch file on a
PC. This is great, for example, when you want
to make consistent changes in your documents.
Along similar lines you can define up to two
command sequences to be activated by Shift-
Copy and Ctrl-Copy.

Beebug August/September 1990

BEEBUG Survey - Word Processing

The editing screen has line numbers down the
left side and tab stop markings along the top. A
ruler facility is not provided, though one can be
made by defining a command sequence.

Pressing Escape takes you to the options screen
which you will need to refer to for your page
format settings. The single line running header
and footer can be aligned in 3 portions; left,
centre and right.

VIEW PROFESSIONAL

81 width i
82 can like. Hhen sorting, only those lines within the

swapped over, fis a benchmark example, sorting an

88 entries from surnane order into first name order

conds, The sort command is an extraordinarily
facility to have when you write up plans and

reports. However it is of limited use for a potentially large database.

e View Professional package contains 2 ROMs, one 3. PPy, One

3.5 disc, a manual, 3 reference card, a keystrip and some installation
EiWnotes, The instructions tell you how to insta e ROHs, or Toad the
92
93
kilcan also make use of shadow RAH. There is BK of memory for your text 1
95 you run View Professional on a 32K machine, 27K if you run View
96 Professional on a second processor, For long documents your files on
97 the disc can be linked continuously.
98
99 The utilities disc (with View Professional 2) has a progran to
188 comnunicate with the 288 (see Vol.6 No.7) via the serial port, and
181 prograns to import files generated by View, ViewSheet and UiewStore

View Professional worksheet

Page breaks show up distinctively on the
screen. In a multi-file document, the page
breaks of all previous files in the chain are
noted by the firmware so that the last line of the
current page can be determined from the last
break, which might be half way down the text
of the preceding file.

View Professional’s filing commands can do
clever things like merge files, save text in plain
format, spool the output and exchange
spreadsheet values with suitably dimensioned
files.

The line and tab settings in View Professional
make up a regular array of ‘slots’ to provide an
underlying worksheet to your word processing.
Pressing the Tab key will move the cursor to the
next slot on the line. In this way all slots can be
referred to uniquely by a co-ordinate, thus
forming the basis of a spreadsheet. And View
Professional immediately becomes a
spreadsheet by simply invoking the expression
command to allow you to assign a
mathematical formula to your current slot.

Beebug August/September 1990

A1l the principal features of a spreadsheet are
implemented: arithmetic and logical functions
(and scientific functions as well if you have a
second processor); defining the leading ‘£’ and
trailing ‘%’ characters; decimal places; position
alignment; minus signs can be shown in
accountancy brackets or scientific “-” form; slot
references can be automatically updated when
expression slots are copied.

Using View Professional as a spreadsheet
differs from using it as a word processor only in
the way a slot is filled. When a line of text
produced by the expression command is wider
than the column width, its display is truncated.
On the other hand a line of text entered directly
is displayed over the subsequent vacant slots
until it is truncated by either a non-empty slot
or by the wrap-width for the current column.

The most important feature I have not yet
mentioned is the sort command. This powerful
command turns an area of your text into a mini-
database of sheet format. Each record assumes
one line and one line only, with the fields
divided up by the columns. If the column width
is not adequate, you can enter data as an
expression string which can be as long as you
like. When sorting, only those lines within the
marked block are swapped over. As a
benchmark example, sorting an address book of
100 entries from surname order into first name
order takes about 15 seconds. The sort
command is an extraordinarily convenient and
useful facility to have when you write up plans
and reports. However, it is of limited use for a
potentially large database.

The View Professional package contains 2 ROMs,
one 5.25” floppy, one 3.5” disc, a manual, a
reference card, a keystrip and some installation
notes. The instructions tell you how to install the
ROMs, or load the disc images onto machines
which have suitable sideways RAM, or load the
second processor version if you have the
hardware. View Professional can also make use
of shadow RAM. There is 8K of memory for your
text if you run View Professional on a 32K
machine, 27K if you run View Professional on
second processor. For long documents your files
on the disc can be linked continuously.

19

BEEBUG Survey - Word Processing

The utilities disc (with View Professional 2.0)
has a program to communicate with the Z88
(see Vol.6 No.7) via the serial port, and
programs to import files generated by View,
ViewSheet and ViewStore (though not in the
other direction). Also included is a printer
driver editor utility which facilitates up to 8
types of highlights, 10 character translations
and microspacing.

Though View Professional offers more facilities
than most single word processor packages
available on any microcomputer, Colton

Wordp

Software has no plan to produce a spelling
checker for the Beeb (though Pipedream on the
Arc does include one). However, Computer
Concepts’ Spellmaster can be used to check
any saved text file. If you have been
contemplating a desktop publishing package
but you do not have an up-market printer, you
may find View Professional very attractive to
revamp your existing system. Because of the
wide variety of features available, I would
recommend View Professional only if you were
already familiar with the basic concepts of
word processing.

ower

Jim Hudson explains why he finds Wordpower the best word processor for his needs.

Wordpower (Ian Copestake Software) £40.65
Powerfonts from £21.85

Educational site licence (inc. one Powerfont)
£100 plus VAT, until 31st August 1990.

Wordpower will run on Electrons, BBC Bs,
Compacts, Masters and the Archimedes range.
It is compatible with DFS, ADFS and Network
filing systems. My own particular setup is a
Master + Epson FX-1000, so my version consists
of a set of ROM images of the word processor,
the enhanced printing package (more later) and
my chosen ‘Powerfont’ (again see later). It is
not necessary to order the printer or Powerfont
packages but, as I will explain, they are very
useful indeed. Everything arrived neatly
bundled with a ream of manuals, function key
strips, advice and quick reference sheets. The
manual is very clearly written and has a first
rate index.

Wordpower, the printer package and
Powerfonts are loaded into sideways RAM and
the ‘startup” disc is auto-booted. After a couple
of seconds you are faced with Wordpower’s
only screen, which can be set up precisely how
you want it.

The majority of my word processing is
connected with science teaching; it is vital that
I have immediate access to scientific
characters, which can be displayed on-screen

20

and printed. Powerfonts have been designed
to overcome just such a problem. However, the
catalogue did not contain precisely what I
wanted, so one telephone call, a covering letter
and 2 days of waiting resulted in my own
‘personalised” Powerfont, with no
compromise. Life would have been easier if I
had required a Ukranian font with native
keyboard layout; that was in stock! This does
show two of Wordpower’s great strengths; its
ability to fit an individual’s requirements and
the fact that Jan Copestake is never more than
a telephone call away, always willing to help
and advise. I cannot think of another such
commercial package where it is so easy to
speak to the author.

The word processor itself has all of the features
that I would expect. Text is continually
formatted, the section where the cursor is
operating from can be held in the middle of the
screen, no fiddling around at the bottom of the
screen with Wordpower. It is very
straightforward to delete, insert or move
characters, words, lines or blocks. When large
areas of work are being deleted Wordpower
always asks for confirmation, as indeed it does
when I attempt to save a file. In addition to
such basic features, Wordpower has a number
of powerful utilities included as standard.

My favourite is its ability to split the screen
into two windows and have a different file

Beebug August/September 1990

BEEBUG Survey - Word Processing

loaded into each one. Naturally you can work
on each file, as if it was the only one present.
I have also made a great deal of use of the
Edit facility: here a file is automatically
backed up, under a slightly different name
ensuring that I do not accidentally delete the
wrong 1500 words (a quick glance at the
manual shows that I must also try and use the
mail-merge package one day: it can access
data from all common databases, or rely on
the one that can be generated within
Wordpower itself). Before printing I check my
spelling through “Spellmaster”; it does not
work in the immediate mode, but is
otherwise compatible.

This file illustrates what can be done using one of the Power Fonts. There is a
wide range of Power Fonts, working alongside Wordpower to handle text for
science and foreign languages (including Greek and Russian).

6=(t) =] t-m(t)
kL ;gg TR (6 £

Wordpower showing use of Powerfonts

The above facilities are controlled by the
function keys and a set of Ctrl keys; for
example, Ctrl-O toggles between overtype and
insert mode. If this all gets a bit tough to
remember then Crtl-H brings up a series of
“Help Screens”. Failing that I occasionally have
to consult the manual. It is very rare that I now
have to take such a drastic step! The keys do
seem to fall logically to hand, giving the word
processor a feeling of quiet efficiency; it is very
‘Hudson friendly’.

Printing is equally versatile; text can be printed
from memory or disc, and the latter option
means that I can continue to work on a different
document while one is being printed. Page
breaks, headings, footers and the number of
copies required can be readily specified. Items
such as page lengths and line spacings are
controlled from within the text, using plain

Beebug August/September 1990

English commands. However, when I access
Powerfont NTQ, the quality of the printout is
taken into a different league.

The printing package is based on PMS’s
Multifont NTQ. All of its features are retained,
so I can print text that is proportionally/
microspaced, of varying widths and heights,
with a variety of backgrounds. The addition
of the Powerfont ensures that my scientific
characters are printed to the same quality.
Colleagues are amazed at the standard of the
printout. Additional fonts can be obtained
from Ian Copestake, and of course all of
PMS’s Multifonts and Publisher Fonts are
compatible.

Wordpower can be used at a variety of levels; I
have had pupils come in, auto-boot the disc,
type the odd paragraph, print and leave. At the
other end of the scale I am, at present,
composing a 6th form test, using four fonts and
microspaced printing. Wordpower is not
perfect, but I have yet to find a word processor
for the Master that gets close to it in terms of
usability and quality of output.

SUMMARY

That concludes our survey of word processors
for the BBC micro and Master series. We hope
that you have found it to be of interest. No
doubt enthusiastic users of some of the
products which we have covered may feel our
authors have omitted to describe what they
consider to be some very important feature. If
readers have any particular comments on these
(or any other word processors) which may be of
use to others then we would be pleased to hear
from them.

ADDRESSES

Colton Software,

Broadway House, 149 St Neots Road,
Hardwick, Cambridge CB3 7QJ.

Tel. (0223) 211472

Ian Copestake Software,
10 Frost Drive, Wirral,
Merseyside L61 4XL.
Tel. 051-648 6287

©g

21

A great many practical
problems are concerned with
searching for answers.
Sometimes the search is
through a list of stored
values, as in a database, and
this has been covered in
previous Workshop articles
(for example, see BEEBUG
Vol.4 No.2) In this article we

start to look at a different

type of search: the search for

a solution to a problem as

opposed to a pre-stored
answer.

PERMUTATIONS

Occasionally we have a

problem in which we need to
search through all the

different arrangements of
some things and select the
best in some sense or other.
As a trivial example, let’s
consider anagrams (in the
widest sense). An algorithm
to run through all the

permutations of some set of

numbers (or characters) is a

bit tricky - until you've seen

the answer! In fact the key to
writing this algorithm is of

1+ course recursion. A

permutation of N items is
just a matter of selecting the

1=
|

first item and permuting the
rest; then changing the first
item and permuting the rest

until we’ve had all our

possible choices of first item.

Actually in programming

terms it's easier to keep the

last item fixed as follows:

ABCDEF

22

Searching (Part 1)

Bernard Hill re-launches our popular Workshop series with the first
part of a discussion of searching techniques, and the solution to the
aptly name travelling salesman problem.

1. Keep the F at the back and list all
permutations of ABCDE (e.g. ABCDEF,
BACDEEF etc.).

2. Now swap F and A, list all permutations of
the new first five (FBCDE) and then swap back.

3. Repeat step 2 exchanging the B with the F,
then the C with the F, then D with F and finally
E with E

All we need to do before we code up this
program is to decide what exactly we do with
our permutation when we have it. If we want to
write out the complete set of anagrams of a
word then we just print out the letters in their
new order. But in a general problem we would
include some calculation or evaluation function
here. We shall look at this later.

Here is the algorithm:

10 INPUT word$

20 N=LEN (word$)

30 DIM letter$(N)

40 FOR i=1 TO N

50 letter$ (i)=MIDS$ (word$,i,1)
60 NEXT

70 PROCperm (N)

80 END

0=

100 DEF PROCperm(n)

110 LOCAL i

120 IF n=1 THEN PROCwrite:ENDPROC
130 PROCperm(n-1)

140 FOR i=1 TO n-1

150 PROCswap (i,n)

160 PROCperm(n-1)

170 PROCswap (i,n)

180 NEXT

190 ENDPROC

200 :

210 DEF PROCswap(a,b)

220 LOCAL t$

230 t$=letter$(a)

240 letter$(a)=letters$ (b)
250 letter$ (b)=t$

260 ENDPROC

270

280 DEF PROCwrite

Beebug August/September 1990

Workshop - Searching

290 LOCAL j

300 FOR j=1 TO N

310 PRINT letter$(j):
320 NEXT

330 PRINT

340 ENDPROC

This program prints out the N! (factorial N,
N!=1x2x3..xN) permutations - albeit in a
strange-looking order. Before we leave this
program, however, it's worth a second look.

For the sake of clarity the program uses
procedures and long variable names, with
integer (%) variables. But we can speed up this
program by an astonishing factor of 3 and and I
think that this in itself is worth a digression.

All programs are made faster by using the
resident integer variables whenever possible. In
this case the gain is about 25%, but the largest
gain is to be found in the use of static strings
rather than an array of dynamic strings. Instead
of line 30 we will use:

30 DIM W 255

since that’'s the maximum string length. Now
setting $W=word$ we can access the individual
letters as W20, W?1, etc. But starting at 0 is a
nuisance, and to avoid changing our whole
algorithm we define a new variable T:

30 DIM W 255:T=W-1

Now we have the n’th character as “T?n”, and
rather than print out the letters one by one
(PROCwrite above) we can simply PRINT $W.
The one other time (and space) saver is the
removal of the local variable in PROCswap. The
only absolute need for LOCAL variables is
when you need to create a ‘clean’ variable of
that name distinct from other previous
incarnations of it (as with “i” in PROCperm - it
MUST be distinct from the “i” which is used
inside the recursive call in line 160 above).

Finally, making PROCswap “in-line” and
converting all variables to resident integers
yields Program 1 and gives an increase in speed
of over 3 times. But compare the legibility of the
programs! It’s a sad fact that on the Beeb
program readability (and hence maintenance
time) is diametrically opposed to speed: and in
this program, where the number of

Beebug August/September 1990

permutations can be so large, speed can be very
important. What I tend to do in situations like
this is to keep one ‘legible’ program and
compress it with BEEBUG’s TOOLKIT PLUS
(or equivalent) to produce running code.
Program 1 as written is really very difficult to
follow and would be a nightmare to modify
when I want to use the algorithm another time.

10 REM PROGRAM 1 - ANAGRAMS

20 REM Version B1.0

30 REM Author Bernard Hill

40 REM BEEBUG Aug/Sept 1990

50 REM Program subject to copyright
60 ¢

100 DIM W% 255:T%=W%-1

110 INPUT $W%

120 N%=LENSW

130 PROCperm(N%)

140 END

150 ¢

1000 DEF PROCperm(L%)

1010 LOCAL I%

1020 IF L%=1 THEN PRINT S$W%:ENDPROC
1030 PROCperm(L%-1)

1040 FOR I%=1 TO L%-1

1050 X$=T%?I1%:T$?2I%=T%?L%:TH$?L%=X%
1060 PROCperm(L%-1)

1070 X%=T%?I%:T%?I%=T%?L%:T%?L¥=X%
1080 NEXT

1090 ENDPROC

Before we leave the topic of permutation listing,
I want to introduce a real problem which
depends crucially on the ability to try all the
permutations: the travelling salesman problem.

THE TRAVELLING SALESMAN
PROBLEM

A salesman has five cities to visit, say,
Birmingham, Carlisle, Derby, Exeter and
Fishguard. He lives in Aberystwth so that every
journey is a permutation of BCDEF sandwiched
between two A’s: e.g. AEBCDFA. The
respective distances are given in the following
mileage table:

A B C D E F
A xxx 120 233 138 202 86
B xor 192 39 | 461 176
C XXX | 189 355 276
D xxx | 196 194
E xxx | 231
23

Workshop - Searching

In this problem the names of the places are not
relevant to the problem, let’s just call them
places 0 (Aberystwyth) to 5 (Fishguard). Besides
the alteration from letters to numbers and
initialisation of the variables, the changes to the
program above are in the innermost procedure
of the permutation. Instead of just writing the
string, this time we need to evaluate the distance
of the current permutation and compare it
against the minimum. Should it be less, then we
have to remember the current permutation and
distance for printing at the end. Program 2
solves this problem and is easily adapted to
other towns and number of towns by changing
the DATA statements at the end.

This problem is very important and I have had
cause to implement this very algorithm in a real
situation. The head of a drilling machine moves
slowly and to maximise throughput it was
necessary to minimise the distance travelled in
drilling a number of disparate points. Note,
however, that since n! increases very rapidly
(10! is about 3.5 million) this is not a feasible
way to solve this problem for more than a
handful of points. The problem is in fact the
subject of much research and other algorithms
have been evolved to give ‘good’ (as opposed
to ‘best’) solutions for large numbers of points.

10 REM PROGRAM 2 Travelling Salesman
20 REM Version B 1.0

30 REM Author Bernard Hill

40 REM BEEBUG Aug/Sept 1990

50 REM Program subject to copyright

100 READ N

110 DIM dist (N,N),p(N),best (N)
120 FOR i=0 TO N-1:FOR j=i+l TO N
130 READ dist(i,]):dist(j,1)=dist(di,])
140 NEXT :NEXT

150 min=1E6

160 FOR i=1 TO N:p(i)=1i:NEXT

170 PROCperm (N)

180 PRINT "Solution : ";

190 FOR i=1 TO N

200 PRINT CHR$ (best (i) +65);

210 NEXT

220 PRINT " = ";min;" miles"

230 END

1000 DEF PROCperm(n)

1010 LOCAL i,t

1020 IF n=1 THEN PROCmin:ENDPROC
1030 PROCperm(n-1)

1040 FOR i=1 TO n-1

1050 t=p(i):p(i)=p(n):p(n)=t
1060 PROCperm(n-1)

1070 t=p(i) :p(i)=p(n) :p(n)=t
1080 NEXT

1090 ENDPROC

1100

1110 DEF PROCmin

1120 LOCAL i,d

1130 d=dist (0,p(1))

1140 FOR i=1 TO N-1

1150 d=d+dist (p(i),p(i+l))
1160 NEXT

1170 d=d+dist(p(N),0)

1180 IF d<min THEN min=d:FOR i=1 TO N:b
est (i) =p (i) :NEXT

1190 ENDPROC

1200 :

1210 DATA 5:REM no of non-base towns
1220 DATA 120,233,138,202,56
1230 DATA 192,39,161,176
1240 DATA 189,355,276

1250 DATA 196,194

1260 DATA 231

Let me leave you to try your hand at some
other permutation-related problems:

A. THE EIGHT QUEENS PROBLEM
How to arrange eight queens on a chessboard
so that none attacks any of the others either
diagonally or orthogonally.

Hints:

1. A permutation of numbers 1-8 can represent
the row numbers of the queens in columns a-h
where they could not attack each other
orthogonally.

2. Queens on the same SW-NE diagonal have
the difference of their co-ordinates the same.
Queens on the NW-SE diagonal have the sum
of their co-ordinates the same.

In the next article in this series we’ll have a look
at a more efficient program to solve this
problem when we look at Backtracking
Algorithms.

B. PERMUTATION SUMS .

How many arrangements of the digits 1-9, and
the symbols ‘* and ‘=’ are there so that they
make a true product such as:

48%159=7632 B

Beebug August/September 1990

i D L s i T L T L T e o T e e T s ey ey s I TN

Monix: A Machine Code Monitor (Part 1)

by Richard Taylor

Monix is a program which is intended to make
machine code just that little bit easier while still
offering something for Basic users. It is
essentially a machine code monitor and has
many utilities which might be found on a ROM,
including a disassembler, a memory viewer,
editor, mover and search routine, but you don’t
need Sideways RAM to use it. Adaptations can
be made to suit your requirements, and machine
code knowledge is not needed to do this.

Type in the program as listed keeping the same
line numbers: this is important so that part two
can be added correctly next month. When
saved as MONIX1 and run, it will assemble a
machine code file called MN. This is a fully
working program: part 2 will add additional
features and functions.

