

6502
Development Package
on the BBC Microcomputer with 6502 Second Processor

BARRY MORRELL

>100RNSeF

Acknowledgements

The 6502 Development Package was developed by Jon Thackray, Thanks are also
due to Pete Cockrell and David Christensen,

Barry Morrell

Copyright © Acornsoft Limited 1984

All rights reserved

First published in 1984 by Acornsoft Limited

No part of this book may be reproduced by any means without the prior consent

of the copyright holder. The only exceptions are as provided for by the Copyright
(photocopying) Act or for the purposes of review or in order for the software herein

to be entered into a computer for the sole use of the owner of the book.

Note-. Within this publication the term 'BBC is used as an abbreviation for 'British

Broadcasting Corporation'.

FIRST EDITION

Acornsoft Limited, Betjeman House, 104 Hills Road,

Cambridge CB2 ILQ, England. Telephone (0223) 316039

CONTENTS
Page

Preface

1 Getting under way 1

2 Developing programs with the Second Processor 2

2.1 What is MASM? 2

3 Developing a simple MASM program 4

3.1 Creating program source using EDIT 4

3.2 Assembling the program and running it 6

3.3 Producing a listing of your program 7

3.4 Program development 8

4 The building bricks of MASM 9

4.1 MASM mnemonics and address modes 9

4.2 The format of MASM source code 16

4.3 MASM operators 19

4.4 Operating system commands 23

5 The MASM directives 24

5,1 Declaring symbols (*) 24

5.2 Defining a byte of data (=) 25

5.3 Defining a byte pair (&) 26

5.4 Reserving variable space ('^ @ and #) 27

5.5 Defining the start of code (ORG and .) 29

5.6 Linking source files (LNK and <) 30

5.7 Ending an assembly (END) 31

5.8 Defining page titles (TTL) 31

5.9 Setting print options (OPT) 32

5.1Ct Using the special instruction set (CPU) 32

5.11 Changing object file drives (>) 33

6 Program example 34

7 Using macros in your programs 38

7.1 Default values in macros 40

7.2 Missing parameters 41
7.3 Parameter names 41

7.4 Nesting macro calls 43
7.5 Macro libraries 44

8 Conditional assembly 45

8.1 Logical expressions 48
8.2 Global and local variables 50

8.3 Routines and local labels 53

9 Repetitive assembly 56

9.1 The WHILE...WEND loop 56

9.2 The MEXIT directive 58

10 Trapping errors in source code 59

11 Creating source files using EDIT 60

11.1 Entering EDIT 61

11.2 Adding text 61

11.3 Using the cursor keys 62

11.4 The cursor edit mode 62

11.5 The function keys 63
11.6 Changing display mode 63
11.7 Saving, loading and inserting text 64

11.8 Insert and overtype modes 66

11.9 Special characters in the text 66

11.10 Dealing with blocks of text 67

11.11 The scroll margins 69
11.12 Finding and replacing text 69

11.13 Using command macros' 78

12 Using MASM to assemble your programs 81

12.1 MASM commands 81

13 Producing program listings 91

14 Debugging your programs 94

14.1 Introduction 94

14.2 Using the cross-referencer (XREF) 100

14.3 Using the free-standing cross-referencer

(SRCXREF) 103

14.4 Using the trace utilities (TTRACE and
BTRACE) 106

Appendix A The macro substitution method 116

Appendix B MASM error messages 117

B.l MASM fatal errors 117

B.2 MASM non-fatal errors 120

Index 124

r

((

Preface

This user guide is intended for owners of the 6502 Development Package. It
describes how to use the following utilities; EDIT, MASM, PRINT, XREF, SRCXREF

and TTRACE (as well as PR and BTRACE - versions of PRINT and TTRACE for the

I/O processor). Together, these utilities and the 6502 Second Processor provide
a powerful means of producing machine code programs for use with any
6502-based machine, particularly a BBC Microcomputer Model A or B, or an Acorn
Electron.

Before reading this book you should be familiar with the concepts covered in the
BBC Microcomputer System User Guide. You should also be reasonably familiar

with the standard set of 6502 assembler mnemonics.

If you are not familiar with 6502 assembler, the following books may help you:

Creative Assembler for the BBC Microcomputer Model B and Acorn Electron by

Jonathan Griffiths, a Penguin publication

Assembly Language Programming for the BBC Microcomputer by Ian Birnbaum,

a Macmillan publication

The approach adopted within this book is to give you 'hands-on experience' of
MASM and its associated utilities as quickly as possible: this is vital if you are to

appreciate the range of facilities available. By the time you have finished reading

the book you will be familiar with most of the facilities of MASM. After this, you
will find the 6502 Development Package Reference Card of use.

1 Getting under way
The 6502 Development Package is designed for use on the BBC Microcomputer
Model B; it will not work upon any other type of microcomputer. You should also
have the following equipment:

- A 6502 Second Processor

- Disc drive(s)

As well as this book, the Development Package consists of:

- A copy of the 6502 Development Package Reference Card

- A floppy disc labelled 6502 Development Package

- A function key card

If any of these is missing you should contact your Acorn dealer,

Before you go any further, you should start up your system and take a security
copy of the disc. The procedure, which uses 'ENABLE and 'BACKUP is described

in your Disc Filing System User Guide. You are reminded that copyright exists
in this software and that you may only make a single security copy for your own use.

Next, insert your copy of the disc in a drive and look at the files on it ('CAT

command). They should be as follows:

MASM A macro assembler

XREF A MASM-dependent cross-referencer

SRCXREF A free-standing cross-referencer

lOMASM MASM code in the I/O processor

TTRACE A trace package for the second processor

BTRACE A trace package for the BBC Model B

PRINT A print utility for the second processor

PR A print utility for the BBC Model B

EDIT A text editor

If any of these files are missing you should contact your Acorn dealer,

Finally, you should slip the function key card provided under the clear plastic slip

above the red function keys on your keyboard, lining it up so that GOTO LINE

comes immediately above the red function key 'fO'. This legend will be your guide

when you are inputting and amending your programs using EDIT.

2 Developing programs
with the Second Processor

With the 6502 Second Processor, you can develop sophisticated programs in MASM

assembler. These can then be run in any 6502-based machine, but particularly either
your BBC Microcomputer Model B or the 6502 Second Processor,

You can, of course, develop programs in other languages using the Second
Processor.

2.1 What is MASM?

MASM is a macro assembler and forms the main part of this package. For the present

we will forget about the macro and concentrate on the assembler part of the name.

Most computer languages are high level languages; BASIC, FORTRAN, Pascal and

COBOL are examples. They are generally aimed at particular areas of use; for

example, FORTRAN is designed to aid in the solution of mathematical and scientific

problems. Because of this, they arc often highly-specialised and may be unsuitable

for some functions. Additionally programs in languages like BASIC have their

instructions interpreted every time the program is run, so they can be slow.

Machine code, on the other hand, is extremely efficient in operation and does not

need processing by an interpreter every time it is run. However, it is not efficient

from the point of view of time spent programming in it.

Assembly language offers a compromise between these two approaches.
Instructions in assembly language have an almost one-to-one correspondence with

machine code. They also have mnemonics which are easier to recognise than

machine code (though not as easy as high level language Instructions). In addition,

programs written in assembly language do not have to be translated from

mnemonics into machine code every time they are run. Instead, the translation

is done once, by an assembler such as MASM. From this stage onwards, the machine

code object program can be loaded and run as many times as required.

Let's look at the way assemblers such as MASM work before going any further.
Below, on the left, is a sample of MASM assembly code (the source code); at the

right of it is the equivalent machine code and some typical memory addresser

LDXIM

loop INX

CPXIM

BNE

1

100

loop

&2G00

&2006

A2

E8

EO

64

DO

To produce the code on the right frt)m that on the left, MASM scans through the

program from start to finish and builds up a symbol table. MASM makes a note,

in its symbol table, of the position of each label (such as 'loop') so that, when it

encounters the label in subsequent instructions, it can insert an actual address in

the instruction (or at least a representation of the actual address).

This works fine for pieces of code like the one shown above. However, what

happens in the case of the code shown below, where the address 'server' is further

down the program than the instruction that uses it?

LDXIM 100

JSR server

82000

server 83000

A2

64

20

00

30

In this case, the assembler has no address for 'server' when it encounters the

instruction, 'server' is called a forward reference.

MASM, like most assemblers, resolves this problem by always making two passes
through the program source code. During the first pass, a symbol table is built up:
during the second pass, the instructions are converted into object code.

The actual process of assembly is more complicated than the way we have described
it, but this description should suffice for the present. If you want to know more
about how assemblers work, Assemblers and Loaders, by D W Barton might be

of interest.

3 Developing a simple
MASM program

There are four main stages to writing a program and getting it working using the
6502 Development Package:

- Designing the program structure

- Coding the program source (using the EDIT utility)

- Assembling the program (using MASM) and running it

- Debugging the program (using PRINT to obtain the necessary listings and a
TRACE utility).

It is assumed that the user is familiar with designing the structure of a program,

since the method is similar for all programming languages. Each of the subsequent

stages will be explained in this chapter by getting you to develop a simple program

yourself, using the 6502 Development Package and your computer.

3.1 Creating program source using EDIT

The EDIT program helps you to create and amend program source files. It is

described fully in chapter 11, 'Creating source files using EDIT', but for now only

a simple introduction is given so that you can create a small source file.

To run the editor, insert the program disc that comes with the package into the

current drive, type:

♦ EDIT

and press RETURN. This will cause the editor to be entered with no text, so that

the screen is almost blank. The only text is an inverse video asterisk ('*") at the

top left hand corner and a couple of words on the bottom line. The asterisk is

the 'end of file marker' and it tells you where the end of the text is. The bottom

line is called the 'status line', since it gives various pieces of information about the
editor.

To add text when you are in the editor you simply have to type it. The end of
text marker will be moved along to make room. If you make a mistake simply press
the DELETE key as usual. At the end of a line press the RETURN key and the flashing
cursor will move onto the next line.

I

The arrow keys are used to move around the screen (though naturally you can't
move below the bottom line or above the top one). Armed with this information,
you should be able to type in the short example program listed below:

zerop * &70

0R6 81900

test LOAIM 0

STAZ zerop

LDAIM fin / 8

STAZ zerop+1

LDYIM 0

Loop LDAIY

PHA

zerop

LDAIM 8AA

STAIY zerop

CMPIY zerop

BNE error

LDAIM 855

STAIY zerop

CMPIY zerop

BNE error

PLA

STAIY zerop

INY

BNE loop

INCZ ze rop+1

LDAZ zerop+1

CMPIM 880

BNE loop

BRK

=

1

"MEMORY

0

error BRK

2

"MEMORY

G

f 1 n

END

Note that a carriage return is necessary at the end of the source code (after the
END directive) otherwise a'Line too long' error will be generated.

When you are happy that the text on the screen is as shown above you should
save the file on disc. To do this, press the function key marked 'f3'. This will produce
a prompt to which you should reply with the name of the file in which the text
must be saved. Let's use the name 'TEST' for this example. Press RETURN after

the filename; the text will be saved. Note that the disc supplied with the pack has

a write-protect label on it to prevent accidental erasure of any files. A separate disc
should be used for your own programs.

Note that it docs not matter what case the labels and opcodes are in, but the code

is easier to read with them as shown. The exact number of spaces between items

is also not critical, so long as there is at least one.

3.2 Assembling the program and running it

Now that you have created a program source file you will want to assemble it. You

can do this by issuing an operating system command to call the assembler. When

in EDIT, press the function key 'IT. This will prompt you with an asterisk, implying

that you should type an OS command. To call the assembler, type;

HASM

then press RETURN. It is possible to issue 'star' commands from all of the programs

in the package. For all of them apart from EDIT, you simply type the command

prefixed by an asterisk, just as you would in BASIC. You can use operating system

commands such as 'CAT, 'COPY and 'DELETE in command mode.

You will enter the command mode of the MASM utility and the following prompt
will be displayed:

Action:

To assemble your program type:

ASM TEST

then press the RETURN key. MASM will print the following prompt:

Macro Library:

You can ignore this for the present; its significance will be described later. Merely
press the RETURN key.

MASM will now do two passes through your program source, as described in chapter
2, 'Developing programs with the Second Processor'; it will tell you when it finishes

each pass. When the assembly is complete, it will print the following message on
your display then return to command mode

Assembly finished, no errors

Action:

If you don't get this message, go back to EDIT to repair your source. The information
you need is described in chapter 11, 'Creating source files using EDIT',

Now, assuming there were no errors, your program will have been assembled into

a file with the same name as your source file, but it will be in the directory X.
In the present case, the file will have the file specification X.TEST and you can
run the program by typing

*X.TEST

then pressing RETURN. Do this now; the program will display the following
message:

MEMORY OK

3.3 Producing a listing of your program

If your program did not work, you would want a listing of it to help you debug

it. You would also want a listing even if it did work, to use as part of your program

documentation.

You can produce the listing using the PRINT utility. First of all, ensure that your

printer is connected according to the instructions in the BBC Microcomputer System
User Guide. Now press CTRL B to enable it and then type the following:

♦ PRINT

You will get the following prompt:

F i I e name :

and you should type TEST then press the RETURN key. Next, you will be given

the prompt:

Parameters:

and you should reply by typing;

U80 L66 N

then pressing the RETURN key. Your program will now be printed. To disable the
printer you should press CTRL C.

Note that some ROMs will respond to a "PRINT command, and if you encounter

this problem it will be necessary to use "/PRINT or "RUN PRINT to load the utility
from disc.

You can also produce an assembly listing of your program using MASM, but this
is only possible if the first pass was successful.

3.4 Program development

Of course, program development is not as simple as in the example given. In reality

you will make mistakes and the program will not work first time, unless it is a very

simple one! When this happens you will need debugging tools beyond a mere

PRINT utility.

The 6502 Development Package gives you some of these tools, but we will not

describe them yet. I^ter, in chapter 14, 'Debugging your programs', we will
introduce some bugs into the program that you developed in this chapter. We will
then use the debugging tools to remove them. For the present, we will forget about

them and look a bit deeper into the 6502 itself and other parts of the Development
Package.

4 The building bricks of
MASM

The first section of this chapter describes the mnemonics of MASM instructions

and their related address modes. The second section describes the format of MASM

source code. Finally, the MASM operators, which handle arithmetic and logical

operations (for example), are covered.

4.1 MASM mnemonics and address modes

Table 4.1 shows the 6502 instructions and their equivalent MASM mnemonics. These
are similar, but the MASM mnemonics have additional characters that indicate their

address mode.

Mnemonic ADC AND ASL BCC" BCS" BEQ" BIT

Immed ADCIM ANDIM fBITIM

Abs ADC AND ASL BIT

ZeroPage ADCZ ANDZ ASLZ BITZ

Abs,X ADCAX ANDAX AS LAX ^BITAX

Abs,Y ADCAY .ANDAY

Z.X ADCZX ANDZX ASLZX ■fBITZX
Z.Y
(Z.X) ADCIX ANDIX
(Z),Y ADCIY ADCIY

Accum. AS LA
(Ind.) iADCl iANDf

Mnemonic BMI" BNE* BPL" fBRA' BRK" BVC" BVS*

Standard 6502 Mnemonics

Mnemonic CLC" CLD" CLI" ^CLR' CLV CMP CPX

Immed. CMPIM CPXIM
Abs. fCLR CMP CPX
ZeroPage iCLRZ CMPZ CPXZ
Abs.X fCLRAX CMPAX
Abs.Y CMPAY
Z.X fCLRZX CMPZX
Z.Y
(Z.X) CMPIX
(Z).Y CMPIY
Accum.

(Ind.) fCMPl

Mnemonic CPY DEC DEX" DEY" EOR INC INX*

Immed. CPYIM EORIM
Abs. CPY DEC EOR INC
ZeroPage CPYZ DECZ EORZ INCZ
Abs.X DECAX EGRAX INCAX
Abs.Y EORAY
Z.X DECZX EORZX INCZX
Z..Y
(Z.X) EORIX
(Z),Y EORIY
Accum. fDECA fINCA
(ind.) fEORI

Mnemonic INY" JMP JSR LDA LDX LDY LSR

Immed. LDAIM LDXIM LDYIM
Abs. JMP JSR LDA LDX LDY LSR
ZeroPage LDAZ LDXZ LDYZ LSRZ
Abs.X LDAAX LDYAX LSR.AX
Abs.Y LDAAY LDXAY
Z.X LDAZX LDYZX LSRZX
Z.Y LDXZY
(Z.X) yMix LDAIX
(Z).Y LDAIY
Accum. LSRA
(Ind.) JMl •tLDAf

"These instructions have the standard mnemonics in implied or relative addressing mode.
"fMnemonics in italics are available only with CMOS processors.

10

Mnemonic NOP* ORA PHA" PHP* ■fPHX' ^PHY' PLA"

Immed. ORAIM

Abs. ORA
ZeroPage
Abs.X

ORAZ
ORAAX

Abs,Y ORA AY
Z.X ORAZX
Ay
(Z.X) ORAIX

(Z)y ORAIY
Accum.
(Ind.) ^ORAl

Mnemonic PLP* tPiZ* fPLY' ROL ROR RTI* RTS"

Immed.
Abs. ROL ROR
ZeroPage
Abs,X

ROLZ
ROLAX

RORZ
RORAX

Abs,Y
Z,X ROLZX RORZX
Z,Y
(Z,X)
(Z),Y
Accum. ROLA RORA
(Ind.)
Mnemonic SBC SEC" SED* SEI" STA STX STY

Immed. SBCIM
Abs. SBC STA STX STY
ZeroPage SBCZ STAX STXZ STYZ

Abs,X SBCAX STAAX

Abs.Y SBCAY STAAY

Z.X SBCZX STAZX STYZX

Z.Y STXZY
(Z,X) SBCIX STAIX

(Z),Y SBCIY STAIY

Accum.
(Ind.) ■^SBCl t5Z4/

Mnemonic \STZ TAX" TAY" fTRB fTSB TSX" TXA*

Immed.
Abs. \STZ fTRB tr5B
ZeroPage
Abs,X

t5rzz
^STZAX

iTRBZ fTSBZ

Abs,Y
Z,X ■\STZZX
Z.Y
(Z.X)
(Z),Y
Accum.

(Ind.)
Mnemonic TXS* TYA"

Standard 6502 Mnemonics

"These instructions have the standard mnemonics in implied or relative addressing mode.

fMnemonics in italics are available only with CMOS processors.

Table 4.1 MASM mnemonics

11

The rest of this section briefly describes the address modes that you can use with
the BBC Microcomputer. In this description, examples of the appropriate MASM

mnemonics are given and the equivalent 6502 instruction is given alongside it in
brackets, for example: RORA (ROR).

4.1.1 Implied addressing

In this address mode, the address is implicitly defined by the operation code of

the instruction, for example, INX, INY, CLC and SEC. All implied address
instructions consist of one byte, and are the same as in the BBC BASIC assembler.

4.1.2 Accumulator addressing

Instructions in this address mode consist of one byte and involve operations upon

the accumulator. Examples of these instructions are ROLA (ROL) and RORA (ROR),

The mnemonics are the same in MASM and in the BBC BASIC assembler.

4.1.3 Immediate addressing

In this type of addressing, the information to be accessed is held in the second

byte of the instruction. Examples of instructions that are used in this mode are

SBCIM (SBC) and ADCIM (ADC).

4.1.4 Absolute addressing

In this address mode the second and third bytes of the instruction point to the
argument address: the second byte points to the low order byte of the address

and the third byte points to the high order byte. You can access the entire 64K

bytes of addressable memory in this mode.

Note that absolute addressing is automatically truncated to zero page addressing
if the argument is in zero page.

STA, STX and STY are examples of mnemonics for absolute addressing; they are
the same in MASM and the BBC BASIC assembler,

4.1.5 Zero page addressing

This address mode gives a shorter execution time than absolute addressing and
uses oniy two bytes. It accesses the first page of memory. Zero page addressing
instructions include STAZ (STA) and STXZ (STX), Note, however, that MASM

automatically truncates absolute addressing to zero page addressing if the address
given is in zero page.

12

4.1.6 Absolute indexed addressing

This is used with the X and Y index registers. The two forms are also called Absolute,
X', Absolute, y and are shown as Abs, X' and Abs, Y' in Table 4.1. The instructions

used have three bytes and the target address is formed by adding the contents of
either X or Y and the address in the second and third bytes.

You can use this type of addressing to access tables by putting the base address
as the second and third byte of the instruction then using the X or Y register as
a displacement pointer.

Examples of absolute indexed addressing are shown below on the left in MASM

code. Their equivalents in BBC BASIC assembler are shown on the right.

