
 ADVANCED DISC TOOLKIT

 CONTENTS

1. INTRODUCTION

2.A.D.T Commands

 BACKUP
 BFIND
 BUILD
 CATALL
 DCOMP
 DEX
 DFIND
 DIRALL
 DUMP
 ENVELOPE
 FCOMP
 FCOPY
 FORM
 FREE
 FSN
 KEYL
 LIST
 MAP
 MDUMP
 MENU
 MEX
 MFIND
 MLOAD
 MOVE
 MRUN
 ROMS
 SECTORS
 SETADR
 SPT
 SWAP
 TYPE
 UNPLUG
 VERIFY
 XFER

3. FITTING A.D.T

4. COMMAND SUMMARY

1. INTRODUCTION

A.D.T is a utility ROM designed to use the BBC computer or BBC
'Electron' fitted with the Disc Filing System DFS or the Advanced
Disc Filing System ADFS.

It increases the computing power of the machine by adding new
commands to the machine's operating system, MOS. These commands
are instantly accessible from inside a program or typed in from
the keyboard.

22 of the commands are disc utilities which use one of the Acorn

disc filing systems. The other commands are general utilities
which can be used in any filing system, such as a TAPE machine
without a disc interface.

A.D.T has 5 utilities which are also in DFS these are:-

BACKUP
BUILD
DUMP
LIST
TYPE

These are in A.D.T for machines which only have ADFS as a 'Disc
Filing System'. This is because ADFS does not have these in ROM,
they are supplied as utilities on disc. For information on the
disc filing system, refer to the 'filing system's' Disc User
Guide.

Chapter 2 explains the parameters used by ADT commands, followed
by a description of each command, under the headings:

Purpose
Examples
Note

It is advisable not to just read the examples but to use them as
well. This will often make the description of the command much
clearer. In the example, text appearing like this should be typed
into the computer.

Chapter 3 shows how to fit ADT into a BBC computer or Electron

Chapter 4 gives a brief description of each command.

2. ADT COMMANDS

Type *HELP ADT

This shows a list of all the commands. Their parameters are shown
in brackets after the command. A parameter is a number, name,
letter or address which the command needs to operate correctly.
Some parameters are optional, meaning that the command will
supply its own number or address. Optional parameters are shown
in round brackets, e.g. (<start>), (<rom>), (<drive>), etc.

If a command is typed in with a parameter missing, a message will
be displayed showing the correct syntax for the command, eg.
SYNTAX : MOVE <start> <end> <dest> (<rom>).

To avoid command names conflicting with other ROMs, ADT commands
can be preceded with letter 'A' e.g. *AMENU is the same as *MENU
and *AFORM is the same as *FORM. For instance, DFS and ADT both
have the facility *DUMP. If you wanted to be sure of using the
*DUMP in ADT then you should use *ADUMP.

Commands can be abbreviated by adding a full-stop to the
abbreviated name so long as the name remains unique to ADT and
other MOS commands. *XF. is the same as *XFER and *UN. is the
same as *UNPLUG. *KEY is an MOS command and *KEYL is an ADT
command. *KEYL cannot be abbreviated because it could be
interpreted as *KEY by the MOS.

ADT commands will be accepted in both upper and lower case.

From now on, the BBC computer used with the 2nd processor will be
referred to as the input/output processor.

Parameter Definitions:-

In this manual, the ampersand (&) printed in front of a number
means that the number is in hexadecimal (base 16) otherwise the
number is in decimal (base 10). When entering a Hex number in an
ADT command '&' should NOT be printed in front of the number.

 Bytes, zero to 225.

Determines how data is printed on the screen and how much on each
line about to be printed. A byte can be printed as a Hex number,
an ASCI character, or part of a dissassembled line. The list
below shows how a byte is printed and the byte increments per
line for different values of

=0 6502 Dissassembler
=1-99 ASCII plus HEX in byte increments
=100 ASCII in 32 byte increments
=101-199 ASCII in -100 byte increments
=200 HEX in 11 byte increments
=201-255 HEX in -200 byte increments

<d.adr> Disc sector address

A sector address is a HEX number which refers to one sector on a
disc. The *INFO command gives the location of a file as a disc
sector address. To translate a track sector address into a disc
sector address and vice versa, use the following formula:

For DFS:- Sector address=Track*10+sector
 Track=Sector address DIV 10
 Sector=Sector address MOD 10

For ADFS:-Sector address=Track*16+sector
 Track=Sector address DIV 16
 Sector=Sector address MOD 16

<dest> Destination 'drive' number

This is used by *MOVE to mean a destination memory address

<end> The 'end' memory address....see <start

Sometimes it is easier to express an 'end' memory address as the
number of HEX bytes from the 'start' memory address. This can be
done by preceding the number with '+' e.g +100,+500, etc.

<fs.afsp> Filing system name,Ambiguous file specification

<fsp> File specification

<load> Load memory address

(L) Large disc i.e. Double sided 80 track (ADFS only)

(M) Medium size disc i.e. Single sided 80 track (ADFS only)

<n> Decimal number 0 to 255

<rom> Sideways ROM number 0 to 15

<spt> Sectors per track 10 to 20

If the 'Acorn' DFS or ADFS is the current filing system then this
parameter need not be used. It is assumed that DFS will use 10

sectors per track and ADFS 16.

Some DFS's use 16,17 or 18 sectors per track. In a double density
mode 'spt' can be used to change the default number of sectors
per track.

