esigner

Dol

Hane
gcc2nus/ 117 Fatfield Road orz7
BISC Usen St. Athans §40303
Fents
| = ALl 495
7125 Jarrom Avense 0533
e eiren 540375

LE2 DK

41 No.8 January

EMS
REGULAR ITENS

FEATURES Editor's Jottings i
Fixing the Sun and L RISC User 59
Form Designef (ﬂ 14 Hints and Tips &
Troubleshooting Guide @) o pasonl A :
Eureka oy Postag 4
: | 3
Public Domain Software ” 5 bscriptions & Back \ssue 2
' - Input (1) ine DisC
st Course: Inpu Magezine
Fir d's Machine Code Corner .
" Mr Toads Stmctures LS) 29 H‘NTS &
i o o BEEBUG Tapes on Masters
512 Forum . "
Wordwise User's Notebook NERGE Avey i from USR
Cutting the Keys 43 Extracting @ Single B
JobLog (2) { DecodingUSR
ogeways ROMs O b

PROGRAM INFORMATION

All listings published in BEEBUG magazine are

produced directly from working programs. They are
formatted using LISTO 1 and WIDTH 40, The space
following the line number is to aid readability only,

and may be omitted when the program is typed in.
However, the rest of each line should be entered
exactly as printed, and checked carefully. When
entering a listing, pay special attention to the

difference between the digit one and a lower casel
(L). Also note that the vertical bar character (Shift\)
is reproduced in listings as |,

All programs in BEEBUG magazine will run oniiy
BBC micro with Basic II or later, unless otherwli
indicated. Members with Basic I are referred to
article on page 44 of BEEBUG Vol.7 No.2 (reprif

NNNNNNWNWNNN 5““ & s‘{nﬂg piranbt|

nput Date turrentlyt
Tine oHT
Latl'@ude
Longitude
SHA & Dec, star

Find fAltitude & ﬂzinuth - Sun
Haxinun pltitude

suprise & Sunset
Rltitude & fzimuth - Star

using
(-}

match the target
aBCDE F # only
conbined T o an
Complying with BEC pasic syntax
Round 1
Target numbers 708 A=l
B=2
=7
D=2
To <o E=5
Press
erases

Lead LY

e A
Tron B:08 hrs

;ﬁ!mu vent/Bats

1 Lenntfd
g Ets_au?.]maf Extend
1R lzﬂua.t....., elete
(It hoppinge -+ o
Erint
Gave

ESUAPE
to quit

Yse th
feus 10,

available on recei
advised to pt of an A5 SAE),
upgrade to Basic IL An;-:::':': strongly
processor

fitted to the
computer
:u should be tumed off before th
e

Where a
program
this is indicated e
el by symbols at lhenb‘:;inﬁs“mm
Lkl m opposite). Any other eer Ju
explicitly in the text of tl;;q::&menls
e.

i
this 1%
Thange bask i

ate

Pro
sid gram needs at least on
eways RAM. e bank of

Pro
gram is
only. for Master 128 and Compact

Ldvors Jovtings -~
it "

Welcome to the first issue of 1993. Amazingly we
will soon be nearing the end of yet another
volume of BEEBUG, and the commencement of
volume 12,

As readers will no doubt be aware, there are very
few new products, if any, being produced these
days for the BBC micro. This month we have
therefore amalgamated the editorial column with
the news page, and we will continue this practice
whenever appropriate. One consequence of this,
of course, is that we have an extra page to
allocate to other editorial features.

This issue of BEEBUG, like the one before it,
has a number of strong items which we hope
will appeal to many readers. Following the item
on Jupiter's satellites, which appeared in the
November issue (see also comment in this
month's Postbag), we have another astronomy
related program in this issue. There is also the
concluding part of the JobLog personal
organiser program, and the first part of yet
another useful and practical application, a form
designer. There are all our usual regular items
as well.

As always, we look forward to your views and
comments on what we publish in the pages of
BEEBUG, and contributions for publication in
these pages are always welcome from readers.
All material which we publish is paid for. To help
you, we can also supply a copy of our “Notes of
Guidance for Contributors” on receipt of an A5
(or larger) stamped addressed envelope.

BEEBUG PROGRAMS INTHE PUBLE
DOMAN

If you read this month's article on public domain
software by Alan Blundell, you will see that he has
been pursuing the idea of encouraging software
houses which have more or less abandoned their
software fitles for the BBC micro, to consider
putting these programs into the public domain,
This seems quite a good idea, provided that
adequate disc-based information can also be
provided to make an application understandable.

To this end, we have decided to make the contents
of BEEBUG magazine discs from volumes 1 {0 5
available in the public domain via Alan Blundell,
All such programs remain copyright BEEBUG,
and it will be up to Alan to decide which programs
he provides, and in what format. Al later
BEEBUG programs will continue to be available
only from RISC Developments Ltd., the publishers
of BEEBUG magazine,

A condition of this move is that we will not be able
to provide any support for these earlier programs.
Public domain software is supplied for the cost of
distribution alone, and at that price should be
accepted for what it is. Given the age of this
software, it is unlikely that the original authors
will be able to help either. However, many
interesting programs were published in BEEBUG
throughout those issues, and by allowing them to
be distributed in this way does at least make them
available to all BBC micro users.

Any queries about the availability of BEEBUG
programs in the public domain MUST be
addressed to Alan Blundell, BBC PD, 18 Carlton
Close, Blackrod, Bolton BL6 5DL.

M.W,

E Beebug January/February 1993

Fixing the Sun and the Stars

Bob Dixon-Stubbs shows how to find out exactly where they are.

The height and direction of the Sun or
the stars, the times of sunrise and sunset
and the maximum height of the Sun can
all be found accurately with this
program, from anywhere on the Earth’s
surface and for any date after 1900. Use
it to see when it will get dark during
your holiday in Timbuktu, to identify
the stars, or to get an accurate reading
to calibrate your car compass. Play with
it and you’ll find that “the Sun sinks
slowly in the west” is one of the wilder
generalisations - according to where
you are, it can set anywhere between
north and south as long as there is a
bit of left-hand bias!

Type the program in and save it. When
run, a menu will be displayed allowing
date, time, latitude and longitude to be
set, and offering a choice of
calculations. Start by making a check,
since mistakes in typing in the
constants could result in errors which
are not obvious. The cursor will be
opposite ‘Date’, so press Return and
enter day 7, month 5 and year 2000.
Time, latitude and longitude will all be
zero. Use the cursor keys to place the
cursor against ‘Altitude & Azimuth -
Sun’, press Return and when the result
appears return to the menu and quit.
Type:

PRINT az
which should give 2.850331. If not - hunt
for the error!

USING THE PROGRAM

The input variables can be entered in any
order, and can be changed
independently. Latitude and longitude
are always required and are entered in

degrees and minutes as two separate
values. A date is also needed - the year
can be entered either as YY or 19YY, but
after 1999 it must be entered in full.
Dates prior to 1901 are invalid, since the
program thinks that 1900, being divisible
by four, was a leap year (which it
wasn't).

The times of sunrise and sunset, the
maximum height that the Sun will reach
(and the time it gets there - seldom
noon) can all be found from the above
inputs.

PN RN T 5““ & S]’HRS N RN AN AN NN

Currently: 1&4 1992
4
|

Input) Date

B4

238N
Longitude LR
SHR & Dec, star

Altitude & Azimuth - Sun
Maximum Hltltude

Sunrise & Sunset

Altitude & Azimuth - Star

Ruit

BN NN NN AP R NN R 1

Cursor keys to select RETURH to execute

L T T T T T]

The Menu screen

Enter time in addition to the above - in
GMT, using the 24 hour clock - and the
altitude (height) and azimuth (bearing
from true north) can be found. Altitude
is shown as 0° when the Sun is on the
horizon to 90° when overhead (or
directly under one’s feet if it’s on the
other side of the world - below horizon
cases are annotated as such). Azimuth is
0° if due north, increasing clockwise
through 360°.

Beebug January/February 1993 5

Fixing the Sun and the Stars

.

The position of each star is defined by its
Siderial Hour Angle (SHA) which runs
from 0° to 360° and Declination
(analogous to latitude). Approximate
positions can be found from star charts
(in the Times Atlas for example), more
accurate positions for many stars are
given in Nautical Almanacs (held in the
larger reference libraries), encyclopedia
and astronomical books. The term Right
Ascension is sometimes used - SHA =
360° - 15*Right Ascension in hours.

Unlike the Sun, planets and moon, star
positions have a long shelf life - many
change by less than one minute of arc in
a century. For those seriously afflicted by
star-gazing, they could therefore safely
be added as data or filed on disc, and
called by star name or number.

To get the altitude and azimuth of a star,
enter the date, time and co-ordinates as
above, select ‘SHA & Dec, Star’, and
enter the SHA and Declination of the star
in degrees and minutes. Then select
‘Altitude & Azimuth - Star’.

Zone times are the standard 15° bands of
longitude. They are often correct, but the
program does not allow for non-standard
zone times nor for summer times.

If the program is used in conjunction
with a compass, allow for the difference
between true and magnetic north. If
using it with a map such as Ordnance
Survey sheets, remember that grid north
and true north are not the same - use the
longitude gradations to get a true north
value.

WHAT IT’S DOING

The position of the Sun is defined by its
Greenwich Hour Angle or GHA
(analogous to longitude but going from 0

to 360%) and its Declination. To find these
the value of the Equation of Time is
needed. This is mainly a function of the
elliptical path of the Earth round the Sun,
and it is calculated in seconds by
PROCet. PROCaltaz then solves the
spherical triangles to find altitude and
azimuth.

The maximum altitude is determined by
using the Equation of Time to find the
local time at which the Sun is exactly due
north or south of the specified position,
and then calculating the associated
altitude.

Sunrise and sunset occur when the upper
limb of the Sun appears to be tangential
to the true horizon, so 16’ of arc must be
allowed for the radius of the Sun. In
addition, there is some 34’ due to
atmospheric refraction when the Sun is at
very low altitudes. PROCss, the sunrise
and sunset routine, is therefore looking
for an altitude of 50’ below the horizon.

The routine starts with a seed time (in
local time) which depends on whether or
not the Sun and the specified position are
in the same hemisphere. Declination is
calculated, and the loop checks to see if
the Sun rises or sets. If it does, a time is
found at which it is 50’ below the
horizon, this time is used to recalculate
declination, and the process is repeated
until two successive iterations are within
30 seconds of time.

The formulae can fix the position of the
Sun to within one minute of arc, but
computational errors may exceed this at
very high latitudes or when the altitude
of the Sun or star is nearly 90°, Precise
observation of a rising or setting Sun in
high latitudes, or of the azimuth of a
celestial body when it is virtually

6 Beebug January/February 1993

Fixing the Sun and the Stars

overhead are both extremely difficult, so
such errors are of no consequence.

The Siderial Hour Angle of a star is
measured from a meridian which passes
through a theoretical point known as the
First Point of Aries. PROCaltazstar
calculates the Greenwich Hour Angle of
this point and adds it to the SHA to get
the GHA of the star. Altitude and azimuth
can then be calculated as for the Sun.

APPARENT ODDITIES

At high latitudes the program may give a
sunrise time but report “No sunset” - try
1:4:92 at 84°30°'N. This is the start of
permanent day - the previous day will have
a rise and a set, the next day neither. At the
end of summer the opposite will occur.

If a maximum altitude has been found
and the ‘Altitude’ option is then called
without entering time, the program will
use the exact time it found for the
maximum altitude, and azimuth will be
as expected - 0° or 180°. If the time of
maximum altitude is entered using the
‘Time” option and the ‘Altitude” option
used, azimuth may be slightly different,
since the time used then will be to the
nearest minute.

10 REM Program CELEST

20 REM Version B 1.00

30 REM Ruthor Bob Dixon-Stubbs

40 REM BEEBUG Jan/Feb 1993

50 REM Program subject to copyright

6l

100 ONERROR CLS:REPORT:PRINT" at line
"+ERL:GOTO 350

110 MODED:@%=£704:DIM days%(12):7Fx4,1

120 FOR I%=2TO12:READ daysk|I%):NEXT

130 vouz3, 240,120,72,72,120,0,0,0,0

140 VDU28,16,24,79,3:1t=0:1g=0

150 yy%=0:mm%=0:dd%=0:hr=0:sha=0:dec=0
:ds=0:ns=0:ew=0:tS=STRINGS (48, "~")

160 REPEAT

170 CLS:op=2:PRINTES:VDU31,17, 0: PRINT"
SUN & STARS "''“Input Date';

180 PRINTSPC14'Currently: “:dd%*:"mm$

Y3 'yy%'SPCB"Time, GMT"SPC21;
190 PRINTLEFTS (FNtime(hr,""),6) 'SPC8"L
atitude"SPC22FNdd(1t,2,240)CHRSns
200 PRINTSEC8"Longitude"SPC21FNdd(lg, 3
, 240) CHRSew' SPCB"SHA & Dec, star"'
210 PRINT"Find Altitude & Azimuth -
Sun" ' SPCA"Maximum Altitude”
220 PRINTSPCB*Sunrise & Sunset®'SPCB"A
ltitude & Azimuth - Star®"''SPC8"Quit"
230 PRINT't$''“Cursor keys to select'S
PCLO"RETURN to execute"''t$
240) REPEAT
250 PRINTTAB(6,op)">";:ptr=GET:VDU127
260 op=0p- (ptr=138)+(ptr=139]
270 IF op>13 op=13 ELSEIF op<2 op=2
280 UNTIL ptr=13:CLS
290 IFop=2 PROCdate ELSEIFop=3 PROCtim
300 IFop=4 PROClat ELSEIFop=5 PROClong
310 IFop=6 PROCstar ELSEIFocp=8 PROCalt
320 IFop=9 PROCmax ELSEIFop=10 PROCss
330 IF op=11 PROCaltazstar
340 UNTIL op=13
350 vDU26,14:*FX4,0
360 END
850
1000 DEF PROCdate
1010 INFUT"Day "dd%
1020 INPUT'*Month *mm%
1030 INPUT'"Year ‘“yy%:IF yy%<100 yy%=1
G00+yy%
1040 ENDPROC
1050 :
1060 DEF PROCtim
1070 INPUT"Hours (GMT) "hr
1080 INPUT'"Minutes *“mn:hr=hr+mn/60
1090 ENDEPRCC
1100 :
1110 DEF PROClat
1120 INPUT"Degrees latitude "1t
1130 INBUT'"Minutes latitude "mn
1140 le=le+mn/60:IF lt=0 ns=0:ENDPROC
1150 REPEAT:INPUT'"North or South (N o
r S ";temp$:ns=ASCtemp$ AND &SF
1160 UNTILns=78 CRns=83:IF ns=83 lt=-lt
1170 ENDFROC
1180 :
1190 DEF PRCCleng !
1200 INPUT"Degrees longitude "lg
1210 INPUT'"Minutes longitude "mn
1220 lg=lg+mn/60:If 1g=0 ew=0:ENDPROC
1230 REPEAT:INPUT'"East or West (E or W
) *;temp$:ew=ASCtenp$ AND &5F
1240 UNTILew=69 ORew=87:IF ew=87 lg=-lg
1250 ENDPROC
1280
1270 DEF PROCet
1280 date=(yy3-1900) *365:INT((yy%-1901)
/4)+days® (mm$) +dd¥+hr/24-.5
1290 IF yy¥MOD4=0 AND mm%>2 date=dates+l
1300 jc=date/36525

Beebug January/February 1993 7

Fixing the Sun and the Stars

1310 rnl=2?9.69?+36009.?59'jc—360*‘IW%—l
900) :ml=ml+360* (ml>360) : IF op=11 ENDPRCC
1320 et=-(93+14.23%jc-,0144*jc"2) *SIN(R
AD(ml))

1330 et=et-(432.5-3.71%jc-.2063*jc"2) *C
OS(RAD(ml))

1340 et=et+(596.9-.81%jc-.0096%1c2) *ST
N{RAD(2*ml})

1350 et=et-(1.4+,28%*jc) *COS (RAD(2*ml))
1360 et=et+(3.8+.6%jc) *SIN(RAD(3*ml))
1370 et=et+(19,5-,.21%jc-. 0103 *jc"2) *C0S
(RAD({3*ml) |

1380 et=et-(12.8-.03*jc) *SIN(RAD(4*ml])
1390 dec=DEG(ATN((.43382-.00027%c) *SIN
(RAD (ml-et/240))))

1400 gha=hr*15+et/240+180:IF gha>360 gh
a=gha-360

1410 ENDEROC

1420 :

1430 DEF PROCaltaz{dln)

1440 lha=gha+lg:lha=1ha+360* | (1ha>360) -
[lha<0])

1450 ht=DEGASN (SINRAD]t*SINRADG1n+COSRA
D1t *COSRADAIn*COSRADLha)

1480 temp={SINRADA1n-SINRAD] - *SINRADHE)
/ {COSRAD1E *COSRADL)

1470 IF ABStempsl temp=SGNtemp

1480 2z=DEGACStemp:IF lha<180 az=3f0-az
1490 ENDPROC

1500

1510 DEF PROCalt

1520 PROCet:PROCaltaz(dec):PROCposndate
1530 PRINT"Time"SPC1BFNtime (hr," M)
1540 PRINT'Altitude"SPC14FNAd (ht,0,240)
1550 PRINT"Azimuth”SPC15FNdd (az, 3, 240)
1560 PRINT''*Any key for Menu®; :M=GET
1570 ENDPROC

1580 -

1590 DEF PROCmax

1600 hr=12-1g/15:FROCet thr=hr-et /3500
1610 PROCet:PROCaltaz (dec) : PROCposndate
1620 PRINT'*Maximum altitude"SPCEFNGG (R
£.0,240)

1630 PRINT"Time"SPC18FNtime(hr+(lg+7.5%
SGN1g)DIV1S, * Zone")

1640 PRINTSPC22FNtima(hr, " GMT*)

1650 PRINT''“Any key for Menu": :M=QET
1660 ENDPROC

1670 :

1680 DEF PROCss

1690 FOR I%=1 TO 2

1700 none=FALSE

1710 hr=12-1g/15:PROCet :hr=hr-ek/3600:T
F SGNdec=SGN1t hr=hgs12+ (2= (I%=1}+1)
1720 REPEAT

1730 xhr=hr:PROCet

1740 IF ABSdec>ABS((90-ABSlt)*SGNdec-5/
6*SGN1t) none=TRUE:GOTO 1770

1750 cossd=-(1,45438573E-2+SINRADIL *SIN
RADdec) /COSRADIt /COSRADdec

(1760 hr=12+DEGACScossd* (2% {I%=1)+1)/15-
et/3600-1g/15

1770 UNTIL (ABS{hr-xhr)<1/120] OR none
1780 IF I%=1 PROCposndate

1790 IF none=TRUE no$="No "ELSE nog=""*
1800 IF I%=1 PRINT'no$"Sunrise";ELSE PR
INT'nos"Sunset ";

1810 IF none=TRUE PRINT:GOTO 1840

1820 PRINTSPCISFNtime (hr+(1g+7.5%5GN1g)
DIV15, " Zone“)

1830 PRINTSPC22FNtime(hr," GMT")

1840 NEXT

1850 PRINT''“Any key for Menu®;:M=GET
1860 ENDPROC

1870 :

1880 DEF FROCstar

1890 INPUT®SHA star"''"Degrees ‘“sha
1900 INPUT"Minutes ‘“mn:sha=sha+mn/60
1910 INPUT'"Dec star"''"Degrees ‘"ds
1520 INPUT"Minutes “mn:ds=ds+mn/f0
1930 REPEAT:INPUT'*"North or South (N o
T S] ";temp$:ud=ASCtemp$ AND &5F

1940 UNTTLud=78 ORud=83:IF ud=83 ds=-ds
1950 ENDPROC

1960 :

1870 DEF PROCaltazstar

1980 PROCet :gha=m1-180+15*hr+sha:gha=gh
a+360* ({gha>360) - (gha<0))

‘1990 PRCCaltaz(ds):PROCposndate

2000 PRINT®Time"SPC18FNtime(hr," GMT*)
2010 PRINT"Altitude"SPCL4FNAd(ht,(,240)
2020 PRINT"Azimuth"SPCI5FNdd(az,3,240)
2030 PRINT''*Any key for Menu®;:M=GET
2040 ENDPROC

2050 :

2060 DEF FNdd(dat,nd,chr)

2070 ch=INTABSdat :mn=INT((ABSdat~dh) *60
+.9) :IF mn=60 dh=dh+1:mn=0

2080 bh$="":IF nd=0 nd=2+(dh<10):IF ht<
0 bh$=" below horizon"

2090 EmES=RIGHTS (*000"+STRS (dh),nd) +CHR
$chr+RIGHTS (00" +STRS (mn), 2)

2100 IF chr=46 =fmt$ ELSE =fmt§+*'*+bhs
2110

2120 DEF FNtime(tm,sfx$)

2130 pn=0:IF tm>24 OR tme<0 pn=SGNtm
2140 IF pn=-1 sfx$=sfxs+" [previous day
| “ELSEIF pn=1 sfx§=sfx$+" (next day)*
2150 =FNdd({tm-24*pn,2,46)}+sfxs$

2160

2170 DEF PROCposndate X

2180 PRINT*Co-ordinates"SPC10FNdd(1t,2,
240)CHRSns* "FNdd|(lg,3,240)CHRSew

2150 PRINT"Date"SPC18;dd%" : "mu$”: "yt
2200 ENDPROC

2210

2220 DATA31,59,90,120,151,181,212,243,2

73,304,334 5]

8

Beebug January/February 1993

Form Designer (part 1) i

Lol Taylor presents a comprehensive form designer for the Master.

A lot of us, at one time or another, use
forms to record information. The
problem often is that we don’t have
access to exactly the layout we would
like and end up with something
scribbled on a tatty piece of paper. The
series of programs presented here will
help with this by allowing you to
develop your own layouts as hard copy.
The forms are actually designed by
creating a Basic program so that,
although the system is not that friendly it
is very flexible.

GETTING STARTED

Let’s look at the software in action first,
then we’ll go on to explain how it
works. First type in and save SetUpCh
and FdShell as listed below. Reload
FdShell and add the lines in +Boxes -
save this as FdBoxes. This program
creates the simple form shown in the
illustration. Run SetUpCh to redefine
the screen characters; these will then
remain defined until you press Break or
switch off. Set up your printer and run
FdBoxes, following the prompts. There
are one or two

The software is in
three parts. The first,

reminders about
printers, and then

SetUpCh, defines a set
of screen characters to

you will see the form

reflect the printer

on screen. The
proportions of this

characters, and these
are used to show your

will be a little
distorted but the

design on screen as

layout will be correct.

you develop it. The
second, FdShell, is a

After the screen

shell program into

picture you will be
able to send the form

which you add the

to your printer. If you

form design instruc-
tions themselves. Two

get complete rubbish
tirst check the printer

examples of these
instructions are pro-

is set up for the
graphic character set.

vided here.

If it still won't work

don’t loose heart, as

Before you start, a
word about printers is
needed. The Epson FX-850, on which the
programs are based, has characters for
printing out lines and corners which are
used for designing borders and boxes,
these are numbered &BO0 (176) to &DF
(223) and are selected with DIP switch
SW1-3, other printers will have similar, if
not the same, facilities - you will need to
check this with your manual.

The form produced by FdBoxes

long as your printer
can produce lines
and corners the program can be
customised.

DESIGNING FORMS

To help you design your own forms let’s
have a look at how the FdBoxes form
was created. Keep in mind that this is
designed using double width printing so
it is 48 characters wide and 80 lines high.

Beebug January/February 1993 9

Form Designer

First we need to be able to deal with the
graphics printer characters in a
meaningful way. PROCsetupChars gives
string names to the form characters
available. If you study them in the
printer manual (CHR$176-223) you will
see that in most of them, lines radiate
from the centre point of the character in
two or more directions. To help my
memory they have been given variable
names based on the points of the
compass where capital letters represent
double lines and lower case letters single
lines. So WNSE$ is a cross in double
lines, whereas wnse$ is a cross in single
lines. NSwe$ produces two vertical lines
crossed by a single line. This is the
procedure you may need to alter to suit
your own printer codes.

The above variables are the smallest
building blocks of the form. As the form
is almost bound to repeat certain patterns
there are three building stages which
allow you to create and re-use units to
cut down development time - each unit is
stored as a string variable.

