

Tutor:al

CONTENTS

Section One - Installation

Section Two Inuoduction

Section Three - Meet the Turtle

Section Four Tuaching { 0go new tncks

Section Five Tus

tles can temenibet

Section Six Changing Logo's nund

Section Seven Muking more chunges

Section Eight Mahang pictures

Section Nine Tu
Section Ten Ko
Section Eleven
Section Twelve

Section Thirteen

Section Fourteen Afier Turile Graplucs

Section Fifteen

Section Sixteen Muorc bt niatticrs

Section Seventeen For teachers and parents,

Section Eighteen

Section Nineteen

e Anthineh
ursive Fattles

Turtle codours

Ruse about pectares

Movinig Turties

Back to Fromt

List procensag

Too! kit

Pages

13

4 7

8. 10

't 13
1416
WA N
20 22
23020
229

Wi 1

i3
s
47 4
1 Lo
L1 L3
Lo
L7 6O
uio 72

Section Twenty Logo Grammiar

Section Twenty-one Turtlc Graphics
Section Twenty-two Words snd Lists
Section Twenty-three Vanables

Section Twenty-four Anthmeuc

Section Twenty-five - Editing and Defining
Section Twenty-six Flow of Control
Section Twenty-seven | ogical operations
Section Twenty-eight |1 Outside World
Section Twenty-nine Wunlspace misnagernent
Section Thirty | uyo metsages

Section Thirty-one Glussnaty ol Printives

Index

8 Ut

/10
105 119
1L 1y
18 120
127 133
134 L
[0 S 2
| R T
b1 os
[TES I WA
[A

LUGI

LLGUIRJE LL.I70
5 GRANBY STil T, LUUGIB kOUGH
LEICES TExS.iTKE L=l 3DY
TEL. 0509 230248

SAVILG PROCEDURES ON TAPE AKND ECONET

Sore customers have repcrted problens with the primitive
SiVE. when trying to save files on cassette or on Econct
Fileserver.

The way round this problem is to create two smull procedurec.
The first saves your entire workspace and the second scves
named procedures or global variables., There is no proble..
with the primitive LOAD on either cassette or Ec net.

Te SSAVE @ FILH.&G: ‘
(¥ SPu.L ¢ FILE..x) POALL (*SPOGL)
E3D

U SSSAVE 1 FILLIadi ¢ PROCHAILS
(*SPuGL ¢ FILENAE) PO s PEOCLAIZS (#EPuCL)

zlD

Imagine you have created three procedures, TRIAGLE, S.Uaii,
PrlTaCOK and one glebzl variable, ANGLES,

“SAVE “SEAPES suves the entire workspace in a file called
SHAPES,

SSSAVE “ShAPES "G UAKE would save the sinsle procedure
"SUARE inthe file.

S55aVE "oHAPRS [S;U;M TRIAKGLL "AllGL&SJ woula save two
procedures and th.e global varizble AIGLES,

In short the procedur:s work exactly as tne primitive
SAVE as documentel in the manual.

Congratulations, you have bought the togotton Logo,
pruduced by Systemes d'Otdimateurs 1ogo Intemational, o
SOLE for short. Thus 1s undoubtedly the most advanced 1 oguo
avattable for the BBC Mwio, and ot the tme of ns
unpletmentation can claun 10 be the most advanced L oge on
aty 8 bit nacro in the world

Thus s the time to segistet as a Logotion Logo user
provides you with a vahd guarantee 11 atso entitles you 1o
information about alt the supplementary software availlable 1o
Logouon users Tins s offered 1o regster users at a
submtantal discount on the tull retarl sole pnice Yot
registicion card s enclosed i thie box with this st

You want to get staited It the ROM has alicady been
nstalled, you can shp straght 1o the next sechon of e
manuat Here s how you chicek Tuimn on the computer R
1Ay Sy

(v} 1983 ACT-SOLL

WELLCOME 10 LuGo

’

Inowhieh Case you are i businesy Even if you do ot

tocern e thes rousing welconie, 18 e warth typing

s

The iy produce the desited ettegt

() dgsd At sudl
WEEOGEL TO L0GH

ool your BOM necdn to be teetioa e any Gl the
Crideways” of Tpaged” BORM sccbets You should fien it
ROM nselt mnsertad mto o prece o plastie foam mesade i
Logotion loose feat binder Leave st there until your B
remioved the op of your carnpeitet

BEFORE you begin work on the computer, switch it OFF
and REMOVE the mains plug from the power socket
Then foliow these instructiors

T Bomove the four scroees hoidiag e W ane e cos

o varly Toaehiines ey wcic Dnathed Fino fhcre are e

GEthese ot the dop ol Qe bod ste ool e o
tyor Deed s postdinee cr Praiges scresdineer) anin e

alidernestn e cotntatorn o thoe o

SECL ITUN UNE — IND I ALLATTUN

2 When the top s off, release the nuts holding the keyboatd
in place. This is @ good moment 1o look at the diagram on
this page. below. There is no need 1o disconnect the
keyboard completely, simply move it to one side, to
expose the sideways ROM sockets.

3 Locate the row of five large sockets at the front right
hand corner of the main printed circuit board (see
diagram}). Two or more of these sockets will already be
filled with ROMS. The rightmost four of these sockets,
identified as 1C52, IC88, IC100 and IC101 are sideways
ROM sockets

D oo U[]lm‘ LOGOUTRON

[}
jma]
=
3
(=)

T s

[popp.

i

- i o o e e e A

—

JagnYd

Half-moon notch
Pin 1}

1€57
1C00

10100

1C104

Rjaisje

os e
4 Paged ROM sockcts

88C Model 8
board layout

SEC ITUN UNE — INS TALLA TTUN

4 You can choose where 10 put your Logo ROM i you
want Logo to be avalable as soon as you switch on yout
computer. then put it on the extreme nghthand side. But
this 1s not necessary, you can put il into any empty siot i
you don't have an empty slot, you have three possibiliies
You can learn to live without BASIC, or without some
other programy which is occupying a slot. The second
possibility is 1o buy one of those expansion boards, which
allow you to plug in additional ROM. The third possibility s
to use one of your ROM slots to create a ROM cartndge
system. Whatever you decide, the one bad choice 1s to be
constantly taking ROMS out of the computer and putting
them back. One day, one will get damaged.

5. Having decided on the slot your ROM will occupy, it is
time to take your Logo ROM out of its plastic foam
seating. first locating a semicircular notch at one end (see
diagram). This notch tells you which way the ROM goes
into the computer. The notch points towards the back of
the computer You will see that all the other ROMS are
aligned in the same way. MAKE SURE YOU
UNDERSTAND THIS. Belore touching the ROM, it is good
practice 10 earth yourself, by touching a metal desk or
radiator Siatic electncity can damage electronic
components. Try 1o handle the ROM as little as possible,
and avoid touching its metal legs

6 These legs have to fit into slots along either side of the
sockel. Make sure they are correcily aligned betore
pressing the ROM home 1t is essential that all the legs
are inserted and that none bends outwards or underneath
the ROM If you have never done tlus before, nor seen
anyone else do it, seek help. If necessary, get your dualus
10 help you itU's not worth making a mistake at this stage

~

. Replace the keyboard and hid, reversing steps 1 and 2. and
switch on the computer as normal. Plug in the computer,
switch the power 10 ON, and you should be in busmness H
not make sure you followed all the steps correctly,
checking i parucular that all the legs of the ROM are
properly seated If it sull does not work, consult the dealer
from whom you bought Logo. if possibie. take in the
machine with the faulty chip installed. This should not
happen, as all chips are tested before leaving the factory

SECTION TWO - TUTORIAL INTRODUCTION

The fact that Logo attracts such @ wide variety of people, of all
ages and all levels of computer expenence, makes it very difficult
to write an introduction to the language which is nght for
everyone.

What we have tried 10 do in this tutorial part of the manual
(Sections 2 ~ 19) is t0 provide something for almost
everyone. | think that anyone who can read, from the age of
ten, say, should be able to manage the first three sections,
without trouble and without help

Older children should be able to cope with most of the first
12 sections on their own. Teenagers should find no difficulty
with any of the material, and will explore some of the mote
advanced ideas in the Reference sections of the manual.

if you are already familiar with Logo, or an experienced
computer programmer, you €an probably skip the tutorial
sections of the manual, and go straight on to the reference
sections, beginning with Section 20.

Sections 17 and 18 are specifically aimed at teachers, and
parents who want to help their children with Logo. The first
of these sections {No.17) explains how you can provide a
simplified Logo for children who are too young to read, or
who face severe learning difficulties.

The second (No.18) is designed to help you to gude children
from the realtively easy world of Turtle graphics into the
rather more puzzling world of language processing.

The LCSI Standard Logo provided by Logotron for the BBC
Micro is a very complete programming system, which will
carry users far beyond the realms of Turtle graphics. When
used in conjunction with a second processor, Logotron Logo
can cope with virtually any programning problem fikely to be
encountered in school.

You have full access to the operating system of the BBC
Micro. through the VDU and #FX commands. Furtherrnore,
the system is highly extensible. Additional softwarc is
available to dnve a Sprite Board and robots. Other extensions
are planned to provide advanced programming functions, for
use by ‘O’ and ‘A’ level students

4

SECITIUN WU — U TUKRIAL IN I KUDUC 1 HTUN
If you are already an advanced programmer, then you can

use the USE pnmitive 10 link up with extensions written in

machine code. This will be particularly relevant from early

1985, when we plan to release Advanced Logo, on a disc, 10
complement the intitial release.

This explains the design of this manual; it is an open-ended.
You can bind in your own notes, and details of procedures.
There i1s room for additional documentation, which will come
from Logotron in connection with future products. We expect
teachers may want 1o make photocopies of some pages.
especially where they are dealing with small children, and do
not want 1o confuse them with piles of printed matter

Logo is widely regarded as a “programming language for
children”. It also happens to be a "programming language for
computer scientists”. Much early work in artificial intelligence
used Logo. and it is closely related 10 the leading language
for designing expert systems, LISP.

Logo is now in the vanguard of the microcomputer
revolution. As home computers grow in memory power and
speed, Logo will grow with them, infinitely extensible. While
BASIC will become a forgotten curiosity, a fossil of the early
days of microcomputers.

The most important feature of Logo is that you can make it
reflect your needs. interests and personality. Most early
educational software offered an wmplicit model. in which the
computer was the teacher, explaining, questioning and
encouraging The child's role was reactive, learning from the
computer, by responding appropriately 1o its prompting

Computer Assisted Learning and Computer Based Training all
accepted this model. Logo offers a completely different
model, diametrically opposed. in our model, the child (user)
is the teacher, while the computer learns. The child is
active, and the computer reactive.

But dont take our word for it. Get cracking. This manual is
designed 1o be used. silling a8t the computer. teaching 1t
what to do next

Each section provides enough work for a single session i
you are a complete beginner. Do try out all the examples
The text does not make much <zase on its own without

SECITIUN WU — 1UITUKIAL IN 1 RUDUU I TUN
hands on practice Do not hesitate to lrn w0 the refeience
sections for further detaills of how 10 use the systen

Where we expect you (0 type on the key board, the words
you have 10 type are written in red. Occasionally, we reier o
a key. which has to be pressed. such as the RETURN key or
the ESCAPE key These words, too, appear in red. if you
have to press two keys at once, for example the CTRL key
and C, we would write CTRL C. When we talk about the red
funcuon keys at the top of your keyboard, we write about
FO, F1. F2 . etc

SECTION THREE — MEET THE TURTLE

You can start using Logo with a very few words:
FORWARD. BACK, LEFT and RIGHT. We wnte Logo words
in CAPITAL LETTERS. So it may help 1o press the CAPS
LOCK key at the bottom left of your keyboard.

Let's try them Type FORWARD 300 and press the RETURN
key. A little tiangle appears in the middle of the screen, and
darts forward, drawing a hne

It you make a mistake typing FORWARD 300 and type
FROWARD. TORWARD, FORWORD or something. the
computer will say

1 DONT KNOW HOW TO FROWARD
We call this a Logo message Do not worry about it. Just
type the line again, checking you have it right before
pressing the RETURN key

We call the litile triangle a Turtle. We call its drawings Turtic
graphics. pictures drawn by a Turte.

Try some more Turtle graphics. Type

FORWARD 200

RIGHT 90

FOR&ARD 150

LEFT 90

FORWARD 100
pressing the RETURN key after each line Make sure 1o
leave a space between the words If you type
FORWARDI100, for example, you will read another puzzed
message from your computer

1 DONT KNOW HOW TO FORWARD10O
Don’t worry about such messages. Just start agam and leave
a gap. One of the biggest differences between a language
like English and a computer language like Logo is that
computers want you to spelt words just so. using the same
tetters every time. This can be a bore.

Now type CS to Clear the Screen and try agamn. Change the
numbess to see what happens. Type BACK instead of

SECIIUN IHREE — VMIEET IHE IUKILE
FORWARD. Write all the words on one line, like this

FORWARD 500 RT 90 BACK 200 RIGHT 90 BACK 150 LEFT 90 BACK
100
and only press the RETURN key at the end of the line. If
you spot a mistake before pressing RETURN, you can fub
out the words you have written by using the DELETE key.
You can change anything until you have pressed the
RETURN key.

Once you have pressed RETURN, the computer tries its best
10 carry out your instructions. if there is a something it
doesn’t understand, it complains.

But you don't have to type out everything again. Use the
UP-ARROW key (top right hand side of the keyboard) 10
move the cursor up to the first character of the last line you
typed. Now press the COPY key. and you should see a copy
of the line you typed previously. appearng on the screen.

Using the arrow keys to move the cursor atound the screen,
you can use the COPY key to copy any writing from the
screen into a new line. You can learn more about this from
your BBC USER Guide, (Pages 29 and 30). This describes
the use of the COPY key in a BASIC program. 1t works just
as well with Logo.

Try typing CLEAN instead of CS. Discover the difference
between the two commands.

There are just two more useful words to know when playing
with Turtle graphics for the first time. They are PU. standing
for Pen Up, and PD, standing for Pen Down. If you type:

FORWARD 100

PU

FORWARD 100

PD

FORWARD 100
you will quickly understand what these words mean. They
are very useful if you want to move the Turtle from one
picture 1o another without leaving a traii. From now on, |
won't remind you every time to press RETURN at the end ol
each line. or whenever you want the Turtle to follow your
instructions. (You still have to do itl}.

SECIIUN IHREE — MEET IHE IUKILE
i you want 1o draw many pictures with the Turtle, you will

soon get bored of typing FORWARD, RIGHT, LEFT, BACK,

PU, PD. The answer is to use shorer forms like

FD tor FORWARD. In this book, when we introduce a new

word we will write its short form in brackets after the long

form, as follows: FORWARD (FD), BACK (BK), LEFT (LT},

RIGHT (RT), PU, PD.