LDAAX tabst LDA tabst,X

STAAY tabst STA tabst,Y

Note that code such as LDAAX &70 is truncated by MASM to LDAZX &70. This

means that it is not possible to assemble code such as LDAAX &70 without resorting

to the = directive (see section 5.2). This problem will not normally be encountered,

except in programs such as:

Loop LDAAX &100

STAAX &FF

DEX

BNE loop

which will not do what is expected if assembled in MASM.

4.1.7 Zero page indexed addressing

This is similar to absolute indexed addressing but the target addresses are in page

zero. The instructions themselves are two bytes long and the last byte is the base

address of the area to be accessed. The contents of this byte are added to the

contents of the X or Y register to give the target address.

The two forms of this address mode are also called 'Zero Page, X' and 'Zero Page,

Y', and are shown as 'Z,X' and 'Z,Y' in "Dble 4.1. Examples of MASM code using

this mode are given below on the left. Their equivalent in BBC BASIC assembler
is shown alongside them.

tabst * 875 tabst=875

LDAZX tabst LDA tabst,X

STA2X tabst STA tabst,X

STXZY tabst STX tabst,Y

13

4.1.8 Relative addressing

This can only be used with branch instructions and these are two bytes long. The
second byte is the displacement of the target address from the instruction after
the branch instruction: negative values are backwards jumps, positive values are

forward jumps. The maximum jump is 128 bytes backwards or 127 bytes forwards.

Relative addressing instructions have the same mnemonics in both MASM and BBC
BASIC assembler.

4.1.9 Zero page indexed indirect addressing

This is also called Indirect, X addressing' and is shown as '(Z,X)' in Table 4.1. Here,

the target address is held in a location in page zero and accessed "indirectly" through

this location.

The instructions used have two bytes and their second byte is added to the contents

of the X index register to give an address in page zero. This address contains the
low order byte of the target address and the next location in page zero contains

the high order byte of the target address.

The following are examples of the instructions used in this mode; ADCIX (ADC),

CMPIX (CMP) and LDAIX (LDA).

4.1.10 Absolute indexed indirect addressing

This is a special mode that is only available on CMOS 6502s and for just one
instruction: the jump instruction. It is similar to the address mode described in

the last section, zero page indexed indirect, but the operand is two bytes long
(absolute) rather than one (zero page). Thus, the action of the jump instruction

using this mode is to add the value of X to the operand and jump to the location

stored in the sum of these two. The mnemonic for the instruction is "JMIX".

4.1.11 Indirect indexed addressing

This address mode is also called 'Indirect, Y' and is shown under the heading "(Z),Y'
in Table 4.1. Its instructions are two bytes long and include ADCIY (ADC) an example
of which is shown in the diagram below. The second byte of the instruction points
to a location in page zero and the contents of this location are added to the contents

of the Y register to give the low order byte of the target address. To get the high
order byte of this address the carry from the addition is added to the contents

of the next location in page zero.

14

Instruction
&70

r
&70 10

20
40

&2050

4.1.12 Zero page indirect addressing

In this address mode, which only exists in CMOS CPUs, the instructions are two

bytes long. The second byte points to a location in page zero that contains the
low order byte of the target address. The next byte in page zero contains the high
order bvte. An example of the use this type of address mode is:

&70

r
50

Instruction

&70

20

&2(.)50

4.1.13 Absolute indirect addressing

The instruction in this address mode JMI (JMP) is three bytes long. The second

byte consists of the low order byte of an address and the third byte the high order

byte of the address.

The contents of this new address contain the low order byte of the target address

and the next byte contains the high order byte. The target address is loaded into

the program counter.

Instruction

&2050

50

20

30

40

PC

4030

A 'BadJMI' error is caused by an instruction of the form JMI &XXFF when MASM
is in CPUO mode which will crash when executed on a standard NMOS.

15

4.2 The format of MASM source code

MASM source code cakes the following general form:

<Label> <opcode> <operand> <;comment>

(unless the line contains a directive as described in chapter 5).

Where things appear between < and > in this book they should not be taken
literally; they indicate a 'class' of items. The line above, for example, means that
a line of MASM source code consists of four parts: a label, an opcode, an operand

and a comment. None of these is compulsory (except that if there is an operand

then there must be an opcode); for example, opcodes such as INX do not need

an operand. Also, comments are never needed by MASM, but they should be

included to help anyone who reads your program. Below are some examples of

MASM source lines:

beLL LDAIM 7 ;SoundbeLL

JSR oswrch

; Just a comment on this line!

The first example has all four of the possible components present, 'bell' is a label;

in this case, the label could be the destination for a

JSR be LI

instruction, and so stands for an address within the program. Next comes the

opcode; in this case, a 6502 instruction that means 'load the accumulator immediate'.
You mav be more familiar with the

LOA #7

form of this instruction. MASM's way of specifying address modes has already been
outlined.

The operand on the first line is "T", which happens to be the ASCII bell control

character. The comment (which must be preceded by to warn MASM) is the last

item on the line. MASM completely ignores this part; it is present purely to help
anyone who is trying to understand the program.

16

The second example above has neither a label nor a comment (labels are needed
only if a reference is made to the line elsewhere in the program). The opcode in

this example is 'JSR' (jump to subroutine) and the operand is 'oswrch'. 'oswrch'
is another example of a label; this time, the label refers not to a location within

the program, but to an address elsewhere (in the Machine Operating System ROM,
to be precise). It would have been equally valid to use '&FF,EE' here, as this is the

numeric address of the oswrch routine. However, labels (or symbols) make a
program more readable and should be used whenever possible. The mechanism

for defining symbols is described later, in chapter 5, 'The MASM directives'.

The third line in the example above is empty; blank lines are accepted by MASM
and are used to separate routines in the listing. Again, this is purely to improve

the appearance of the listing rather than something that MASM demands.

The fourth line in the example shows how a comment can occupy an entire line
of the source file.

Labels can consist of letters and numbers, but must start with a letter. They can

be up to six characters long.

Note that if a line has no label, any opcode present must start after the first column

(that is, there must be a space before the opcode appears),

4.2.1 Using expressions in operands

MASM allows you to use a general expression in operands, where a number is

required, just as in high-level languages like BASIC. These expressions consist of

the normal features of an operand (symbols, numeric constants and string constants)

combined with operators (described in section 4,3). Some examples of these
expressions are given below,

LDAIM SF0:AND:S1F

ADCIM &FG:OR:&OF

LDAIM bytes/size

4.2.2 Symbols

Symbols are strings of alphanumeric characters starting with a letter and having
up to five further characters. Note that the letters may be upper or lower case.

We have already come across one type of symbol; the address label. Symbols are
identifiers which stand for constant values throughout the program. Thus, the label

'loop' in the memory check program of section 3.1 always has the value of the
address at which it appears in the program. Also, wherever 'loop' is used in an
operand, that address will be substituted.

17

Symbols can also be defined explicitly using the directive (described in chapter
5, 'The MASM directives'). This is different from the operator used in expressions,
and it stands for 'define symbol'. Its effect is similar to the assignment operator
' = The example below defines two symbols:

oswrch * &FFEE

limit * &100

The first symbol is used as an address (in this case, the address of the operating
system's character output routine) and it might be used in a line such as:

loop JSR oswrch

The second symbol defines some value which might appear many times in a

program and deserves a name for the sake of readability, as in:

LOA start+limit

Notice that when a symbol is being defined with the identifier must appear

in the label field of the line, that is, it must start at the first column of the line.

Because of this rule, symbols are often referred to as 'labels' whether they stand

for an address in the program or not.

There are two special symbols which will be defined in the next chapter, but are

mentioned here for completeness: these are the program counter and the variable

counter. They define the current points in the program and the variable space.

4.2.3 Numeric constants

Numbers that appear in MASM source code can be in decimal or hexadecimal. A

typical decimal number is '32768', and '&100' is a hexadecimal number (hex numbers
are preceded by the character '&'), Numeric constants are limited to two bytes
precision (&()0()0 to &FFFF in hex).

4.2.4 String constants

These are enclosed in double quotation marks ("), for exampie the string:

= "Memory OK"

in the memory check program of section 3.1. If the quotation mark itself is required,
you need to use two sets of quotation marks; for example, to obtain the string
consisting of just the character you should use String constants can be
used in place of a string of single bytes or as a number. An example of a string
of single bytes is given above. The general form of this use is:

<label> = <byte> <,<byte>)

18

The part in brackets can occur any number of times, as in the following;

mesg = 65,66,67

This would insert the codes for the characters A', 'B' and 'C" into your program.
A more readable alternative would be:

mesg = "ABC"

Another use for string constants is shown below. Here, two symbols are defined
by giving them 'string" values.

prompt * ">"

endsym * "3"

LDAIM prompt

JSR oswrch

JSR osrdch

CHPIH endsym

BEQ fin

What actually happens is that the symbols have the ASCII values of the characters

assigned to them. Using symbols in this way would enable the prompt or end

symbol to be changed merely by altering the two initial lines.

4.3 MASM operators

MASM provides an extensive set of operators for use in expressions. The power

of these operators rivals some high-level languages and they are described in detail
below.

4.3.1 Arithmetic operators

These operators include:

+ Add

.Subtract

• Multiply

/ Divide

: MOD : Remainder after division

19

Examples of the use of arithmetic operators are given below;

LDA start+Limit

LOAIM fin / 8100+1

You may recall the last example; it was used in the memory check program to
calculate the start address of the page above the program.

An example of the use of :MOD: is:

LDXIM offset :MOO: 256

which would load the low byte of 'offset' into the X register.

4.3.2 Logical operators

These include the following:

:OR

:EOR

:AND

Inclusive OR function

Exclusive OR function

Logical AND function

Some examples will help to explain their effect:

Result

LDAIM 8F0 :AND: 81F LDAIM810

LDXIM 812 :EOR: 80F LDXIM81D

ADCIM 8F0 :0R: 80F ADCIM8FF

Of course, actual examples would include items other than constants, otherwise

you might as well do the operations in your head.

4.3.3 Rotation and shift operators

These operators take a bit pattern and either shift or rotate it a number of positions

to the left or the right. You can imagine them as two basic operations:

:SHxy: forshift

:ROxy : for rotate

The suffix x can be either L or R for left or right, respectively, y is I for operation

on one byte and is omitted for operation on two bytes. Some examples might clarify'
this:

Result

810 : SHR1 : 2 804

8AA iROLI: 3 855

81234 :SHL: 2 84800

20

4.3.4 String operators

These operators join (concatenate) two strings or strip out part of one string. They
are as follows:

:CC: concatenates two strings as follows:

"ABC" ;CC: "123" yields the string "ABC123"

:LEFT: takes a string on the left and a numeric expression on the right to give the
left-most substring. For example,

"ABC123" :LEFT: 3 yields "ABC"

:RIGHT: takes a string on the left and a numeric expression on the right to give
the right-most substring. For example,

"ABCD123" rRIGHT: 4 yields "D123"

Again, it would be more natural to use expressions rather than constant values for

operands.

4.3.5 Arithmetic unary operators

These act on a single operand. They include:

-I- No effect

Negate the operand

:LSB: Take the least-significant byte of the operand
.MSB: Take the most-significant byte of the operand

! Set the most-significant bit of the operand's lesser byte

/ Swap bytes of operand

+ has no net effect on an expression, whereas - negates it. All the unary operators

have the highest precedence, so brackets may be needed:

- (addl + size) yields -addl - size
- addl + size yields -addl + size

:LSB: and :MSB: yield, respectively, the least significant and most significant bytes

of their operand. For example,

:LSB : SI 234 yields S34

:MSB; S1234 yields S12

Notice that :LSB: and :MSB: are equivalent to the following expressions:

: LSB: x = x :MOD: S100

= X :AND: SFF

:MSB : X - X / SI 00

21

In practice, of course, you would use expressions for :LSB: and ;MSB: to operate
upon, rather than constants. For example:

LOXIM :LSB: cmdlin

LOYIM :MSB: cmdLin

J SR OS c I i

! takes the least significant byte of the operand and sets its most significant bit.

The most significant byte is not affected by the operation. For example.

! SOI yields &81

! &0101 yields S0181

Again, you would use expressions in the operand, rather than constants, otherwise
you might as well do the calculations yourself.

/ swaps the order of the bytes attached to it. For example,

/ &1 234 yields &3412

/ &32 yields 83200

4.3.6 The :NOT} unary operator

The :NOT: operator takes a two byte operand and inverts the state of each bit. For

example,

:NOT: 8AA yields 8FF55

:NOT: SFFEE yields 811

4.3.7 The unary string operators

The last three operators we have to look at are :LEN:, :STR: and :CHR:.

:LEN: gives the number of characters in its string operand. For example,

:LEN: "ABC123" yields 6

:LEN: ("12" :CC: "32") yields 4

:STR: takes a two byte numeric operand and converts it into a string containing
the hexadecimal equivalent of the operand. For example,

SIR: 10 yields "QOOA"

STR: 8F yields "GOOF"

STR: 81 234 yields "1 234"

22

When it is used on logical operators, :STR: returns the two strings "T" and "F",

corresponding to TRUE and FALSE, For example,

:STR: (12 > 13) yields "F"

;STR: (12 < 13) yields "T"

:CHR: takes an arithmetic value and turns it into a siring without changing its value.

For example,

;CHR: &41 yields "A"

4.4 Operating system commands

You can include operating system commands in your source files. These must be

put in the label field, for example:

; Switch to serial printer for Listing

*FX5,2

It should be noted that it is not recommended that 'SPOOL be used to save

assembly listings to disc.

23

5 The MASM directives

At some stage you might want to tell the assembler to reserve some variable space,
end an assembly or perform some other action. You would do this through the
use of 'directives' in your source file and these are described below.

5.1 Declaring symbols (*)

Symbols are declared using the * directive. This has the following format:

<LabeL> * <expression>

The label should obey the rules for symbols, and the expression should yield a

numeric result in the range &0000 to &FFFF (in decimal, this can be taken to be

0 to 65535 for unsigned numbers, or -32768 to 32767 for signed numbers). Some
examples of this directive are given below:

oswrch * &FFEE

osbyte * &FFF4

tab L el * tab L e2 + &10

tabLe2 * S70

del * &7F

60 L n * "!"

Notice the different uses to which the symbols, or labels, will be put: the first two

are subroutine addresses which should be familiar to users of the BBC

Microcomputer.

Next, there are two addresses of tables; these could be fixed data areas that the

program should know about. The definition of table! usestable2 in its operand
expression. There is nothing wrong with this: it is known as a forward reference,

and we have come across these before in chapter 2, 'Developing programs with

the Second Processor'. Forward references will be 'resolved' during the first pass

of the assembler so that, at the start of the second pass, all label values should

be known. A consequence of this particular forward reference is that table! will

be assumed to be a two-byte (non-page zero) address, so an instruction like:

LDA table!

will use absolute addressing rather than zero page addressing. However,

LDA table2

24

will use zero page addressing, since table 2 is known to be less than &IOO during
the assembler's first pass. The only real significance of all this is that the program
will be slightly longer in its assembled form than if there were no forward references

at all.

Note, however, that 'nested' forward references cannot be resolved by MASM, for
example;

Labe L2 * labe 11

LabeLI * codel

codel ;Label position determined code assembly

which will give an 'Undefined symbol' error on pass2 through the first line.

The last two examples of the * directive define character constants. They give names
to two frequently-occurring values in the program, and can be used in circumstances

such as:

CMPIM eoln ;Endof linereached?

BEQ end In

CMPIM del ;Deletecharacter?

5.2 Defining a byte of data (=)

You will sometimes need to include some data bytes inside a program. To do this,

you would use the = directive. This has the format:

<label> = <expression>

where the label is optional.

One place where you might use this directive is when the 6502 BRK command
is being used to issue an error message (as is the convention with the BBC

Microcomputer). The BRK instruction is followed by an error string and this string

is terminated by a zero byte:

errorl BRK ;Anerror

= 254 ;Errornumber

= "Too many parameters" ;Error message

= 0 ;Errorterminator

error2 BRK ;Andsoon

As discussed above, the string wiil be converted into a sequence of bytes. In fact,

all of the data bytes above could be replaced be the one line:

= 254,"Too many parameters",0

25

Another use for the ' = ' directive is in setting up a table for use by the program.

The one below is a table of powers of two, located at 'powers':

powers = 1,2,4,8,16,32,64,128

LDX index

ORAAX powers

The fragment of code shows how the table might be used. Register X is loaded

from location 'index', which should contain a value between zero and seven, and

this is used to index the table of powers during the OR-ing operation.

5.3 Defining a byte pair (&)

Two bytes can be inserted into the program at once using the & directive. This

could be used, for example, when setting up a table of addresses in memory, such as:

jmptab & resetl jSetupjumptabLe

& reset2

& plot

& draw

& erase

The value of the label resetl will be placed at address jmptab in standard low-byte,
high-byte order. The next two bytes will contain the value of reset2, and so on.
Each time an is encountered, the program counter will be incremented by two.

The program which manipulates the jump table shown above might contain the

following instructions:

exec LDA action ; Get t he act i on code .

;Titnes two for indexing

;with the X register.

;Get jumpaddress lowbyte.

; Sa ve in j utnp vector.

; Same with high byte.

;Do the indirect Jump.

LOA action

ASLA

TAX

LDAAX J m p t a b

STA j mpvec

LDAAX J mpt ab+1

STA J mpvec + 1

JHI J m p V e c

26

Incidentally, there is a more efficient way of handling jump tables. You should break

the above table into two separate halves, one containing the low bytes and the other

the high bytes; each address should be one less than the location to be jumped

to. To use the table, you load the high byte and push it onto the stack, load the

low byte and push it onto the stack then do the branch using an RTS instruction.

This will save you two instructions.

If a single character is placed into two bytes using

the & directive, the second byte will be zero.

Thus,

5 "A"

6 "B"

will result in the four bytes 65,0,66 and 0 being inserted into the object code.

5.4 Reserving variable space @ and #)

The variable storage area is separate from the object program area. It has its own

origin, which is defined using the directive, and its own location counter, @.

This directive has the format:

<expression>

where <expression> is fully defined during the first pass of the assembler. If there

is no directive in a program, @ will be set to &0000. There can be as many

directives as you wish in a program, so data areas can be separated into logical

places in the memory.

To reserve space in the variable storage area, you use the U directive. Its format is:

<Label> U <expression>

Whenever this directive is encountered, the variable counter @ is incremented

by the appropriate amount and <label> is given the old value of For example,
after the sequence:

^ &2000

mesgl # &100
mesg2 # 24

the variable counter would contain &2118 because 280 (&1I8) bytes were

reserved by the directives, mesgl would be &2000 and mesg2 would be &2100.

27

An example of the use of the directive might be when space is needed for the
input buffer in an interactive program. For example:

A &2100 ;Im'tialise variable counter

osword * &FFF1

buf len * 40 ;buf fe r Iengt h

buffer n buflen ; reserve 40 bytes

pa rb I k n 5 ;5 bytes for parameter block

i nput LDAIH :LSB : buffe r ;Set up parameter

;block buffer

STA pa rb L k ;address

LDAIM :MSB;buffer

STA pa rb L k + 1

LDAIH buf Len ; Max . Line I engt h

STA pa rb I k + 2

LDAIM M tt ;Min. ASCII value

STA pa rb L k+3

LDAIM &FF ;Max. ASCII value

STA pa rb I k + 4

LDXIM :LSB:pa rb I k ;XY point to parblk

LDYIM :MSB : pa rb I k

LDAIM 0 ;Input is osword 0

JSR osword

Notice that the expression after the # may not contain forward references,

otherwise a phasing error will result. For example, the following code will generate

an error:

A

A * 1

An interesting alternative, which may be used if the parameter block will never

change throughout a program run, is to use ' = ' and to set it up:

pa rb L k & buffer

= buf ten

= " ",&FF

If this method is used, only the statements from the 'LDXIM' onwards are necessary

to perform the input.

28

You can, if you wish, preset store to zero using the % directive. This has the format:

% <ex p re s s i on>

This fills store with zeroes from the address in the program counter.

The areas of memory that are available for use in both processors, when defining
memory, are described in the table in the next section.

5.5 Defining the start of code (ORG and .)

The directive ORG is used to define the address at which assembled code will

originate. This has the format:

ORG <expression>

The expression must be fully defined at this point, so any symbols that it contains
should be introduced before the ORG directive. Examples of the directive are given
below:

ORG &1900 ;For disc

start * S1200 ;Change as appropriate

ORG start

Associated with the ORG directive is the program counter (.)• This marks the

address of the current point in the program (during assembly) and is initialised

by the ORG directive. Thus, after the statement

ORG &1900

using '.' in an expression will yield the number &1900. Whenever an instruction
is assembled, '.' is incremented so that it holds the address of the first byte in

the following instruction. For example, if the line

J S R i n i t

were to appear next, the program counter '.' would become &I903 since a JSR
instruction takes up three bytes.