To use Monix, type *MN to
load the assembled code.
Make sure that any program
in memory is saved first, as
otherwise it is likely to be
deleted. Press Break and
‘Monix’ will announce itself
as if it were a ROM and then
it will push up PAGE as far
as it needs to. For ease of
use there are several ways
to access ‘Monix’. You can
type *CODE, *LINE, CALL
old page value (usually
&1900) or JSR old page
value (from machine code).
‘Monix’ can be used inside
any Basic or machine code program, but note
that it does not cater for the additional opcodes
of the Master’s 65C02.

Six of the fourteen options are implemented in
this first part, the rest being added in part two.
To save space unwanted routines can be left out
giving more free memory. To do this, simply
type in the label as it appears in the program
and then JMP keyrts. For example, if you donot
require the memory mover then type:

Beebug August/September 1990

Memory display using the 'V’
command

.move JMP keyrts
and then leave the rest of the routine out.
However, note that if you do not require the
disassembler you must type:

.dis JMP keyrts:.disl RTS
because it is accessed in the menu screen. Also
note that the string and byte searches both use a
core routine starting .bgsrch, so this can be deleted
only if both are not needed. To save more space
try lowering the value of PAGE into the DFS
workspace (PAGE can often be set as low as
&1200), though this is quite unnecessary on a
Master where PAGE is set at &E00 by default.

USING THE PROGRAM

On entering the monitor, the menu screen will
come up. The top two lines show the following:
Accumulator, X register, Y
register, the Processor Status
Register (with a bitwise
display to show the flags),
the Program Counter (or
more correctly the return
address from the monitor),
the Stack Pointer, and the
Current Work Address
(which will be explained
later).

The next four lines show the
stored user zero page
variables (from &70-&8F),
and in part two the next
eight lines will show a small
disassembled area around
the work address. The line
starting ‘Monix’ is available for you to
overwrite with a quick memo. Lastly there is a
list of all the one letter options. This menu
screen can always be recovered at any time by
pressing Escape.

At any time that an address or a 2 byte value is to
be input, the current work address can be quickly
entered by pressing Return straight away.
Otherwise, pressing Return at any stage during
any input will fill the rest of the input with zeros.

25

Monix: A Machine Code Monitor

PART ONE OPTIONS
W - Adjust Work Address.

Input any chosen address. From then on
pressing Return when a 2 byte value is needed
will enter this address automatically.

V - Memory Viewer.

Input an address and the screen will show the
memory around this area. The address in hex is
in the first column, followed by the next eight
bytes in hex and then the same eight bytes in
ASCIL If the byte is under &20 or over &7E a
dot is printed (these are the non-printing
characters). The following keys may be used:

A move down through memory

Z move up through memory

Shift move quickly showing only the
page being looked at

Escape exit Memory Viewer

A - Adjust Registers.

Input either A, X, Y or P to adjust the
Accumulator, the X register, the Y register or
the Processor status register respectively. Then
input the hex value required.

* - Star Command.

This allows any star command to be entered,
making disc access, FX commands or any other
useful facility accessible easily from the
monitor.

N - Note.
A quick note can be easily entered from here. It
will always be shown on the main menu screen.

Q - Quit Monitor.

Press Q to leave the monitor. The monitor will
return the machine to the mode previously in
use, and if the monitor was entered from a
program it will return to the original place from
which it was accessed.

PROGRAM NOTES

Lines 100-210 run the source code and *SAVE
the monitor according to its size and the PAGE
value. The variables are set up in lines 1000-
1130. Notice my abbreviations for the OS calls,
and that the beginnings of labels with these
letters have the following meanings:

.bg beginning of
.lp loop

26

.en end of
.mt meet

.cse and

.ccl carry set and clear

.out out of loop and routine
MAIN PROGRAM

.monitor saves the registers to the stack, and also
the user variables (&70-&8F) and the screen
mode. It then checks to see if a prompt to enter
should be given.

.bg is the beginning of the program proper. It
changes to mode 7, prints out the registers from
the stack and the saved area of &70-&8F, and
then calls the disassembler to complete the
menu screen.

.gtchr detects key presses and calls the relevant
routine.

.quit restores the screen mode, the user
variables and the register values and then
returns the machine to where it was before.

OPTION ROUTINES
.chwrkps allows the work address to be
changed.

.view is the memory viewer, it involves moving
memps (the current address) up or down by 8
bytes and then adding or subtracting an offset
of &60 to find the bytes to be displayed at the
top or bottom of the screen.

.adjust asks which register is to be changed and
then places the new value in the correct place
on the stack.

.star gets a string from .rdline and then sends it
to the CLI (Command Line Interpreter).

.note also takes any string and places it at
.noteline where it will be printed on the menu
screen.

SUBROUTINES

These are the main subroutines vital to the
running of the program. Many of them would
be useful in any machine code program.

slctwrd allows a 2 byte value (an address) to
be entered. It gets a string from .rdline and

Beebug August/September 1990

Monix: A Machine Code Monitor

translates it to a number using the .sbsict
routines. It also allows the work address to be
input easily. The 2 byte value is stored through
indirection with sictvec to the required
memory address, the value in X on entering
being placed in sictvec. To store the two byte
value in &72-&73 enter .slctwrd with X equal to
&72.

slct is identical to the above except that it gets
an input of one byte and can put the value to a
non-zero page address if required.

rdline allows an ASCII string to be typed in and
stored in .inline. It is quite long because it
allows Delete to be used.

row prints out eight bytes in hex starting from
the address contained in memps1.

.ascrow does the same but prints the ASCII
characters of the bytes.

prnm prints to the screen the hex value in the
accumulator.

.bitwise prints the binary value of the
accumulator.

rd calls the OSRDCH to get a character from
the keyboard (like G=GET). If Escape is
pressed, the stack pointer is restored to its value
when Monix was first called, allowing an easy
exit from the nest of subroutines.

.prtxt prints out a line of text starting at .tbs
plus an offset in X. It finishes on reaching a "+'.

.keyrts gives the Any Key message before
returning to .bg via the technique described in
rd.

.prwrd prints out the address contained in
memps and memps+1.

keys detects key presses by using the negative
INKEY value in X.

.back, .beep and .spc move the cursor back, give a
beep and print a space respectively.

.init prints the message when *MN is typed. It
also sets up the Break intercept needed to
change the OSHWM which Basic takes as the
value of PAGE. Finally, .tbs onwards is the text
used by the program.

Beebug August/September 1990

10
20
30
40
50

60 :

100
nitor

CHR$132"Version B1.8C"''"Code assembling
: Please wait"

110
120
130
140
150
160
170
180
190
200

" "iinit$+" "+page$

210

"+init$+" "+page$)

220
230

to run at"'~page$".
g will be "~nwpage$"."'"Type *MN to load

and
r JSR

access."

240

not be run again unless used with a di
fferent
hanges are made to the program."

250

PROGRAM! "

260

270
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190

1200 :

REM
REM
REM
REM
REM

Program MONIX

Version B1.8C

Author Richard Taylor
BEEBUG Aug/Sept 1990
Program subject to copyright

MODE7 : PRINTCHR$134"Machine Code Mo
Monix"'CHR$134"by Richard Taylor"'

DIM code &CO00

PROCassemble

diff=code-PAGE

nwpage=(((end-1) DIV256)+1) *256
end=end+diff

end$=STRS$~ (end)

code$=STR$~ (code)

page$=STRS~ (PAGE)

init$=STRS$~ (init)

PRINT'" *SAVE MN "+code$+" "+end$+

OSCLI ("SAVE MN "+code$+" "+end$+"

nwpage$=STR$~ (nwpage)
PRINT'"Monitor assembled and saved
The new PAGE settin

then *CODE, *LINE,CALL &"page$", o
&"~page$" (from machine"'"code) to

PRINT'"This assembler program need
original PAGE value or IF ¢
PRINT'CHR$136"HAVE YOU SAVED THIS

E

DEFPROCassemble
FORA%=4TO6STEP2

owr=&FFEE: onw=&4FFE7
oby=&FFF4:0rd=&FFEQ
0as=&FFE3:0Ccl=&FFF7
var=&70:varl=&71:var2=&72:cnt=&73
sp=&74:amnt=&75

1gth=&77 :wrkps=&79
mask=&7B:1im=&7C

memps=&80 :memps1=&82:retadr=&84
jsra=&86: jsrx=&87: jsry=488
opcode=&89:bytel=&8A:byte2=&8B
slctvec=&8C:retadr=&8E
P%=PAGE:0%=code

[

OPTA%

.monitor PHP:PHA:TXA:PHA:TYA:PHA
CLD:CLI:LDX#&1F:.1p
LDA&70,X:STAretmem, X:DEX:BPL1lp
LDAprmvar:BEQstart

27

Monix: A Machine Code Monitor

1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790

LDX#0:JSRprtxt
JSRrd:CMP#ASC"Y" :BEQntquitl
JMPquitl:.ntquitl

.start LDA#135:JSRoby:TYA:PHA
.reset LDA#22:JSRowr:LDA#7:JSRowr
TSX:STXsp

LDA&106,X:CLC:ADC#1

STAretadr: STAwrkps
LDY&107, X :BCCokreset : INY

.okreset STYretadr+l:STYwrkps+l

.bg LDA#12:LDX#2:JSRoby:JSRowr
LDX# (t0-tbs) : JSRprtxt
TSX:LDA&104, X: JSRprnm
TSX:LDA&103, X: JSRprnm
TSX:LDA&102, X: JSRprnm
TSX:LDA&105,X:JSRprnm: JSRbitwise
LDAretadr+1:STAmemps+1
LDAretadr : STAmemps : JSRprwrd
TSX:TXA:CLC:ADC#7:JSRprnm
LDAwrkps : STAmemps

LDAwrkps+1: STAmemps+1 : JSRprwrd
LDA#retmemDIV256: STAmemps1+1
LDA#retmem MOD256:STAmemps1 : JSRonw
LDA#&70:STAvar: .1pl JSRonw
LDAvar: JSRprnm: JSRrow: JSRascrow
LDAmemps1 : CLC: ADC#8 : STAmemps1
BCCccl:INCmempsl+l:.ccl
LDAvar:CLC:ADC#8:STAvar
CMP#&90:BElpl
LDAmemps : SEC: SBC#6 : STAmemps
BCScse:DECmemps+1: .cse
LDA#9:STAlim:JSRdisl

LDX# (noteline-tbs) : JSRprtxt
.gtchr JSRrd:JSRowr:TAY:JSRonw:TYA
CMP#ASC"V" :BNEnt view

JSRview: .ntview

CMP#ASC"D" :BNEntdis

JSRdis: .ntdis

CMP#ASC"E" :BNEntedit
JSRedit:.ntedit

CMP#ASC"U" :BNEnteditusr
JSReditusr:.nteditusr
CMP#ASC"A" :BNEntadjust
JSRadjust: .ntadjust

CMP#ASC"B" :BNEntbysrch
JSRbysrch: .ntbysrch

CMP#ASC"S" :BNEntstsrch
JSRstsrch: .ntstsrch

CMP#ASC"*" :BNEntstar
JSRstar:.ntstar

CMP #ASC"M" : BNEntmove

JSRmove: .ntmove

CMP #ASC"P" : BNEntprompt
JSRprompt : .ntprompt

CMP#ASC"N" :BNEntnote

JSRnote: .ntnote

CMP#ASC"J" :BNEnt jsr

1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900

1910 :

JSRjsr:.ntjsr
CMP#ASC"W" : BEQchwrkps
CMP#ASC"Q" :BEQquit
JMPbg

.quit LDA#22:JSRowr
PLA:JSRowr

ephuien

LDX#&1F:.1p3
LDAretmem, X:STA&70,X
DEX:BPL1p3
PLA:TAY:PLA:TAX:PLA:PLP:RTS

1920 :

1930
1940
1950

1960 :

.chwrkps LDX# (t1-tbs) :JSRprtxt
LDA#wrkps:JSRslctwrd: JMPbg

1970 :

1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230

2240 :

.view LDX#(tl-tbs) :JSRprtxt
LDA#memps : JSRslctwrd
LDAmemps : AND#&F' 8
CLC:ADC#200 : STAmemps

BCCviewccl: INCmemps+1: .viewccl
LDA#0 : STAcnt : LDA#12: JSRowr
.bgview LDAcnt:CMP#25:BCSbgviewl
INCcnt :BNEdownview

.bgviewl : LDX#&9E : JSRkeys :BCSupview
LDX#&BE: JSRkeys :BCSdownview
LDX#&8F : JSRkeys : BCCbgview:JMPrts
.downview LDX# (t2-tbs) :JSRprtxt
LDAmemps : SEC: SBC#8 : STAmemps
BCScseview:DECmemps+1: .cseview
LDYmemps+1 : SEC: SBC#&60
BCScseviewl:DEY: .cseviewl JIMPgo
.upview LDX# (t3-tbs) :JSRprtxt
LDAmemps : CLC:ADC#8 : STAmemps
BCCcclview: INCmemps+1: .cclview
LDYmemps+1 : CLC:ADC#&60
BCCcclviewl:INY:.cclviewl

.go STAmempsl:TYA:STAmempsl+l
JSRprnm: LDX#&FF : JSRkeys : BCCnt spd
JMPbgview: .ntspd

JSRback : LDAmemps1 : JSRprnm: JSRrow
JSRascrow:JMPbgview

2230 ¢

2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360

.adjust LDX#(t4-tbs) :JSRprtxt
.gtcharl JSRrd:LDXsp
CMP#ASC"Y" : BEQmtadj: INX
CMP#ASC"X" : BEQmtadj: INX
CMP#ASC"A" : BEQmtadj: INX
CMP#ASC"P" : BNEgtcharl

.mtadj JSRowr:JSRspc

STXmemps : LDX# (£ 5~-tbs) : JSRprtxt
LDA#var2:JSRslct
LDXmemps : STA&102, X: JMPrts

2370

2380

.star JSRowr

28

Beebug August/September 1990

Monix: A Machine Code Monitor

2390
2400
2410
2420
2430

LDA#18:STAlim:JSRrdline
LDA#&0D:STAinline, Y:JSRonw
LDX#inline MOD256
LDY#inline DIV256
JSRocl:JMPkeyrts

2440 :
2450 ¢

2460
2470
2480
2490
2500

2510

.note LDX# (t6-tbs) :JSRprtxt
LDA#14:STAlim:JSRrdline
LDY#13:.1lpnote
LDAinline,Y:STAnoteline+3,Y
DEY:BPLlpnote:JMPrts

2520

3000
3010
3020
3030
3040
3050
3060
3070
3080
3090
3100

3110 :

.edit
.editusr
.bysrch
+8tsrch
.move
.prompt
.jsr
.dis
JMPkeyrts
.disl
RTS

3120 ¢

3130
6000
6010
6020

.slctwrd LDX#0
STXslctvec+l:STAslctvec
LDA#4:STAlim:JSRrdline:JSRalign

6310 =

6320
6330
6340
6350
6360
6370
6380
6390
6400
6410
6420
6430
6440
6450

6460 :

6470
6480
6490
6500
6510
6520
6530
6540
6550
6560
6570

6580 :
6530 1

6600
6610

.rdline LDY#0:TYA:INClim:LDX1lim
.wipe STAinline,X:DEX:BPLwipe
.lprdline STYvarl:JSRrd2
CMP#127 :BNEntdelt

.delt DEY:BMInochar

JSRowr : LDA#0:STAinline, Y
JMPlprdline

.nochar INY:JMPlprdline
.ntdelt CMP#&0D:BEQenrdline
JSRowr:LDYvarl:STAinline,Y
INY:CPYlim:BNElprdline
JSRbeep: LDA#127: JMPdelt
.enrdline STYlgth:RTS

.row JSRspc:LDY#0:.lprow

LDA (mempsl) , Y :JSRprnm
INY:CPY#8:BNElprow:RTS

.ascrow JSRspc:LDY#0:.lpascrow
LDA (mempsl),Y:JSRasc
INY:CPY#8:BNElpascrow:RTS

.asc CMP#32:BCSokasc
LDA#ASC" .": .okasc
CMP#127:BCCokascl
LDA#ASC".":.okascl JSRowr:RTS

.prnm TAX:LSRA:LSRA:LSRA:LSRA
JSRprnml : TXA : AND#&O0F : JSRprnml

6030 LDY#0:LDAinline, Y:BNEmtslctwrd 6620 JSRspc:TXA:RTS

6040 INY:LDAwrkps+l:STA(slctvec),Y 6630 .prnml CMP#10:BCSlttrs

6050 JSRprnm:JSRback:DEY 6640 ADC#48:JMPmtprnml:.lttrs

6060 LDAwrkps:STA(slctvec),Y 6650 CLC:ADC#55:.mtprnml JMPowr

6070 JMPprnm 6660 :

6080 .mtslctwrd JSRsbslct0 6670 :

6090 INY:STA(slctvec),Y 6680 .bitwise TAX

6100 JSRback:INY:JSRsbslct0 6690 LDA#&80:STAmask:LDY#8:.1lpbit

6110 LDY#0:STA (slctvec),Y:RTS 6700 TXA:ANDmask:BEQntone

6120 : 6710 LDA#49:BNEmtbit

6130 .slct LDX#0 6720 .ntone LDA#48:.mtbit JSRowr

6140 .slctntzp STXslctvec+l:STAslctvec 6730 LSRmask:DEY:BNElpbit

6150 LDA#2:STAlim:JSRrdline:JSRalign 6740 JSR spc:TXA:RTS

6160 LDY#0:JSRsbslct0 61150 :

6170 STA(slctvec),Y:RTS 6760 :

6180 : 6770 .rd LDA#15:LDX#1:JSRoby

6190 .sbslct0 LDAinline,Y:JSRsbslctl 6780 .rd2 JSRord:CMP#&1B:BEQesc:RTS

6200 ASLA:ASLA:ASLA:ASLA:STAvar 6790 .esc LDA#&TE:JSRoby

6210 LDAinline+1,Y:JSRsbslctl 6800 LDXsp:TXS:JMPbg

6220 ORAvar:JSRprnm:RTS 6810 :

6230 .unrec LDA#48 6820 :

6240 .sbslctl 6830 .prtxt LDAtbs,X:CMP#43

6250 CMP#48:BCCunrec:CMP#58:BCCnonlet 6840 BEQenprtxt:JSRoas

6260 CMP#65:BCCunrec:CMP#71:BCSunrec 6850 INX:BNEprtxt:.enprtxt RTS

6270 SEC:SBC#7:.nonlet SEC:SBC#48:RTS 6860 :

6280 .align LDX1lgth:BEQenalign 6870 .keyrts LDX# (t7-tbs) :JSRprtxt

6290 .lpalign JSRback 6880 JSRrd:.rts JMPesc

6300 DEX:BNElpalign:.enalign:RTS Continued on page 38 |
Beebug August/September 1990 29

Games Review

by Peter Rochford

The Archimedes with its amazing sound and
graphics capability steals most of the limelight
these days, yet there are still quality games
being produced for the good old Beeb. In fact,
software houses are now looking to capitalise
on successful Arc releases by bringing out
versions of them for the Beeb where possible.

IRIP: 0006

E-Type

E-TYPE

Such is the case with one of the latest releases
from the 4th Dimension, E-Type (£14.20). This
originally appeared for the Archimedes with
great success, and justifiably so. E-Type is a
road racing game where you take control of a
Jaguar E-Type sports car to tear off across roads
and deserts at speeds of over 150mph.

There are several different tracks to choose from
and varying levels of skill. Control can be either
by joystick, or the popular ‘Snapper’ key
combination in conjunction with Return and
Space bar.

Once you have moved off, you accelerate away,
stepping through the gears as you go. Along
the roads are various obstacles to avoid such as
boulders and trees. Some of these just slow you
down a bit when hit, but others bring you to an
abrupt halt, with both occupants of your car
being unceremoniously catapulted out of their
seats. Having set the skill level beforehand, you
are allowed to crash several times before your
car is a final write-off.