So try out some pictures using FD, BK, RT, LT, PU and PD.
The words are easier to type, so there is less chance of
making mistakes.

Try to discover how many steps the Turtle has to take from
the very botiom of the screen to the very top. And how
many steps from one side to the other. Three more words
1o explore at this stage are WINDOW, WRAP and FENCE.
Type the following.

FD 600
The Turtie disappears at the top of the screen and reappears
at the bottom. lts path wraps around the screen as if the
top edge were attached 10 the bottom edge. Type

WINDOW £D 1000
The Turtle disappears off the top of the screen, and is lost
to view. It is as if the screen were merely a small window
on the Turtle's world.

CS FENCE D 600
You get a Logo message

FD DOESNT LIKE 600 AS INPUT
The Turtle refuses to accept any command which sends it
off the. screen. It is as if a fence had been built around it.
Type

WRAP £D 600
and you are back in WRAP. Some people like that best. They
can keep an eye on the turtie. | like WINDOW best. |
imagine the Turtle drawing amazing coloured pictures out into
space. where no one can bother it.

The Turtle is always in WRAP, FENCE or WINDOW. When
you first turn it on, it is in WRAP. We call this the default
value, Once you change it. it stays in that mode until you
change it agamn.

SECIIUN IHREE —MEEI IHE IUKILE
Finally, discover what happens if you use minus (negative)
numbers instead of plus (positive} numbers. Try

FD -100

RT -45
| hke that. You could do without LEFT and BACK and just
use negative numbers. At the same time. Here's one last
word for this section, PE. Try this

FORWARD 300 WAIT 120 PE BACK 300
To cancel PE type either PU or PD.

FD 200
RY 90 £0 200 RT 135 £D 100 L7 135
F0 200 £0 200 RT 140 FD 100
TCLEARSCREENED TCLEARSCREEN
1 ?
L
1extoof 18K100
;.

10

SECTION FOUR — TEACHING LOGO NEW TRICKS

Once you feel comfortable with the commands you learnt in
Section 3, FORWARD, BACK, LEFT, RIGHT. PU.

PD. PE, CLEAN, CS, WINDOW, FENCE and

WRAP, you are ready to teach your turtle some very clever
tricks.

Try this one for a start. Type

REPEAT 4 |FD 200 RT 90)
and press the RETURN key. Notice the short forms of the
commands FORWARD (FD) and RIGHT (RT). Would you get
the same effect if you typed

REPEAT 4 [BK 200 LT 90]
Either way. the Turtle draws a square. This is a lot easier
than typing.

FORWARD 200 RIGHT 90

FORWARD 200 RIGHT 90

FORWARD 200 RIGHT 90

FORWARD 200 RIGHT 90
You may be wondering what those square brackets [] mean
You will see a good deal of them in Logo, so let's explain
them once and for all

The brackets [] enclose lists. They can be lists of words,
lists of numbers, or even hsts of lists In Uus case
REPEAT 4 {FD 200 RT 90j
it is a list of instructions to the Turtie You can put any
instructions you like nside the brackets []. For example.
REPEAT 5 [FD 100]
It comes to the same thing as
FD 500
of try this
REPEAT 2 (FD 250 LT 120}
Could you change that fast command so that the turtle
draws a triangle? REPEAT means just what you expect it 1o
mean. it REPEATS a list of instructions just as many times
as you want. But lists are used in many other ways. If you
want the computer to print out a sentence or a list of

11

SECITUN FUUK — IEALHING LUGU NEW | KILKDS
words, you do it like this. Type

PRINT [APPLES PEARS ORANGES]

PRINT [GOOD MORNING]
Now | would like you to leave your computer for a minute,
and find an open space on the floor. Walk in a ciicle. Try to
think of your actions in turtle steps. Start by walking a
square, repeating the commands to yourself. Unless you are
in the playground. keep the sides fairly short (3 or 4 steps)
as person steps are much bigger than turtle steps.

How could you tell the turtle to draw a circle, using the
REPEAT command? Try to walk in a circle using the
commands FORWARD and RIGHT.

Walk one step FORWARD and turn 8 little to the RIGHT.
Walk another step FORWARD and turn a little to the RIGHT.
Walk another step ... and so on.

Now go back to the computer and type

REPEAT ? [FD 7 RT 7
But with numbers instead of question marks. The Turtle will
walk round the screen just as you did on the floor. You may
find that it has only drawn part of a circle. See if you can
complete the circle. Try repeating the instructions more than
20, 30 ... 100 ... 150 umes. Try telling the turtlé to take
bigger steps. Say, FORWARD 5, or turning a little more,
RIGHT 5.

When you have drawn a circle, try drawing bigger circles and
smaller circles.

Use PU and PD to draw circles inside one
another, or draw a face. Remember, you can use CLEAN or
CS 10 wipe the screen and start a new drawing.

Perhaps you think the Turtle spoils your pictures, and shouid
disappear when it has finished drawing. Well you can easily
fix that with two more words:

HT for HideTurtle
ST for ShowTurtle

Try them. Type HT, and your Turtle has disappeared. Type
ST and it's back again. If you give it some instructions while

12

SECITTUN FUUK — TEACUHING LOUGU NEW | RICLKDS

it is hidden, it draws just the same. Try typing

HT REPEAT 36 [FD 10 RT 10j ST
Just play around with the REPEAT command until you feel
really good about it. How long that will take really depends
on how old you are, how much you already know about
computers, and SO on.

- Y

REPEAT 60 [FD5 LT 1} REPEAT 150 {FOS LY)

WA

REPEAT 2 [LT 30 REPEAT)
REPEAT 3 [FD 300 RY 120} 1FD 200 RT {20} RT 90) RT 90

13

SECTION FIVE — TURTLES CAN REMEMBER

Everything you have learnt so far has been designed to
reduce the number of words you have to type. First you
learned about shorter words. Then you learned to use
REPEAT.

Our motto is: Make the turtle do the work.

Now. imagine teaching the Turtle to remember lists of
instructions, just like the ones we used with REPEAT.

Leave your computer again. Find a piece of paper and a
pencil.

Wiite at the top of the paper TO SQUARE then underneath,
write

[Take five steps forward and turn right. Repeat this
action three more times. End]

then write TO OPENTHEDOOR

{Walk across the room. Take hold of the door handle;
turn it and pull it towards you. If it opens, stop. If it
does not open, then try pushing it. End]

Give the paper 10 a friend. and ask her to listen. When you
calt out "SQUARE" or “OPENTHEDOOR", she should follow
the nght set of instructions

| expect you can think of other sets of instructions, which
could be called in this way {TS-TIME-TO-GET-UP or
RUN!-THE-BUS-IS-COMING or
COULD-YOU-GO-DOWN-TO-THE-SHOP-FOR-ME or
CAN'T-YOU-BLOW-YOUR-NOSE.

in LOGO, you give lists of instructions to the computer, and
each list of instructions has its own name. Let's see how it
works. Go back to the keyboard and type TO SQUARE,
followed by the RETURN key. The computer will then give
you a new prompt. Instead of the ? at the beginning of the
fine, you will see a > . This tells you that the computer is
waiting for its first instruction. You type

> REPEAT 4 [FD 200 RT 90j
just as you did before. Press RETURN and type

> END
14

SECIIUN FIVE — TURILES CAN REVIEMBEK
Press RETURN and the computer will respond

SQUARE DEFINED
Type SQUARE again, and the computer will draw a square
Move the Turtle to another part of the screen, with

PU RT 45 FD 200 PD
and type SQUARE again. The Turtle has remembered exactly
what to do. It is just like your friend with the sheet of paper
and your instructions. In fact it's better. Unlike your fnend.
the computer never gets tired of daft games. You call
SQUARE and it knows which instructions it has to follow.
They are contained in a list, very similar to the one you
wrote out for your friend

We call this a procedure. Teaching new procedures 10 yout
computer is what Logo is all about. Some people look
forward to a world in which computers teach children

At Logotron, we are more interested in children teaching
computers. In fact, the idea of computers teaching children s
quite hoirible. Here are some more procedures 10 teach your
computer

10 ARC
REPEAT 10 [FD 10 RT 60}
END

10 BEND
REPEAT 2 [FD 50 R7 33}
END

TO 2GZAG
REPEAT 20 {FD 10 RT 90 FD 10 LT 90)
END

TO SUN
REPEAT 2 {FD 100 BK 100 RT 5]
END

When you copy in the last procedure, you need 1o put a
number instead of the question marks. Some people say at
this point: “But when do we start programming?” The
answer is that these are programs.

You will see that every procedure begins with TO, and ends
with END. When you want your computer to draw a sun,
you just type SUN.

15

SECIIUN FIVE — TURITLES CAN REMENMBER

Make sure that each line s just night before you press the
RETURN key. if you do make a mustake, and the procedure
doesn’t work. just type ER and then the name of the
procedure. For example. ER “SUN ER is shon for erase, and
makes the computer forget the hst of mstructions associated
with the name of the procedure Remember the quotes (")
in front of the name. You will learn i Section 6 why they
are needed.

Once the proceduse 1s forgotten, you can type il in agait,
without any mistakes

Perhaps you can think up some procedures of your own
Anyway, type in the four definitions given above. You waill
need them in Section 7. Once they are working. type:

SAVE “XAMPLES {ARC BEND ZIGZAG SUNj
As you will realise. this saves a list of procedures onto your
disk or cassette in a fie called XAMPLES. The BBC Micro's
disk fitng system forces us 1o choose filenames with fewer
than scven letters, which is why | had to chop the first “e”
off examples. When you return to the computer and want 1o
use these procedures again, put the right disk in the disk
duve (or cassette in the recorder) and type:

LOAD “XAMPLES
and they will be right there. ready for use.

There is one small but important point about procedures.
Their names must consist of a single word. You could not
have TO ZIG ZAG, for example. You must run the words
together 1o make ZIGZAG. Sometimes people put a full stop
between the words; in this case, it would be ZiG.ZAG. Logo
reads it as one word

16

SECTION SIX - CHANGING LOGO’'S MIND

Those procedures the Turtle has learned are fine But have
you wondered what you would do if you wanted a bigger
square, oi a smaller circle? In the last section you learned
that you sometimes have to pul quotes {*) in front of a
word. in this section, you will meet another way of writing
words, with dots (1} in front of them Before very long we
will explain what they mean, but for the moment. just type
thetn in without worrying about their meaning Just type in:

TO NEWSQUARE :SIDE
REPEAT 4 {FORWARD SIDE RIGHT 90)
END

Then try

NEWSQUARE 100

NEWSQUARE 200
This is a very neat idea The word :SIDE stands for the
number of steps you want the Turtle to take for each side ol
the square. Instead of going FORWARD 100 1t goes
FORWARD :SIDE and :SIDE can stand for any number you
please. Try it and sec for yourself. Then try to wate a sct of
instructions for:

TO NEWTRIANGLE :SIDE
To understand just what i1s happening. you nced to learn 4
new Logo word. MAKE. Logo uses MAKE 1o give names 10
things
Type 1n

MAKE “SIDE 150
In this case, the NAME is “SIDE and the THING 1s 150,
Now type

PRINT SIDE

the computer will respond, 150. Now try
MAKE "SIDE -250

and then again
PRINT :SIDE

The answer, as you might expect, is —250. You don’t have
1o call it “SIDE. “LENGTH or "FRED would do just as well
NAMES can have all kinds of THINGS attached to them, not

17

SEC TIUN SIA — CHANGING LUGLU'S MITND
just nurnbers Try this:

MAKE “FAMILY |GRANDFATHER GRANDMOTHER MOTHER FATHER AUNT
UNCLE SON DAUGHTER]
And then

PRINT :FAMILY
I am sure you will have noticed that sometimes we write
“SIDE and sometimes :SIDE, sometimes "FAMILY and
sometimes FAMILY. This can be quite confusing. But when
you are referring 1o the NAME you use quotes (), and when
you are refering 1o the THING, which is atiached to the
name, you use dots {:}. You may remember in the previous
section, when you wanted the computer to forget a bad
procedure, you typed in ER “SUN. You had to use the
quotes {"} because you were referring to the name of the
procedure. not 10 the procedure itself. This can be quite a
difficult 1dea. Think about the difference between you and
YOour name

Seymour Papert, the inventor of Logo, uses an old nddie to
explain the difference:

“Mississtppt 15 the longest river in America, how do you spell
w2

TMASSS-SAPP
“No kT

The nddie works i Enghsh because the word "itt” could be
standing for uself. a two-letter word, or it could be standing
for the word Mississippi. In Logo, there 1s no ambiguity

If Logo saw “IT, it would know you were referring to the
word “it”. if it saw :IT, it would ask itself what other word
it could be referring 1o and the answer would be Mississippt

This will become quite easy with practice. When we say
:SIDE we are referring 1o the number of steps we want the
Turtie to take on each side of the square. When we write
“SIDE, we mean the word SIDE, not its value. So you
type PRINT “SIDE, the computer will answer SIDE

Practise this as much as you like until you really understand
how it works There are really three possibilities that Logo
has to consider when it meets a word which 1s not enclosed
in square brackets {ie not pait of a iist).

18

SECL 1TUN SIA — CHANGING LUGU'S MIND
a) It has neither quotes () nor dots ('} n front of 1t, and I's

not a number or a logical value (TRUE or FALSE) i ttus

case, Logo will treat the word as a proceduie or a

primitive procedure. if it cannot find the woid i 1ts hst of

procedures, Logo complains:

| DON'T KNOW HOW TO

b) It has dots (i) in front of it. Logo tries to evaluate . 10
discover what it stands for. In the case of :SIDE. this was
the length of a line. We'll meet lots more examples of
different kinds

chit has quotes () in front of it. Logo will use # as it is, not
as a procedure, and not to be evaluated

Here are some more examples. Type them in 10 the
computer and see what happens

MAKE "SQUARE [REPEAT 4 IFD 100 RT 90)

RUN :SQUARE

MAKE “HEIGHT 30

MAKE “LENGTH 200

MAKE "AREA HEIGHT % LENGTH

PRINT :AREA
We will be seeing a good deal more of dots (1) and quotes
{"i. s0 be sure you yet the hang of them If you want more
informnation on this subject, look up Section 23 dealing vath
variables We call these words, which name 1hings,

variables, because you can make them hold all kinds of
different (vanable) things

CAPITAL LETTERS are somelimes called upper case letiers,
and small letters are called lower case letters. Logo expects
upper case letters for primitives, procedure names,
variable names, and boolean values. but you can use
upper or lower case in other cases. For example:

MAKE “XNAME “Joha

PRINT :XNAME
John

MAKE "VERBS [enter eat gallop cry)

PRINT :VERBS
enle; eat gallop cry

19

SECTION SEVEN — MAKING MORE CHANGES

In the last section, 11 would have been nice 1o have been
able to change the list of instcuctions associated with the
word SQUARE. We wanted to improve it by adding in the
variable word :SIDE. Since we didn't know how to change it
we invented a new procedure TO NEWSQUARE.