Note:- This parameter relies on the fact that the DFS supports a
call to access any sector on a track via OSWORD &7F

<srce> Source drive number

<start> Start memory address

A memory address is a HEX number 0 to &FFFF FFFF, so called 32
bit addressing.

If a 2nd processor is not connected, addresses 0 to &FFFF will
 refer to memory in the I/O processor. The top 2 bytes are
ed e.g. address &FFFF1234 is the same as &1234.

If the 2nd processor IS connected, addresses 0 to &FFFFFFFF will
refer to memory in the 2nd processor, and addresses &FFFF0000 to
&FFFFFFFF refer to memory in the I/O processor. To summarise:-

I/O processor only

 addresses 0 to &FFFF -I/O processor memory.

I/O processor & 2nd processor

 addresses 0 to &FFFFFFFF - 2nd processor memory
 addresses &FFFF0000 to &FFFFFFFF -I/O processor memory

For more information on the I/O and 2nd processor memory
addresses refer to Chapter 9, 'Distinguishing between Memories'
in the 6502 User Guide

<str> String

Strings which contain spaces, must be enclosed between double
quotation marks. The 'wild card' character '#' can be used to
replace a single character in a string to represent all possible
characters e.g. AB# could represent ABA ABB ABC etc.

To enter a string as a HEX number precede the number with '&'
e.g. &20F0FF.

(T) Tube

This parameter is only effective if the 2nd processor is
connected to the I/O processor and turned 'On'.

Because the 2nd processor has more free memory than the I/O
processor, which is not affected in size by screen mode or ROM
software increasing the value of PAGE, commands which use the (T)
option can make use of this extra memory. However, anything in
memory before the command is used will be overwritten. The main
advantage of using the 2nd processor is in increasing speed

*BACKUP <srce> <dest> (T)

 Purpose:-

 To copy the contents of one disc on to another. <srce>
 is the source drive from which sectors are read and
 <dest> is the destination drive to which the sectors

 are written. If (T) is given then the 2nd processor
 will be used.

 A disc can be copied using a single drive where <srce>
 and <dest> are the same number, but swapping the discs
 between reading & writing will be necessary.

 Before copying the disc, a message is displayed to
 confirm that this is really what you want. Press 'Y' to
 copy the disc, or any other key to exit the command.

 Examples

 *BACKUP 0 1
 GO Y/N? Y

 Copies the disc in drive 0 onto the disc in drive 1.

 *BACKUP 0 1 T
 GO Y/N? Y

 Copies the disc in drive 0 onto the disc in drive 1
 using the second processor.

 Note:-

 Because the command uses free memory, it is advisable
 to save your program first. It is not possible to copy
 between discs of different sizes, e.g. 40 track to 80
 track or different formats. e.g. DFS to ADFS.This
 command can only be used in a DISC filing system.

*BFIND <str>
 Purpose:-

 To search a BASIC program for every occurrence
 of the string <str> and print the line number and
 string where it is found. The rest of the BASIC line is
 not listed

 Examples

 *BFIND "hello"

 searches for "hello"

 *BFIND P%

 searches for integer variable P%

 *BFIND JSR#######

 searches for a string of ten characters starting with
 "JSR"

 *BFIND &F4

 searches for the HEX byte &F4 which is the token for
 the BASIC keyword REM Any BASIC keyword may be searched
 for if the token of the keyword is known. These are
 listed on pages 483, 484 of the 'BBC User Guide'

*BUILD <fsp>

 Purpose:-

 To create a text file called <fsp> consisting of
 characters typed from the keyboard for the purpose of
 being 'EXECuted' later.A line of numbers is printed
 before each new line of text. Termination of the entry
 of characters can be achieved by pressing ESCAPE at the
 start of a new line.

 Example

 *BUILD !BOOT
 0001 MODE 3
 0002 VDU19,0,4,0,0,0,0
 0003 *AMENU $
 0004 <ESCAPE>

 Creates an EXEC file called '!BOOT'

*CATALL

 Purpose

 To list the filenames in the current directory and the
 directories which are a member of the current
 directory. The directory name is printed first,
 followed by the filenames. Directories are shown with a
 D after their name. The list is indented by one space
 for each level of directory entered. This command is of
 most use in ADFS which uses a hierarchal 'tree'
 structure of directories, that can be nested to
 numerous levels.

 Example

 *CATALL
 $
 !BOOT
 menu
 GAME D
 BOARD D
 board1
 board2
 board3
 ARCADE D
 arcade1
 arcade2
 arcade3
 LIBRARY D
 utility1
 utility2
 utility3

 Lists the filenames in each directory starting from the
 current directory, in this example $.

 Note

 In DFS this command will list the filenames in the
 current directory only, since DFS does not allow
 directories to be nested, ie. a directory cannot
 contain another directory.

*DCOMP <srce> <dest> (<n>)

 Purpose:-

 To compare the disc in drive <srce> with the disc in

 drive <dest> sector for sector and print the sector
 address of the sectors which are not the same. The
 command is terminated after the first 8 different
 sectors are found. If (n) is used, the command will be
 terminated after the first (n) different sectors. If
 (n) is zero the ALL different sector addresses will be
 printed.

 A single drive can be used to compare 2 discs, but
 <srce> & <dest> will be the same number and the discs
 will have to be swapped after each 'read'.