SHORT STRINGS

These are dealt with in the procedure
shortstrings (lines 6000 to 6999). There are
four “short” strings to be created, ‘short’
doesn’t refer to actual length, rather to
the complexity. We need a line eight
characters long (line 6010), a row of eight
spaces (line 6020), a line 44 characters
long (line 6030) and a row of 44 spaces
(line 6040). You can call these strings
what you like but meaningful names
always help so L8% is a line eight
characters long, s8$ eight spaces.

COMPLETE STRINGS

PROCcompletestrings (lines 7000 to 7999)
is where you assemble strings that are
the full width of the form; in FdBoxes

there are six of these. The first is a line
across the page with a corner at each end
(line 7010), the second a row of spaces
across the page with a vertical line at
each end (line 7020) and so on. When
creating these more complex strings it is
very helpful to sketch your form out on
graph paper.

THE FORM PROPER

PROCprintout assembles the whole form
on the screen or printer. As you can see
it's a series of loops, some nested, to print
the complete strings in the correct order
to produce the final form. The procedure
ends with a form feed to the printer just
to tidy thing up.

While you are developing your form on
the screen it will be useful to run the
program at various stages to see how you
are getting on. To help with this function
key f0 has been set up to enter RUN. As
you develop the form you will find that
the top of it will be scrolled off the screen
so use Shift-Ctrl to stop this.

When you are ready to print out your
form you will need to set up the printer
procedures; these are PROCprinterOn
and PROCprinterOff at lines 4000 and
4200. This is simply a set of VDU codes
that configure the printer the way you
want it before printing - the examples in
the program refer to the FX-850 - and re-
set it at the end.

COMPASS CODES
If you would like a print out of the codes
available to you in PROCsetupChars with
their compass names adjacent, then load
FdBoxes and add or change the lines in
+Codes as listed below.

There are two new procedures which are
necessary for selecting the right compass

10 Beebug January/February 1993

Form Designer

codes and their graphic display in the
appropriate boxes. They are listed in
lines 5200 to 5710.

Theoretically this program is quite a
jump forward at this stage, but don’t be
put off by it. After studying the examples
next month in the second part of this
article you will find matters becoming
much clearer.

10 REM Program FdShell
20 REM Version B 1.0
30 REM Author Lol Taylor
40 REM BEEBUG Jan/Feb 1993
50 REM Program subject to copyright
60 :

100 title$="SHELL":0N ERROR GOTOL0000

110 *K.0 RUN|M

120 MODE7:PROCtitle

130 REM delete the next two lines if n
ot required.

140 PRINT'':g%=FNyn("Is SW1-3 up")

150 IFNOTg% PRINT''"Please attend to i
t and restart":END

160 PROCsetupChars

170 PROCshortstrings

180 PROCcompletestrings

190 PROCcopies

200 MODED

210 PROCprinterCn

220 FORcopies=1TOn%:PROCprintout :NEXT

230 voul,7,1,7,1,7:REM Reminder from p
rinter

240 PROCprinterOff

250 IF n%=0 PRINT'"Press any key to co
ntinue": IFGET

260 MODET v

270 REM delete the next line if not re
quired

280 PRINT''‘"Remember to put SWl-3 down
when finished"

290 FORI%=1TOn%:SOUNDL,-15,150,3:SOUND
1,-15,134, 3 :NEXT

300 QSCLI"FX5,1"

310 ED

320 :

1000 DEF PROCc(QS$,Y%) :REM centre text
1010 LOCAL T%

1020 T%=(40-LEN(QS)) DIV 2

1030 PRINTTAB((0,Y%);STRINGS(T%," ");0Q%
1040 ENDPROC

1050 :

1200 DEFFNyn(A$):REM Yes/no?

1210 LOCAL reply$

1220 PRINT' AS;* (Y/N) ? %;

1230 REPEAT

1240 reply$ = CHRS(GET AND &DF)

1250 UNTIL reply$="Y" OR reply$="N"
1260 PRINTreply$;

1270 PRINT

1280 =(reply$="¥")

1290 -

1400 DEFFNrj(f$,L3%) :REM right justify
1410 F$=STRINGS (L$-LEN(fS)," ")+f$
1420 =£$.
1430 :

1600 DEF PROCcopies |

1610 OSCLI"FX5,1"

1620 CLS:PROCc("How many copies ?°,15)
1625 PROCc("RETURN only if print-out no
t required",17)

1627 INPUTTAE(19,19)n%:PRINTTAB(19,19)"
1630 PROCC(STRS({n%),19)

1640 IFn%=0 OSCLI"FX5,0"

1650 PROCc("Press any key to proceed or
<ESCAPE>", 21) : IFGET:CLS

1660 ENDEROC

1670

2000 DEF PROCsetupChars

2010 WN$=CHRS188 :WNSS$=CHR$185 :WNES=CHRS
202 :WNSES=CHR$206 :WS5=CHRS187

2020 WSES=CHR$203 :WES=CHR$205:WEn$=CHRS
207 :WEsS=CHR$209 : WEns$=CHR$216

2030 Wn$=CHR$190:Wns$=CHR$181:WsS=CHRS1
84 :NS$=CHRS186 : NSES=CHR5204

2040 NSwS=CHR$182:NSwe$=CHRS215:NSeS=CH
R$199 :NES=CHR$200 : Mw$=CHRS189

2050 Nwe$=CHR$208:Ne5=CHRS211:SES=CHRS2
01:Sw5=CHR$183 : Sweb=CHRS210

2060 Se$=CHR$214:En$=CHR$212:Ens$=CHRS1

Beebug January/February 1993 11

Form Designer

98:Es$=CHR$213 :wn$=CHRS217

2070 wns$=CHR$180 :wne$=CHR193 :unse$=CH
R$197 :ws5=CHRS191 :wse5=CHR$194

2080 we$=CHR$196:ns8=CHR$179 :nseS=CHRS1
95:ne$=CHR$192: seS=CHRS218

2090 B5=CHR$219:BW4=CHRS221:BNS=CHR$223
:BSS=CHR$220 : BES=CHR$222

2100 bl$=CHRS176:b25=CHRS$177 :b3$=CHRS17
8: " $=CHRS35

2110 ENDPROC

2120 :

2400 DEF PROCtitle

2410 FORI%=0TO6:PRINTCHR$151 : NEXT

2420 PRINTTAB(8,0);CHR$224; :FORI%=1T021
:VDU240 :NEXT: PRINTCHR$176

2430 PRINTTAB(8,1);CHR$106;TAB(30,1);CH
R$53

2440 PRINTTAB(7,2);CHR$141;CHRS106;" FO
RM DESIGN UTILITY ";CHRS53;TAE(7,3);CHRS
141;CHR$106;* FORM DESIGN UTILITY ";CHRS
53

2450 PRINTTAB(8,4);CHRS106;TAB(30,4);CH
R$53

2460 PRINTTAB(8,5) ;CHR$162; :FORI%=1T021
:VDU163 :NEXT: PRINTCHRS33

2470 PROCc(title$,12)

2480 wait%=INKEY(200)

2490 PROCc("""SetUpCh"" must have been
RUN",14) :PROCc("if screen representation
is required",15)

2500 walt$=INKEY(200)

2510 ENDPROC

2600 :

4000 DEF PROCprinterOn

4010 REM Enter printer instructions her

4020 ENDERCC
4030 :

4200 DEF PROCprinterQff

4210 REM Enter printer defaults here
4220 ENDPRCC

4230 2

5000 DEF PROCprintout

5010 REM Enter complete strings in prin
t-out sequence here

5020 ENDPROC

5030 :

6000 DEF PROCshortstrings

6010 REM Assemble part-strings here
6020 ENDPROC

6030 :

7000 DEF PROCcompletestrings

7010 REM Assemble complete strings here
7020 ENDPROC

7030 +

10000 REM Error routine

10010 PROCprinterOff

10020 OSCLI*FX5,1"

10030 MODE7

10040 REPORT:PRINT® at line "ERL
10050 ONERROROFF

10060 END

10 REM Precgram Setupch

20 REM Version B 1.0

30 REM Author Lol Taylor

40 REM BEEBUG Jan/Feb 1993

50 REM Program subject to copyright

60 :

100 MODET

110 PROCredefine

120 PRINTTAB(10,6) ;CHR$130;CHRS141; "FO
RM DESIGNER":PRINTTAR(10,7);CHR$130 ;CHRS
141; "FORM DESIGNER"

130 PRINTTAB(9,9);CHR$130; "SCREEN CHAR
ACTERS*

140 FORI%=1T010:PRINTCHRS134 :NEXT

150 vDu28,1,1%9,39,10

160 PRINT'"The characters 35,176-223 h
ave been"'"redefined. They will stay thu
s until:"

170 PRINT''" The computer is switched
Ofif T ORAYN CTRL+BRERK is pressed, 0
LE they are defined again."

180 vDuU26

190 PRINTTAB(4,20) ;CHR$130;CHR$136; "No
w LOAD the next program."

200 I%=INKEY(100)

210 REM Enter CHAIN'<your program-" he
re if you like (but make sure you save t

12 Beebug January/February 1993

Form Designer

his program before RUNning it)
220 END
230 :
1000 DEF PROCredefine
1010 vou23,35,28,54,48,124,48,48,126,0
1020 vDu23,176,0,170,0,170,0,170,0,170
1030 vDU23,177,168,252,252,252,252, 252,
84,0
1040 vDU23,178,252,252, 252, 252,252,252,
0,0
1050 vpu23,179,16,16,16,16,16,16,16,16
1060 vDU23,180,16,16,16,240,16,16,16,16
1070 vDu23,181,16,16,240,16,240,16,16,1
6
1080 vDU23,182,40,40,40,232,40,40,40,40
1090 vDu23,183,0,0,0,248,40,40,40,40
1100 vou23,184,0,0,240,16,240,16,16,16
1110 vDu23,185,40,40,232,8,232,40,40,40
1120 vDU23,186,40,40,40,40,40,40,40,40
1130 vpu23,187,0,0,248,8,232,40,40, 40
1140 vDU23,188,40,40,232,8,248,0,0,0
1150 vou23,189,40,40,40,248,0,0,0,0
1160 vDU23,190,16,16,240,16,240,0,0,0
1170 vou23,191,0,0,0,240,16,16,16,16
1180 vou23,192,16,16,16,31,0,0,0,0
1190 vpu23,193,16,16,16,255,0,0,0,0
1200 vpu23,194,0,0,0,255,16,16,16,16
1210 vou23,195,16,16,16,31,16,16,16,16
1220 vDU23,196,0,0,0,255,0,0,0,0
1230 vDU23,197,16,16,16,255,16,16,16,16
1240 vpu23,1%8,16,16,31,16,31,16,16,16
1250 vDu23,199,40,40,40,47,40,40, 40,40
1260 vpu23,200,40,40,47,32,63,0,0,0
1270 vDu23,201,0,0,63,32,47,40,40,40
1280 vDu23,202,40,40,239,0,255,0,0,0
1250 vouz3,203,0,0,255,0,239,40,40,40
1300 vDu23,204,40,40,47,32,47,40,40,40
1310 vou23,205,0,0,255,0,255,0,0,0
1320 vDu23,206,40,40,239,0,239,40,40, 40
1330 vpu23,207,16,16,255,0,255,0,0,0
1340 vDU23,208,40,40,40,255,0,0,0,0
1350 vDu23,209,0,0,255,0,255, 16,16, 16
1360 vDu23,210,0,0,0,255,40,40,40,40
1370 vDu23,211,40,40,40,63,0,0,0,0
1380 vpu23,212,16,16,31,16,31,0,0,0
1390 vpu23,213,0,0,31,16,31,16,16,16

1400 vDU23,214,0,0, 0,63, 40,40,40,40

1410 vDU23,215,40,40,40,255, 40, 40,40, 40

1420 vDU23,216,16,16,255, 16, 255,16, 16,1
6

1430 vDU23,217,16,16,16,240,0,0,0,0

1440 VDU23,218,0,0,0,31,16,16,16,16

1450 VDU23,219, 255, 255, 255, 255, 255, 255
255, 255

1460 vDU23,220,0,0,0,0,255,255, 255,255 |

1470 vDU23,221, 240, 240, 240,240, 240,240
240,240

1480 vDU23,222,15,15,15,15,15,15,15,15
| 1490 vDu23,223,255,255,255,255,0,0,0,0
1500 ENDPROC

10 REM Program +Boxes

100 title$="BOXES":0N ERROR GOTO10000
4000 DEF PROCprinterOn

4010 REM Printer codes: on, elite, doub
le width, 8 lines to the inch, English f
ont

4020 vou2,1,27,1,77,1,27,1,87,1,1,1,27,
ARl 27 88103

4030 ENDEROC

4040

4200 DEF PROCprinterOff

4210 REM Default printer codes restored

in reverse order and off

4220 vpul,27,1,82,1,0,1,27,1,50,1,27,1,
87,1,0,1,27,1,80,3

423() ENDFROC

4240

5000 DEF PROCprintout

5010 PRINT'''

5020 PRINTal$

5030 FORI%=1TC7:PRINTa2S : NEXT

5040 PRINTa3$

5050 FORJ%=1TO9

5060 FORI%=1TOS:PRINTadS: NEXT

5070 PRINTa5%

5080 NEXT

5090 FORI%=1TO5:PRINTad$:NEXT

5100 PRINTab$

5110 vDUl1,12

Continued on page 56

Beebug January/February 1993 13

Troubleshooting Guide (Part 2)

Gareth Leyshon points out more pitfalls for users.

In this second article I'll be looking at the
keyboard, sideways ROMs and RAMs,
and present a few hints that don’t collect
under any specific heading.

KEYBOARD PROBLEMS

After a few years of punishment, some
keys may begin to work erratically. In the
worst case, you will need to get your
keyboard serviced. But first, try blowing
around the key - get close to the
keyboard and give a good hard puff.
Failing this, prise the top off the key
(lever a nailfile or thin-bladed
screwdriver under the key’s front edge
and twist) and blow hard on the space
beneath. Replace the keytop with a
gentle press. If this doesn’t help either,
repeatedly pressing the key usually gets
it working long enough to finish your
document, but beware, over-violent
treatment may cause physical damage.

If you find that a key absolutely refuses
to work then all is not lost. You can
redefine the Tab key to give the character
you need. This has the advantage (unlike
using one of the red function keys) that if
the faulty key is alphabetic or one which
gives a different symbol with Shift, then
Tab will respond correctly to Shift, Ctrl,
Caps Lock and Shift Lock. You do not
lose the Tab function, either, for holding
Ctrl and pressing ‘I" will still generate a
proper tab.

To make Tab produce ASCII code ¢, for
example, (look up the ASCII code of the
character you need in the Welcome
Guide or type PRINT ASC”c”), type the
command:

*FX 219,099

*FX 219 re-defines the Tab key and 99 is
the ASCII code for c. To make the
redefined Tab key work properly with
Shift, then it must be defined to give the
unshifted version of the key it replaces,
i.e. a lower case letter or a number.
Remember that the Tab key reverts to
normal whenever Break is pressed, and
will need to be re-defined if this
happens. It may be the case that you
can’t type the FX command because it
includes the character that doesn’t work.
If that is a number, say 5, then type
PRINT 4+1 and use the cursor keys and
Copy to copy the 5; if it is one of the
letters of *FX, VDU 42,70,88 will generate
a line that you can again duplicate using
the cursor keys and Copy. If more than
one key has failed, you will have to
implement the others using the function
keys, with separate keys defined for the
upper and lower case versions. This is
done by entering;
*KEY1 ¢
which would program key f1 to produce

s

C.

Master users can tell the keyboard
whether or not they want Caps Lock
switched on: *CONFIGURE CAPS brings
the computer on in Caps Lock mode,
while *CONFIGURE NOCAPS puts
Caps Lock off. A third setting,
*CONFIGURE SHCAPS, gives you the
lock but pressing Shift together with a
letter key will give you the lower case
letter, a mode which Master and most
Beeb users can access at any time by
pressing Caps Lock while holding down
Shift.

*CONFIGURE DELAY m and
*CONFIGURE REPEAT n control

14 Beebug January/February 1993

Troubleshooting Guide

keyboard rates. When a key is pressed it
is registered once. The computer waits
for m hundredths of a second (called the
delay) and then re-registers the key every
n hundredths of a second (the repeat
rate). These can also be changed directly,
until Break is pressed, on both Beeb and
Master by *FX 11,m for the delay and *FX
12,n for repeat.

SIDEWAYS THINKING

In theory, the Beeb or Master can cope
with sixteen so-called Sideways ROM
chips which carry programming
languages or utilities. What you can do
in practice depends on the machine you
have. A standard Beeb has only four
sockets (for chips numbered 12-15) of
which one will hold the Basic language
and another the disc filing system. You
can buy extra circuit boards in which to
plug up to twelve other ROMs.

The Master contains one spare chip
socket (number eight) inside the
computer. Sockets 9 to 15 are taken up by
Basic, the disc filing facilities and the
other systems built-in; type *ROMS to see
what they are. Slots 0 to 3 are provided
via the two cartridge sockets. Normally
slots 4 to 7 are taken up with four banks
of extra memory called Sideways RAM.
Properly-prepared software can be
transferred from a disc into this memory
where it acts as if it was on a built-in
ROM until you turn the power off. In a
few rare cases (perhaps if a machine is a
reconditioned second-hand one) two
banks of Sideways RAM (either 4 & 5 or
6 & 7) may have been deselected
allowing extra chips to be installed
internally hence rendering two slots
unavailable. If you’re very unlucky, both
pairs may be deselected - you must get
your dealer to make a small hardware
correction inside the machine.

Some users may be using a BBC Model
B+128 machine. This can be identified by
it giving an OS number 2.0 in reply to
typing *HELP. This also possesses four
banks of sideways RAM - in this case in
slots 0, 1, 12 and 13. In the following
description of SRLOAD, the numbers
0,1,12,13 (B+) or 4,5,6,7 (Master) may be
used explicitly, or the codes W,X,Y,Z
work on either machine.

Data provided to be placed in sideways
RAM - usually referred to as ROM
images - is transferred into sideways
RAM using the *SRLOAD command.
This is only standard on the B+ and
Master; Beeb users who have some sort
of sideways RAM made by a third party
manufacturer will have their own
instructions. To take a typical example,
the schools” wordprocessor EDWORD,
filename EDWRD2E, would be
transferred to RAM using:
*SRLOAD EDWRDZE 8000 W Q

where 8000 is the memory location (nearly
always with the value of 8000), Q denotes
‘quickly” and the W is the bank of
memory to use. You must then perform a
Ctrl-Break before the RAM is ready for
use, after which *EDWORD will activate
this particular piece of software. If this
fails, a possibility is that you don’t have a
usable bank 4 as described above. In this
case repeat the process and change the W
tor a Z. If this works you know you only
have two usable banks of RAM instead of
four. If you omit the Q the process takes
rather longer - but including the Q causes
the current main memory contents to be
wiped (that memory is used to speed up
the process) so if you want to keep
something that’s in memory at the time,
leave out the Q.

Sometimes a particular ROM clashes
with a piece of software, or two ROMs

Beebug January/February 1993 15

Troubleshooting Guide

use identically named commands for
different jobs. In this case Master users
can type *ROMS for a list showing which
slot which ROM is in, and type
*UNPLUG &n, where n is the ROM
number, to render any of the ROMs
unusable, effective from the next Ctrl-
Break (this setting is remembered while
the computer is off). *ROMS shows
which ROMs are unplugged and
*INSERT &n will reinstate any of them.

MISCELLANEOUS TIPS

If you find at any time that the cursor
keys and Copy are not working as they
usually do to copy characters from the
screen, typing *FX 4 should restore their
usual function. If the cursor vanishes,
pressing one of the cursor keys may be
sufficient to revive it; if not then try
typing MODE 7 - changing mode cures
most cursor and screen layout problems.

To get the computer working properly
you must type in instructions exactly as
shown on any instruction sheet or
manual. Using lower case letters where
the computer wants capitals, or inserting
spaces (or leaving them out) can make
what seems quite intelligible to you just
gibberish to the computer. One easy
mistake to make, especially when using
the cursor keys and Copy, is to copy
trailing spaces where they aren’t needed:
beware of failing to find a match when
using the Master’s LIST IF command
simply because ‘term ‘ doesn’t match
‘term’.

If a command doesn’t work, check the
way it's typed. Be careful: don’t confuse
letters i and 1 with digit 1, or letter O
with digit 0. Zero is often written with a
distinguishing slash (@) which is how it
appears on the keyboard, and sometimes
on screen.

In a few cases, a Basic program which
works well on a Beeb refuses to do so on
a Master. One cause may be that the
screen display needs a “non-shadow”
mode as discussed last time. If this fails,
try using the program called CONVERT
as described in the Master’s Welcome
Manual. Note, however, that it is
certainly NOT necessary to run
CONVERT with every program you use,
as I found one user doing.

Other freak circumstances make the
computer seem to hang up; if all else
fails, press Break a few times, switch the
computer off for more than a minute, or
try disconnecting and reconnecting all
the leads while switched off. There seems
no logical reason behind some of these,
but they have been known to work. You
can also try removing unnecessary
peripherals from the system, just in case
they are causing some unforeseen clash.
If this does the job, why knock it? You
can check, of course, that the problem is
not something simple like the power
switch at the back of the disc drive being
in the off position (not all drives have
one, and it's easy to forget). If you are
using two drives with individual power
supplies, you may need to switch on the
power to the drive you are not using,
otherwise the one that you are using may
not work properly.

In my next article I shall look at
printers, and in subsequent issues at
disc drives. For any users who still use
cassette, the following tip may help: if
you have trouble loading data when
using jack plugs, you may find that
easing the jack from the EAR socket so
it is about a millimetre short of being
fully inserted may sometimes improve
matters. That’s all for this time - happy
troubleshooting! B

16 Beebug January/February 1993

Eureka

Alan Gray helps you brush up your gameshow skills.

Eureka is a mathematical game designed
to test your mental arithmetic, based
loosely on the numbers game from
Channel 4's Countdown. The rules are
fairly simple, you are given five small
random numbers (range 1-10), one large
random number (25, 50, 75 or 100), and a
random target number (range 101-999).

ELRERH

Try to match the target using
ABCDEF and » only once
combined with ¢ » + - and %
Complying with BBC Basic syntax

Round 1

Target number= 706

To correct input errors
Press Delete key, which
erases the whole line.

Starting the game

The six random numbers are held in the
variables A, B, C, D, E and F. The object
of the game is to try and construct a
formula using some or all of these
variables, along with the operators +, -, ¥,
/ and up to 3 pairs of brackets, so that
the formula yields a result as close as
possible to the target number. The /
operator must only be used to give an
integer result; failure to comply will give
a zero score.

The variables A to F are used instead of
A% to F% to simplify inputs from a
single key stroke, using GETS$. A typical

formula is in the form (A-B)*F-C/D; here
MOD D must be zero.

ELRERR

Try to match the target using
ABCDEF and 7 only once
combined with ¢ > + - and ¥
Complying with BBC Basic syntax

Round 1

Target number= 706

To correct input errors
Fress Delete key, which
erases the whole line.

(FAEIRE - (400 -4

Doing the best Ican. ..

ENTERING THE FORMULA

Each key press is checked for syntax etc.,
before inclusion in the formula, and you
cannot enter the same variable or the
divide symbol more than once. If Return
is pressed with missing closed brackets
or an incomplete statement, then you are
warned and may carry on with the next
entry. If you enter some sign or variable
by mistake, you may delete the whole
formula by pressing the Delete key, but
the clock isn't reset to 0.

SCORING

The difference (positive or negative)
between the target number and the result
of the formula is used to calculate the
score. You score nothing if the difference
is more than 10, and with the difference
between 4 and 10 you score 10 points.
Naturally the scores are higher when the

Beebug January/February 1993 17

Eureka

difference is only between 1 and 3 (20
points) and if there is no difference at all,
you score 50 points. To give the game a
little edge, the score is doubled if you
manage to enter the formula within 1
minute, but if you take longer than 2
minutes the score is halved.

ELREK#

Try to match the target using
ARBCDEF and » only once
combined ulth C)+ - and ¥
Complying with BBC Basic suntax

Round 1

Tarq#* number= 706
Your total= 686

i

~J U1 D~ P =

Difference= 20

A
B
c
D
E
F

LT

Time taken was 168secs

You scored ¢ points

{F4EI4E-
PRESS aMY KEY TO CONTIHUE

But not doing very well

The game consists of 8 rounds of solving
the formulae. The final score is the sum
of all 8 rounds plus a bonus for
consistent scoring. The bonus is doubled
every time a round scores more than
zero, with a maximum of 250 points
when you score in all 8 rounds. If you are
fast accurate and lucky, you can score
more than 1000 points.