We are now going 1o learn how to change procedures after
they have been defined. if there are no piocedures in yout
computer's memory at present, type in the procedures
SQUARE and TRIANGLE.

TO SQUARE
REPEAT 4 [FD 200 RT 90]
END

TO TRIANGLE

REPEAT 3 [FD 200 RY 120]

END
Now type EDIT "SQUARE At the bottom of the screen, you
will see:

LOGO EDITOR
C <exin> ESC <abort>

and the procedure SQUARE, all ready to be chapged. at the
top of the screen.

Before we look at the EDITOR and all the things it can do, |
would like to tell you a little about what is happening inside
your computer.

When you switch it on, Logo takes charge You read the
message:

WELCOME TO LOGO
?

The question mark (?} asks you 16 lype In your next
nstruction. The Logo program looks after the computer’s
memory, and stores the words you teach it When you type
in words it cannot understand, it complains

Part of the computer's memory s kept free for new
procedusres you write. This 1s called your workspace But
once a procedure ts written Mo that workspace, you cannot
easily change it H would confuse the cotnputer if you could

20

SECIITUN SEVEN — VIAKING VIURKE CHANGEDS

tn order 1o change a procedure, you have 10 move il nto a
special part of the memory, calied the EDITOR. it's rathes
like taking the car to the garage to have it mended

in the LOGO EDITOR, we provide you with your own set of

tools for fxing of changing your procedures. When you are in
the EDITOR, otdinary LOGO commands do not work. All you

can do 1s change the words you have wniten But as we will
see, that is very, very useful

Using the nght arrow key {—), you can move the cutsor 1o
the end of the first line and type :SIDE. Then diop down to
the next hne, with the down arrow key, and use the DELETE
key 1o rub out the 200 Type in :SIDE instead

You now have:

TO SQUARE :SIDE

REPEAT 4 [FD SIDE RT 90

END
When you are satisfied you have 1t night, press CTRL C. The
screen will go blank, and the computer will respond

SQUARE DEFINED
You are now out of the editor, with a new kst of instructions
for SQUARE lixed in the computer’s memory. Try SQUARE
Logo responds:

NQT ENOUGH INPUTS TO SQUARE
SQUARE is now a command which needs an iput, the
length of each side. Try SQUARE 100 Let's look at all the
things we have learnt so far:

—

.Some Logo words: FORWARD (FD), BACK {BK). RIGHT
(RT), LEFT (LTi. PU {pen up). PD (pen down), PE (pen erase|
HT (hide turtle), ST (showtustle), REPEAT, MAKE, EDIT (ED),
ER {erase). CS (clear screen), CLEAN WINDOW. WRAP,
FENCE, PRINT (PR}, TO, END.

N

How to teach the Turtle new procedures ke SQUARL
TRIANGLE and ZIGZAG.

3 How to make pictures of different (SIZE or ‘LENGTH. by
attaching @ name ta a thing

4. How 10 change procedures in the LOGQ EDITOR. You
will find a special list of all the EDITOR 100ls 1n Sechion

21

SEUL ITUN SEVEN — MAKING MURE CHANGEDS
25. Don't try 10 learn them all at once Just use the ones
you need. the arrow keys and DELETE

5. The way Logo uses square brackets |] 1o enclose lists,
quotes {") 10 indicate names. and dots {:} to indicate
named things

You really know a good deal about LOGO now. The
important thing is to feel comfortable with the ideas we have
met so far. This may take a different amount of tume for
different people. But 1ake your time. f you understand these
ideas, you wili get on well

If you are still puzzied about any of it, put the manual away.
and look at it again tomoriow, of even next week. Then
work through the first sections again. They may well seem
easier. Or find someone else who wants to talk about Logo
Two heads are usually betier than one when it comes (o
talking turtle and teaching computers.

22

SECTION EIGHT - MAKING PICTURES

In the furst part of this manual. we have been learning how
to use Logo. with very simple shapes. hike SQUARE, CIRCLE
and TRIANGLE

The procedures which tell the Turtle to draw these shapes
are quite short and simple.

We are now going to look at some different shapes, and you
may want to save these on a disk or casseite, so that you
don’t have to type them in each tme.

This means two more Logo words SAVE and LOAD. We will
assume SQUARE :SIDE s already in the computer’s
memory. If it isn't, go back to the last section and type it in
Make sure it works. | it doesn't, EDIT "SQUARE and get it
just nght. Now type:

SAVE "SHAPE "SQUARE
There will then be a gentle whuring sound as the computer
saves the procedure SQUARE on a cassette or a disk, under
the filename SHAPE. The filename comes first. Remembuer,
the BBC disk fiing system does not aliow you to use
filenames with more than 7 letters. tf you called youwr file
SAMANTHA for exampie. you would receive the Logo
message. BAD FILE NAME

When you have saved SQUARE Type ER “"SQUARE You
know that this makes the computer forget the procedure
SQUARE. Check that it really has forgotten by typing
SQUARE 100 The computer answers:

| DONT KNOW HOW TO SQUARE
Now type LOAD “SHAPE. Tius time, you use the filename
atone. There is more gentie whirning, and when the ?
reappears, type SQUARE 100. The Turtle does iuts stuff and
draws a square. That's all there is to SAVE and LOAD.

Now let's go straight into the EDITOR by typing EDIT |].
You are in the LOGO EDITOR It says so at the botiomn ol
the screen. But there is no procedure for you 10 work on.
You can just type one in. if you had typed EDIT alone,
without the square brackets, you would have found the last
procedure edited sull on the screen

Many people pieter 10 build theur prociuuics nside the

23

SECIIUN EIGH I — MAKING FIC I URED

LOGO EDITOR. Then they can changye them asround, and
corect typing mistakes, without woriying about the HETURN
key fixing a line in the computer's memory. When you are
typing inside LOGO EDITOR, nothing s fixed until you press
CTRL C. If you don't like the changes you have made. just
press the ESCAPE key, and you are out of the EDITOR
without making any changes to the procedures n your
workspace.

So let's ry building a procedure mside the LOGO EDITOR 1
15 a very famous one. familiar 10 readers of Seymour
Papert’'s book Mindstorms. Here o is.

T0 HOUSE :SIDE

SQUARE SIDE

YRIANGLE SIDE

END
Then press CTRL C and wait for the computer 1o say
HOUSE DEFINED. Now this is quite different frotn the other
procedures we have seen |f you now type HOUSE 100, the
Turtle fust draws a SQUARE, with 100 steps 16 cach SIDE,
and then a TRIANGLE. also with 100 steps to each SIDE

Of course, i the procedures SQUARE and TRIANGLE are not
in the computer’s memory, 1t will complamn:

| DONT KNOW HOW TO SQUARE
or

| DONT KNOW HOW TO TRIANGLE

Silly beast. Can't it remember anything? Well, it can
remember, so long as it hasn't been told to forget (ER) or nt
hasn't been switched off. If any of these things have
happened, LOAD the file containing “SQUARE and/or
“TRIANGLE from your disk or cassette And try HOUSE 200
again

My idea was that the square would be the bottom part of
the HOUSE and the trnangle would be the roof. #t hasn't
quite worked out. Never mind, we can fix it in the LOGO
EDITOR, the garage for broken down procedures Type EDIT
or even ED. You should now be i the LOGO EDITOR, wih
the definition of HOUSE just as you left it

Belore we change u, let’s think what happened Get a pencil
and paper. and imagine the pencil 15 the Turtic

24

SECIIUN EIGHIT — VIAKING FILC TUREDS

You draw a hne tunning dp the page, 200 turtle steps Tun
nght, and another hne, also 200 steps. Another ine down the
page. and another line back to where you started. That's
SQUARE taken care of Now for TRIANGLE.

You go up the page again (200 steps), retracing your fisy
hne, then turn 120 degrees to the right {that's more than a
nght angle), and draw another tine, RIGHT 120 agawn, and
back to where you started

Now, if you could start the triangle in the top left-hand
corner of the square. instead of the bottom left-hand corner.
it might be more hke a roof So let's use the ariow key 10
go to the end of the line SQUARE :SIDE Press the RETURN
key and you will be ready to type FD .SIDE. The proceduic
should now look like this:

1O HOUSE SIDE

SQUARE :SIDE

fD :SIDE

TRIANGLE SIDE

END
Press CTRL C and try it again. HOUSE 200 It's sull not very
good. The triangle 1sn’t sitting on the house as a good roof
should. Let's EDIT "HOUSE again This time, we wil tell the
Turtle 1o change direction before drawing the tnangle

I 'am not going 1o tell you how much. You see if you can
discover for yoursell what number to type in where | have
left two question marks ??

T0 HOUSE :SIDE

SQUARE :SIDE

fD SIDE

Rl 2

TRIANGLE SIDE

END
NB. HOUSE won't work unless you do type n a numibes
instead of the ?? question marks

Now press CTRL C to leave the EDITOR and try HOUSE
200 Well | am sure you could draw a betier house with a
pencil and paper, .nd very soon you will teach the Turtle to
make a betier effor, with procedures called DOOR.
WINDOW. CHIMNEY. and SMOKE

25

SECIIUN EIGH I — MAKING FIC I URED

it you thunk you could du that already. then by all mieans ry
That mught give you ideas tor bigger houses. factones or
chuiches But why buildings? Try drawing faces, (HEAD.
NOSE. MOUTH, RTEYE LT EYE) or aeropianes and rockets
(WING FIN NOSE TAIL BODY)

Play with gluing shapes together in a single procedure, which
combines other procedures. You will see that you often have
1o put In extra commands, as we did with HOUSE. to get
the effect you want.

SQUARE. CIRCLE. TRIANGLE, ZIGZAG and SUN should give
you plenty of ideas. but we will give you some more
powerful tools in the next sections, to make more exating
shapes. This might be a good time 1o ook at the other ways
you can use the EDITOR, in Section 25.

The best way to make pictures is 1o keep changing your
procedures, see how they work. and then look for ittie ways
in which you can make them better. Its sometimes worth
keeping the old one, and giving the new version a shghtly
different name. For example, you might decide that you bad
a better way of drawing a sun

10 SUNT RAY
REPEAT 72 [FORWARD :RAY LEFT 5 BACK .RAY RIGHT 10}
END

Can you now think of a way 10 turn TG SHUNT e 70
SUNFLOWER with TO STALK, 10 LEAF, 7O 5EEDS and su
on?

26

SECTION NINE — TURTLE ARITHMETIC

Most people know that computers are very handy for doing
anthmetic If you have ever seen a pocket calculator, you will
understand this very easily. A pocket calculator is a small
computer, specially designed to do anthmetic very quickly

Try the Turtle out on some easy sums. Type PRINT 3 + 4
Quick as a flash, you get the answer 7. Letl's see whal
would have happened if you had simply typed 3 + 4 Try it.
The computer wilt tespond.:

YOU DONT SAY WHAT TO DO WITH 7
This is very important. In LOGO you are the boss. The Turtie
doesn’t do anything or know anything, unless you tell it or
teach it. If you type PRINT in front of a calculation, the
computer prints it onto the screen. 1f you had a prnnter nt
would pnnt the result onto the paper. But you don't always
want the result printed on the screen. Often you want the
calculations 10 be used inside a procedure.

If you have never used a computer before, you may be
surprised 10 learn that they don’t use quite the same
symbols for muluplication and division, as those you leared
at school. Plus (1) and minus (-) are just the same. bul
instead of x for muluply, computers generally use %, and for
divide, they use / So

3Ik4=12
25% 2 =95
6/3=2

125/25=5
it takes a bit of ume 10 get accustomed to the new syimbols
when you first meet them. But, just make sure they work
for you by typing PRINT 48 / 8. Or PRINT 9 % 7. Or any
other sum you can think of. You can, of course, use
decimals, and type

PRINT 3459876 % 200.0001234
Let's ook at how we mught use anthmetic to buid moie
interesting procedures Type

MAKE “SIDE 100
then. when you see the ? again, type
PRINT SIDE / 2
The computer sees the dots and knows you are talking

27

SECITUN NINE — UK ILE AKITHIVMIETIC

about the value associated with the name “SIDE, and so
divides 100 by 2. and gives you the answer 50 Let's usc
this idea to write a new procedure called BOX You

can build it inside the EDITOR, typing EDIT first, or just type
it straight into the memory.

10 BOX :SIDE

FO SIDE / 2

R 90

D :SIDE

RT 90

D SIDE / 2

RT 90

fD :SIDE

END
Try it out, with BOX 200. Can you think of a way of
shortening that procedure using the REPEAT command?

You could then improve BOX with another procedure called
LID.

T0 LID :SIDE
REPEAT 2 [FD SIDE / 6 RY 90 FD :SIDE RT 90}
END

You then modify BOX in the EDITOR 10 read:

TO BOX SIDE

FD SIDE 7 2

LID Si0E

RT 90

FO SIDE

R1 90

FD :SIDE / 2

RT 90

fD SIDE

END
Then type BOX 300 The next project might be to diaw a
group of BOXES. The procedure might look like this

T0 BOXES :SIDE
BOX SiDE
MOVE :SIDE
BOX SIDE * 2
MOVE :SIDE
BOX SIDE / 2
END

28

SECITIUN NINE — ITUKILE ARITHMETIC
You have 10 work out how 10 write the procedure MOVE.

The clue is to use PU when you are moving the Turtle

without feaving a trail. Remember to SAVE any procedures

you woukd like to keep on to a disk or cassette before

switctung off the computer.

It you have several procedures 10 save you can put them in
a list, which saves time. For example you could type:

SAVE "SHAPES |BOX BOXES SQUARE HOUSE TRIANGLE)
This would save the listed procedures under the filename
SHAPES. {OAD "SHAPES and they would all be loaded from
disk, back into the workspace. f you had typed just SAVE
“SHAPES. without any names of procedures, Logo would
have saved everything inlo the workspace in the file named
SHAPES.

Logo's ability to do arithmetic can be uselul in many ways.
Perhaps you have a lot of sums. This procedure might help:

TO CALCULATE SUM
PRINT :SUM
END

CALCULATE {12 % 4]
CALCULATE (3 + 3 + 17 + 19|

CALCULATE {12 / 16 % 100]
CALCULAYE |3 + 4) % (0 - 2]

There are better ways of using Logo as a calculator, but that
will do for the present (see RUN in Section 26}

29

SECTION TEN - TURTLES EAT TURTLES

If you have any procedutes in the memory of your computer,
SAVE them and then emply its memory. You do this by
typing ERALL. It means erase all. or “forget everything i ever
told you.” Then uy this little procedure:

TO CIRCLE

FDIGRT 5

CIRCLE

END
Now try it, by typing CIRCLE. You will find the Turtle goes
round and round for ever. Forward a fittie bit, right a tte bit.
and then CIRCLE again. Forward a little bit, right a litile bit
You can stop it by pressing the ESCAPE key

STOPPED™ IN CIRCLE
This may not look very useful at first sight, a procedure
which never stops. It is also quite confusing. Like standing
between two mirrors and looking into one of them and
seeing a reflecuon of a reflection of a reflecion . .. and so
on (for ever?).