 Examples:-

 *DCOMP 0 1

 Compares the discs in drive 0 and drive 1 and
 terminates after the first 8 different sectors

 *DCOMP 0 1 1

 Compares the discs in drives 0 and 1 and terminates
 after the first different sector

 Note:-

 Comparing discs uses free memory and so it is advisable
 to save your program before using this command. It is
 not possible to compare 2 discs of different sizes or
 format e.g. 40t & 80t OR DFS & ADFS. This command can
 only be used on a DISC filing system.

*DEX (<d.adr>) (<spt>)

 Purpose:-

 To examine and edit disc sectors <d.adr> is a sector to
 be edited, by default 0, <spt> is the number of sectors
 per track, by default 10for DFS and 16 for ADFS.

 Each sector contains 256 bytes of which some or all can
 be displayed at once depending upon the screen mode.
 Modes 0 & 3 will display the whole sector. Moving the
 cursor is done with the 4 'cursor keys' Editing a byte
 is done by over-typing the byte from the keyboard. The
 new byte will appear in HEX inside the round brackets
 and as an ASCII character above the flashing cursor. To
 enter a number of HEX bytes press the COPY key. Round
 brackets will change to square brackets. Now only HEX
 values will be accepted i.e. 0-9 and A-F. Press COPY
 again to enter characters as ASCII. Moving forward or
 back a sector is by using the 4 SHIFT/cursor keys. If
 the sector has been altered, a message is displayed for
 saving the sector back on to disc. Press 'Y' to save
 the sector or any other key not to save. Press ESCAPE
 to exit this command.

 Editing Keys:-

 Cursor keys for cursor movement
 SHIFT/left back 1 sector
 SHIFT/right forward 1 sector
 SHIFT/down forward 1 track
 SHIFT/ up back 1 track
 COPY input type HEX or ASCII
 CTRL/B change background colour

 CTRL/F change foreground colour
 CTRL/P Print screen
 ESCAPE Exit command

 Examples:-

 *DEX

 To edit the first sector of the disc in the current
 drive

 *DEX:1.30

 To edit sector &30 of the disc in drive 1.

 *INFO!BOOT
 $!BOOT 000000 FFFFFF 000010 127

 This shows that the !boot file starts at sector 127

 *DEX 127
 To edit the first sector of !BOOT

 Note:-

 A disc to be edited must be of the correct format for
 the current filing system, eg. If ADFS is the current
 filing system, then this command can only edit ADFS
 discs. The current filing system can be identified with
 the *FSN command. Editing discs is only possible in a
 Disc Filing System and in a screen mode which has 40 or
 80 columns.

*DFIND <str> (<d.adr>) (<d.adr>)

 Purpose:-

 To search a disc for every occurrence of the string
 <str> and print the sector, byte address, and string
 where the string is found. The second parameter <d.adr>
 determines at which drive and sector the search will
 start, by default 0 in the current drive. The last
 parameter <d.adr> is the last sector, where the search
 will end

 Examples:-

 *DFIND !BOOT

 Searches ALL sectors in the current drive for !BOOT

 *DFIND"!BOOT $" 0 2

 Searches sectors 0 and 1 in the current drive for !BOOT
 *DFIND #BOOT :1.0 2

 Searches the first 2 sectors in drive 1 for a 5
 character string, ending in BOOT

 *DFIND &214241:1
 Searches the disc in drive 1 for the sequence of bytes
 21 42 41

 *DFIND ########

 Displays all sectors in the current drive as ASCII

 characters.

 Note:-

 This command can only be used in a disc filing system.

*DIRALL

 Purpose

 To list all the directory names in the current
 directory and the directories which are a member of the
 current directory. The list is indented by one space
 for each level of directory entered. This command is of
 most use in ADFS which uses a hierarchical tree
 of directories that can be nested.

 Examples:-

 *DIRALL
 $
 GAMES D
 ARCADE D
 BOARD D
 LIBRARY D

 Lists all directory names starting from the current
 directory, in this example $.

 Note:-

 In DFS this command will print the current directory
 name only since DFS does not allow directories to be
 nested.ie a directory cannot contain another directory.

*DUMP <fsp> ()

 Purpose:-

 To display the contents of file <fsp>. determines
 the format of the display, by default 8, which displays
 the file as hex bytes and ASCII characters in
 increments of 8 bytes.

 Examples

 *DUMP !BOOT

 Displays !BOOT in HEX and ASCII

 *DUMP MCODE 0

 Displays MCODE dissassembled

 *DUMP Letter 100

 Displays Letter in ASCII only

 *DUMP Numbers 200

 Displays Numbers in HEX only

 NOTE:-

 Because DFS has a similar utility *DUMP this command my
 appear not to be working properly. To be sure that the
 ADT command is used, precede it with the letter 'A'
 e.g. *ADUMP

*ENVELOPE (<n>)

 Purpose:-

 To list ENVELOPE definition <n>, by default Envelope
 definitions 1-16. An explanation of the ENVELOPE
 parameters can be found on pages 182 & 245 of the 'USER
 GUIDE'

 Example

 *ENVELOPE

 Lists the ENVELOPE definitions 1-16

 *ENVELOPE 1

 Lists definition 1

 *ENVELOPE 1 2 3

 List definitions 1,2 & 3

*FCOMP <fsp> <fsp> (<n>)

 Purpose:-

 To compare file<fsp> with file<fsp> byte for byte, and
 print the address and bytes from the 2 files in HEX and
 ASCII where they differ. The command is terminated
 after the first 8 differences are found. If <n> is
 used, the command terminates after the first <n>
 differences. If <n>=0 ALL differences will be printed.