Good luck!

10 REM Prog ram Eureka

20 REM Version B 1.0 |
30 REM Author #lan Gray ‘
40 REM BEEBUG Jan/Feb 1993

50 REM Program subject to copyright ‘
F O

,mS5{9),rn{b),sct(8)

100 DIM tag(6)

18

110 b$=CHRS132+CHRS157+CHRS131 ‘
120 rf cyp¢1'>9+LHRs15HCHR 135

130 cy$=CHR$134+CHRS157+CHRE132
‘ 1400 d§=CHRS$141 |
150 |
R J=1 TO 9:READ m$ () :NEXT

170 REFEAT

180 FOR %=1 I
| 190 n%=0
| 200 REPEAT

210 n%=n%+1 |
‘ 220 FOR j%=1 TO 6:tag(j%)=0:NEXT

230 PROCscreen(B)

‘ 160

240 PRINTTAB(3,4)"Try to match the tar
'_qet using"

250 PRINTTAB(3,5)'ABCDEF and / on |
ly once*

260 PRINTTAB(3,6) "combined with ()} +
- and ** |

270 PRINTTAB(3,7)"Complying with BEC B |
asic syntax"

280 A=RND{4} ‘

290 REPEAT:B=RND(4):UNTIL B<>A

300 C=RND(6)+4:D=RND(6) +4

310 REPEAT:E=RND(6)+4:UNTIL E<sD ‘

320 F=RND(4)*25 '

330 IF F=25 T%=RND(499)+100 ELSE T%=RN
D(899)+100 |

340 rn(l)=R:rn(2)=B:rn(3)=C

350 rn(4)=D:rn(5)=E:rn(6)=F

360 PRINTTAB(16, 31,"F0un\ ":n%; |

370 PRINTTAB(3,11);"*Target number= ";T

o

380 PRINTTAB(3,15);"To correct input e
rrors"

390 PRINTTAB(3,16); *Press Delete key, |
|which"

400 PRINTTAE(3,17);"erases the whole I
[ine. " |

410 FOR j=1 70 6

420 PRINTTAB(32,10+3) ;CHRS (6447) Hic

Beebug January/February 1993

Eureka

480 ch=GET:ok=0:test=-1
430 IF ch=127 THEN ch=7: PROCdel
500 IF ch>64 AND ch<71l THEN PROCvar .
510 IF ch»>41 AND ch<46 THEN PROCoper
520 IF ch=40 OR ch=41 THEN PROCbrac
530 IF ch=47 THEN PROCdiv
540 IF ok THEN PROCformula
550 IF ch=13 AND pos=0 THEN ch=7:PROCe
rril9)
560 IF ch=13 END pc=3 THEN ch=7:PRCCer
r{7)
570 IF ch=13 AND brl<>brZ THEN ch=7:PR
OCerr (2]
580 UNTIL ch=13
530 time%=TIME/100
600 IF pdiv>0 THEN PROCchdiv
610 FOR L%=15 TO 17:PRINTTAB(3,L%);SPC
(25) :NEXT
620 PROCscore
630 sc%(n%)=score
640 PRINTTAB(3,24)"PRESS ANY KEY TO CO
NTINUE® ;
650 w=GET
660 UNTIL n%=8
670 CLS:PRCCtable
680 UNTIL FALSE
£90 END
700
1000 DEF PROCscreen(st)
1010 CLS
1020 FOR j=0 TO 2:PRINTCyS:NEXT
1030 FOR j=3 TO s%:PRINThS:NEXT
1040 FOR j=5%+1 T0 19:PRINTrS:NEXT
| 1050 FOR 3=20 TO 22:PRINTCYS:NEXT
1060 PRINTTAB(16,1}d$; "EUREKA"
1070 PRINTTAB(16,2)dS; "EUREKA"
1080 ENDEROC
1080
1100 DEF PROCdel
1110 FOR j=1 TO pos
1120 PRINTTAB({j+7,21);" *
1130 PRINTTAB(j+7,22};" *
1140 NEXT
1150 £$="":pos=0:pdiv=0:brl1=0:br2=0:nc=
0:pc=0
1160 FOR j=1 TO 6:tag(5)=0:NEXT
| 1170 FCR §=1 T0 6

|$(ch)

1180 PRINTTAB(28,10+]);r8:NEXT

1190 ENDPROC

1200

1210 DEF PROCformula

1220 £5=f5$+CHRS(ch) :pos=pos+1

1230 BRINTTAB(6,21)d$; TAB (pos+7,21) ;CHR

1240 PRINTTAB(6,22)d$; TAB (pos+7,22) ;CHR
$(ch)

1250 ENDPROC

1260 :

1270 DEF PROCvar

1280 IF pc=2 OR pc=4 THEN PRCCerr(8): E
NDEROC ;
1280 IF tag(ch-64)=0 THEN ok=-1:pc=4:ta
glch-f4)=1:nc=nc+1 ELSE PROCerr(5)

1300 IF ok PRINTTAE(28,ch-54);b$

1310 ENDPRCC

1320 -

1330 DEF PROCoper

1340 IF nc=6 THEN PROCerr (1) :ENDPROC
1350 IF ch=44 ENDPROC

1360 IF pc=2 OR pc=4 THEN ok=-1:pc=3
1370 ENDPROC

1380 :

1390 DEF PROCdiv

1400 IF pdiv>0 THEN PROCerr(3):ENDPROC
1410 IF pc=0 OR pc=1 OR pc=3 THEN PROCe
rr (8) :ENDPROC

1420 IF pdiv=0 THEN pdiv=pos+l:ok=-1:pc
=3 |
1430 ENDPROC

1440

1450 DEF PROCchdiv
1460 test=-1

| 1470 den$=MIDS(f$,pdiv+l, 1)
| 1480 num$=MIDS$(f$,pdiv-1,1)

1490 IF den$="(" THEN n=pdiv+1:PROCfcb
1500 IF num$="}" THEN n=pdiv-1:PROCfch
1510 den%=EVAL(den$)

1520 IF den%=0 THEN test=0:PROCerr (4):E

ND

1530 IF NOT test PROCerr(1):ENDPROC |
1540 divé=num$+"/"+den i

| 1550 num=EVAL(div$)
| 1560 IF ABS(num-INT (num))<.0001 THEN te

Continued on page 28

Beebug January/February 1993 19

Public Domain Software

Alan Blundell's campaign to revitalise old commercial Beeb software
as PD or shareware gets an airing this month...

At the end of my last column, I said that
I would give the up to date story about
my dealings with commercial software
houses who once marketed good quality
software for the BBC micro, but who no
longer sell it, or at least no longer market
it so that anyone can find it for sale.

The idea occurred to me some time ago
that very little software is actively
marketed nowadays for our ‘mature’
models. Nevertheless, much of it was
good software and, of course, it still is. As
there is still wide interest in the BBC
micro, often from new users who have
bought a secondhand machine, it seemed
a shame that they might no longer have
the opportunity to see the vast range of
software which exists. So, I started to
write to software houses which I knew
of.

My proposal was that their software
products which are no longer marketed
could be distributed for them by PD
libraries (I actually only mentioned my
own, but that wasn’t the point). This
would give users the chance to see their
software, give the software house wider
recognition and perhaps also the
goodwill of a group of ‘computerate’
people most likely to upgrade to an Arc
one of these days, which would be of
benefit to those companies who now
concentrate on the later micros. [also
mentioned the shareware concept as a
possibility so that they could even
generate some income from products
which they no longer expected to make
any money for them.

Early successes included Phoenix
Software’s excellent ‘Fast Access’ disc
magazine. This is a subscription only
magazine, although ‘magazine’ is

probably the wrong word. It actually
consists of regular distributions of discs
containing a wide range of good quality
software contributed by subscribers, all
with documentation on disc in text files.
Phoenix agreed to let me distribute the
first two volumes (of 6 issues each), not
as PD or as shareware, but nevertheless
very cheaply. As I saw it, the benefit was
that more people would have access to
the software; from their point of view,
there was the possibility of gaining new
subscribers.

Alpine Software were another early
success, when they agreed to let me
distribute their ‘Plague Planet’ adventure
game as shareware. John Lyons sent me a
wide range of educational software
which he had successfully marketed for
specific college courses (mentioned
previously in this column). And Howard
Spurr gave the OK for his well regarded
‘Disk Duplicator III’ system to be
distributed as PD.

I was encouraged by these to try a bit
harder to persuade the software
companies and by now I have written to
more software houses than I previously
knew existed. Of course, I haven't tried
to persuade the most well-known
companies which all readers will
immediately recognise, because [am
sure that their products are still selling
well. I wrote to Garland Computing,
though, who produce a range of quality
educational software. They sent me a
pleasant reply with good wishes for my
efforts but pointed out that their
products are still going strong. In fact, I
was pleased to hear that, although their
sales are obviously nothing like they
were before the Arc came to prominence,
they are experiencing a revival of interest

20 Beebug January/February 1993

Public Domain Software

from customers. It shows that there is life
in the old CPU yet!

The reply from Garland was in fact
notable by its very existence; most of the
letters (and sample PD catalogues, etc.)
have gone without a reply. I suspect that
many of the smaller software houses
have gone altogether; companies whose
names seasoned BBC users would
recognise with a fond “Ah, yes, I
remember Enigma Disc Imager...."” (insert
the software title of your choice) have
simply disappeared and I have had a fair
share of letters returned marked “not at
this address”.

However, there is a slow but steady flow
of good news. Vine Micros has agreed to
let their ‘AddComm’ and ‘Matrix Rom’
ROM images be distributed, and has
offered special prices if anyone wants the
full product, complete with original
manuals. Both of these products are
compatible with the Model B and
Electron, but sadly not Master series
micros; I suspect that this is because of
the changes made in the Basic language
ROM in the later machines. Both received
excellent reviews in their day (they were
first released in 1984/5).

AddComm extends the BBC Basic
language by adding 40 extra commands.
These are not star-commands as in most
utility ROMs, but can be used as normal
Basic commands in direct mode, within
programs and even within multi-
statement lines. The new commands fall
into four main groups: graphics;
Logo/turtle graphics; toolkit; and
general purpose. The Matrix ROM is the
answer to a prayer for anyone of a
mathematical inclination who wants to
solve linear simultaneous equations
without resorting to programming
languages other than BBC Basic.

Chris Reynolds, of CODIL Language
Systems, is looking at ways of packaging

his MicroCODIL expert systems
language in such a way that it can be
usable without the lengthy and
comprehensive manuals for re-release,
and has already given permission for his
‘Psychebrot’ disc of fractal graphics to be
distributed. (‘Psychebrot’ was actually
the first ever disc of ‘careware’ for the
BBC - if you like it you are encouraged to
make a donation to MIND, the mental
health charity.) Thanks should go to Rik
Gray, who actually suggested to Chris
that he contact me - I hadn’t yet got
round to pestering him myself.

There are one or two other companies
who are actively looking at their
products and sorting out what is
possible, although it isn’t appropriate for
me to pressurise them by mentioning
them here. I have more yet to contact
before I get into second stage persuasion
on the companies who I know still exist
but who haven’t yet replied.

Also, several people have written to me
with suggestions for likely candidates. 1
am following these up but would be
interested to hear of any product which
you may know of, whose author or
copyright holder is still traceable, and
which you consider worth rescuing from
oblivion when it is no longer marketed. It
would be a shame for all that good
software to disappear without trace... If
you have a suggestion to make, I can be
contacted direct at 18 Carlton Close,
Blackrod, Bolton, BL6 5DL (it would save
BEEBUG a small fortune on the cost of
forwarding the mail, if the response to
this is anything like the response to my
‘SPRITER’ plea of a few issues ago!).

Next time, I plan to look at some more of
the good quality software which has been
contributed to the public domain direct by
the writers. Looking back over previous
columns, I find that there are many
programs deserving a mention which I
haven't yet got round to talking about. B

Beebug January/February 1993 21

Input (1)

st

Alan Wrigley describes the means by which Basic allows
you to input data while your programs are running.

course

Most programs are
interactive to some
degree. That is, they expect to receive
data from the user (normally typed in at
the keyboard), and to display the results
of any processing on the screen, via a
printer or in a file. In addition, there is
often a requirement for the user to
indicate choice or confirmation by
making a single keypress - perhaps to
choose an item from a menu or to
confirm the deletion of some data, and so
on.

This article and the one which follows
next month will look at the input side of
this process. Basic provides a
comprehensive set of statements for data
input from the keyboard; these are GET,
GET$, INKEY, INKEY$ and INPUT (the
latter can take the optional extension
LINE). The first four of these are
essentially for the input of single
characters, or the detection of single
keypresses, and will be considered next
month.

INPUT

Whenever a program requires an item of
data to be typed in at the keyboard,
whether it is a numerical value or a string,
the keyword INPUT should be used. This
suspends execution of the program until a
line of text has been typed at the keyboard
and Return pressed, whereupon the value
of the data entered is placed into the
specified variable. The syntax allows for
quite a number of variations in the use of
the statement, so we will look at a few
examples. The simplest form is:

INPUT variable
where variable is the name of any type of

variable (integer, real or string). A question
mark will be displayed and the user’s
input awaited. If a string variable is used,
then the resulting string will consist of the
characters typed in. If it is a numeric
variable, then Basic will try to make sense
of the input as a number, or return a value
of zero if it cannot.

If we take an actual example:
INPUT value$

in this case an integer is expected; entering
“12" or “256" for example will set value%
to that value. Entering “45.13” will set
value% to 45, while entering “Hello world”
will return a value of 0, and “24 Acacia
Road” will return 24.

Using this simple form of the statement
will always display a question mark for a
prompt. However, in most cases you will
want to prompt the user with some words
of your own, such as “What is your
name”. To do this, you precede the
variable name with a string as follows:

INPUT prompt variable
If you place a comma between the prompt
and the variable name, the question mark
will appear after the prompt, otherwise it
will not. So you might use:

INPUT "What is your name®,name$
if you are asking a question, or:

INPUT "Height of room: "height%
if you are not.

The prompt can contain other statements
which relate to screen display, such as TAB
or SPC. In fact, quite complex prompts can
be displayed, using most of the facilities
available with the PRINT statement. For
example, you could specify a prompt
string such as:

22 Beebug January/February 1993

First Course

INBUT TAB(10,3)"Enter your name"'SeC(10)
*using upper case letters"'SPC({10)"and
not more than 10 characters® name$

which uses three strings separated by

newlines (the * characters) as well as TAB
and 5PC. However, you cannotf include
variables in your prompt string; if you
think about it for a moment the reason is
obvious - INPUT will assume that the first
variable name it finds is to be used for the
returned value. If you want to prompt with

a variable, you must use a PRINT

statement for the prompt, and follow it

with INPUT to read the data.

When a string variable is used, you can
input a whole line of data (up to about 238
characters). However, leading spaces will
be stripped, and the string will be
terminated at the first comma if there is
one. In order to enter strings containing
leading spaces or commas, you must use a
variant of INPUT, which is INPUT LINE.
This works in exactly the same way, except
that all characters will be returned. If your
programs request string input that may
contain these elements, you should always
use INPUT LINE rather than INPUT.

So far we have only described inputting
one value at a time, but it is quite possible
to input several values with one statement,
for example"
,'.»-‘%,d%
Each item is prompted in turn with a
question mark on a new line. You can
include more than one string prompt, too:
INPUT "Height", h%, "Width",w%

EVALUATION OF EXPRESSIONS

Often it is useful to be able to enter an
expression instead of a simple value. This
might save the user time when entering
data. For example, if the volume of a room
is required, and you know the room is 14 x

13 x 8 ft, it is much easier to type “14*13*8"
than to get out the calculator. This can be
handled quite easily by using a string
variable with the INPUT statement, and
then evaluating the string using EVAL, as
in the following example:

INPUT *Volume of room:

volume%=EVAL{input$§)
Thus you will get the correct result
whether the user types in a simple
numerical value or an expression. EVAL
can handle strings containing any
functions which are normally used in Basic
(SOR, SIN, OR, AND and so on).

"input$

NEATER DISPLAY OF INPUT

One of the problems with INPUT is that
after the statement is issued and before
Return is pressed, the program has no
control over the process. It is quite easy for
the user to enter a ridiculous value, or even
to type in a string of excessive length which
overwrites other important information on
the screen, and the program can do nothing
whatsoever about it. All that can be done is
to indicate after the event that the input
was not acceptable.

A further problem is that, even if the input
is sensible, it may be a value which the
program cannot handle. It must then
repeat the request for input on a
subsequent line, continuing until it gets a
response that fits the requirements. The
screen then just scrolls with one prompt
after another, perhaps losing other
information from the top of the screen.
This does not look very professional, and
can be frustrating for the user.

What is needed is an input routine which is
completely under the control of the
program, rejecting unacceptable characters
and ensuring that the input remains within
a well-defined area of the screen by
repeating prompts in the same place as

Beebug January/February 1993 23

First Course

]

before and refusing to allow overlength
strings to be entered.

Listing 1 is an example of such a routine,
which places a prompt at the specified
screen co-ordinates, and then processes
keypresses to compile an input string. The
maximum length of the string can be
specified, together with a list of characters
which are to be allowed. If a null string is
given then all are allowed. The routine
uses the GET statement to get each
character typed in turn. We will be looking
more closely at this next month.

If maximum flexibility is required, the
approach adopted here for allowable
characters is rather cumbersome - the
parameter string might end up being very
long. However, for most purposes it is
merely necessary to ensure that only
numeric characters are entered when a
numeric result is required, and so the most
likely string passed as a parameter would
be “.0123456789".

Listing 1

INT TAB(x%,y%)prom

WD LEN{in3)>{ inS=LEFT

You would call the routine in the following
way:
aS=FNinput ("Name:*,0,10,20,"")

and if a numeric value is expected then an
EVAL statement would follow.

The routine works as follows: firstly in line
1010 a flag is set (allow%) depending on
whether allowable characters are
restricted, and the output string (in$) is
initialised. The prompt is then printed at
the specified place in line 1020. After the
prompt, spaces equal to the maximum
input length are printed, to ensure that the
space is blanked out if the input has to be
repeated, followed by a string of
backspaces (ASCII 8) of similar length to
put the cursor back in the right place for
input.

Lines 1030-1050 form a loop which
processes each character typed in turn. If
the character is not Return, and if either
the restricted characters flag is unset or
the character is within the string
specified, the character is passed to
PROCchar for processing (line 1040).
PROCchar itself examines the character.
If Delete was pressed (ASCII 127) and
the length of in§ is currently greater than
zero, the string is shortened by one
character (line 1090), while if the
character is less than 127 and the length
is less than the maximum, the character
is added to the string (line 1100). In both
cases the character is echoed to the
screen with a VDU statement.

The routine as it stands is very basic but
it will handle most requirements. It can
easily be expanded, however; for
example, you could accept function keys
by incorporating the appropriate lines
into PROCchar. For those who are
interested, a rather more comprehensive
data input routine was published in an
earlier 1st Course (Vol.9 No.3). B

24 Beebug January/February 1993

Mr Toad’s Machine Code Corner h

This month Basic will eat itself!

Now that the single market is finally
upon us, I trust that you have all gone
over to the new European Standard Byte
of 7.3 bits. If not, you should solder a
potentiometer between earth aind track 8
on your Beeb’s data bus, and adjust it
until you get exactly 1.66 volts when the
line goes high. Voila - sept point trois
morceaux. But wait! I forgot. The Beeb
was designed before 1896, and is
therefore exempt. Phew! Nevertheless,
whilst we are on a cosmopolitan note Mr
T will let you in on the latest Kraze to
sweep the international 6502 scene:
Kamikaze Kode.

How many of you have written, or use, a
Basic program which calls machine-code
routines? Mr T wrote a specialised word
processor for handling lists of names -
nothing world-shattering, but handy. The
associated machine-code routines speed
up the processing a lot, but the procedure
which assembles it takes up a lot of space
which I could well use for data. OK, you
say, save the object code to a separate file
and load it in first. Yes, but Mr T hates
that; not only is it fiddly and slow, but it
gets in the way of the tinkering-around
with the listings, which is what I'm really
enjoying while Mrs T thinks I'm printing
out membership lists for PMS Help.
Many of us get a lot of enjoyment from
messing about with our listings - oops,
sorry, program development.

Mr T learned a lot and got a lot of fun
from engineering one solution to the
problem - Kamikaze Kode. The
assembler part of the program does its
job and then makes itself disappear,
leaving just the Basic behind - plus, of
course, the assembled object code. To get
it back to work on it again, you just
reload the one program, and everything

is in one listing. The kamikaze routine
itself can be assembled to a place which
can later be overwritten, so it uses no
extra memory whatsoever.

You could do it by noting the address of
the desired cutoff point, and doing a few
pokes from Basic, but you’d need to reset
the address after even the smallest
change. K.K. works by placing a marker
in the listing at the point where you want
the program to be cut off. To the existing
assembly text you add a short routine
which is called as soon as the assembly is
finished. This routine works its way back
from the end of the program towards the
beginning until it finds the marker, then
it cuts the program off at that point. The
assembly text disappears and the space
will be overwritten by the Basic variables
and data. There are therefore a couple of
constraints. One, the assembler routines
have to be at the end of the Basic, as
everything down-memory from the
marker will disappear. It should be in a
procedure which is called at the very
beginning, before any variables are
declared. That’s not a problem; in fact,
most people lay their programs out like
that anyway.

Secondly, any labels declared by the
assembly text are erased, since the
variables live just above the end of the
Basic. You can’t write ‘CALL code’ in the
Basic, because the variable .code no
longer exists. Fortunately, the resident
integer variables A% to Z% are not
cleared by anything short of power-off:
they live all on their own in page 4. You
can, therefore, write .A% as a label in the
assembly text and ‘CALL A%’ in the
Basic, even if RUN, CLEAR or Kamikaze
Kode has come between the two and
wiped out all the other variables. Note

Beebug January/February 1993 25

B

Mr Toad's Machine Code Corner

that if the object code is loaded in from a
separate file, methods of calling it from
the Basic are even more restricted.

Before we get down to details, a couple
of points about the organisation of Basic
itself. A Basic line begins with the line
number in two bytes, MSB-LSB. Next
comes one byte containing the length of
the line, including the line number, itself
and the final &0D. Then come the
contents of the line, with keywords
tokenised, and finally the carriage return
&0D. For example:
10 REM123456

looks like this if you use a memory editor
or peek the first ten locations after PAGE:
00 OA 0B F4 31 32 33 34 35 36 0D. 00 0A is
the line number, 10. Next, OB, that’s a line
length of 11 bytes. F4, the token for REM,
then 31 32 33 34 35 36 for the numerals;
then 0D, the carriage return. Try it,
bearing in mind that if PAGE is at &0E00,
the first line of Basic begins at &0E02,
since (PAGE) always holds &0D and
(PAGE+1) holds zero. Upset the line
length with ?(PAGE+3)=9, and you won't
be able to list the line; you get ‘Bad
program’. Repair the damage with
?(PAGE+3)=11 and you can list it again.
After the &0D at the end of the last line,
Basic puts &FF as an end-of-program
marker.

Secondly, Basic stores the value of TOP in
locations 0 and 1 - that's the address of
the location after the &FF. The address of
the end of the variables (called VAR-TOP,
but Basic doesn’t understand that
mnemonic) is stored in locations 2 and 3.
Basic also keeps a lot of other
information in page zero, but 0 to 3 are
all that matter here.

Our overall layout-will be as follows: at
the very beginning of the Basic program,
call the procedure with the assembler in
it. Let’s name it PROCcode.

40 PROCcode

All line numbers in this article are, of
course, only examples. The last part of
the whole listing will be the procedure
code, with our marker on the next line.
You can’t rely on a single character as a
marker, as it would be far too likely to be
duplicated by accident. Bear in mind that
a line number or line length byte could
accidentally be the same. Basic gets
round that by calculating the function of
these bytes from their context, but that
would mean far too much code for this
purpose. Instead, we’ll use a combination
which is very, very unlikely to be
duplicated accidentally: I chose (%@. If,
by Murphy’s law, that sequence does get
duplicated in your PROCcode, change it.
OK...
3000 DEF PROCcode
3010 REM** (%@

The asterisks are just spacers, as we'll see
in a minute; you can use any characters.
What matters is the (%@. Then comes the
existing assembly text.