Procedures which call themselves in this way are recursive
procedures Here are some more 10 play with. Remember,
the only way to stop them, is to press the ESCAPE key.
Otherwise. they go on for ever

10 SQUART S

£0 Sibe Kl 9u

SQUARL St

ENG

T0 TALLY N

PRINT :N

TALLY N + |

END
NB 10 use TALLY, you must type TALLY with a number for
:N. TALLY 1, for example.

TO SQUIGGLE

ED RANDOM 50 RT RANDOM 360

SQUIGGLE

END
RANDOM s another Logo word. It chooses any number
between 0 and the number following RANDOM. So
RANDOM b5, chooses 0. 1.2, 3. or 4

30

SECIIUN IEN — IUKILED EAI
i's easy 10 see that we need to find some way o1
controlling these recursive procedures Turtles should never
be running out of conuol

Let's look again at our recursive procedure for drawing a
square. Type EDIT “SQUARE

T0 SQUARE SIDE
FD SIDE RT 90
SQUARE SIDE
END
Change this procedure as follows:

TO SQUARE :SIDE 'BRAKE
PR SE [BRAKE =] BRAKE
IF :BRAKE = 0 [STOP]
FD :SIDE RT 90
SQUARE :SIDE :BRAKE - 1
END
Press CTRL C and try out SQUARE 300 4

NOTE: SQUARE 200 5 mught have come in rather handy
when we were drawing our HOUSE.

Now fet’s look at another procedure, very sunilar 10
SQUARE:

TO SPIRAL SIDE

FD :SIDE RT 8O
SPIRAL SIDE - §
END

Before you try it out on the computei, why not ty walking 1t
on the floor or the fawn Every :SIDE s a hide bu shorter
than the one before So you never quite complete the
square. That's why it's called SPIRAL

Try SPIRAL 300. The procedure is still never-ending, but
perhaps you can see how recursion nught come in handy
Now edit SPIRAL to read as follows:

TO SPIRAL :SIDE
IF SIDE < 10 [STOP|

FD :SIDE RT 90
SPIRAL SIDE - 5
HE

END

Ttus tune, if you try SPIRAL 300 again, the procedure comes
w an end The key bes i the second hinge F ey tune e

IURILEDS

31

SECIIUN IEN — IUKILEDS EAI TUKILEDS

procedure calls SPIRAL, the value of :SIDE is reduced by S
The second line telis the computer that iF that value is less
than 10, it should look for its next instruction in the square
brackets {], and there it is told to STOP.

There are several new Logo words and ideas here, especially
if this is your first time on a computer. Let's stant with the
easiest. STOP means just what you would expect. It tells the
computer 1o STOP whatever it is doing and get on with the
next procedure, if there is one.

IF is a useful word in most compulter languages
IF suchandsuch THEN do thisandthat.

In Logo. you don’t have to write THEN. you just put the
nstructions (do thisandthat) in a list, enclosed in squaic
brackets |], just as you would for REPEAT.

You know what an equals = sign looks like, but you may
nol have met the signs meaning greater than > or
less than <.

Let's practlise using themn for a minute. Type:

IF 3 < 4 [PRINT {THREE IS LESS THAN FOUR)]
Note the second set of square brackets, one nested inside
the other {[l}. The first, or outer, set are contiolled by the IF,
while the second, or inner, set are controlled by PRINT. You
can have any number of brackets nested inside one another
(1. What you must avoid is [{llll. for example:

It 4 > 3 [PRINT | FOUR IS GREATER THAN THREE}|
Type MAKE “SIDE 100. Type:

IF :SIDE = 100 [PRINT “OKAY|
Now make up some more of your own. If you want further
details, look in the reference sections of this manual. One
thing to notice. If you want the computer to print out a
single word, like okay, you use the quotes “ symbol. as in:

PRINT “OKAY
If you want it 10 print out more than one word, put them
into a list, inside square brackets:

PRINT |HOW ARE YOU TODAY|
There are other ways of stopping a recursive procedure,
without using the word STOP. Look at SPIRAL again, and

32

SECIIUN IEN — IUKILES EAI
change it once more 10

7O SPIRAL :SIDE

FD SIDE RT 90

If SIDE > 10 [SPIRAL SIDE - §]

HI

END
Here the brakes are in the third line, but we have turned the
idea round. if the value of :SIDE is greater than 10, then we
go ahead and call SPIRAL again. iIf NOT we move on to
Hide the Turtle and END the procedure

Another method, where you know how many times you
want to call the procedure is to introduce a second input,
which we could call :COUNTER, or any other name that
takes your fancy. like :METER or :NUMBER or just :N. The
important thing 1s 10 give it a name which means something
10 you. SPIRAL would then appear as follows:

TO SPIRAL SIDE :COUNTER

£D SIDE RT 90

IF :COUNTER > O [SPIRAL :SIDE ~ 5 :COUNTER - 1}

HT

END
When the :COUNTER reaches 0, the procedure ENDS. Try it
by typing SPIRAL 300 12. You can, of course, change
SPIRAL by making :SIDE increase on each call. You would
then start with a small value in :SIDE and change your
stopping mechanism 1o put the brakes on before the value
of :SIDE outgrows the screen

A good example of recursion is the old story of the fary
who offered a child two wishes, anything she lked to
choose. | don't know what her first wish was, but her
second was 10 be granted just two wishes, anything she
iked to choose . .

IURILEDS

33

SECTION ELEVEN - TURTLE COLOURS

That fast section was fauly tough. We looked at some
recursive procedures, and ways of stopping them from going
on and on and on and on .

We haven’t said anything about Colour. Well, some people
don’t have colour. They are stuck with a single colour But if
you are lucky enough 10 have a colour monitor or a colour
TV for your computer, you should certainly experiment with
two more Logo words.

By the way, the words Logo already knows when you turn
on your machine are known as primitives This is short for
primitive procedures. if this seems a funny word, the Shorter
Oxford English Dictionary tells us that a “primitive word” is a
root word, from which another or others are derived. The
tatin word primitivus meant the first or earliest of its kind. If
you type in PRIMITIVES, Logo responds by printing out a hist
of all its primitive procedures.

Before you start experimenting with colour, it is worth
switching your computer into the MODE which has the most
colour possibilities. You do this in the following way First
SAVE any procedures you might want again

The simplest way 1o do this is to save the whole workspace,
by typing: SAVE “WORKS. Logo will create a file {on disk wi
cassette) called WORKS8. The file can have any name you
hike. If you are shering the disk with other people, your own
name might be a good filename. SAVE “ANNAY. The
numbers are not necessary, but they can be helpful if you
want 10 keep a series of files with similar names.
Remember. the BBC puts a limit of 7 letters on filenames
"WEDNESDAY'S WORK would be much too long. and you
would receive a Logo message:

BAD FILE NAME
Having saved your work, type ERALL. This makes Logo
forget all the procedures in its workspace. Then type:

SETMODE 2
This takes you into the BBC Micro's MODE 2, The pnmitves
which handle colour are SETPC :N and SETBG :N. In each
case :N s a number.

f you are ke me, and find it difficult to remenmber numbers.

34

SECIIUN ELEVEN — TURITLE CUOLUURDS

you Can MEk€ your Own Proceduies as follows:

T0 REDFEN
SEIPC 1
END

10 BLUEPEN
SETPC 4
END

TO REDPAPER
SETBG 1
END

TO YELLOWPAPER

SETEG 3

END
Try them out. 10 see how they work. You can also write
procedures, which help you remember the colours and the
numbers Try this:

T0 COLOURS

cs

SETEG 0

REPEAT 15 {SETBG BG + 1 SETCURSOR {10 12] PR SE {BG =] BG

WAIT 60|

£END
Don't worry about how 11 works, just type it in and then
type: COLOURS and see what happens. While we are
playing with colours, let's look at another pnmitive, SETNIB,
which allows you to do a number of interesting things. Tiy
SETNIB 85 SQUARE or SETNIB 21 FD 300. For more about
SETNIB. check the reference in Section 2 Note the dot
front of .SETNIB

If you are familiar with the BBC machine, but not with Logo.
you may have learnt about the VDU commands. if you have.
you will be pleased to find that you can use VDU as a Loyo
primitive As you might expect, VOU looks for its numbers in
the form of a list enclosed in square brackets | |.

If you haven't heard of VDU commands, don’t worry about
them. When you feel ready 1o learn about them, either ask
someone, or read the BBC User Guide. The important thing
10 remember is that they are available from Logo, just like all
the other powerful features of your BBC Computer.

35

SECIIUN ELEVEN — TURILE CULUURKDS

As you probably know, the BBC Computer can be in any of
8 MODES When you enter Logo. you are in MODE 4. Type
PRINT MODE and the computer will reply 4.

The command SETMODE :N, where :N is a numbe: from
0-7 will put you in a new mode. In MODE 2, you can have
up to 16 different cotour combinations on the screen at the
same time.

BLACK

RED

GREEN

YELLOW

BLUE

MAGENTA

CYAN

WHITE

FLASHING WHITE-BLACK
FLASHING RED-CYAN

= FLASHING GREEN-MAGENTA
FLASHING YELLOW-BLUE
FLASHING BLUE-YELLOW
FLASHING MAGENTA-GREEN
FLASHING CYAN-RED
FLASHING BLACK-WHITE

T T T 1 0 I |

CONODMAEWN=O

-
]
I

b=
nowowono

in MODE 7. 100, you can use all the colour combinations,
but these are obtaned in a different way See the section
dealing with VDU commands for a full explanation. or plunge
into the BBC User Guide, but you need a fairly strong
stomach to sort out the information you want.

In MODES 1 or 5, you are restricted to 4 colours, but you
can choose which four you want. The default colours, set
when you turn on your computer, are

0 = BLACK

1 = RED

2 = YELLOW
3 = WHITE

Your choice is made through a VDU command. If you want
to know all the details, look at page 382 in your BBC User

36

SECIIUN ELEVEN — TURITLE CUOLUURDS

Guide. But hete is a3 useful procedure:

TO SETPAL A 8

MAKE "A(SE19ABOOQ)

DU A

END
The first input {:A) is the number of the colour you want 10
replace, and the second (:B) is the number of the colour you
want to introduce. For example SETPAL 1 4, in MODE 5,
would replace red with blue. The best way 10 experiment
with colour is to go back over the earlier material, look at
your procedures again, and see how they might work, in
colour.

in MODES 0. 3. 4 and 6. you have only two colours. These
are set as

0 = BLACK
1 = WHITE

when you switch on your computer. but they, 100, can be
changed through application of the right combinations of VDU
commands {Use SETPAL if you like). The VDU driver system
is guite foreign 1o the Logo philosophy. We have to put up
with it because it 15 part of the BBC computer hardware.

WARNING: The different MODES use up different amounts
of your computer memory. You'll find more about this in the
Reference Manual. But here are some helpful hints

You can always discover how much memory you have for
stoning procedures by typing PRINT NODES. Logo organises
its memory in NODES. each of which is equivalent 10 5
bytes. But you needn’t worry about that.

The most nodes are available in MODE 7, the least number
in MODES 0. 1 and 2. There are no Turtle graphics in MODE
7. but it can be very useful for some other apphcations.

You can discover for yourself. by changing modes with
SETMODE N and then typing PR NODES. If you change
modes, with a procedure in the computer’'s memory, you will
get a different result from changing modes without a
procedure in the memory. Check this out for yourself

So f you want 10 get extra memory, changing. for example,

37

SECIIUN ELEVEN — TURILE CULOUKDS

from MODE 2 to MOOE 5. or from MODE 3 to MODE 7. be
sure 1o SAVE your procedures. and type ERALL before
changing modes with SETMODE 'N. it sounds complicated,
but f you play around with it for a htile, it will seem much
clearer. You will find more nformation on all this in the
reference part of this manual, in Section 29.

T e ———

~
A
EIHHIRTTIEICT STy e -

ST

38

SECTION TWELVE - MORE ABOUT PICTURES

In the first sections of this manual. we have concentrated on
very sinple shapes. | wanted the younger children 10 be able
to follow tius part of the book . and assumed the older ones
would gallop through it in 3 few hours. The next few
sections are aimed at older readers, or anyone who feels
completely comfortable with the ideas we have introduced so
far

This nmight be a good momen! 1o read the first sectons of
the reference manual, especially the introductory section on
Logo Grammar, and the sectons on Turtle Graphics and the
Editor

| would then hke you 10 look at one of the most famous
turtle graphics procedures:

TO POLYTRIP SIDE ANGLE :ANGLES

£D SIDE RT :ANGLE

MAKE “ANGLES :ANGLES + :ANGLE

PR SE [ANGLES =] :ANGLES

PR [DO YOU WANT TO ADD ANOTHER SIDE? Y:N|

MAKE "ANSWER RC

IF ANSWER = " [POLYTRIP :SIDE ANGLE ANGLES|

HI

END
This procedure inttoduces several new LOGO words and
ideas. You can either look up SE and RC in the refcrence
manual, or just accept them on tust for the moment The
idea of tus procedure ts to learn something important about
polygons and tuille graptucs

Now type

POLYTRIP 200 30 O
If you type in Y on the first three occasions you are asked
whether you want 10 add another side. you will find you
have compleled a SQUARE, and (ANGLES, which is the sum
of all the Turtle's turns, will equal 360

CLEAN the screen and try agan with:

POLYTRIP 100 72 0
This time, you will need to add four sides, before completing
a polygon, but the sum of the Turtte’s turns will sull be 360

39

SECIIUN IWELVE — MURE ABUU I FIL IURED
Now look for other regular Polygons, changing the first two
inputs. Keep the third one always a zero. Some of the
angles you choose won‘t produce a regular polygon Instead
of returning 1o your starting point, the knes will cross. But if
you do return to your starting point without ¢rossing a line,
you will find that :ANGLES always equais 360. Some
POLYTRIPS,

POLYTRIP 100 144 0
for example, will take you back to your starting point, but
cross several lines on the way. :ANGLES equals 720, which
1s exactly twice 360.

Playing with POLYTRIP will help you understand the next
procedure:

TO POLY :SIDE :NUMSIDES

REPEAT :NUMSIDES {FD :SIDE RT 360 / :NUMSIDES)

END
This procedure allows you to draw a triangle. a square, a
pentagon, a hexagon, an octagon, or any other reguiar
convex polygon. You just tell it the :NUMber of SIDES you
want, and the computer calulates the angle the turtle has to
turn at each corner. it just divides 360 by :NUMSIDES.