There can be only one ORG per source file, so if the object code is to lie in several
discrete 'lumps', several files will need to be assembled separately with different
ORG lines. If an ORG is included, it must appear before any instructions which

increment the program counter (all 6502 instructions, & etc). Omitting ORG sets
'.' to &0000 initially.

29

You can put machine code in the following places in your BBC Microcomputer
system:

Processor Space available

BBC Model B Between OS High Water Mark and HIMEM

Between locations &900 and &AFF inclusive, if you are

not using the RS423 channel or sequential cassette I/O

Between locations &C00 and &CFF inclusive, if you do

not want to use programmed characters

6502 Second

Processor

Between locations &400 and &F7FF inclusive

If the machine code is to be called from, say, BASIC, it should not corrupt the

language workspace unless control will not be passed back.

5.6 Linking source files (LNK and <)

The problem of having only one ORG directive per file can be overcome by using
the LNK directive. Its format is as follows:

LNK <fi le name>

When this directive is encountered, MASM gives up assembling the current file
and restarts from the beginning of the new one. As the latter can contain its own

ORG directive, your object code can be split into as many separate parts as you
want. All of the source file after a LNK directive is ignored, but the symbols in
one file are accessible from another, so the following will work:

;This is in fi lel

symbl * symb2*2

ORG &1900

LNK file2

;Anything after this in filel wi ll be ignored

30

;This is in fiLe2

syinb2 * &1200

END

What happens here is that 'symbl' is defined by referring to a symbol in file2. This
forward reference will be resolved when file2 is linked in using the LNK directive,
so symbl would have the value &2400. Notice that there is no 'ORG' statement

in file2; in this case, its instructions will be assembled immediately after the last
one in filel, as if the files had actually been concatenated. When the 'END' directive

is encountered in file2, the assembly process will either start pass2 (if passl has
been completed without error) or it will be terminated; the assembler will not return

to the place just after the 'LNK' in filel and continue from there.

The file specified after a LNK is a string, of at most ten characters.

You can specify the source drive using the < directive. This has the format:

< <expression>

where <expression> is the source file drive code. Note that this directive applies

only when using the disc filing system; it is ignored by other systems.

5.7 Ending an assembly (END)

When MASM encounters the directive END in the operand field of a line, it either

starts the second pass (if it has completed the first pass without error) or it terminates

the assembly process. This directive is similar to the LNK directive in that any source

lines following it will be ignored by the assembler.

During the assembly of a file or sequence of files, there must be one END directive

somewhere, otherwise a 'No END' error will occur.

An END directive is not needed in a file which links with another one.

5.8 Defining page titles (TTL)

One of the MASM commands described in chapter 12, 'Using MASM to assemble

your programs', enables you to produce an assembler listing of your program
(assuming no errors were encountered). This listing is in a standard format, and
each page has a header or title. If you wish, you can alter the latter by using the
TTL directive. For example, after the line:

TTL SORT PACKAGE INPUT MODULE

has been assembled, all subsequent page headings will contain the string

31

SORT PACKAGE INPUT MODULE

There can be as many TTL directives in a program as you wish. However, if they
are too close together, not all of them will be used unless you explicitly start a
new page every time TTL is used (see the following section).

5.9 Setting print options (OPT)

You can control the assemble-time output using the OPT directive. This has the
following format:

OPT <expression>

where <expression> is treated as a four bit number. Bits 0 to 3 of this number have

the following meaning;

Bit Meaning when set

0 Tbrn printing ON

1 Tbrn printing OFF

2 Start a new page in the listing

3 Reset the line count in the listing

The first two options allow selective listing, provided the PRINT ON command

has been issued (see chapter 12, 'Using MASM to assemble your programs').

5.10 Using the special instruction set (CPU)

MASM will recognise the extra instructions which are provided by the CMOS version
of the 6502 processor; these include PHX and CLR. If you want to use these in
your programs you must first use the CPU directive. This has the format:

CPU <0 or 1>

CPU 0 (the default) will restrict MASM's knowledge to the standard 6502
instructions; CPU 1 will allow the extra CMOS instructions to be assembled without

errors being generated. Any CPU directive in your program must appear before
the first code-generating op-code is met. Thus, it is not possible to (or even very
likely that you would want to) change the instruction set half way through the
source code.

32

5.11 Changing object file drives (>)

You can assemble object files to a different drive using the > directive. This has
the format:

> <expression>

where <expression> is the object file drive code.

33

6 Program example

Now that you understand the basic components of the MASM assembly language
it is a good time to consolidate them in the form of a complete program example.
Clearly, it is not possible to include all of the features easily into one program,
but the following example shows many of them in use.

The program takes a file name that you input and produces a histogram which
shows the distribution of character codes in the file. The screen output is produced

in MODE 4.

; AFi leCharacterDistributionProgram

f

; ForBBCMicrocomputerHodelAorB

9

TTL Fi le Characteristics

: DefineOSAddressesetc.

oswrch ■k &FFEE

osa s c i * &FFE3

osword * &FFF1

OS f i nd * &FFCE

osbget * &FFD7

ze rop * &70 ;User zero page locations
buf I en * 10 ;Input buffer size
t abI en * &100 ;Tab Ie of counts
code ■k aiBOG ;Execution address
mi nasc * &2Q ;First printing char
maxasc * 87F ;Last Legal ASCII code
nopcd * SEA ;NOP instruction's code
mode * 22 ;VDU MODE byte
c Iscd * 12 ;CLS

p lot cd * 25 ;VDU PLOT byte

movecd * A ; Absolute move

drawcd * 1 ('Relative draw
A code-tablen -buf len

buffer buf Len ;Space for input buffer

table n tab I en ;One byte per ASCII code

ORG code

JMP count ; Start vector

34

pa rb I k S buffer ;Set up osword buffer

= buf Len

= m i n a s c

= maxasc

count JSR i n i t ;Zero the table

JSR i nput ; Get the file name

JSR open ; Try to find it

counti JSR osbget ;Read a byte

8CS eof ;We've reached the end

TAX ;INC the entry for char.

INCAX table

BNE counti ;Count is>SFF

eof JSR c lose ; Close the fi le

JSR p Lot ;PLot the results

RTS ; G 0 home

t

i ni t LOAIM 0 ;Put zeros in the table

TAX

i m" t L p STAAX table

DEX

BNE i n i 11 p

RTS

$

input JSR print ;Print prompt

- cIs cd ,"F i L e name ? "

NOP

LDAIM 0 ;Osword 0 is INPUT

LDXIM : LSB: parblk ;XY points to parblk

LDYIM :MSB: pa rb I k

JSR osword

RTS

f

print PLA ;This prints the string

STA zerop ; following the JSR print

PLA ; Store pointer to string

STA

LDYIH

26 rop+1

0

35

print1 INC ze rop /Next address

BNE p n' n t f

INC ze rop+1

p r i n t f LDAIY ze rop /Get a byte

CMPIM nopcd / Last byte?

BEQ prnret /Yes

JSR osas c i

JMP pri ntl /A Iways

prnret JHI ze rop

1

open LDAIM £40 /Osfind S40 i s OPENIN

LDXIM :LSB; buffer /XY points to fi le name

LDYIH :HSB: buffer

JSR 0 s f i n d

TAY / Get file hand I e in Y

BNE opnret /Fi le found

BRK /Otherwise cause error
s &86 /DFS Error number

= "Fi le not found" /Standard message

= 0 /End of error

opnret RTS

t

close LDAIM 0 /Osfind 0 = CLOSE#Y

JSR 0 s f i n d

RTS

plot LOAIM mode / Do MODE 4

JSR oswrch

LDAIH 4

JSR oswrch

JSR pri nt

= "Distribution of ASCII Codes",13
= "

1

1

1

1

1

1

1

1

1

1

t

1

1

1

1

1

NOP

LDXIM 0 /Do each entry in table

36

p Lot I p

low

high

LDAIM p lot cd ;PLOT 4,X*4,0

JSR oswrch

LDAIM movecd

JSR oswrch

TXA ;x

JSR low ;VDU A*4

TXA

JSR high ;VDU (A*4)/&100

LDAIM 0

<-
M

O

JSR oswrch

JSR oswrch

LDAIM p Lotcd ;PLOT 1 ,0, (tabLe?X>*4

JSR oswrch

LDAIM d rawed

JSR oswrch

LDAIM 0 ; DX=0

JSR oswrch

JSR oswrch

LOAAX table ;DY=(tabLe?X)*4

JSR Low

LDAAX table

JSR high

INX ;Next byte

BNE p Lot I p

RTS

ASLA ;Send Low byte of A*4 to

ASLA ; OSw rc h

JSR oswrch

RTS

ROLA ;Send hi byte of A*4 to

ROLA ; oswrch

ROLA

ANOIM 3

JSR oswrch

RTS

END

37

7 Using macros in your
programs

Quite often, the same pattern of instructions occurs several times in a program.
In such a situation, it would be useful if you could type just one line, then sit back

and have it expanded for you. For example, look at the following error handling
code:

erri BRK

&83

= "Too few arguments"

0

This type of code might occur at several points in a large program. Wouldn't it

be handy if you could type something like:

err1 ERROR &83 , "Too f ew a rgutnen t s"

every time such a piece of code was needed, and have the assembler expand it

for you?

This type of facility is called a macro, and it gives MASM its name: MASM is a macro

assembler.

Before you use a line such as:

err1 ERROR 883,"Too fewarguments"

in your program, the macro must be defined. Thus, the macro ERROR could be

defined as follows:

MACRO

SlabeL ERROR $errnum,$errstr

SlabeL BRK

= Serrnum

- $errst r

0

MEND

38

This is called the 'formal definition' of the macro, and the parameters $label,
Serrnum and Serrstr are called its 'formal parameters'. When you use the macro,
you will supply parameters such as

erri

"Too few arguments"

and their values will be substituted in place of the formal parameters.

There is a tendency to think of a macro definition as being the same as a subroutine

to which the program can JSR. This is wrong! When a subroutine is called, a single
instruction

JSR label

is assembled. However, when a macro is called, all the instructions in the macro's

body are assembled 'in line'. Thus, the liberal use of long macros can result in an

object file much larger than might be expected: this demands some caution on

your part.

You can probably appreciate now how the use of even a simple macro such as

ERROR can save much typing (and in the process reduce the number of typing

mistakes you might make).

Now that we have described the basic principles, we will look at macros in more

detail. Look at the line

erri ERROR &83,"Too few arguments"

The fields are similar to a normal line: first comes a label (optional, as usual), then

the opcode (the name of the macro in this case), then the operand. In fact, macros
can take several operands, or parameters; the one above has two.

Now look at the formal definition of this macro:

MACRO

Slabel ERROR $errnum,$errstr

$labeL BRK

= Serrnuffl

- Serrst r

0

MEND

The first line is the directive MACRO. This warns MASM that a macro definition

follows. The second line is the 'header line': it tells MASM the name of the macro

being defined (in this case 'ERROR'), and the names of the parameters it takes. These
parameter names are standard identifiers, but have the prefix $. They correspond
positionally to the parameters which are used when the macro is called.

39

Notice that '$ label' appears twice in succession. This is normal in a macro

definition: the first occurrence gives a name to the label used when the macro

is called, and immediately below it the name is actually used (substituted) in the
assembler code.

7.1 Default values in macros

There are 'extras' which are useful to know when using macros. First, it is possible

to initialise the formal parameters to a default value which will be used if the actual

parameter is ever omitted. For example, look at the following macro;

MACRO

Slabel INPUT $proiiipt = ?

$label JSR print

= Sprompt

NOP

MEND

This assembles the instructions needed to perform the equivalent of a BASIC

INPUT "Prompt",A$

statement, The prompt could be a parameter to the macro, but if you wanted, a
default '?' might be used instead.

In the definition shown above, the parameter Sprompt is given a default value of
"?" by the = part. Note the lack of spaces; this is important. Note also

the escape quote sequence """" that is used to obtain the string "?". The Sprompt
parameter will be used, subsequently, in setting up a call to the standard print routine
which was used in chapter 6, 'Program example'.

Now look at the following code which uses 'INPUT':

getstr INPUT "How many eggs? "

INPUT

The first call to INPUT provides an actual parameter, "How many eggs? ", and
this will be used in the macro's body. The second call, however, has the parameter
I fvertical bar), and this will be taken to mean 'use the default, if there is one'.

40

7.2 Missing parameters

If the macro has more than one parameter, those that are missing must be indicated
by putting commas in the calling line. For example, you might define the macro
'MACr as follows:

MACRO

SlabeL MAC1 $P1,$P2,$P3

MEND

and then call it in the following ways;

MAC1 1 ,2,3

MAC1 1 ,,

MAC1 ,1 ,

In the first call, all tnree parameters are present. In the second, only $P1 is set

up (to 1), and the third call only uses $P2. Any parameters which are missing will

be set to null, which effectively means that they disappear when the body of the

macro is assembled. Note that quotation marks should not be put round string
parameters when they are used in macro calling statements, otherwise a "lype
mismatch' error will be generated.

7.3 Parameter names

Since $ marks the start of a parameter name, it is vital that MASM can distinguish

the actual character Where confusion may arise, the 'escape sequence' $$ can

be used to denote a single $. Look at the following macro, for example:

MACRO

SlabeL PRICE Scost

= "Theprice isSSScost."

MEND

Here, the first two symbols are replaced by a single currency symbol. The

last marks the start of the parameter name 'Scost', which will be substituted

as usual.

41

This example illustrates another property of macro parameters: they are substituted
wherever they occur in the macro's body. The example below shows a macro which
produces instructions that will swap either the X or Y register with a specified
memory location:

MACRO

SLabel SWAP $reg,$mem

$Label PHA ;Save A

LDA Smem ; Get Smem

STSreg Smem ;Save $reg in $metn

TASreg ;Put $mem in $reg

PLA ;RestoreA

MEND

Some code which uses this macro is shown below:

start SWAP X,&1000

SWAP Y,&1001

Wherever $reg appears in the body of this macro, it is changed to X or Y. This

applies within string constants (otherwise the $ example above wouldn't work
properly); it also applies within comments, if some substitution has occurred earlier
in the line.

If you need to use a macro parameter name immediately before some other

identifier, confusion could arise. Consider this macro definition, for example:

MACRO

Slabel GETPUT Smode

SLabel SmodeA ; Load or Store A

MEND

The idea here is that a call to GETPUT will have either 'LD' or 'ST' as a parameter
and, after substitution, the third line of the macro definition would have either

'LDA' or 'STA' as its operand. However, 'SmodeA' is a perfectly valid parameter name,

and MASM always tries to find the longest name possible. Thus, instead of
recognising the parameter 'Smode' followed by the text 'A, MASM will interpret
the third line as a single object, namely, the parameter 'SmodeA'. As no such

parameter exists, an error will occur.

42

To avoid this difficulty, you can insert a point '.' after the parameter name, to

explicitly terminate it. In the last example, the third line should now be:

$Label Smode.A ;Load or Store A

This time, MASM will see the end of the parameter and do a proper substitution.
The '.' will then disappear.

7.4 Nesting macro calls

Another property of macros is that calls to them can be nested; one macro's

definition can contain a reference to another macro. Suppose, for example, that

there is a macro called PLOT defined somewhere in a program, This macro could

be used by other macros as follows:

MACRO

SLabeL MOVE $x,$y

SLabeL PLOT 4,$x,$y

MEND

MACRO

Stabel DRAW $x,$y

SLabel PLOT 5,$x,$y

MEND

MOVE 0,0

The line 'MOVE 0,0' will lead indirectly to the call;

PLOT 4,0,0

and this will result in the generation of actual instructions. In some circumstances,
it might even call yet another macro.

43

Ii is perfectly correct to have macro definitions without parameters, for example:

MACRO

$label SAVER ;Save the registers

Slabel PHP

PHA

TYA

PHA

TXA

PHA

MEND

MACRO

Slabel RESTOR ;Restore the registers

PLA

TAX

PLA

TAY

PHA

PLP

MEND

entry SAVER

end RESTOR

7.5 Macro libraries

You can keep a number of macros in a file and have them included in your program
source by MASM itself. This macro library file can only contain macro definitions,

comments, a LNK directive or an END directive.

When MASM is run with the ASM command, it gives you the prompt:

Macro I i brary;

and you can then specify the name of the file containing your macros.

If you want to include macros from a number of files you can link them together
using the LNK directive described in section 5.6. MASM will search the files until
a macro file with END is encountered.

44

8 Conditional assembly

The C and] directives enable a section of a source file to be assembled only if

a certain condition is true. Their use applies particularly to macro definitions,

although they can, in fact, be used anywhere in the source listing.

The C directive is known as 'IF' and the directive as 'END IF'. Look at the

following code:

KLogical expression>

<conditional instructions to be assembLed>

]

<rest of instruetions>

If the <logical expression> yields a true result then the conditional instructions
will be assembled. Once the] is encountered, assembly continues as normal.

An example might make things clearer. The macro definition below provides a
selective version of SAVER that was described in the last chapter:

MACRO

Slabel SAVE $p1.$p2,$p3

SlabeL

["$p1"<>"" ;if $p1 contains register

STSpl T£MP$p1 ;store in corn. temp, store

3

["$p2"<>"" ;simi LarIy f 0r $p2

ST$p2 TEMP$p2

3

C "$p3"<>"" ;fi na LLy $p3

ST$p3 T£HP$p3

3

MEND

SAVE A,,

SAVE X,A.Y

SAVE Y,A,,

END

45

The action of the macro is simple. There are three conditional tests, each testing

one of the parameters. If any parameter contains the name of the A, X or Y registers
then the contents of that register are stored in the memory location with label TEMP

followed by the name of that register. For example, the contents of the Accumulator
are stored in TEMPA.

Note that the parameters may be in any order. For example, if the call to SAVE is:

SAVE A,X,

then $P1 will have the value A, $P2 the value X and $P3 will have no value. Thus

the test:

["Spv'O""

will become:

["A"<>""

when the parameters are substituted. This is obviously a true condition, so the

next line will be assembled as:

STA TEMPA ;store in corr. temp, store

The next test will cause:

SIX TEMPX

to be assembled, and the third test will become:

C <>.111

which is clearly false, so the next line will not be assembled.

When your source program is assembled, the code ignored by your conditional
assembly directives will be suppressed. If you want to list this code on assembly
you can do so using the MASM TERSE command (see section 12.1.10).

There is an enhancement to the IF directive in the shape of !, or ELSE. With this

new directive it is possible to make MASM take one of two paths that are dependent
upon the result of the logical expression. The enhanced form of the IF directive

becomes:

46

C <L09ical expression>

;Do these if <logical expression> is true

;Otherwise, do these

].

;Carry on assembling

This construct is related to the 'IF ... THEN ... ELSE structure of some high-

level languages. It is, of course, perfectly acceptable to have labels in the conditional

parts of a source file. They will be assigned a value if they lie in the part which
is actually assembled, otherwise they will be ignored.

The parts that are being conditionally assembled may themselves contain C, ! and
] directives. In other words, conditionals may be nested. A skeletal example is given

below:

[expri

[expr2

jAssembled if expri :LAND: expr2

;AssembLed if expri :LAND: : LNOT: expr2

]

;Assembled if expri

;Assembled if ;LNOT: expri

47

8.1 Logical expressions

What constitutes a <logicaI expression> will now be described. You have already
come across a number of them, for example:

ISP" = "P"

The ' =' symbol above is a relational operator and logical expressions are formed
by using these. MASM provides a whole range of relational operators:

Operator Meaning

equal to

> greater than

< less than

> = greater than or equal to
< = less than or equal to

<> or /= not equal to

All of these take two operands which can be either string or arithmetic expressions.
For arithmetic expressions, the meanings of the relational operators are as might

be expected:

12+4 > 10 yields TRUE

42 <> 42 yields FALSE

and so on. Of course, actual occurrences of these operators would involve non-

constant operands.

Using strings with relational expressions is a little different and great care should

be taken since the results of relational tests are not those that would be obtained

in, for example, BASIC. The two cases of <> and = are fairly straightforward:

"A" :CC: "BC" = "ABC" yields TRUE

"A" = "B" yields FALSE

"XYZ" <> "XY" yields TRUE

So two strings are only counted as equal if they are exactly the same in all characters.