 Examples:

 *FCOMP Letter Letter2

 Compares Letter with Letter2 and terminates after the
 first 8 different bytes

 *FCOMP Letter Letter2 1

 Compares Letter with Letter2 and terminates after the
 first difference.

 Note:-

 A comparison of 2 files is only possible if they are
 the same length.

*FCOPY <fsp> <fsp< (T)

 Purpose:-

 To create a copy the file <fsp> and give it a new name
 <fsp>. The file names must be different. If (T) is
 given then the 2nd processor will be used. This is
 useful for copying large files.

 Examples:

 *FCOPY Letter Letter2

 Creates a copy of Letter called Letter2

 *FCOPY:0.Letter :1.Letter2

 Creates a copy of Letter from drive 0, names it
 Letter2, and stores it on drive 1

*FORM 40/80 (<drive>) (M) (L) (C) (T)

 Purpose:-

 To initialize a new disc for reading and writing. The
 first parameter is the number of tracks to be formatted
 onto the disc. A 40 track drive will use 40 track discs
 and and 80 track drive will use 80 track discs. <drive>
 is the number which contains the disc to be formatted.
 (M) and (L) only apply to formatting ADFS discs. Use
 (M) to format a single sided 80 track disc and (L) to
 format a double sided 80 track disc. (C) only applies
 to formatting a DFS disc. It is used to create a dual
 catalogue disc.

 The (T) parameter can be used to format a single track.
 This can be useful when a track has become damaged and
 formatting the whole disc would lose valuable data. To
 format a track use track number to be formatted instead
 of the 40/80 parameter and use (T) after the drive
 parameter.

 The second and third parameters <drive> (M) (L) (C) can
 be repeated in the command to format more than one disc
 in the same command. Before formatting the first disc,
 a message is displayed to confirm that this is really
 what you want. Press 'Y' to format the disc of any
 other key to exit the command.

 A track No. is printed in HEX as each track is
 formatted. After formatting a track it is verified for
 legibility. see *VERIFY.

 Examples for DFS

 *FORM 80
 Format which drive ? 0
 Go (Y/N) ? Y

 Formats an 80 track disc in drive 0

 *FORM 80 0 C 2 C
 Go (Y/M) ? Y

 Formats both sides of an 80 track disc in drive 0 with
 dual catalogues

 Examples for ADFS

 *FORM 80
 Format which drive ? 0 (M) (L) ? M
 Go (Y/N) ? Y

 Formats a single sided 80 track disc in drive 0

 *FORM 40 0 1

 Go (Y/N) ? Y

 Formats a single sided 40 track discs in drives 0 AND
 1. It is not possible to format a double sided 40 track
 disc.

 Note:-

 DFS and ADFS use discs formatted to a different
 specification. The *FORM command will format a disc for
 use in the correct filing system e.g. It is not
 possible to format a DFS disc if the current filing
 system is ADFS. Use *FSN command to identify the
 current filing system. Formatting an ADFS disc uses
 free memory so it is advisable to save any program
 first.

 Formatting an ADFS disc can cause parts of the screen
 to be overwritten in some modes. However this will not
 affect the formatting command

 Dual Catalogue discs:

 Discs formatted with a dual catalogue, divide the disc
 space into two separate catalogues of which only one
 can be used at a time. Each catalogue uses one half of
 the disc space. The advantage of this, is to have an
 extra 29 files per side of a disc, totalling 60. The
 disadvantage is that the maximum file size is halved.
 Each catalogue is formatted with a special file
 !.!!!!!!!! The files themselves are empty, it is the
 entry in the catalogue that is important. These files
 must not be deleted. Use *SWAP to swap the 2
 catalogues.

*FREE (<drive>)

 Purpose

 To display the number of free and used files and disc
 space remaining and used on the disc in drive <drive>,
 by default the current drive. Free and used files are
 given in decimal. Disc space is given as sectors in hex
 and bytes in decimal.

 Examples

 *FREE

 Displays the free space on the current drive.

 *FREE 2

 Displays the free space on drive 2.

 Note

 This command only operates in DFS on a DFS disc.
 However, ADFS has a similar command *FREE, which
 displays the amount of free space in the current drive.

*FSN (<n>)

 Purpose:-

 To identify the current filing system by name. If <n>
 is used, the filing system name, which has the filing
 system number <n> will be printed.e.g

 Examples

 *FSN
 Disc Filing System

 DFS is the current Filing System

 *FSN 3
 ROM filing system

 Filing system number 3 is the Rom filing system.

 *KEYL (<n>)

 Purpose:-

 To list function key definition <n>. By default
 definitions 0-15. A definition includes the *KEY syntax
 and key number, so it can easily be edited using the
 cursor and COPY keys. Function keys with no definitions
 are not listed.

 Examples

 *KEYL

 Lists key definitions 0 to 15

 *KEYL 5

 Lists key definition 5

 *KEYL 0 1

 Lists key definitions 0 and 1

 *LIST <fsp>

 Purpose:-

 To list the text file <fsp> with line numbers

 Example

 *LIST !BOOT
 0000 MODE 3.
 0001 VDU19,0,4,0,0,0,0
 0002 *AMENU $

 Lists the the text file !BOOT

 *MAP (<drive>)

 Purpose:-

 To list a map of the free space on the disc in drive
 <drive>, by default the current drive. The map is
 printed as a list of disc addresses and lengths of free
 space in sectors both in HEX.