The listing of the Kamikaze Kode could
be anywhere in PROCcode, but I'm
assuming that you've tacked it onto the
end. If memory for the existing object
code is tight, assemble the Kamikaze
Kode somewhere else - I've used &7800.
It can be overwritten when the Basic is
working. Don’t forget to come out of the
assembler with a square bracket before
P%=&7800, then back into the assembler
with a left-hand bracket and restate
OPT. You don't need a separate FOR -
NEXT loop; keep everything inside the
existing one. The last thing in PROCcode
will be CALL &7800:ENDPROC. The
Kamikaze Kode will truncate the
procedure, but the return addresses
which Basic has stored won’t be
affected, so that the ENDPROC after the
call will successfully get you back to the
beginning of the program, even though
that ENDPROC is no longer inside the
program. Right...

26 Beebug January/February 1993

Mr Toad's Machine Code Corner

We’ll need a subroutine which moves
back by one address and updates the
pointers. Basic’s own pointers at 0 and 1
will have to be changed anyway, so we’ll
use those ourselves:

.backOne DEC 0:LDA 0

CMP #&FF:BNE ret

DEC 1

.ret LDA (0):RTS

This decrements the pointers and returns
with A holding the contents of the byte
pointed to. In fact, we’ll place .backOne at
the end, and begin our routine with a
loop to whizz back up the listing looking
for the last character of the marker:

- kami

JSR backOne

CMP #ASC"@" :BNE kami

When that loop exits, 0/1 are pointing to
a ‘@’. Now check for the other two
characters, with a branch back to the loop
if they’re not there:

JSR backOne

CMP #ASC"%":BNE kami

JSR backOne

CMP #ASC" (" :BNE kami

If we get here, we've found our marker.
Now to store the address presently held
in 0/1, as it’s the one we need at the end -
the one affer Basic’s &FF marker.
Eventually, 2 and 3 will have to hold this
address too, so let’s store it there now:

LDA 0:STh 2

LDA 1:5Ta 3

Now we’ll replace the second asterisk
with Basic’s &FF ‘end-of-listing’ marker:
JSR backOne
LDA #&FF:STA (0)

Now the next address up, presently also
holding an asterisk, must hold the end-
of-line &0D:

JSR backOne

LDA #&0D:STR (0)

At this point we have to go two bytes
further up to adjust the line length byte.

Why not stop en route and change the
REM to an ENDPROC (token &E1)? That
way, if you do ever have to restart the
program after shortening, the call to
PROCcode will hit an ENDPROC and
return. If it hit a REM with no code
following, it would simply stop.

JSR backOne

LDA #&E1:STa (0)

Finally, adjust the line length byte to 5 -
there’s only an ENDPROC, but
remember those extra four bytes. Then
replace the correct address of the new
TOP in 0/1 and exit:

JSR backOne

LDA #5:5TA (0}

LDA 2:5TA 0

LDA 3:STA 1:RTS

Exit the assembler, tidy up and... dunnit!
Try it - after careful saving - and list
PROCcode. You should see only:

3000 DEF PROCcode

3010 EWDPROC

We have reclaimed for variables and data
very nearly all the memory formerly
occupied by the assembly text. The object
code should be snug in its new home.
Two points remain: one: whatever you
do, don’t go and save the sawn-off text
under the same filename as the original;
secondly, a limitation, Mr T hates
programs that say things like ‘The
filename must be in capitals’ - the
computer should fix such things for the
user. Here, however, I break my rule. The
marker, REM**(%@, must be the first
thing on its line, otherwise the routine
can’t find the line length byte. The
program still runs, but you get ‘Bad
program’ if you try to list or restart it. Mr
T wrote a fix for this, but it's too long to
justify inclusion here. This month’s
competition - write your own fix for the
above problem. There are still lots of I'M
A SWOT badges to be awarded.

Continued on page 58

Beebug January/February 1993 27

Eureka (continued from page 19)

st= -1 ELSE test=0:PROCerr (6):ENDPROC
1570 ENDPROC

1580 :

1590 DEF PROCfch

1600 REPEAT

1610 n=n+1

1620 IF MIDS(f$,n,1)="(" THEN PROCfch
1630 UNTIL MIDS(f$,n,1)=")" OR n=LEN(f$
)
1640 IF MIDS(f$,n,1)=")" THEN den$=MID$
(£S5, pdiv+l, n)

1650 ENDPROC

1660 :

1670 DEF PROCfob

1680 REPEAT

1690 n=n-1

1700 IF MIDS(f$,n,1)=")}" THEN PROCfoh
1710 UNTIL MIDS(£S,n,1)="(" OR n=1

1720 IF MIDS(f$,n,1)="(" THEN num$=MIDS
(£5,n, pdiv-1)

1730 ENDFROC

1740 .

1750 DEF PROCbrac

1760 IF br2=brl AND ch=41 PROCerr(8):EN
DPROC

1770 IF ch=40 AND(pc=2 OR pc=4) PROCerr
(8) :ENDPROC

1780 IF ch=41 AND(pc=1 OR pc=3) PROCerr
(8} :ENDPROC

1790 IF brl<3 AND ch=40 brl=brl+l:ok=-1
spe=l

1800 IF br2<brl BND ch=41 br2=br2+1:ck=
=LpE=2

1810 ENDPROC

1820 :

1830 DEF PROCerr(1%)

1840 PRINTTAB(2,24);m5(1%);

1850 soumD 0,-10,1,5

1860 w=INKEY(200)

1870 PRINTTAB(2,24);SPC(37};

1880 ENDPROC

1890 .

1900 DEF PROCscore

1910 ans%=EVAL(fS$) :dif%=ABS(T%-ans%)
1920 PRINTTAB(6,12);"Your total= ";ans%
1930 PRINTTAB(6,14);"Difference= *;dif%
1940 IF dif%=0 score=50

1950 IF dif%>0 AND dif%<4 score=20

1960 IF dif%>3 AND dif%<ll score=10
1970 IF dif%>10 score=0

1980 IF time%<60 score=score*2

1990 IF time%>120 score=score/2

2000 PRINTTAB(3,16)"Time taken was ";ti
me% “secs";

2010 PRINTTAB(S,18);"You scored ";score
;" points"

2020 ENDPROC

2030 :

2040 DEF PROCtable

2050 PROCscreen(15)

2060 tot%=0:top%=0:bon=1

2070 FOR j%=1 TO 8

2080 tot%=tot¥+sct(j%)

2090 PRINTTAB(4,3)"Current top score =
":topsch

2100 PRINTTAB(4,j%+4);"round ";3j%,sc%(]
%)

2110 TF sc%(j%)>top% top%=sc%(j%}

2120 TIF sc%(j%)>0 THEN bon=bon+bon

2130 NEXT

2140 PRINTTAB(4, 13) "Total ", tot%

2150 tot%=tot%+hon

2160 IF tot%>topsch THEN topsci=tot$
2170 PRINTTAB(4,15)"Bonus *,bon

2180 PRINTTAB(4,17)"Score *,tot%

2190 PRINTTAB(4,21)" Another game? Y/N"
2200 REPEAT:an$=GETS:UNTIL ané="Y¥" OR a
ns$="N"

2210 IF an$="N" END

2220 ENDPROC

2230 -

2240 DATA "all Variables have been used
2250 DATA "Missing bracket®

2260 DATA "Only one divide allowed®
2270 DATA "You can't divide by zero"
2280 DATA "That variable already used®
2290 DATA "Division not integer®

2300 DATA "You can't end with an operat
or"

2310 DATA "You can't enter that charact
er’

2320 DATA "You pressed Return by mistak
a" T

28 Beebug January/February 1993

by Mike Williams

As 1 said last time, 1
want to look at one
further way of treating
tree traversal. This
method depends upon
the language you use to
write your program, and
Beeb users are fortunate
because BBC Basic, but
not necessarily other
versions, allows the use
of a technique called
recursion.

RECURSIVE TREE
TRAVERSAL
As I stated in the first
Workshop on tree
structures, the essential
definition of Inorder
traversal is:

Traverse the left subtree

Visit the root

Traverse the right subtree
Suppose we want to
write a procedure which
will perform Inorder
traversal starting at any
node of the tree. Let us
suppose we define a

| D
FEERETT

|
|

|
L1

|

—1

| E
FUTEET |

| procedure called
PROCinorder(root) for
this purpose.

For this technique we do
not have to worry about
threaded trees (which
we used last time), nor
do we have to
implement a stack for
pointers as we did with
our first approach to tree
traversal. Our tree

LLLL 111

| O
111

5 R O O 0 O

| i Y) D D

i

Tree Structures (Part 3)

structure will be simple, with left and
right-hand pointers to any subtrees, and
pointer values of -1 when there is no
subtree. Given this information we can
define our procedure as follows:

DEF PROCinorder (root)

IF LLink(root)>-1 THEN

PROCinorder {LLink(root))

PRINT Data${root)+" *;

IF RLink({root)>-1 THEN

PROCinorder {RLink(root))

ENDPROC

Believe it or not that is all the coding
which is necessary. The oddity, if that’s
the right word, in this procedure
definition is that that the procedure is
defined (in part) in terms of itself. Now at
first sight, this may seem impossible, but
that is not the case. What the procedure
says is “for as long as there is a left-hand
link to a subtree follow this link and
repeat the process with the sub-subtree,
and so on”. Now every binary tree is
finite, so eventually we reach a left-hand
link which contains a null pointer (a
value of -1 in our case). When that
happens, we move to the second line of
the procedure definition and display the
value of the data at that node. Then the
procedure looks at the right-hand link.

Let us look at this another way. When
the procedure is called the first time, the
first IF statement in the procedure is
executed. If the left-hand link exists, the
procedure is called again, substituting
this left-hand link for the original root. In
effect we have a second incarnation of
the procedure, and every time we follow
another link down a level of the tree, in
effect another incarnation of the
procedure will come into play. Once the

Beebug January/February 1993 29

BEEBUG Workshop: Tree Structures

end of these links is reached, Basic starts
to climb back up the chain. How does it
do this? - by creating a stack on which it
automatically stores all the pointers
needed to climb back up the tree.

In fact, Basic is doing automatically what
we programmed ourselves before, either
by implementing a stack or by using
threads, but the coding is very much
simpler. A program, Tree(3a,
implementing this method of Inorder
tree traversal is listed here. For
comparison, the time to repeat this
traversal 100 times is just 7.52 seconds,
compared with 22.00 seconds for our
explicit stack method, and 13.47 seconds
for our threaded tree approach. The
unseen payoff is in the extra storage
taken up by Basic to manage its stack.

PREORDER AND POSTORDER

In fact we can take the use of recursion a
stage further, for it is just as simple to
implement Preorder and Postorder
traversal of a binary tree as it is to
implement Inorder - it is merely the
order of the three statements as at lines
1080 to 1100 which makes the difference.

To illustrate this I have extended listing
Tree03a to include all three forms of tree
traversal, and this appears as listing
Tree03b. This program uses exactly the
same data as all our previous tree
programs, but it now includes a simple
menu system allowing a choice of any of
the three traversal techniques.

Note that because of the essential
recursive nature of the traversal
procedures, each has been given a
separate ‘pre-procedure’. This just
ensures that the title line and terminating
line appear once only - it is the data in
the tree which is traversed recursively.

Recursion can be a powerful technique -
in this case it considerably simplifies the
coding - but unless adequately
understood and used wisely it can lead to
excessive use of memory and be a
nightmare to debug, as I know to my cost!

Next time, in a final look at tree
structures, we’ll see how data can be
inserted and deleted in a tree structure so
that the ordering of the data is preserved.

| 10 REM Program Tree03a
20 REM Version B 1.0
30 REM Author Mike Williams
4() REM BEEBUG Jan/Feb 1993
50 REM program subject to copyright
60 :
100 ON ERROR REPORT:PRINT" at " ;ERL:EN
D
110 DIM Data$(100),LLink(100),RLink(10
)
120 130 MODE 3:PRINT'"Inorder Tree Tra
versal®
130 PROCcreate_tree
140 PRINT
150 PROCinorder(0)
160 END
170,
1000 DEF PROCcreate tree
1010 LOCAL 1%,N%:READ N%
1020 FOR I%=0 TO N%-1
1030 READ Data$(I%),LLink(I%),RLink(I%)
1040 NEXT I%
1050 ENDPROC
1060 :
1070 DEF PROCinorder (root)
1080 IF LLink(root)>-1 THEN PROCinorder
(LLink (root) }
1090 PRINT Data$(root)+" *;
1100 IF RLink(root)>-1 THEN PROCinorder
(RLink (root))
1110 ENDPROC
1120 :
2000 DATA 9
2010 DaTA A, 1, 2,B, 3,-1,C, 4,
2020 DATA e o e ol BB o S
2030 DATA G,-1,-1,H,-1,-1,1,-1,

il

= oo wn

30 Beebug January/February 1993

BEEBUG Workshop: Tree Structures

10 REM Program Tree03b
20 REM Version B 1.0
30 REM Author Mike Williams
40 REM BEEBUG Jan/Feb 1993
50 REM program subject to copyright
60 :
100 ON ERROR REPORT:PRINT" at “;ERL:EN
D
110 DIM Data$(100),LLink{100),RLink(10
0)
120 end%=FALSE
130 PROCcreate_tree
140 :
150 REPEAT
160 MODE3 :choice=FNmenu
170 IF choice=1 THEN PROCpreorderl(()
180 IF choice=2 THEN PROCinorderl(0)
190 IF choice=3 THEN PROCpostorderl(()
200 IF choice=4 THEN end$%=TRUE
210 UNTIL end%
220 END
230
1000 DEF PROCcreate_tree
1010 LOCAL I%,N%:READ N%
1020 FOR I%=0 TO N%-1

1210 PROCinorder (root)

1220 PRINT''"Press any key to continue.
*:G=GET

1230 ENDPROC

1240 :

1250 DEF PROCinorder (root)

1260 IF LLink(root)>-1 THEN PROCinorder
(LLink(root))

1270 PRINT Data$(root)+" *;

1280 IF RLink(root)>-1 THEN PROCinorder
(RLink(root))

1290 ENDPROC

1300 :

1310 DEF PRCCpostorderl (root)

1320 PRINT''"Postorder Tree Traversal"'
1330 PROCpostorder (root)

1340 PRINT''"Press any key to continue.
" :G=GET

1350 ENDPROC

1360

1370 DEF PRCCpostorder (root)

1380 IF LLink({root)>-1 THEN PROCpostord
er (LLink (root))

1390 IF RLink(root)>-1 THEN PROCpostord
er (RLink (root))

1030 READ Data$(I%),LLink(I%),RLink(I%) 1400 PRINT Data$(root)+* *;
1040 NEXT I% 1410 ENDPROC
1050 ENDEROC 1420 :
1060 : 1430 DEF Flmenu
1070 DEF PROCprecrderl(rcot) 1440 LOCAL c%
1080 PRINT''"Preorder Tree Traversal"' 1450 PRINT"BINARY TREE DEMCONSTRATION"'
1090 PROCpreorder (root) 1460 PRINTTAB(5}"1. Preorder Traversal®
1100 PRINT''"Press any key to continue. 1470 PRINTTAB(5)"2. Inorder Traversal"
*:G=GET 1480 PRINTTAB(5)"3. Postorder Traversal
1110 ENDPROC 3
1120 : 1490 PRINTTAB(5)"4. Exit"
1130 DEF PROCpreorder (root) 1500 PRINT'"Enter 1 - 4:";
1140 PRINT Data$(root}+" *; 1510 REPEAT:c%=GET-48:UNTIL c%>0 AND c%
1150 IF LLink(root)>-1 THEN PROCpreorde <5
r(LLink(root)) 1520 =c%
1160 IF RLink(root)>-1 THEN PROCpreorde 1530 :
r(RLink(root)) 2000 DaTa 9
1170 ENDPROC 2010 DATA A, 1, 2,B, 3,-1,C, 4, 5
1180 : 2020 pATA D,-1,-1,E,-1, 6,F, 7, 8
1190 DEF PROCinorderl(root) 2030 pATA G,-1,-1,H,-1,-1,1,-1,-1
1200 PRINT''‘"Inorder Tree Traversal"' B
Beebug January/February 1993 31

Applications I Dise
BUSINESS GRAFHICS - for producing graphs, charts and diagrams
VIDEO CATALOGUER - catalogue and print labels for your video
casseties
PHONE BOOK - an on-screen telephone book which can be easily
edited and updated
PERSONALISED LETTER-HEADINGS - design a stylish logo for your
letter heads
APPOINTMENTS DIARY - a computerised appolntments diary
MAPPING THE BRITISH ISLES - draw a map of the British Isles at
any size
SELECTIVE BREEDING - a superb graphical display of selective
breeding of insects
THE EARTH FROM SPACE - draw a picture of the Earth as seen
from any point in space
PERSONALISED ADDRESS BOOK - on-screen address and phone book
Pace DESIGNER - a page-making package for Epson compatible printers
WoRLD BY NIGHT AND Day - a display of the world showing night and day for any time and date of the year

Breed a Bug

Mlle Elamdling for All
on the BEC Milere and Acern Arehimedss b S
by David Spencer and Mike Williams

Computers are often used for file handling applications yet this is a subject
which computer users find difficult when it comes to developing their own
programs. File Handling for All aims to change that by providing an extensive
and comprehensive introduction to the writing of file handling programs with
particular reference to Basic.

File Handling for All, written by highly experienced authors and programmers David
Spencer and Mike Williams, offers 144 pages of text supported by many useful program
listings. It is aimed at Basic programmers, beginners and advanced users, and anybody interested in File Handling
and Databases on the Beeb and the Arc, However, all the file handling concepts discussed are relevant to mast
computer systems, making this a suitable introduction to file handling for all.

The book starts with an introduction to the basic principles of file handling, and in the following chapters develops
an in-depth look at the handling of different types of files e.g. serial files, indexed flles, direct access files, and
searching and sorting. A separate chapter is devoted to hierarchical and relational database design, and the book
concludes with a chapter of practical advice on how best to develop file handling programs.

The toples covered by the book include:
Card Index Files, Serial Files, File Headers, Disc and Record Buffering, Using Pointers,
Indexing Files, Searching Techniques, Hashing Functions, Sorting Methods,
Testing and Debugging, Networking Conflicts, File System Calls

The assoclated dise contains complete working programs based on the routines described in the book and a copy of
Filer, a full-feature Database program originally published in BEEBUG magazine,

0
-
-
“
=
g
ey
0
¥
()
Y
m

ASTTAAD
Hlim sl e e E1E bl 6P s agh e o= Sy | 230
Enhanced ASTAAD CAD program for the
Master, offering the following features:
¥ full mouse and joystick control
% built-in printer dump
#* speed improvement
% STEAMS image manipulator
* Keystrips for ASTAAD and STEAMS
¥ Comprehensive user guide
* Sample picture files
Stock Code Price Stock Code Price
ASTAAD (80 track DFS) = 1407a £5.95 ASTAAD (3.5" ADFS| 1408a £5.95
Applications I (80 track DFS} 141la £4.00 Applications I (3.5" ADFS) 1412a £4.00
Applications I Disc (40/80T DFS) 1404a £4.00 Applications I Disc (3.5" ADFS) 14039a £4.00
General Utllities Disc (40/80T DFS) 1405a £4.00 General Utilities Disc (3.5" ADFS) 1413a £4.00
Arcade Games (40,80 track DFS) PAGla £5.95 Arcade Games (3.5" ADFS) PAGZa £595
Board Games [(40/80 track DFS) PBGla £5.95 Board Games (3.5" ADFS) PBG2a £5.95

All prices include VAT where appropriate, For p8.p see Membership page.

RISC Developments Ltd, 117 Hatfield Road, St Albans, Herts AL1 4.JS.

Board Games

SOLITAIRE - an elegant implementation of this ancient and fascinating ML san
Unc_Player game. and a 'nmplcl: mlu“m fDr mm Wht] are unahlc IU rlj. Bur Twe The. Feur Fion 543 Jind #0iad F.%ew. L.Gtr, B.98r. RadN Chan. 50|
find it for themselves. i - - - Lol e g Sl

RoLL o HONOUR - Score as many poinis as possible by throwing the

five dice in this on-screen version of Yahtze'.

PATIENCE - a very addictive verslon of one of the oldest and most . - . - .
popular games of Patience.

ELEVENSES - another popular version of Patience - lay down cards on
the table in three by three grid and start turning them over until they
add up to eleven,

CRIBBAGE - an authentic implementation of this very traditional card
game for two, where the object is to score points for various combinat and seq of cards.

TWIDDLE - a close relative of Sam Lloyd's sliding block puzzle and Rubik's cube, where you have to move numbers round a
grid to match a pattern.

CHINESE CHEQUERS - a traditional board game for two players, where the object Is to move your counters, following a
pattern, and occupy the opponent’s field.

Aces HIGH - anather addictive game of Patience, where the object 1s lo remove the cards from the table and finish with the
aces at the head of each column.

Applications I Dise

CRossWORD EDITOR - for designing, editing and solving
crosswords

MoNTHLY DESK DIARY - a month-to-view calendar which can also
be printed

3D LANDSCAPES - generates three dimenstonal landscapes
ReAL TIME CLOCK - a real time digital alarm clock displayed on
the screen

RunNING FOUR TEMPERATURES - calibrates and plots up to four
temperatures

JULIA SETS - fascinating extensions of the Mandelbrot set
FoREIGN LANGUAGE TESTER - foreign character definer and
language tester

SHARE INVESTOR - assists decision making when buying and selling shares

LABEL PROCESSOR - for designing and printing labels on Epson compatible printers

Areade Games

GEORGE AND THE DRAGON - Rescue Hideous Hilda' from the flames
of the dragon, but beware the flying arrows and the moving holes on
the floor.

EBoNY CASTLE - You, the leader of a sccret band, have been
captured and thrown in the dungeons of the infamous Ebony Castle.
Can you escape back to the countryside, fighting off the deadly
spiders on the way and collecting the keys necessary to unlock the
coloured doors?

EXNIGHT QUEST - You are a Knight on a quest to find the lost crown,
hidden deep in the ruins of a weird castle inhabited by dangerous
monsters and protected by a greedy guardian,

PITRALL PETE - Collect all the diamonds on the screen, but try not to
trap yourself when you dislodge the many boulders on your way.

BurLper BoB - Bob is trapped on the bottom of a building that's being demolished. Can you help him butld his way aut?

MINEFIELD - Find your way through this grid and try to defuse the mines before they explode, but beware the monsters
which increasingly hinder your progress.

Manic MECHANIC - Try to collect all the spanners and reach the broken-down generator, before the factory freczes up.
QuaD - You will have hours of entertainment trying to get all these different shapes to fit.

W
0
()
-
0
-
W
g
g
W
c
0

Stock Code Price Stock Code Price
File Handling for All Book BKOZb £9.95
File Handling for All Disc (40/80T DFS) BKO05a £4.75 File Handling for All Disc (3.5" ADFS) BK07a £4.75
Joint Offer book and disc (40/80T DFS| BK04b £ 11.95 Joint Offer book and disc (3.5" ADFS] BK06b £ 11.95
Magscan (40 DFS) 0005a £9.95 Magacan Upgrade (40 DFS) 00lla £4.75
Magscan (80T DFS) 0006a £9.95 Magscan Upgrade (80T DFS) 0010a £4.75
Magscan (3.5" ADFS) 0007a £9.95 Magscan Upgrade (3.5" ADFS) 1458a £4.75

All prices include VAT where appropriate. For p&p see Membership page.

Tel. (O727) 40303 Fax. (O727) B60263

This month the
Forum'’s again a
bit of a mixture.
I hope there’s
something for
everyone, but [apologise in advance for
the first item.

There’s more software compatibility, a
tip that might save a few of you a small
but annoying bit of typing, and a source
of very useful information on some of
the 512’s quirks, both for those who
write programs and for the less
technically inclined.

OLD CHESTNUTS

First, yet another repetition of facts
which most Forum readers know. I hope
no-one minds a bit of space for this; with
luck it might save me time, paper and
frustration (sorry to moan!).

The most up-to-date version of DOS
which runs on the 512 is the Acorn
issued DOS Plus 2.1. Don’t write to me
about DR DOS, MS-DOS, Windows or
05/2 (please!): the answer’s ‘NO’! Here
are some more points on which I will
probably not mention in the future.

