
(C)Copyright Advanced Computer Products Limited 1986

A.R.M.

The Advanced ROM Manager Manual

NOTICE

Advanced Computer Products Limited reserves the right to make
improvements to the product described in this manual at any time and
without notice.

This manual is copyrighted, and may not in whole or part, be copied,
photocopied, translated, or reduced to any electronic medium or machine
readable form without the prior consent, in writing, from Advanced
Computer Products Limited.

Advanced Computer Products Ltd,
6 Ava House,
High Street,
CHOBHAM,
Surrey GU24 8LZ.

Tel. (0276) 76545

Advanced Computer Products Limited cannot be held responsible for any
loss of data or damage to equipment as a result of this product.

This product is not intended to operate in sideways RAM.

Tube, Electron, and Plus 1 are tradenames of Acorn Computers Limited.

CONTENTS

1 FITTING ARM 1
2 ARM Commands 2

AUTOROM 4
GOROM 5
KILL 6
MAKEROM 7
OFFER 8
RDUMP 9
REX 10
RLOAD 11
RMOVE 12
ROMS 13
RSAVE 14
RSUM 15

COMMAND SUMMARY

*AUTOROM - makes a program run from ROM
*GOROM - execute a machine code subroutine in a ROM
*KILL - turn off a ROM
*MAKEROM - create ROM files for the ROM filing system
*OFFER - send a command to a specific ROM
*RDUMP - display the contents of a ROM
*PYREX - examine/edit the contents of a ROM/RAM
*CARLOAD - load a file into sideways RAM
*RMOVE - copy a ROM into memory
*ROMS - catalogue the sideways ROM sockets
*RSAVE - save a ROM to a file
*RSUM - display a ROM checksum and CRC bytes

-1-

1 FITTING ARM
For the BBC Computer

After turning off the power, take off the top cover of the computer by
removing the four fixing screws located at the rear of the computer and on
the underside near the front.

Now locate the ROM sockets. In the BBC B+ they are situated to the right
of the power supply. The two sockets nearest the front of the computer
are used by the speech synthesizer and should not be used. In the BBC B
the ROM sockets are situated beneath the keyboard, so remove the four
screws securing the keyboard to the computer and move carefully to one
side just enough to expose the four ROM sockets located on the right side
of the board.

Insert the ARM ROM into one of the empty ROM sockets, with the little
notch on one end of the chip facing the back of the computer. Take care
not to bend any of the legs on the chip. On the BBC B screw the keyboard
back on to the computer. Replace the top cover.

Turn on the computer and type *HELP ARM. A list of commands should
appear on the screen. If no list appears it is likely the ROM is not
positioned correctly in its socket.

For the Electron

The ARM ROM must be fitted to the Plus 1 via a suitable ROM carrier
board, such as the ROM adaptor boards supplied by ACP.

Fitting the ROM cartridge

Turn off the power and insert the ROM cartridge into one of the slots in
the top of the Plus l. Ensure the label on the cartridge faces the keyboard.
If in doubt refer to "Using cartridges" on page 16 of the Plus 1 User Guide.

Turn on the power to the computer and type *HELP ARM. A list of
commands should appear on the screen. If no list appears it is likely the
ROM cartridge is not correctly positioned in the Plus l.

-2-

2 ARM COMMANDS
Type *HELP ARM

This shows a list of all the commands. Their parameters are shown in
brackets after the command. A parameter is a name, number, address or
a letter which the command needs to operate correctly. Some parameters
are optional, meaning the command will supply its own number or address.
Optional parameters are shown in round brackets, eg.

(<start>), (<end>), (<dest>), etc.

If a command is typed in with a parameter missing a message will be
displayed showing the correct syntax for the command, eg.

SYNTAX : REX <rom> (<start>) ()

To avoid command names conflicting with other ROMs, ARM commands
can be preceded with the letter A, eg. *AREX is the same as *REX and
*ARSAVE is the same as *RSAVE.

Commands can be abbreviated by adding a full stop to the abbreviated
name, so long as the name remains unique to ARM and other *
commands, eg. *RL. is the same as *RLOAD and *RS. is the same as
*RSAVE.

ARM commands will be accepted in both upper and lower case.

From now on, the BBC Microcomputer used with the second processor
will be referred to as the I/O processor.

Parameter Definitions

In this manual & printed in front of a number means the number is in
hexadecimal (hex), base 16, otherwise the number is in decimal, base 10.

 - bytes, 0-255.

Determines how data is printed on the screen, and how much on each a
line. A byte can be printed as part of a hex number, an ascii character, or
part of a disassembled line. The list below shows how a byte is per line for
different values of .