30

The object of the game is to complete the track
in a certain qualifying time in order to progress
on to the next. To this end, time bonuses are
awarded for hitting certain objects in the road,
which include suicidal policemen who stand in
your way. Great fun!

Naturally, you are not alone on the highway.
There are scores of other cars hurtling around
like maniacs and these do their best to obstruct
you or force you off the road.

I have regularly played the Arc version of E-
Type and I suppose that does tend to spoil you
a bit. However, this version for the Beeb is
every bit as good in terms of fun, and shares
most of the features of the Arc game. Graphics
are well-detailed and the 3D scrolling
landscape is flicker free and colourful. Control
of the car is straightforward and this is a game
that you can quickly take to.

E-Type is one of the best releases now around
for the Beeb and should appeal to many.
Definitely recommended.

Inertia

INERTIA

Another new release from the 4th Dimension is
Inertia (£12.95). This is a rather unusual game that
takes place on a 3D tiled landscape. The object is
to guide your free-floating craft around this
landscape, negotiating the bridges and ramps, to
collect the special tiles that are scattered around.
Some tiles you pass over have strange properties,

Beebug August/September 1990

Games Review

such as ice, jump and transformation. The worst
hazards to avoid are the holes that seem to suck
you down, and the tendency to drift too easily off
the edge of the landscape.

Inertia is a massive game with screens that seem
to go on just about forever. Control of the craft is
tricky at first, but you quickly find that you can
get to grips with it. Once you have, beware. This
game is time-consuming and very addictive!

Graphics in Inertia are not what you might call
outstanding, but that doesn’t really matter. For
all their simplicity, it is the game itself that
makes up for it. As I said at the start, this is an
unusual and novel game that makes a change
from shoot-’em-ups and “ladders and levels”.
Highly recommended.

Nevryon

NEVRYON

Yet another 4th Dimension release is Nevryon
(£14.20). I can’t pronounce it either! This is a
sideways scrolling shoot-’em-up arcade-type
game where you must thrash everything in
sight. There are eight levels and the game
consists of 100K of graphics and code.

The object of the game, so the story goes, is to
free the planet of Nevryon from the aliens that
have landed to steal the titanium ore in the
planet’s caves. Down in the caves is where most
of the action takes place. You fly your craft by
either keyboard or joystick control, and shoot
everything in your path.

The action is fast and furious with plenty of
detailed colourful sprites and lots of raucous
noisy sound. You can choose either a large, low-
res screen or a smaller, hi-res screen by pressing

Beebug August/September 1990

a function key. I must say that I am not
impressed by the scrolling of this game; it is
very flickery. I appreciate that there is a
considerable amount of object detail including
background stars, but I have certainly seen
better sideways scrolling on a Beeb.

Generally I was disappointed with Nevryon. I
found that the flickering of the screen and the
sometimes messy graphics spoilt my
enjoyment. I personally would not buy it. Some
old favourites of this genre, such as Planetoid
and Rocket Raid, provide a far more satisfying
game of death and destruction to my mind.

HOSTAGES

Hostages (£16.96), from Superior Software, is an
arcade-type action adventure that has already
appeared on machines such as the C64, ST and
Amiga. There is also a version available for the
Arc, and now too for the Beeb.

The object of the game is to make an assault on
an Embassy that has been taken over by
terrorists, in order to release the hostages they
are holding captive.

You first must place your marksmen around the
building and then drop your paratroops onto
the roof, where they descend by rope into the
building to work their way through the rooms,
avoiding being killed by the terrorists. This is a
rather simple statement of the game. It is, in
fact, rather more involved than this, being a
mixture of strategy and shoot-"em-up.

This is not a game for an occasional five minute
bash. You really have to sit down and plan
what you are doing to achieve any degree of
success. I found it intriguing and fun to play.
You can easily get quite sucked into the
scenario and become really involved.

The graphics for an eight bit micro like the Beeb
are very good indeed and full marks to Peter
Scott for another fine conversion job. The sound
is equally good too.

Hostages is a game that I find very appealing
and I have already become quite addicted to it.
This is one of Superior’s best releases to date
and definitely recommended.

All the games reviewed here are available from
BEEBUG. All prices quoted include VAT. B

31

st
by S.Sexton

COUrsSe@ P In the First Course

articles for Vol.7 Nos.4 &
5 we presented a number of routines by
Lindsey Cullen for putting scrolling text on to
your screens. This month S.Sexton contributes
some more ideas on the same subject.

Scrolling Text Routines

than is possible with TIME. On a Master 128, the
value of 250 suggested above is reduced to just 5
if the alternative method with TIME is used.

Here is the first and most basic form of our
scroll procedure:

A routine for putting a scrolling text
message onto the screen can often
provide a useful ‘front end’ for many
programs. In this article we shall look
at a number of variants of a
procedure, PROCScroll, which allows
controlled scrolling of a text message
in any mode. The width of the scroll,

1000 DEF PROCscrollA(mssg$,X%,Y%,wdth%,dir%,wait$%)

1010 len%=LEN (mssg$)+wdth%+1

1020 FORstep%=len%*-(dir%=FALSE)TO len%*-(dir%=TRUE)
STEP =-(dir%*2+1)

1030 PRINTTAB (X%,Y%) ;MID$ (STRINGS (wdth%," ")+mssg$+
" ", step%,wdths%)

1040 FOR T%=1 TO wait$%:NEXT

1050 NEXT step$%

1060 ENDPROC

the scroll starting point on the screen,
and the speed and direction of scrolling can all
be defined by the user. These parameters are
passed to the procedure with the following
syntax:

PROCScroll (mssg$, X, Y, wdth,dir, spd)
where:
mssg$ is the string to be scrolled,

X and Y define the starting position for the left
hand end of the scroll banner,

wdth is the width of scroll banner,

dir is the direction of scroll. TRUE will give a
right to left scroll, and FALSE the opposite,

spd is the length of a FOR-NEXT loop, slowing
down the scroll. A value of 250 is a good
starting point.

Note that this method of creating a pause in a
program is dependent upon the speed of the
machine on which it is used. For a more
constant approach it is better to use the pseudo
variable TIME in the form:

t=TIME:REPEAT:UNTIL TIME-t>wait

where wait is the number of centi-seconds delay
required. However, the FOR-NEXT loop is
commonly used, and does give finer control

32

The logical expressions in the FOR-NEXT loop
at line 1020 allow the same statement to be self-
configuring to count up or down depending on
the values of the expressions (dir%=FALSE)
and (dir%=TRUE) which will be 0 or -1. If you
find this hard to follow try substituting the
parameters from some of the following
procedure calls and working out by hand the
format of the resulting FOR-NEXT expression.

The procedure relies on adding sufficient
spaces at each end of the string to cover up the
results of previous PRINT statements.

In use, for example:
PROCscrollA(AS$,0,10,39, TRUE, 250)

will scroll the text in A$ from right to left,
while:

PROCscrollA(A$,0,10,39,FALSE, 250)
will scroll the text from left to right. Both of
these examples specify a width of 39, so with a

40 column mode 7 screen, the text scrolls the
full width of the screen. On the other hand:

PROCscrollA(A$,15,10,10, TRUE, 250)

will just scroll the text within a 10 character
window, and this can again be selected to scroll
in either direction. You will probably find it

Beebug August/September 1990

First Course

easier to appreciate what is going on if you type
in the procedures and try out the examples as
we progress.

However, this is only the start of the fun that is
possible with this routine. The text can have
resistance to being scrolled (imagine somebody
giving the text “jerks” opposing the scroll). The
effect (in a random form) can be added with the
following line:

1045 IF RND(10)<4 THEN step%=step%-2

will work from the centre to the sides. Care is
needed to ensure that the two sub-strings reach
the middle, or the sides together. Some trial and
error may be needed here to get the most
satisfying effect.

The possibilities really get interesting when the
procedure is adapted to handle TWO messages,
one at the top of the screen and one at the
bottom. It gets even more fun if one of these is
running backwards!

Or, if controlled “jerks” are wanted, (e.g.
to re-read a section of text if missed the
first time), the following can be used:

1045 IF INKEY-99 THEN step%=step%-2

which assumes that the space bar is
pressed to re-read text. Or, if scrolls are
wanted to “converge”, one being
reversed, the following line will work if
the value of “scroll width” is 19, and a
40 column mode is used:

1045 PRINTTAB(X%+19, Y%) ;MID$ (STRINGS (wdt

1200 DEF PROCscrollC (mssg$,X%,Y%,wdth%,dirs,wait$) |

1210 len%=LEN (mssg$) +wdth$+1 |

1220 FORstep%=len%*-(dir$=FALSE)TO len%*-(dir%=TRUE) |
STEP - (dir$*2+1) i

1230 FOR a=1 TO 4 !

1240 PRINTTAB (X%, Y%+a*2) ;MIDS (STRINGS (wdth%," ")+ |
mssg$+" ", step$, wdths) [

1250 PRINTTAB (X%, Y%+a*2+1) ; MIDS (STRINGS (wdth%,™ ™)+
mssg$+" ", LEN (mssg$) -step¥+wdth%+1,wdths)

1260 NEXT

1270 FOR T%=1 TO wait%:NEXT

1280 NEXT step%

1290 ENDPROC

h%," ")+mssg$+" ", LEN(mssg$)-step$,wdths)

However, a better solution to split string
scrolling is given in PROCscrollB.

This gives a ripple tank effect, with the scroll
multiplied down the screen. For example:

1100 DEF PROCscrollB(mssg$, X%, Y%,wdth%,dir%, wait$)

1110 len%=LEN (mssg$)+wdth%+1

1120 FORstep%=len%*-(dir%=FALSE)TO len%*-(dir%=TRUE)

STEP -(dir%*2+1)

1130 PRINTTAB (X%,Y%) ;MIDS (STRINGS (wdth%," ") +mssg$+

" ",step%,wdth¥)

1140 PRINTTAB (X%+19,Y%) ;MID$ (STRINGS (wdth%," ")+mssg$+

" ",LEN(mssg$) -step%+wdth%+1, wdth%)
1150 FOR T%=1 TO wait%:NEXT
1160 NEXT step$
1170 ENDPROC

PROCscrollC(a$,0, 6,39, TRUE, 0)
or the same thing backwards
with:
PROCscrollC(A$,0,6,39,FALSE, 0)

Another option (in mode 7) is
double height text, but a problem
occurs here when text is printed
behind the scroll window. A “turn-

The same text string is scrolled from both left and
right margins at the same time, or depending on

e off” VDU code would be needed.
But if this is not important, the PRINT
statement could be doubled.

the direction of scroll, from the
centre of the screen outwards
towards the margins. Using the call:

PROCscrollB(A$,0,10,19, TRUE, 250)

will scroll the text from the sides
to the centre, while: ")+

PROCscrollB (A$,0,10,19,FALSE, 250)

1300 DEF PROCscrollD (mssg$,X%, Y%, wdth%,dir%,wait%)

1310 len%=LEN (mssg$)+wdth%+1

1320 FORstep%=len%*-(dir%=FALSE)TO len%*-(dir%=TRUE)
STEP - (dir$%*2+1)

1330 PRINTTAB (X%-1,Y%);CHR$141;MID$ (STRINGS (wdth%," ")+
mssg$+" ", step%,wdth%)

1340 PRINTTAB(X%-1,Y%+1);CHR$141;MID$ (STRINGS (wdth%,"

mssg$+" ", step%,wdth%)
1350 FOR T%=1 TO wait%:NEXT, :ENDPROC

Beebug August/September 1990

33

First Course

For example, this call will give an effect similar
to the first routine but now in double height:

PROCscrollD (A$,1,10,39, TRUE, 250)

and this one will scroll the text the other way:

Lastly, here is version of the basic procedure
which combines double messages and reverses
all at once. To cope with two messages, all the
parameters except for direction and speed
which apply to both messages are doubled.

PROCscrollD (AS,1,10, 39, FALSE, 250) 1400

Combinations of “reversed scrolls”, | 1419
“multiple scrolls” and “block scrolls” | 1420
(same message repeatedly scrolled
down the screen) tend to slow the | 1430
program down because of the sheer
amount of work that needs to be done, | 1440

but the value of spd can be lowered to | 1450
suit. 1460

DEF PROCscrollE(mssgl$,mssg2$,X1%,Y1%,X2%,
Y2%,wdthl%,dir%,wdth2%, wait%)

FOR step%=0 TO LEN(mssgl$)+wdth2%+1

PRINTTAB (X1%, Y1%) ; MIDS (STRINGS (wdthl%," ")+
mssgl$+" ", step%,wdthl$)

PRINTTAB (X2%, Y2%) ;MID$ (STRINGS (wdth2%," ")+
mssg2$+" ", LEN (mssg2$) -step$+wdth2%+1, wdth2$%)
FOR T%=1 TO wait$%:NEXT

NEXT step%

ENDPROC

There is one drawback to the system. Because An example of the use of this procedure for two

of the MID$ process in the procedure, there is a
limit to the maximum length of string that can
be handled. This varies with the value of “scroll
width” and can be found, for a given scroll
width by:

max. length = 255 - (scroll width + 1)

strings A% and B$ might be:

PROCscrollE (AS,BS,10,5,0,20,20,TRUE, 39,200)

All these ideas are incorporated in a comprehensive
working demo on this month’s magazine disc. B

ADFS Directory Examiner and Command File Creator (continued from page 17)

3410 :

3420 DEF PROCdisc

3430 REPEAT

3440 PROCprompt (" Insert source disc a
nd press any key") :G%=GET

3450 PROCprompt (" (Paged Mode-Press Sh
1EE Co gcroll) Press Break to leav
e the program")

3460 CLS:;0SCLI("DIRM) :0SCLI® .=

3470 back%=0:*FX21,0

3480 PROCprompt (" Press Return to accep
t current disc, or change source disc
and press a key.")

3490 G%=GET

3500 UNTIL G%=13

3510 ENDPROC

35201

3530 DEF PROCinit

3540 vDU23,245,145,210,180,144,6,41,79,
13

3550 VDU23,246,32,80,70,105,15,71,173,134
3560 vpu23,247,32,80,66,102,66,66,66,135
3570 vDU23,248,32,80,70,105,66,68,72,143
3580 vpu23,249,32,80,70,105,66,65,73,134
3590 vpu23,250,32,80,66,100,76,79,66,130
3600 vDu23,251,32,80,71,100,98,65,69,130

2610 VypU23,252,32,80,66,100,12,78,13 134
4620 VpU#3, 253,32,80,171,97,65,66,66,130
3630 vpU23,254,32,80,170,105,170,13,73,134
3640 VDU23,255,32,80,70,105,71,65,66,132
3650 DIM dir$(46),level$(127),control% (6)
3660 DIM control% 12,output% 16,block% 4
3670 DIM buffer% 10,string% 11,cntrl% 18
3680 *FX21,0
3690 *FX4,1
3700 level%=0:level$ (0)="8S"
3710 back%=0:cfp%=0:key$=""
3720 OSCLI"KEY7 "+CHRS (253)
3730 OSCLI"KEY8 "+CHR$ (254)
3740 OSCLI"KEY9 "+CHR$ (255)
3750 ENDPROC
3760 -
3770 DEF PROCend
3780 CLOSE#0:0SCLI"DIR":VDU26,12,15,20
3790 *FX18
3800 *FX4,0
3810 PRINT CHR$(12);"Finished:"'"Key f0
to *EXEC Command File"'"Key f1 to *EDIT
Command File"
3820 *KEY0 *EXEC !Command F|M
3830 *KEY1 *EDIT !Command F|M
3840 ENDPROC

B

34

Beebug August/September 1990

312

by Robin Burton

This month I'll carry
on with the topics
that were to follow
the article of two
months ago. The
delay has proved beneficial, because since then
I've had a letter from a Forum reader which
included a very useful tip.

Dos+

CD AGAIN

Towards the end of the June Forum on the
subject of directory and path names, I had
mentioned the change directory command,
‘CHDIR’, or ‘CD’ for short. That there’s more to
say about this subject will be obvious to most of
you, but there’s a good reason why I didn’t go
further at the time. At this point perhaps I
should explain how the content of each issue of
the Forum evolves.

Usually (though I must admit, not always) as I
sit down to write each Forum I have a pretty
clear idea of the topics for the month. At the
same time there is rarely a detailed plan, all I
have in mind are the main points I want to
raise. The truth is, therefore, that more often
than not I “make it up as I go along”. The result
of this technique (and I use that word in its
loosest possible sense) is that I begin with the
thought that I'm going to run out of ideas
before I reach the end of the article, but the
reverse is more often the case and I run out of
space before I've covered everything I want to
include, like this month, hence the ‘extra bit’
(thanks Mike).

So it was two months ago. Id like to have
developed the use of ‘CD’ further and intended
to do so, but last month’s digression delayed
this. In the time since then I've learned of
another use of ‘CD’, one which I freely admit
I'd never tried, so all credit to the author. Before
I give you this tip I'd better cover the points I
had intended to go on to, otherwise it might not
be understood by some of our newer 512
converts.

Beebug August/September 1990

512 Forum

PATH

Some of you will be familiar with the floating
drives, N:, O: and P:, though these are much
more likely to be used in hard disc systems
where the number and structure of sub-
directories is unavoidably more complex than
on floppy disc. I've mentioned floating drives
before in the Forum, but even so I know that
some of you aren’t sure how they work,
particularly as DOS reference books won’t
mention them because they’re actually a CP/M
facility.

The ‘floating’ drives are not physical disc
drives, but are notional drive identifiers which
can be allocated by the user to real drives or
directories. For example you might have a long-
winded directory path to which you frequently
need to refer. The format of the allocation, using
drive N: as our example is:
CD N:=DIRECTORY PATHNAME

where the directory pathname can be any you
wish to access.

By using the floating drives you can therefore
allocate a single ‘shorthand’ name to any
directory, which the system will recognise and
translate accordingly when the short name is
given. Practical problems will perhaps show the
benefits of this facility better.

Suppose that you have several long directory
names that you use frequently and therefore
need to type fairly often. Sometimes such
names can be included in a ‘PATH’ command,
but the major problem of ‘PATH’ (as I explained
in Forum Vol.8 No.3) is that all the separate
paths you want to specify must be given
together in a single command.

This is because every new ‘PATH’ setting
always entirely replaces any paths set up by the
previous ‘PATH’ command. The obvious
implication is that the total length of all the
pathnames you wish to specify must all fit
within the length of a single DOS command-
line command, 127 characters. Given that each

35

512 Forum

directory name can be up to eight characters
and the directory names in any path must be
separated by a ‘\’ character and are usually
preceded by a drive identifier, you can see that
it’s quite easy to run out of space if you're
setting multiple paths.

Are you limited therefore to very short
directory names, or constrained to set only a
very few paths?

Well, not necessarily, but to overcome these
space limitations you might try attacking the
problem from a slightly different angle and this
is where ‘CD’ and floating drives become
extremely useful (you see, I got there in the
end).

CD PLUS PATH

In my 512 I have a number of pathnames and
floating drive settings in my ‘AUTOEXEC.BAT’
file. Some of them, of course, are short and
present no problems. For example, I
permanently run a RAMdisc to which I copy all
the most frequently needed standard DOS
utilities such as COMMAND, FSET, SDIR,
CHKDSK, DISK, SHOW, FORMAT, PRINT and
so on. All these need loading from disc every
time they are called, but from the RAMdisc
they operate so fast that they operate just like
permanent DOS commands. Also, because
access is so rapid, Drive D: is always the first
entry in my PATH setup. If any file isn’t in
drive D: the delay of checking it is so short it’s
undetectable.

I also run some files from the root of drive C:,
mostly with the system attribute set so that they
won’t clutter the root directory display. These
are also general utilities, the ones which aren’t
used very frequently, but which, even so, might
be needed at any time. Therefore C:\ is the next
path setting. i

The next path I set is the directory holding my
word processor applications software, a
directory called ‘PCWRITE’ which is in my
main applications directory, ‘SOFTWARE’, also
in drive C:. The full pathname specification is
therefore:

C:\SOFTWARE \PCWRITE\

36

I also use PCTOOLS from Central Point
Software as enough of it works correctly in the
512 to justify the megabyte or so it occupies on
disc. This too is in ‘SOFTWARE’, and its path is
called:

C:\SOFTWARE \PCTOOLS\

The next directory I include contains my own
machine code programs, and its full path is:
C:\ES\PROGRAMS\

I also regularly wuse an 80186
assembler/debugger which also has its own
directory, called:

C:\SOFTWARE\A86\

I have several other regularly used paths, so by
now you must be getting the idea. If I tried to
specify all these pathnames together in one
PATH command I'd probably run out of room.
The important point here is that ‘PATH’ won't
tell you there’s a problem, you find out later
when something doesn’t work.