You can’t add anything to the 512 to give
an EGA or VGA display, and even if you
could your monitor couldn’t handle it
(I'll expand on PC graphics next month).
You can’t even have full colour CGA:
your monitor couldn’t handle that either
without modification. You can’t have
more than 1024K of RAM, as that’s the
limit the 512’s 80186 processor can
address. You can’t have more than one
hard drive (at a time), but it doesn’t
necessarily have to be drive C: once the
system has been started. Finally, you can
use a tracker-ball instead of a mouse, but
you cannot have a games port or a
joystick.

512 Forum

by Robin Burton

These points and more have been
covered in 512 Forum previously, so
please don’t write to me about them: it'd
be better to order Beebug back issues
instead.

NO RTC?

This tip won't save hours, but it might be
useful to some model B and B+ users.
Since these machines have no battery
backed CMOS RAM there’s no time or
date. Users must therefore manually
supply these every time they boot the
512, or do without knowing when files
were created or updated. For backups
particularly this information can be
critical, so its absence isn’t a good idea.

PMS’s Genie Watch fills the gap
permanently, although I don’t know if it's
still available. If you're interested, details
are on page 366 of the 512 Technical
Guide (which is still available from Dabs
Press, as is the 512 User Guide). By the
way, in case you hadn’t noticed, Dabs are
currently supplying their two Shareware
collections for £25.00 the pair, each
containing five discs. Previously these
cost £30.00 for each set.

Recently I've been using an XT with no
battery backed clock. Since I have to re-
boot a lot, having to re-enter the date and
time again and again is most tiresome.
So I thought of a solution which means I
never enter the date more than once. All
you need is a small change to
AUTOEXEC.BAT and two very short,
simple files, the first of which creates the
second for you.

Here’s how to set up the first file, I called
mine NEWDATE.BAT, so whenever I do
need to change the date I just type
NEWDATE. The file should be in the
root directory of your boot disc, be it
hard or floppy, since the output file is

34 Beebug January/February 1993

512 Forum

used by AUTOEXEC.BAT. Enter it via an
editor, or more easily, as it’s only two
lines, use:

COPY CON NEWDATE.BAT
This produces an empty screen line with
a cursor but no prompt. That's fine, just
carry on. Enter these two lines, pressing
Return after each.

COPY CON TODAY

DATE <TODAY

Next, press Ctrl-Z, then Return again to
close the file. You now have a new batch
file which, when run, will open a file
called TODAY, presenting you with a
blank line as described above. You then
enter the date in exactly the same format
as you do at the standard date prompt,
for example ‘7-6-92’ (how many of you
have been typing in leading zeros and
the century too?). Follow that by Return,
Ctrl-Z, Return, then the file is written
and the system date is (re)set
immediately as well.

Next amend AUTOEXEC.BAT. Since this
is an update, edit your existing file, as the
alternative, ‘COPY CON’, requires re-
entry of the entire file. Remember you
may need to use ‘FSET’ (see last month'’s
Forum) before you can update the file if
it’s read-only or if the system bit is set.
Often forgotten is ‘SDIR’, which shows
file attributes. Use it instead of DIR to see
if FSET is needed.

The line to change is the one that contains
‘DATE’ (or if you've previously removed
it, add it now.) Amend it to match the
second line of NEWDATE.BAT, that is
add a space followed by ‘<TODAY’ to the
command on the same line. Resave the
file, then reset its attributes with FSET to
suit your preferences.

Note that, having amended
AUTOEXEC.BAT, you must run
NEWDATE before you switch the
machine off again. If you don’t, when
you next reboot you’ll get a ‘file not
found” message because ‘'TODAY’ won’t

exist (because you didn’t create it - this is
a ‘one-off’ situation of course).

With the changes in place, when you
reboot, the date stored in ‘TODAY” is
piped into the date command
automatically, so you no longer have to
enter it. Of course each day the date
needs changing, but all you do is run
‘NEWDATE’ (once) which corrects the
system'’s internal date and the one stored
in "TODAY’. The date is then set for the
rest of the day and you don’t need to re-
enter it no matter how often you reboot.

This isn’t much use for the time, but it's
certainly better than having no file date
or time stamps which, judging from
some discs I've seen, isn’t an uncommon
choice. Remember too, that the same
technique can be used to ‘automate’ any
program that expects keyboard entry,
including command line parameters,
when the data is always the same.

PD INFORMATION

David Harper has provided a good deal
of valuable information for 512 Forum as
regular readers know, most notably all
the research for the recent series on GEM.
What you may not know, however, is
that he has now produced a 512
information disc which he’s released into
the public domain. The disc contains a
number of information files, in text, each
on a specific topic, which you can print
or which you can keep in your system as
an ad-hoc reference.

Necessarily some, though by no means
all the information is of a very technical
nature, so if you write your own 512
machine code routines you may well find
the solutions to numerous puzzles on
this disc. However, even if you don’t
write 512 programs don’t be put off.
Even for the simply curious there are
answers to some of the questions I'm
asked from time to time and I'm sure
most users will find a great deal of
interest.

Beebug January/February 1993 35

512 Forum

In particular there’s a very interesting
and entertaining demonstration of how
to really liven up menu screens and the
like, including adding colour, changing
mode, hiding text and so on, using
nothing more than an editor or word
processor capable of handling non-ASCII
characters.

I've said before T don’t get time to ‘poke
around’ inside the system much as I'd
like to, but I do know from experience
how much work it takes. David has
clearly spent a considerable number of
hours putting together the information
on this disc. The result is an excellent and
unique source of reference. If you were
paying commercial rates for it I'd suggest
you couldn’t afford if; instead, as it's PD,
I'd say that no 512 enthusiast can afford
not to have it.

See Alan Blundell’s PD column in Vol.10
No0.9, or his advertisement in the
personal ads page of BEEBUG, to obtain

a copy.

SENSIBLE QUESTIONS

I recently had a letter from David
MacGraw that queried a number of
points which users new to DOS might
not know.

He asked if there was a DOS equivalent
to the BBC program ADU, once
produced by Pineapple, which is a
menu-driven front-end for ADFS. Yes,
David, the answer is there are quite a
few, and they are naturally much more
sophisticated than BBC programs too.
There is of course the file manager
which was provided on issue disc one of
DOS Plus 1.2 (only). If you have it this
will give some idea, but it’s neither the
best nor the most reliable example of the

type.

PC-Tools is close to the ultimate, but
Xtree and Norton Commander (1.01
works) are two popular, easily obtained
alternatives. There are also numerous

similar programs in shareware too, so
choosing which to try is really the main
problem. It's personal taste, I don’t much
like XTree and would recommend PC-
Tools so long as you have sufficient disc
and memory space (see Vol.11 No.4).

Another query was whether there’s a
program to blank the 512’s screen on
demand, to hide sensitive data from
prying eyes. There is, but modesty
(almost) prevents me from telling you.
The only program I know of is
"LOCKWORD’ on Essential Software’s
Miscellaneous disc 2. (PC screen blankers
WON'T work, so don’t waste time
trying.)

David also asked if there’s any way the
512 can handle sound in PC programs,
but this time the answer’s ‘NO’.
Ultimately almost anything’s possible of
course, but this would take a great deal
of complicated code and it’s just not
practical.

MORE APPLICATIONS

Now for more software compatibility.
I've used quotes in the same way as I
did in issue 4. Unfortunately the version
number is missing for many of these, as
is the publisher, but I present the
information in case it’s useful. After all,
in some cases there may be only one
version. Items in brackets are comments
I've added where I can.

Bear in mind too (we haven’t started yet)
that many graphics applications, such as
DTP, will expect a minimum of an EGA if
not a VGA display, plus appropriate
drivers. Forget these for the 512. I'll
expand on PC graphics cards and drivers
next month, but for now let’s just look at
the software.

Member 1.Cook sent a brief note to say
that Mini Office Personell version 3.1
runs on the 512. (Should that be
‘personal’? I don‘t know, but you will if
you come across it.)

36 Beebug January/February 1993

512 Forum

Another member, who wishes to remain
anonymous supplied the following.

Lotus 1-2-3 release 2.3 works with or
without a mouse. There are some
problems with graphs created in the 512,
although graphs created on a PC and
transferred to the 512 are OK. Also, of
course, it expects a VGA display, so the
pure graphics functions don’t work.

Mind-Reader (a shareware word
processor also supplied as part of the
Dabs 512 Shareware collection) works
too, but as users have found, it gives
problems (a crash) if you try to change
the drive, path or name under which a
file is saved. Avoid renaming files in the
program (copy or rename them in DOS
beforehand) and it’s OK.

Word-Fugue (shareware) works “in a
similar manner” presumably referring to
paths and filenames, but requires a
second copy of COMMAND.COM to be
loaded (or better, run FIXEXE).

PC-Outline “works brilliantly, if only it
had a word-count, spelling checker and
mouse control I'd use it in preference to
anything else”, says my correspondent.
(Shareware. How about letting me have
version numbers? 1.08 is in the Dabs
collection. See also issue 4.)

First Choice is an integrated package
with Comms (which won’t work), a
spreadsheet, a flatfile database plus a
word processor with spelling checker.
The member warns that text “files
‘MOVE’d to the BBC contain lots of
spurious characters”. (This is true of
numerous DOS word processors, but it's
also true for InterWord files imported
into the 512, and they’re not perfect even
if they're spooled first.)

Both PC-Type and PC-Word work, but as
this member doesn’t use them much he
refrains from further comment. (PC-Type
IT requires real CGA for graphing, I don’t

know about earlier versions, and a hard
disc is needed for version I1V.)

He also confirms that Mini Office (above)
plus MoneyBox, both by Database
Software (remember Micro User?) also
work.

Dbase III Plus “works a treat”.

“Wampum, PC-File and PCBase all work
OK". (These are shareware databases.
They’re not for the ‘dabbler’, they're
serious programs. Wampum needs
EGA/VGA for graphics.)

Press, “a sort of mini-DTP package”,
works, but although printing’s fine
“some of the pictures can’t be seen on
screen”.

Print Partner, a similar program “is OK
too”. My correspondent says, “Both of
the above are poster and banner makers
really, but they do work.” (Print partner
is shareware and ideally requires ‘real’
CGA. Expect screen trouble with many
DTP programs.)

Flodraw is a flowcharting system. It
“works quite well with few problems”.
(Shareware, also included in the Dabs
collection.)

“Fontasy works, but a little slowly”.

XTree “works a treat” (as mentioned
above).

NEXT ISSUE

Well, that’s the 45th Forum completed. I've
a bit more (yet more is always welcome,
but please - complete info) on applications
compatibility and incompatibility, but I
mustn’t spoil you, must I?

I also have the concluding episode in the
directory extension saga, thanks to Philip
Draper, but all these, along with PC
graphics standards and methods, must

wait until next time. B

Beebug January/February 1993 37

Wordwise User’s Notebook:
Cutting the Keys

by Chris Robbins

A while back I attempted an explanation
of some of the minor mysteries associated
with the black art of programming the
Beeb’s function keys for use with
Wordwise (WW) and Wordwise Plus
(WW+) - see BEEBUG Vol.11 No 4.

Although not as all-powerful as the spells
to be found in the average D&D Wizard's
spell book, using the function keys, as I
illustrated in that earlier article, can prove
remarkably effective against finger
gremlins, both chronic and spontaneous
brain fatigue, spots before the eyes,
hexadecimalization, and many other
computing complaints. They can even
extend your Wordwise Wizardry; that is,
if you know what to program them with.

For instance, the example I gave of an
improved version of the WW operation
‘Save marked text’ packed the equivalent
of 18 separate editing operations into one
function key, but in order to do so it
required the setting up of an arcane string
of some 50 magical symbols.

The problem is that the sequences of
characters required to implement
operations are both highly forgettable and
easily mistyped; table 1 gives the key
strings and their associated key functions.

Using this table ‘manually’, as it were, it’s
possible to devise all manner of
complicated and esoteric sequences of
operations that can be invoked at the
mere touch of a key.

But, wouldn't it be nice to have an expert,
user friendly, WW+ ‘locksmith’ to ‘cut’

these magical symbols automatically into
the keys you require, instead? Well, that's
just what the segment program listed here
for WW+ aims to be.

Key string Key Function
'<Space> fo
" f1
" f2
|14 13
I'$ f4
1% f5
I1& f6
" 7
I f8
1)) f9
I, Cursor L
Il Cursor R
I, Cursor D
Y Cursor U
I Tab
M Return
If Escape
I\ Ctrl-Cursor L
1"} Ctrl-Cursor R
1A Ctrl-Cursor D
11- Ctrl-Cursor U
1L Shift-Cursor L
1M Shift-Cursor R
[N Shift-Cursor D
o Shift-Cursor U
1A Ctrl-A
IS Ctr-S
ID Ctr-D

Table 1. Note - <Space> denotes the
space character.

PROGRAM FILES

The program comes in two parts, the
executable code (saved as DEFKEYS in
directory P) to be loaded into segment 0,
and its associated list of key strings
(saved as CLIST also in directory P) to be
loaded into segment 1.

38 Beebug January/February 1993

Wordwise User's Notebook

This is best done automatically by setting
up an EXEC file as follows:

* | DEFEEYS

*|EXEC file to set up and run the Wi+
*|segment program to define soft keys
ki

*WORD.

:SELECT SEGMENT (

*|Load segment program

:LOAD TEXT "P.DEFKEYS"

:SELECT SEGMENT 1

*|Load key strings

:LOAD TEXT “P.CLIST®

*| Invoke program

:DOLINE" |GSEGO IW*

<Return=

and then EXECuting it to load and invoke
the program.

The last line in the file, <Return>, signifies
a blank line that’s used to avoid an
additional key depression, whilst the lines
beginning *| are simply explanatory
comments ignored by the system.

USING THE PROGRAM

EXECuting the EXEC file at command
level e.g. from Basic or WW+ Main Menu,
loads the relevant segments and invokes
the program, displaying a large heading
and a prompt for the number of a key (in
the range 0-15) to be set up.

Checks prevent any number outside the
valid range being accepted.

Having entered a valid key number, the
key function menu is displayed, from
which any (and all) of the key functions
listed above can be selected and
automatically included in a definition.
Selection is simply a matter of moving a
highlight bar using the Cursor Up and
Cursor Down keys to the required
function and then pressing Return.

The number of the key being set up,
together with directions on how to use the
menu are displayed at the top of the
screer.

STRINGS

Strings (e.g. a file name) can be
incorporated into key definitions by
selecting the String option. Enter the
required characters at the flashing prompt
which appears at the foot of the screen,
and press Return to terminate the string.

The program makes no assumptions
about strings; that is to say you can enter
whatever you like, including string quotes
(“) as necessary (since it doesn’t assume
that they’re wanted). Note - if you want
leading spaces in a key definition, then the
key definition will have to be delimited by
string quotes.

TERMINATING A KEY
DEFINITION

A key definition is held in a string
variable whilst it’s being built up.
Selecting End definition from the menu
terminates the definition process, transfers
the completed key description to the main
text area, and returns to the key number
prompt screen, at which point a new key
can be selected.

However, bear in mind that the program
makes no attempt to check that a key has
already been set up in the main text area,
nor does it clear the main text area prior to
execution; this latter allows multiple key
definitions to be assembled, e.g. from
earlier sets of definitions.

SAVING KEY DEFINITIONS

Pressing Escape from either the key
number prompt screen or the key function
menu transfers control to the WW+ main
menu. At this point the definitions in the
main text area can be examined, edited in

Beebug January/February 1993 39

Wordwise User's Notebook

the normal way of text, or saved under
some appropriate file name (using option
1) from the main menu) for subsequent
EXECution.

FINAL THOUGHTS

Although devised with WW+ in mind, the
program can also be used to generate
labour/time/error saving mechanisms for
use in other applications; Computer
Concepts’ latter day word processor,
InterWord, for instance, where leaping
between menus, jumping between packages,
selecting functions, entering printer Escape
sequences efc, can prove a mite irksome.

For example, I tend to make a lot of use of
special printer effects, e.g. italics,
proportional spacing, double width/
height, colour etc., all of which consumes a
deal of finger and brain energy. So I've
used the program to set up keys to do all
the brain fatiguing work for me, and
automatically embed the requisite printer
control commands in Interword text.

True I still have to press the odd key or
two to produce the words and generate
the special effects I want - I haven’t found
a way around that yet. But when I do I'll
let you know. Meanwhile I'll keep on
cutting magical keys!

REM DEFFEYS

REM WW+ Function Key definition program
REM ;

REM The program simplifies the process
REM of setting up complex strings of
REM WW+ (and other) key commands.

GOTO main-program

REI,I PR‘.)CS EhkhkEkr Tk T w kv bkt kbt kx i bh o hdhh
REM Clears previous highlight
.clear

VDU 31,1,T%

[vou 156,135

ENDPROC

REM Moves highlight bar down list
.down
PROCclear
C8=C%+1
T$=C%
IF C%<=14 THEN GOTO down-end
IF C%<=29 THEN GOTO down-right
C%=0
T%=0
PROCleft-window
GOTO down-end
.down-right
IF S8<>"R" THEN PROCright-window
T%=T%-15
.down-end
ENDPROC

REM Moves highlight bar up list
.up
EROCclear
IF C%<>0 THEN GOTO up-decrement
C%=29
T4=14
PROCright -window
GOTO up-end
.up-decrement
C%=C%-1
T%=C%
IF C%<>14 THEN GOTO up-right
PROCleft-window

GOTO up-end
.up-right

IF S8="R" THEN T%=T%-15
.up-end
ENDPROC

REM Highlights selected key command
.show
P%=C%
IF P%>14 THEN P%=P%-15
REM Move cursor to selected command
VDU 31,0,P%
REM White background, blue text
VDU 131,157,132

40 Beebug January/February 1993

Wordwise User's Notebook

VDU 31,18,P%
VDU 156,135
ENDERCC

REM Sets up RH window

.right-window
S$='R'
VDU28,20,23,39,7
VDU3l1, 0,0

ENDEROC

REM Sets up LH window

.left-window
S5="T,"
VDU28,0,23,19,7

REM Position cursor at start of list
Vou3l1,0,0

ENDPROC

REM Message in TS
.large-msg
REPEAT
VDU131,141
PRINT TS
TIMES 2
ENDPROC

.space-line
PRINT
VoUl34

ENDPROC

REM Transfers control to WW+ Main Menu

.exit
SELECT TEXT

REEM Restore cursor control
*FX4, 0

REM Flush keyboard buffer
*FR21,0

REM Restore ESC key function
*FX229,0
*WORD,
END

ENDPROC

REM Gets a word from Key Command list

.get-word
w$=n L}
REPEAT
C8=GCTS
IF CS<>"** THEN WS=W$+C$
UNTIL C§="*"
ENDFROC

REM End OE PROCS Ekkhhhkthktdhhkkkrtdd &
.main-program

SELECT TEXT

REM Set default window

VDUZ26

CLS

REM Set ESC key to return ASCII value
*FR229,1

To=r Function Key Definer"
PROClarge-msg
FRINT

PROCspace-line

.inkey
vDu3l, 0,3
PRINT "Enter Key number (0-15) *;

REM Get-key-number
K$=II
K%=0
REPEAT
REPEAT
R%=GET
UNTIL (R%>=48 AND R%<=57) OR R%=13 OR
R%=27
IF R%=13 OR R%=27 THEN GOTO inkey-exit
D$=CHRS (R%)
PRINT D§;
KS=K$+D§
K%=VAL(ES)
.inkey-exit
UNTIL R%=13 OR R%=27 OR K%=0 OR K%>9
IF R$=27 THEN PROCexit
IF K%#>15 OR LEN{K$)=0 THEN GOTO inkey

REM Display Key Command Menu

Beebug January/February 1993 41

Wordwise User's Notebook

REM Turn cursor off
VDU23;11,0;0;0;0

REM Disable cursor editing
*Fx4,1

CLS

Mg "+"KEY" +K$
PROClarge-msg

PROCspace-line

PRINT "Use Cursor keys+RETURN for
Selection"®

PROCspace-line

PRINT "ESC For WW+ Main Menu"
PRINT

REM Display lst list of key commands
PROCleft-window

SELECT SEGMENT 1
CURSOR TOP
P%=0
REPEAT
PROCget -word
PROCget-word
PRINT " "+WS
PE=P%+1
CURSOR AT 0
CURSCOR DOWN
UNTIL P%=15

REM Display 2nd list of key commands

PROCright -window
REPEAT
PROCget -word
PROCget -word
ERINT * "4WS
P%=P%+1
CURSCR AT 0
CURSCOR DOWN
UNTIL P%=28

FRINT:% Stringk

PRINT * End Definition®

|REM Set up key number
KS="KEY"+KS

.select-command

PROCLeft-window
T$=0
3=0
8§="L"
REM Highlight lst entry in list
PROCshow
.get-code
REPEAT
REM Flush kevboard buffer
| *EX21:0

REPEAT

R%=CET

UNTIL R%=138 OR R%=139 OR R%=13 OR
R%=27

REM If ESC then exit

IF R%=27 THEN PROCexit

IF R%=138 THEN PROCdown

IF R%=139 THEN PROCup

IF R%<>13 THEN PROCshow
UNTIL R%=13

IF C%=29 THEN GOTO end-definition
IF C%=28 THEN GOTO enter-string
CURSOR TOP

IF C%<>0 THEN CURSOR DOWN C%
PROCget -word

REM Add code seguence to key definition
K$=K$+W$_
GOTO get-code.

.end-definition

REM End current key definition
REM and transfer to main text area
SELECT TEXT

TYPE CHRS(13)

TYPE K$

GOTO mair-program

REM String entry into key definition
Continued on page 50

42 Beebug January/February 1993

JobLog (Part 2)

h

Jeff Gorman concludes his time manager.

Last month'’s listing produced code for a
dated “To do’ list. This month we add a
heading showing the base date and the
event (or data) heading and the deadline
for an event (if deadlined). It increases
the range of date functions and enables
entry of times of day and/or memos.
‘Extensions’ are activated, and deletion
and modification of entries are enabled
together with sorting, printouts in three
formats and a quick return to the
Principal Index from analysis levels
deeper than level one. Escape now takes
the user back to the previous stage,
including the final QUIT.

Type in the program given here. Since
combining the two listings involves
overwriting certain lines, take care to
enter the line numbers exactly. Save as
$.JobLogTwo, and prepare one or two
backups.

Until the two parts are combined, it will
not be possible to verify JobLogTwo, other
than by line-by-line comparison of the
listings. It is unwise therefore, to proceed
with the next operation until JobLogOne is
working properly. Once you are certain
that this is the case, it will be easier to
identify typing errors in JobLogTwo.

Likewise make sure you have at least
one backup of JobLogOne since a mix-up
will be disastrous if no backups are
available.

Spool out a copy of JobLog?2 to disc using
*SPOOL filename. Then load JobLogl
and “EXEC the spooled copy of JobLog?
to form the complete program. Save it as

$.JobLog.

If all is well, the 'Boot file described last
month will run the complete version of
JobLog provided that !Boot is changed
to:

CHAIN "$.JobLog®
Create five sub-directories by entering,
from the root ($) directory:

*Cdir Levell
and repeat, changing the level number
until *Cdir Level5 is reached.

ESCAFE
to quit

and key RETURK

Principal Index: entries with a * have lower levels

USING JOBLOG

Extending a listed item puts an asterisk
at the end of its title, opens a new file in
a sub-directory (e.g. Level 1) and offers a
new screen for composing a new list.

Any line can be modified from the
‘Modify” option and to save typing
effort, there is an option to change either
an item’s title or the date/memo side of
the screen. If an asterisked item is
modified by changing its title, its file will
be automatically renamed.

Similarly, deleting such an item also
deletes its file from the disc. To delete a

Beebug January/February 1993 43

JobLog

series of related extensions, ‘Extend’
down to the deepest level, delete the item
and use Escape to work backwards up
the list, otherwise you will be left with
unwanted files cluttering the disc.

I
Talk to Hik

Next level down for BEEBUG entry

All changes are noted and when
necessary, files are saved before certain
commands are implemented.

‘Sort” will rearrange a list by order of
date, with an alphabetically sorted series
of Memos below. Times of day (24 hour
system), e.g. appointment times, are
sorted into the natural order and placed
at the foot of the list.