Another way of writing the same procedure would be:

TO POLY! :SIDE :ANGLE

REPEAT 360 / :ANGLE [FDSIDE RT :ANGLE]

END
One method isn‘t “better” than another, just different. |
prefer the first method. when | know that | want to draw a
hexagon or an octagon, because | can never remember what
the turning angle should be On the other hand, if | wanted
to explore the effect of different turning angles, POLY1
would be better.

Do you remember how we developed SPIRAL out of
SQUARE? Well, you can do just the same with POLY, and
it's often called POLYSPI:

10 POLYSPI :SIDE :ANGLE
FD :SIDE R :ANGLE
POLYSPI :SIDE + 1 :ANGLE
END

We will leave you tc play with POLYSPt. Remember,
you need to put in a brake line, to halt the procedure

40

SECIIUN IWELVE — MMURE ABUU I FILTUREDS

{see Section 10 if you have forgotten how that is

donel You can make :SIDE grow or shunk. You can make
‘ANGLE grow or shrink if you hke. There's plenty of room
for experiments. We will leave you to explore

POLYSPI Other weird and wonderiul shapes can be
generated by taking a simple shape, and then rotating it and
repeaung . Look at this for examgle.

10 SQUARES! :SIDE
REPEAT 36 |SQUARE :SIDE RT 10}
END

You want to make it more complicated?

10 SQUARES2 SIDE
REPEAT 36 |SQUARE :SIDE RT 5 SQUARE SIDE / 2 RT 5)
END

Or change the definition of SQUARE to:

10 SQUARE) :SIDE
D SIDE
CIRCLE
RT 90
REPEAT 3-(FD :SIDE RT 90}
END
Then try SQUAREST again.

Add some colour with

SQUARES3 :SIDE

REPEAT 36 [SETPC PC + | :SQUARE :SIDE RT 10}

END
t hope you have been collecting useful procedures on a disk
or cassetie as you have worked through this introduction. A
Logo programmer soon acquires a whole library of useful
procedures. which can be used over and over again

41

SECTION THIRTEEN — MOVING TURTLES

Before leaving turtlegraphics, | would like to ook at the ways
we have of moving the Turtle around the screen

Using just 2 numbers, you can always describe the position
of the Turtie on the screen. These numbers are called its X
and Y coordinates, or XCOR and YCOR. Imagine the X line
going from side to side and the Y line going up and down

This is a very old idea, and you may have met it in maths at
school, or reading map references. We are told the idea
oniginated with a Frenchman, Rene Descartes, more than 300
years ago. He had the idea, while lying ill in bed, looking at
flies walking around on the ceiling of his room He saw that
with two numbers he could always describe the position of a
fly.

The mid-point of the screen is 0 on both lines. Points to the
left. on the X line, are negative, with a minus sign, and
points to the right are positive, with a plus sign. Points
above the mid point are positive on the Y line. and points
below are negative

Type the following
PU SETX -200
PO SETY -250
CLEAN
PU SETX 280 SETY 200
PRINT YCOR

PRINT XCOR
This should give you a good feeling for moving the Turtle
around the screen. You will see that if the PEN is DOWN,
the Turtle will draw lines. This might give you an idea for
another method of drawing a square.

TO SQUARE :SIDE
SETX XCOR + :SiDE
SETY YCOR - :SIDE
SETX XCOR - :SIDE
SETY YCOR + SIDE
END
Try 11 1 don’t much like it myself, bul it's very fast, much

42

SECIIUN ITHIKITEEN — MUVING UKILED
faster than the normal Logo way of draw:ng a square, and

gives you a good sense of the meanings of four new Logo

words SETX, SETY, XCOR and YCOR.

You can see for yourself that if you know the value of XCOR
and YCOR, you know the position of the TURTLE.

The Logo word for this is POS. Type

CS FD 100 PRINT POS
The Turtle will draw a line 100 steps forward from the
centre of the screen, and print below: 0 100

The XCOR is unchanged at 0, while YCOR is now 100. In
printing POS, the XCOR is always given fust. Equally, if you
want 1o set the Turtle down in a new position, you give the
XCOR fisst.

The Logo word for this last operation is, as you might guess,
SETPOS. SETPOS takes a list of two numbers, as follows:
SETPOS {100 -35]. if you don’t want the Turtle to draw a
fine on its way to its new POS, be sure to type PU first.
Try:

CLEAN PU SETPOS [-250 35]
| often use a procedure called MOVETO, which moves the
Turtle to a determined point on the screen without leaving a
teail.

TO MOVETO X :Y
PU
SETX X
SETY ¥
PD
END
Another way of writing MOVETO:

10 MOVETO X :Y

PU SETPOS SE X Y PD

END
SETPOS needs the values of :X and Y in a list, and that's
what SE does. If you wrote SETPOS {:X :Y}. Logo would
complain:

SETPOS DOESNT LIKE [X :Y} AS INPUT
Once something is in a list, LOGO treats it quite literally and
doesn’t look for its value. This makes SE a valuable word

43

SECITIUN THIKIEEN — MUVING 1UKILED
MOVETO can be used, for example, 10 sprnkle stars across
the screen.

10 STAR
POLY 30 144 0
END

10 STARS

REPEAT 50 {STAR MOVETO {RANDOM 300 - 300) (RANDOM 300 - 300}

END
While considering the problem of moving the Turtle about
the screen, we should look at another pair of Logo words,
HEADING and SETH (which is short for SETHEADING).

The Turtie's HEADING is the direction in which it is pointed
tf you type FD 100, it will set off in the direction of its
HEADING

Try typing SETH 45 SETH 100 SETH 180. Then type
SETH RANDOM 360 PRINT HEADING

If you experiment with these last two instructions, you will
soon discover that the Turtle measures its HEADING in
degrees. 0 1s straight up the screen, and 180 is staight
down.

| hope you understood what RANDOM is doing. | used it
previously in SQUIGGLE. If you have any doubt, look it up
the reference manual. RANDOM s a very useful word as 1s
allows you 1o break away from straight lines and suff
geometncal shapes. Perhaps you will find uses for this
procedure, which can be used mnstead of FORWARD

10 WIGGLE :STEPS

MAKE “H :HEADING

REPEAT STEPS [SETH (H + 5 - RANDOM 10)}

SEIH H

END

It can make drawings ook a lot more natural.

44

SECTION FOURTEEN -- AFTER TURTLE GRAPHICS

Quite a lot of Logo manuals get to this point and then leave
the readers to find their own way. They are taught Turtie
graphics, which are the easiest part of Logo 1o understand.
and have 1o pick up the rest from reference manuals

We are taking a rather different approach. There is sull plenty
for you 1o discover on your own about Turile graphics. You
will find a good bit more in the reference manual. Four very
good books are:

Apple Logo, By Harold Abelson, BYTE/McGraw Hill.
Although this is about Apple Logo. not BBC Logo. the
commands are almost identical, and his programs work even
better on the BBC Micro than they do on an Apple Il There
ase two versions of this book, one with a red cover, the
other blue. Be sure 1o get the BLUE one.

LOGO Programming by Peter Ross, Addison Wesley,
Small Computer Series. His programs need more changes
than Abetson’s. But his book is full of good ideas.

Turtle Geometry, by Andy DiSessa and Harold Abelson,
MIT Press, is the most complete book of Turtle Graphics,
but don't buy 1t unless you are really keen, and wiling 10
work rather hard 1t 15 most suitable for A’ level students,
university undergraduates and teachers. But 1ts also a
fascinating source of ideas for anyone senously nterested n
Logo programming

Learning with Logo, by Daniel Watt, McGraw-Hill Book
Company, 1s very popular with many 1eachers

So we will leave Turtle graphics for the time being, though
we include some samiple programs later in this manual.

In fact, you can make Turtles or Turtle graphics in any
computer language. Before Logo was available on the BBC,
there were several turtle graphics programs. which you may
have seen

Lists make Logo special, and different from other languages
We already met some hsts in the first part of this manual. In
particutar, we met lists of instructions, enclosed in square
brackets || afler words like REPEAT. But there were other

SELIIUN FUURITEEN — AFIERK UK ILE GRAFHILDS
Wsts In case you have forgotten. type:
MAKE “ALPHABET
KBCDEFGHIJKLMNOPQRSTUVWXY
| am choosing this one because it is a list you should know
well. Type:

PRINT COUNT :ALPHABET
Did you get the answer you expected? Try:

PRINT TEM 4 ALPHABET
PRINT FIRST :ALPHABET
PRINT LAST :ALPHABET
PRINT BF ALPHABET
PRINT BL :ALPHABET

BF and BL stand for But First and But Last, respectively. In
each case, make sure you understand what is happening to
the list we named “ALPHABET. We could have given it any
other name. Type:

MAKE "ABC :ALPHABET
Now type: PRINT -ABC. So there is nothing to stop you
giving a kst a new name.

The first thing 1o do is 10 make some more lists, and 10
teach the computer their names. Try the following:

MAKE “FAMILY [GRANDPARENT MOTHER FATHER AUNT UNCLE BROTHER
SISTER CHILD]

PRINT TEM 3 :FAMILY
Did it behave as you expected?

MAKE “TREES [ELM OAK ASH HOLLY THORN MAPLE]

MAKE “MUSIC |ROCK DANCE REGGAE POP RADIO2 LATINAMERICAN
CLASSICAL GUITAR]

Try out the words FIRST, ITEM. LAST, COUNT, BF.
and BL on these lists, using PRINT statements. When
you feel comfortable. try combining members of two lists
into a new list, using SE. SE is short for SENTENCE and it
creates a hist out of two or more inputs. If there are more
than two, you have to put SE, with its inputs inside
parentheses (). For example

MAKE “FRUITS (SE: "APPPLES "PEARS "ORANGES "LEMONS)

46

SECIIUN FUURIEEN — AF TEK TURILE GRAFHILDS

Then type

SHOW FRUITS
The Logo word SHOW s different fiom PRINT in that ot
shows you a dist with the square brackets { | in place. PRINT
strips them off. In order to combine elements from two lists
into a third list, try the following:

MAKE "NEWLIST SE FIRST :FAMILY LAST FRUNS

SHOW NEWLIST
This should show you:

[GRANDPARENTS LEMONS)
Let's now look at the possibiity of adding elements 10 ksts
we have already named. Type:

MAKE “FRUITS FPUT "PINEAPPLES :FRUITS

PRINT FRUITS

MAKE “FRUITS LPUT "MANGOS :FRUITS

PRINT :FRUITS

MAKE “FRUITS BUTFIRST FRUNS

PRINT :FRUITS

MAKE "ALPHABET BUTFIRST BUTFIRST :ALPHABET

PRINT ALPRABET
Nowv put "A and "B back at the beginning of :ALPHABET
Tiiis iouks quite simple, but out of these very simple deas,
computer scientists have buill incredibly complex programs

We are going 10 look first -at some very simple things you
can do with lists. In another section, we have provided some
more advanced procedures, which you can use. But first,
let's look at a very simple example given by Harold Abelson
in the book mentioned above.

TO CHATTER

MAKE "NOUNS {DOGS CATS CHHLDREN TIGERS)
MAKE "VERBS [RUN BITE TALK LAUGH}
BABBLE

END

TO BABBLE

PRINT SE PICKRANDOM :NOUNS PICKRANDOM VERBS
BABBLE

END

47

SECIIUN FUUKIEEN — AFIERK TURILE GRAFPHILS
ln order 10 make these procedures work, you need another
one called.

10 PICKRANDOM X

OP ITEM 1 + (RANDGM COUNT Xj X

END
Now try CHATTER. ft goes on for ever. 50 you will have 10
stop it with the ESCAPE key. Harold Abelson provides many
ideas for extending the chatter program, so that it stops
itself, and learns new words.

The PICKRANDOM procedure may puzzle you, so look at it
carefully. The :X is always a list. You can use 1t on any of
the lists we have made in this section. Try:

PRINT PICKRANDOM :FRUITS
of

PRINT PICKRANDOM :ABC
So you can see what PICKRANDOM does. The second line
may give you inore trouble:

OP ITEM } + (RANDOM COUNT X) :X
This word OP is a new Logo word. standing for OutPut it
simply passes the result of the procedure in which it appears
back to the procedure which called it. Demonstratons are
always better than explanations

EDIT “PICKRANDOM so that it reads:
TO PICKRANDOM :X
PRINT HEM 1 + (RANDOM COUNT X} X
END

Press CIRL C to leave the EDITOR Now uy
PRINT PICKRANDOM FRUITS

You will get a Logo message saying:
PICKRANDOM DIDNT QUTPUT TO PRINT

Then try

PICKRANDOM :FRUITS
which should work perfectly

The problem the fist tme was that the PRINT command
was expecting PICKRANDOM 1o telt it what to PRINT. Your
new PICKRANDOM is fine if alt you ever want 10 do is use
1t dwectly to print a RANDOM ITEM from a kst. but no good
at all of you want to use PICKRANDOM in a progruim

48

SECLIIUN FUUKITEEN — AFITER 1UKILE GRAFPHILDS
This idea of OUTPUT 1s very important. We nmiet it before. in
a different guise, when you typed 3 + 4, and Logo sem a
message saying:

YOU DONT SAY WHAT TO DO WITH 7
So you typed

PRINT 3 + 4
The same would happen if you typed COUNT :ABC. You
would receive the Logo message:

YOU DONT SAY WHAT TO DO WITH 26
COUNT outputs a value. The Logo word OP allows you
to create new Logo words, ke PICKRANDOM which
QUTPUT results, and expect 10 be told what to do with
them.

This is another example of Logo putting you in charge. Let's
go back to that troublesome, but interesting second line of
PICKRANDOM:

OP ITEM 1 + (RANDOM COUNT X) X
Let's work backwards from the right. That's what Logo is
doing. First it finds :X, it makes sure that :X is in its
memory as a list. Let's imagine that you have typed in
PRINT PICKRANDOM :ABC. So in this case, :X stands for
:ABC and we know that “ABC contains the 26 letiers of the
alphabet

It then goes back to aeal with COUNT X That's easy. It
OUTPUTS 26 back 10 RANDOM. RANDOM 26 produces a
random number between 0 and 25. Since we wouldn’t want
ITEM 0. we add 1 10 what ever number it chooses

This number in turn 1s OUTPUT to ITEM. Let us imagine the
random number was 6, add 1, makes 7. So we have:

OP TEM 7 :ABC
Since the 7th letter of the alphabet is G. PICKRANDOM
:ABC OUTPUTS G to PRINT. and G is what appears on your
screen. The same kind of logic is at work in:

10 DiCE

0P 1 + RANDOM 6

END
Try PRINT DICE a few times, and you will soon see that you
have the equivalent of throwing a six-sided dice

49

SECIIUN FUURIEEN — AF TER TURILE GRAFPHILS
Every Logo procedure, including the primitive proceduies, is
either a command or an operation. This is one of the most
important single ideas you need to understand when learning
the Logo language. There's more about it in the fust
reference section of the manual.

An operation outputs a Logo object (a word. a number, or a
hist}.