If the convenience of setting paths can’t be dore
by the direct approach, the answer is to use
floating drives with the ‘CD’ command.

The most sensible way is to substitute the
floating drive names for the longest pathnames
that you manually refer to most frequently, thus
saving the most space and effort. The
pathnames for the word processor and
PCTOOLS are the longest, but I rarely need to
explicitly ‘CD’ to them. There are others though
that I often use, but which, without a shortcut
need a lot of typing. One example is my source
directory, the path of which s
‘C:\ES\SOURCES\'. However, by using the
command:

CD N:=C:\ES\SOURCES\
in my batch file, when I want to specify this
path I can simply call it N:. Sometimes this
facility can also be used in ‘PATH’, so as an
example, for the PCWRITE pathname, using
drive O: I can likewise shorten that path to O,
and P: for PCTOOLS. Now, using my first four
pathnames for illustration, in my
AUTOEXEC.BAT file, instead of:

PATH D:;C:;C:\SOFTWARE\PCWRITE\

:C: \SOFTWARE \PCTOOLS\

I can simply use:

PATH D:;C:;0:;P:

Beebug August/September 1990

512 Forum

which as you can see is considerably shorter,
and leaves plenty of room for more paths.

The main advantage of floating drives though,
is using them when you will need to regularly
change directories manually. Although there
are only three floating drives and I have used
two of them in the batch file, I always reserve
one, N:, to point to my working directory,
whatever that is at the time. Let me explain.

In the 512 I perform one of two main jobs. One
is writing text for various purposes, the other,
and the most frequent is writing machine code
programs. Taking the latter as the example, all
my source code is in a directory called
“\ES\SOURCES\’ in drive C:. By allocating
drive N: to this path when I'm doing this job, I
can simply type ‘P:” and I have virtually
automatically performed:

CD \ES\SOURCES
To edit a source program I just type:

ED PROGRAM.SRC
ED being the main word processor module, and
PROGRAM.SRC being the name of the
program I'm working on at the time. After
editing I can then exit to a DOS shell, type:

ASSEMBLE PROGRAM. SRC
and the COM file is assembled into
\ES\PROGRAMS\ by my batch (file,
ASSEMBLE, with an automatic change of
directory to the program directory at the end so
that I can immediately test the program. As
frequently happens I then need to go back to
the source directory to correct or change
something I've found during de-bugging, so all
I need enter is:

N:
and I'm back in the source directory. This is
followed by:

EXIT
to leave the DOS shell and return to my word
processor, which still has the source code
loaded ready for instant edit.

Not everyone will have such a repetitive
operation as this of course, but if you do it's
well worth the effort of setting it up for
maximum convenience like this. With this set-
up I can temporarily exit my word processor to
a DOS shell, assemble a program, check a

Beebug August/September 1990

specific point in the debugger and return to the
source code in the word processor in under half
a minute, with the absolute minimum of typing
and hence little chance of error.

PROBLEM AREAS

Unfortunately it's not a perfect world and there
are a couple of potential problems lurking in
these techniques which may become obvious
only when you’ve tried them. The first concerns
the way you specify pathnames, and applies
whether you use floating drives or not.

You’ll have noticed that I specified all the
pathnames in full, starting with the drive and
the root directory. The reason is that each path
will be searched in isolation by DOS, so you
can’t for example specify ‘\SOFTWARE\’ as
one path and have, for example ‘\PCWRITE\’
and ‘\PCTOOLS\’ as alternatives or ‘sub-
paths’ within the first. ‘PATH’ just isn’t that
clever, so unless you’re positive that a
pathname will always be within your current
directory in the current drive when it's needed
you must supply full path specifications.

The second possible problem concerns the use of
floating drives only, but it is even less obvious
and potentially harder to diagnose. Whether it's a
problem or not depends on the software you're
using at the time. Some applications will work,
others might not so some investment in trial and
error may be needed before you can decide when
to use floating drives.

If an application uses separate definition files
for its configuration options, as many
commercial packages do, depending on how it
reads path settings it might or might not be able
to find these files if you’re not in its own
directory at the time.

The problem is that the application will load
wherever it’s called from, because DOS Plus
controls that process and of course DOS Plus
correctly translates floating drive specifications.
However, the reading of configuration or
definition files will be done by the program
itself, after the main module has begun
execution. Since floating drives are a CP/M
facility (i.e. not DOS) there’s a good chance that

37

512 Forum

many applications will complain they can’t find
a file, or may alternatively resort to built-in
defaults at this point, because they can’t
translate the floating drive path correctly.

ASSIGNING DRIVES

You can see that with floating drives and the
less publicised features of ‘CDY, there’s a lot of
scope to customise your 512 for specific
operations. Even so there’s one variation I've
never used.

Colin Price wrote to me from Reading as a
result of the June Forum (Vol.9 No.2) to point
out another very useful facility of ‘CD’. I'd said
in that issue that there’s no ASSIGN’ command
in DOS Plus, but there are other ways round the
problem. Colin wrote to remind me of one of
them. CD is capable of providing such a facility.

The general format of the command is:

CD target-drive=substitute-drive
where ‘target-drive’ is the drive a package may
want to access, but ‘substitute-drive’ is the real

Monix: A Machine Code Monitor (continued from page 29)

drive you want it to use. This looks reasonable
given the other uses of CD, that is, to assign
directory paths to floating drives, but even so
I've never used it quite like this.

To run a package which insists on drive C:
when you only have floppies you can therefore
type:

CD C:=A:
after which accesses to drive C: will be
redirected by DOS Plus to drive A:.

A LAST WORD

As you know I wrote in the March issue about
the progress (or lack of) of the 512 Technical
Guide, but that things didn’t go according to
plan is obvious by now. In the event I didn’t get
the final page proofs until the end of May.

The reasons are academic at this stage, but one
fact that isn’t is that I really can promise you
that the book will be appearing within a couple
of weeks of this issue unless the printer has a
fire (perhaps I shouldn’t have said that)! B

6890 :

6900 .prwrd LDAmemps+1:JSRprnm:JSRback
6910 LDAmemps : JMPprnm

6920 '+

6930 .keys LDA#&81:LDY#&FF :JMPoby

6940 :

6950 .back LDA#8:JMPowr

6960 :

6970 .beep LDA#7:JMPowr

6980 :

6990 .spc LDA#32:JMPowr

7000 :

7010 :
7020 .init SEC:JSRsetup

7030 LDA#&4C:STA&287

7040 LDA#setup MOD256:STA&288

7050 LDA#setup DIV256:STA&289

7060 LDX#(t50-tbs) :JMPprtxt

7070 .setup BCCcclsetup

7080 SEI:LDA#monitor MOD256:STA&200
7090 LDA#monitor DIV256:STA&201:CLI
7100 LDX#(t51-tbs) :JSRprtxt

7110 .cclsetup LDA#180

7120 .setpage LDX#((end-1)DIV256)+1
7130 LDY#0:JMPoby

7170 .prmvar EQUB&00

7180 .retmem EQUS STRINGS (32,"-")

7190 .inline EQUS STRINGS (10,"-")

7200 .srchline EQUS STRINGS (10,"-")
7210 .tbs

7220 EQUB&1E:EQUS" Mnx YN +"

7230 .t0 EQUB&86:EQUS"A X Y P NV-BDI
ZC BC SP Wk" :EQUW&2BOD

7240 .t1 EQUS"Address":EQUB&86:EQUS"&+"
7250 .t2 EQUW&OBLE:EQUB&2B

7260 .t3 EQUD&0A18001F:EQUB&2B

7270 .t4 EQUD&OD7F7F7F : EQUS"AXYP" : EQUW&
2B86

7280 .t5 EQUS"= &+"

7290 .t6 EQUS"String":EQUW&2B86

7300 .t7 EQUB&OD:EQUS"Any key+"

7310 .noteline EQUW&ODOD:EQUB&84:EQUS"M
onix Bl,8C T

7320 EQUW&0DOD:EQUB&83:EQUS"W VD A E *
JNSBMUP Q ":EQUW&2B84

7330 .t50 EQUS"Press Break":EQUW&2BOD
7340 .t51 EQUS"Monix B1.8C":EQUW&0DOD:E
QUB&2B

9000 .end

9010]

7140 9020 PRINT;~P%

7150 : 9030 NEXTA% r

7160 : 9040 ENDPROC B
38 Beebug August/September 1990

R R R e I N L T T e e I e SORIT = T .

Thanks for the Memory - Bas128 (part 2)

by Andrew Rowland

This month we continue our exploration of
Bas128 with a look at assembler. But first, two
useful programming utilities.

LISTIF

Bas128 is based on Basic II, and as a Master
owner, I found I greatly missed the LISTIF
command. Listing 1 is the utility I wrote to
replace it, and it can be adapted for Basic I and
I as well. Listing 1 is not a program as such but
an EXEC file. Carefully *BUILD LISTIF or type
it into a text editor like Wordwise or the
Master’s Edit, and save normally as text with
the name LISTIF. View is not suitable because it
does not allow long enough lines. As it is,
abbreviations are still necessary. Only press
Return where indicated by <CR>.

Listing 1

subsequent line using an equivalent of INSTR.
If it does, the whole line is displayed using the
routine in Bas128 at &6FB3 which expands
tokens to keywords if necessary. Owing to the
limits of a one line loop, it does not display
tokenised line numbers (following GOTO etc.)
properly, but will still identify lines correctly.

To use it for Basic II, replace the long line in the
middle with:

V.6:REP.S%=T%+4:IFINSTR($S%, $C%) P.T%?1*256
+T%22" ";:F.I%=1TO LENS$S%:A%=ASCMI.$S%,1%):
CA.&B50E:N. :P.:T%$=T$+LEN$S%+4:U.T%?1>127 EL
.T%$=T%+LEN$S%$+4:U.T%?1>127:V.21

For Basic I, the call address &B50E should be
changed to &B53A.

V.21 =CR>
72%=Q@%:Q@%=5:C%=PA.+4 <CR>
T%$=C%+LENSC% <CR>

0 <CR>»
@%=Z2%:V.6 <CR>

V.6:REP.S%=T%+4 : L$=LENSS%-LENS$C%+1:F.I%=1TOL% :F%=MI.$S%, I%, LENSC%)=$C%:I%=1%
- (F%$*L%) :N.:IFF% P.T%?21*256+T%22" "; :F.I%=1TO LEN$S%:A%=ASCMI.$S%,1%) :CA.&6F
B3:N.:P.:T$=T%+LENSS%+4:U.T%?1>127 EL.T%=T%+LEN$S%+4:U,T%21>127:V.21 <CR>

LISTIF assumes your program does not have a
line 0. To use it, enter the string you are
searching for as line 0 - this ensures that
keywords are tokenised. Leading and trailing
spaces are significant. Then type *EXEC LISTIF.
For example, if you want to list every
occurrence of PRINT, enter OPRINT then
*E.LISTIF. Line 0 will be removed afterwards.
To prevent it doing this, enter it as line 1
instead: the number isn’t important so long as
it’s the first line in the program.

The utility makes use of the fact that the lines of
Basic stored in memory are terminated by a
Carriage Return (ASCII 13) and so can be
treated as static strings. It sets up a REPEAT
loop to go through each line of the program,
seeing if the first line is contained in any

Beebug August/September 1990

EDIT

Master owners will also miss the EDIT
command. Listing 2 comes to the rescue here,
creating a utility called BEDIT. When you want
to use the Master’s editor, simply type *BEDIT
and the result is the same as EDIT in Basic IV,
except that the format produced by LISTO is
followed (EDIT never puts spaces after the line
number) and you can’t specify line numbers -
you always get the whole program. Returning
to Bas128 is not so easy: you must save the
program as text, return to Bas128 and EXEC it
in - do not use ‘Return to language’.

The program works by redirecting the OSWRCH
vector, which handles writing characters to the
screen. By forcing Bas128 to list the current
program (lines 310-450), it is able to store the

39

Thanks for the Memory - Bas128

output in a buffer, producing a pure ASCII
version. The Master’s Editor has a feature that
Basic uses to implement the EDIT command,
whereby you can inform it of the presence of text
in memory. In this case, the start address is
stored at &72, the end address at &70 and the
Editor called with *EDIT 72,70 (line 720).

The length of program it can cope with is
limited by the size of buffer available - from
OSHWM to &2F00 - but is still useful. It is not
possible to use this utility with other word
processors or with Basic II, and this is a topic I
may return to in a future article.

Listing 2

10 REM Program BEDITbas

20 REM Version B1.00

30 REM Author Andrew Rowland

40 REM BEEBUG Aug/Sept 1990

50 REM Program subject to copyright

100 wrchv=&20E

110 osbyte=&FFF4:0scli=&FFF7
120 pointer=&70:start=&72

130 oldv=&74:flag=676:temp=6&77
140 FOR pass=0 TO 3 STEP 3
150 P%=&A00

160 [OPT pass

170 .install \ alter WRCHV
180 LDA wrchv :STA oldv

190 LDA wrchv+1:STA oldv+l
200 SEI:LDA #entry MOD &100
210 STA wrchv

220 LDA #entry DIV &100

230 STA wrchv+l

240 CLI

250 \ set pointers

260 LDA #2

270 STA pointer:STA start

280 LDA #180:1LDX #0:LDY #&FF
290 JSR osbyte

300 STX pointer+1:STX start+l
310 N put ML." in k/b pointer
320 LDA #21:LDX #0:JSR osbyte
330 \ X is preserved

340 .firsttime

350 LDA auto,X:JSR poke

360 INX

370 CPX #4:BNE firsttime

380 RTS \ END

390 .auto EQUS "L."+CHR$13+CHRSO0
400 \ perform *FX138,0,n

410 .poke

40

420 TAY:TXA:PHA
430 LDA #138:LDX #0:JSR osbyte
440 PLA:TAX
450 RTS
460 \ % Kk Kk ok d ok sk gk ok ok ok ok ok ok k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok
470 .entry
480 STY temp
490 LDY flag:BNE secondtime
500 CMP #13 :BNE out
510 INC flag:BNE out
520 .secondtime
530 CMP #0 :BEQ finished
540 CMP #10:BEQ out
550 LDY #0:STA (pointer),Y
560 INC pointer:BNE out
570 INC pointer+l
580 LDA pointer+l:CMP #&2F
590 BNE out
600 JSR restore
610 BRK:BRK
620 EQUS "Program too long":BRK
630 .out
640 LDY temp:RTS
650 :
660 .finished
670 DEC pointer:JSR restore
680 LDX #string MOD &100
690 LDY #string DIV &100
700 JMP oscli
710 .string
720 EQUS "EDIT "+STRS~start+","+STRS~p
ointer:EQUB 13
730 -
740 .restore
750 SEI
760 LDA oldv :STA wrchv
770 LDA oldv+1:STA wrchv+l
780 CLI:RTS
790]NEXT
800 a$="SAVE BEDIT "+STRS$~install+" "+
STR$~P%
810 PRINTa$:0SCLIa$
820 END

ASSEMBLER

This is an area where Bas128 really comes into its
own, particularly when assembling long ROMs.
Normally, space must be found in main memory
for both the source code and the machine code,
but Bas128’s built in assembler*allows you to
assemble to main memory or sideways RAM
using 17 bit values for P% and O%. When above
&10000, the assembler automatically adjusts the
addresses to &8000 - &BFFF. Any machine code

Beebug August/September 1990

Thanks for the Memory - Bas128

so produced can be CALLed in the usual way,
ignoring the fact that it is actually in sideways
RAM, as the addresses are adjusted
automatically. However, it will not allow you to
jump to or refer to one RAM bank from another
one; and if you do, a “Bank” error is generated
(error 99). If you assemble code past the end of a
bank, you get a “Wrap” error (error 98).

The easiest way to assemble a ROM is to use
bank Z (7 on the Master). The bank starts at
&1C000, so P% should be set to this and
HIMEM lowered accordingly (alternatively, use
bank W (4) and raise PAGE to &14000). It is not
necessary to use offset assembly. As an
example, listing 3 assembles a ROM header -
that is, sufficient code for it to be recognised as
a ROM without performing any other function.
Enter, save and run the program. You will see a
ROM installed in bank 7. Press Ctrl-Break to
initialise the image and try *HELP - a short
message should appear. Remember that
machine code located above &FFFF should be
saved using *SRSAVE or the procedure called
PROCsr that I presented last month.

Listing 3

10 REM Program ROMhdr
20 REM Version B1.00
30 REM Author Andrew Rowland
40 REM BEEBUG Aug/Sept 1990
50 REM Program subject to copyright
60
100 title$="Example ROM"
110 vs$="Version 1.00"
120 help$="This ROM performs no
functi
ons"
130 oswrch=&FFEE:osnewl=&FFE7
140 -
150 HIMEM=&1C000
160 FOR pass%=0 TO 3 STEP 3
170 P%=HIMEM
180 [OPT pass$%
190 .langentry
200 BRK:BRK:BRK
210 JMP serventry
220 EQUB &82:EQUB (copywr-langentry)
230 EQUB VALRIGHTS (vs$,2) \ vs number
240 .title EQUS title$
250 EQUB 0:EQUS vs$
260 .copywr
270 EQUB 0:EQUS"(C) BEEBUG 1990"

Beebug August/September 1990

280 EQUB 0 \
290 .serventry
300 CMP #9:BEQ givehelp
310 .noserv RTS
320 ¢
330 .givehelp
340 PHA:TYA:PHA:TXA:PHA
350 LDA (&F2),Y:CMP #&D
360 BNE serveo:JSR osnewl
370 LDX #0
380 .titleloop
390 LDA title,X:BNE over
400 LDA #32
410 .over
420 JSR oswrch:INX
430 CPX #LENtitle$+LENvsS$S+1
440 BNE titleloop
450 JSR osnewl:LDX #0
460 .helploop
470 LDA help,X:JSR oswrch
480 INX:CPX #LEN (help$)
490 BNE helploop
500 JSR osnewl
510 .serveo
520 PLA:TAX:PLA;:TAY:PLA
530 RTS
540 ¢

550 .help EQUS help$

560]NEXT

570 *ROMS

580 PRINT"Now press Ctrl Break and
try

*HELP"

590 END

ASSEMBLER AND THE MASTER

For Master owners there is the problem that
Bas128 does not support 65C12 op codes, and
assembling these requires some ingenuity.
Listing 4 is my answer. To use it, delete any line
numbers below 1000, renumber so the line
numbers are higher than any used in your own
assembler source programs, and append to any
program you are developing. When you need a
65C12 instruction that Bas128 can’t assemble,
call FNass from assembler like this:

OPT FNass ("STZ flag:BIT &70,X")

There are three things to keep in mind: only
include the 65C12 mnemonics (including the
additional addressing modes for some 6502
mnemonics) shown in table 1; the OPT directive
must be initialised with the variable ‘pass’ and

41

Thanks for the Memory - Bas128

you should normally perform a three pass
assembly. In addition, mnemonics must be in
capital letters, comments may not be included
and labels may not be assigned, i.e. use:

.loop OPT FNass("JMP (address,X)")
NOT:

OPT FNass(".loop JMP (address,X)")

Note that where BRA is used, ‘BRA loop’ will
assemble correctly but branches of the form
‘P%-4" or ‘P%+8” must be one less than in
normal assembler, thus ‘P%-5" and P%+7’.