Ensure that the printer is on-line before
booting JobLog. Each list can be printed
separately, or a number of lists can be
printed one after another. JobLog keeps a
tally of the number of printed lines and
provides automatic form feeds on the
basis that no list should overflow onto
another sheet. Do not operate the
printer’s form feed control button since
this will dislocatesthe line tally. The
prompt ‘Using cut sheets?” enables single
sheets to be catered for. Since the
formatting codes will be lost, do not
switch off the printer when changing

sheets. Instead, insert a new sheet and
adjust until the print head is at its normal
place at the head of the sheet. Line 1240
contains the variable pLen% which is
currently set at 66 lines for 11” paper. For
A4 paper, change this to 70, or 72 for 12"
paper or 40 for ‘Organiser’ size. Variable
tearOff’% represents the top margin for
those printers which leave a space between
the tear-off edge and the printer head. The
bottom margin is represented by botM%.

Lines 80 and 90 ensure that JobLog will
also run on the Archimedes and related
computers though it will only run on
RISC OS 2. As we said last month,
JobLog is an open ended organiser and
you really need to explore its functions
to find out just how much help it can be
to you.

10 REM Program JobLogTwo |
20 REM Version B 1.0
30 REM Author Jeff Gorman
4() REM BEEBUG Jan/Feb 1993
50 REM Program subject to copyright
550 PRINT "Enter "typ$" date"''"(dd.mm
.yyyy)":IF ok PRINT'''"ESCAPE"'"to step
back"
670 end=0:IF escape THEN *fx 229,1
680 IF NOT escape THEN *fx 200,1
730 IF G%=27 esc=TRUE:end=TRUE:*fx229
740 IF G$=13 2ND memo AND a$="":end=TR
UE:*fx229
1440 hnd1%=0PENUP("$."+fnme$) : PROCheadi
ng
1650 IF mod same=FNsameText:PRINT
1670 IF extend depth$=MIDS$(tasks(rws),3
6) ELSE depth$="0"
1680 IF same PROCrhColumn{rw%):ENDPROC
1710 PROCwnd("mid"):IF star AND mod PRI
NT TAB(30, rwk)"*";
1740 IF esc AND row$=0 VDU7:PROCgetTask

| {rwd)

1750 IF esc AND mod AND NOT same replac
e5=MIDS (taskS{rwk),4,30) ELSE IF esc rep |

14 Beebug January/February 1993

JobLog

lace$=STRINGS (30, " *)

1760 IF esc PROCreplace(replace$,rw%):E
NDPROC

1820 IF NOT prnt VDU31,0, rw$

1840 st=(MIDS (rw$,34,1)="*") :spct=2

1850 IF st PRINT "*";:spc¥=spck+prnt

1860 memo=(MIDS{rws,35,1)="8")

1870 m$=MIDS(xw$,37,24) :t$=LEFTS (m$, 1) :
p$=MIDS (m$, 3, 1) :punct=((ASCpS$>31} AND(ASC
p5<48) JOR (ASCp5=58)

1880 time$=LEFTS(m$,2)+MIDS (m$,4,2)

1890 IF memc PRINT SPC(3+prnt+st);

1900 IF memo AND MOTprnt PRINT m$; ELSE

IF memo PRINT mS$

1910 IF memo AND ASC(t$)>47 AND ASC(t$)
<58 AND punct sort?(rwk)=1E9+EVAL(time$)
: ENDPRCC

1920 IF memo sort%(rwh)=1E7+((100*(ASC|
MIDS(rwS$, 4, 1) }AND &DF))+(RSC{MIDS (rws, 5,
1)}}AND &DF)) :ENDPROC

2310 predMenu=0 5

2320 IF esc AND mod replace$=MIDS(task$
(rw%),4,30) ELSE IF esc replace$=STRINGS
(5955 i)

2330 IF esc PROCwnd({"mid*):VDU31,0, rwg-
1:PROCreplace(replace$, rw) : PROCmenu : END
PROC

2350 IF choice$=1 PROCintwvl(rw%)

2360 IF choice%$=2 PROCmemo{rw$)

2370 IF choice%=3 skip=TRUE:change=TRUE
:task$ (rwh)=FNbuildRow(MIDS (tasks$ (rwk),3
7,24)) :sort® (rw)=1ET7+((100* (ASC(MIDS (ta
sk$(rw¥) ,4,1))AND &DF))+ (ASC(MIDS (tasks |
rw%),5,1) JAND &DF))

2440 IF escape THEN *fx 229,1

2450 IF NOT escape THEN *fx 200,1

2690 IF predMenu num$=(2+((NOTsame AND
mod) *-1)) : PROCgetList (10, num¥)

2700 IF intviMenu numk=(2+(index OR noD
Ine)) : PROCgetList (20, num¥)

2710 IF printMenu num$=2:PROCgetList (30
,num)

2820 UNTIL z%=n%:IF escape PRINT'"ESCAP
B o tme .

2970 :

2980 DEF FNyn:yn$=FNip(1, "¥Nyn",-1,0,0)
:=(CHRS (ASC(yn$) AND &DF))

2990 :

3000 DEF PROCretrace:full=0

3010 IF change PROCwriteData (fnme$(leve
1%))

3020 level%=level®+(level%>0)

3030 IF opt$%=8 level%=0

3040 index=(level%=0) :extend=NOTindex

3050 PROCreadData:ENDEROC

3060 :

3080 PROCwnd("blank") :PROCwnd("mid"):to
pMenu=TRUE: *£x200, 1

3130 IF opt%=1 PROCextend

3140 IF opt%=2 PROCdelete

3150 IF opt%=3 PROCmodify

3160 IF opt%=4 PROCsort (rowk)

3170 IF opt%=5 PROCprintout

3190 IF opt%=7 PROCgetStrtDt:PROCmenu

3200 IF opt%=8 PROCretrace

3320 DEF PROCgetStrtDt:PROCwnd("blank”)

3330 strtDate$=FNgetDate("base")

3340 IF esc PROCmenu:ENDPROC

3350 day% =-FusplitDate{strtDate$,1,2)

3360 mth% =FNsplitDate(strtDate$,4,2)

3370 year%=FNsplitDate(strtDate$,7,4) P
ROCgetDatum(STRSday%, STRSmth% , STRSyeart)
:IF change PROCwriteData(fnme$)

3380 PROCreadData :ENDFROC

3330 : !

3430 PRINT''Use the cursor"''"keys to se
lect"'"the "rubric$'"and key RETURN"

3460 DEF PROCquit:IF change PROCwriteDa
ta(fnmes(level%))

3470 PROCwnd("blank") : PRINT" Program end
ed":PRINT *''"Key f4 to re-run":*CLOSE

3480 PROCcursor(1):END

3490 -

3500 DEF PROCreplace(rplec$,r$) :VDU3l, 0,
r%:PRINT rplc$; :IF NOT(mod OR delete) ro
wh=rows-1

3510 PROCmenu:ENDPROC

3520 -

3530 DEF FNsameText :PROCwnd("blank")

3540 PRINT"Change text (Y/N) 2"

3550 same=(FNyn="N"):IF same event$=MID
$(tasks (rwi), 4,30)

3560 =same

3570 -

Beebug January/February 1993 45

JobLog

3590 IF esc predMenu=TRUE: PROCrhColumn (
rw%) :ENDEROC

3750 ;

3760 DEF PROCheading

3770 PROCcursor{0) :ex%=0

3780 IF NOT prnt VDU28,0,1,58,0,12

3790 IF datumDt$=todayDt$ base$="Today,

" ELSE base$="New base, *

3800 IF prnt VDU2:*fx3,10

3810 PRINT "Base date:- "basef+name$ SP
C(1l)datumDt$

3820 IF prnt THEN *fx3,10

3830 noDlne=(MIDS(titles(level%),35,1)=
“@") :PRINT MIDS(title$(level$),4,30) seC
(10+prnt) ;

3840 IF NOTnoDlne PRINT * Due " MIDS (t
itles(level%),37,10);

3850 IF prnt THEN *fx3,0

3860 IF prnt VDU2,1,27,1,70,3:*fx3,10

3870 IF prnt numbines$=numLines%+3:FRIN
T'STRINGS (56, "-") :*£x3,0

3880 ENDPROC

3850 :

3900 DEF PROCintvl(rw%) :memcMrk$=" *:s$
="+":PROCwnd("blank") :

3902 PROCselectBase:IF esc AND mod ENDP
ROC ELSE IF esc PROCrhColumn(rw$) :ENDERO
&

3910 IF mod PROCprintDt (select%) ELSE P
ROCprintDt (rw%)

3920 IF mod AND extend extndDln$=exd$+e
xmS+exyrs
3930 ENDPROC
3940 -

3950 DEF PROCMmemo(rw$)

3960 memcMrkS="@*:PROCwnd(*blank")

3970 PRINT"Enter the time/memc”;

3980 PROCwnd("mid") :VDU31,33, 1w}

3990 memo$=FNip(24,let$+no%,0,-1,-1)
4000 IF esc BROCrhColumn(rw) :ENDPROC
4010 t$=LEFTS (memo$, 1) : timeS=LEFTS {memo
$,2)+MIDS (memo$, 4, 2) :pS=MIDS (memos, 3, 1) :
punct={ (ASCp$>31) ANDTASCpS<48)) OR (ASCpS=
58)

4020 IF ASC(t$)>47 AND ASC(t$)<58 AND p
junct sort?%(rw%)=1E9+EVAL (time$) ELSE sor

|t (rwh)=1E7+ ((100* (ASC (MIDS (event$,3,1))

AND &DF))+ (ASC (MIDS (event$, 4, 1))AND &DF)
)
4030 dtData$=FNpad(24,memo$,".",0)

4040 tasks (rw¥)=FNbuildRow(dtDatas}
4050 new=0:ENDPROC

4060

4070 DEF PROCselectBase

4080 intvlMenu=TRUE:PROCwnd("blank")
4090 ch¥=FNmarker(2,-1):intvIMenu=0
4100 IF esc ENDPROC

4110 IF ch%=1 PROCnewDate

4120 IF ch%=2 tempDtID%=FNdayID(VAL(LEF
T (extndDlIn$, 2)), VAL (MIDS (extndD1n$, 4,2)
), VAL (RIGHTS (extndDln$, 4)))

4130 PROCgetIntvl (yr%) :PROCwWnd(*mid")
4140 ENDPROC

4150 :

4160 DEF PROCnewDate

4170 PRINT*Calculate from: "

4180 newDate$=FNgetDate("new")

4190 IF esc AND mod PROCrhColumn(select
%) :ENDPROC ELSE IF esc PROCrhColumn (rwé)
: ENDPROC

4200 day%=FNsplitDate(newDate$,1,2)
4210 mon%=FNsplitDate (newbate$,4,2)
4220 yr% =FNsplitDate(newDate$,7,4)
4230 tempDtID%=FNdayID(day$,mon$,yr$)
4240 ENDPROC

4250 -

4260 DEF PROCget Intwvl{yr%) : PROCwnd ("bla
nk")

4270 PRINT "Enter interval®

4280 IF ch%=0 tempDtID$=strtDtID%

4290 IF ch¥=0 PRINT' "from base date"
4300 IF ch%=1 PRINT' “"from "newDate$

| 4310 IF ch%=2 PRINT' "from *extndDIng

4320 PRINT'"<4> = ahead"'"<-> = earlier _
"':s8=FNip(1, "+-",TRUE, -1, 0)

4330 IF esc PROCselectBase:ENDERCC
4340 PRINT' "Weeks"' "Days" ' ;PRINT- TAB(7,
8) ; :w$=FNip(3,nos,0,-1,0)

4350 IF esc PROCrhColumn(rw$) :ENDPROC
4360 PRINT TAB(7,9);

4370 d$=FNip(l,no$,0,-1,0):IF VALS >6
VDU7: BROCget Intvl (yr$) : ENDPROC

4380 IF esc PROCgetIntvl({yr%):ENDPROC
4390 intvl%=(VALwS*7)+VALAS

46 Beebug January/February 1993

JobLog

4400 IF s$="-" intvl%=intvl%*-1

4410 execID%=tempDtID%+intvl%

4420 execName$=FNdayName (execID% MOD 7)
4430 execDayNo%=FNexecDayID{execIiD%):IF
execDayNo%<=0 VDU7:PROCget Intvl (yr%) :EN
DPROC
4440 execMonth$=FNexecMonth {execDayNo%)
4450 execDate’=FllexecDay (execDayNo%, exe
cMonth$, execYr$)

4460 daysToExec%=execID¥-strtDtID:

4470 sort$ (rwk)=execID% : ENDPROC
4480
| 4490 DEF FNexecDayID(execID%)
| 4500 yr¥=1990:REPEAT:yri=yr$+1:a%=FNday
ID(01, 01,yr?) :UNTIL a%>execID$:execYri=y
r¥-1:=execID%-FNdayID(31,12,execyri-1)
| 4510 :

4520 DEF PROCprintDt(rw%)

4530 exd$=FNpad(2,execDates, "0",-1)+".*

4540 exm$=Flpad (2, execMonth§, "0, -1)+".
":exyrS$=5TRS (execyYr$)

4550 taskS(rwi)=FNbuildRow(exd$+exmé+ex
yr$) :PROCwnd (“mid") :VDU31, 33, rwd

4560 PROCprintRHS (daysToExec%, execID%, t
asks$ (rw$) , rw$) : ENDPROC

4570 -

4580 DEF PROCextend:IF task$(0)}="" PROC
nothing("extend") : ENDPROC

4580 full=0:extend=TRUE

4600 PROCrubric("extended file®,0):PROC
wnd ("mid")

4610 IF level%<5 select¥=FNmarker (row$,
-1) :star=(MIDS (task$(select$), 34, 1)="*")
:REM extend=0

4620 IF esc PROCmenu:ENDPROC

4630 parent$=task$(select$)

4640 level%=VAL(MIDS (parent$,36,1))
4650 IF level%=5 PROClimit :ENDPROC
4660 title$(level¥+l)=parent$

4670 memoMrk$=MIDS (parent$,35,1)

4680 extndDln$=MIDS (parent$,37,10)

4690 row$=LEFTS (parent$,33)+"*"+memoMrk
§+STRSlevel $4MIDS (parent$, 37, 24)

4700 taskS(selectd)=rows
| 4710 IF NOTstar AND level%=0 PROCwriteD
ata{"Index")

4720 extndMrk$="$":level$=level$+l

Fi73u fnme$ (level%)="Level "+STRS (level$)
+" "+MIDS (rows, 4, 3) +LEFTS (rows, 3)

4740 IF level%>0 AND NOT star PROCwrite
Data(fnmes(level%-1))

4750 PROCwnd("mid"):CLS

4760 PROCreadData:ENDPROC

4770 '

4780 DEF PROClimit

4790 VDU7 : PROCwnd ("blank")

4800 PRINT'Extend limit®'"is five stage
s"'"Press any key"'"to continue”

4810 G=GET:PROCmenu : ENDPROC

4820

4830 DEF PROCdelete:IF task$(0)="" PROC
nothing("delete") : ENDPROC

4840 full=0:delete=TRUE

4850 numRows$=row:REPEAT: PROCrubric("i
tem”, full) : PROCwnd ("mid")

4860 fldNo%=Flmarker (numRows%,0)

4870 repeated=(LEFTS(tasks$ (f1dio%),3)="
00") : change=TRUE : PROCwnd { *blank® 1

4880 IF NOT repeated PRINT "Confirm del
etion?"'"Enter (Y/N) *;:IF FNyn="N" CLS:
PROCreprint :GOTO 4950

4890 type$S=MIDS (task$(fldno%),34,1)

4900 fName$=MIDS (tasks (fldNo%),4,3)

4910 delFnmeS=fName$+LEFTS (tasks (fldNo%
1.3):IF type§="*" PROCdeleteFile

4920 PROCreprint:PROCrvrs (bl%,whd}

4930 PRINT TAB(B,EICINO%}STRIM}S{E, i)
"To be deleted® STRINGS(5," ");:PROCrvrs
{wh%,bl%)

4940 IF repeated VDU7:ELSE task$ (fldNo%
)="000"+MIDS (tasks (£1dNo%) ,4) :rowk=rowk-
1

4950 PROCwnd("blank®
4960 IF row$<0 del$="N" ELSE PRINT"More
deletions?"'“Enter <Y/N> ";:del$=FNyn:P
ROCwnd ("blank")

4970 UNTIL del$="N":PROCrePackRows
4980 PROCdisplay :ENDEROC
49990

5000 DEF PROCreprint

5010 PROCwnd("mid") :PROCrvrs (wh%,bl$)

5020 PRINT TAB(0, fldNo%)MIDS (tasks (F1aN
o%),4,30) ; :ENDPROC

5030 :

Beebug January/February 1993 47

El
)
&
El
=
=
[~

SUBSCRIPTION DETAILS
As a member of BEEBUG you may extend your
subscription to include RISC User for only £10.50

(overseas see table).

Destination
UK,BFPO &Ch [s

Rest of Europe and Eire
Middle East

Americas and Africa
Elsewhere

Additional Cost
£10.50
£15.40
£19.60
£21.90
£33.00

ou ¢ eneralion!

RISC User, the highly popular magazine for Archimedes
users, is bigger and better. The new RISC User is now BS
size which offers a sophisticated design, bigger colour
illustrations and bigger pages with more information.
Altogether better value and no increase in price.

RISC User is still a co t size to ble into an easy-
to-use reference library, containing all the information you
need as an Archimedes user. Every issue of RISC User offers
a wealth of articles and programs with professionally written
reviews, lively news, help and advice for beginners and
experienced users, and items of bome entertainment.
Altogether RISC User has established a reputation for
accurate, objective and informed articles of real practical use
to all users of Acorn's range of RISC computers.

CAN COMPUTER GAMES EDUCATE?
First of a new series of educational features looking at
education in the school and in the home.

DISC FILE RESCUER

A complete application for rescuing files from corrupt
or damaged discs.

COLOUR GRAPHICS CARDS

Two new cards for enhanced colour graphics
reviewed and compared.

THE TIMES AND SUNDAY TIMES
ON CD-ROM

More new releases for CD-ROM

IMAGERY

Objective review of a new colour image processing
package.

FLOPPY FAX

Software to turn an Arc and modem into a high
quality fax machine.

STENCIL

New techniques with Draw files.

PC PAGES

A regular series devoted to the PC emulator and to
the running of PC software on the Archimedes.
WRITE-BACK

A readers’ section of RISC User for comment, help,
information - a magazine version of a bulletin board.
WP/DTP

Articles on using Ovation and Impression DTP packages
INTO THE ARC

A regular series for beginners.

TECHNICAL QUERIES :

A regular column attempting to answer your technical
queries.

JobLog

5040 DEF PROCrePackRows :PROCwnd("mid")
5050 s%=-1:code%=0:REPEAT:s%=5%+1

5060 IF VAL(LEFTS (task$(s%),3)) > 0 tas
ké (code%) =task$ (s%) :code¥=code$+1

5070 UNTIL s%=29:FOR A%=code% TO 29:tas
kS (A%) =" " :NEXT: ENDPROC

5080 :

5090 DEF PROCdeleteFile:PROCwnd("blank"
) :PRINT"Updating" ' "Please wait"

5100 OSCLI("Delete $.Level"+STRS(level}
+1)+" . "+delFnmes) : PROCwnd ("*mid")

5110 PROCrvrs(wh%,bl%):PRINT TAB(0, £1dN
0%)MIDS (taskS (fldio%+1),4,30)

5120 ENDPROC

5130 :

5140 DEF PROCdisplay:LOCAL max%

5150 PROCwnd('mid"):VDU12,31,0,0

5160 max%=VAL(LEFTS (tasks(1),3))

5170 FOR read%=0 TO 28:rcd$=LEFT$(task$
(read%),3)

5180 IF VALrcdSsmax$ max$=VALrcd$

5190 IF VALrcd$>0 PROCformRow(tasks(rea
d%), readt)

5200 NEXT:rcdNo%=max$:PROCwriteData(fn$
} : PROCmenu : ENDPROC

5210 :

5220 DEF PROCmodify:IF task$(0)="" PROC
nothing (*modify") : ENDPROC

5230 mcd=TRUE:PROCrubric("event, full) :
select$=FNmarker (rowk, -1)

5240 IF esc PROCmenu:ENDPROC

5250 change=TRUE

5260 rcdS=FNpad(3,LEFTS (tasks (select$),
3),"0",-1) :depth%=VAL (MID$ (task$ (select$
},36,1)) ;star=(MIDS (task$(selectd),34,1)
:n*l]

5270 oldFnme$="%.Level "+5STRS (depth%+1) +
", "+MIDS (tasks (select$), 4,3) +reds

5280 PROCgetTask(select%):IF esc PROCrh
Column (select?)

5290 newFnme$="5.Level®+STRS (depth%+1)+
" "+LEFTS (event$, 3) +rcd$

5300 IF star title$(level%+1)=LEFTS (eve
nt$, 32) +extndMrkS+memoMrkS+extndDing : FRO
CwriteData(fnme$(level%))

5310 IF star AND NOT same PROCrename
5320 IF row$<l GOTO 5370

5330 PROCwnd("blank")

5340 PRINT"More modifications?®

5350 PRINT'“Enter <Y/N>";

5360 IF FNyn="Y" PROCwnd(*blank®):PROCm
odi fiy : ENDPROC

5370 mod=0:skip=0:PROCmenu : ENDPROC

5380 :

5390 DEF PROCrename

5400 PROCwnd("botSide®):PRINT"Renaming"
5410 PRINT"this file"'"Please wait"
5420 OSCLI("RENAME "+oldFnme$+" "+newFn
mes)

5430 hndl%=0PENUP (newFnme$) : PRINT#hndl%
, red$+LEFTS (event$, 30) +memoMrk$+depthé+e
xtndD1n$: CLOSE#hnd1% : ENDFROC

5440

5450 DEF PROCsort (r%)

5460 IF task$(0)="" OR r%=0 PROCnothing
{"sort*") : ENDPROC

5470 change=TRUE:PROCcursor(0)

5480 PROCwnd("mid*)

5490 FOR outer%=0 TO r%-1:pointer%=oute
r%:FOR inner$=outer¥+l TO r%

5500 IF sort%({inner%)<sort%(pointer%) p
ointer%=inner$

5510 NEXT inner%:IF pointer} <»outer$ P
ROCswap (pointer$, outery)

5520 NEXT outer%:PROCdisplay :ENDPROC
5530 :

5540 DEF PROCswap(a,b)

5550 LOCAL spare$:spare$=task$(b)

5560 task$ (b)=task$(a}:tasks (a)=spares
5570 spare=sort%(b) :sort%(b)=sort%(a)
5580 sort%(a)=spare:ENDPROC

5590 : ’
5600 DEF PROCprintout:IF task$(0)="" PR
OCnothing("print*) :ENDPROC

5610 printMenu=TRUE

5620 IF change PROCwriteData (fnme$(leve
1%))

5630 prnt=TRUE:PRCCwnd(*blank®)

5640 format$=Fhmarker(3,-1) :printMenu=0

5650 IF esc prnt=0:PROCmenu : ENDPROC
5660 IF format%=0:vDUZ2,1,27,1,15,1,27,1
w1815

5670 IF format%=1:vDU2,1,18,1,27,1,77,1
P2l 108 1,7

Beebug January/February 1993 ' 49

JobLog

5680 IF format$=2:VDU2,1,18,1,27,1,80,1 | [5850 ENDEROC

208 5860 :

5690 PROCpaperControl:PROCheading 5870 DEF PROCpaperControl

5700 tally$=-1:REPEAT:tally%=tally$+1 5880 newsheet=(free3<rows)

5710 serial%=VAL(LEFTS (task$(tally%),3) 5890 IF NOT newSheet ENDPROC

):IF serial®>0 PROCtype 5900 VDU3, 7:PROCwnd ("blank®) :CLS

5720 UNTIL serial%:{J:VDUE,:newSheet:D 5910 PRINT "Not enough space"'"on this

5730 vDU2,1,10,1, 10, 3:free%=Ffree%-2
5740 free%=free%- ((row¥+1)+3) :CLOSE#0:p

sheet"'*for this list"
5920 PROCformFeed : ENDPROC

rnt=0
5750 PROCformFeed : ENDPROC =
5760 - 2 e 5940 DEF PROCformFeed

5950 IF NOT prnt CLS:PRINT "Continue pr
inting?* ' "Answer (Y/N)":ans$=Flyn:IF ans
$="N" PROCfeed:PROCmenu : ENDPROC

5960 IF newSheet prnt=0:PRCCfeed:PRINT'

5770 DEF PROCnothing (detail$) :*£x200,1
5780 PROCwnd("blank")

5790 PRINT "Nothing to "detail$

5800 PRINT''"Press any key"'"to continu

e":IF GET:*Fx200,0 “Using cut sheets?":IF FNyn="Y* PRINT'"C

5810 PROCTmenu : ENDEROC hange paper then"'"press any key":IF GET

5820 : 5990 PROCmenu: ENDPROC

5830 DEF PROCtype:*fx3,10 6000 :

5840 PROCformRow(tasks$(tally%),tally$): 6010 DEF PROCfeed:VDU2,1,12,3:free$=pLe
At) n%- (tear0ff%+botM%) : ENDPROC
Wordwise User's Notebook (continued Jrom page 42)
.enter-string |1 (*£8*

REM Set up string input window | 1y *fg*
VDU28, 0,24,39,23 |1, *Cursor L*
VDU136 | !-*Cursor R*
PRINT *String"; : |!.*Cursor D*
VDU137 - | |/*Cursor U*
PRINE *:h- - | |T*T2AB*
K$=K$+GLK$ |M*RETURN*
CLs % ¥
PROCright-window Ill[l']\.lfcc.';r{l?f—(}ursor o
GOTO get-code !

| | }*CTRL-Cursor R*
CLIST | ! |**CTRL-Cursor D*

|1 *EQ* It |-*CTRL-Cursor U*

[LI*EL* [V IL*SHIFT-Cursor L*
| 1nxfps | ! [M*SHIFT-Cursor R*
| 1§*E3* |} IN*SHIFT-Cursor D*
| 1§*£a* 4 || |O*SHIFT-Cursor U*

[1%*f5* |A*CTRL-A*

[le*fh* | S*CTRL-S*
liFERET * : | D*CTRL-D*

B
50 Beebug January/February 1993

Sideways ROMSs (Part 3)

Mr Toad concludes his epic series on the mysteries of Sideways ROMs.