For > = and < = the string interpretations read:

si > = s2 if s2 is a leading substring of si

si < = s2 if si is a leading substring of s2

48

where si and s2 are string expressions, si is a leading substring of s2 if the first
(:LEN; sl) characters of s2 are the same as si. In BASIC, this could be expressed
as follows:

IF INSTR(s1$,s2$>=1 THEN REM s2$ is a leading substring of s1$

Here are some examples of the use of these operators with strings:

> A I
I

"A"yields
TRUE

ttit
<

= "A"sdleiy
TRUE

"A"
<

="B" sdleiy
FALSE

"ABC"
>="AB" sdleiy
TRUE

The > and < operators are the same, except that the case when the operands are

equal yields 'FALSE'. This is shown in the following BASIC example:

IF INSTR(s1$,s2$)=1 AND s1$<>s2$ THEN REM s2$ < s1$

Here are some examples of these operators;

"A"

"A"

M II

A" < "A" yields FALSE

A" < "AB" yields TRUE

< "A" yields TRUE

"B" > "A" yields FALSE

Logical expressions formed by using the relational operators can be combined with

the Boolean operators :LOR:, :LEOR:, :LAND: and :LNOT:. These are the same as

the binary logical operators ;OR:, etc., but with the prefix L, which indicates that
they are used with logical values rather than numbers. The actions of these operators
are as expected, that is.

LI

LI

LI

LAND: L2 is TRUE iff LI AND L2 are TRUE

LOR: L2 is TRUE if LI OR L2 is TRUE

LEOR: L2 is TRUE if either, but not both,

of LI or L2 is TRUE

: LNOT : L1 is TRUE iff LI is FALSE

(iff being 'if and only if).

The order of precedence of these operators is such that brackets are rarely used
in conditional expressions; they are lower than the relational operators, which in
turn have lower precendence than the arithmetic operators, so a complex expression
such as:

a+b <= add1 :LAND: addl <> start

has the bracketed meaning of

<(a+b) <=add1) :LAND: (add1 <> start)

49

The :LNOT: operator has very high precedence, in common with the other unary
operators, such as -(unary minus) and iNOT:

8.2 Global and local variables

The only symbols discussed so far have had a fixed value which is defined at some
time during the first pass of MASM through the source file. The exception to this
rule is the case of macro parameters, which take on the values assigned to them
at a given call of the macro. It is possible, however, for you to define variable symbols
whose values can be updated throughout the assembly process. These come in
two varieties: local and global variables. Local variables are accessible only within
the macro definition to which they belong, whereas global variables have the whole

of the source file for their scope.

Before variables can be used they must be declared. This is done using one of the

following directives:

Directive Meaning

GBLA Define a Global Arithmetic Variable

GBLL Define a Global Logical Variable

GBLS Define a Global String Variable

LCLA Define a Local Arithmetic Variable

LCLL Defme a Local Logical Variable

LCLS Define a Local String Variable

If these directives are classed as <directive>, then the general form of a variable

declaration is as follows:

<directive> <variable name>

where <variable name> obeys the same rules as macro parameters. The first three

directives shown above are used in the main part of the source file and the last

three are used within macro definitions. Some examples are shown below:

GBLA Susage ;A global arithmetic variable

GBLL $flag ;A global logical variable

MACRO

FRED

LCLS Sstr I'Alocalstringvariable

MEND

50

When a variable is defined, it is set to the default value for that type. More precisely,
arithmetic variables are set to zero, logical ones to FALSE and strings to null. To

give a variable a value, one of the SET directives must be used. There is one of

these for each type of variable and their format is as follows:

<variable name> <SET directive> <expression>

The SET directives are SETA, SETL and SETS for arithmetic, logical and string

variables respectively. Examples of them are given below:

Scount SETA $count+1

Smodelb SETL metnsze = &8000

Serrmsg SETS "MACRO Parameters wrong"

Once it has been given a value, a variable can be used in the appropriate type of

expression, just like a normal symbol. The following example shows how the last

three variables could be used:

space # $count+1

[Smodelb

;These wi II be assembled if Smodelb is TRUE

;Otherwise, these will be assembled

]

mesg = "Serrmsg"

Notice that string variables behave similarly to macro parameters (see Appendix
A for an explanation of the exact mechanism used for substitution). The substitution
is a literal one into the source text, so that the third example above needs the

quotesC") around "Serrmsg". The alternative would be to insen the quotes when
the string is defined, and this method is shown below:

Serrmsg SETS """MACRO Parameters wrong"""

mesg = Serrmsg

51

This use of variables means that you could say:

Slabel SETS "labi"

Slabel LDAIH &FF

and this would be assembled as follows:

Lab1 LDAIM &FF

Since macros may be called from a number of places in the source program, it

is important that each call creates unique labels. Consider the macro definition
given below, together with some calls to it:

MACRO

Slabel INC2 Saddr

SLabel INC Saddr

BNE Lab1

INC Saddr+1

Lab1 MEND

INC2 &1200

INC2 counti

Here, the first call of INC2 will create a label 'labl' which will correctly mark the
next point in the program. However, the second call to INC2 will also try to create

this symbol, so MASM will produce a 'Symbol already defined' error. One way

around this problem is to use a global variable which can be incremented every
time the macro is used, thus giving a series of unique labels. In fact, two variables

have to be used as you can't do arithmetic on string variables. In the listing below,
'Scount' is a global arithmetic variable which is incremented by the macro INC2.
This macro contains a local string variable 'Slab' whose value is obtained from

'Scount'.

52

GBLA Scount

$count SETAO ;Not necessary

MACRO

Slabel INC2 Saddr

LCLS Slab

Slabel INC Saddr

Slab SETS "inc":CC: (:STR: Scount

SLabel INC Saddr

BNE Slab

INC Saddr+1

$Lab

RIGHT: 3)

;LocaI label

$countSETA$count+1 ;Incretnent counter

MEND

update INC2 count

INC2 &70

This time, the label 'Slab' is derived from a complex-looking expression. It is made

up from the letters 'inc', followed by the rightmost three characters from the

conversion of 'Scount' into a hex string. Thus, the first expansion of INC2 would

produce the label 'incOOO', the next one 'incOOT, and so on. The eleventh one would

be 'incOOA', not 'incOlO',

8.3 Routines and local labels

In section 8,2, a global variable was used to generate a unique label for use within

the body of the macro definition. It is possible, however, to specify explicitly the
scope of certain labels. These labels are numbers in the range zero to 99, and they
belong to a particular routine as defined by the ROUT directive. For example, look

at the following code:

mult

00

01

d i V

ROUT

IDA

BEQ

opi

#F01mult

ROLA

BCC #B00mu 11

RTS

ROUT

;8*8 bit multiply

; Get first ope rand

;Sk i p if t i mes 0

;Ti mes two

;And return

53

Here, the routine 'mult' is defined as the instructions which lie between the two

ROUT directives. Any two-digit labels in this range will be treated as being local

to 'mult', A reference to a local label is of the form:

#<opt i ons>< Labe L numXroutine name>

and two examples are given in the code above, namely '#F01mult' and 'SBOOmult'.

The <routine name> part is optional, and is simply the name of the routine to

which the specified label belongs. <label num> is a two-digit number, and

<options> is a sequence of zero to two characters which tell MASM where to look
for the label. It is made up of two parts and the first character is defined as follows:

Character Meaning

Nothing

B

F

Look backwards or forwards for the label

Look Backwards only for the label

Look Forwards only for the label

The last character is defined as follows;

Character Meaning

Nothing

A

T

Look at this macro ievel and above

(nearer to the source levei)

Look at any macro level

Look at this macro level only

Usually, the default cases will suffice when specifying a label, so you may find
yourself using things like:

JMP #12name

quite frequently. Note that local labels and routines can be used anywhere, not
just within macro definitions.

54

Note, also, that it is possible to doubly define local labels without MASM generating
an error message. For example:

ZAP ROUT

01 LDAIM 0

01 LOAIM 0

Unless this is done deliberately and with great care a number of errors will be

caused.

55

9 Repetitive assembly

9.1 The WHILE...WEND loop

Given the ability to vary the value of symbols throughout an assembly, it becomes
possible to implement some kind of 'looping' facility; in other words, it is possible
for you to assemble a group of instructions repeatedly until some condition
becomes false, MASM achieves this with the two directives WHILE and WEND.

The format of the loop is:

WHILE <IogicaL expression>

;Assemble these instructions

WEND ;Marks the end of the loop

;Carry on assembling as usual.

WHILE...WEND loops can appear anywhere in a source program, not just within

a macro definition. It is usually convenient, however, to put such loops within a

macro, rather than embed them in the main program. Below is an example of a
WHILE...WEND loop. It emulates part of the MOS clear screen routine in that it

generates instructions to store the contents of the accumulator in 80 pages of

memory, This memory is indexed by the X register.

ramtop * &8000

onek * 1024

MACRO

Slabel CLSMAC

Slabel LOLA Saddr

Saddr SETA raintop-20*onek

WHILE Saddr <> ramtop

STAAX Saddr

Saddr SETA Saddr * &100

WEND

MEND

56

When called, CLSMAC will generate 80 STAAX instructions and this method is

obviously much less error-prone than typing in all of the lines separately. Notice
that as the test for the WHILE condition is made at the top of the loop, there is
a possibility that no instructions at all will be generated; in other words, there is

a possibility that the body of the loop will never be reached. A contrived example

is given below:

WHILE 1 > 2

In this example, one is never going to be greater than two, so all of the loop's

instructions will simply be skipped.

Another application of the WHILE...WEND loop is to generate a number of

instructions which varies according to the value of some macro parameter. For

example, consider a multiple precision rotation to the right:

MACRO

SLabeL RORN $addr,$bytes=2

CLC

$LabeL LOLA Scount

Scount SETA 0

WHILE Scount <> Sbytes

ROR Saddr+Scount

Scount SETA Scount+1

WEND

MEND

RORN &1200.4

RORN zerop.

The first example call to RORN rotates the four bytes from &1200 to &1203 right
by one bit; the second one rotates the two bytes 'zerop' and 'zerop-t-1' by one bit.
Notice the use of the default parameter in the second example.

57

9.2 The MEXIT directive

A further directive which may appear in a macro definition is MEXIT. This causes

an exit to be made from the current macro as if the MEND instruction had been

encountered. It can be used to terminate WHILE loops or IPs if some abnormality

has occurred. An example of its use is given below:

MACRO

Slabel PRINT Sstring

SLabel L "$string"="" ;NuLL string?

MEXIT ;Yes, end

]

JSR prints ;Otherwisedo

= "Sstring" ;macro

NOP

MEND ;And termi nate

PRINT Hello there ; No quot es needed

PRINT ;Thi s wi ll do MEXIT

Note that MEXIT is the only way to leave a macro definition from within an IF

(C) or WHILE. You must not use MEND within either of these constructs.

58

10 Trapping errors in
source code

It is good practice when developing programs to check macro parameters. For

example, the coding in section 9.2 where PRINT was called with a null string could
be treated as an error, if required. To aid error trapping, the ASSERT directive is

provided and this can be used either inside or outside macros. It has the format:

ASSERT <logica I expression>

If the <logical expression> yields a TRUE result, nothing happens. A FALSE result,
however, will cause MASM to stop what it is doing and return control to the

command level. Thus, the macro PRINT might have the line:

ASSERT :LEN; "Sstring" > 0

When this line is met during the second invocation of PRINT in section 9.2, the

logical expression would be FALSE (since :LEN: "" is zero), so assembly would

terminate with an Assert failed at line XXXX' error, MASM's check on the logical

expression is made on the second pass only, so any symbol can be used in the
expression, no matter where it is defined in the program.

A similar device is the ! directive. This has the following format:

! <an'thmetic exp res s i on> , <st ri ng>

During the each pass of the assembly, the arithmetic expression item is evaluated.
If it is zero, nothing happens. If, however, the item yields a non-zero result on the
first pass, the string will be printed out along with the message 'stopped at line
XXXX', and assembly will stop. During the second pass, the string will be printed,
but assembly will not stop. Because the expression is evaluated on both passes,
it must not contain any forward references.

59

11 Creating source files
using EDIT

This chapter describes EDIT, the program editor which was introduced briefly in
chapter 3. 'Developing a simple MASM program'. As noted earlier, the function key
card should be placed above the function keys when using EDIT, since they are

used a great deal.

11.1 Entering EDIT

EDIT is called by issuing the operating system command 'EDIT. So, in order to

use the editor, you must be in a situation where issuing a command line is possible.

This could be, for example, in the command mode of MASM or one of the cross-

referencers, or from within BASIC. Note that some ROM utilities respond to 'EDIT

and if this happens it will be necessary to type */EDIT to load the editor from disc.

It is also possible to load a file to be EDITed at the same time as calling EDIT by

entering 'EDIT <filename> or */EDIT <filename>.

When entered, EDIT selects screen mode 0 as this gives the maximum number

of characters that the BBC Microcomputer can display (80 columns by 32 lines).

There is no 'memory overhead' associated with the screen mode when using EDIT

as it only runs on the Second Processor. The capacity for text is over 47000

characters, regardless of the mode.

11.2 Adding text

When the EDIT command is given, the screen clears apart from the very top and

bottom lines. On the top line is an inverse video * which marks the end of text.

The fact that it is at the start of the page implies that there is no text being edited
currently, just below the marker is the flashing cursor. This always marks where

characters will be put into the text.

The bottom line of the screen contains the 'status line'. This gives you information
about various modes of operation which are described later.

60

To add text, simply type it in. The end of text marker will be moved along to make
room for the new text. To illustrate some of the features of the editor, the entry
of the simple MASM program listed below will be described in detail:

oswrch * &FFE3

ORG &1B00

cset LDXIM " "

loop TXA

JSR oswrch

INX

CPXIH

BNE loop

RTS

END

First type the top line exactly as shown above (the exact number of spaces is not
essential, but at least one must be used in each case). If you make a mistake, press
the DELETE key to erase the incorrect characters. Notice that pressing DELETE
removes the character before the flashing cursor. An alternative is to press COPY

to delete the character at the cursor position. When you reach the end of the line,

press RETURN. This will move the cursor to the start of the next line.

The second line of text is indented. To achieve this, simply press the Space Bar

the correct number of times. It is also possible to use the right-arrow cursor key,

though pressing the Space Bar is probably more convenient.

The third line of the program is blank. Producing blank lines simply involves

pressing RETURN if the cursor is at the start of the line. In this example, it means

pressing RETURN twice after the '0' of line two instead of just once.

Line four can be typed as normal, as can line five. The next few line are indented

and, to save typing here, the TAB key can be used.

The TAB key can be used in two ways: by default it uses tab stops which are eight

characters apart. However, we need the other mode which is accessed by pressing

SHIFT TAB. TAB then acts as described below. To return to the default mode SHIFT

TAB should be pressed again.

The first line ('JSR oswrch') should be typed as normal, pressing the Space Bar

to achieve the indentation. When you press RETURN to get on to the next line,

instead of typing spaces, press TAB instead. This moves the cursor so that it is
underneath the 'J' of the line above. In this mode, TAB moves the cursor so that
it is underneath the first non-space character of the line above. It is useful, therefore,
when many lines need to be indented by the same amount.

61

You can now type in the remaining lines, using TAB in the same way. At this stage,
assuming no errors have been made, the file could be assembled, as described in
chapter 12, 'Using MASM to assemble your programs'.

11.3 Using the cursor keys

Now that we have some text to manipulate, you can start using the various facilities
of EDIT. First of all, you need to be able to move around the screen, changing
various parts of the text. To do this, the four cursor (arrow) keys are used. If you
press one of these keys, the cursor moves one space in the direction indicated,
that is one character to the left or right for the left- and right-arrow keys respectively,

and one line up or down for the up- and down-arrow keys (scrolling the screen
when the cursor gets near the top or bottom).

As an example, change the label 'cset' on line four above to 'charset'. To do this,

use the arrow keys to position the cursor on the's' of 'cset'. Then type the extra

characters 'h', 'a' and 'r'. The text after the cursor will be shifted to the right to

make room for the new text. This happens when the editor is in insert mode. There

is another mode called overtype mode which is described in section 11.8.

Deleting small sections of text is similarly easy. Move the cursor to the character

after the item to be deleted, then press DELETE the appropriate number of times.

Again, the text will move, this time to the left. Notice that if you move the cursor

to the beginning of a line and press DELETE, the current line will join up with

the one above it. This happens because you have deleted the (usually invisible)

carriage-return character which separates the two lines.

The cursor keys can be used in combination with SHIFT or CTRL to make more

drastic movements around the screen. If SHIFT is pressed with the up or down

keys, the text will scroll up or down by a 'page'. The length of a page depends

upon the screen mode in use. This facility is useful for moving rapidly over a large
region of text. SHIFT pressed with the left and right keys moves the cursor

backwards and forwards by one word (a word in this context is a sequence of

alphanumeric (but not_) characters separated by groups of any other characters).

The CTRL key can be used with cursor up or cursor down to reach the top or

bottom of the text, respectively. Pressing CTRL with cursor left or right moves

the cursor to the start and end of the current line respectively.

11.4 The cursor edit mode

The use of cursor editing with the COPY key in the editor is slightly different to

its use in, say MASM command mode. Normally, to copy some text when typing
in a MASM command, the arrow keys are used to move the copy cursor to the

required part of the screen, then COPY is pressed to do the copying. Copy mode

ends when RETURN is pressed.

62

In the editor, the only difference is that instead of one of the cursor keys initiating
copy mode, SHIFT COPY must be pressed. The cursor keys can then be used to
move to the text to be copied, and COPY can be pressed the appropriate number
of times. Copy mode is terminated when ESCAPE (rather than RETURN) is pressed.

This technique is very versatile as it means that the cursor keys may be used to
move around the screen when inserting or deleting text, and also to move the copy
cursor around as usual. The obvious application of copying is to duplicate identical
or nearly identical lines.

When in cursor edit mode, the status line reflects this by containing 'Cursor
Editing' in inverse video,

11.5 The function keys

It can be seen that quite a lot of editing may be achieved simply by using the keys

discussed so far. However, EDIT provides functions which makes the manipulation

of program text even easier. These functions are accessed by using the red function

keys at the top of the keyboard. The function key card gives some clues as to how

they are used and the following text describes the functions in detail.

As some of the keys provide more than one function, it is sometimes necessary

to press SHIFT or CTRL at the same time as the key itself. For example, pressing

function key 0 searches for a given line number, whereas SHIFT function key 0

switches the display of carriage-returns on and off. In the text below, 'function

key 'n' will be abbreviated to 'fn', where 'n' is 0 to 9.

If you want to type a string of characters several times, you can do so using the
function keys. Pressing the function keys together with CTRL and SHIFT enables
the soft key strings to be accessed. Thus, if you type the command "KEYO LDAIM'
from command mode, pressing CTRL SHIFT fO in the editor will produce this string.
Note, however, that this is not the default situation and the OS command *FX228,I
must be issued to enable strings to be generated in this way.

11.6 Changing display mode

As mentioned above, the editor uses MODE 0 when it is first called. The command
SHIFT f5 is used to change mode. When it is issued the prompt:

New mode:

is given, to which you should reply with a digit in the range 0-7 followed by
RETURN, There is a slight difference in the way that characters are displayed in
MODE 7; for example, markers are shown as inverse video digits in the soft modes
(0-6) but as plain white 'blobs' in MODE 7, As mentioned above, using low memory-
cost modes gives no advantage when using EDIT,

63

An alternative to specifying 0-7 for the mode is to type the letter 'D' instead. This
causes EDIT to use its 'descriptive mode', which is MODE 0, but with a great deal
of help information displayed at the top of the screen. For example, a layout of
the function keys is shown together with their actions, and whenever a function
key is pressed, detailed information about what it does is shown in a window.

Descriptive mode is very useful when you are becoming familiar with the editor
and can also serve as a reminder later on, when you have forgotten a particular

detail. There are, however, a couple of disadvantages with this mode, One of these

is the lack of space for text on the screen, and the other is that the screen scrolls
more slowly than usual. Nevertheless, descriptive mode should make the process
of learning a new editor easier than it might otherwise be.

A condensed version of mode 'D' is mode 'K', which only prints the key layout

without the other help information.

11.7 Saving, loading and inserting text

It is obviously useful to be able to save and load files from the editor. There are

three commands for manipulating files from within EDIT (pressing a function key

will be treated as issuing a command in this chapter). The commands are:

f2 - Load the text from a file

f3 - Save text to a file

SHIFT f2 - Insert text from a file.