A command does not oulput a Logo object. in order to see
the difference, it might help you to think of some pairs of
Logo primitives:

Command Operation
SETH HEADING
SETMOQODE MODE
SETPOS POS
SETPC PC
SETBG BG
SETCURSOR CURSOR

tn the left-hand column you have primitives which requite
nputs; they then use these inputs to carry out your
mnstructions. On the left are words you can use 10 discover
the state of Logo or the state of the turtle. They output
values for your informaton. You will tind more about this in
Section 21.

50

SECTION FIFTEEN - BACK TO FRONT

A rather more comphcated example of the kind of Logo word
you can create yourself, using hists, is provided by REVERSE
X. Perhaps you can imagine what REVERSE does. PRINT
REVERSE :ABC churns out the alphabet backwards

REVERSE, tike PICKRANDOM, is not a word you find 1n Logo
10 begin with. I's not a primitive procedure. You have to
make it. See whether you think it is a command of an
operation.

TO REVERSE LIST

IFLIST = {) [OP (|}
OP SE REVERSE BF :LIST FIRST LIST
END

Try st out on

PRINT REVERSE ‘TREES
tet's see if we can understand why it works. We are back
with the recursive ideas we exploted in Turtle graphics. All
the work is done in the third hne. First look at :TREES [ELM
OAK ASH HOLLY THORN MAPLE]. One way of folowing this
procedure through its steps would be as follows:

PRINT REVERSE :TREES

LIST = {ELM OAK ASH HOLLY THORN MAPLE]
LIST = [OAK ASH HOLLY THORN MAPLE}

LIST = [ASH HOLLY THORN MAPLE])

LIST = [HOLLY THORN MAPLE]

LIST = [THORN MAPLE|

LIST = [MAPLE]

LIST = {]

REVERSE QUTPUTS { MAPLE | TO REVERSE

REVERSE OUTPUTS { MAPLE THORN | TO REVERSE

REVERSE OUTPUTS [MAPLE THORN HOLLY | TO
REVERSE

REVERSE OUTPUTS [MAPLE THORN HOLLY ASHI TO
REVERSE

{REVERSE OUTPUTS {MAPLE THORN HOLLY ASH OAK| TO
REVERSE

REVERSE QUTPUTS [MAPLE THORN HOLLY ASH OAK
ELM| TO REVERSE

REVERSE OUTPUTS | MAPLE THORN HOLLY ASH OAK
ELM | TO PRINT

MAPLE THORN HOLLY ASH OAK ELM

51

SECIIUN FIFITEEN — BALK TU FRUN I

Untit successive calls to REVERSE have emptied the LIST (in
this case TREES), Logo can’'t get on with the business of
building up the new list. in REVERSE order.

Look at that third line again:

OP SE REVERSE BF LIST FIRST :LIST
SE has two inputs (REVERSE BF :LIST) and (FIRST :LIST).
which it has to combine into a single hist.

The second of these is easy to understand. FIRST :LIST is
ELM. But what do we do about REVERSE BF :LIST. Well
the program is telling the computer 1o do the same thing all
over again to BF :LIST. In other words, the :LIST

without its FIRST {TEM.

Once it gets down to an EMPTY :LIST, we put on the
brakes by making it output an EMPTY :LIST, which we show
as {|. square brackets with nothing in them. Al that time, the
procedure QOUTPUTS all the words it has been stacking up in
REVERSE order.

You will almost certainly have to play with this for some
ume before you understand how it works

PRINT REVERSE :TREES
produced

MAPLE THORN HOLLY ASH OAK ELM
But wouldn't it be nice to have another possibility: FRiNT
REVERSEALL :TREES and produce ELPAM NROHT YLLOH
HSA KOA MLE. Well, 1t isn't difficuit. We need another
procedure 10 reverse the letters in a word

10 REV WD

IF WD = " [OP 7]

OP WORD REV BF :WD FIRST WD

END
This is virtually the same as REVERSE :LIST. The only
difference is that we are dealing with words instead of lists
The empty word is written “ | while the empty list, as we
have seen, is { . WORD works rather like SE, but instead of
gluing its inputs together 1o make a LIST, it makes a WORD
Try

PRINT (WORD "0 K "A °Y)
The inputs 1o WORD must be words, not lists Single letters

52

SECLIIUN FIFIEEN — BALK 1U FRKUNI
and numbers arc counted as words by Logo So:

TO REVERSEALL x

IF X = [][OP(})
OP SE REVERSEALL BF X REV FIRST X
END

By the time you have worked out how to reverse hsts, and
put them back together again, you will really know a good
deal about Logo. You should also have worked out that
REVERSE is an operation, which receives a list as input and
OUTPUTS another list (a Logo object).

Here's a procedure which will reverse words and hists, words
or lists.

TO REV :0BJECT

I EMPTY? :0BJECT {OP - |

iF LIST? :0BJECT {OP SE REV LAST :OBJECT REV BL :0BJECT)

1 WORD? :0BJECT {OP WORD LAST :OBJECT REV BL :0BJECT
END

53

SECTION SIXTEEN — MORE ABOUT NUMBERS

As we said in our Introduction,

we don’t expect everyone to read the whole of this manual
It has quite deliberately introduced and used more difficult
ideas and examples as we have progressed

We ate now going to talk about the way Logo does
arithmetic. We should say again that Logo regards numbers
as special kinds of words. If a word is a number, it doesn’t
have 1o be preceded by quotes, but if you want 10 wiite
“24, Logo won't protest.

As you know, if we want to add two numbers together, we
usually write: :FIRSTNUM + :SECONDNUM. for example 3
+ 4, but we might say ADD 3 and 4. in the first example.
the plus sign comes between the words we wanl 10 add
together. In the second example, the word ADD comes first.
followed by the numbers we want to ADD. Logo. too. has
two different ways of doing arithmetic. Try the following to
discover how it works:

PRINT SUM 4 3
PRINT SuM 4 -3
PRINT {SUM 4 5 6)
PRINTA + 3
PRINT 4 - 3
PRINT4 +5+ 6
PRINT 4 & 5
PRINT 3 % 2
PRINT PROD 3 2
PRINT 5 / 2

IF EQUAL? 3 3 [PRINT "OKAY|

IF 3 = 3 [PRINT "OKAY}
The technical terms for these different ways of wnting
arithmetic are “infix” and “prefix”. Words like SUM,
PROD. QUOT are known as "prefix operations”
because they precede the numbers they operate on. wheteus
symbols like %, +, /. >. = and so on are known as “intix
operations” because they are placed i between the
numbers the operate on. Like all other Logo operations, the

54

SECIIUN SIATEEN — MURKE ABUU I NUMIBERS
anthmetical operations output Logo objects, In this case
numbers

Some people use postfix operations, {eg 3 4 +) but Logo
does not, and we won't worry about them here. Computers
like 10 work along a line, from right to left, or left to nght,
without having to go back on their tracks, so they prefer
prefix or postfix operations.

Because most people grow up at present learning maths the
infix way {3 + 4), Logo offers both prefix and infix
operations. But this can lead to trouble. In ordes to sort out
the infix and prefix operations, togo deals with all the

infix operations first, in a strict order of priosity.

Division, multiplication, subtraction, addition,
equality/inequahty.

Logo does protest if you try the following:

if COUNT :ABC = 26 [PRINT “OKAY|
Provided you still have the hst “ABC in your computer
memory, you receive a mysterious Logo message, saying

if DOESNT LIKE 5 AS INPUT
This is a good one to try on people, who think they know
something about Logo

The Logo interpreter works from right to left. It starts with
the list of instructions [PRINT “OKAY], then finds 26 and the
= gign. Ah, = is an infix operation which takes two inputs
So it first looks to see if there are any more arnthmetical
operations 10 be evaluated; finding that there aren't, it
compares :ABC and 26 Clearly they are nol equal. so it
QUTPUTS the word FALSE back to COUNT. COUNT counts
the letters in FALSE, one two . . . five, and OUTPUTS 5§ to
IF. Logo is now faced with:

IF 5 [PRINT "OKAY]
Since the word F always looks for a condition which is
either TRUE or FALSE, it is totally baffled and says:

IF DOESNT LIKE S AS INPUT
There are various ways of wiriting the hne so as not to
confuse Logo Here are thiee:

If (COUNT :ABC) = 26 {PRINY “OKAY)
If 26 = COUNT ABC [PRINT “OKAY]
IF EQUAL? COUNT -ABC 26 [PRINT "OKAY]

55

SECUIIUN SIATEEN — MUKE ABUU I NUMBERD
Looking at them one by one. The first puts parentheses {)
round COUNT :ABC. You have probably come across this
use of () at school You have 10 evaluate whatever is inside
the parentheses first. You then use the result for the rest of
the calculation. Putting {} round COUNT :ABC means that
the compter calculates this to be 26 before comparnng the
two inputs 1o =.

The second solution simply switches the COUNT :ABC and
the 26, so that the Logo interpreter meets COUNT :ABC
before 1t meets the arithmetical operator =.

The third solution uses the prefix operator EQUAL? so that
by the time the interpreter reaches that point, it has two
inputs ready. 26 and 26, so IF receives EQUAL? 26 26, to
which it answers TRUE and therefore goes ahead and prints
OKAY.

i think that exploring this example will save you a deal of
tme and trouble later on. You will find that the three iniix
.operations dealing with equality (=) and inequality (< >) can
give you similar problems. The simple rule for dealing with
these probtems is:
If there is an expression to be evaluated {eg COUNT :X
or ITEM 3 :X) to the left of the infix operations (= < or >]
that expression should be enclosed in parentheses. This
is not wholly consistent, but it stems from the
simultaneous management of infix and prefix operations.
Try changing the following examples to make them work
properly (see also Sections 20 of this manual).

if COUNT :ABC < 20 [PRINT "OKAY][PRINT {NO WAY]|

IF ATEM 5 :ABC = "E {PRINT "OKAY][PRINT [NO WAY]]

IF ITEM 5 ABC = “Z [PRINT "OKAY][PRINT [NO WAY|
We haven't met the second set of square brackets before
One way of picturing their meaning is as follows:
{F conditon is TRUE. THEN {do this] ELSE [do that].
What it means is that if the conditon tested by IF outpuls
false, the second list of instructions is followed instead of
the fust list.

56

SECTION SEVENTEEN - FOR TEACHERS

Many people will have read about the use of Logu with very
young children, or with children who have severe difficulies
n reading

It 1s quite possible to make turtle graphics accessibic to
children who cannot read or write, and have never used a
keyboard, using only four keys of the computer. Look at
these procedures

T0 ERNS
ER OPNS
END

10 SETupP

ERNS

MAKE “f (FD 30}
MAKE "B [Bn 30}
MAKE "R [RT 15)
MAKE "L LT 15]
MAKE “H [HT)
MAKE °S |ST]
MAKE U {FU)
MAKE "D [+D)
MAKE “C {CS)
MAKE "Q {TOPLEVEL]
END

TO SIMPLIFY

MAKE “KEY RC

IF NOT NAME” KEY [SIMPLIFY)
RUN THING KEY

SIMPLIFY

END

The word which does all the work 1s RC. This stands for
READCHARACTER. Whatever key is pressed next becomes
'KEY. Then if :KEY corresponds to any of the 10 global
variables created by setup, Logo runs the THING
corresponding to that variable. Spot the difference between
THING “KEY and THING :KEY. If the KEY chosen i1s not one
of those hsted. SIMPLIFY waits for the next key press.

This can be made easier for childien by marking the active
keys with coluured labels, or arrows. 1t doesn’t matter which
keys, you chouse o operate the system You can cheose

57

SECIIUN SEVENIEEN — FUK | EACHERD
tewer or more keys, dzpending on the abiity of the cluld. At
its most simple. you could have just two keys, one 10 move
the turtle FORWARD, and another to turn it RIGHT. SETUP
can be modified in any way you choose. The command
ERNS clears the system of any oother global vanables which
may be lurking about. If you are working with a fresh Logo.
it is not needed

The SIMPLIFY procedure is recursive and keeps the whole
system going. indefinitely.

The SIMPLIFY system can be used in two ways by teachers
The first is 10 give very young children access to the
computer. The second use, with older chitdren, is 10 invite
them to find ways of improving the system. Obvious
extensions are RUBOUT, which allows a child 10 cance! its
last command. Modify the SETUP procedure as follows:

10 SETUP
ERNS
MAKE °F [REMEMER {FD 30] FD 30}
MAKE "B [REMEMBER [BK 30) BK 30|
MAKE R {REMEMBER [RT 15] RT 15]
MAKE "L [REMEMBER [LT 15) LT 15}
MAKE “P {RUBOUT]
MAKE “Q [TOPLEVEL]
END

And add two new procedures:

TO REMEMBER :ACTIUN
MARE “HIsTURY ACHGis
END

TO RUBOUT

IF EQUAL? FIRST :HISTORY "FD {PE BK 20 PD}

IF EQUAL? FIRST :HISTORY “BK [PE FD 20 PD}

IF EQUAL? FIRST :HISTORY “RT {LT 30]

IF EQUAL? FIRST :HISTORY “LT [RT 30

END
Another use of SIMPLIFY will be found in the discussion of
VDU commands in the section 28).

Another aid developed by teachers at MIT and Edinburgh,
when working with children with special needs. was to
switch on a DRIBBLE file, which recorded every keystioke
made by the child. This often provided the teachers with
clues as to the problems they were encountering with the

58

SECIIUN SEVENIEEN — FUK | EACHERD
computer, and provided the basis for developing a remedial stiatey,

Qur LOGO does not include DRIBBLE as a primitive because

this is provided by the BBC Computer’'s operating system as
*SPOOL.

Check the way this is used in your BBC User Guide. It has
been hard to decide how much reference should be made in
this manual 10 the BBC Operating System. We have decided
1o concentrate on Logo, and the special features of the
language. But do remember that all features of the BBC
Operating System are open to users of Logotron’s Logo

For further detatls concerning the use of operating system
commands, see Sections 20 (p.96) and 28 (p. 147).

These can be built into procedures and provided for children

directly. 10 be used as if they were primitives, without worrying

about the complexities of the operating system. Some rules have

10 be followed as such programs are creating an interface

between two very different environments: Logo and the

programs wihich make up the BBC micro’s powerlul operating system.

There will be teachers, particularly in secondary schools, who
will be looking tor ways 1o put extra intellectual challenge
into Turtle graptucs. We would suggest they begin 10
expenment with movement

The first expenment involves a procedure callled:

TO MOVE STEP

D :STEP

IF KEY? [MAKE "STEP RCj

MOVE STEP

END
Start with MOVE 0, then see what happens when you press
the number keys Watch the turtle accelerate, and slow
down 10 a stop when you press 0. Build on this with:

TO MOVEL :STEP INC
STROBE

D :STEP

MOVEL STEP + INC :INC
END

TO STROBE
PDFD O PU
END

59

SECLIIUN SEVENIEEN — FUK | EACHEKRD

A Frerch logophile, Alain Texicr, has built on these sinple
beginnings to simulate bouncing balls, faling stones, Lilliards,
and other moving objects. He calls it Logormotion, and there
is plenty of room for imaginitive exploration of this parucular
dea.