This month we bring you the second and
third off-the-peg sideways ROM
headers. If you typed the last one in, you
can use over half of it to give you a head
start with these.

First we'll examine the ‘medium-length’
header, Listing 1. Starting from last
month’s short version, there are a few
changes up to (the old) line 400; note the
following significant changes:

1. The old line 240 is now 230. The new
line 240 sets the start-point for 0% in a
new way - in fact, we hold it in Z%, as
we need to preserve the start address for
the *SRWRITE. DIM is all right once you
know the approximate length of your
code, but this header might be used for
quite a long ROM, so we could do with.a
way of starting the assembled code
immediately after the variables, without
having to worry about the size of the
DIM. You could, of course, just DIM
some ridiculously large amount of space;
after all, you are not going to need either
the Basic or the assembled code after the
*SRWRITE; the chances are that next you
will load a new Basic program, a word
processor file or whatever, so main
memory will be used from scratch again.
Still, there is an easy and tidy way which
is much more businesslike.

VAR-TOP, the address of the first available
byte after the Basic variables, is not a Basic
pseudo-variable like TOP, but it is held
LSB-MSB in locations 2 and 3, so line 240
simply peeks them and sets Z% to that
point. At the beginning, when there are no
variables, VAR-TOP will be the same as
TOP, so on the first pass the variables area
will overwrite the start of the assembled
code, but at the start of the second pass all
the variables have been declared and line
240, being inside the loop, starts the
assembly at exactly the right place.

2. The new title in line 320 is followed by
some new text. I decided this time to
double up the title and the start of the
*HELP text, so as to be able to discuss the
technique. Now you will recall that we
have no choice about what happens in
response to *ROMS; the MOS prints out
everything between &8009 and the next
zero, taking it as a string, so this is where
you must put the title. Next, it prints a
space and the number in &8008, which is
the ‘binary version number’. It is different
in the case of *HELP: you decide what, if
anything, happens in response to call 9.
The *ROMS routine does make provision
for another string, the ASCII version
string, to be included after the title, which
is ignored by *ROMS but can be used by a
*HELP routine. It must end with another
Zero - or more accurately, the next thing is
the copyright string which must begin
with a zero.

Now Acorn may call this string what
they like, but you can include what you
need, so long as the copyright string
remains within &100 bytes of the start,
because the part of the initialisation
routine which uses the copyright offset
pointer at &8007 can’t cope with crossing
a page boundary. The style of the *HELP
text here does not follow the standard
layout, but I have no scruples about
breaking the rules as long as it can’t mess
up other software. If we included an
EQUB &0C at the start of our text so as
to clear the screen and leave our own
message in splendid isolation, or if we
claimed ‘all ROMSs’ calls, now that really
would be a bit much, but surely matters
of style are up to us?

We can’t use a zero as end marker in our
*HELP data, since printing would stop at
the first zero after the title. Some
programmers get round this by calling a
print routine twice, but we can just as

Beebug January/February 1993 51

Sideways ROMs

easily use a different end marker. &0D
won't do, as you can see, but a 6 (enable
VDU) or a &1B (does nothing) are fine, so
the new *HELP routine uses CMP #&1B
to find the end of the text. This replaces a
PHP and a PHF, so it’s the same length.
Now, we must print a blank line between
our message and the previous one.
Problem - we can’t start the title string
with EQUB &0D; the *ROMS routine
wouldn’t like it, so we squander three
bytes on a JSR osnewl at the start.

Going back to to the Acorn convention:
on *HELP, a ROM should print a title, the
ASCII version string, and, if it’s going to
provide ‘extended help’, then on the line
below, indented by two spaces, the
keyword to produce that extended help.
Example: do *HELP and note something
like:

Advanced DFS 1.50

ADFS

Typing *HELP ADFS produces a list of
all ADFS commands plus details of
parameters. This is a bit much for a ROM
with only three or four commands, so I
have here in effect provided a variant on
that system which comes up on the
normal *HELP call. Incidentally, if you
do provide extended help, you should
check whether (&F2),Y points to a full
stop; if so, you should respond, because
that’s a request for ‘extended help, all
ROMs’. Now you shouldn’t really
respond with even the normal help
message if the call was in fact a request
only for extended help from some other
ROM, so you should check that (&F2),Y
points to a carriage return before you
print. This I have added here (line 450).
Why the heck don’t ROMs claim these
special calls? Then the rest of us wouldn’t
have to code tests for them.

The interpreter at “isItOurs is totally
different. Quite often, a ROM will
provide several closely associated
functions - a good example was Mr
Toad’s Macro ROM in BEEBUG Vol.11

No.4, where everything had to do with
macros. [was able to choose reasonable
mnemonic commands, all of two letters
of which the last was M: *DM disable
macros, *EM to enable macros, to *LM
list macros, and so on. If you can manage
to find such a set of commands without
too much strain on the English language,
you can use a novel and very compact
form of interpreter. If it’s no good for
your purpose at some point in the future,
listing 2 has a conventional multi-
command version.

When the interpreter is called, (&F2),Y
points to the first non-asterisk, non-space
character of the star command which has
just been issued. If it’s one of ours, then
the last letter will always be the same; for
demo purposes here we have a P for
print. After that there will be a carriage
return. Thus we can more easily work
through the sequence backwards. First
INY:INY, then we test for &0D, and if the
test fails, then the length was wrong and
we exit immediately. Now DEY and test
for the P. If that’s there, then we DEY
again and test for all the possible first
letters. Notice that in the demo I test for
the last possibility with a BNE exit, so if
it’s DP the code simply continues into the
*DP code. I do a similar trick later in line
720; it's nothing special, but good design
in this respect can save a lot of labels and
branches when you're hard pressed for
memory. T

Obviously, the actual star commands
and their functions are dummies for test
and demo purposes, but you’ll be able
to substitute your own set of strings.
You may not be able to get all your real
routines within branching range of the
interpreter. Branches to ‘staging-post’
jumps are the obvious answer, but don’t
forget that you can add a routine or two
before the interpreter, thus maybe
getting within range. In fact, the
branching range is a fair old stretch -
about the length of this whole listing,
either way.

52 Beebug January/February 1993

Sideways ROMs

Now for a look at Listing 2, the big
version. It will be best if we again start
from last month’s small version. Lines 20
to 400 are identical except that we take
230 and 240 from Listing 1 - set up the
loop in 230 and set Z% by peeking VAR-
TOP in 240. The only reason I didn’t do it
last month is that [wanted to provide
alternatives wherever possible. You
should also change line 10 and the title-
string (320), in case there’s ever a mix-up
of files.

Listing 2, then, begins with the above-
mentioned replacement lines for the small
header, and then goes straight into a full
*HELP routine from line 410, providing
the extended help service discussed
above. Line 440 discards spaces, 450
detects ordinary *HELP calls, 460 catches
the ‘help-dot’ call and the next three pick
up “*HELP BR” - you would no doubt
change it to your own string - lines 470,
490 and 1000 - 1050. You'll note that
there’s a bit of fiddling been done in
1010/20 to keep to the conventional
layouts for the two levels of help, since
that’s what I set out to provide in this
version; your chosen strings should be
able to imitate it. If you want a longer
string you can add an INY, then
duplicate the pattern of lines 480 - 490.

As before, the command interpreter is
real but the commands and functions are
dummies. The code of this interpreter is
subtle and hard to grasp if you've not
seen it before. This time it isn't mine - I
wish it were, but it's been around so long
that I've no idea who to credit.

The first thing to note is that each star
command string listed in .pickYourOwn is
followed by the address of the
corresponding routine, stored the
unusual (for computing) way round,
MSB-LSB. That's why we didn’t use the
EQUW statement. Now the ASCII codes
for A-Z are positive in two’s complement
- bit 7 is not set, and loading one into A
will RESET the negative flag. Since any

sideways ROM routine comes after
&8000, the high byte of its address is
negative - bit 7 is set and loading it will
SET the negative flag. There’s one other
point to recall: way, way back, (or so it
seems - actually it was about seven bytes
of code ago) we pushed all the registers
in case of a no-claim exit. Y was pushed
last and at the moment it’s on top of the
stack. Throughout the routine, X will be
the pointer within our table; of course,
since Y points to the characters of the star
command we are testing.

After skipping any spaces and masking
to upper case (710) a comparison is made
between the byte at (&F2),Y and the first
string in our table (720) - if it succeeds,
we go round the small loop .chkLp to the
next character. If it fails, the next byte in
our table is loaded into A and the
negative flag is tested (730). If the test
succeeds, we branch to .haveWeGotOne.
At this point, either we've passed the end
of a correctly matched string, in which
case .pickYourOwn, X holds the high byte
of that routine’s address, or we have
come to the end marker of our table (&FF
- also negative), so we test for &FF (780).
If that test fails, we've got a match: we
branch to .gotOne where we load the
address into two spare bytes of main
memory - the more usual way round -
and jump to it. If the test for &FF in line
780 succeeds, no branch is made and we
hit an exit routine.

Now let’s go back to the first loop,
.chkLp and the test for negative at 730.
If it fails, then we dropped out of .chkLp
because of a simple mismatch. Line 750
steps through our table, incrementing
X, until the negative flag is set. Now
we’re at a high byte. In 760 we
increment X once more, to pass over the
low byte. It is now pointing to the start
of the next command in our table. We
pull Y off the stack to point once more
to the start of the command under test,
push it back to save it again and branch
back to .chkLp.

Beebug January/February 1993 53

Sideways ROMs

As I said, I just wish I could claim to
have written that little lot! Incidentally, if
your whole command table won't fit into
&100 bytes, you’ll have to re-code this
whole routine so as to go round the main
bits twice or more. I've never done it, but
it shouldn’t take much more than a week
- if you don’t run out of tranquillisers.

If you can write assembly language at
any level, then after these three articles
you should now be equipped to produce
a sideways ROM to order. Maybe you
were before! Maybe you understood it
before, but now I've confused you.
Anyway, the headers should come in
handy. And if T were you, looking at this
lot, if I wanted the code I'd buy the
magazine discs.

10 REM LISTING 1:Medium ROM Header

20 REM Version B 1.0

30 REM Author David Holton

40 REM BEEBUG Jan/Feb 1993

50 REM Program subject to copyright

60 :

100 PROCassem

110 FOR N%=7 TO 4 STEP-1

120 IF N%?&ZA1 NEXT:PRINT''"No free SR
AM slot."':END

130 OSCLI "SRWRITE "+STRS~Z%+" "+STRS~
(O%+1)+" 8000 "+STRS N%

140 PRINT''"READY IN SLOT " N%

150 N%?&2A1=882:N%=4 :NEXT:END

6 - e e s i

170 DEF PROCassem

180 csasci=&FFE3

190 osnewl=&FFE7

200 oswrch=&FFEE

210 osword=&FFF1

220 osbyte=tFFF4

230 FOR N%=4 TO 6 STEP 2

240 2%=724£100%73

250 P%=&8000:0%=2%

260 [OPT N%

270 BRK:BRK:ERK

280 JMP checkcalls

290 EQUB &82

300 EQUB copyright MOD &100

310 EQUE &93

320 EQUS "Medium-sized ROM" : BRK :EQUB &

54

0D
330
340
350
360

370
380
390
400
410
420
430
440
450
460
470
480
490

500 :

510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760

EQUS " *AP (print 'A')":EQUB &0D
EQUS * *BP (print 'B')":EQUB &0D
EQUS * *CP (print 'C')":FQUE &0D
EQUS " *DP (print 'D')":EQUW &1R0
.copyright

BRK:EQUS" (C} me 1992"

.checkCalls

PHA : PHX : FHY

CMP #4:BEQ isItOurs
CMP #9:BNE noClaim

LDA (&F2),Y:CMP #&0D:BNE noClaim
JSR osnewl:LDX #&FF

.helpLoop

INX:LDA &8009,X:JSR osasci

CMP #&1B:ENE helpLoop

.noClaim
BLY : PLX:PLA:RTS

.1sTtOurs

INY : INY

LDA (&F2),Y

CMP #&0D:BNE noClaim
DEY:LDA (&F2),Y:AND #&DF
CMP #ASC"P":BNE noClaim
DEY:LDA (&F2),Y:AND #&DF
CMP #ASC"A":BEQ a

CMP #ASC'B":BEQ b

CMP #ASC"C":BEQ c

CMP #ASC"D":BNE noClaim

LDA #ASC"D"
.

LDA #ASCUA":
.b

LDA #ASC"B":JMP go
.C

LDA #ASC"C"

:JMP go

JMP go

.go’
JSR oswrch:JSR osnewl
LDA #7:JSR oswrch

770 :

780
790
800

.claimExit
PLY : PLX:PLA:LDA #0:RTS
] :NEXT : ENDPROC

Beebug January/February 1993

Sideways ROMs

10 REM LISTING 2:Full-size ROM Header
20 REM Version B 1.0

30 REM Author David Holton

40 REM BEEBUG Jan/Feb 1993

50 REM Program subject to copyright
60 :

230 FORE N%=4 TO 6 STEP 2
240 Z%=72+&100*73

320 EQUS "Full-size sideways ROM"
400 -

410 JSR osnewl

420 .tests

430 LDA (&F2),Y:INY
440 CMP #&20:BEQ tests

450 CMP #&0D:BEQ simpleHelp
460 CMP #ASC".":BEQ bigHelp

470 AND #&DF:CMP #ASC"B":BNE noClaim
480 LDA (&F2),Y:AND #&DF

450 CMP #ASC"R":BNE noClaim

500 :
510 .bigHelp

520 LDA #0:STA &8F:JMP help
530 :
540 .simpleHelp
550 LDA #&1B:STA &BF
560

570 .help
580 LDX #&FF

590 .loop

600 INX:LDA helpText,X:JSR osasci
610 (MP &B8F:BNE loop

620 JSR osnewl

730 LDA pickYourOwn,X:BMI haveWeGotOne
740 . tryNext

750 INX:LDA pickYourOwn,X:BPL tryNext
760 INX:PLY:FHY:BRA chkLp

770 . haveWeGotOne

780 CMP #&FF:BEQ noClaim

790 .gotOne

800 STA &DEFF

810 INX:LDA pickYourOwn,X:STA &DEFE
820 JMP (&DEFE)

840 .functionl

850 LDA #7:JSR oswrch:LDA #ASCUA" :J5R
oswrch:JMP claimOut

860 .function2

870 LDA #7:JSR oswrch:LDA #ASC"B" : JSR
oswrch:IMP claimOut

880 .function3

890 LDA #7:JSR oswrch:LDA #ASC"C":JSR
oswrch

900 .claimOut

910 PLY:PLX:PLA:LDA #0:RTS

e e

930 .pickYourOwn

940 EQUS"BRA"+CHRS &0D:EQUBfunctionl D
IV &100:EQUBfunctionl MOD &100

950 EQUS"BRE"+CHRS &0D:EQUEfunction? D
IV &100:EQUBfunction2 MOD &100

960 EQUS"BRC"+CHRS &0D:EQUBfunction3 D
IV &100:EQUBfunction3 MOD &100

970 EQUB &FF \ End-Marker!

980

990 .helpText

630 - 1000 BQUS CHR$ &0D+*Full-size sideways

640 .noClaim ROM"+CHRS &0D

650 PLY;PLX:PLA:RTS 1010 EQus" BR"+CHRS &1B

660 sriirtisrianins: 1020 EQUS"A"+CHRS &0D

670 .isItUs 1030 EQUS* BRB"+CHR$ &0D

680 LDY #&FF 1040 EQUS" BRC"+CHRS &0D

690 .chkLp 1050 EQUS® etc etc...

700 LDA (&F2),Y:INY 1060 BRK \ End-Marker!

710 CMP #&20:BEQ chkLp:AND #&DF 1070)

720 INX:CMP pickYourOwn,X:BEQ chkLp L1080 NEXT : ENDPROC B
—

Beebug January/February 1993 55

Form Designer (continued from page 13)

5120 ENDEROC

5130

6000 DEF PROCshortstrings

6010 LBS=STRINGS(8,wes)

6020 sB85=STRINGS(8," ")

6030 LA45=STRINGS (44,we$)

6040 s445=STRINGS(44," *)

6050 ENDPROC

6060 :

7000 DEF PROCcompletestrings

7010 al$=" "+seS+L44S+wss

7020 a2$=" "+nsS++sd4S4nss

7030 a3dé=" "+nse5+L8%+wses+L8S+wses+LES
+wses+LBS+wees+L85+wnss

7040 ad$=" "+ns$+585+ns8+585+nss+s85+ns
5+885+ns5+s85+4ns8

7050 a5%=" "+nse$+L8S+wnseS+LBS+wnsessL
88+wnseS+LBS+wmseS+L8S+wnss

7060 a6S=" "+ne$+L8S+wnes+L8%S+wnes+LES+
wnesS+L8S+wneS+LE5S+wns

7070 ENDPROC

10 REM Program +Codes

100 title$="Form Designer Compass Code
s ":0N ERROR GOTO 10000

5030 PRINTa25'a2$'a28'a7%8'a28'a24$'a2s
5060 PROCcodes (J%):PRINTads'ads:PROCcha
rs(J%) : PRINTa4S

5090 PROCcodes(10):PRINTad$'ad$:PROCcha
rs(10) : PRINTads

5200 DEF PROCcodes(j%)

5210 ON j% GOSUB 5310,5320,5330,5340,53
50,5360,5370,5380,5390, 5400

52200 ENDPRCC 3

5230 :

5310 PRINTaBS:RETURN

5320 PRINTa%$:RETURN

5330 PRINTall$:RETURN

5340 PRINTall$:RETURN

5350 PRINTal2$:RETURN

5360 PRINTal3$:RETURN

5370 PRINTald$:RETURN

5380 PRINTal5$:RETURN

5390 PRINTal6$:RETURN

5400 PRINTal7$:RETURN

5410 :

5500 DEF PROCchars(j%)

5510 ON j% GOSUB 5610, 5620,5630,5640, 56
50,5660,5670,5680,5690, 5700

5520 ENDPROC

5530 =

5610 PRINTa8a$:RETURN

5620 PRINTa%a$:RETURN

5630 PRINTal0a$:RETURN

5640 PRINTalla$:RETURN

5650 PRINTal2a$:RETURN

5660 PRINTal3a$:RETURN

5670 PRINTalda$:RETURN

5680 PRINTal5a$:RETURN

5690 PRINTal6a$:RETURN

5700 PRINTal7a$:RETURN

5710 :

6050 s65=STRINGS(6," ")

6060 s55=STRINGS(5," "}

6070 s45=STRINGS(4," ")

6080 g3$=STRINGS(3," ")

6090

7070 a7$=" "+ns$+s85+"FORM DESIGNER COM
PASS CODES."+s85+ns$

T080 aBS=" "+nsS+"WNS"+s554ns5+ "WNSS" +3
454085+ "WNES " +845+ns 5+ "WNSES " +835+n85+ "W
55" +s55+ns8

7090 aBad=" "+nsS+s6S+WNS+" "+nsS+s6S+W
NSS+" "4+ns5+s65+WNES+" "+ns5+565+WHNSES+"
"+ns5+865+WSS+" "4+nss

7100 a%%=" "+nsS+"WSES"+s45+ns5+"WES"+s
55+ns5+"WENS " +545+n55+ "WES$ " +545+n55+ "WE
ns5"+s3s+nss

7110 a%aS=" "+ns$+sbHS+WSES+" "+nsS+s65+
WES+" "+nsS+s6S+WENS+" "+ns$+s65+WEsS+"
"+ns5+865+WENsS+" "+nss

7120 al0S=" "+nsS+"WnS"+s55+ns5+"Wnss "+
545455+ "W s " +8554n54 "NS5 " +555+ns5+ "NSE
$"+545+ns8s

7130 allas=" "+nsS+sb5+WnsS+" "+nsS+s65+
WnsS+" "+ns$+s6S+WSS+" "+nsS+shS+NSE+" ¢
+ns$4+865+NSES+" "+ns$

7140 all$=" "+nsS+"NSws"+545+ns5+"NSwes
"+535+n55+ "NSes " +545+ns5+ "NES "+555+n35+"
Nw$"+855+nss

7150 alla$=" "+ns$+s65+NSws+" "+ns5+s65

56 Beebug January/February 1993

Form Designer

+NSwes+" "+nsS+s65+NSeS+" "+nsS+s65+NES+H
' "+nsS+s65+NwS+" "+nss

7160 al25=" "+nsS+"Nwes"+s45+ns5+"Neg"+
5554ns5+ "SES "+5855+n55+ "SwS " +855+n55+ " Swe
S"+sd8+nss

7170 al2a$=" "+nsS+sbS+Nwes+" "+nsé+s6s
+Nes+! "+ns5+s65+SES+" "+nsS+s65+Sws+" v
+Ns5+865+Swes+" "+nss

7180 al3s=" "+nsS+"Ses"+s55+ns5+"Ens"+5
554085+ " Ens$ " +5454ns54 "EsS " +555+ns5+ "wné
“+555+nss

7190 al3a$=" "+nsS+565+5e8+" “+nsS+s65+
EnS+" “+ns$+s65+EnsS+" "+nsS+s65+EsS+” v
+ns8+365+wWwns+" "+nss

7200 ald$=" "+nsS+"wnss"+s45+4nsS+ " wnes"
+545+ns5+ " wnses " +5354ns85+ "ws 5" +555+ns S+
wses$"+sd84nss

7210 alda$=" "+nsS+sbS+wnsS+" *+nsS+s6s
+wWnes+" "+nsS+s65+4wnses+ " "+nsS+s6S+wss+
" "4nsS+s65+wsad+” "+nss

7220 al55=" "+nsS+"weS"+s55+ns5+"nsS"+s
55+ns5+"nses +545+ns5+ " nes " +558+ns8+ "ses
"+3855+nss

7230 alba$=" "+nsS+s6S+wes+" "+nsS+s65+
nsS+" "+ns$+s6S+nsed+" "+nsS+sbS+nes+t "
+nsS+s65+ses+" "4nss
7240 albs=" "+nsS+"BS"+s65+nss+"BWS"+s5
$+ns$+"BNS"+855+4n55+ "BSS " +555+ns 8+ "BES "+
3554ns$

7250 alba$=" "+ns$+s65+BS+" "+ns$+s65+B
WS+" "+nsS+s65+BNS+" "+ns5+s65+BSS+" "+n
s54s65+BES+" "4ns$
7260 al78=" *+ns$+"bis"+s5%+ns5+"b25"+s
58+n55+"b35"+555+ns5+ " #5 " +365+ns5+585+ns
$

7270 al7a$=" "+ns8+s6$+b15+" "+nsS+shS+
b2§+" "+ns$+865+b35+" "+ns$+s6%5+ 5+ "+n
s5+sB5+nss
7280 ENDPROC

7290 - .