In addition, there are

f9 - Restore old text

SHIFT f9 - Delete the text being edited

Pressing f3 produces the prompt:

Type fi Lename to save:

In response you should give the name of the file into which the text should be

saved. If an error occurs, it is reported and you will be prompted to press the
ESCAPE key to continue.

If you press RETURN instead of typing a filename, the editor will look for a name

at the start of the text. The filename should be preceded by the '>' character and

terminated by a space or carriage-return. The '>' should occur within the first 128

characters of the text. In MASM programs, the name should be in a comment so
that the assembler doesn't try to interpret it as part of the program:

; >test

0R6 &1B00

64

This will make the editor use the filename 'test' whenever RETURN is pressed in
response to a filename prompt.

Another alternative is to press COPY then RETURN, This will use the 'current'

filename, ie the name last used in a load, save or insert command. The current

filename is updated every time one of these commands is executed.

If you wish, you can save only part of the file you are editing. The method you
should use is to put a marker at the start of the portion of text to be saved, move

the cursor to the end of the section, and then use f3 as described above. The setting
and deletion of markers is described in section 11.10.

Text is loaded using the command f2. The prompt this time is:

Type fi lename to load;

This command wipes out any text already in the machine. Errors are reported in

the manner described above. Additionally, if the file is too large to read into the

computer, the error 'File too long' is given (unless the Cassette Filing System is

in use). As with save, RETURN and COPY RETURN may be used instead of a proper

filename.

SHIFT f2 inserts a file into a particular place in the text. Its prompt is:

Type fi lename to insert:

to which you should reply with a filename, RETURN or COPY RETURN. The file
will be read into the text at the current cursor position. Text before the cursor

will be unaffected: characters at and after the cursor will be shifted up in order

to make room for the file, and the cursor will be placed at the start of the text

just read in. This command is useful for inserting frequently-used procedures into
programs.

Note that when text has been inserted using SHIFT f2, the current filename will

become the name of the file that is inserted, not that already in the machine. Hence,

COPY RETURN should be used with care in these circumstances.

Pressing SHIFT f9 causes a prompt to the effect that all the current text will be
deleted if any key is pressed. If no key is pressed within a short time (about ten
seconds), or if ESCAPE is pressed, then the previous editing mode is resumed.
SHIFT f9 is fairly drastic, so the command should obviously be used with some
caution. If you press SHIFT f9 (and another key) or BREAK by mistake, you can
restore the text using f9. Using SHIFT f9 twice in succession deletes the text
irretrievably.

65

11.8 Insert and overtype modes

So far, only insert mode has been discussed. When the editor is first called, text
typed at the keyboard is inserted into the file by shifting everything after the cursor
to the right. In order to replace a word, it must be deleted and then retyped. It
is sometimes more convenient to be able to replace characters simply by overwriting
them.

In EDIT, you can switch between insert and overtype mode by pressing SHIFT
fl. This key acts as a 'toggle' so that if you are in overtype mode, pressing it will
put you in insert mode, and if you are in insert mode, pressing SHIFT fl will put
you in overtype mode.

The bottom (status) line of the display shows the current typing mode as ' I n s e r t'
or 'Ove r'. Try pressing SHIFT fl several times to see the effect on the status line.

To see how overtype mode differs from insert mode, press SHIFT fl until the status
line has 'Over' in it and move the cursor to the start of a line already containing

some text. Now start to type. The line will be overwritten by what you typed rather

than be moved in order to make room for it.

The way in which carriage-return characters are treated differs between insert and
overtype modes. In insert mode, as we have seen, you can delete a carriage-return

by moving the cursor to the start of the previous line and pressing DELETE. You
may have also discovered that you can split a line into two by moving the cursor

to where you want the split to appear and pressing RETURN.

In overtype mode, neither of the above actions is possible. Pressing RETURN merely

moves the cursor to the start of the next line. Pressing DELETE at the start of the

line will move the cursor up to the end of the next line, but will not delete the

carriage-return itself. Thus, you cannot split or join lines in overtype mode. The

COPY key and the function keys work in overtype mode exactly as in insert mode.

11.9 Special characters in the text

You can type control characters in the same way as any other character. To
distinguish them, they are shown in inverse video in MODEs 0 to 6 and as white

'blobs' in MODE 7. ESCAPE is ignored when typing in text and is used to abort

commands such as 'find and replace'.

A special inverse character is RETURN, which is the same as CTRL M. Since a

RETURN character appears on the end of every line, showing it as an inverse 'M'

would be very distracting. Normally, then, EDIT does not show carriage-returns.
However, pressing SHIFT fO will make them visible. Pressing it a second time will

render the inverse 'M's invisible again, so it acts as a toggle (like SHIFT fl for
insert/overtype mode).

66

By making the RETURNS visible, you can see if there are any unnecessary trailing
blanks on a line (these can occur when the cursor is past the end of the normal
text and the Space Bar is pressed inadvertently).

The character DELETE (whose code is 127) is shown as a small white rectangle
in all modes. Characters with codes greater than 127 are displayed as normal (so
user-defined characters and MODE 7 colour codes have their usual effect). Howevei;
characters with codes between 127 and 255 may only be entered from the keyboard
using •FX228 and SHIFT CTRL function keys (see the BBC Microcomputer System

User Guide for details). Note that the codes between 128 and 192 are used by the
function keys and so should not be entered except as described in section 11.13

'Using command macros'.

11.10 Dealing with blocks of text

There are five operations which can be performed on a block of text. These are:

SHIFT f8 - Delete a block of text

f7 - Copy a block of text

SHIFT f7 - Move a block of text

f3 - Save text to a file (described in section 11.7)

f5 - Global find & replace (described in section 11.12.3)

In addition, two commands are needed to set and reset markers, which are used

in conjunction with the above commands. These are:

f6 - Set marker

SHIFT f6 - Clear marker(s)

11.10.1 Deleting a block

To delete a block of text, two 'delimiters' are needed, one at the start and one at

the end of block. One of the delimiters is the cursor and the other .is a marker.

Consider the text:

The quick

brown fox] utnps

over the

lazy dog.

Suppose you want to delete the middle two lines. This is accomplished thus: move
the cursor to the 'b' in 'brown'. Press f6. This sets marker 1 (an inverse T), which

will act as the first delimiter, at the cursor position. Then move the cursor to the
T in 'lazy' and press SHIFT f8. This will delete the required two lines.

67

Notice the exact characters which are deleted: from the first delimiter inclusive

to the last delimiter exclusive, so the first delimiter should be placed at the first

character in the block and the second delimiter should be just after the last character.

Note also that the marker can equally well be the second delimiter. The two lines
could have been deleted by setting the marker at the T in 'lazy' and moving the
cursor up to the 'b' in 'brown' before pressing SHIFT f8. The result would be the
same.

11.10.2 Copying a block

As described earlier, you can copy text using the COPY key. This can be very tedious
if there is a lot to copy, so a way is provided of duplicating a whole block of text.
Again, there are two delimiters needed to mark the area and a way of marking the
destination of the copied block.

Suppose you want to copy the text:

LOAIM ">"

JSR oswrch

so that it occurs twice in succession. This is done as follows; move the cursor to

the 'L' of 'LDAIM' and press f6. This sets marker one. Move the cursor to below
the 'J' of 'JSR' and press f6. This sets marker two. Move the cursor to the required
destination to (this must not be between the two markers or a 'Bad marking' error

will occur, but it can be on the second marker). In the present example the cursor

should be moved to marker two. Now press f7. This produces a copy of the required

lines.

Notice again that the block copied lies between delimiter one inclusive and delimiter

two exclusive and that, in this case, the markers are still present.

11.10.3 Moving a block

Moving is equivalent to copying a block then deleting the original. The block to

be moved is delimited by two markers and it is moved to the position of the cursor

when SHIFT f7 is pressed. Again it is illegal for the cursor to be within the region
delimited by the markers when the move command is given.

11.10.4 Deleting the marker(s)

The delete block and move block commands automatically delete any markers
present. However, it is sometimes desirable to delete the markers without having
to execute a 'block' command. Pressing SHIFT (6 will delete the active marker(s).

Apart from when cursor editing is active, the status line indicates how many markers
there are in the text. You can have at most two.

68

11.11 The scroll margins

You may have noticed that when the cursor is moved near to the top or bottom
of the screen, the text scrolls and the cursor stays on the same line. This usually
happens when the cursor tries to move above the fourth line from the top or below
the fourth line from the bottom. These two lines mark the so-called 'scroll margins'
and may have their positions altered.

The commands to set and reset the scroll margins are:

CTRL f6 - Set the top scroll margin
CTRL f7 - Set the bottom scroll margin
SHIFT f3 - Reset the scroll margins

To set the top scroll margin, CTRL f6 is used. First position the cursor on the line
at which you want scrolling to occur when moving up the text, then press CTRL
f6. Similarly, to set the bottom scroll margin, move the cursor to the line below
which you do not want it to move and press CTRL f7.

Pressing SHIFT f3 will set the margins to the top and bottom of the screen.

Note that, when the very top (or bottom) of the text is reached, the cursor can

be moved into the top (or bottom) margin so that the first (or last) few lines may
be edited.

If CTRL f6 and CTRL f7 are pressed in succession without moving the cursor, the
margins will be set to the same line. The result is that any vertical movement of

the cursor will cause the screen to scroll.

The scroll lines are used by various search commands. For example, the f4 search

command described later causes its target to be displayed on the bottom scroll

line and fO displays the new line on the top scroll line. Also, when CTRL down

is used to move to the end of text, the last line is displayed on the bottom scroll line.

11.12 Finding and replacing text

One of the most useful features of EDIT will now be described. When editing a

large file, it is often desirable to find the occurrence of a particular word or phrase,
perhaps with a view to changing it to something else. Scanning through by eye
is tedious and prone to error. Another requirement is to be able to jump to a given

line in the text (this is necessary as MASM gives the line number at which an error

occurred). Being able to quickly find this erroneous line speeds up debugging.

69

EDIT has the ability to find a given line, find and selectively replace one string

with another and count all occurrences of a string, optionally replacing it with

something else. The relevant commands are:

fO - Goto a line number

f4 - Find and selectively replace a string

f5 - Globally count and replace a string

11.12.1 Finding a given line

Pressing fO produces the prompt:

At L1 ne X X , new Line:

to which you should type the number of the line to be found (the top line is number

one). If the line number specified is greater than the number of lines in the

document, a 'Line not found' error is generated. Otherwise, the screen is updated

so that the line in question becomes the current line.

11.12.2 Finding and selectively replacing a string

A more general way of searching the file is searching for a particular string, EDIT

lets you search for simple strings such as 'begin', but more powerfully for such
things as 'all identifiers beginning with A'. The command f4 finds strings and, if
necessary, changes them to something else. In this context the string being sought

is called the 'pattern' and the string with which it will be replaced is called the

'replacement*.

In response to f4 EDIT will produce the prompt:

F i nd and replace:

You should type one of two things; a pattern, followed by RETURN, or a pattern,
then a '/' as a separator, then a replacement and finally RETURN. Examples are:

beg i n<RETURN> (Find occurrences of 'begin')

for/FOR<RETURN> (Replace occurrences of'for)

= / : = <RETURN> (Replace occurrences of '=')

then /<RETURN> (Delete occurrences of'then ')

In the last example, the replacement is a null string, which leads to the pattern
being deleted.

70

The search for the pattern begins at the cursor position, so it's a good idea to move
the cursor to the top of the file (CTRL up-arrow) if you want to find all occurrences.
When the pattern is located, the editor updates the screen so that the pattern is
on the bottom scroll line and prompts with;

R(eplace), C(ontinue) or ESCAPE

If you press 'R' and specified a replacement then the change is made and the next
occurrence sought. If you press 'R' but didn't specify a replacement you will be
prompted with 'Replace string:' so that you can give one, then the change will
be made and the next occurence sought. If you press 'C, this occurrence is skipped
and the next one sought. If you press ESCAPE, the search ends. After the last

occurrence has been found the editor returns to normal mode, and displays 'Not
found' on the end of the status line to indicate the end of the search.

11.12.3 Globally counting and replacing a string

The command f5 acts in a similar way to the last one, but assumes that if you specify

a replacement string, all occurrences of the pattern should be replaced. If no

replacement is given, then the number of times the pattern occurs in the file is

counted. The prompt for the pattern and (optional) replacement is:

Global replace:

Typical replies are:

FRED/JOHN<RETURN> (Replace all occurrences of 'FRED')

HELLO/<RETURN> (Delete all occurrences of 'HELLO')

for<RETURN> (Count all occurrences of 'for')

Notice that the only difference between counting occurrences of the pattern and
deleting them is whether or not a '/' appears at the end of the line. The f5 command
does the search and replace automatically without any prompts. As this is a 'global'
search and replace, the search starts from the top of the file, independent of the

cursor position (but see the next paragraph). After the search (and replace), the
number of times the pattern was found is given on the status line in the form:

1234 found

It is possible to make the global search and replace slightly less so by setting a
marker before issuing the command. If this is done, only text between the marker

and the cursor will be affected. It can be useful when, for example, only the

occurrences of an identifier in a particular routine need to be altered.

71

11.12.4 Patterns

The patterns used by the search commands may be regarded as expressions. In
fact, the formal name for patterns is 'regular expression'. They may be thought of
as having constant parts (literal text) and variable parts (wildcards, ranges, choices,
repeats and inversions). This section describes the different parts in detail.

In the examples given so far, the patterns and their replacements have been simple

strings. However, by using special symbols in a pattern, it is possible to specify
the variable parts mentioned in the list above. The special characters available in

patterns are;

match any character

a match any alphanumeric (0-9, A-Z, a-z, or _)

M match any digit (0-9)

Cxyz] match any of 'x', 'y' and 'z'

a-z match any character between 'a' and 'z' (inclusive)

$ match the carriage-return character

I c match CTRL c (c should be a CTRL-key character)

' c match anything but c (which can be a wildcard or a set)

\ c match c (with no special meaning attached to c)

• c match zero or more of c (shortest match)

c match one or more of c (longest match)

A . in a pattern will match any single character in the range ASCII 0 to ASCII 255.

All of the wildcards may be duplicated, so '. .' will match any two characters, and

so on. @ is slightly more restrictive and will match those characters which are

allowed in identifiers, ft will match any of the ten characters in the range '0' to

'9', that is, the digits.

If neither of @ or # provides a suitable range of characters to match, it is possible

to define your own range using - . Thus 'A-F' will match any valid hexadecimal letter.

Another way is to put several choices inside square brackets. Only one of the
characters in the brackets will be matched. For example ' [!I$] will match either
TAB (CTRL 1), carriage-return or space. These characters are sometimes known

collectively as white-space.

You can, if you wish, combine ranges and choices. For example, to match any
hexadecimal character, the choice 'C0-9A-F]' would be used. Since existing
wildcards may be put in a range, this could also be expressed as ' C #A-F]'. Another

example is a pattern to match characters which may occur at the start of a MASM
identifier: ' Ca-zA-Z]'. This can be read as 'match any character in the range 'a' to
'z' or 'A' to 'Z".

72

Note that when letters are being matched, they are case equated. That is, upper
and lower case letters are not counted as different and the pattern 'egg' will match
the expected 'egg' as well as the unexpected 'Egg' and 'eGg'. This is useful when
editing MASM files as the assembler does not differentiate between upper and lower
case letters in identifiers. When letters are used in conjuction with the special
symbols ' - ' (for range) and square brackets (for choice), then they are treated
'literally', so the pattern 'a-z' will only match lower case letters between 'a' and 'z'.

$ is a convenient way of putting the carriage-return character in a search string
(the RETURN key can't be used for obvious reasons). The vertical bar 1 has the

same meaning as within 'KEY and filename strings, that is, 'make the next character

a control character'. Thus, ' 1 @' means ASCII 0, '! A' means ASCII 1 and so on. ' !M'

is the same as '$', '1 C is the ESCAPE character, 1? is DELETE and '11' is TAB.

The action of " is to match anything but the sub-pattern that follows. Thus '"A'

will match anything but 'A' (or 'a'), will match any non-digit and '"A-Z' will

match anything that isn't an upper case letter.

The backslash character \ is needed to remove any special meaning from the

symbol which follows it. Thus, ' \ $' stands for' $', not carriage-return, ' \ 1' prevents

the character after the bar from being interpreted as a control character, ' \.' means

not 'any character', and '\a' means lower case 'a' only, not 'A as well. \/ is

necessary to get the slash itself rather than the delimiter.

Sometimes it is useful to be able to find where a sequence of characters occurs,

especially when whatever is matched is to be replaced by something else. A typical

example would be to delete trailing spaces at the end of lines. Here, we want to

look for zero or more space characters followed by a carriage-return and replace

them with just the carriage return. One way of doing this would be to repeatedly

use;

Global replace: $/$<RETURN>

Eventually, all the trailing spaces will be deleted and f5 will come back with '0

found'. However, the global replace command will have to be issued several times:

one for each space on the end of the line with the most trailing spaces. What we
need here is a mechanism for letting us match any number of spaces in one go.

The asterisk "" performs this task. In a pattern, the sequence "c' means match
zero or more of the character 'c'. For example the trailing spaces on each line can

be deleted in one go by:

Global replace: * $/$<RETURN>

This can be read as 'replace zero or more spaces followed by a carriage-return with
a carriage return'. Preceding a character with an asterisk is called 'forming a closure'
over that character, but is usually read, as indicated above, as 'zero or more of.

73

It is possible to form closures over any type of pattern, not just simple characters.
For example, it is possible to match zero or more digits using the pattern or
zero or more upper-case letters with '"A-Z",

Notice that it is not very useful to end a pattern with a closure pattern because

it always matches the shortest siring it can and this includes the null string. An

example will make this clearer. Suppose we wanted to replace all strings of the
form 'fred' followed immediately by zero or more digits with the string 'fredid'.

Our first try might be:

GLobaL replace: fred*#/fredId<RETURN>

We might expect this to replace 'fredl23' with 'fredid'. In fact it will really become

'fredldl23'. The reason is that the pattern 'fred*#' will always match just 'fred', as

the '*#' part will match zero digits if it can. What we really need here is a way

of matching all of the digits that come after 'fred', instead of none of them. To do

this, another form of closure is provided: This acts similarly to '*', but differs
in two ways: firstly it matches one or more of the following character, and secondly

matches the longest string possible rather than the shortest.

Global replace: f r ed''#/f red I d<RETURN>

You may realise that the pattern '-^c' matches exactly the same strings as 'c*c~c',
where 'c' is any sub-pattern that may occur after a '*'. However, the form is

more convenient, especially when replacing rather than just searching for strings.

It can be seen that the closure (also called 'multiple match') facility is very powerful,

but must be used with care. In order to use '*' to match one or more of a character

(as opposed to zero or more) the format:

Find and replace: c*c<RETURN>

should be used. Below are some more example patterns.

If you want to find all identifiers beginning with A or a, you can use the following
format:

Find and replace: A*a~a<RETURN>

Here, the 'A' matches the first character; the matches the rest of the identifier

up to the non-alphanumeric character matched by

If you want to find all integer constants, you can use the following format:

Find and replace: ̂ #<RETURN>

An integer is, of course, just one or more digits.

74

If you want to find all non-null strings in a BASIC program, you can use the following
format:

Find and replace: . "<RETURN>

Here, the matches the opening quote; the ' matches one or more characters

and the matches the end quote. Note, however, that it will not find

To find all the '\'s in a file, you can use the following format:

Find and replace: \\<RETURN>

Two backslashes are needed as '\' itself is a special character. It therefore needs

a preceding '\' to 'quote' it.

If you want to find all MASM "" directives, you can use the following format:

Find and replace: *<RETURN>

The directive must be preceded by a label, and a label must start at the first

character on the line. Thus, matches the identifier at the start of the line;

'• ' matches the zero or more spaces separating it from the directive, and '\"

matches the directive itself, the backslash taking away the asterisk's special meaning.

To find all blank lines, you can use the following:

Find and replace: $* $<RETURN>

A blank line is simply where a carriage-return is followed by another one with

only zero or more spaces intervening. The first matches a carriage-return; the

'* ' matches zero or more spaces; the second '$' matches the carriage-return of

the blank line. Note that this pattern will only find the first of one or more blank

lines.

If you want to find all the integer variables in a BASIC program you can do so by
using the following:

Find and replace: •^a\X<RETURN>

The matches one or more alphanumerics; the '\%' matches the percent sign

at the end. The percent sign is 'quoted' with backslash because, although it has
no special meaning in patterns, it does in replacement strings. In the editor, all
special characters that may be used in pattern matching have to be quoted if they
are to be used as themselves, whether their special meaning is relevant to the context

or not.