Listing 4

New mnemonics

BRA DECA/DEA INC A/INA
CLR ST1Z PHX

PHY PLX PLY

TRB TSB

New addressing mode - zero page indirect

e.g. LDA (&70) - may be used with:
ADC CMP ORA
AND EOR SBC
LDA STA

Pre-indexed absolute indirect addressing
e.g. JMP (&FE00,X) - JMP only

More addressing modes with BIT:
BIT # BIT absolute,X BIT zero page,X

Table 1. Instructions recognised by FNass

EVAL is used to evaluate addresses etc., so on the
first pass, it can cause “No such variable” errors.
This mechanism cannot be switched off as it can
in true assembly. My compromise solution is to
insist on ‘pass’ being used to set OPT and not to
evaluate at all whenever assembly errors are
suppressed. Instead, the program guesses as to
whether zero page addressing is intended or not,
and as a result, labels can be initialised wrongly.
The only solution is to perform an extra pass,
with errors suppressed only on the first one. A
neat way of accomplishing this is demonstrated
in listing 4. See also this month’s article in the
series Practical Assembler for further information
on 65C12 mnemonics.

CONCLUSION

That concludes our look at Bas128. I hope it has
inspired you to experiment further. The
language certainly deserves far wider use than
it currently enjoys - why not send us your
Bas128 hints and tips?

42

10 REM Program Assembler

20 REM Version B1.00

30 REM Author Andrew Rowland

40 REM BEEBUG Aug/Sept 1990

50 REM Program subject to copyright
60 ¢

100 REM DEMO - do not run the code
110 DIM code 50

120 PROCmc (0) :PROCmC (2) :PROCmc (3)
130 END

149

1000 DEF PROCmc (pass)

1010 P%=code

1020 [OPT pass

1030 .loop

1040 OPT FNass("STZ loop:BIT#128:JMP (&
6,X)")

1050 JENDPROC

1060 :

1070 DEF FNass (A$)

1080 LOCAL BS$, X, zp,immed,bracket, mnemon
ic$,arg$,addr$

1090 REPEAT B$=A$

1100 IFINSTR(BS,":") B$=LEFTS (B$, INSTR (
BS,":")-1) :A$=MIDS (A$, INSTR (A$,":")+1) E
LSE AS=""

1110 PROCacode (B$)

1120 UNTILAS$=""

1130 =pass

1140 :

1150 DEF PROCacode (A$)

1160 A$=FNspace (AS)

1170 mnemonic$=LEFTS (AS, 3) :arg$=FNspace
(MIDS (AS,4))

1180 A$=mnemonic$+" "+arg$

1190 IF (pass AND 1) PRINTRIGHTS("000"+
STRS$~ (FNtranslate (P%)),4);" ";

1200 IF mnemonic$="CLR" mnemonic$="STZ"

1210 IF mnemonic$="BRA" PROCDb (&80) :PROC
b (FNrelative (arg$)) :PROClisting (A$) :ENDP
ROC

1220 IF arg$="" OR arg$="A" PROCb (FNimp
lied(mnemonic$)) :PROClisting (A$) :ENDPROC

1230 X=RIGHTS$ (arg$,2)=",X"

1240 bracket=ASCarg$=ASC" (" -

1250 IF bracket addr$=FNspace (MIDS$ (arg$
,2, INSTR (arg$,™) ") -2)) :X=(X OR RIGHTS (ad
dr$,2)=",X") ELSEaddr$=arg$

1260 IF X addr$=LEFTS$ (addr$, LENaddr$-2)

Beebug August/September 1990

Thanks for the Memory - Bas128

1270 immed=ASCarg$=ASC"#"

1280 IF NOT(immed) ELSEIF mnemonic$="BI
T" PROCb (&89) ELSEPROCe (0, "BIT # expecte
du)

1290 IF immed addr$=FNspace (MIDS$ (arg$,2
)) :zp=TRUE ELSE zp=(FNeval (addr$) < &100
)

1300 IF mnemonic$="JMP" zp=FALSE

1310 IF zp AND bracket PROCb (FNzpindire
ct (mnemonic$)) ELSE IF NOT immed PROCD (F
Nother)

1320 IF zp PROCb (FNeval (addr$)) ELSE PR
OCw (FNeval (addr$))

1330 PROClisting (A$)

1340 ENDPROC

1350 ¢

1360 DEF FNrelative (BS)

1370 IF (pass AND 2)=0 =0

1380 LOCAL A%:A%=EVALBS$-P%

1390 IFA%>129 OR A%<-126 PROCe(1,"Out o
f range")

1400 =A%-1

1410 :

1420 DEF FNimplied (A$)

1430 LOCAL A%:A%=&1A

1440 IF LEFTS (A$,2)="IN"=A%

1450 IF ASCAS$=ASC"P" A%=A% OR &40 ELSE=
&3A

1460 IF MID$(AS,2,1)="L" A%=A% OR &20

1470 IF MIDS$ (A$,3,1)="X" A%=A% OR &80

1480 =A%

1490 :

1500 DEF FNzpindirect (A$)

1510 LOCAL A%:A%=612

1520 IF ASCAS$=ASC"S"™ OR ASCAS$=ASC"C" OR
ASCAS$=ASC"L" A%=A% OR &80

1530 IF ASCA$=ASC"E" OR INSTR (mnemonic$
,"C") A%=A% OR &40

1540 IF INSTR(mnemonic$,"D") OR RIGHTS (
A$,1)="C" A%=A% OR &20

1550 =A%

1560 :

1570 DEF FNother

1580 LOCAL A%

1590 IF zp A%=&14 ELSE A%=&1C

1600 IF X A%=A% OR &20

1610 IF mnemonic$="JMP" A%=A% OR &40

&40:IF NOT X THEN=§&64

1640 IF mnemonic$="TSB" A%=A% AND &F
1650 =A%

1660 :

1670 DEF PROCD (code%)

1680 IF (pass AND 2)>0 IF code%>&FF PRCC
e(2,"Byte")

1690 [OPT (pass AND 4) :EQUB code%

1700]PROChex (code%)

1710 ENDPROC

1720 ¢

1730 DEF PROCw (code$%)

1740 code%=FNtranslate (code%)

1750 PROCb (codet$ MOD &100

1760 PROCb (code% DIV &100)

1770 ENDPROC

1780 :

1790 DEF FNtranslate (A%)

1800 IF A%<&10000 =A%

1810 IFFNbank (P%)<>FNbank (A%) PROCe (98,
llwrap")

1820 =A% MOD &4000+&8000

1830

1840 DEF FNbank (A%)

1850 =A% DIV &4000

1860 :

1870 DEF FNeval (AS)

1880 IF (pass AND 2)=0 =&FFFF

1890 =EVAL (A$)

1900

1910 DEF PROCe (err,err$)

1920 $&900=CHRS$0+CHR$err+err$+" in: "+A
$+CHR$0:CALL& 900

1930 ENDPROC

1940 :

1950 DEF PROChex(A%)

1960 IF (pass AND 1) PRINTRIGHTS ("0"+ST
RS~A%, 2) +1 M-

1970 ENDPROC

1980 :

1990 DEF PROClisting (A$)

2000 IF (pass AND 1) PRINTTAB(24)A$
2010 ENDPROC

2020 :

2030 DEF FNspace (A$)

2040 IFASCA$=32 REPEATAS$=MIDS (AS$,2) :UNT
ILASCAS$<>32

1620 IF mnemonic$="STZ" AND (NOT zp) A% 2050 IFRIGHTS (AS,1)=" "REPEATA$=LEFTS$ (A
=A% OR &80:IF X THEN=§9E $,LENA$-1) :UNTILRIGHTS (A$,1)<>" "

1630 IF mnemonic$="STZ" AND zp A%=A% OR 2060 =A$ B
Beebug August/September 1990 43

Music 5000 Synthesiser Universal

Reviewed by Ian Waugh mnl

Product Music 5000 Synthesiser Universal USING THE PACKAGE
Supplier Hybrid Technology Ltd., After generating a Start-Up disc from the Hybrid
273 The Science Park, Issue disc (in usual Hybrid foolproof fashion), the
Cambridge CB4 4WE. software loads into sideways RAM and you are
Tel. (0223) 420360 presented with a graphic control screen. Sixteen
Price £113.85 inc. VAT. instruments are available including piano, glock,
Software only £33.35 inc. VAT flute, organ and strings along with four drum

Although the Hybrid Music System is very
popular with home-based musicians, it is even
more popular in education where it is the de facto
standard computer-based music system across
the music and IT curriculum. This is not without
good cause as it suits the needs of education
particularly well and is very cost effective. There
is also a growing range of music discs available,
for example from Hybrid itself and from Panda
Discs (see the review in BEEBUG Vol.8 No.10).

But it isn’t the only music system for the BBC
micro. There are now well over 50 programs
which use the Beeb’s sound chip, the majority of
which were designed with education in mind. If
you’ve dabbled with any of these you’ll have
realised that, no matter how excellent the
program may be in concept and execution, the
BBC’s sound chip represents a very real
limitation both in terms of sound quality and
pitch control. And since the sounds produced by
the chip do not adhere to the standard tonal
range, this is a positive disadvantage when it
comes to aural training programs and instrument
tutors.

The Music 5000 Synthesiser Universal means an
end to so-so sounds. It intercepts the commands
directed at the sound chip and plays them
through the Music 5000. The complete package
consists of a Music 5000 Synthesiser, the Ample
Nucleus ROM and software which loads into
sideways RAM. The system was designed for the
Master, however, and will not run on a BBC B,
even one fitted with sideways RAM. The Master’s
numeric keypad acts as a set of hot keys to control
the program and a Key Card fits over them to
remind you of their functions.

44

sounds. You can assign any sound to any of the
BBC'’s four voices using the numeric keypad and
you can test the sounds by playing the QWERTY
keyboard.

You can raise and lower the pitch of a voice in
octave steps which is useful as many programs
actually sound an octave higher than they should.
There are fine tune controls, too, which let you tune
the Universal to other instruments. An indicator on
the screen displays the pitch graphically.

There are two other controls: Ensemble adds a
second voice, slightly detuned, to the first, thus
producing a fuller sound. Sustain also adds a
second voice but with a delay to produce a
reverberant effect. These extra voices come from the
Music 5000 (which normally can play eight voices
at once) so no voices are lost from the program.

The effects can be set individually for each voice
by holding down the corresponding key on the
numeric keypad (for example, key 1 for voice 1)
and tapping the Sustain or Ensemble key. The
screen shows the instruments and effects selected
for each voice and you also get aural confirmation
as you make a change. This is important as it
means you can effectively control the Universal
blind, allowing you to change the settings within
a piece of software while it is running.

Once you're used to the system - which shouldn’t
take long - you can try it with some software. Select
Run on the main screen and insert a music program
disc. The Universal reads the disc for a fingerprint
and asks for the Start-Up disc again. The fingerprint
reading is quite clever as you can write to and
delete from the disc without altering its fingerprint.

A list of around 50 music programs appears -
which covers virtually all the commercial music

Beebug August/September 1990

Music 5000 Synthesiser Universal

programs currently available - and you select the
name of the one whose disc has just been read. If
the program name is not there or if you are using a
program of your own, you supply the name and it
will be stored on the Start-Up disc. If the name is
there, the program loads a set of default settings
which will complement the program. These can
still be altered using the hot keys but their
provision at the start allows you to plug in and go.
Many of the program settings also produce helpful
information about the programs, for example how
many voices it uses or how they are arranged. You
can save a group of settings to disc, or delete them.
You can also print the current setting on an Epson-
compatible printer. This produces a small dump of
the control portion of the screen.

MUSIC 5000 SYNTHESISER Un/iversal
save undo delete print copy exit

Disc is Picture Music
To run press 3D, or to correct press @

rhythm

Vo
ey

accomp

The Music 5000 Synthesiser Universal
control screen

Some programs use just one or two voices; to
enhance the sound further with such programs, a
Link facility links unused voices so that they play
alongside each other. You can alter the octave and
instrument of linked voices.

One of the options which appears on the
instrument list is Auto. If you select this, the
program automatically substitutes the 16 Music
5000 voices for the 16 BBC envelopes. This is
especially useful if a program lets you select
‘instruments’ (i.e. alternate envelopes) within itself.

USE IT WITH YOUR OWN SOFTWARE

You’ve probably realised that the Universal will
work equally well with your own Basic programs.
Although it only supports four BBC voices - as

Beebug August/September 1990

this is all the BBC has! - with Sustain switched on
it can actually sound eight Music 5000 voices at
the same time. This can be accomplished in Basic
using the Sustain option by playing two-note
chords on the same channel. Obviously, none of
the existing commercial programs uses this, but it
opens the door to some heavyweight music
software. The system is even clever enough to
analyse the envelope’s amplitude values and
convert them into dynamics.

The Music 5000 supplied with the Universal is
fully compatible with the Music 5000 supplied
with the Hybrid Music System except for the
addition of a special audio plug. When inserted, it
re-channels the Music 5000’s output to the BBC's
internal speaker. How? Well, there is an external
sound input on the BBC’s 1 MHz bus. Not a lot of
people know that.

In fact, the whole operation of the Universal is based
around hooks which were designed into the BBC's
sound operating system - that’s what you call
forward planning. The Universal works with all
legally-written software; however, commands which
poke the sound chip directly cannot be intercepted.
The Island Logic Music System, Peter Beater’s
Music Games and Duette are the three main (and
possibly only) programs which aren’t compatible.

I'initially had a problem running the software and
traced this to the SpellMaster ROM, which is
known to cause problems with other software
sometimes (though it doesn’t appear to interfere
with the normal Hybrid Music System). A
*UNPLUG command solved this.

The Universal makes a tremendous difference to
all music software and it seems almost a crime to
go back to the BBC’s beep. It will, of course, work
with all correctly written software which uses
sound, not just music programs. As the package
includes the Music 5000, you can upgrade to the
full Hybrid Music System at any time.

The Universal will undoubtedly be of greatest
benefit in education, for which it was primarily
designed. Its ease of use coupled with its ability
to play the excellent Music 5000 sounds without
resource to any external amplification or music
centre must make it an extremely attractive
proposition. It's altogether an original, imaginative
and fascinating product.

45

Quad

Alan Wrigley describes a game by David Pooley which will tax your ability to think quickly.

Quad is a fairly simple but extremely fascinating
game. It is similar to the arcade game Tetris,
which many gamesters will have played.

The object of the game is to fill a rectangle with
shapes which drop from the top of the screen.
This is done by rotating the shape and moving
it laterally so that hopefully it drops into the
space you have chosen for it. The aim is to fill
the rectangle with each shape interlocking and
no spaces left between. This is more difficult
than it sounds, since the shapes appear in a
random order, and you have to decide very
quickly where they are to be placed.

Type in Listing 1 and save it as Quad.
Assembler is used in places to speed up the
screen handling, so take particular care with
these lines. You can now play the game without
further ado. It will run on any BBC micro,
including a model B.

PLAYING THE GAME

After the title screen has appeared, you will see
a screen describing the keys which can be used
with the game. The < and > keys move the
shape left or right as appropriate, while the
space bar rotates it. If you are satisfied the
alignment is correct you can press Z and the
shape will drop into place. Pressing X will show
the next shape due to appear; this may help you
to decide where to place the current one.
Finally, S turns the sound on or off, and A
speeds up the game.

Before playing, you must choose the difficulty
level, from 0 to 9, which sets the speed at which
the shapes drop. If you have not played the
game before, then 0 is probably a good choice!
The game itself is quite simple to play but not at
all easy. However, if you complete a line across
the rectangle, that line is removed, thus
allowing you to fill gaps underneath that may
previously have been inaccessible. The score is
kept on the left-hand side of the screen - see if
you can get your name into the high-score table!

46

: Left
III : Right

: Rotate
: Drop
: Shownext
: Speed Up
: Sound

Level
00000

Lines
00002

Pieces

n
=
o
00025 B3y]

Score
00177

The game in progress

10 REM >Quad

20 REM Version B1.0

30 REM Author David Pooley

40 REM BEEBUG Aug/Sept 1990

50 REM Program subject to copyright

100 ON ERROR GOTO 230

110 MODE7:PROCoff:PROCtitle

120 PROCarrays:PROCassemble

130 PROCinstructions

140 REPEAT:PROCdifficulty:PROCscreen
150 REPEAT:PROCshape

160 REPEAT:PROCkeys :PROCdown

170 UNTIL dropped

180 PROCscore:UNTIL full

190 PROCgame over:PROChigh scores
200 UNTIL FNfinished:PROCend

210 END

230 ON ERROR OFF
240 VDU26,12
250 IF ERR<>17 REPORT:PRINT" at line "
;ERL ELSE PROCend
260 END
270 :
1000 DEF PROCoff
1010 ENVELCOPE 1,1,0,0,0,0,0,0,100,-1,-1
,-1,100,80
1020 VDU23;8202;0;0;:0;:*FX 210,0
1030 ENDPROC
1040 :
1050 DEF PROCtitle
1060 FOR Y%=0 TO 24
1070 vDU 31,0,Y%,145+4Y% MOD 7:NEXT Y%
1080 FOR Letter%=0 TO 3

Beebug August/September 1990

Quad

1090 VDU 28, 8*Letter%+4,24,39,0

1100 Letter$=MIDS$ ("QUAD",Letter%+l,1)

1110 PROCget pattern(Letter$)

1120 FOR Row%=&78 TO &71 STEP -1

1130 FOR Bit%=0 TO 7

1140 IF (?Row% AND 128) VDU255 ELSE VDU
32

1150 ?Row%=?Row%*2:NEXT Bit$%

1160 PROCwait (4) :VDU 11,13:NEXT Row%

1170 FOR Scroll%=1 TO 9

1180 PROCwait (5):vDU 30,11

1190 NEXT Scroll%:NEXT Letter%

1200 ENDPROC

1210 :

1220 DEF PROCget pattern(Letter$)

1230 ?&70=ASC (Letters$)

1240 A%=10:X%=&70:Y%=0:CALL &FFF1

1250 ENDPROC

1260 :

1270 DEF PROCwait (Time%)

1280 TIME=0:REPEAT UNTIL TIME>Time$%

1290 ENDPROC

1300 :

1310 DEF PROCarrays

1320 DIM High%(7),High$(7)

1330 FOR High%=0 TO 7

1340 High% (High%)=5000-High%*500

1350 High$ (High%)="Quaddie "+STR$ (High%
+1)

1360 NEXT High%

1370 ENDPROC

1380 @

1390 DEF PROCassemble

1400 code=6900:shapes=&B00:setchar=175

1410 shape=&70:rot=&71:start=672

1420 char=&74:count=&75:flag=676

1430 downl=&77:down2=&79

1440 FOR pass%=0 TO 2 STEP 2

1450 P%=code

1460 [OPT pass$%

1470 .print:JSR offset:LDA #4:STA count
:LDA char:.printloop:LDY shapes,X:STA (s
tart),Y:INX:DEC count:BNE printloop:RTS

1480 .offset:LDA shape:ASL A:ASL A:ADC
rot :ASL A:ASL A:TAX:RTS

1490 .check:JSR offset:LDA #4:STA count
:LDA #0:STA flag:.checkloop:LDY shapes,X
:LDA (start),Y:CMP #32:BEQ ok:CMP #255:B
EQ ok:DEC flag:RTS

1500 .ok:INX:DEC count:BNE checkloop:RT
S

1510 .right:JSR addl:JSR check:JSR take
1:1DA flag:BEQ moveright:RTS:.moveright:
LDA #32:STA char:JSR print:JSR addl:LDA
#255:STA char:JSR print:RTS

1520 .left:JSR takel:JSR check:JSR addl
:LDA flag:BEQ moveleft:RTS:.moveleft :LDA

$32:STA char:JSR print:JSR takel:LDA #2

55:STA char:JSR print:RTS

1530 .down:JSR add40:JSR check:JSR take
40:LDA flag:BEQ movedown:RTS:.movedown:L
DA #32:STA char:JSR print:JSR add40:LDA
#255:STA char:JSR print:RTS

1540 .rotate:INC rot:LDA rot:AND #3:STA
rot :JSR check:DEC rot:LDA rot:CLC:ADC #
4:AND #3:STA rot:LDA flag:BEQ makerot:RT
8

1550 .makerot:LDA #32:STA char:JSR prin
t:INC rot:LDA rot:AND #3:STA rot:LDA #25
5:STA char:JSR print:RTS