 = 0 65C02 diaassembler
 = 1-99 ascii + hex in byte increments
 = 100 ascii in 32 byte increments
 = 101-199 ascii in <0> - 100 byte increments
 = 200 hex in 11 byte increments
 = 201-255 hex in <0> - 200 byte increments

<dest> - Destination memory address.
<end> - End memory address. See <start>

Sometimes it is easier to express an end memory address as the number
of hex bytes from the start memory address. This can be done by

-3-

preceding the number with +, eg. ~100, +500, etc.

<fsp> - File specification, eg :1.$.PROG

<rom> - Sideways ROM number, 0-15.

<start> - Start memory address. (I/O processor only)

A memory address is a hex number from 0 to &FFFFFFFF, so called 32
bit addressing.

If a second processor is not connected addresses 0 to &FFFF will refer to
memory in the I/O processor. The top two bytes are ignored, eg.
address &FFFF1234 is the same as &1234.

If a second processor is connected addresses 0 to &FFFEFFFF will refer
to memory in the second processor and addresses &FFFF0000 to
&FFFFFFFF will refer to memory in the I/O processor. To summarise:

I/O Processor Only

addresses 0-&FFFF - I/O processor memory

I/O Processor and Second Processor

addresses 0-&FFFEFFFF - second processor memory

addresses &FFFF0000-&FFFFFFFF - I/O processor memory

For more information on I/O and second processor memory addresses
refer to Chapter 9, 'Distinguishing between memories' in the 6502 Second
Processor User Guide.

-4-

*AUTOROM <fsp> <title> <fsp>
Purpose

To create a ROM file of a program which can be run from ROM or
sideways RAM. This command is useful far 'making ROMs' of frequently
used programs. Instead of loading the program into memory from TAPE
or DISC, the program can be loaded very quickly from ROM.

The first parameter <fsp> is the output file which can be programmed into
an EPROM or loaded into sideways RAM using the CARLOAD command.
The second parameter <title> is the title given to the ROM as displayed by
*HELP. The maximum length of a title is 20 characters. The last
parameter <fsp> is the program to be put into the ROM file. The maximum
size of this file is &3E2B bytes, and only the first 10 characters of the
filename are used in the ROM file.

Both BASIC and machine code programs can be 'ROMed'. The program
is run by typing * followed by the name of the program (the last parameter
above). The program is copied from ROM into memory at the programs
LOAD address, and then RUN. Machine code programs are run from the
programs execution address. If a program is copied below OSHWM, this
is normally the value assigned to PAGE, then the TAPE filing system is
selected.

This command identifies a BASIC program from its execution address.
BASIC program execution addresses should be &8023, &801F or &802B.

Example

*AUTOROM MYROM "MY FIRST ROM" PROG1
Creates a ROM file called MYROM from the file PROG1. The ROM title is
"MY FIRST ROM".

Note

This command uses user RAM, so save any program in memory before
using this command.

-5-

*GOROM <rom< <start> (A/X/Y)
Purpose

To start execution of a machine code subroutine in a ROM. <rom> is the
ROM socket with the subroutine. <start> is the memory address of the
subroutine in the ROM. A/X/Y, by default all 0, are the values assigned to
the 6502 registers A,X, and Y on entry to the subroutine.

Example

*GOROM 15 9A45
Starts execution of a subroutine in ROM 15 at address &9A43.

Note

This command can be used to start execution of a subroutine at any
address in the I/O processor. This can be useful if a second processor is
connected.

-6-

*KILL (<rom>)
Purpose

To 'kill' sideways ROM <rom>. This has the effect of turning a ROM off,
without having to physically remove it from its socket. <rom> can be the
title of the ROM as an alternative to the ROM number.

If <rom> is omitted from the command, each ROM title is displayed
followed by :. Press Y to 'kill' the ROM or any other key to leave the ROM
intact. If a ROM which has already been 'killed', is displayed and the
response to the prompt is N, the ROM will be 'turned' back on.

Examples

*KILL 14
To unplug the ROM in socket 14.

*KILL DFS
To turn off DFS. The value of PAGE will not be effected until BREAK or
CTRL BREAK is pressed.

Note

This command should be used with caution. Some ROMs can respond
unpredictably to this command, and not produce the intended effect.
Pressing BREAK or CTRL BREAK after killing a ROM will not turn it back
on. To recover any 'lost' ROMs turn the machine off and then on, or use
*FX200,2 and then press CTRL BREAK. Type *HELP to see which
ROMs are active in your computer.