75

Actually, the pattern as given will match something like '123%', which isn't a proper
identifier. The problem is that matches digits. To be strictly accurate, we should
use:

Find and replace: [a-zA-Z_£] *a\X<RETURN>

so that the first character has to be a letter, an underscore or a pound sign, all of

which may start a BASIC identifier.

If you want to match any control character, you can use the following:

Find and replace: 18-!_<RETURN>

' i is CTRL @, the lowest valued control character (ASCII 0) and ' is CTRL

the highest control character (ASCII 31).

To match any word in a text file, you can use the following format;

Find and replace: ''[a-zA-Z] <RETURN>

This pattern stems from the simple definition of a word: the longest sequence of
one or more upper or lower case letters.

If you want to match a hexadecimal constant, you can use the following:

Find and replace: \&^ [#A-F]<RETURN>

This is simply followed by one or more hex characters. Again, is quoted

as it has a special meaning in replacements.

Two useful global search without replace commands are:

Global replace: . <RETURN>

Global replace: $<RETURN>

These display the number of characters and lines in the file, respectively, on the
status line.

76

11.12.5 Replacements

Although it is obviously very useful to be able to find patterns of the type described
above, it is even more useful to be able to replace them with something else. A
replacement can be either a literal string, such as 'fred', or it may contain various
special characters. These are as follows:

$ Stands for a carriage return

1 c Means CTRL c

\ c Means c (with no special meaning)

& Means whatever was matched by the pattern

% n Means field number n

In the list above, 'c' stands for a character and 'n' stands for a digit between 0 and

9. The first three items have already been encountered in patterns.

The ampersand is a character which only has a special meaning in the
replacement string (though, as we saw earlier, it still needs to be quoted in patterns).

It means 'whatever the pattern matched'. Clearly, if the pattern was just a literal

such as 'until', then that is what will stand for. However, when wildcards and

repeats are used in the pattern, it is not possible to know exactly what was matched.

Suppose you want to duplicate all digits so that, for example, T becomes '11' and

T23' becomes '112233' This could be achieved with the following global replace:

Global replace: #/&&<RETURN>

Whatever is matched by the pattern will become the ampersand in the replacement.

Notice that although global replacing was used in the example above, the same

replacement string could have been used in a selective replace just as legally.

The final special replacement character acts as a more restricted version of The

percent sign '%' is followed by a digit n between 0 and 9. This combination stands

for the nth field of the pattern. A 'field' is defined as a wildcard character, a multiple

match (that is, a symbol preceded by or ''"'), an inverted match (that is, a

character preceded by '"'), a range ('a-z') or a choice (' C135791'). The fields are

numbered from zero on the left. Some examples might make this clearer:

Find and replace: A*a+. <RETURN>

Here, the characters matched by the '*@' are field 0, and the character matched

by the '.' is field 1.

Find and replace: ##"3* <RETURN>

Here, there are four fields: '"(Si' and '* ' respectively

Find and replace: ~*#''^#<RETURN>

77

This matches any number of non-digits followed by one or more digits. The first

field is and the second field is .

Below are some examples of using the fields in replacement strings:

If you want to reverse the order of alternate characters, you can do so as follows:

Global replace: . ./Xl %0<RETURN>

If you want to delete the % sign from integer variables in BASIC, you can do so

as follows:

Global replace: ̂ a\X/S:D<RETURN>

(Note that the quoted '%' sign in the pattern is for the character at the end of BASIC

integer variables.)

If you want to put a '$' after all variables beginning with 'S_' and delete the 'S_',
you can do so as follows:

Global replace: S_''a/%0\$<RETURN>

(Again, note the quote sign '\' before the so that it is not treated as a special

character by EDIT.)

Notice that when replacing (rather than simply finding) patterns, you have to be
very precise about what marks the end of a string. For example, to insert at

the end of all identifiers, it is insufficient to use:

Global replace: a*a/&_1<RETURN>

This will, in fact, cause to be placed after the first letter of identifiers as the
will match the bare minimum, that is, nothing at all. It is necessary to explicitly

find the last character in the identifier and use the following:

Global replace: a*aa/%0%1_1 %2<RETURN>

This time the is placed between the that is, the tail of the identifier, and
the that is, the non-identifier character which marks the end.

More simply, using we could say:

Global replace:

though this uses a less strict rule to determine what constitutes an identifier.

11.13 Using command ̂ macros'

As mentioned earlier, you can generate strings from function keys if CTRL and SHIFT
are used together with the key. Since EDIT commands are really just characters
above 127, if these are put into function key definitions you can issue several
commands at a single keystroke.

78

Most usefully, this facility may be used to execute several global replaces in quick
succession. The code of the global replace command is 133- To obtain this in a

function key string '!!!£' is used. Thus, to make the string produced by fO replace
all tabs with spaces, the following sequence of commands must be used:

First, press fl to enter an operating system command. Then type the following
(note that you don't need an * before the command:

FX228,1

KEYOl ! !EII/ 1M<RETURN>

<RETURN>

The first line sets up the CTRL SHIFT function key status so that this combination

generates strings. The next line programs key zero so that it contains the characters
necessary to perform the global replace: '!!1E' issues the command (as if you'd
typed f5); the '11/ ' is the pattern and replacement part, and '!M' is the RETURN

at the end of the command. The third line returns you to edit mode.

When CTRL SHIFT R) is pressed, the string defined above will be produced. Because

you are holding CTRL and SHIFT down at the same time, the carriage-return at
the end won't be printed. The command will not be executed until you let go of

the keys.

Obviously, you can build up quite useful command strings using the function keys.
Here is a list of the strings required to generate various commands:

Command

fO

fl

f2

f3

f4

f5

f6

f7

f8

f9

TAB

COPY

left

right

down

up

DELETE

Alone

!!@

!!A

!!B

!!C

!ID

!1E

!1F

!1G

!!H

!!I

!!J
!!K

!1L

!!M

!1N

!!0

>

-t- SHIFT

!!1P

!!!Q

!!!R

!!!S

!!1T

l!iU

i!lV

1!!W

!!!X

!!!Y

!!!Z

!!! C

!![\

!!1]

jt|A

i!!

!?

CTRL

!<SPACE>

IT

!"

Itf

It

!%

!&

!'

!(

79

Notice that you can generate cursor moves since, within the editor, the cursor keys

are treated as extra function keys. As another example, to set-up a key to insert

a file called 'decl' the following would be used:

<fl>

KEYDl ! !RdecLIM<RETURN>

<RETURN>

Note that it is possible to write a command file using EDIT which may then be

"EXECed'. The method is to put, say, 'f5' in the file as the letter 'f and the figure

'5' wherever a 'global replace' will be required, and then to perform a global replace,
thus:

GLobaL replace: f5/<f5><RETURN>

where <f5> indicates pressing the f5 key, which will appear as a space on the
display.

80

12 Using MASM to assemble
your programs

Chapter 3 showed you how to use MASM to assemble a simple program. This
chapter describes the facilities of MASM in more detail.

To start using MASM, you should type the line:

*MASH

You can do this from the normal system prompt or from the command mode of
all the 6502 Development Package utilities. After MASM has been loaded, it will
enter MODE 7 and print its prompt 'Action: Any of the commands described below

can be entered at this point. If you press ESCAPE, MASM will stop what it is doing
as soon as possible and return to command level. Pressing BREAK will have the

same effect, but MASM will not be able to take precautions against corrupting your
flies, so only press BREAK in dire emergencies, and NEVER press it when a disc
drive light is on.

If you wish, you can shorten MASM commands to the shortest distinct substring,

for example, instead of the following:

ASH FREO

you could type:

A FRED

Beware, however, of commands that have common beginnings, for example, SAVE,

STOP, SYMBOL. Here, the command S will choose the first command beginning
with S that HELP prints.

12.1 MASM commands

This section describes each of the MASM commands in detail.

MASM commands can be typed in upper or lower-case; they mean the same thing
either way. At any time when MASM is waiting for a command, you can give an
operating system command line by prefixing it with For example, the command
line:

♦ CAT

would produce a catalogue of the currently selected drive.

81

You can enter the first parameter required by any command on the same line as
the command itself. If it is not given, you will be prompted by MASM. Thus to
turn on an assembly listing, you could use either one of the following lines:

Action : PRINT ON

or

Action : PRINT

Option : ON

File names which you use in commands should obey the rules laid down in the
User Guide for the filing system currently in use. In addition they must be valid

MASM identifiers (whose maximum length is six characters) since if a longer name

is used, MASM only uses the first six characters and will probably, therefore, give
a 'not found' error.

12.1.1 The ASM command (Assemble program)

This is the most important command available in the assembler. Thse dialogue is

as follows:

Action : ASH <fi le name>

or:

Action : ASM

Source file : <fiLename>

and you will then be prompted as follows:

Macro Library :

You can now type the name of a macro library file or, if you have none, you can
press RETURN. If you have typed ASM without a file name attached, you will now

be prompted for the file name. MASM will then look for the source file on the

disc and, if it finds it, try to assemble it. If you specify the name of a non-existent

file, this will result in an error message. MASM will always return to the command
level after such an error.

82

The file specified in the ASM command should be of the format described in

previous chapters of this book; any discrepencies will be pointed out. MASM will
give an error message which specifies the type of error and the line number in

the file (and macro if appropriate) where the error was detected. The offending
line will also be printed.

After detecting an error in the first pass, MASM will, in most cases, continue trying
to assemble the file so that all errors will be delected (see the STOP command below,

though). Be warned, however, that one error may generate several more as a 'side

effect', so correcting this one may improve matters considerably. Common errors

are:

Forgetting the END directive

Forgetting to define a label

Misspelling a label

The last two of these are the sort which can generate several error messages from

a single mistake in your source file.

MASM will print which pass it is on at the beginning of the pass. If the first pass

was completed without error, the second pass will be started. During the second

pass, the object file (or files if other source files are XNKed' in) is produced; this
contains machine code instructions which correspond to the program being

assembled. The object file will have the same name as the source file, but it will
be held in the directory 'X'. Thus, if you type:

ASM test

MASM will place the object code in a file called 'X.test". The load and execution

address of this file will be as was specified by the ORG statement in the source
file (or &0000 if no such instruction was given). Addresses in the program will
be set with &0000 as the high-order bytes; this means that your object file will
load into the 6502 Second Processor unless you force it to do otherwise when

you SAVE it (see the SAVE command later).

83

Your object file can be run using the OS command:

*X , <'f 1 I enaine>

Since ail of your source code must be loaded into the Tbbe at once, there is a limit
on the size of this code; it is currently about 17K. However, the LNK directive can

be used to increase the total size of your source program.

12.1.2 The PRINT command (turn listing on or off)

It is helpful, when debugging a program, to have the assembler produce a listing
of the code it has assembled, along with the addresses and values it has generated;

Figure 12.1 shows such a listing. If you use the command

PRINT ON

all subsequent successful assemblies will produce a listing. You can disable this
facility by using the command:

PRINT OFF

This is the default state upon entering MASM.

Listing can also be controlled from within the source file using the TTL and OPT

directives; these were explained in chapter 5, 'The MASM directives'.

To send the listing to your printer as well as to the screen, you need to enable
the device using the appropriate control codes. TVping CTRL B at any time during

a command input will turn on the printer (if it has been selected properly with

*FX5), and CTRL C will turn the printer off. Use of the printer is explained fully
in the BBC Microcomputer System User Guide. For listings on the screen, you will

find it useful to engage page mode (CTRL N). This can be disengaged by typing

CTRL O.

84

Acorn macro assembler Page 1

Pass 1

Pass 2

0001 0000 0070 ze rop * &70

0002 0000 ORG S1900

0003 1900 A9 00 test LDAIH 0

0004 1902 85 70 STA2 zerop

0005 1904 A9 1A LOAIH fin / &*

0006 1906 85 71 STAZ ze rop+1

0007 1908 AO 00 LDYIM 0

0008 190A B1 70 loop LDAIY zerop

0009 190C 48 PHA

0010 190D A9 AA LOAIM &AA

0011 190F 91 70 STAIY zerop

0012 1911 01 70 CMPIY zerop

0013 1913 DO 22 BNE error

0014 1915 A9 55 LOAIM S55

0015 1917 91 70 STAIY zerop

0016 1919 01 70 CMPIY zerop

0017 191 B 00 1 A BNE error

0018 1 91 D 68 PLA

0019 191E 91 70 STAIY zerop

0020 1920 C8 INY

0021 1921 DO E7 BNE loop

0022 1923 E6 71 INCZ zerop+1

0023 1 925 A5 71 LDAZ zerop+1

0024 1927 C9 80 CMPIM &80

0025 1929 DO OF BNE loop

0026 1 92B 00 BRK

0027 192C 01 = 1

0028 192D 40 45 40 = "MEMORY

0029 1936 00 = 0

0030 1937 00 error BRK

0031 1 938 02 = 2

0032 1939 40 45 40 = "MEMORY

0033 1945 00 = 0

0034 1946 f i n

0035 1 946 END

Assembly finished. no errors

+ 1

Figure 12.1 Sample assembler listing

85

12.1.3 The WIDTH command (set printer width)

You can specify the width of your output using this command; this can be between
zero and 127 characters. MASM will try to format the output from the assembler

passes (and the SYMBOL command) as neatly as possible within this range. For
viewing on the screen, WIDTH 39 gives the best results, since each line of assembled
code fits on to one screen line. For printers. WIDTH 79 or WIDTH 80 is probably

the best choice. Note that if output is attempted of a line containing a greater number

of characters than that specified by WIDTH the line is truncated to fit that width,
and not wrapped round to the next line.

12.1.4 The LENGTH commaiid (set the printer length)

This command lets you specify the height of pages on your printer. After each page,
MASM gives a form feed (this turns into a clear screen on your display). The
parameter can be in the range zero to 127, but most printers have page lengths
of between 60 and 70 lines (for screen viewing, 127 is probably the best choice).

If you wish, you can force a form feed using the appropriate OPT directive in your
source file.

12.1.5 The SYMBOL command (print a symbol table)

After an assembly, successful or otherwise, you can get a listing of all the symbols

MASM came across in the file. This is very useful when debugging a program, and

you have three alternatives:

SYMBOL A

SYMBOL N

SYMBOL S

The first two give listings in alphabetic or numeric order. The last one prompts

you for a symbol name and then prints its value.

Each symbol is listed, together with the value associated with it (in hex) if this has

been set. Symbols declared but unused are marked with a *, Symbols which are

undefined are given the value XXXX. The format of a table produced by SYMBOL

is affected by the current WIDTH and LENGTH settings.

12.1.6 The STOP command (stop on errors)

If the command:

STOP ON

is issued before assembling a file, any error will stop the assembly process
immediately. MASM will then wait for you to press ESCAPE, after which control

will be returned to command level.

86

If you use the command:

STOP OFF

instead, the whole file will be processed for the first pass regardless of the number

of errors produced. STOP OFF is the default value of the command when you load
MASM.

12.1.7 The SAVE command (save the object file)

The SAVE and GET commands allow you to save files to disc and load them. They

are similar to the 'SAVE and 'LOAD OS commands, but give you more freedom

in the specification of load and execution addresses. If you type:

SAVE <f i le name>

the following prompts will be given:

Prompt Meaning

Start address This is where the file to be saved starts in the Second

Processor

End address This is where the file to be saved ends in the Second

Processor

Load address This is where you want the file to be reloaded in
memory

Proc. This is the processor in which you want the file to be
reloaded

I for I/O (BBC), T for Tube

H host P parasite

Note that I and H are identical in their effect, as are T

and P

Exec, address This is what the execution address should to be set to

Proc. This is the processor in which you want the file to be
executed

87

The two 'Proc.' prompts are needed to set the high- order bytes of the load and

execution addresses for the file. For example, suppose you want to save a &400
byte section of the TUbe processor's memory, starting from &5600. The file is to
be saved with the name 'BODGE' so that it loads at &I6OO in the BBC

Microcomputer's memory and starts to execute at &1645 when it is run. The
following dialogue would achieve this:

Action : SAVE BODGE

Start address : S5600

End address : &5A00

Load address : &1600

Proc. (T/P/H/I) I

Exec, address : &1645

Proc. (T/P/H/I) I

You could check that the load and execution addresses, and the length, have been

set as required by using the disc filing system command *INFO:

*INFO BODGE

Notice that the addresses you use can be any valid MASM expressions, rather than

just simple numbers. For example, look at the following:

Load address : start

Exec, address : start+tablen

Here, 'start' and "tablen" are symbols in the current symbol table.

12.1.8 The GET command (load a Hie or Hies)

This command is complementary to SAVE. After entering:

GET <fi Le name>

the following prompt will be displayed:

New, Own or Previous address (N/O/P)

88

The three possible responses to this question have the following meanings:

Response Meaning

N You want to specify the address at which file will load

(in the Tbbe)

O The file is to be loaded into the address given in its
directory entry, but in the Tlibe, even if the load

address is in the I/O processor

P The file is to be loaded after the last file loaded

In addition, if the file name ends in a two-digit number (for example, MOS02),
you will be asked for an 'offset'. This specifies the last file you want to load in a

sequence. For example:

Action: GET HOS02

Offset: 05

New, Own or Previous address (N/O/P) N

Address: &1 200

This will result in the files MOS()2, MOS03, MOS04 and MOS05 being loaded

successively. The first file (MOS02) will be loaded at &1200 and the other three

will be appended to it automatically, whatever the address specified for the first file.

12.1.9 The XREF command (make a cross-reference file)

The XREF command is associated with the cross-reference utility. This is a

debugging tool and it is described in detail in chapter 14, 'Debugging your programs'.

Basically, the cross-reference utility finds all of the occurences of certain symbols

in your source program, thus saving you looking through the entire assembly listing.

To be able to do this, it needs a file which contains all the relevant information.

MASM can be instructed to produce this file by using the XREF command. This

must be issued before assembling the file, so a typical command sequence would be:

Action: XREF

Xref output file: xrout

Action: ASM source

89

These instructions would assemble the file as normal and also a produce a file called

'xrout'. The latter must be cited when the cross reference utility is used.

12.1.10 The MLEVEL command (suppress macro level information)

To help keep track of local labels, MASM stores information about the points at

which it enters and leaves macros in a local label table. If you have a lot of macros

in your program, this table can become full even when you have no local labels.

You can stop it filling by using the MLEVEL command.

The command has the default value of ON and, if you give it the alternative value
OFF, macro level information will be omitted from the local label table. You give
it the appropriate value by typing one of the following:

HLEVEL ON

MLEVEL OFF

Note that after MLEVEL OFF is issued the macro level specifiers in local label usages
are ignored.

12.1.11 The TERSE command (print conditional assembly source
code)

The TERSE command allows you to print the source code that is ignored by
conditional assembly. To do this, type:

TERSE OFF

The default value is ON; this suppresses the source code.

90

13 Producing program
listings

The 6502 Development Package contains a general-purpose printing program: the
PRINT utility. This allows you to print source files on the screen or printer, with

variable-size pages, line numbers and assembler formatting, amongst other things.

To load the utility you type:

♦PRINT

You will then be prompted as follows:

File name:

At this point, you can type one of the OS commands (for example, *CAT) or the
name of the file to be printed. If you select the latter option, the following prompt
will then be displayed:

Parameters:

Here, you can again type one of the OS commands, or, instead, you can type a
list of PRINT parameters separated by spaces. There are nine parameters which
you can use; they are set by typing the initial letter of the parameter followed by
the value to be assigned to that parameter (where relevant).

91

The initial letters of the parameters are as follows;

Parameter Meaning

W This defines the page width and is set to a default
value of 92

L This defines the page length and is set to a default
value of 60

T This defines the length of the page heading (title) and

is set to a default value of five

H This defines a page heading. It can be any string of up

to 46 characters, enclosed in quotes ("")• Its default
value is the filename

N This indicates that you want the line number printed

on each line

A This indicates that you want the output formatting into
fields as understood by the assembler

P This indicates that you want the printer to stop after

printing each page. Printing will be resumed when you

press the SHIFT key

E This indicates that you want to output text to the

Econet printer

R This runs the print program

92

You can set these parameters in any order and you will be prompted until the 'R'

parameter is set. Examples of the dialogue are given below:

*PRINT

Fi le name: TEST1

Parameters: L70

Parameters: U79

Parameters: R

Filename: TEST2

Parameters: L70 W79 N R

If you wish, you can avoid the 'Parameter' prompt by setting the parameters in
the 'Filename' prompt. In this case, you do not need to use the 'R' parameter: it
will be set automatically. For example:

Fi le name: TEST3 W79 L70 N

There is a version of PRINT called PR which is identical except that it is located

in the I/O processor rather than the 6502 Second Processor, and so may be used
to print source files when a second processor is not available.