 The free space map changes whenever a file is saved or
 deleted. This causes spaces to form between files,

 fragmenting the disc space. To eliminate the free
 spaces, use the filing system's *COMPACT command.

 Examples

 *MAP

 Lists the free space map on the current drive.

 *MAP 1

 Lists the free space on drive 1.

 Note:-

 This command only operates in DFS on a DFS disc.
 However ADFS has a similar command *MAP which lists the
 free space on the current drive.

 *MDUMP <start> <end> () (<rom>)

 Purpose:-

 To display the contents of memory from <start> to
 <end>. determines the format of the display, by
 default 8, which displays memory as HEX bytes and ASCII
 characters in increments of 8 bytes. (rom> determines
 which ROM is used if memory is read from addresses
 addresses &8000 to &BFFF in the I/0 processor.

 Examples:

 *MDUMP 1900 1A00

 Displays memory from &1900 to &1A00 in HEX and ASCII

 *MDUMP 8000+4000 0 14

 Disassembles memory in ROM 14 from &8000 to &C000

 *MDUMP FFFF8000+4000 0 14

 Disassembles memory in ROM 14 from &8000 to &C000 in
 the I/O processor. The same as the previous example,
 but with a 2nd processor.

 MODE 0
 *MDUMP 0 FFFF 172

 Displays memory in MODE0 from 0 to &FFFF in ASCII

 MODE 0
 *MDUMP 0 FFFF 18

 Displays memory in MODE 0 from 0 to &FFFF in HEX and
 ASCII

 *MENU (<dir>) (<rom>)

 Purpose:-

 To display the files in directory <dir>, by default the
 current directory, so that one can be selected for
 execution. The title of the directory is printed at the
 top of the screen and the entry names are printed
 below. An entry pointer => can be moved using the 4

 cursor keys to point to one of the entries on the
 screen. To execute a program, place the pointer
 opposite the file name and press RETURN. The programme
 will be loaded into memory and run. To LOAD a program
 only press 'L'. To enter directory '$' press '$'.

 The programme is run according to the type of program
 it is, ie. BASIC, EXEC, or Machine Code using the *MRUN
 command. Alternatively press 'X' to EXECute a file or
 'R' to RUN a file or 'H' to CHAIN a BASIC programme.

 In ADFS the directory entry can be a directory name. A
 directory name is shown with a 'D' after it. To enter
 the directory, move the pointer opposite the directory
 name and press RETURN. To move to a directory's parent,
 ie. one level back, press 'A'. To move to a previous
 directory press 'P'. Using these keys it is possible to
 to enter ALL directories on a disc and consequently,
 find any programme.

 This command can be used to load a file into a Sideways
 ROM socket if the 'load address' of the file is
 &FFFF8000. Moving the pointer opposite the file and
 pressing 'L' will load the file into RAM socket <rom>
 Pressing RETURN or 'R' will LOAD and RUN the program
 provided that it is in a language like 'VIEW' or
 'VIEWSHEET'. IF <rom> is omitted, the program will be
 loaded into the first socket found to contain RAM, e.g.
 socket 13 on a B+ or 7 on a Master. Pressing a HEX
 number 0 to F will load the program into that socket
 number and then redisplay the menu.

 Press ESCAPE to exit this command.

 Key Definitions

 Cursor keys Pointer movement
 RETURN RUN program
 $ Enter directory $
 0 to F LOAD program into S/W RAM
 H CHAIN BASIC program
 L LOAD program
 R RUN program
 X EXECute
 CTRL/B Change background colour
 CTRL/F Change foreground colour
 ESCAPE Exit command

 ADFS Key Functions

 ^ Enter parent directory
 & Enter 'root' directory (same as $)
 P Enter previous directory

 Examples:

 *MENU

 Displays files from the current directory

 *MENU $

 Files from directory $

 *MENU $ 0

 Displays files from directory $ and selects Sideways
 ROM socket 0 Used when a program is loaded into SWR
 after pressing RETURN

 Note:-

 It is not possible to use this command in screen modes 2 & 5

 *MEX (<start>) () (<rom>)

 Purpose

 To examine and edit the contents of memory. <start> is
 the start address from which memory is displayed, by
 default PAGE. determines the format of the display,
 by default 8, which displays memory as hex bytes and
 ascii characters, in increments of 8 bytes. <rom>
 determines which Rom is used if memory is read from
 addresses &8000 to &BFFF in the I/O processor.

 The cursor points to the current memory byte which is
 displayed as a HEX byte surrounded by round brackets,
 and an ASCII character above a flashing cursor. Moving
 the cursor is done by using the 4 cursor keys; editing
 is done by overtyping the current memory byte from the
 keyboard. The display will be updated to reflect the
 change in memory.

 To enter numbers as HEX bytes press COPY. The round
 brackets will change to square brackets. Now only HEX
 numbers will be accepted ie 0-9 and A-F. Press COPY
 again to enter characters in ASCII.

 Moving forward or back a screen is done using
 SHIFT/cursor keys. To move the current byte to the top
 left of the window, press CTRL/^. Whilst viewing memory
 from a ROM press CTRL/R to view memory from the next
 ROM No. To examine memory on the other side of the
 tube, if the 2nd processor is connected, press CTRL/T.

 If memory is viewed in disassembler, it is possible to
 follow the address of a JSR, JMP or branch instruction
 by pressing RETURN whilst the memory pointer is over
 the instruction 'op/code'.