1560 .addl:INC start:BNE over:INC start
+1:.over:RTS

1570 .takel:SEC:LDA start:SBC #1:STA st
art:LDA start+1:SBC #0:STA start+l:RTS
1580 .add40:CLC:LDA start:ADC #40:STA s
tart:IDA start+1:ADC #0:STA start+1:RTS
1590 .take40:SEC:LDA start:SBC #40:STA
start:LDA start+1:SBC #0:STA start+1:RTS
1600 .lines:LDA #0:STA count:LDA #&5F:S
TA start:LDA #&7C:STA start+l:.nextline:
LDY #9:.lineloop:LDA (start),Y:CMP #setc
har:BNE nodown:DEY:BPL lineloop:INC coun
t:LDA start:STA downl:LDA start+l:STA do
wnl+l
1610 JSR take40:LDA start:STA down2:LDA
start+1:STA down2+1:JSR add40:.scroll:L
DY #9:.downline:LDA (down2),Y:STA (downl
), Y:DEY:BPL downline:LDA down2:STA downl
:IDA down2+1:STA downl+l

1620 SEC:LDA down2:SBC #40:STA down2:LD
A down2+1:SBC #0:STA down2+1:LDA down2+1l
:CMP #&7B:BNE scroll:.nodown:JSR add40:L
DA start+1:CMP #&80:BNE nextline:RTS
1630 .slide:LDA #19:JSR &FFF4:LDA #&90:
STA start:LDA #&7D:STA start+l:.slideloo
pl:LDY #38:.slideloop2:LDA (start),Y:INY
:STA (start),Y:DEY:DEY:BPL slideloop2:JS
R add40

1640 LDA start+1:CMP #&7F:BNE slideloop
1:R1S

1650 1]

1660 NEXT pass$%

1670 FOR data%=shapes TO shapes+11l
1680 READ ?data%:NEXT data%

1690 DATA 40,41,81,82,2,41,42,81,41,42,
82,83,42,81,82,121

1700 DATA 40,41,42,43,2,42,82,122,80,81
:82,83,1,41,81,121

1710 DATA 41,42,80,81,1,41,42,82,42,43,
81,82,41,81,802,122

1720 DATA 40,41,42,82,2,42,81,82,41,81,
82,83,41,47/ 81,121

1730 DATA 41,42,43,81,41,42,82,122,42,8
0,81,82,1,41,81,82

1740 DATA 40,41,42,81,2,41,42,82,42,81,
82,83,41,81,82,121

Beebug August/September 1990

47

Quad

| 1750 DATA 41,42,81,82,41,42 81,89, 41,47
|,81,82,41,42, 81, 80

| 1760 PROCwait (100) :FOR Slide%=1 TO 36

| 1770 CALL slide:NEXT Slide%

| 1780 VDU26:ENDPROC

Fid790. .

| 1800 DEF PROCinstructions

| 1810 PROCdouble ("Quad",4,7,0, TRUE)

| 1820 PROCwrite(" Try to fit the fallin
ég shapes into the already existing patte
{rn on the screen by manipulating them wi
th the following keys :",6,3)

i 1830 PROCpress ("<", "move the shape left
["r3,8)

1840 PROCpress (">","move the shape righ
£",3,39)

1850 PROCpress ("SPACE", "rotate the shap
e",3,10)

1860 PROCpress ("Z","drop the piece into

place”,3,11)

1870 PROCwrite (" The following keys ca
n be used during the game for other effe
cts 17, 6,13)

1880 PROCpress ("X","show the next shape
",1,16)

1890 PROCpress ("A", "speed the game up",
1,17)

1900 PROCpress ("S","turn the sound on/o
££%,1,18)

1910 PROCwrite (" Press the space bar to

start the game",7,21)

1920 PROCspace :ENDPROC

1930«

1940 DEF PROCdouble (Double$,Back$%,Fore%
,Start%,Clear%)

1950 IF Clear% THEN CLS

1960 FOR Print%=0 TO 1

1970 PRINTTAB (16-LEN (Double$)/2,Start%+
Print$%);CHRS (128+Back$%) ; CHR$141;CHRS$157;
CHRS$ (128+Fore$%) ;Double$; SPC2; CHR$156

1980 NEXT Print%

1990 ENDPROC

2000 :

2010 DEF PROCwrite (Write$,Col%,Start%)

2020 REPEAT:IF LEN(Write$)<40 THEN PRIN
TTAB (0, Start%) ; CHRS (1284Col%) ;Write$:Wri
te$=“l'

2030 IF LEN(Write$)>39 Pos%=41:REPEAT:P
05%=P0os%-1:UNTIL MIDS$ (Write$,Pos%,1)=" "
:PRINTTAB (0, Start%) ; CHRS$ (128+Col%) ; LEFTS
(Write$,Pos%-1) :Start%=Start%+1:WriteS=M
]IDS(WriteS,Pos%+1)
| 2040 UNTIL Write$="":ENDPROC

2050

2060 DEF PROCpress (Key$,Action$,Col%, St
art%)

2070 PRINTTAB (4, Start%) ;CHRS (128+Col%) ;

|Key$; STRINGS (30-LEN (Key$+Action$),".") ;A

48

ction$

2080 ENDPROC

2090 :

2100 DEF PROCspace

2110 *FX 15,0

2120 REPEAT:Key=GET:UNTIL Key=32

2130 ENDPROC

2140 :

2150 DEF PROCdifficulty

2160 PROCdouble ("Input Difficulty",4,7,
0, TRUE)

2170 PROCwrite(" Please enter the diff
iculty level at which you want the game
to start. You may choose any number betw
een 0 (easy) and 9 (very hard)",6,4)

2180 PRINT''TAB(7)CHR$&83"Starting Diff
iculty 2 ".

2190 REPEAT:D%=GET-48

2200 UNTIL D%>=0 AND D%<=9

2210 VDUD%+48:PROCwait (10)

2220 L%=0:P%=0:S%=0:N%=RND (7) -1

2230 W%=FALSE :ENDPROC

2240

2250 DEF PROCscreen

2260 CLS:FOR Y%$=0 TO 22

2270 VvDU31,13,Y%,145+Y% MOD 7

2280 IF Y$>1 AND Y%<22 PRINT"5"SPC10"j"
CHR$&87

2290 IF Y3%=22 PRINT"-"STRINGS(10,%,")".

2300 NEXT Y%

2310 PRINTTAR(29,17) CHR$&93"<,,,,1"

2320 FOR Y%=18 TO 21

2330 PRINTTAB (29, Y%)CHR$&93"5 o

2340 NEXT Y%

2350 PRINTTAB(29,22)CHR$&93"-,,,,."

2360 PRINTTAB (30,16) CHR$&86"Next"

2370 PRINTTAB(27,5)"< : Left"TAB(217,6)"
> : Right"TAB(27,7)"Sp: Rotate"TAB(27,8)
"Z : Drop"TAB(27,9)"X : Shownext"TAB (27,
10)"A : Speed Up"TAB(27,11)"S : Sound"

2380 PRINTTAB(0,7)CHR$&86"Level™TAB (0,1
0) CHR$&86"Lines"TAB (0, 13) CHR$&86"Pieces"
TAB(0,16) CHR$&86"Score"

2390 PROCnumbers

2400 ENDPROC

2410 :

2420 DEF PROCnumbers

2430 PROCnum(0,8,1,D%)

2440 PROCnum(0,11,1,L%)

2450 PROCnum(0,14,1,P%)

2460 PROCnum(0,17,1,S%)

2470 B%=20-D%*3:IF D%>3 B%=17-D%*2:IF D
%$>7 B%=10-D%

2480 ENDPROC

2490 :

2500 DEF PROCnum(X%,Y%,C%,N%)

2510 PRINTTAB (X%, Y%) CHRS (128+C%) ;RIGHT$

Beebug August/September 1990

Quad

("00000"+STRS (N%) , 5)

2520 ENDPROC

2530

2540 DEF PROCshape

2550 ?shape=N%:N%=RND (7)-1:C%=0
2560 ?rot=0:?start=6&3A:?(start+1)=&7C
2570 2?char=255:CALL print

2580 IF W% PROCshow next (N%,255)
2590 dropped=FALSE:TIME=0

2600 ENDPROC

2610 ¢

2620 DEF PROCshow next (S%,C%)

2630 !&80=!&70:'&84=!74

2640 ?shape=S%:?rot=0

2650 ?start=&EF:? (start+l)=&7E

2660 ?char=C%:CALL print

2670 !'&70=1680:!&74=1&84

2680 ENDPROC

2690 :

2700 DEF PROCkeys

2710 Key=INKEY(0)

2720 IF Key=44 OR Key=60 CALL left
2730 IF Key=46 OR Key=62 CALL right
2740 IF Key=32 CALL rotate

2750 IF Key=90 OR Key=122 PROCdrop
2760 IF Key=88 OR Key=110 W%=NOT (W%) :PR
OCshow_next(N%,32—223*W%)

2770 IF Key=65 OR Key=97 PROCfaster
2780 IF Key=83 OR Key=115 THEN *FX 210,
1,255

2790 ENDPROC

2800 :

2810 DEF PROCdrop

2820 REPEAT:CALL down

2830 dropped=?flag:UNTIL dropped
2840 ENDPROC

2860 DEF PROCfaster
2870 D%=D%-(D%<10)
2880 PROCnumbers : ENDPROC

2900 DEF PROCdown

2910 C%=C%+1:IF C%>B% CALL down:dropped
=?flag:C%=0

2920 ENDPROC

2930 :

2940 DEF PROCscore

2950 S%=S%+(1000-TIME) /40* (D%/40+1)
2960 SOUND 1,1,255-12*(((!start AND &FF
FF)-&7C00) DIV 40),2

2970 P%=P%+1:2char=setchar:CALL print
2980 CALL lines:L%=L%+?count

2990 IF L% DIV 10>D% D%=L% DIV 10:IF D%
>10 D%=10

3000 PROCshow next (N%,32)

3010 ?start=&3A:?(start+l)=&7C

3020 ?shape=N%:?rot=0

3030 CALL check:full=?flag

3040 PROCnumbers :ENDPROC

3050 :

3060 DEF PROCgame over

3070 PROCdouble ("Game Over",4,7,19,FAL
SE)

3080 PROCspace :ENDPROC

3090

3100 DEF PROChigh scores

3110 IF S%>High%(7) PROCenter name

3120 PROCdouble ("Quad High Scores",4,7,
0, TRUE)

3130 FOR High%=0 TO 7

3140 PRINTTAB (4,High%*2+4) ; CHR$681;High
%+1;".";CHR$&86;High$ (High%) ; STRINGS (20~
LEN (High$ (High%)),".") ; CHR$&83;High% (Hig
h%)

3150 NEXT High$%:ENDPROC

3160

3170 DEF PROCenter name

3180 PROCdouble ("Congratulations!"™,6,4,
3, TRUE)

3190 PROCwrite ("™ Your score is high en
ough to entitle you to a place on the hi
gh score board of today's players. Pleas
e enter your name below :",3,7)

3200 PRINTTAB(8,13) ;CHRS$&82; " |"; STRINGS
(20,"."),‘"‘"

3210 PRINTTAB(10,13);:Input$=""

3220 REPEAT

3230 VDU10, 94:Key=GET:VDU127,11

3240 IF Key>31 AND Key<127 AND LEN (Inpu
t$)<20 THEN VDUKey:Input$=Input$+CHRS (Ke
y)

3250 IF Key=127 AND LEN (Input$)>0 THEN
VDU127,46, 8: Input $=LEFTS (Input$, LEN (Inpu
t$)-1)

3260 UNTIL Key=13

3270 High$ (7)=Input$:High%(7)=S%

3280 P%=6:REPEAT

3290 F$=TRUE:IF High% (P%)<High%(P%+1) T
HEN F%=FALSE:T$=High$ (P%) :High$ (P%)=High
$(P%$+1) :High$ (P%+1) =T$:T%=High$% (P%) :High
% (P%)=High% (P%+1) :High% (P%+1)=T%

3300 P%=P%-1:UNTIL F% OR P%<0

3310 ENDPROC

3320 ¢

3330 DEF FNfinished

3340 PROCdouble ("Another Game ? (Y/N)",
2,7,21,FALSE)

3350 REPEAT:Key=INSTR ("YyNn",GET$)

3360 UNTIL Key>0:=(Key>2)

3370

3380 DEF PROCend

3390 PROCdouble ("Thanks For Playing",1,
3,12, TRUE)

3400 ENDPROC B

Beebug August/September 1990

49

Solution to BEEBUG Crossword
(Vol.9 No.3).

0 8 &
LOGCELNDD O
A ER £
CEELD O
B 0 OE
iE| M| E| R] 6] E| S|
E O

M

A
M Al N[Al 6| E] D
E DOLC
CCO H
L COEDE
9| M

EEEEEEEE%

M E O @O

:E| MLU| L A| T| 0] R| SED| R| I/ U/ E

iR @O E E
I DECD DOESD
B IO L L

iP|U[RIE| Al s{c| I) TRET] O[K| E] N

The first correct solution drawn out of the hat was from S.A. Elwell-Sutton of Ellesmere.

Our congratulations go to Mr Elwell-Sutton, who will be receiving a copy of Panda’s Crossword shortly as
his prize.

Crossword Review Update

In our review of Crossword by Panda Discs
(Vol.9 No.3) we suggested that you could not
print out the clues with the crossword grid. In
fact, the problem only occurred on a networked
printer, and by the time you read this, should in
any case have been cured completely. We were
also quoted the wrong price for Crossword. It

PHONE CALL COSTING

(BEEBUG Vol.9 No.3)

Two errors affecting this program unfortunately
crept into the listings. In lines 1940 and 1960 the
accented letter ‘E’ including the quotes should

50

Points Arising....Points Arising....Points Arising....Points Arising....

should be £14.95, and not £12.95 as stated. Our
apologies to Panda and their customers for any
confusion we may have caused. We also
understand that two discs of puzzles are
available, Cryptic for adults, and Junior for
easier puzzles. 3

be replaced by CHR$131 in each case (teletext
control codes are unprintable as such).
Secondly, ENDPROC in lines 1740 and 1870
should be changed to: =flag 4

Beebug August/September 1990

N = I S e T U T T e o T T 5 el P TR it o s SN,

Practical Assembler (Part 4)

by Bernard Hill

CALL, USR AND VARIABLE STORAGE

Back in the first article in this current series of
assembler articles we looked at ways of
interfacing to assembler, and now I want to
look in more detail at the method of interfacing
to Basic via the keywords USR and CALL.

At the elementary level there is a good deal of
similarity between these two ways of calling an
assembler routine. Let’s look at a simple
example to make this clear: a routine to clear all
the resident integer variables A% to Z%, each of
which occupies four bytes, starting at &404 for
the first byte of A% and finishing at &46B for
the last byte of Z%. These are of course not
cleared by the CLEAR statement, and in fact are
preserved over a hard or soft Break, so a routine
to wipe them is a common element in many
Basic toolkits.

The routine is very simple:

10 DIM clear 10

20 P%=clear

30 [OPT 2

40 LDX #&67:LDA #0
50 .loop STA &404,X
60 DEX:BPL loop

70 RTS

80]

Notes:

1. We don’t need to do two passes through the
code as we haven’t any forward variable
references.

2. The reason we more often count down to
zero in assembler rather than up to a fixed
limit is that the DEX instruction sets the zero
and negative flags so that we don’t need an
explicit CPX instruction to see if we’'ve
reached the value we want to stop at. You
then use BPL at line 70 if you want to loop
back for positive or zero X, and BNE if you
want to loop back only for positive X.

3. Any routine which is to be CALLed or
USR’d must end with RTS (line 70) to return
to Basic.

Now this little routine can be triggered with a

simple:
CALL clear

Beebug August/September 1990

Or you can use:

a%=USR (clear)
The only difference is that USR returns an
answer and CALL does not. This integer
answer consists of four distinct bytes which are

most conveniently separated by assigning it to
an indirected location such as &70 with:

1§70=USR (clear)
and accessing the individual bytes, which will
be:

&70 The A register on exit
&71 The X register on exit
&72 The Y register on exit
&73 The flags register on exit.

This latter is made up of 8 individual bits
representing the 7 processor flags. Of these the
most useful to us are the C,Z and N flags which
are found in bits 0,1 and 7 of &73 respectively.

In particular, after !&70=USR(clear) above you
should find that:

&70=0 (the A-register)
&71=&FF (X has been decremented from 0),
&72=0 (Y has not been used)

and the N flag is set (by the last DEX
operation).

The USR function is most often used for
debugging as the values it produces can
provide insight into the CPU registers and
flags. But the most commonly used machine
code call is a simple CALL statement.

THE CALL INSTRUCTION

CALL is, however, much more powerful than
USR because it can take parameters. The
parameters can be of any type as long as they
are a variable name (e.g. A% or ans$) rather
than a constant value. The CALLed routine can
be written to discover the type (string, integer,
etc) of the parameters before using them. As an
example of this, and as an exercise in building a
program from constituent parts, in the next
article we shall be working our way towards
building a machine code sort routine which can
sort string, integer or real arrays. It will

51

Practical Assembler

determine for itself the type of parameter it has
been given and perform the sort accordingly.
This will involve us in writing and testing
smaller program sections and is a good
indication of how longer programs are built.
But before we start this, let’s look more
carefully at the CALL operation.

When CALL is performed, a parameter
information block is set up at &600. This will
contain information which the CALLed routine
can look at and use. It goes as follows:

&600 contains the number of parameters
&601-2 contain the address of the first
parameter, and

&603 contains its type.

The last three bytes are repeated for as many
parameters as are used, so that &604-&606
would contain the same information for a
second parameter and so on.

As far as BBC Basic is concerned, there are five
types of variable, and these have codes in the
type byte (&603, &606 etc) as follows:

0 A 1l-byte number, e.g. ?x% or a?7
4 A 4-byteinteger, e.g. Num% or A%
5 Ab5-bytereal, e.g. x

128 A static string, e.g. $x

129 A dynamic string, e.g. A$

Note that it is not possible to pass a value
parameter to a routine with CALL, such as:

CALL routine, 55

Instead, the 55 must be assigned to a variable
first, and then called with the variable as
parameter:

x%=55

CALL routine, x%

Now the 55 would be found by loading the
value at the location pointed to by &601-602:
LDA &601:STA &70

LDA &602:STA &71
LDY #0:LDA (&70),Y

The A register would now contain the lowest
byte of x%, i.e. 55, and &600 would contain 1 (1
parameter) while &603 would be 4 for a 4-byte
integer.

Listing 1 is a simple machine code routine to
find where Basic is storing any named variable

52

(including an element of an array). It contains a
number of sample calls to illustrate its use. As
an exercise you could easily extend the
program to print the parameter type byte from
&603 too.

You can use this program to investigate the way
in which Basic stores its variables by running
Program 1, creating a variable or two, calling
the routine and printing the results:

>x%=1000

>CALL where, x%

1C61 (or whatever)

>PRINT ~?&1C61,~?&1C62,~2&1C63,~7&1C64
E8 3 0 0

This result is easy to understand because
1000=&3E8 and Basic stores its integer variables
in signed format in four bytes, low byte first.
Signed format means that a negative number has
its most significant bit of its last byte set, so
that, for instance:

low......... high
-1 is stored as FF FF FF FF
-2 is stored as FE FF FF FF etc

See BEEBUG Vol.6 No.6 p.30 for a fuller
explanation of signed format.

Real variables have a more complex storage
scheme and take five bytes. We will take a
much closer look at this in the next article when
we also consider the storage of string variables
and the problem of finding out (in assembler)
whether one Basic variable is larger or smaller
than another - rather essential for a sort routine!

HINTS AND TIPS

65C12 MNEMONICS

The 65C12 processor (used on the Master) is
pin-compatible with the 6502, but has a number
of extra instructions and addressing modes
available to it which the standard 6502 CPU
hasn’t got. It is available for about £9 from
Watford Electronics. Basics IV and VI already
support these new instructions and they are all
most useful additions to the standard 6502 set.
Besides PHX,PHY,PLX and PLY which push
and pull the X and Y registers directly to the
stack there is INA and DEA (or INC A and DEC
A) and others.