93

14 Debugging your
programs

This chapter is divided into four sections: the first one is a brief introduction to
the principles of debugging and how the MASM utilities can help with this. The
other three sections describe the debugging utilities XREF, SRCXREF, and TTRACE

and BTRACE. If you are an experienced programmer and understand debugging

you can probably omit reading the first section.

14.1 Introduction

Even if you are the world's best programmer your programs will still have bugs
in them at some time. When that time comes you will need all of the tools at your

disposal.

The most useful tool of the lot is the human brain! Every program you write should

be dry run before you put it on to your computer. This involves thinking through

every step in the program and it can save many a wasted hour on the computer.

Later on, most of your bugs will be removed in this way. However, in the beginning

you may not fully understand the nuances of assembly code, and you might expect

different results from an instruction than those which are possible. At this time,

some further debugging tools will help a lot.

Look at the following program, for example:

zerop

test

* &70

0R6 &1900

LDAIH 0

Loop

STAZ zerop

LDAIH ■f in / &100 + 1

STAZ zerop+1
LDYIH 0

LDAIY zerop

PHA

LDAIH &AA

STAIY zerop

CHPAY zerop

BNE error

LDAIH &55

STAIY zerop

94

CMPAY zerop

BNE error

PLA

STAIY zerop

INY

BNE Loop

INCZ zerop+1

LDAZ zerop+1

CHPIM &80

BNE loop

BRK

0

= "MEMORY OK'

0

error BRK

0

"MEMORY FAULT"

0

i i n

END

This is similar to the program you developed in chapter 3, 'Developing a simple
MASM program", but a couple of 'bugs' have been introduced into it. If you ran

the program, you would see the following message displayed:

MEMORY FAULT

This might imply that there is something wrong with your 6502 Second Processor,
but as it is the first time you've run the program that should make you suspicious.

The place in the program at which the message is generated is easy to find: it is

at the label 'error'. It is also easy to find which parts of the program cause a branch

to 'error', but if your program was a large one there may be many such branches.

When this is the case, you can save yourself a lot of reading by using the cross-

reference utility (XREF). This enables you to find the occurence of various symbols

in an assembly language program. It will tell you the values (if any) of the symbols

and where they are defined.

95

Before you can use XREF you must produce a cross-reference file which it can
use; this is done using the XREF command in MASM (see chapter 12, 'Using MASM
to assemble your programs'). The following dialogue would produce a cross-
reference file called 'xrout' for you and also assemble your program (which is
assumed to be in the source file 'TEST');

Action : XREF

Xref output file : xrout

PRINT ON

(type CTRL B to enable the printer before pressing RETURN)

Action : ASM TEST

Macro library : <RETURN>

Ibm the printer off with CTRL C.

Next, you can activate XREF by typing:

♦ XREF

and it will reply with the prompt;

Action :

XREF holds a list of symbols which you want it to search for and you need to ADD

'error' to this list. You do it by typing ADD error', then, when the prompt;

SymboI :

appears, you should press ESCAPE. You can now get XREF to scan through the

cross-reference file by typing 'XREF' in reply to the Action ;' prompt. It will then

prompt you as follows;

Xref Fi le :

and you should type 'XROUT'. XREF will scan the file and print the message;

ERROR defined line 0030 in fi le TEST

ERROR used Line0013 in fileTEST

ERRORused line0017infiLeTEST

It will then return to the action prompt.

There is another, more limited version of the cross-reference utility which operates
directly upon your source program file without needing MASM. This is called the

source file cross-referencing utility (SRCXREF) and it is described in section 14.3.

96

Once you have found all the branches to 'error' in your program, you will need

to find out which one caused the 'fatal' result. You can do this using the TRACE
utility. First of all, load your program by typing:

♦ LOAD X .TEST

Now load the trace utility by typing:

♦TTRACE

Note that this is the utility for tracing code in the 6502 Second Processor; if the
code is located in the I/O processor then the BTRACE utility should be used. This
is identical to TTRACE except that it may only be used in mode 7. Throughout
this description TRACE is used to refer to whichever version is being used.

The TRACE utility will reply with the prompt' +'. TRACE will execute your program
and give you reporting information as it does this. You can 'set' different types
of reporting level; for example, it will report the state of the Y register or the
execution address after each instruction. For the fi rst run through, we will ask it
to report the execution address; this should enable us to find out where the branch
to 'error' occurred. You should type:

RT ADDR

to do this. Now, you can get TRACE to run your program by typing:

EN &1900

CO

'EN' sets the entry point of the program and 'CO' continues execution from that
point. TRACE will print out the following list of execution addresses as it runs your
program;

1900

1902

1904

1906

1908

19GA

190C

190D

190F

1911

1914

1939

MEMORY FAULT

97

If you look at your assembly listing, you will see that '1939', the last execution
address, is the address of 'error'. The address before it, T914', must be the address
of the instruction which caused the fatal branch to 'error'.

Now that we have isolated the code which is causing the trouble, it would be useful
if we could stop the program executing, before it branches to 'error', and look at
what is happening more closely. "We can do this by inserting what is called a
'breakpoint' in the program at location 1914 (the branch to 'error'). The program
will run until it reaches this point then stop, allowing you to inspect the registers

and memory locations, or even to change their contents. You set the breakpoint
by typing;

BS S1914

Now set the reporting level to report everything, and run the program by typing:

RT ALL

EN &1900

CO

You will get a display in the following format, showing you the results of every
instruction executed and the status at the breakpoint (it is best to move to an 80

column mode when using TTRACE if possible):

1900 A9 00 LDAIH 800 A-01 X = 54

<-
II

o

P=. .1B.• • • S = E2

1902 85 70 STAZ 870

>
II

o
o

X
II

Y = 07 P=. .1B..Z.

(/)
II

m
rj

1904 A9 1A LDAIM 81A

o
o

II

<

X = 54 Y-07 P=..IB..Z. S = E2

1906 85 71 STAZ 871

<
t—

II

<

X = 54 Y=07

00

II

Q.

« • • S = E2

1908 AO GO LDYIM 800

<

II

<

X = 54 Y=07

CD

II

Q.

« « • S = E2

1 90A B1 70 LDAIY 870

<

II

<

X = 54

o
o

II

>-

P=. .IB..z. S = E2

190C 48 PHA

>
II

>
>

X = 54

<•
II

o
o

P=N.1B.• ■ • S = E2

190D A9 AA LDAIH 8AA

<
<

II

<

X = 54

<-
II

o
o

P=N.1B.• • • S = E1

190F 91 70 STAIY 870

>
II

>

X
II

>

<-
11

o
o

CO

z
II

0.

•• • S = E1

1911 D9 70 00 CHPAY 80070 A=AA

X
II

Wl

<-
II

o
o

P=N.1B.• ■ • •

v>
II

m

Stopped at break poi nt

1 01 4 DO 23 BNE 823

<
<

II

<

X = 54

<-
II

o
o

OD

Z
II

o.

.. c S = E1

Note that the contents of some of the registers may not be exactly as shown above,
since they are dependent on the machine configuration.

The CMPAY instruction compares the contents of the accumulator (AA on the last
line of the display) with the contents of (&70 + Y) and branches to the error routine
if they are not equal. You can check the contents of address &0070 by typing the
following:

PT 870 871

98

and you will get the result:

0070 00 1A FF 00 00 00 00 00

You would probably realise that the instruction should have been a CMPIY

instruction and you could confirm it by treating the contents of addresses &0070
and &0071 as a l6-bit address and looking at their contents, in turn.

These memory locations point to the address &1A00, and you can inspect its
contents by typing:

PT &1A00 &1A01

You will get the result:

1A00 AA 00 00 00 00 00 00 00

The contents of &1A00 are the same as those of the accumulator and it is clearly
this address which the compare instruction should have referenced. You could

prove this by 'patching' the CMPAY instruction with a CMPIY and rerunning the
program. To do this, you type:

PS &1911 (RETURN)

D1 +

+

EA (RETURN)

TRACE will print out the contents of the location before you change it. You type

' +' to move on to the next location; if you wanted to change the previous location,

you could display it by typing In the text above, 'Dl' is the CMPIY opcode;
the following address (&70) does not need to be changed. However, since CMPIY

needs one byte less than CMPAY, you have to use a 'no-operation' instruction

(opcode 'EA') as well.

You need to change the CMPAY at address &191A, as well, before you can run your
program successfully. You do this by typing:

PS &191A (RETURN)

Dl +

+

EA (RETURN)

Now get rid of the breakpoint by typing:

BC &1914

99

(this is the 'breakpoint clear' instruction). You can get rid of the information
reporting facility and run your program by typing:

RT NONE

EN &1900

CO

Your program will take much longer to execute than it would normally; this is
because TRACE slows it down by a fector of about 100.

The preceding dialogue has been very simplistic; in reality, you would have spotted
the errors much sooner. However, it serves to illustrate the most common debugging

facilities. These are described in much more detail in the following sections.

14.2 Using the cross-referencer (XREF)

To run the cross referencer, simply type *XREF when the Development Package

disc is in the currently selected drive. This will take you into the command mode.

XREF can only be used if there is a 6502 Second Processor fitted to the BBC
Microcomputer.

The prompt for XREF is:

Action :

You can get a list of XREF's commands by typing 'HELP' in reply to the action

prompt. You will get the following display:

Commands avai lable:

ADD

CLEAR

HELP

INIT

LIST

RESULT

SUMMARY

XREF

A command can be activated by typing the appropriate command name in upper
or lower case. The command can be abandoned at any time by pressing ESCAPE;
this will return you to the menu followed by the prompt. You can enter OS
commands after the Action:' prompt by prefixing them with a as in:

Action:*CAT

100

The purpose of XREF is to help you find the occurence of various symbols in an

assembly language program. It will tell you the symbols' values (If any) and where

they are defined and used throughout the program. In order to do this, XREF needs

a cross-reference file which it can use; this is done using the XREF command in

MASM (see chapter 12, 'Using MASM to assemble your programs', for details).

Below is a description of each of XREF's commands. The first three relate to the

entry of symbols which are to be referenced, the last three are to do with the actual

cross referencing.

14.2.1 The ADD command (add symbols)

The first thing XREF needs is a list of symbols to look up for you. This is entered
using the command ADD. Once the command has been issued, XREF will
repeatedly prompt you as follows:

Symbol:

You should reply with a valid symbol name which you expect to find in your
program. XREF will check the symbols in the file using the same rules as MASM,

so replying '123', for example, will produce the following message:

Bad symbo L

Once all the symbols have been added, you should reply with a single point '.'
to get back into command mode.

You can also enter the symbols from a file, using the "EXEC command. For example,
if you envisage using a set of, say, 10 symbols which are common to many of your
programs, the following file could be created with the *BU1LD command:

Command : *BUILD comms

0001 A

0002 symbi

0003 symb2

0011 symbi0

0012 .

0013 Escape

The first line is the A command (for ADD), then come the ten symbols to be entered,
then the '.' to terminate command entry. Once created, the file can be used as
follows:

Command : *EXEC comms

101

This will cause the file 'comms' to be treated as the input source until its end is

reached. See the Disc Filing System User Guide for more details of "BUILD and
"EXEC.

The maximum number of labels which XREF can handle at once is 1024. This

should be sufficient for most purposes.

14.2.2 The CLEAR command (clear symbol table)

CLEAR will remove a single named symbol from the symbol table. You can type

CLEAR followed by the symbol name in reply to the action prompt. Or you can

issue the command CLEAR, followed by RETURN, and XREF will prompt you as

follows:

Symbo I:

You should reply with a valid symbol name which you want deleting from the

symbol table. XREF will return you to command mode when it has successfully

deleted your symbol.

14.2.3 The INIT command (initialise symbol table)

This command will re.start the program by clearing out the symbol table.

14.2.4 The LIST command (list symbol table)

You can check the current contents of the symbol table by entering the command
LIST. The symbol names will be printed in a simple list across the page, for example,

ERROR FIN LOOP TEST ZEROP

14.2.5 The XREF command (cross-reference a file)

Once the symbols are correct, you need to tell XREF which file you want cross-
referenced. You can type XREF followed by the filename. Typing XREF will produce
the prompt:

X re f fi le :

to which you should reply with the name of a file that was produced by MASM
when its XREF command was used. XREF will read this file and look up the names
you entered into the symbol table. It will then print a summary and return to the
prompt stage. If the name given does not refer to a valid cross-reference file then

a 'Read error' will be generated.

102

14.2.6 The RESULT command (print results)

This should be the command you issue after cross-referencing a file with command
XREF. The program will print a list of the locations (line numbers) and the file at

which the various symbols in the symbol table appear. If there are many symbols
in the table, and/or the file which produced the cross-reference file was very large,
there may be many entries printed out. In this case, it is wise to use a printer to
get a hard-copy of the reults, or alternatively send them to a 'SPOOL file where

you can examine them at your leisure. Remember that all the OS * commands can

be issued after the 'Commandprompt, and the printer can be enabled and disabled

using CTRL B and CTRL C respectively.

After the table of symbols entries has been printed, a summary will appear. This
summary mentions two types of symbols: it gives a warning for any symbols in

the table which were not found at all in the cross-reference file; and it gives a

comment for any symbols which were defined in the source but not used in the

program.

14.2.7 The SUMMARY command (set the summary flag)

The printing of a summary can be disabled using this command. If you type

SUMMARY, the following prompt will appear;

Summary ? (Set/Unset) :

You should reply 'S' if you want a summary to be printed or 'U' if you don't. Control

then returns to the command level.

14.3 Using the free-standing cross-referencer
(SRCXREF)

The free-standing cross-reference utility is a more-limited version of XREF which
does not need a cross-reference file produced by MASM. To run it, simply type

•SRCXREF when the 6502 Development Package disc is in the currently selected

drive. This will take you into the ccmimand mode. SRCXREF can only, be used if
there is a 6502 Second Processor fitted to the BBC Microcomputer.

103

The prompt for SRCXREF is:

Action:

You can get a list of SRCXREF's commands by typing:

HELP

and it should be as shown below:

Commands available:

ADD

CLEAR

HELP

INIT

LIST

RESULT

XREF

A command can be activated by typing the appropriate command name (for example

'ADD') in upper or lower case. It can be abandoned at any time by pressing ESCAPE;
this will return you to command mode. You can enter OS commands after the
'Action:' prompt by prefixing them with a *, as in:

Action: *CAT

Below is a description of each of SRCXREF's commands.

14.3>1 The ADD command (add symbols)

The first thing SRCXREF needs is a list of symbols to look up for you. This is entered

using the ADD command. Once the command has been issued, SRCXREF will

repeatedly prompt you as follows:

Symbol:

You should reply with a valid symbol name which you expect to find in your

program. SRCXREF will check the symbols in the file using the same rules as MASM,

so replying '123', for example, will produce the following message;

Bad symbo I

Once all the symbols have been added, you should reply with a single point '.'

to get back into command mode.

104

14.3.2 The CLEAR command (remove symbol)

CLEAR is the inverse operation to ADD. It will remove a single named symbol from
the symbol table. Once the command has been issued, SRCXREF will prompt you
as follows:

Symbo I:

You should reply with a valid symbol name which you want deleting from the
symbol table. When you have done this, SRCXREF will return to command mode.

14.3.3 The INIT command (initialise symbol table)

This command will restart the program by clearing out the symbol table entirely.

14.3.4 The LIST command (list items in symbol table)

You can check the current contents of the symbol table by entering the LIST

command. The symbols will be printed in a simple list across the page, together

with a count, for example:

ERROR LOOP ZEROP

3 symbols in table

14.3.5 The XREF command (cross-reference a Hie)

Once the symbols are correct, you need to tell SRCXREF which source file you

want cross-referenced. Typing 'XREF' will produce the prompt:

Xref file :

to which you should reply with the name of a file at which the cross-referencer

is to start. The referencing will continue along a series of files which have been

'joined' using the LNK directive and will finish when END is encountered or a
LNK file is not found. Note that MASM directives to change drives are ignored,

so you must do this using OS commands.

SRCXREF will read the rile(s) and look up the names you entered in the symbol
table. It will then print a summary and return to command mode.

105

14.3.6 The RESULT command (print results)

This should be the command you issue after using the XREF command. The
program will prim the symbol name and a definition of its usage, for example:

ERROR

ERROR used at Line 15 in EXAMPL

LOOP

LOOP used at Line 23 in EXAMPL

ZEROP

ZEROP used at Line 6 in EXAMPL

3 symbo L s in tab L e

If there are many symbols in the table, there may be many entries printed out.

In this case, it is wise to use a printer to get a hard-copy of the results, or,

alternatively, to send them to a 'SPOOL file where you can examine them at your

leisure. The printer can be enabled and disabled using CTRL B and CTRL C

respectively.

14.4 Using the TRACE utUities (TTRACE and BTRACE)

The TRACE utility comes in two forms and the appropriate form should be

substituted wherever the term TRACE is used throughout this book. BTRACE will

run on the BBC Microcomputer and works on either side of the Thbe, however

for use in the 6502 Second Processor the locations used by TTRACE (&E600-&F7FF)
are often more convenient.

Except in special circumstances, every instruction executed by the program is

traced. In most cases this is done by placing them in a 'scratch pad' and allowing

them to run; in other cases (for example, JSR and BRK) it is done by simulation.

Information which you request is reported before the execution of each instruction;

the amount of this information is determined by the current reporting level (defined

in some commands). Errors are reported at the global reporting level (defined by
the 'RT' command) and this may differ from the current reporting level.

You can, if you wish, define an interrupt key. This can be used to break into tracing
or lengthy print operations, for example.

BTRACE occupies the memory from &6A00 to &7C00. It also uses &6800 to &69FF,
as variables area, and locations &7E and &7F in page zero.

TTRACE occupies the memory from &E600 to &F7FF. It also uses &E400 to &E5FF,
as variables area, and locations &E0 and &E1 in page zero.

106

All numbers which are input to TRACE must be in hexadecimal and must be
preceded by If a one-byte value is expected by TRACE and you give it a two-
byte value, the low byte will be used.

14.4.1 Use of breakpoints and reporting

This group of commands includes the following:

BS Set breakpoint

BC Clear breakpoint

DB Display breakpoints

RT Set global reporting level

RH Set reporting high memory point

RL Set reporting low memory point

ST Stack trust

TC Clear trust address

TS Set trust address

DT Display trusts

IK Set interrupt key

BH Set break high memory point

EN Set entry point for trace

CO Continue tracing

SS Snapshot

Each of the commands is described below.

Set breakpoint (BS)

This command has the following format:

BS <address> <optionaL count>

and it will set a breakpoint at <address>. If you do not specify the count, a count
of zero will be assumed.

When <address> is reached, TRACE will break in if the count is zero; otherwise

it will decrement the count and continue.

The following example will set a breakpoint at address &1914 with a count of zero:

BS 819U

Clear breakpoint (BC)

This has the format:

BC <address>

and it removes the breakpoint at <address>.

107

Display breakpoints (DB)

This gives a list of the currently-set breakpoints, with their counts, in descending
order of address, for example:

191 D 0000

1914 0020

To use this command, you merely type 'DB'.

Set global reporting level (RT)

This command has the format:

RT <reporting options>

and it defines the 'level' of tracing information output. The following reporting

options are available:

Option Meaning

NONE Report nothing

AB Report all but the following options (defined)

ALL Report everything described below

ADDR Report the execution address

HEX Report the opcode in hexadecimal form

OP Report the opcode in mnemonic form

A Report contents of A register

X Report contents of X register

Y Report contents of Y register

P Report contents of flag register

S Report contents of stack pointer

If you do not use the RT command, a default value of ALL' wiD be used. The output
from this looks like the following:

1900 A9 00 LDAIM 800 A=01 X=54 Y=07 P=..1B S=F8

1902 85 70 STAZ 870 4=00 X=54 Y=07 P=..18..Z. S=F8

Set reporting high memory point (RH)

This command allows you to define a page address in memory above which
reporting will not take place. It has the format:

RH <byte value>

108

Reporting will be suppressed if the program counter high byte equals or exceeds
<byte value>. The default value is &80, corresponding to an address of 32768
decimal.

Set reporting low memory point (RL)

This command allows you to define a page address in memory below which

reporting will not take place. It has the format:

RL <byte va Lue>

Reporting will be suppressed if the program counter high byte is less than <byte

value>. The default value is &00.

Stack trust (ST)

This command allows you to suppress reporting in subroutines if the stack 'level'

goes below a given value. Its format is;

ST <byte value>

It is used in conjunction with the TS command (described below): TS allows you

to to suppress reporting in a given subroutine; ST allows you to suppress it in

subroutines below a given 'level'

Reporting will resume when the stack level returns to the given level or above.