 Press ESCAPE to exit this command.

 Editing Keys

 Cursor keys Cursor movement
 SHIFT/left cursor Move cursor to left margin
 SHIFT/right cursor Move cursor to right margin
 SHIFT/down cursor Move 1 page down
 SHIFT/up cursor Move 1 page up
 COPY Swap cursor, HEX/ASCII
 TAB Cycle display format
 CTRL/^ Home current memory byte
 CTRL/B Change background colour
 CTRL/F Change foreground colour
 CTRL/P Print screen
 CTRL/R Increment ROM No.
 CTRL/T Examine other side of 'Tube'
 ESCAPE Exit command

 Disassembler Only

 RETURN Follow JSR,JMP or Branch
 CTRL/X Return from JSR
 SPACE Move cursor forward

 Examples:

 *MEX

 To examine memory at PAGE in HEX and ASCII

 *MEX 8000 0 14

 To disassemble memory from &8000 in ROM 14

 MODE 0
 *MEX 8000 172 14

 To examine memory in Mode 0 from &8000 in ROM 14 in
 ASCII

 *MFIND <str> (<start>) (<end>) (<rom>)

 Purpose:-

 To search memory for the string <str> from <start> ,by
 default 0, to <end> by default &FFFF. <rom> is the ROM
 No. to read if the search includes memory from &8000 to
 &BFFF in the I/O processor. The address of the string
 in HEX and the string is printed for every occurrence
 of the string.

 Examples:

 *MFIND BASIC

 Searches the memory for the string "BASIC"

 *MFIND BASIC D000 DFFF

 Searches from &D000 to &DFFF for the string "BASIC"

 *MFIND &4241534943

 Searches ALL memory for the bytes 42 41 53 49 43

 *MFIND ################

 Displays ALL memory in ASCII in increments of 16 bytes

 Note:-

 Using this command in screen mode 7 produces some
 surprising results when the search includes screen
 memory from &7C00 to &7FFF in the I/O processor. Every
 occurrence of the string is printed on the screen which
 in so doing produces another occurrence, rapidly
 filling the screen with strings. To solve this, confine
 the search to above or below screen memory or change to
 another screen mode.

 *MLOAD <fsp> (<load>) (<rom>)

 Purpose:-

 To LOAD file <fsp> into memory and move it to the

 address <load>. If <load> is omitted from the command,
 the file's LOAD address is used instead.

 This command is useful for loading a program from disc
 which is designed to run at an address below PAGE. It
 can also be used to load a file into SWR socket <rom>.
 The file <fsp> is copied into SWR only if the address
 specified in the command is &FFFF8000 or &8000 if a 2nd
 processor is not connected. If <rom> is omitted from
 the command the file is loaded into the first socket
 found to contain RAM, e.g 13 on the B+ or 7 on the
 Master.

 Examples:

 *MLOAD GAME

 Loads GAME and then moves it to its LOAD address

 *MLOAD GAME E00

 Loads GAME and moves it to &0E00

 *MLOAD Romfile FFFF8000 0

 Loads Romfile into SWR No.0

 *MLOAD Romfile

 Loads Romfile into SWR. The files load address must be
 FFFF8000. Use *SETADR to change a file's load address.

 Note:-

 If a program is moving to an address below OSHWM ,
 normally PAGE, the Tape Filing System is selected.
 ROMs loaded into SWR which claim workspace like DFS
 should be initialized by pressing BREAK.

 *MOVE <start> <end> <dest> (<rom>)

 Purpose:-

 To move a block of memory lying between <start> and
 <end> to the address <dest>. <rom> is the ROM No. used
 if <start> is an address between &8000 and &BFFF in the
 I/O processor.

 Examples:

 *MOVE 1900 1A00 1B00

 Moves the block between 1900 and 1A00 to 1B00

 *MOVE 8000+4000 2000 15

 Moves the contents of ROM 15 to an address &2000

 *MOVE FFFF8000+4000 800 15

 Moves the contents of ROM 15 to address &800 If a 2nd
 processor was connected, memory would be copied from
 the I/O processor to the 2nd processor.

 *MRUN <fsp> (<load>) (<exec>) (<rom>)

 Purpose:-

 To load file <fsp>, move it to the address <load>, and
 start execution of the program at address <exec>.
 IF <load> and/or <exec> are omitted from the command,
 the files load and/or execution addresses respectively
 are used instead. This command is useful for executing
 a BASIC or 'machine code' program that is designed to
 run at an address below PAGE.

 This command can also be used to load and run a ROM
 file from SWR socket <rom> (see *MLOAD). The file <fsp>
 is loaded into SWR and run only if the program is a
 language like VIEW or VIEWSHEET.

 This command makes a sensible guess about a program's
 language ie BASIC, EXEC or machine code and runs the
 program accordingly. It reads the file's execution
 address to determine its language. The list below shows
 which execution addresses can be used to identify a
 program. A file's address can be changed with the
 *SETADR command.

 Language Execution Address

 BASIC &8023
 BASIC &801F
 BASIC &B823
 BASIC &B82B
 EXEC &00000000
 EXEC &FFFFFFFF
 ROM program &FFFF8000
 Machine code any other address

 Examples:

 *MRUN GAME

 Runs GAME using the file's load & execution addresses

 Note:-

 If a program is loaded below OSHWM the TAPE filing
 system is selected.