Special Offers to BEEBUG Members Jan/Feb 1993

1407a ASTAAD3 - 5" Disc (DFS) 5.95
1408a ASTAAD3 - 3.5" Disc (ADFS}) 585
1404a Beebug Applics | - 5" Disc 4.00
1409a Beebug Applics | - 3,5'Disc 4,00
1411a Beebug Applics || - 5* Disc 4.00
1412a Beebug Applics Il - 3.5" Disc 4.00
1405a Beebug Utilities - 5 Disc 4.00
1413a Beebug Utilities - 3.5" Disc 4,00
0005b Magscan Vol.1 - 10 40 Track 9.95
0006b Magscan Vol.1- 10 80 Track 9.95
1457b Magscan Vol.1 - 10 3.5" ADFS 9.95
0011a Magscan Update 40 track 475
0010a Magscan Update 80 track 475

1458a Magscan Update 3.5" ADFS 4.75
PAG1a Arcade Games (5.25" 40/80T) 5.95
PAG2a Arcade Games (3.57) 5.95
PBG1a Board Games (5.25" 40/80T) 5.95
PBG2a Board Games (3.5%) 5.95
1421b Beebug Binder 4.20
BKO02b File Handling for All (book) 9.95
BKO5a Supporting Disc (5.25" DFS) 475
BKO7a Supporting Disc (3.5 ADFS) 4.75
BK04b Book + Disc (5.25") 11.95
BKO06b Book + Disc (3.5") 11.95

Have you got your BEEBUG Binder for

Volume 11?

RISC Developments Ltd, 117 Hatfield Road, St Albans, Herts AL14]S. Tel (0727) 40303 Fax (0727) 860263

Beebug January/February 1993 57

Mr Toad's Machine Code Corner (continued from page 27)

10 REM Program Kami 3150 CMP #RSC "%":BNE kami
20 REM Version B 1.0 3160 JSR backOne
30 REM Author Mr Toad 3170 CMP #ASC " (":BNE kami
40 REM BEEBUG Jan/Feb 1993 3180 LDA 0:STA 2
50 REM Program subject to copyright 3190 LDA 1:STA 3
60 : 3200 JSR backOne
3000 DEF PROCcode 3210 LDA #&FF:STA (0)
3010 REM**(%@ NB the REM must be at the 3220 JSR backOne
start of a line! 3230 LDa #&0D:STA (0)
3020 REM Kamikaze Kode 3240 JSR backone
3030 FOR n%=0 TO 2 STEP 2 3250 LDA #&E1:STA (0)
3040 s:i::: 3260 JSR backOne
3050 REM The main assembly-text goes in 3270 LDA #5:STA (0)
here. 3280 LDA 2:ST2 0
3060 ::::: 290 LDA 3:STA 1:RTS
3070 P%=&7800 3300 :
3080 [OPT n% 3310 .backOne
3090 - 3320 DEC 0:1LDA 0
3100 .kami 3330 C(MP #&FF:BNE P%+4 \ save the rain-
3110 JSR backOne forests - use fewer labels.
3120 CMP #ASC "@":BNE kami 3340 DEC 1:LDA (0):RTS
3130 : 3350
3140 JSR backOne 3360] NEXT

Comprehensive Magazine Database

Magscan for the BBC Micro and the Master 128

An updated version of Magscan, which contains the ~ Magscan allows you to locate instantly all references
complete indexes to all BEEBUG magazines from o any chosen subject mentioned anywhere in the
Volume 1 Issue 1 to Volume 11 Issue 5 95 issues of BEEBUG magazine to date,

Just type in one or two descriptive words (using
AND/OR logic), and you can find any anticle or
program you need, together with a brief description
and reference to the volume, issue and page
numbers. You can also perform a search by article
type and/or volume number.

The Magscan database can be easily updated to

Educational Software

dlife Ga include future magazines. Annual updates are
i available from BEEBUG for existing Magscan users.

Some of the features Magscan offers include:
full access to all BEEBUG magazines
rapid keyword search
Magscan with disc and manual ~ £9.95+p&p # flexible search by volume number, article type
Stock codes: 0005a 5.25"disc 40 track DFS and up to two keywords
0006a 5,25'disc 80 track DFS keyword entry with selectable AND/OR logic
- d::_-?a g abE dise R i extensive on-screen help
AESC = S 5
St ol 0T 5.25"disc 40 track DFS PP hard copy option :
00102 5.25°disc 80 track DFS easily updatable to include future magazines
yearly updates available from BEEBUG

LR B 2 R

1458a 3.5" ADFS disc
RISC Developments Ltd, 117 Hatfield Road, St Albans, Herts AL1 4]S. Tel (0727) 840303 Fax (0727) 860263

58 Beebug January/February 1993

Hlal\‘lJ %& Hlm-ép Hlﬂtsbp Hlal\‘ILSW Hlﬁl’ g»#&

Please do keep sending in your hints for all BBC
and Master computers. Don't forget, if your hint
gets published, there's a financial reward.

BEEBUG TAPES ON MASTERS

Gareth Leyshon

Users of Masters may find that early BEEBUG
magazine cassette programs, when chained
or recalled by OLD after a hard reset, may
hang up the first time they are run. This is
because these programs include a title page
procedure called PROCHP. Within this
procedure, a VDU 22,7 call is issued to select
mode 7. If the Master is configured to come
up in any shadow mode, then HIMEM will
initially be set to &8000. Basic will put the
stack, which stores the return addresses for
procedures and functions, directly below
HIMEM.

When the VDU 22,7 command is executed,
the Master uses the memory from &7C00 to
&7FFF to store the screen display, but does
not reset HIMEM. This corrupts the stack
with the result that the procedure runs its
course, but the computer hangs up when the
end of the procedure is reached. This can be
avoided by configuring the Master to start up
in mode 7 rather than 135, hence reserving
the non-shadow memory as required. If your
computer has hung in this way, then Break,
OLD, RUN will usually get it working
properly again, since a soft break preserves
the mode set by VDU 22 but allocates
HIMEM properly.

MERGE AWAY

Mr.Toad

What a pity the Beeb lacks the MERGE
command found on the Spectrum, whereby
two Basic listings can be merged into one
with all the line numbers in the right places.

I've just found out that it can be done very
easily on the Master (in fact, it's so easy I'm
sure some others must have spotted it
already!). Load one listing, then type EDIT.
Save the now de-tokenised version under a
new filename, via key F3. Now come out of
Edit and load the second listing. Type
*EXEC «<filename>

where filename is the filename of the first
listing saved from Edit, and sit back and watch
the fun. Do note that if the two listings have
any line numbers in common, the line in the
first listing will replace the one in the second.

This method is equivalent to using the
*SPOOL command with *EXEC, but is a lot
easier and less messy.

EXTRACTING A SINGLE BIT FROM
USR

John Carter

Further to Mr.Temple‘s useful hint in
BEEBUG October 1992 (Vol.11 No.5), it is
worthwhile remembering that a single bit can
be extracted directly from the value returned
by the USR function. A typical application is
in the use of OSBYTE 117 (&75) to determine
whether or not page mode scrolling is in use
(this is the scrolling mode which is turned on
by Ctrl-N and turned off by Ctrl-O). This
information is returned in bit 2 of the X
register, and can be used to set a Boolean
variable as in the following example:

A%=117
S%=-(USR (&FFF4) RND &400)DIV &400

The &400 is calculated by setting bit 10,
which is the bit we are interested in. The
AND part picks out the scroll bit, and the
DIV part reduces this to a 1 or a 0. The minus
sign then converts this to TRUE or FALSE.
The machine can then be reset to its original
state by VDU 15+5%. B

Beebug January/February 1993 59

Personal Ads

BEEBUG members may advertise unwanted computer hardware and software through personal ads
(including 'wants') in BEEBUG. These are completely free of charge but please keep your ad as short as
possible. Although we will try to include all ads received, we reserve the right to edit or reject any if
necessary. Any ads which cannot be accommodated in one issue will be held over to the next, so please
advise us if you do not wish us to do this. We will accept adverts for software, but prospective purchasers
should ensure that they always receive original copies including documentation to avoid any abuse of

this facility.

We also accept members' Business Ads al the rate of 40p per word (inclusive of VAT) and these will be
featured separately. Please send all ads (personal and business) ito MEMBERS' ADS, BEEBUG,
117 Hatfield Road, St. Albans, Herts ALl 4J8S.

BBC B issue 4 with DFS £75,
Wordwise £7. Tel. (0226) 762450

WANTED: Watford 30Mb
Winchester for BBC, BEEBUG Vaols.
1,2,3,4,5 no missing issues or pages,
complete set good price paid also
wanted HCR external ROM/RAM
board. Also Deluxe Paint
[I/enhanced GEM 3 software fonts
and drivers Gem First Word Plus,
Gem Draw Plus, Gem Artline and
other good PC software for M512
also Shibumi Problem Solver and
MS flight simulator 2.12 or v3/4
with Shibumi Problem Solver. Tel.
(0621) 815162 after 6pm.

BBC single disc drive £a0,
Solidcad Superdump package also
£60, 15 books 1 /?2 cassette
ames, Dumpout 3 ROM,
ermulator ROM, Wordwise
ROM, GXR B+ ROM, Office Mate,
Office Master, Personal money
manager, master keyboard case
lus lead, Grafik disc and
igimouse wapping editor, all
four discs and beeb handscanner
ideal for posters, all must go cash
required, everything at low prices
telelphone for details. Tel. (0621)
815162 after 6pm.

ARM 3 A3000, 2Mb, serial
interface £630, unused (new)
Acorn AKF18 multisync monitor
£280, Watford Ultimum
Expansion unit £90, 40Mb 1DE
HD £80, Acorn PC Emulator
(v1.7) £50. Tel. (DB95) 635695
w/ends only.

Acorn A440/1 18 months old, 4Mb
RAm, 53Mb hard disc, 3.5" disc
drive, colour monitor, excellent for
DTP, games and educational uses.
Provided with Acorn DTF, First
Word Plus and lots of PD £1000.
Free delivery within 100 miles of
Wolverhampton. Tel. (0902)
850605.

60

FunSchool 2, 3 dises 40/80T,
under &'s, 6-8's, over 8's £5 each.
Tel. 073 129 372.

WANTED URGENTLY: Aries B20
Shadow RAM board for BBC B
(not Aries B32). Tel. 051-608 5238.

M128 fitted with 512 co-processor
complete with Gem mouse and
software, BEEBUG Exmon Il and
Master ROMs, Replay (tape to
disc) ROM, twin 40/80T disc
drives with own PSU, manuals
including View, Viewsheet and
Master Reference [& II. Software
on tape and disc and BEEBUG
magazine from issue 1 £400 the
lot. Tel. (0733) 53924 eves or
weekends.

Recently moved house and have
lost m?a copy of Wordwise Plus
manual. Can anyone help me? Tel.
(0254) 701573

2X 5.25" double sided 40/80T disc
drives, £30 each, Viewspell £5. Tel.
031441 1464 eves or weekends.

MAYDAY! MAYDAY! MAYDAY!
Has anyone got a formatter for an
NEC hard disc on the BBC B? Tel.
(0689) 871223,

M128 as new, complete with
handbook, dust cover and original
packaging £115. Tel. (0245) 225671
after 7pm.

Brother HR-15 daisywheel printer
for sale £50, buyer collects or
carriage extra. Tel. (0923) 775098
BVES.

Viewstore Database: ROM,
handbook and disc £10, Master
Reference manuals [&lI1 £13,
Assembly Language pro-grammin,

£5, Structured Basic £4, ﬁrdvanceg

User Guide £6, The ABC's of
Windows 3.0 £6, The ABC's of Word
for Windows £6 all inclusive of
postage. Tel. 051677 1518.

M512 in excellent working order,
included are two 5.25 floppies,
AMX mouse, joysticks and the
following EPROMSs in addition to
the resident View and Viewsheet:
Epson printer driver, Wordwise
Plus, Pascal, Screendump, Toolkit
and Graphics, full original manuals
and discs for the Master 512 plus
various extra manuals, years of
BBC dedicated magazines, software
for both BBC & PC mode includin,

ggmes. Only £350 o.n.o. Tel. (053

2157.

BBC Master 40/80T external
drive, Phiiiﬁs 80T monitor,
Brother HR25 daisywheel
printer, Interword, graphics
included, all v.g.c little used
£300. Tel. (0727) 52366 eves or
(0865) 512361 extn 216 day.

Master Compact 128, complete
with printer lead, joystick, PAL TV
adaptor, Dumpmaster ROM,
Repton 3, Repton Infinity,
Acornsoft Hits Vols.1 and 2, 13
issues of BEEBUG (consecutive)
together with discs, all for £160. Tel.
(0416) 744327

Master 128 (latest MOS), Turbo
Co-Pro board, Morley AA
ROMboard with Micro-Prolog,
Forth, BEEBUG C, Spellmaster,
ADI, Ample ROM installed,
Morley 20Mb hard disc, 40/80T
DD + PSU, Music 5000, AMX
mouse -+ SuperArt, Morley Smart
cartridge, Reference manuals 1&II,
Advances Reference manual, WH
Smiths Datacorder, huge
collection of books and software
on tape/disc (call for list) £300
o.n.0. Buyer collects please. Tel.
(0923) 230097,

Beebug January/February 1993

MORE SATELLITES WANTED

BEEBUG, November issue - Galilean
Satellites: what a good program! Best for
years. A real application. If you want to see
the satellites move, try the following
modifications.

Change these lines as shown:

120 MODET:PROCinput:CDY=DY :MODEL : REPEAT:
PROCjulian: PROCcalc

130 PROCdisplay

1010 DY=CDY+ (XD+3M/60) /24

1890 COLOUR3 : COLOUR128 : FRINTTAB (5,17) 25 (M
N-1);" ";INT{(DY):", *;YR;" ";INT(DH) ;"
h ";INT(IM);*m *:PRINTTAB(S,1%)"Julian D
ay No.: ";INT(J*100) /100
Add lines:

132 X¥D=XD+3

133 IF XD>24 XD=1:CDY=CDY+1

134 IF CDY>31 CDY=1:MN=MN+1

135 IF MN>12 MN=1:YR=YR+1
Delete lines 1920, 1930 and 1940.

Stephen Rose

Thanks for the bouquets, and for the update.
Astronomy fans should find this month's feature
on Celestial Bodies of interest foo.

SPELLMASTER MALFUNCTIONS

WITH VIEW

Using Spellmaster on a Master fitted with the
new system ROM (as a spelling check after
typing), one can either make a note of
spelling errors and then reload the text to
correct them, or one can *SAVE LOST
OEFD+HEX where HEX is a suitable value for
the length of the text, press Break to
reactivate View and READ LOST, which then
requires editing at beginning and end. I have
not found it possible to avoid editing the
beginning whatever address I adopt for the
start of the SAVE. Both methods are rather
clumsy.

However, as far as I can see from examining
memory (with Advanced Disc Toolkit) the
text is all there and has not been corrupted

either at the beginning or the end after the
escape from Spellmaster, even though View
reports “No text”. Surely it should be possible
to tweak the byte that causes the “No text”
message and restore View to operation?
D.Ambrose

We have put this problem to Mr Toad, and will
publish his response when he has finished his
investigations. In the meantime, if any other
readers can offer a selution we will pass it on, and
publish the details for the benefit of others.

USING BASIC'S GCOL 4

I recently purchased from you many back
numbers of your very useful magazine. For
years I did not know of it existed and am
now catching up on so much which is not
easily available from the BBC User Guide.

In Vol.6 Nos.6 & 7 your First Course
contributor covered the whole question of
colours which explained some mysteries for
me. Unfortunately, the articles stopped short
of explaining GCOL 4 which I have struggled
unsuccessfully to resolve. Is there any
coverage of this item in any of your back
issues?

John Brown

We have published nothing specifically on GCOL 4
(as this format is not often used), but I will try
and explain further. Suppose you select MODE 2,
a 16 colour mode, and then use GCOL 0,129
followed by CLG. This will give a red background
(by default colour 1 is red, and adding 128
specifies a background). Now select GCOL 4,4
and enter:

MOVE 0,0

DREW 500,500
You should see a diagonal line in flashing cyan/
red. In binary, the background colour (colour 1) is
0001. Inverting these bits gives 1110 (colour 14)
which is flashing cyanfred, again by default. The
resulting colour depends only on the colour
already on the screen - the colour specified in
GCOL 4 has no effect.

Beebug January/February 1993 61

Send applications for
Al membership fees, |
may also §

address below:
cheques) on @ UK bank Members
BEEBUG SUBSCHiPTION RATES BEEB
£18.40 4 year UK, BFPO, Ch \ £28.90
£27.50 Rest of gurope & Eire £42.90
£33.50 Middle East £53.10
£36.50 Americas & Adfrica £58.40
£39.50 Elsewhere £62.50
BACK ISSUE PRICES Volume Magazine 3.5"Disc
P : : 6 £1.00 £3.00 £3.00
All overseas fems are sent aimail ”'.ﬂ.;% ::H 3 310 a0 £350
8 £1.30 £4.00 £4.00
! £4.00 £4.00

official UK orders for subsc ip
' pase note that there
£4.75

REEBUG MAGAZINE is produced by
RISC Developments Ld.
Editor: Mike Williams
a
: o
jpt of an A5 (or Jarger) SAE.

e
A leaflet Notes to

Assistant Editor: Kristina Lucas
ConIriburors‘ is available on ré%
ssette in

Technical Editor: on
* Marshal Anderson
Please submit your coniributions on disc or ca
or o "Wordwise” of other

Editorial Assistance:
Production Assistant: Sheila Stoneman
garah Shrive readable form using "View
means equate written description 18

Advertising:]
Subscriptions: Sue Baxter anadeq
Managing Edttor: also included. sselte, please include a backup
i i ma reproducad y at 300 paud.
communication: please

All rights rese ¢
without prior ission of the FU jsher. The Publiyiercmnot inall
accept any res + articles, programs: o number
RISC Developmems Ltd () 1993
268328 |SSN _ 0263 - 7561

advertisements ished. ns
of the d and do not i t
Printed BY Arlon Printers (09"

this joumal are 108
those of the Publisher, RISC Developments Limited.

quote your membership

EUREER

‘r-é 1o match the target using
apcoO g F and » only once
combine! 3

4 - am
Femplying With c Basic sunta®

o with (584
B

Time taken wuas 1685ECS

Yeu scored o points
¢ 10 COHTIHUE

PRESS AHY KEY

_The programs
gideways ROM

mplement @

sequences of keypresses
jayed' via much $

ettt UK 4 STARS T
Tnput) Date turrentlyl 11411992
Tine, BT (1}
'Lat-.l_ude
Lonaitude
SR & Dec, star

fltitude &0 i
Haxinun altitude
sunrise & Sunset
Altitude & iy

,m.,-.uw,..-.u..N,...a.....,.......m..um,..mm..m...m.«.w,...,,
RETURM to execute

5 to select
NuHr&lmll'd{NNHNHrrhﬁlnNJulwml'«‘-lrvamal"unrmr&l

Cursor key

ateratihepinatitehite

it is running
MAGSCAND ATA- Bibliography for this issue
(Vol.A1 NoB):
papP (507 FOR gACH .&DDIT'.ONA
vailable at the Same prices:
UK ONLY OVERSEAS
£30.00

£56

mplicabie p]f_‘!{i:;:"

L ITEM)

5 pisc) + &

from \ol.6 No 1)@

_F.'?U:;[-"i[}P as df

d, st.Albans,

nelusive yAT and
He

Prices aré f

117

RISC Developments,

Upgrading to an Archimedes :

We know that many BEEBUG readers
have already upgraded to an
Archimedes, and no doubt many mora
will choose to follow a similar route. For
their benefit we offer our advice to help
them make a sensible decision on
whether to upgrade and if so, what
path to take.

Any prices quoted relate to our
associated company Beebug Ltd., but
note that all prices, particularly those
on trade-ins and secondhand items,
are likely to change without notice. You
should always telephone or write for
the latest information.

Archimedes A5000

What System to Choose

All new Archimedes systems are now
supplied with the RISC 08 3.10
operating system. Any secondhand
system should be upgraded to this.
Based on the experience of existing
users, we would strongly recommend a
minimum of 2Mb of BAM. Most users
find a hard disc adds significantly to the
convenience of using an Archimedes,
but you can always add a low-cost hard
drive later, and more memory, but
check on the likely price of future
expansions - it is not necessarily the
same for all machines. If you might be
interested in more specialised add-ons
(scanners, digitisers, etc.) then check
the expansion capability of your
preferred system.

Compatibility and Transferability

You will need to decide to what extent
you wish to continue using existing
discs and disc drivesonan .
Archimedes. An Archimedes and a
BBC micro can be directly connected
for transfer of files. You can also
connect a 5.25" drive to an Archimedes
via an additional interface to continue
to access 5.25" discs (ADFS format).

Our DFS Reader will also allow files to
be transferred to the Arc from DFS
format discs. However, none of this is
possible with the latest
A3010/A3020/A4000 systems.

Much BBC micro software will run
directly on an Archimedes, or via the
6502 emulator. However, consider this
carefully; in our experience, despite
prior misgivings, most Archimedes
users find that they rapidly adjust to the
Desktop environment of the
Archimedes, and quickly abandon the
software and data of their old system
after an initial period.

Software for the Archimedes

The Archimedes is supplied complete
with a range of basic applications
software. Before embarking on any
further purchases it may be better to
familiarise yourself with the new
machine. Most users look for a word
processor (or DTP package), maybe a
spreadsheet, or a database, plus other
more specialist software. We cannot
give detailed guidance here, but back
issues of RISC User contain a wealth
of useful information - we can advise
on suitable issues.

the outset. Note: the price on some
systems includes a moniter; in other
cases a choice of monitor is available
at an additional cost. The details given
in the table are minimum specifications
of the different Archimedes models.

The A3010

It may also be possible to trade in an
existing monitor and/or disc drive, but
check if your existing monitor is suitable
for use with an Archimedes first. You
may find it better to advertise your BBC
system in BEEBUG and sell privately -
this applies particularly to any software
and hardware add-ons which cannot be

A310 1Mb RAM
A410/1 1Mb RAM

*

4+ o+ + o+ 4

A3000 1Mb RAM

*

Model B (Issue 7)

Model B (issue 7) + DFS
Master 128

Master Compact

Archimedes Systems - Typical or Current Prices

A420/1 2Mb RAM, 20Mb hard drive
A440/1 4Mb RAM, 40Mb hard drive

A3010 1Mb RAM, Family Solution
¥ A3020 2Mb RAM, 60Mb hard drive
A4000 2Mb RAM, B0OMb hard drive
: A5000 2Mb RAM, 80Mb hard drive
+* Acorn standard colour monitor

All systems above include a single floppy disc drive.
New (*) and secondhand (+) - all prices inc. VAT.
The A5000 price includes a multiscan colour monitor,
A3020/A4000 price includes standard colour monitor.

BBC Micros - Typical Trade-in Prices

Secondhand New

£350

£565

£650

£725

£350
£ 499.00
£1056.33
£1115.08
£1643.83

£145 £ 258.50

£.35
£ 75
£125
£ 50

General Advice

It is advisable to discuss your
requirements with the BEEBUG
technical team before making a final
decision on what you want. Try to
anticipale future expansion needs at

. Herts AL1 445,

accepted for a trade-in. In future, all
personal ads for Archimedes systems in
RISC User will also be included in
BEEBUG: You may also defer a trade-in
until a later date provided you make this
clear at the time of purchase.

Tel. 0727 40303 Fax 0727 860263

	01.jpg
	02.jpg
	03.jpg
	04.jpg
	05.jpg
	06.jpg
	07.jpg
	08.jpg
	09.jpg
	10.jpg
	11.jpg
	12.jpg
	13.jpg
	14.jpg
	15.jpg
	16.jpg
	17.jpg
	18.jpg
	19.jpg
	20.jpg
	21.jpg
	22.jpg
	23.jpg
	24.jpg
	25.jpg
	26.jpg
	27.jpg
	28.jpg
	29.jpg
	30.jpg
	31.jpg
	32.jpg
	33.jpg
	34.jpg
	35.jpg
	36.jpg
	37.jpg
	38.jpg
	39.jpg
	40.jpg
	41.jpg
	42.jpg
	43.jpg
	44.jpg
	45.jpg
	46.jpg
	47.jpg
	48.jpg
	49.jpg
	50.jpg
	51.jpg
	52.jpg
	53.jpg
	54.jpg
	55.jpg
	56.jpg
	57.jpg
	58.jpg
	59.jpg
	60.jpg
	61.jpg
	62.jpg
	63.jpg
	64.jpg