-7-

*MAKEROM <fsp> <title> <fsp>
Purpose

To create ROM files for the ROM filing system. The first parameter <fsp>
is the file which this command creates to store the ROM files. The second
parameter <title> is the title given to the ROM, as displayed by a *HELP.
The last parameter <fsp> is the file this command uses to make a ROM
file. This parameter may be repeated to put more than one file into ROM.
The file size of the first parameter <fsp> may not exceed 16K, so there is
a limit to the size and number of ROM files created by this command.

The file <fsp> which this command creates could be programmed into an
EPROM, and the file(s) could then be accessed from the ROM filing
system. Alternatively, if' sideways RAM is available the file could be
loaded into memory using the *RLOAD command.

The ROM filing system is very similar to the TAPE filing system, except
files cannot be saved to ROM. To enter the ROM filing system type,
*ROM. Filing system commands include:

*CAT
*LOAD file
LOAD "file"
*RUN file
CHAIN "file"
*EXEC file
*OPT1, n

Examples

*MAKEROM DEMOROM DEMO PROG
Creates a file DEMOROM, with a title DEMO from the file PROG

*MAKEROM DEMOROM DEMO PROG1 PROG2 PROG3
Creates a file DEMOROM, with a title DEMO from the files PROG1,
PROG2 and PROG3.

Notes

This command uses user memory, so save any program in memory
before using this command. A "No room" error message is displayed if the
destination file size would exceed 16K, or if the user memory is not large
enough to take the ROM files. If the user memory is not large enough
select mode 7 (mode 6 on Electron) and try the command again. This
command cannot be used in the TAPE filing system.

-8-

*OFFER <rom> <command>
Purpose

To send a *command to a specific ROM. <rom> is the ROM socket which
the command is sent to. <command> is the *command.

This command is useful when two ROMs have the same command name
for two different commands. Normally the command would come from the
ROM which had the higher priority. Using *OFFER, the command can be
sent to either ROM, regardless of priority.

Example

*OFFER 15 ROMS
Sends the command *ROMS to ROM 15.

-9-

*RDUMP <rom> (<start>) (<end>) ()
Purpose

To display the contents of a ROM. <rom> is the ROM socket from which
memory is displayed. <start> is the first ROM address from which to
display memory, by default &8000. <end> is the last ROM address from
which to display memory, by default &8000 plus the size of the ROM.
determines the format of the display, by default 8, which displays memory
as hex bytes and ascii characters in increments of 8 bytes (see page 2).

Examples

*RDUMP 15
Displays memory from ROM 15 as hex and ascii.

*RDUMP 15 A000

Displays memory from ROM 15 starting from address &A000.

*RDUMP 15 8000+4000 0

Displays memory frcm ROM 15 in disassembler.

-10-

*REX <rom> (<start>) ()
Purpose

To examine/edit the contents of a ROM/sideways RAM. <rom> is the
ROM socket number from which memory is displayed. <start> is the start
address from which memory is displayed. determines the format of
the display, by default 8, which displays memory as hex bytes and ascii
characters in increments of 8 bytes (see page 2).

The cursor points to the current memory byte which is displayed as a hex
byte surrounded by round brackets and an ascii character above a
flashing cursor. Moving the cursor is done using the four cursor keys.

Moving forward or back a screen is done using the SHIFT cursor keys. To
move the current memory byte to the top left of the window press CTRL ^
(CTRL . on an Electron). To view memory from the next ROM socket
press CTRL R.

If memory is displayed in disassembler it is possible to follow the address
of a JSR, JMP or branch instruction by pressing RETURN whilst the
memory pointer is over the instruction opcode. To return from a JSR
press CTRL X or press RETURN whilst the memory pointer is over an
RTS instruction.

Press ESCAPE to exit this command.

Editing keys

CURSOR keys - cursor movement
SHIFT left cursor - move cursor to left margin
SHIFT right cursor - move cursor to right margin
SHIFT down cursor - move one page down
SHIFT up cursor - move one page up
TAB (CTRL I on Electron) - cycle display format
CTRL ^ (CTRL . on Electron) - home current memory byte
CTRL B - change background colour
CTRL F - change foreground colour
CTRL P - print screen
CTRL R - display next ROM socket
ESCAPE - exit command

Disassembler Only

RETURN - follow JMP, JSR or Branch
 or return from 3SR.
CTRL X - return from JSR

Examples

*REX 15
To examine ROM 15.

*REX 15 9000 0
To examine ROM 15 in disassembler starting at address &9000.

-11-

*RLOAD <fsp> <rom>
Purpose

To load file <fsp> into sideways RAM socket <rom>. This command can
only be used if sideways RAM is fitted in the computer.