 *ROMS (<rom>)

 Purpose:-

 To catalogue Sideways ROM <rom>, by default ROMS 0-15.
 <rom> can be the title of the ROM as an alternative to
 the ROM number. The catalogue of a ROM shows its ROM
 socket number, the type of program in the ROM, the
 title of the ROM and its version number if it has one.
 A ROM can be a language shown as (L), a service ROM
 (such as ADT) shown as (S) or both a language and a
 service ROM shown as (SL). A Rom which has been
 UNPLUGed will be shown as (**), see *UNPLUG.

 Examples:

 *ROMS

 Catalogues ROMS 0-15

 *ROMS 15

 Catalogues ROM socket 15

 *ROM BASIC

 Catalogues the rom socket containing BASIC

 *ROMS 12 13 14 15

 Catalogues ROMS 12 to 15

 *SECTORS <d.adr> <d.adr> <start> R/W

 Purpose:-

 To read or write sectors from or to a disc. The first
 parameter specifies the drive and the first sector to
 read or write. If a drive is not specified, the current
 drive is used. The second parameter specifies the last
 sector to read or write. <start> is the memory address
 to which the sectors are read or written. The last
 parameter, by default 'R', determines whether sectors
 are read from disc into memory 'R', or written to disc
 from memory 'W'.

 The second parameter <d.adr> can be given as the number
 of bytes in HEX to read or write, if preceded by '+'.
 This makes it easy to read a file into memory using the
 files sector address and length.

 Examples:

 *SECTORS 0 2 1900

 Reads sectors 0 and 1 on the current drive to &1900

 *SECTORS :1.0 2 1900

 Reads sectors 0 and 1 from drive 1 to address &1900

 *INFO !BOOT
 $.!BOOT 000000 FFFFFF 000010 027

 Shows the first sector of !BOOT to be at sector &27

 *SECTOR 27+10 1900

 Reads !BOOT at sector &27 to address &1900

 Note:-

 This command can only be used in a Disc Filing System

 *SETADR <fsp> <load> (<exec>)

 Purpose:-

 To set the load address of a file <fsp> to <load> and
 the execution address to <exec>. If <exec> is omitted,
 the file's execution address will remain unaltered. Use
 the filing system's *INFO command to display a file's
 addresses

 Examples:

 *SETADR GAME 1900

 Changes GAME's load address to &1900
 *SETADR GAME 1900 2300

 Changes GAME's load address to &1900 and it's execution
 address to &2300

 *SETADR GAME &1900 8023

 Changes GAME's load address to &1900 and it's execution
 address to &8023. (The execution address &8023 is used
 by the *MRUN command to identify a BASIC program.)

 *SPT (<n>)

 Purpose:-

 To change the default number of sectors per track to
 <n>. The default is 10 as used by 'Acorn' DFS. Some
 Acorn compatible DFS's can operate in a double density
 mode which use up to 18 sectors per track. This command
 can be used so that ADT commands like DEX, DFIND and
 SECTORS, will work on discs which have up to 18 sectors
 per track.

 Example:

 *SPT 18

 Changes the number of sectors per track to 18

 *SPT

 Changes the number of sectors per track to 10

 Note:-

 This command can only be used in the Disc Filing
 System. Pressing BREAK re-sets the number of sectors
 per track to 10. This command will accept a decimal
 number between 1 and 31 inclusive. Any other number
 will be treated as 10.

 *SWAP (<drive>)

 Purpose:-

 To swap the 2 catalogues on a dual catalogue disc in
 the current drive. See *FORM command.

 Examples:

 *SWAP

 Swaps the catalogues on the disc in the current drive

 *SWAP 1

 Swaps the catalogues on the disc in drive 1.

 Note:-

 This command can only be used in the Disc Filing System
 on a dual catalogue DFS disc, formatted by the *FORM
 (C) command. All DFS command should operate normally on
 a dual catalogue disc, with the exception of *BACKUP.

 It IS possible to backup a dual catalogue disc with the
 *BACKUP command provided the right catalogue on the
 disc, is the current catalogue. The 'right' catalogue
 is the one which has the most 'free' and 'used' space
 as displayed by the *FREE command. One of the 2
 catalogues will have twice as much 'used' and 'free'
 space as the other. Ensure that this is the current
 catalogue before issuing a *BACKUP command.

 *TYPE <fsp>

 Purpose:-

 To list text file <fsp> without line numbers. see *LIST

 Example:

 *TYPE !BOOT
 MODE 3
 VDU19,0,4,0,0,0,0
 *AMENU $

 Types the text file !BOOT

 *UNPLUG (<rom>)

 Purpose:-

 To unplug SWR <rom>. This has the effect of turning a
 ROM off without having to physically remove it from
 it's socket. <rom> can be the title of the ROM as an
 alternative to the ROM No.

 If <rom> is omitted from the command, each ROM title is
 displayed followed by :. Press 'Y' to UNPLUG or any
 other key to leave the ROM intact. If a ROM which has
 already been UNPLUGged is displayed and the response
 and the prompt is NO, the ROM will be plugged back IN.

 Examples

 *UNPLUG 14

 To unplug the Rom in socket 14

 *UNPLUG DFS

 To unplug DFS. The value of PAGE will not be affected
 until BREAK or CTRL/BREAK is pressed.

 Note:-

 This command should be used with caution. Some ROMS can
 respond unpredictably to this command and not produce
 the intended effect. Pressing BREAK or CTRL/BREAK after
 UNPLUGing a ROM may, or may not, plug it back in. Type
 *HELP to see if the ROM has been plugged back in. To
 recover any lost ROM's, turn the machine off and then
 on, or use *FX200,2 and then press CTRL/BREAK.