Many teachers wilt be concerned that the BREAK key can
easily be depressed accidentally, especially by very young or
disabled children. The BREAK key has the effect of wiping all
procedures and variable names from the workspace and from
the Editor. This can be very discouraging.

There is no programmable solution. The circuit design of the
BBC Micro does not aliow us to disable the BREAK key. The
best we can suggest is to cut out a length of cardboard.
0.25 inches wide and two inches long. Fold it three times
into the shape of a W. Take the top off the computer and
wedge the card behind and under the BREAK key, so that it
cannot be pressed

There is no disadvantage to this, so long as you are using
Logo. if you sull need the BREAK key for any reason, the
best way of resetting the machine is to turn off the power
and then turn it on again. It may seem a crude solution, but
we beheve it will be necessary in some environments, as the
BREAK key is set so close to F9

1t has not proved possible to include a number of long forms
of comimands. For example, Logotron Logo only offers HT,
instead of HIDETURTLE, or BG instead of BACKGROUND
for any reason teachers feel children need the fong form, 1t
1s the easiest thing in the world 10 construct the fong from
the short form. For example:

TO HIDETURTLE
HT
END

T0 BACKGROUND
OP BG
END

60

SECTION EIGHTEEN — LIST PROCESSING

Mike Sharples, unti recently 3 member of the Department of
Artificial Intefligence at Edinburgh University and now at the
University of Sussex, has spent a good deal of tme studying
the difficulues children encounter when they try 10 move
from turtle graphics to other kinds of programming In
particular he has studied problems involving the use of
language

He writes 1n a recent paper: “Attempts by members of this
department 1o teach list processing to children and adults
have not been successful. Learners who enjoyed and profited
from turtle geometry were bored and confused by lists.”

Sharples suggests that if newcomers 10 programming are 10
discover the utility of list processing. they need to be
provided with a toolkit, which goes beyond the list handling
primitives found in togo: ~ LIST SE WORD LPUT

FPUT BF BL ITEM COUNT FIRST and LAST.

We have already met these primitives in this manual, but we
would not expect that a reader would yet be able 10 du
anything very exciting with them.

Sharples has given penmission for us 1o describe two
elements of a possible list processing toolkit for begmners
These are not programs 1o be studied by the beginner, so
much as used

We would expect teachers or parents 10 provide them ready
made, on disk to be loaded by chidien and used 10 create
projects

The first of Mike Sharples’ tools for hist processing 1s a
Phrasebook His Phrasebook can be used 1o contan any
information a child might want to took up: questions and
answers; words and synonyms; Enghish phrases and their
foreign equivaients; Logo words and their definitions. The
same set of programs can be used nstead of the SIMPLIFY
program descrbed above in Section 17.

Only three commands are needed o operate the
phrasebook: TEACH, FIND and REMOVE. TEACH adds an
entry 10 the book 1t accepts enther words of lists as imputs

61

SECIIUN EIGHIEEN — LIS PRULEDSSING
TEACH "CAT “CHAT
CAT CHAT

TEACH [THE DOG] {LE CHIEN]

CAT CHAT

THE DOG LE CHIEN
Sharples has endeavoured 10 semain as close as possible to
the spirit of turtle graphics in creating his Phrasebook The
child “teaches” the computer. With every addition to the
Phrasebook, its full contents are shown to the child If this
becomes wearisome, it can easily be changed

FIND, as you would expect, allows the user to wiite FIND
{THE DOG). and be answered LE CHIEN.

The third command, FORGET, deletes an entry. FORGET
ICAT]. The user is then shown the remaining entries, DOG
LE CHIEN.

Even in this elementary form, the Phrasebook provides an
ntroduction to reference aids and to the techniques of table
loook-up and pattern matching For example, the child might
be given a core dictionary or thesaurus which she could
extend:

FIND "SAD

UNHAPPY, MOROSE, MELANCHOLY, DEPRESSING, UNFORTUNATE
FIND “WILD

WILD i3 NOT IN THE PHRASEBOOK

TEACH “WILD [UNTAMED, SAVAGE, UNRULY, BOISTEROUS)

With the additional command FOREVER, a child can easily
produce quizzes of “conversations”:

TEACH (WHAT IS THE CAPITAL OF FRANCE?] “PARIS
TEACH "HELLO [HI THERE]
FOREVER {FIND RL)

HELLO
HI THERE

WHAT IS THE CAPITAL OF FRANCE

PARIS
“Wild cards” or “jokers” for pattern matching a simple, but
powerful extensions 10 the Phrasebook. A single question
mark - ? - matches any single word; a double question
mark - ?? - maiches a series of words; a question mark,

62

SECIIUN EIGHIEEN — LIS FPRUCLEDSING
followed by one or mwore letlers, /a 1or example, maiches a
single word and assigns it to a vanable (in this case to X);
two question marks followed by one or more letiers,
?2PHRASE for example, matches and assigns a series of
words. The following examples show how this facdity could
be used.

TEACH (72 MY 7X HURTS 77} [YOUR X? LOOKS VERY PAINFUL]

TEACH {MY X LIKES 77¥] [TELL YOUR X TO STOP 7Y AND TAKE UP
DANCING INSTEAD]

FOREVER [FIND Ri}

DOCTOR, MY KNEE HURTS A LOT
YOUR KNEE LOOKS VERY PAINFUL

MY CAT LIKES PROGRAMMING COMPUTERS
TELL YOUR CAT TO STOP PROGRAMMING COMPUTERS AND TAKE UP
DANCING INSTEAD

Children will soon find new ways of using Phrasebook.

TEACH “SQUARE |REPEAT 4 [FD 200 RT 90}
FIND will execute the commands as well as printing them.
This allows you to use Phrasebook instead of SIMPLIFY,
described in the last section

TEACH Y {FD 20}

TEACH "B [BK 20]

TEACH °F |LT 30]

TEACH K [RT 30}

FOREVER {FIND RC}
NB. Neither Mike Sharples nor the authors of thus manual
believe that computensed quizzes of the type descnbed are a
useful way of teaching children geography, or any other
subject. The learning will happen because the child is
teaching the computer. The child asks the computer to give
it the name of the Capital of France. The computer “knows”
the answer if it has been properly “taught”.

Here are the procedures you need to create the Phrasebook
Just enter them throught the EDITOR, SAVE them and make
sure they work as we describe

63

SECIUN EIGHIEEN — LIS T PRULESSING
Phrasebook

64

TO FOREVER :PROCLIST
RUN :PROCLIST
FOREVER :PROCLIST

END

TO TEACH :ENTRY :DEFINITION
MAKE "PHRASEBOOK INSERT :ENTRY
DEFINTTION "PHRASEBOOK
PHRASEBOOK

END

TO INSERT :ENTRY :DEFINITION :BOOKNAME
IF WORD? :ENTRY [MAKE “ENTRY FPUT
ENTRY [Jj
IF WORD? :DEFINITION [MAKE “DEFINITION
FPUT -DEFINITION (]}
OP LPUT LIST :ENTRY :DEFINITION
THING BOOKNAME
END

TO MANY :PHRASE :NEXTMATCH :VARIABLE :MATCHBIT

IF EMPTY? :NEXTMATCH [MAKE VARIABLE
PHRASE OF [}

IF EMPTY? :PHRASE [OP ()}

IF EQUAL? FIRST PHRASE FIRST
NEXTMATCH [MAKE VARIABLE MATCHBIT
OF PHRASE]

OF MANY BF PHRASE NEXTMATCH
VARIABLE LPUT FIRST PHRASE
MATCHBIT

END

TO DISPLAY :BOOK

If EMPTY? :BOOK [STOP|

IF (COUNT FIRST FIRST BOOK) > 5 (PRINT
FIRST FIRST :B0OK] [TYPE FIRST
FIRST -BOOK|

REPEAT 6 [TYPE * |

PRINT FIRST BF FIRST :BOCK

DISPLAY BF :BOOK

£ND

SECHUN EIGHIEEN — LIS T PRUCEDDING
TO FIND :ENTRY

PRINT -

PRINT LOORUP ENTRY PHRASEBOOK

PRINT ~

END

TO FILL :RESPONSE

If EMPTY? :RESPONSE [OP {]}

If O EMPTY? BF FIRST RESPONSE NOT
EQUAL? FIRST FIRST RESPONSE *?
[OP FPUT FIRST :RESPONSE FILL
BF RESPONSE|

MAKE “WHAT BF FIRST :RESPONSE

IF AND EQUAL? FIRST :WHAT -2 NOT EMPTY?
BF WHAT [MAKE "WHAT BF ‘WHAT}

OP SENTENCE THING ‘WHAT FILL
BF -RESPONSE

END

TO CHECK :PHRASE :ENTRY

MAKE “WHAT FIRST :ENTRY

IF EMPTY? BF WHAT [OP BF :PHRASE}

MAhE "WHAT BF ‘WHAT

IF NOT EQUAL? FIRST :WHAT 7 {MAKE
‘WHAT FIRST :PHRASE OP BF
PHRASE)

OP MANY PHKASE BF ENTKY BF
WHAT [}

END

TO MATCHES? :PHRASE :ENTRY

IF AND EMPTY PHRASE EMPTY? ENTRY
{0P “TRUE|

IF EMPTY? ENTRY {OF “FALSE}

IF AND EMPTY’ :PHRASE 7P FIRST :ENTRY
{OP "FALSE}

IF EQUAL? *? FIRST FIRST :ENTRY [OP
MATCHES? CHECK :PHRASE :ENTRY BF
ENIRY|

if EMPIY? PHRASE JOF “FALSE]

If EQUAL? FIRST PHRASE FIRST ENTRY
0P MATCHES” BF PHRASE BF
ENTRY}

OP “FALSE

£

65

SECIIUN EIGHIEEN — LIS T PRUCLEDSDING
10 %P :WORD
If NOT EQUAL? FIRST WORD *? {OP
FALSE)
MAKE “WORD BF ‘WORD
If EMPTY? :WORD [OP “TRUE]
IF EQUAL? FIRST :WORD 2 (0P
“FALSE)
0P “TRUE
END

TO DO ALIST

IF AND DEFINED? FIRST :AUST NOT
MEMBER? FIRST :ALIST [If NOT AND OR
WORD SE} [RUN ALIST}

OP :ALIST

END

TO LOOKUP ENTRY :BOOK

IF WORD? :ENTRY {MAKE “ENTRY FPUT
ENTRY [}

1F EMPTY? :800K {PRINT SE :ENTRY
{IS NOT IN THE PHRASEBOOK]
OP ()

{F MATCHES? :ENTRY FIRST FIRST :BOOK
|OP DO FitL FIRST BF FIRST
:BOOK} {OP LOOKUP ENTRY BF
BOOK]

END

TO FETCH -ENTRY
QUTPUT LOOKUP ENTRY :PHRASEBOOK
END

TO DEL :ENTRY :BOOK

IF EMPTY? :BOOK {PRINT SE :ENTRY
{IS NOT iN THE PHRASEBOOK] OP
:BOOK]

{F EQUAL? :ENTRY FIRST FIRST :BOOK
|OP BF :BOOK] (OP SE
FPUT FIRST :BOOK {} DEL :ENTRY 8F
:BOOK]

END

66

SECIIUN EIGHIEEN — LIS T PRUCULESSING
10 DELETE ENTRY :DIC
IF WORD? ENTRY [MAKE "ENTRY FPUT
ENTRY [f
0P DEL ENTRY DIC
END

TO FORGET £NTRY

MAKE "PHRASEBOOK DELETE :ENTRY
PHRASEBOOK

PRINT *

PHRASEBOOK

END

TO PHRASEBOOK
DISPLAY :PHRASEBOOK
END

Note Before using PHRASEBOOK for the first time, you
need one further procedure:

TO SETUP
MAKE "PHRASEBOOK {]
END

Once you have a working Phrasebook, with contents, you
will not need SETUP, unless you want to wipe out its entire
repertoire

Boxes

The second model offered by Sharples is the box. It 1s
simply a compuies model of a physical box, labelled with a
single word name and hoiding an assortment of paper slips.
each bearing a string of one or more words. Any of these
words may be the names of other boxes and, together, a
group of boxes can be used to build a more complicated
structure

The command PUT adds a new word or list of words 10 a
particular box. Suppose we had four boxes: Nounphrase;
Arucle; Noun, Adjective

PUT ~CAT "NOUN
NOUN
CAT

67

SECIIUN EIGHIEEN — LIS T FPRUCEDSSING
FUT "DOC "hOUli
NOUN
CAT
DOG

PUT (ARTICLE NOUN] "NOUNPHRASE
NOUNPHRASE
ARTICLE NOUN

The command CREATE scans the word pattern given as its
input {enclosed in square brackets) and replaces every box
name with a word or word list taken, at random, out of the
box in question. This may be another box name. The
scanning is repeated until no box name remains. For
example. Suppose our boxes are filled as follows:

NOUNPHRASE
ARTICLE NOUN
ARTICLE ADJECTIVE NOUN

ARTICLE
A
THE

NOUN
CAT
DOG
HEN
MOUSE
FOX

VERB

CHASES

EATS

ESCAPES FROM

ADJECTIVE
FURRY
GINGER
ANGRY
FRIGHTENED
TERRIFIED

Now we might enter (i you want to try tius out. you will
have to type n Sharples’s procedures):

CREATE [NOUNPHRASE VERB NOUNPHRASE]
the first ume through, CREATE might substitute

ARTICLE NOUN EATS ARTICLE ADJECTIVE NOUN

68

SECIIUN EIGHIEEN — LIS FPRUCLEDSING
Looking again, there is a new round of substitution to
produce:

A FOX EATS THE TERRIFIED HEN
PUT can also be used to create a new box. For example,
working sull with our existing set of boxes. and

PUT {NOUNPHRASE VERB NOUNPHRASE] “SENTENCE

CREATE |SENTENCE]
would now be enough to achieve the same effect as the
previous example.

FOREVER [CREATE RL]
can be used to eliminate the need to type CREATE { | every
time.

Mike Sharples has used boxes to generate poetry:

PUT {LINE] & LINE2 & LINE3] "HAIKU
The ampersnd (&) is interpreted as a Carriage Return, or a
call for a new line.

PUT [ADJECTIVE ADJECTIVE NOUN VERB] "LINEL
and so on. If you want limericks, or poems with rhyming
patterns, you have 10 create suitable boxes.

The command REMOVE deletes a box and its contents

Boxes
Here are the procedures needed to create BOXES!