Sadly, Acorn never released a Basic IV to use in
a Model B with 65C12 but those of you with

Beebug August/September 1990

Practical Assembler

Basic II can use these instructions in your own
programs by means of the macros of Listing 2.
These function definitions should be appended
(renumbered if necessary) to any program in
which you wish to use them. Of course, if you
haven’t got a 65C12 processor they won’t work
but you can always substitute the 65C12 for
your old 6502 - but be careful taking it out, the
40 pin chips are worse than eproms - use a Bic
biro top to lever out gradually from each end.

So if you fancy upgrading your processor and
trying the new macros, Listing 2 gives the
coding for the commoner new ones. In order to
stay compatible with the Model B and BasicII, I
shan’t make use of them in further articles, but
you can use them in your own programs if you
wish. To illustrate, the common sequence:

PHA:TXA:PHA:TYA:PHA

might be replaced in Basic IV with:
PHA:PHX:PHY

and in Basic II with the macros:
PHA:EQUS FNphx:EQUS FNphy
Listing 1

10 REM Program 1

20 REM Version B1.0

30 REM Author Bernard Hill

40 REM Beebug Aug/Sept 1990

50 REM Program subject to copyright

100 PROCassemble
| 110 pIM x 1,v(2)
| 120 s$="BEEBUG"
| 130 CALL where,x
140 CALL where, $x
150 CALL where, ?x
160 CALL where,x?1
170 CALL where,y(0)
180 CALL where,s$
190 CALL where, 2&70
200 END
210, : 1
1000 DEF PROCassemble |
1010 DIM where 100
1020 FOR opt=0 TO 2 STEP 2
| 1030 P%=where

1040 [OPT opt

| 1050 LDA &600:CMP #1:BEQ over

1060 BRK:EQUB 0:EQUS "Bad call":EQUB 0
1070 .over LDA &602:JSR hex |
| 1080 LDA &601:JSR hex:JSR &FFE7:RTS ;

Beebug August/September 1990

| 1090 \ hex printing routine 1
| 1100 .hex PHA

| 1110 ROR A:ROR A:ROR A:ROR A

| 1120 JSR hexout :PLA

| 1130 .hexout AND #&F

1140 TAX:LDA hx,X:JSR &FFE3:RTS

1150 .hx EQUS "0123456789ABCDEF"

1160]

1170 NEXT [
| 1180 ENDPROC

Listing 2
10 REM LISTING 2: New macros

1000 New address mode: indirect zero |
1010 page without Y, e.g. LDA (&70) i
1020 DEF FNadcind(z)=FNop2 (&72,z) |
1030 DEF FNandind(z)=FNop2 (&32,z)
1040 DEF FNcmpind(z)=FNop2 (&D2,z)
1050 DEF FNeorind(z)=FNop2(&52,z)
1060 DEF FNldaind(z)=FNop2 (&B2,z)
1070 DEF FNoraind(z)=FNop2(&12,z)
1080 DEF FNsbcind(z)=FNop2 (&F2, z)
1090 DEF FNstaind(z)=FNop2(&92,z) |
f 1100
| 1110 Branch always: BRA address
| 1120 DEF FNbra (m)=FNop2 (&80, m-P%-2)
1130

1140 REM INA/DEA/PHX/PHY/PLX/PLY
1150 DEF FNina=CHR$&1A

1160 DEF FNdea=CHR$&3A

1170 DEF FNphx=CHR$&DA

1180 DEF FNphy=CHR$&5A

1190 DEF FNplx=CHR$&FA

1200 DEF FNply=CHR$&7A i
1210 ¢

1220 JMP address,X 1
1230 DEF FN3jmpx (m)=FNop3 (&4C, m)

1240

1250 Store zero in: STZ address and

1260 STZ address,X

1270 DEF FNstz (m) :IF m<256 THEN =FNop2 (
&64,m) ELSE =FNop3(&9C,m) |
1280 DEF FNstzx(m) :IF m<256 THEN =FNop2
(&74,m) ELSE =FNop3 (&9E,m) |
1290 :

1300 TRB/TSB address ‘
1310 ...see Beebug Vol.6 No.7 p.29 i

|

1320 DEF FNtrb(m):IF m<256 THEN =FNop2 (
|&14,m) ELSE =FNop3(&1C,m)

| 1330 DEF FNtsb(m):IF m<256 THEN =FNop2 (
'4,m) ELSE =FNop3 (&C,m)

| 1340 :

| 1350 DEF FNop2 (a,b)=CHR$a+CHR$b

| 1360 DEF FNop3(a,b)=CHR$a+CHR$b+CHRS (b
|DIV 256) B! i

The Archimedes Magazine & Support Group

Risc User is enjoying the largest circulation of any magazine
devoted solely to the Archimedes range of computers. Now
well into its third year of publication, it provides support to
schools, colleges, universities, industry, government

establishments and private individuals.

Existing Beebug members, interested in the new range of
Acorn micros, may either transfer their membership to the new
magazine or extend their subscription to include both magazines.
A joint subscription will enable you to keep completely up-
to-date with all innovations and the latest information from
Acorn and other suppliers on the complete range of BBC
micros. RISC User has a massive amount to offer to

enthusiasts and professionals at all levels.

Here are just some of the topics covered in the most recent issues of RISC User:

WIMP MESSAGE MONITOR
This program allows you to monitor the activities of the
Wimp as it deals with multi-tasking window-based
applications.
BACKGROUND TEXT PRINTER
Use this as a substitute for your normal printer
driver, so that all text files may be printed as
background tasks while you continue with other
work.

ASSEMBLER WORKSHOP
A major series for the more advanced ARM
processor programmer. The latest one explains how
to write applications as relocatable modules.
ARCADE
The latest round-up of new games for the Archimedes,
including The Pawn and Guild of Thieves from
Magnetic Scrolls, and Apocalypse (one of the very
best games yet for the Arc) from Fourth Dimension.

POSTER FROM 4MATION
A review of this most impressive package for
manipulating and distorting text displays, art work,
posters and the like.
INTRODUCING C
A wide ranging introductory series on C, a major
programming language for the Archimedes.
STEPPED RENUMBER
A utility for renumbering Basic programs, which can
be used with the RISC User Basic editor.
MASTERING THE WIMP
A major series for beginners to the Wimp
programming environment. The most recent
instalment is dedicated to Wimp menu systems.
A HANDY MOUSE SPEED CONTROLLER
A handy utility which allows you to select different
mouse pointer speeds by clicking on the icon bar icon.
INTO THE ARC
A regular series for beginners. The latest article
discusses the ins and outs of using printer drivers
on the Archimedes for output.
FILE ENCRYPTION UTILITY
A utility which allows you to code files for protection
and decode them for further use.

As a member of BEEBUG you may extend your subscription
to include RISC User for only £8.10 (overseas see below).

I SUBSCRIPTION DETAILS
Don't delay! Destination Additional Cost
Phone your instructions now on (0727) 40303 UK,BFPO &Ch Is £810

Or, send your cheque/postal order to the address below. Re.st of Europe and Eire £12.00

Please quote your name and membership number. M‘ddlle East . £14.00

When ordering by Access, Visa or Connect, please quote your Americas and Africa £15.00

Elsewhere £17.00

card number and the expiry date.

RISC User, 117 Hatfield Road, St Albans, Herts AL1 4]S, Telephone (0727) 40303, FAX (0727) 860263

SplineText Revisited

by Alan Wrigley

One of the more popular programs published in
BEEBUG recently was the SplineText utility
(Vol.9 No.2), which produced attractive
Helvetica lettering in any size on a printer, using
a kind of outline font. A few points have arisen
regarding the program, which will be dealt with
in this article, and I will also describe how to
print more than one line of text on a sheet of
paper, which was not possible with the original.

Firstly, some readers have had a problem with
extra linefeeds occurring in the middle of
letters. This was due to an oversight on our part
after we had made some modifications to the
program, and was not the fault of the author.
You may think that typing *FX6,10 will cure
this, but in fact it has no effect. The solution is
to amend line 2440 of the program Spline2. If
your printer produces automatic linefeeds, this
line should now read:
2440 vpul,27,1,51,1,1%,1,51,1,13

If it does not, then no

treated separately, in order to print across the
page it would be necessary for the carriage to
be reversed after each letter is printed.
Although this is possible on some printers there
are many which cannot do this. Also, the
orientation either of the dump, or of the screen
drawing routine, would need to be rotated
through 90 degrees.

As published, the program was not capable of
printing more than one line of text on a sheet,
although the accompanying illustration may
have implied that it was. However, it is a
simple matter to print more than one line
(though still vertically), provided that you are
happy to feed the paper through a second time.
If you include the following two lines:

141 VDU 1,27,1,108,1,margin%

1141 INPUT'"Left margin :"margin%
then you will be able to specify the left-hand
margin when printing. The prompt will appear
after you have chosen

modifications should be
necessary.

A further potential pitfall
spotted by a hawk-eyed
reader is concerned with
entering the DATA state-
ments at the end of the
program. You must make
sure that no spaces are
typed at the end of any
DATA line, i.e. after the “E”.
If you do so, the program
goes on to read the next
DATA statement, which it
should not do.

1X3L3NIdS

Several readers have asked if

2 3 4 5 6 7
123456789012345678901234567890123456789012345678901234567890

whether or not to fill the
letters. The text will then be
printed vertically with the
bottom edge of the
characters aligned on the
margin you have specified.

A little bit of trial and error
will be necessary to get this
right. Figure 1 shows an
example, with one line of
text printed at a margin
setting of 1, and another line
with a margin of 45.

Finally, I would like to make
a plea. If anyone has written
the necessary data to

the program could be
modified to print across the
paper rather than down;
unfortunately this is not possible without major
surgery. The program works by first drawing a
single character on the screen and then
dumping it to the printer. As each character is

Beebug August/September 1990

Two lines of text on one sheet,
with the margin settings shown

complete the ASCII
character set, or indeed has
compiled the data for
different font styles, we will be happy to
publish this information at our usual
contributors’ rates. So why not dig out that
graph paper and start designing? B

55

Computing should be fun
—

Let's Compute! has been hailed as the world's first
computer comic. But it's much more — a full-colour,
brilliantly illustrated and cleverly written way of tapping into
the interest young people have in the world of computing.
It's now at your newsagents, but you can get the next 12
issues by sending £12 to: Let's Compute! Database Direct,
FREEPOST, Ellesmere Port, South Wirral L653EB.

LOOKS GOOD, SOUNDS GOOD
Derek Gibbons’ Master Display ROM (Vol.8 Nos.8
& 9) makes your Master wake up with tailor-made
start-up messages, and even your choice of screen
colours. It looks good - why not make it sound
good? The BBC’s BEL character (ASCII 7) is an
uncivilised poop. If you add the lines below to his
program (either listing 1 or 2), your machine will
henceforth make a melodious chime - test it with
Ctrl-G. The assembled code performs the same as:
ENV. 1,1,0,0,0,0,0,0,126,255,0,255,126,0
*FX212,0
*FX213,200
*FX214,1

1271 LDX #envdata MOD &100
1272 LDY #envdata DIV &100
1273 LDA #8:JSR &FFF1
1274 LDA #212:LDX #0 :LDY #0:JSR &FFF4
1275 LDA #213:LDX #200:LDY #0:JSR &FFF4
1276 LDA #214:LDX #1 :LDY #0:JSR &FFF4
1641 .envdata
1642 EQUD &101:EQUD &0
1643 EQUD &FFOOFF7E
1644 EQUW &7E
Andrew Rowland

Our thanks to Mr.Rowland for this interesting update
to a popular program.

A VIEW ON WORDWISE PLUS-2

BEEBUG Vol.9 No.3 has just arrived. In your
review of View you say that delete line is not
found in Wordwise. Strictly true of course, but it
should be mentioned that it IS in Wordwise Plus2,
by using Ctrl-L. In the Plus-2 version only Ctrl-H
and Ctrl-N have nothing to do. Ctrl and the other
24 letter keys all do something, as well as ‘@.

Finally, I was delighted to see the three articles on
Ample and hope you will publish more in due course.
Leslie Gardner

PC TO BEEB

There is an increasing trend for firms who
commission work to ask for it on disc as well as
print-out, invariably in PC compatible format.
BEEBUG has published programs to enable a PC
compatible to read BBC files and vice versa, but if
you don’t own a PC compatible (or perhaps an
Archimedes) you still have to send your disc
away to a bureau to have it transcribed, which
costs time and money.

Beebug August/September 1990

Now my Master Compact (and presumably
Master 128) allows you to change from ADFS to
DFS and vice versa. Would it not be possible for
someone to implement MS-DOS so that it could be
selected and used on a BBC micro in the same
way. Anyone who devises such a program would
earn my undying gratitude, as well as my pennies.

Ruben Hadekel

To emulate MS-DOS in its entirety on a BBC micro
is probably not feasible - the machine just doesn’t have
the power or the capacity to do the job properly. On
an Archimedes, Acorn’s PC emulator functions very
well, but the Archimedes is a much more powerful
machine. The only equivalent solution (for a Master
128 but not a Compact) is to install a 512 co-
processor. Sufficient power is then available and the
result is a very satisfactory MS-DOS machine. The
512 is no longer made, but examples are often
advertised in the small ads in BEEBUG.

The other alternative is to use file transfer programs
running-on a Beeb (which must be fitted with the
1770 (or later) disc controller chip, fitted as standard
on a Master 128 and Master Compact (1772 disc
upgrade kit £53.53 inc. VAT from BEEBUG, product
code 0217C). The programs Mr.Hadekel refers to were
published in BEEBUG Vol.6 No.10 & Vol.7 No.1.
The only requirement is that the PC format discs used
be pre-formatted on a PC - maybe a friendly PC dealer
might help.

SIMPLE CYCLES
I refer to the First Course article in Vol.8 No.10 on
making a variable cycle through a limited range
of values. Where two values are involved the
simplest solution is to use the EOR operator. For
example, suppose you want r% to oscillate
between 27 and 59. Type:

PRINT 27 EOR 59
giving 32. If r% is initialised to either 27 or 59, the
statement:

r$=r% EOR 32
will switch r% to the other value.

In addition, the example in the article of counting
from 1 to 5 can most simply be written as:
r¥=r% MOD 5 + 1
R.C.Smith

The use of EOR in this context is one I had
overlooked. I must also thank Mr.Smith, and several
other readers, for providing the much better (second)
example given above for counting from 1 to 5. B

57

Personal Ads

BEEBUG members may advertise unwanted computer hardware and software through personal ads (including
'‘wants') in BEEBUG. These are completely free of charge but please keep your ad as short as possible. Although
we will try to include all ads received, we reserve the right to edit or reject any if necessary. Any ads which cannot
be accommodated in one issue will be held over to the next, so please advise us if you do not wish us to do this. We
will accept adverts for software, but prospective purchasers should ensure that they always receive original
copies including documentation to avoid any abuse of this facility.

We also accept members' Business Ads at the rate of 30p per word (inclusive of VAT) and these will be featured
separately. Please send us all ads (personal and business) to MEMBERS' ADS, BEEBUG, 117 Hatfield Road,
St. Albans, Herts AL1 4JS. The normal copy date for receipt of all ads will be the 15th of each month.

Still nearly 5 pages of BBC hardware,
ROMS, books, games, music, utilities
and programs left! Includes Morley
2Mb RAM disc and Advanced Teletext
adaptor. Most prices between 50p &
£5! Must sell - need shelf space. Tel.
091-529 4788 anytime or send SAE for
list to; 26 Newark Drive, Whitburn,
Sunderland, Tyne & Wear, SR6 7DF.

Master 512/1024 (Solidisk PC+) with
dual 40/80 D/S D/D, Zenith mono
monitor, View etc. cartridges; Master
ROM, WW+, CP, Wordease; MFII; I-
Word, I-Sheet, I-Base, DOS+, 2.1; GEM
etc.; Dabs M512 Guide, Disc, &
Shareware. See working £500 o.n.o.
Also BBC B with Torch Z80 disc pack
(dual D/S 40/80). BBC MOS: extra
RAM and ROM box, Dataplus, Vufile,
etc. CPM: Perfect Writer, Speller, Calc,
Filer, BBCBASIC Z80 £350 o.n.o. Tel.
021-308 0224.

WANTED: "Introducing CP/M on the
BBC Micro Z80 Second processor” by
Bruce Smith. Reasonable price paid.
Tel. 081-556 5154.

BBC B+ with ATPL RAM/ROM board
fitted, Microvitec 1451 colour monitor,
Cumana twin 40/80T disc drive, Star
dot-matrix printer, AMX mouse,
Acorn teletext adaptor, Pace modem
and music magazines £450. Tel. (0462)
685238.

Aries B32 Shadow RAM card (with
manual) £40 inc. P&P. Tel. (0305) 772817.

WANTED: "Advanced Machine Code
Techniques for the BBC Micro". by AP
Stephenson and D] Stephenson. Tel.
057- 37 321.

WANTED: Viglen Master console unit
with fittings. Tel. (0727) 57045.

For Sale: Juki 6100 daisywheel printer
with Centronics interface, complete
with five daisywheels and several ss
ribbons + BBC B cable if required £170.
Tel. 031-449 3869.

M128, twin Pace 40/80 drives, Ref
Guides 1&2 £480, Panasonic KXP1081

58

£75, Comstar + Nightingale Modem
£65, Acorn A-Teletext £40, Watford
Quest Mouse, Mouse & Conquest £50,
Interword £25, Interchart £15, Island
Music £20, Printmaster ROM, PMS
Multifont plus various ROMs, Viglen
cartridge system, 50 blank discs £750 for
the lot. Tel. (0457) 852381 after 6pm.

M128 twin 40/80 drive, Cub 452 colour
monitor, 2 Quad care packages,
Pagemaker, Superart and mouse.
EPROM programmer with Interword,
Master ROM, Advanced disc toolkit
Printmaster ROMs, Reference manuals
1&2, lots of software and magazines
£650 o.n.0. Fleet Street Editor plus fonts,
graphics £25. Tel. (0475) 2332 anytime.

For Sale: Microvitec colour monitor
for BBC and Spectrum £100 o.n.o.
Telebox 2, converts colour monitor
into colour television set with sound
£60 o.n.o. Cumana SSSD, 100k disc
drive, own PSU, hardly used £40. BBC
compatible remote control tape
recorder £10. Software; System Delta
Mailshot application, Mini Office,
Mini Office Master, Some books.
Brother HR15 daisy wheel printer,
parallel and serial connections, friction
and cut-sheet feeder; several daisy
wheels, £350, Star NL10, 9 pin dot
matrix printer, friction, tractor and
cut-sheet feeder, hardly used £200. Tel.
(0707) 50568.

Hegotron Robotics Grafpad II for the
Master 128 £30, Archimedes 310, RISC
OS, Entry level, Watford 4 way
backplane, fan fitted, single floppy, PC
Emulator £595 (Upgraded to 440). Tel.
(0734) 771230 day, (0734) 784897 eves.

Books; Master 512 User Guide (Dabs), disc
& book £10, View: A Dabhand Guide £7,
Advanced Machine Code Techniques £6,
Assembly Programming made easy £5,
Econet Advanced User Guide £5,
Advanced Disc User Guide £8. Discs;
P.LAS. 4 £4, Galaforce, Icarus (Master
version) £3 each or both for £5, Repton
Infinity £7, The Real You (IQ and
personality tests) £7, 6 issues of Disc User
£10, Tapes; Star Seeker, Quest, Life of

Repton, Acornsoft Hits I, Rik the Roadie
£5, Speed Read course £5. ROMs; View
Professional £35. Acorn Teletext adaptor
with ATS £50, Care Master Smart cartridge
£15, Care Master Quad cartridge £8, Delta
14b joystick £7, Master dust cover £2,
Dumb terminal (mono screen, keyboard,
RS232) £20, Master 512, Acorn amber
monitor, dual 525" 3.5" drives £650.