 *VERIFY <drive>

 Purpose:-

 To verify all sectors of a disc in drive <drive> for
 legibility. If <drive> is omitted from the command, a

 message is displayed asking for the drive to verify.
 <drive> can be repeated in the command to verify more
 than one disc in the same command. A track number is
 printed in HEX as each track is verified.

 If verifying a track fails on the first attempt, a '?'
 is printed after the track number. This could mean
 temporary corruption of the disc caused by foreign
 matter adhering to the surface of the disc.

 If verifying a track, after 6 attempts the command is
 terminated and the disc fault is printed. This could
 mean permanent corruption of the disc.

 Examples:

 *VERIFY

 Verifies the disc in drive 0

 *VERIFY 0 1

 Verifies the discs in drives 0 and 1

 Note:-

 This command will NOT overwrite a program in memory; it
 can only be used in a Disc Filing System.

 *XFER <fs.afsp> <fs.afsp> (T)

 Purpose:-

 To copy a file from one filing system to another. The
 first parameter specifies the 'source filing system'
 and 'filename'. The second parameter specifies the
 'destination filing system' and 'filename'. The filing
 systems should be given as a name e.g.TAPE, DISC, ADFS,
 NET. IF (T) is given, then the 2nd processor will be
 used. This is useful for transferring large files.

 Examples:

 *XFER TAPE DISC

 To transfer ALL files on tape to the current directory
 in DFS. Filenames will be concatenated to 7 letters.

 *XFER TAPE.MUSIC DISC

 To transfer MUSIC from TAPE to the current directory in
 DFS

 *XFER DISC.:1.$.MUSIC ADFS.:0.$.LIBRARY.SOUNDS

 Transfers $.MUSIC in DFS on drive 1 to SOUNDS in
 directory LIBRARY in ADFS on drive 0

 *XFER DISC ADFS T

 Transfers all files in the current directory and drive
 in DFS to the current directory and drive in ADFS using
 the second processor

 (Pencilled in note)
 ADFS to DFS

 *ADFS
 *DIR :0.$
 *DISC
 *DIR :1.$
 *XFER ADFS DISC (end of note)

 Transferring files from ADFS to DFS

 Insert the DFS disc into drive 0 and the ADFS disc into
 drive 1

 *DISC
 *DIR:0.$
 *FADFS
 *DIR :1.$. GAMES
 *XFER DISC ADFS

 This example would transfer all files in directory $ in
 DFS on drive 0 to directory $.GAMES in ADFS on drive 1.

 Transferring files from DFS to ADFS using a single drive.

 Insert a DFS disc into drive 0

 *DISC
 *DIR:0.$
 *FADFS
 *DIR :0.$.GAMES
 *XFER DISC ADFS

 This example will transfer files from directory $ in
 DFS on drive 0 to directory $.GAMES in ADFS on drive 0.
 Prompts are displayed when to swap the 2 discs.
 The 'source' disc is the one used with the source
 filing system and the destination is the one used with
 the destination filing system.

 Note:-

 This command will transfer files between filing systems
 which support the commands to read and write files. It
 is NOT possible to transfer a file from disc to ROM.
 Copying a large file from tape might cause the file to
 overwrite the screen in some modes. This might be
 avoided by selecting MODE 7 (MODE 6 on the ELECTRON)
 before transferring a file, or alternatively, using the
 (T) option if a 2nd processor is connected.

 3. FITTING ADT

 For the BBC computer

 After turning off the power take off the top cover.
 Release the keyboard and fold it back to reveal the 4
 ROM sockets in the bottom righthand corner. Insert the
 ADT into one of the empty ROM sockets, with the notch
 in the chip facing the rear of the computer. Take care
 not to bend any of the legs. Replace the keyboard and
 top cover.

 4. COMMAND SUMMARY

 *BACKUP copy one disc to another
 *BFIND search a BASIC program for a string
 *BUILD create a text file
 *CATALL list filenames from the current directory

 *DCOMP compare 2 discs
 *DEX Disc sector editor
 *DFIND search a DISC for a string
 *DIRALL list directories from current directory
 *DUMP display the contents of a file
 *ENVELOPE list the ENVELOPE definitions
 *FCOMP compare 2 files
 *FCOPY create a copy of a file
 *FORM initialize a new disc for reading & writing
 *FREE display the amount of free space on a disc
 *FSN identify the current filing system
 *KEYL list the function keys definitions
 *LIST list a text file with line numbers
 *MAP display a map of the free space on disc
 *MDUMP display the contents of memory
 *MENU select a program from a menu for execution
 *MEX memory editor
 *MFIND search MEMORY for a string
 *MLOAD load a program to a specific address
 *MOVE move a block of memory
 *MRUN run a program at a specific memory address
 *ROMS catalogue the SWR sockets
 *SECTORS read or write sectors onto a disc
 *SETADR change a file's LOAD and EXEC addresses
 *SPT change the default sectors per track
 *SWAP swap catalogues on a 'dual CAT' disc
 *TYPE list a text file WITHOUT line numbers
 *UNPLUG turn off a ROM
 *VERIFY verify a disc for legibility
 *XFER transfer files between 2 filing systems

 Pencilled notes:-

 Turn Off cursor VDU 23,1,0;0;0;0;
 *COMPACT
 TURN On cursor VDU 23,2,1;0;0;0;