Example

*RLOAD PROG 0
Loads file PROG into sideways RAM socket 0.

Notes

This command uses user memory, so save any program in memory
before using this command.

-12-

*RMOVE <rom> (<dest>) (<start>) (<end>)
Purpose

To copy all or part at a ROM to user RAM. <rom> is the ROM socket
number to be copied. <dest> is the destination memory address, by
default BASIC's value of PAGE. <start> is the start ROM address, by
default &8000. <end> is the last ROM address to move, by default the end
of the ROM.

Examples

*RMOVE 15
Moves the contents of a ROM 15 to PAGE.

*RMOVE 15 2000
Moves the contents of ROM 15 to address &2000.

*RMOVE 15 2000 8000+100
Moves the first 256 bytes of ROM 15 to address &2000.

-13-

*ROMS (<rom>)
Purpose

To catalogue the sideways ROM socket <rom>, by default ROMs 0 to 15.
<rom> can be the title of the ROM as an alternative to the ROM number.
The catalogue of a ROM shows its ROM socket number, the size of the
ROM (8K/16K), the type of program in the ROM, the title of the ROM and
its version number, if it has one. A ROM can be a language shown as (L),
a service ROM (like ARM) shown as (S), or both a language and a
service ROM shown as (SL). ROMs which have had the KILL command
used on them will appear as (**).

Examples

*ROMS
Catalogues ROMs 0 to 15.

*ROMS 15
Catalogues ROM socket 15.

*ROMS BASIC
Catalogues the ROM socket containing BASIC.

*ROMS 12 13 14 15
Catalogues ROM sockets 12, 13, 14 and 15.

-14-

*RSAVE <fsp> <rom>
Purpose

To save the contents of a ROM to the file <fsp>. <rom> is the ROM socket
number from which memory is read.

Example

*RSAVE PROG 15
Saves the contents of ROM socket 15 in a file PROG.

Notes

This command uses user memory, so save any program in memory
before using this command.

-15-

*RSUM (<rom>)
Purpose

To print a ROMs checksum and CRC bytes. <rom> is the ROM socket
number from which memory is read, by default sockets 0-15.

Examples

*RSUM
Prints a checksum and CRC for ROMs 0-15.

*RSUM 15
Prints a checksum and CRC for the ROM in socket 15.

*RSUM 0 1 2 5
Prints a checksum and CRC for the ROMs in sockets 0, 1, 2 and 5.

Note

Calculating a checksum and CRC takes approximately 5 seconds for a
16K ROM on a BBC computer and a little longer on a Electron. The
checksum and CRC are both two byte values. The checksum is simply the
addition of all the bytes in the ROM, while the CRC (Cyclic Redundancy
Check) is a little more complicated involving arithmetic shifts and EOR
operations.

CRC algorithm:

H = C EOR H
FOR X=1 TO 8
 T=0
 IF (bit 7 of H = 1) THEN HL=HL EOR &0810: T=l
 HL=(HL*2+T) AND &FFFF
NEXT X

where H and L represent the high and low bytes of the CRC and C
represents the character.

The above algorithm is not a BASIC program.

	A.R.M.
	The Advanced ROM Manager Manual
	NOTICE
	CONTENTS
	2 ARM Commands 2
	KILL 6

	OFFER 8

	COMMAND SUMMARY
	1 FITTING ARM
	For the BBC Computer
	For the Electron
	Fitting the ROM cartridge

	2 ARM COMMANDS
	Parameter Definitions
	I/O Processor Only
	I/O Processor and Second Processor

	*AUTOROM <fsp> <title> <fsp>
	Purpose
	Example
	Note

	*GOROM <rom< <start> (A/X/Y)
	Purpose
	Example
	Note

	*KILL (<rom>)
	Purpose
	Examples
	Note

	*MAKEROM <fsp> <title> <fsp>
	Purpose
	Examples
	Notes

	*OFFER <rom> <command>
	Purpose
	Example

	*RDUMP <rom> (<start>) (<end>) ()
	Purpose
	Examples

	*REX <rom> (<start>) ()
	Purpose
	Editing keys
	Disassembler Only
	Examples

	*RLOAD <fsp> <rom>
	Purpose
	Example
	Notes

	*RMOVE <rom> (<dest>) (<start>) (<end>)
	Purpose
	Examples

	*ROMS (<rom>)
	Purpose
	Examples

	*RSAVE <fsp> <rom>
	Purpose
	Example
	Notes

	*RSUM (<rom>)
	Purpose
	Examples
	Note