Set trust (TS)

This command adds a trust address to the 'trust table'. It allows you to suppress

the trace output in a particular subroutine. The formal of the command is as follows:

TS <address>

If, on tracing a JSR instruction, <address> is found to be in the trust table, reporting
will be temporarily turned off until the stack level rises to the current level or above.

Clear trust address (TC)

This removes a trust address from the trust table. Its format is as follows:

TC <address>

Display trust addresses (DT)

You can display the current trust addresses by typing "DT". They will be given in
descending order of address and will look something like the following:

1952

2100

3002

40A3

109

Set interrupt key (IK)

If you wish, you can define an interrupt key and this could be used to break into
over-long tracing operations, for example. The format of the command is as follows:

IK <byte va Iue>

<byte value> corresponds to the value of the key as defined in the section on
INKEY in the BBC Microcomputer System User Guide and must be given in the

hexadecimal form. For example,

IK &B8

would define the key as an interrupt key.

If you are interpreting or printing store, the interrupt key will be checked before

the start of each line of output. If you are tracing, it will be checked at most once

every 256 instructions. When the key is found to be depressed, a return will be
made to command level (the ' + ' prompt).

Set break high-memory point (BH)

If the program counter is above the break high-memory point, the interrupt key
will not be checked. You can specify this address using the BH command. Its format

is as follows:

BH <by t e va I ue>

where <byte value> is the high byte of the address.

The following example would set the break high-memory point to &F000:

BH &F0

Set entry point (EN)

This command is used to define the smrting point for tracing. Its format is as follows:

EN <address>

EN does not cause tracing to start; this operation is performed by the CO command
(see below).

Continue tracing (CO)

The 'CO' command continues tracing from the current address; it is also used to

start tracing, after you have defined the start point using the 'EN' command. The
format of the command is as follows:

CO <optionaL reporting level>

If a current address has not been defined, the command will fail.

110

The reporting level, if present, will be made the current reporting level; otherwise,
the global reporting level will be used.

Snapshot (SS)

This instruction displays the full status at the start of the current instruction. It

does execute the instruction.

14.4.2 Looking at memory

This group of commands includes the following:

IT Interpret (disassemble) store

PT Print store

Interpret store (IT)

This command allows you to interpret (disassemble) store from the given address;

it displays the addresses and opcodes in the following way:

190F 91 70 STAIY 870

1911 D1 70 CMPIY 870

1913 EA NOP

1914 DO 23 BNE 823

Standard MASM mnemonics are used.

The format of the command is as follows;

IT <address> <optional address>

Store will be disassembled from <address> and the process will stop at <optional

address>. If the latter is not present, disassembly will stop at &FFFF. To produce
the above example, the following command would have been used:

IT 8190F 81914

Print store (PT)

This command allows you to print store from the given address; it displays the
contents in the following way:

0070 00 1A 00 00 00 00 36 00

0078 00 00 36 00 00 00 36 00

0080 02 FF 52 DF FF FF FF FF

The format of the command is as follows;

PT <address> <optionaL address>

111

Store will be printed from <address> and the process will stop at <optional
address>. If the latter is not present, printing will stop at &FFFF. To produce the

above example, the following command would have been used;

PT &0070 80087

14.4.3 Patching memory and registers

This group of commands includes the following:

PS Patch store locations

PR Patch register

Each of these commands is described below.

Patch store (PS)

This command allows you to modify data and instructions in the computer's

memory. Its format is as follows:

PS <address>

After you type the command, the contents of <address> will be displayed and you

can then modify them. The command is interactive, in that you can modify a

number of locations in succession with the minimum amount of effort. If you type

' + ' after an address, or in place of an address, the contents of the next address
will be displayed and you can modify them also. Similary, if you type ' - ', the

contents of the previous location will be displayed and you can modify these. When

you have finished modifying store, you can return to command level by pressing

either RETURN or ESCAPE.

As an example, the following dialogue will change locations &1911 and &1913 to
&D1 and &EA, respectively:

PS 81911

1911 D9 D1 +

1912 70 +

1913 GO EA <RETURN>

Here, the underlined items would be typed in by you.

Patch register (PR)

This command allows you to modify ('patch') the contents of the A, X, Y, P or
S register; only one of these can be modified with a single command. Its format
is as follows:

PR <regname> <byte value>

112

For example, the following commands will alter the X and A registers to &70 and
&FF:

PR X &70

PR A &FF

14.4.4 Memory protectloii

This group of commands includes the following:

SP Store protect

DP Display store protections

SA Store allow (unprotect)

Each of these commands is described below,

Store protect (SP)

If a memory location in your program is being corrupted and you do not know
how this is happening, you can find out by using this command. It has the following
format:

SP <address> <byte vaLue>

Suppose, for example, that the location &1900 should contain the value '&55', but

it is being changed somewhere in your program. You would type the following:

SP &1900 &55

Each time a store-modifying instruction is obeyed, TRACE would check if it is

altering address &1900. If it is, a message similar to the following will be displayed

and you can inspect the code that is causing the problem:

Protection failure at 1900 was 88 should be 55

Display protections (DP)

This command gives you a list of protected locations, in descending order of

address. All you need do is type in 'DP' and you will get a display which looks

something like the following:

191D DO

1918 91

190C 48

Store allow (SA)

This command removes a given location from the table of protected addresses.

Its format is as follows:

SA <address>

113

For example, the following command would remove &1900 from the protection
table:

SA S1900

14.4.5 Realtime tracing

Single-stepping through time-critical subroutines to find errors will cause
complications. The commands described below are intended to help you in this
situation. They include the following:

RS Set realtime point

RC Clear realtime point

DR Display realtime points

Set realtime point (RS)

This command has the following format:

RS <address>

<address> will be added to the table of realtime addresses. Whenever a JSR

instruction is executed, its address will be checked against those in the table. If

it is found, then instead of simulating the JSR instruction, the call will be made

from within TRACE and the subroutine will run at real time speed,

Clear realtime point (RC)

This command removes an address from the realtime table. It has the following
format;

RC <address>

Display realtime points (DR)

This command gives you a list of realtime points, with their expected values,in
descending order of addresses. All you need do is type 'DR' and you will get a
display something like the following:

1950

2102

3000

4002

114

14.4.6 Miscellaneous

Set sideways ROM number (SR)

This command allows you to trace code in sideways ROMs. It has the following

format:

SR <hex value>

If <hex value> is > = 0, tracing will take place only in the sideways ROM specified.

If it is < 0 tracing will take place in all sideways ROMs.

Since this command applies to the sideways ROMs in the BBC Microcomputer, it

does not apply when tracing in the Hibe.

Restrict tracing of operation codes (TO)

This command restricts the class of operation codes which will be reported. It

has the following format:

TO <i nteger>

the contents of <integer> have the following significance:

<bit> Class of operation codes reported

0 Control codes

1 Loops

2 Stacks and tests

3 Arithmetic and the rest

Thus,

TO &F traces all instructions

TO &3 traces loops and control codes only
TO &8 traces arithmetic instructions

115

APPENDIX A The macro

substitution method

The following algorithm is used to substitute variables and parameters when a macro
is called:

1 Substitute macro parameters throughout the macro

2 For each line do the following:

(i) If it is not a directive, substitute for string variables in the line

(ii) Else, if the directive is not LCL or GBL, substitute for strings after the
directive

(iii) Else (for LCL or GBL), do nothing

3 Next line, until MEND or MEXIT

116

APPENDIX B MASM error

messages

MASM error messages can be divided into two groups: those which always stop
an assembly (called 'fatal' errors) and those which stop an assembly only if STOP
ON is set (called 'non-fatal' errors). Both groups are listed below:

B.l MASM fatal errors

Assembly stopped

This is printed at the end of the first pass of an assembly in which one or more
errors were detected.

ASSERT failed

This is caused when the condition part of an ASSERT directive did not yield a TRUE

result. It warns you that something you assumed to be true about the assembly

was not.

Bad command

This is given when MASM does not recognise a command typed in response to

the 'Action:' prompt. The HELP command will cause a list of valid commands to

be displayed.

Bad expression

When one of the expressions given in response to the SAVE command's prompts

cannot be understood by MASM (eg contains an identifier it doesn't know about),

this error is given.

Bad FS

This means 'Bad filing system' as is given when an attempt is made to use disc

MASM on the Net/ADFS.

Bad macro definition

This is caused by an error occuring between the MACRO and MEND parts of a
macro definition, eg a badly formed MACRO line.

Bad macro library

If the response to the ASM command's 'Macro library:' prompt does not yield a
string that can be used as a filename, this error is given.

117

Bad nesting

This is caused by the end marker of one 'structure' being encountered when another
type of structure is still open. It is roughly analogous to ending a FOR loop with
an UNTIL in BASIC. The structures of MASM are WHILE..WEND, MACRO..MEND,

and

Bad offset

This is caused when the response to the GET command's 'Offeet:' prompt does
not yield a suitable number.

Bad option

This is caused by specifying an illegal option in one of the MASM commands. For
example, only 'A' and 'N' are valid SYMBOL options.

Bad processor

This is caused by giving an illegal processor type letter in the SAVE command. Valid

processors are 'T' or 'P' (for the TUbe), or T or 'H' (for the I/O processor).

Bad quallHer

This error is given when an attempt is made to assemble a source file in directory

X. This is where MASM puts the object files, so the source file would be overwritten.

Bad value

This occurs in the WIDTH and LENGTH commands when an illegal number is

given.

Can't open

This means that MASM can't open the XREF output file, for example, because a

locked file of the same name already exists.

Code overwriting source

This occurs when the amount of code generated by a program is much larger than
the source code generating it. It should never occur if MASM is used properly.

Doubly defined MACRO

This error is given when the same macro name occurs in more than one MACRO

directive. Macros should only be defined at a single point, and can't be redefined.

END/LNK in macro

The only thing that may terminate a macro definition is MEND. If either of the

above directives occurs in a macro definition, this error will be given.

118

Escape

This is printed whenever the user presses ESCAPE.

Expression stack overflow

This means that an expression in an operand is too complex for MASM to evaluate.
It should only occur in expressions where brackets are nested extremely deeply.

File too big

Source files must be less than 17K. This error means you should split a large source
file into two or more smaller ones.

Heap overflow

This means MASM has run out of space in which to store string variables. It can
only be cured by changing the source program to use shorter strings.

Local label table overflow

This is caused by calling macros with local labels very frequently. See the command

MLEVEL for a way of curing the problem.

Mac def in expansion

This means MASM encountered two MACRO directives without an intervening

MEND. Although macro calls may be nested, macro definitions may not.

Macro nesting too deep

Macros may only call each other (or themselves) to a level of eight deep. Deeper

nesting causes this error.

Macro parameter table full

This occurs when the text to be substituted by macro parameters totals more than

250 characters.

Macro space exhausted

This means MASM has run out of space to save macro definitions. It is very unlikely

that this will happen, but if it does you will have to use fewer or shorter macros.

No macro being deflned

This is caused when a MEND directive is encountered without a corresponding

MACRO.

No symbols

This is printed when a SYMBOL command is issued before an ASM or after an ASM
in which no symbols were defined.

119

Stack fault

Will only occur if there is a bug in MASM: report it to Acornsoft.

Stack overflow

This occurs when structures (WHILE..WEND, C.. 1. .]) are nested too deeply. It

will not occur with sensible use of the structures.

Stack underflow

See 'Stack fault'.

Stopped

This is printed when a ! directive is used and causes assembly to stop. See chapter 10.

Symbol table overflow

This occurs when more than 1536 symbols have been encountered in the source.
The BBC MOS, BASIC and Acornsoft COMAL all assemble without this error

occurring, so you shouldn't get it.

Too many macros

See 'Macro space exhausted'.

B.2 MASM non-fatal errors

Bad directive use

This occurs when a symbol used in a directive's expression has not been defined yet.

Bad JMI

This is caused by an instruction of the form JMI &XXFF when MASM is in CPU

0 mode, which will crash when executed on a standard NMOS 6502 (but not the
CMOS type).

Bad label

A label must be between one and seven characters long and may only contains
letter or digits. It must start with a letter. Anything in the label field of a line not

obeying these rules will cause this error to be generated.

Bad local label number

These must be two-digit numbers (see section 8.3).

Bad drive number

This is printed when the number after a > or < directive is not a valid drive.

120

Bad opcode

This is caused by an unrecognised instruction/directive in the opcode field of a
line of assciiibly source.

Bad operand

This is reported when an expression contains an object which should be an

operand, eg a label or variable, but isn't recognised as such.

Bad operator

This is reported when an expression contains an object which should be an
operator, eg + or ;CC:, but isn't recognised as such.

Bad OPT

The expression after the OPT directive should lie in the range 0-15.

Bad routine name

The name of a routine (section 8.3) should conform to the same rules as any other

label.

Bad string length request

This occurs when an attempt is made to create a string variable whose length is

greater than 127 characters.

Bad zero page value

This is given when an address operand which should be less than 256 isn't, eg
LDAZX 4321 will give this error.

Badly defined manifest symbol

This occurs when a symbol is forward-referenced too indirectly for the assembler

to resolve it by the end of the first pass. An example of code that might cause this is:

LDA A

A * B

B * 1

In this example, the symbol A is defined by a forward reference to B. Thus B will
be known by the end of the first pass, but A won't be known until the end of the
second pass. The LDA instruction cannot therefore know the value (and hence
number of bytes of) its operand, and cannot be assembled.

Division by zero

This occurs during expression evaluation when the right hand operand of a divide
operator is zero.

121

Double deflned variable

A variable defined using the GBL directive may only be defined once. Thereafter

it may be set to different values using SET.

End of line missing

This occurs when the end of the source file is encountered halfway through a source

line. All lines in MASM source should be terminated by a carriage return.

Expansion line too long

When string variables and macro parameters are substituted, they may make the

source line longer than it was. If the line grows to more than 250 characters after

substitution, this error will be given.

Label already deflned

Once a label has been set to a certain value, it retains it for the rest of the first

pass and all of the second pass. An attempt to redefine a label that has already been
set will yield this error.

Line too long

A source line must be less than 255 characters long, and terminated by a carriage
return character.

Missing [

If the assembler comes across an 'else' (!) or "endif and has no corresponding 'if
([), this error is given.

Missing WHILE

This error occurs when a WEND directive is encountered and the assembler has

not had a WHILE to match it with.

No current macro

This is given when an attempt is made to access local variables outside of the macro

level. Only global variables may be used outside of macros.

Offset to <label> out of range

This occurs in branch instructions when the destination label is more than 129

bytes after or 126 bytes before the first byte of the branch.

Syntax error

This means that MASM is unable to make any sense of a line of source code.

122

Too late for LCL directive

The LCL directives must be the initial lines of a macro definition. Inserting other
directives or code-generating lines between the MACRO and LCL will cause an error

to be given.

Too late for ORG

The ORG directive must be given before any code has been generated by the source

in the current file.

To late to change CPU

The CPU directive must be given before any opcodes have been encountered in

the assembly.

Type mismatch

This is given when strings and numbers are mixed illegally in expressions, eg 123

;CC: "MASM" (both Operands of ;CC; should be strings).

Unknown symbol

This error is caused by an attempt to access a symbol which has not been defined

in an expression.

Unknown variable symbol

This is caused in a similar way to the last error, but refers to symbols that are
preceded by the variable sign '$'.

123

Index

C 45, 72-8

] 45, 72-8

! 59

: 46, 72-8

% 29

< 30

> 33

. 29, 72-8

= 25

& 26

^ 27, 72-8

a 27, 72-8

27, 72-8

$ 72-8

\ 72-8

* 4, 24

6502 Instructions 9

6502 Second Processor 1, 32, 83,

97, 103

Absolute addressing 12, 13, 14, 15,

24

Accumulator addressing 12

Addressing 12 - 25

Assembly language 2

ASSERT 59

Boolean 49

Breakpoints 107. 108, 109

BTRACE 1. 94. 106

Code tracing in sideways ROMs 115

Control characters 66

COPY 61

CPU 32

The cross-referencer commands

ADD 101

CLEAR 102

124

INIT 102

LIST 102

XREF 102

RESULT 103

SUMMARY 103

Cross-referencing a non MASM

file 103

CTRL B 7

CTRL C 7

Cursor edit mode 62, 63

Declaring symbols 24
Defining a byte of data 25

Defining byte pair 26
Defining page titles 31

Defining the start of code 29

DELETE 61

Descriptive mode 64
Display mode 63
End of file marker 4

Ending an assembly(END) 31

END IF 45

EDIT 1, 4, 60, 62, 63, 80

Errors 59, 83

File cross-referencing 89, 96
File loading 64, 88
File printing 91

File saving 64
Forming a closure 73, 74
Forward references 3, 24

Function key card 1

GBLA 50

GBLL 50

GBLS 50

Generating command strings 79

Global operations 71

Global variables 50, 53

HELP 104

High level languages 2, 17, 30
IF 45

Immediate addressing 12

125

Implied addressing 12

Indirect addressing 14

lOMASM I

LAND 49

LCLA 50

LCLL 50

LCLS 50

LEOR 49

Limiting global operations 71

Listing a program 91

LNK 30

LNOT 49

Local variables 50, 53, 54, 55

Logical operators 48

Loop directives 56, 57 58, 6l
LOR 49

Machine code 2, 3, 30

Macro directive 39, 56, 58, 78

Macro library 6, 44, 82

Macros 38, 52

formal definition 38-39

formal parameters 38-39

formal parameters default

value 40

header line 39

Markers 71

MASM commands 81-83

ASM 82

PRINT 84

WIDTH 86

LENGTH 86

SYMBOL 86

STOP 86

GET 88

XREF 89

TERSE 46, 90

MLEVEL 90

SAVE 87

MASM directives 24-33, 45, 50, 84

MASM mnenomics 10, 11

126

MASM operators

arithmetic 19

logical 20, -48, 49

relational 48

rotation 20

shift 20

string 21

MASM source code

comment I6

label 16, 17

opcode 16

operand 16
MASM sy mbols 17, 18, 24

MASM unary operators

arithmetic 21

NOT 22

string 22

MEXIT directive 58

Numeric constants 18

Object code 3

ORG 29

Operand 16

Opcode 16
Operating system commands 6, 23,

34-37, 60-68, 79, 92

OPT 32

Patterns 72-78

PR 1

Presetting store 29

PRINT 1, 59, 84, 93

Program counter 29

Protecting memory 113

Realtime tracing commands

Set realtime points II4

Clear realtime point II4

Displa\' realtime point II4

Regular expressions ""2

Relative addressing I4

Reserving variable space 2^

Restricting operation code

127

reporting 115

ROUT 53

Routine labels 53-55

Searching 72-75

SET directives 51

Setting a breakpoint 98

Setting file parameters 91-93

Setting print options 32

SHIFT COPY 63

SHIFT fO 70, 79

SHIFT fl 66, 79

SHIFT f2 64, 79

SHIFT f3 64, 67, 79

SHIFT f4 70, 79

SHIFT f5 63, 67, 70, 71, 79

SHIFT f6 67, 70, 79
SHIFT n 67, 68, 79

SHIFT f8 67, 79

SHIFT f9 65, 79

Source code 3

SRCXREF commands

ADD 104

CLEAR 105

INIT 105

LIST 105

XREF 105

Display breakpoints 108

Set global reporting level 108

Set reporting high memory

point 108

Set reporting low memory
point 109

Stack trust 109

Set trust 109

Clear trust address 109

Display trust address 109

RESULT 106

SRCXREF 1, 94, 96, 103-108

Status line 4

String constants 18

128

String operations 70-80

Switching mode 66
Symbol table" 3
TAB 61

Text copying 67, 68
Text deletion 64, 67

Text global operations 67, 69, 70,
71, 73, 76, 77, 78

Text insertiom from a file 64

Text loading 64-65

Text moving 67, 68
Text restoration 64

Text saving 67
TRACE commands

Set breakpoint 107

Clear breakpoint 107

Set interupt key 110

Set break high-memory point 110

Set entry point 110

Continue tracing 110

Snapshot 111

Interpret store 111

Print store 111

Patch store 112

Patch register 112

Store protect 113

Display protections 113

Store allow 113

Tracing in citical subroutines 114
TTL 31

TTRACE 1, 94, 97, 106

Using the special instruction set 32
WEND 56

WHILE 56, 57, 58

XREF 1, 94, 95, 96, 100

XREF commands 100

ADD 101

CLEAR 102

INIT 102

LIST 102

129

RESULT 103

SUMMARY 103

XREF 102

Zero page addressing 12, 13, 14, 15,

24, 25

130

131