Epson Printer MX-80 F/T 1II in good
condition in original packing £70,
Spellcheck III ROM + dictionary disc
£10, Watford ROM manager ROM +
manual £10, Mini Office II + manual
£8, Watford DFS (for 62 files) £10,
Prism Modem 1000 + ROM £20,
Accoustic Modem for BBC B £5, all in
working order and mostly in original
packing cases with manuals. Tel.
(0993) 771 341 (Sun/Wed) or 071-902
8612 (Thurs/Sat) eves.

M128, Cumana dual drive, Modem,
Mouse, PMS Genie, Care Smart
Cartridge, Beebug Master ROM, AMX
Design ROM, Rom cartridges, joystick,
Data recorder, Plinth, Ref. manuals
1&2, 50 discs with box. £500. Tel. 071
639 0487.

BBC B issue 4 fitted Aries B32, Instant
Mini Office II, Opus DDOS, Opus
Challenger disc drive 512k RAM disc.
Twin Voltmace joysticks (unused).
Also Kisho computer compatible tape
recorder and tapes. 12" mono TV £350.
Various leads, User Guides, books, 65
copies "Micro User", 49 copies
"BEEBUG" blank 5.25" discs etc.
Typing Tutor, Family History £50, will
split but higher prices. Tel. (0225)
310083 anytime.

BBC Software/Hardware for sale. For a
complete list, send SAE to: David Sayed,
32 Warwick Road, London W5 3X].

BBC Master 128, good condition,
hardly used, includes View word
processor and spreadsheet etc. £310.
Tel. (0223) 321128.

M128 software: Stop Press (3 discs)
£20, Ref. manual pt.1 for M128 £7,

Beebug August/September 1990

Quad cartridge £7, Acornsoft Logo
ROM £19, Dumpmaster ROM £15,
Strykers Run £3.50, Elixir £3.50,
Repton Infinity £7, Revs £4, MicroUser
Arcade Game Creator disc £3, all items
as new. Tel. (0600) 5280.

WANTED: ACP/PRES 256k AQR
Cartridge - Write to;] Duncan, 41
Curriehill Castle Drive, Balerno,
Midlothian EH4 5TA stating price.

Swap Intersheet, boxed as new, for
Interword in similar condition. Tel.
(0992) 711788.

BBC B 32K, Torch Graduate (dual disc
8086 processor) c/w Psion software,
mono monitor. Offers please. Tel.
(0235) 868765.

Arc software: Archway £40, Repton 3 £7,
E-Type £8. Compact software: White
Knight Chess £4, The Superior collection
vol. 2 £4. ACP 1770 DFS for Master or
Compact £12. Tel. 081-986 4442.

Master 512/1024 (Solidisk PC+) with
dual 80T D/S D/D, 2 joysticks, view
etc., cartridge with Printmaster ROM,
Dabs M512 Guide, Master Ref.
manuals, BEEBUG magazines Vol. 1
No. 9 to present, TCS 512 Mouse
driver, Mosaic Twin advanced PC
Lotus compatible spreadsheet
package, considerable amount of BBC
& PC software £550. Acorn 30Mb
Winchester drive for Master £300, also
BBC teletext adaptor & TFS, £50 o.n.o.
Tel. (0905) 67488 eves.

BBC Master + 512 digitiser & all the
best Educational software from 10
year collection (legal copies) will split.
Tel. 081-674 5615.

BBC B Watford DFS, 16k Sideways
RAM, 40T S/S disc drive, monitor
plinth, large amount of software inc.
Exile, Elite, Revs, Aviator, Wordwise
Plus CC Graphics ROM and Disc

Opus Challenger IMb 5.25" disc drive
with RAM disc and very advanced
DDOS. Includes REPLAY hardware
based tape to disc utility, and bundles
of software £119 o.n.o. Or I will do a
partial swap for a simpler drive for my
Archimedes. Tel. 081-560 7310.

Interword £25, Spellmaster £30,
Interbase £35, JUKIT (Juki daisy wheel
printer toolkit) £10, all original, boxed
with manuals (upgraded to
Archimedes). Tel. (0742) 342870.

Back issues of Micro User 1987, 1988,
1989 including binders, back issues of
Acorn User 1988, 1989 also with binders,
ideal for education, reference. Offers
please. Last Ninja (karate game), 3D Pool,
both on 5.25" discs £5 each + some odds
& sods. Please phone for details (0326)
240734 after 6pm.
MS512 co-processor with mouse, DOS
plus 2.1, GEM, manual, Shareware
collection, Dabhand User Guide

512 co-processor with mouse and
GEM software £80, Interword ROM
£30, Viewstore ROM £25, Viewplot
£10, Printer Driver Generator, Office
Master and Office Mate £5 each. All
in excellent condition and complete
with manuals. Tel. (06285) 20320
eves and w/e.

M128, Cumana dual drive,
Modem, Mouse, PMS Genie, Care
Smart Cartridge, BEEBUG Master
ROM, AMX Design ROM, ROM

Stcel experimenters box designed to fit over

the BBC model B.

Will support a monitor
and house 3" or 3.5" drives,
only £15 each (incl p&p).

Tel. (0527) 545322.

18 Tanwood Close, Callow Hill, Redditch, B97 5YU

and disc, Mastering DOS Plus
£130. Advanced Disc Toolkit ROM
£10, Hyperdriver ROM £10,
Viewstore ROM £15, Viewspell
ROM £10, Viewindex £5,
Viewchart £2, Acorn ISO Pascal
£20, MOS Plus ROM £10 - all with
manuals in original packing.
BEEBUG - all issues to date £25,
M128 Reference manuals 1&2 £5
each, many other books. Tel. (0742)
342321.

Cartridges, joystick, data
recorder, Plinth, Ref. manuals
1&2, 50 discs with box £500. Tel. 071-
639 0487 (from 1/9/90).

Viewspell ROM, boxed complete
with manual, as new £25. Also Hi
View, boxed complete with manual
£25. Tel. 086-732 8776.

BBC Master 128 + Viglen cases, 512 2nd
processor, Microvitec Cub colour monitor,
2 x 80T Watford disc drives, Canon
PW1080A printer + spare ribbons, Nidd
Valley Mouse, Voltmace joystick, Vine
Micros ROM extension board, Morley
ROM extension board, BEEBUG 'C’,
Computer Concepts MegaROM.
(Interword /Intersheet/Interchart),
Interbase, Wordwise Plus II, Publisher
ROM, + many utilities/games software.
£650 the lot! Tel. 081-997 0397.

M128, Turbo co-processor, two
CS400S Cumana drives, GIS Teletext
adaptor, AMX mouse, Superart,
Pagemaker, Viewstore, Interword,
Wordwise plus, Microprolog, Logotron
Logo, and other firmware. BEEBUG
bound vols. 2-8, Ref. manuals 1&2 with
many other books and discs £500 o.n.o.
Tel. (0272) 711733.

Doctor, also external speaker, many
magazines (BEEBUG, Micro User,
Acorn User) and reference books £300
o.n.o. the lot, may split. Studio 8 with
5 octave keyboard £50 o.n.o. Tel.
(0272) 564654.

BEEBUG all issues from Vol.2 to date.
All mint condition £1 each including
p&p, also other bits including
viewstore ROM, A.U.G., new A.UG,,
lots of other books, ring for lists. Tel.
(0737) 556384.

WANTED: Mode 7 Foreign Language
Teletext Character Generator integrated
circuits SAA5053 (Italian), SAA5054
(Belgian), SAA5057 (Cyrillic). Purchase or
hire. Tel. 024024 2423 eves.

Watford DP35 800S double 5.25" and
3.5" disc drive unit £150. Tel. (0707)
54311.

Pace Nightingale modem £40,
Commstar II £15, (modem + ROM
£50), SPY2 £15, Disc Doctor £10,
Dotprint Plus £10, all original ROMs
with full documentation. Tel. (0900)
825503.

Beebug August/September 1990

Brother HR-15 daisy printer with
3 wheels + ribbons boxed £320,
Acorn Master cartridges £6 each,
Original double Acorn joysticks £11,
Voltmace Datapad 16 £18, Voltmace
Delta 14 joystick + keypad £12,
Micropulse External 8 socket
switchable ROM box £30, ACP Toolkit
ROM £20, new Master Ref. manuals
1&2 £10 each. Tel. 081-989 2666.

Chaotic Computing BBS wants new
users! Call us on (0943) 817010 V23,
1200/75 baud only, 8NT1 scrolling, 24
hours/day. We have many interesting
text files and message areas, and are
local from Leeds & Bradford.

WANTED: Bridge unit for Master 128
must be one 5.25" drive and one 3.5"

drive (disc drives not required). Tel.
071-494 1365 office hours only.

Cumana (3x) 80T DS SD £70 o.n.o. TRS
80 colour graphic printer £115, £90 o.n.o.
Tel. (0372) 375002 9am until 5.30pm.

Watford DDFS complete, plus Disc
Filing System manual £30. Watford
32K Shadow RAM/Printer Buffer
board £35. Contact Alan Wrigley at
BEEBUG. Tel. (0727) 40303.

59

BBECACORN

SHOW
90

7th - 9th September

ADMISSION: ADULTS £4.00 - UNDER 16's £3.00

WESTMINSTER EXHIBITION CENTRE Friday 7th Sept — 12nconto 7.00 p.m.
(New Horticultural Hall) Saturday 8th Sept - 10.00 a.m.t06.00 p.m.
Elverton Street Sunday 9th Sept — 10.00 a.m. t06.00 p.m.
London, SW1

Nearest Undergrounds — St James's Park, Pimlico or Victoria & B.R.

THIS UNIQUE SHOW DEDICATED TO THE
BBC ACORN FAMILY OF MICROCOMPUTERS FEATURES:

In excess of 60 exhibitors representing a vast range of products and services
covering all BBC ACORN micro’s.

Daily Seminar/Workshop sessions covering subjects ranging from Education to Desk
Top Publishing. A charge of £1.00 per session is made and all proceeds go to Charity.
Tickets are only available at the Show.

FREE daily prize draws.

Meet the staff of BBC ACORN User Magazine who will be on hand to give you technical
advice.

Special feature stand by ACORN COMPUTERS.

On-Going Schools Desk-Top Publishing and Music project during Show.

FREE courtesy coach from Victoria Station. Take the Wilton Road exit and look out for
the Guide.

For more information phone Safesell Exhibitions on 0737 814084

e N = In association with
~\ A SAFESELL EXHIBITIONS E\"ENT\\L//// BBc ACORN

MAGAZINE

FREE ROMS

Colin Price

The Master 128 Welcome disc currently
contains a number of ‘free’ goodies. These
include updated Dircopy and Copyfiles, but
there are also two ROM images. The first is
DFS2.9 which solves the *CLOSE bug (and
other problems) - see also BEEBUG Vol.8 No.6
p-42 & Vol.8 No.10 p.46.

The second is Spriter, the missing part of the
GXR ROM containing the Acorn Sprite Editor
and plotting routines as well as on-screen help
for PLOT codes. Either or both of these ROM
images may be loaded into vacant sideways
RAM slots by using the *DRLOAD command.
Then press Ctrl-Break to re-initialise the system.
Using *HELP <name> should give help
information on the new ROMs.

ASSEMBLER MACROS
Andrew Rowland
Bernard Hill’s article on assembler macros (see
Practical Assembler, in BEEBUG Vol.9 No.2)
highlights a useful technique. Because a macro
repeats similar code each time it is called, it is
sometimes better to use a subroutine. The
example on printing strings, while entirely
suitable for explaining the methods, can be
replaced by:

JSR prstring

EQUS "any string"

NOP

This uses the fact that when a subroutine is
called with JSR, a return address is pushed onto
the stack. This address points to the byte
immediately following the JSR, so can be used
to print a string, incrementing the address as
you go. This address then becomes the new
return address, pointing to the code following
the string. The string should be terminated by a
suitable byte which isn’t needed in the string
itself - I use NOP (&EA).

A similar trick can be used to generate errors in
service ROMs - JSR error below.

10 REM HintBAS

20
100 zp=&70:0sasci=&FFE3

Beebug August/September 1990

110 FOR pass=0 TO 3 STEP 3
120 P%=&900: [OPT pass

130 JSR prstring

140 EQUB 13:EQUS "by A.C.Rowland":NOP
150 JSR error

160 EQUB 17:EQUS "Escape":BRK

170:

180 .prstring PLA:STA zp:PLA:STA zp+l
190 LDY #0

200 .prstrlp JSR inczp:LDA (zp),Y
210 CMP #&EA \ NOP op code
220 BEQ prstro:JSR osasci

230 JMP prstrlp

240 .prstro JSR inczp:JMP (zp)

250

260 .inczp INC zp:BNE incout

270 INC zp+l

280 .incout RTS

290

300 .error PLA:STA zp:PLA:STA zp+l
310 LDY #0:STY &100

320 .errlp INY:LDA (zp),Y

330 STA &100,Y:BNE errlp

340 .errout JMP &100
350]NEXT:CALL &900

IMPROVED MOVE-DOWN ROUTINE
F.G.Beach

The Move-Down routine by Alan Wrigley (see
Hints & Tips, BEEBUG Vol.8 No.8) can be
improved further as shown below. Lines 0 to 4
can be used to display any instructions or text
about the program to follow. Line 5 keeps the
information displayed until Return is pressed.
Line 6 is the download routine itself. Line 7
programs function key f1 to delete lines 0 to 9
(or whichever lines are to be deleted) and start
the program running, while line 8 simulates the
pressing of f1 to put this process into effect.

CLS:PRINTTAB (0,4) "Program Name"
PRINT'"Author etc"
PRINT7"More information"

PRINT''"Press Return to move down and
start":INPUT A$; :PRINT'/Program now
being moved down"
6 *KEY0 *T.|MFORA%=0TO (TOP-PAGE) STEP4:
A%!&E00=A%!PAGE :NEXT |MPAGE=&EQO |
MOLD |MRUN |M
*KEY1 DELETE 0,9|M*FX138,0,128|M
*FX138,0,129
END:REM Movedown routine to E00 B}

s WP o

O oo]

61

mbership

Send applications for mermbership renewals, me n

address pelow. Al membership {ees, including overseas, should be i

cheques) o1 a UK bank. Mermbers may also subscrioe 10 ISC U

BEEBUG SUBSCR\PT\ON RATES BEE
£16.90 1 year (10 issues) UK, BFPO, chl £25.00
£24.00 Rest of Europe & Eire £36.00
£29.00 Middle East £43.00
£31.00 Americas & Africa £46.00
£34.00 Elsewhere £51.00

BEEBU
117

Tel. St.Alba
Manned Mon-
(24hr Answe

is ptoducod by BEEBUG Ltd.

Sarah Shrive

ng:
Managing Editor: Sher\danWll\iams

Al rights reserved. No part of this pub\ication may be

reproduced without prior written permission of the Publisher.

The Publisher cannot accept nsibility whatsoever
: it :

any respo
for errors in artces, 1 advertisements pubhshed.
The opinions expressed on the pages

of this journal are
those of the authors and do not necessart tepresent those
ol the Publisher, BEEBUG Limited.

All overseas jtems areé sent

a3.5°Disc | aimal We il accpt official UK

5 £1.20 £4.50 £4.50 orders for subscriptions and back

6 £1.30 £4.75 £4.75 issues, but please note that there

7 £1.30 £4.75 £4.75 will be a £1 handling charge for

8 £1.60 £4.75 £475 rders und 10 which require

9 c475 an invoice- Note that there is no
p VAT in magazines.

CONT RIBUTING TO BEE
ARTICLES

ur contributions on disc of
le ing "View",

ion 15
cassette, pleasé include @ packup oy at :
In all communication, please quote your

membership number.

Ltd (c) 1999
1SSN - 0263 - 7561

BEEBUG

Printed by Arlon Printers (0923 268328

f rotating LorentZ fttractor

tycle 2
Points 10000

MONIX: A MACHINE CODE MONITOR - this fully working
program (tobe augmen\ed further next month) allows you to
examine the contents of memory atany desired \ocation.

ADFS DIRECTORY EXAMINER AND COMMAND FILE
GENERATOR - this program will readily reveal the structure
of any ADFS formatted disc, and it required, will create
command files for the automatic \oading and merging of

QUAD GAME - an excellent 'mp\ememaf\on of Tetris, an

addictive yet frustrating game as$ you try 10 control the

moving shapes-

BEEBUG WORKSHOP: PERMUT ATIONS AND THE
LU s

FIRST COURSE: SCROLL\NG TEXT DISPLAYS -
complete working demonsua\'\on of all the text scrolling
descrioed in this month's article.

LORENZ ATTRACTOR -2 stimulating program demonstrating
this Classic phenormenon rom the modern science of chaos-

NEWTON'S CRADLE -an impresse \rrp\ememat'\on of this
by now classic animation, ut this time for the BBC micro.

\ ALL THIS FOR £4.75 (5" &3.5" pISC) + gop P&P (30e FOR EACH ADD\T\ONAL \TEM)
\ Back issues (5.25" disc sinceé Vvol.3No.1, 35" disC since Vol.5 No.1) available at the same prices. \

\ piIsC (5" of 3.5") SUBSCR\PT\ON RATES UK ONLY OVERSEAS
 months (8 issues) £25.50 £30.00 |
12 months (10 issues) £50.00 £56.00
Prices aré inclusive of VAT and postage as applicable. sterling only pleaseé:
i AR s s

B

Al subscr'\p\'\ons and individual orders t0:
BEEBUG, 117 Hatfield Road, st.Albans, Herts ALA 4JS

'm@ The Archimedes Specialist .@@

SPECIAL SUMMER PROMOTION
A3000 AND LEARNING CURVE

FREE 1 Mb RAM Upgrade

Acorn's new Learning Curve Package consists of an A3000 computer, First
Word Plus V2 (the number one Word Processor package for the Arch), the
PC Emulator and Genesis (A graphic based database system with a number
of sample files). A parent's guide to the national curriculum and a T o s
demonstration video (VHS) is also included. Eﬁ:y,’,(\“,‘,,';",j(vjm e
If you purchase an A3000 or Learning Curve from Beebug, in addition to o b

the backup service for which we are renowned, we will supply free of \ap |
charge an extra IMb RAM board, increasing the computers memory to a ‘
powerful 2Mb. :
Colour Monitors |

Learning Curve (no monitor) 699.00 (803.85 inc. vat) All_colour systems sold by |
Learning Curve (Acorn Monitor) 899.00 (1033.85 inc. vat) lB\EEBUG Coeho S encalont |
corn colour monitor. When 1

comparing prices we ‘;

A3000 (no monitor) 599.00 (68885 inc. Vat) recommend that you insist on :
A3000 (Acorn Colour Monitor) 799.00 (918.85 inc. vat) this monitor. !
]

THE ARCHIMEDES 400/1 SERIES

For a limited period we are offering a number of unbeatable deals on the 400/1 |
series computer. We would particularly draw your attention to the offers on the ‘
Acorn A440/1 systems. These are genuine A440/1 computers from Acorn on offer

for a short period only.

A410/1 With Free 20Mb Hard Drive £1099.00 (£1263.85 inc. VAT)

An Archimedes 410/1 upgraded with either a high quality 20Mb hard drive or a
Star LC-10 Colour printer. i

A Genuine A440/1 For Only £1499 (£1723.85 inc. VAT)

For a short period only, we are able to offer the genuine Acorn Archimedes A440/1
for only £1499. Normal RRP £2099. Supplied with an Acorn colour monitor for

£1599 (£1838.85 inc. VAT). This is a saving of £700 from list price.

A440/1, Multisync & Star XB24-10 Printer £2099 (£2413.85 inc. VAT)

A genuine Archimedes 440/ 1 with a 50Mb Hard drive (28ms access time), 4Mb of
1f r Old 4
radesln tYou 9 RAM, a Samsung CT4581 Colour Multisync Monitor and a STAR XB24-10 prmter,
ystem for only £2099 (2413.85 inc VAT). This represent< a sarine of £1000 from list price.

We are always pleased to
accept your existing Acorn
computer equipment in part
exchange for a new
system.

Please call for a quotation. Please add £8.00 for postage & packugmg il system
Prices & specification subject to chasige without notice.

BEEBUG Ltd, 117 Hatfield Road, St Akjgas Herts AL1 4]S
Telephone: 0727 40303 (24 hours) Fa# 072760263