TO ADDTOVOCAB :APART :AWORD

it NOT MEMBER? -APART BOXES [MAKE
“BOXES LPUT APAR] BORES MAKE
APART LPUT -AWORD {] STOP}

IF 14OT MEMBER? -AWORD THING APART
[MAKE :APART LPUT AWORD THING
APART|

N

TO CHOOSE :PART

IF LOT MEMBER? PART BOXES [OF
LIST -PART - |

MAKE "PARTVAL THING -PART

OF ITEM (RANDOM COUNT -PARTVAL) 4 1
PARTVAL

END

69

SECITIUN EIGHIEEN — LIS T PRULUEDSING
TO INPUT PATBIT
MAKE “PATBIT LIST :PATBIT
MAKE “INWORD ASK :PATBIT
IF EMPTY? JNWORD (OP :PATBIT)
IF NOT EQUAL? :PATBIT :INWORD
[ADDTOVOCAB FIRST :PATBI :INWORD|
0P INWORD
END

TO LOOKAT PATBIT

If EQUAL? FIRST :PATBIT £ [MAKE
‘CHOICE INPUT BF :PATBIT} [MAKE
“CHOICE CHOOSE :PATBIT}

IF EQUAL? FIRST :CHOICE :PATBIT {OP
FIRST -CHOICE] [OP SCAN :CHOICE]

END

TO ASK .THEPROMPT
TYPE .THEPROMPT
TYPE =

TYPE *

OP RL

END

TO ADDWORDS

MAKE “INWORDS ASK {WORDS)

OP IF EMPTY? :INWORDS ({I} [FPUT
INWORDS ADDWORDS}

END

TO PUT LINWORDS :WPART

IF OR EMPTY? :LINWORDS EMPTY? :WPART
(STOP}

IF WORD? :LINWORDS [MAKE “LINWORDS FPUT
LINWORDS {]]

IF LIST? WPART [PRINT {YOU MUST GIVE A
WORD AS THE BOX NAME] STOP|

If NOT MEMBER? WPART :BOXES [MAKE
“BOXES LPUT :WPART :BOXES MAKE :WPART [j]

MAKE “WPART LPUT :LINWORDS THING WPART

CONTENTS THING :WPART

END

70

SECIIUN EIGHIEEN — LIS T PRUCLEDSDING
TO CONTENTS LINBOX
if EMPTY? :LINBOX [STOP)
PRINT FIRST :LINBOX
CONTENTS BF :LINBOX
END

TO CREATE PATTERN
MAKE “LASTONE :PATTERN
PPRINT SCAN :PATTERN
END

TO AGAIN

PRINT :LASTONE

PRINT *

PRINT CREATE :LASTONE
END

TO SCAN :PATTERN

IF EMPTY? :PATTERN [OP [)]

OP SE LOOKAT FIRST :PATTERN
SCAN BF :PATTERN

END

TO GET :PATTERN

MAKE “LASTONE :PATTERN
OP SCAN :PATIERN

END

TO REMOVE :WPART

IF NOT EQUAL? :WPART
| [MAKE “BOXES DELETE WPARY
BOXES}

END

TO PPRINT LIST

If EMPTY? :LIST {PRINT {} STOP}

If EQUAL? FIRST -LIST “& [PRINT [}
[TYPE FIRST :LIST TYPE * |

PPRINT BF IST

END

TO BOXES
PRINT :BOXES
END

TO FOREVER :LIST
RUN -LIST
FOREVER -LIST
END

71

SECITIUN EIGHIEEN — LIST PRULUESSING
TO DELETE :ELEMENT -LIST
IF EMPTY? -LIST {PRINT {THAT 1S NOT THE
NAME OF A BOX| OP .LIST}
IF EQUAL? FIRST :LIST :ELEMENT {OP
BF :LIST)
OP FPUT FIRST :LIST DELETE :ELEMENT
BF -LIST
END
“Phrasebook” and “Boxes” are quite new additions to the

world of Logo. There is plenty of scope to experiment with
them.

Once you thoroughly understand how to use them, then you
may feel ready to pull them to bits, or build extensions.

But do remember, that Phrasebook and Boxes are included
in this manual, not as sample programs, but rather as parts
of a toolkit for working with Logo.

72

SECTION NINETEEN - TOOLKIT

This section is just what it says, a toolkil. Procedures are
provided for a variety of uses. They are set out without
comment. They can be used in two ways. Hf you are already
familiar with programming in other languages. or already have
a good deal of experience with Logo, they are just a sampler
of ways Logo can be used on the BBC micro.

Alternatively they can be provided as tools for less
experienced programmers, who want to extend their range.
They could have particular application for teachers using Logo
in a Secondary school, where many students may be
converting from BASIC.

for example, even though Logo procedures are generally
much easier 1o read than BASIC programs, they may feel
lost without REM statements. Here is the procedure they
need:

TO REM :REMARK

END
As you can see. it does absolutely nothung. but it does allow
them to put in REM statements without contusing the
computer

REM [THIS PROCEDURE DRAWS A SQUARE!]

Sets

The next set of piocedures deal with sets, and are rather
more useful, allowing you to return the mtersection or union
of two sets, or to discover if one set 1s a subset of another

TO EQUAL :A 8

IF WOKD? A [OP A = B

IF WORD? B {OP “FALSE]

If SUBSET :A ‘B {OP SUBSET 8 4]
0P “FALSE

END

YO SUBSET :A 8

If EMPTY? A [UP “TRUE|

Ii MEMBER FIRS] -A B |OP SUBSET
BUTFIRST A B)

OP “FALSE

thu

73

SECITIUN NINETEEN — TOUULKII
TO INTERSECT A 8
IF EMPTY? :A 0P ()
OP IF MEMBER FIRST A -8 (FPUT
FIRST :A INTERSECT BF A 8]
INTERSECT BF A 8|
END

TO UNION :A 8
If EMPTY? A [OP B8]
OP IF MEMBER FIRST :A -8 [UNION BF
:A B} [FPUT FIRST :A UNION BF A :B)
END

TO MEMBER A B

IF EMPTY? 8 [OP “FALSE)

W EQUAL :A FIRST :8 [OP “TRUE]
OP MEMBER :A BF B

END

TO MINUS :A B

IF EMPTY? :A [OP]}

OP iF MEMBER FIRST A B [MINUS
BF :A B] [FPUT FIRST :A MINUS
BF A :B]

END

Back to Basics

As we have seen, Logo uses REPEAT and RECURSION.
where other languages use FOR. WHILE etc. For those who
still pine for BASIC, here are some useful procedures

TO FOREVER JINSTRUCTIONLIST
RUN :INSTRUCTIONLIST

FOREVER :INSTRUCTIONLIST

END

TO UNTIL :CONDITION :INSTRUCTIONS

If RUN :CONDITION (STOP] [RUN
INSTRUCTIONS}

UNTIL CONDITION :INSTRUCTIONS

END

TO WHILE :CONDITION :INSTRUCTIONS

If RUN :CONDITION [RUN :INSTRUCTIONS)
[STOP)

WHILE .CONDITION :INSTRUCTIONS

END

74

SEC ITUN NINETEEN — 1OUULKII
Graphics

Here are some graphics tools. You have already met
MOVETO. | expect you will think of some more if you get at
all deeply involved in Turtle graphics.

TO MOVETO X :Y
Py SETPOS SE X ¥
END

TO LINE X1 :Y1 X2 :¥2
MOVETO X} :Y1

PO SETPOS SE X2 :¥2
END

TO DIST1 DX DY
OP SQRT DX * :DX + DY ° :DY
END

TO DIST X1 :Y1 X2 :¥2
OP DISTH XI - X2 :¥1 - :¥2
END

T0 TDIST PT
OP DIST XCOR YCOR FIRST :PT FIRST BF -PT
END

Pretty Printing

Teachers may often want to print out procedures This not
easy if they include long lincs In order to introduce a break
in lines for printing purposes, we have included this suite of
PRETTYPRINT programs. The way tu use theni is as follows:
LOAD "PRETTYPRINT making sute that the PRETTYPRINT
file includes all the procedures set out below.

Set the maximum hne fength you can accommodate on your
printer by MAKE “"PW 55, for example; the default value of
“PW is 39. Then LOAD the procedure you want 1o
PRETTYPRINT, and type PP “PROC where PROC is the
name of the procedure. If you want to print out a number of
procedures use MAP:

MAP “PP [PROCI PROC2 PROCS3 ..}
MAP has many uses when you want to run 3 procedure a
number of times with different inputs.

75

SECTHUN NINETEEN — 1UULKII
TO DEF L

IF EMPTY! L { STOP |

PR FIRST L

DEF BF L

END

TO MAP F :L

IF EMPTY? L { STOP §
RUN SE :F | FIRST :L }
MAP :F BF L

END

TO PP :PROC

MAKE "PL TEXT :PROC

MAKE “PL LPUT { END] SE BL LIST (SE
“TO :PROC FIRSY :PL ~ BF :PL

MAKE “LPOS O

PPLINES :PL CR

END

TO CR

PR -

MAKE “LPOS O
END

TO PPLINES :L

{F EMPTY? L [STOP }
PPLIST FIRST L CR
PPLINES BF L

END

TO PPLIST <L

It EMPTY? :L { STOP |

IF WORD? FIRST :L { PPWORD HRST L |
[TYPE “[PPLIST FIRST L TYPE
"] SPACE |

PPLIST BF :L

END

TO SPACE

MAKE "LPOS :LPOS + 1
TYPE CHAR 32

END

76

SEC ITUN NINETEEN — 1OUULKII
TO PPWORD ‘W
If (LEN L) > PW | SPACE SPACE |
TYPE W
MAKE "LPOS LEN :W SPACE
END
TO LEN :W
OP SUM :LPOS COUNT ‘W
END

TO TEXT :NAME

SAVE "PROG :NAME

SETREAD “PROG

OP FPUT BF BF RL READLINE {}
END

TO READLINE :TEXT

MAKE “LINE RL

IF EMPTY? :LINE [OP * }

IF {END] = :LINE {SETREAD [] *DELETE "PROG OP :TEXT|
OP READLINE LPUT :LINE TEXT

END

TO DEFINE :NAME :LIST
SETWRITE "PROG

PR (SE “TO :NAME FIRST :LIST)
DEF BF -LIST

PR "END

SFTWRITE {1

L0AU PKOG

DCLETE “PROG

END

7

SECTION TWENTY ~ LOGO GRAMMAR

Introduction

The sections which follow make up a reference manual,
tather than a guide for newcomers. However, if you are a
newcomer, you will find it useful to extend your
understanding of procedures mentioned in the ntroductory
sections of the manual, and they will certainly be an
essential guide once you have gained confidence in
programming.

i you have used Logo before, these sections should provide
all you need to use Logotron's Logo on the BBC Model “B”
Micro. In most respects, Logotion’s Logo contorms 10 the
conventions established by Logo Computer Systems Inc. of
Montieal, and Systémes d'Ordinateurs Logo International, of
Paris in implementing Logo for a number of popular
microcomputers. including Apple Ii, the IBM PC, the Sinclar
Spectrum, the Atari range and the Coleco Adam There are.
however, some special featuses, made possible by the BBC's
operating system. In some cases we have departed from the
standard implementations, and we do draw atlention 10 these
(see, particularly, EDIT, ERASE, PO and SAVE. in every case.
there are important innovations).

The Installation Guide (Section 1) gves full instructions
concerning the installauon of the 16K ROM containing the
Logo system. This second part of the manual 1s orgamised
seclions, each covering a particular kind of primitive - The
Turtle, Words and Lists. Vanables, Defining and Editing.
Within these sections, you will find a short description of the
relevant primitives, in alphabetical order.

If you are not sure where 10 find a particular primitive,
consult the main index at the back of the manual. With most
primitives, you will find one or more examples of the way it
is used.

There are some conventions used in describing the
primitives. Where a primitive requires a number as its input,
FORWARD. for example, we write FORWARD n. Similarly
LEFT nor SIN n.

In these cases, we are describing the kind of input a
prmitive requires; we are not speaking about the way the

78

SECIIUN IWENITY — LUGU GRAMIVIAK
input 15 written when you type it into the keyboard When

you come 10 use one of these primitive procedures, you

replace the n with a number. Where a primitive requires 2

numbers, REMAINDER. for example, we write REMAINDER

ab

Similarly: PROD a b. Where a list of instructions follows the
primitive, as with REPEAT, for example. we write REPEAT
instructionlist. The word list indicates that the instructions
should be enclosed in square brackets [

Where a primitive takes the name of a procedure or a file.
as in SAVE, we write SAVE filename procname. When you
use such a primitive, you replace filename with the name of
the file you are creating. and procname with the name of the
procedure you wish to save.

In the case of the THING attached to a NAME, we speak of
an object. For example, LPUT object list. A Logo object can
be a word, a number, or a hst.

Where a conditional is involved. For example:

{F X = ¥ [PRINT "OKAY}
we would write {F pred instructionlist. Pred stands for
ptedicate. it must be a condition which the computer can
decide to be TRUE or FALSE. It often involves deciding
whether one number is bigger than another, or whether two
numbers are equal, or whether a hst has anything inat, or
whether the current npen colour is one colour or another.

another example:

I AND EQUAL? X :Y LIST? X [PR (YOU'VE GOT ITJ} [PR {TRY AGAIN}}
we would write: IF AND pred! pred2 instructionlist]
instructionlist2

This gives us a convenient notation for describing the Logo
procedures. If you find it bothers you, when you begin using
the reference manual, find someone else who can explain it
10 you. It's really easy once you have got hold of the idea.

Logo, like other languages, has a grammar. The conventions
described above, allow us 1o refer to that grammar or syntax
in a consistent way.

79

SECIIUN IVWENITY — LUGU GRKANIVIARK
Procedures

The basic bullding biocks of Logo ate the procedures it has
In its memory from the moment you swilch on your
computer. These are the PRIMITIVES, which really is short
for primitive procedures, the roots from which other
procedures are derived.

You can discover what they are by typing PRIMITIVES

These can be used direcily by typing on the keyboard. When
you are using Logo in this way, we say you are at
TOPLEVEL. For example. type FORWARD n, where n is a
number, and the turtle will immmediately move forward But
the PRIMITIVES can also be used to build up other
PROCEDURES, which can then be used by name at
TOPLEVEL as if they were PRIMITIVES. These
PROCEDURES., which you create, are built in the part of the
memory, which will be referred to throughout this manual as
workspace. It is the space in which you work

Using the BBC micro. the amount of available workspace
changes according 10 which MODE you are in. This is
inewitable, as the BBC micro uses a variable amount of
memory to manage the screen If your workspace overflows

you will receive a Logo Message on your screen, sayiing
OUT OF SPACE

Procedures are defined between the words TO and END
and have the form:

TO name inputlist CR
instructionlist CR
END

for example

TO HELLO :NAME

PR (SE "HELLO WORD -NAME . [THERE MUST BE MORE TO LOGO THAN
THIS)

END

HELLO "RUTH
would elicit the response:

HELLO RUTH. THERE MUST BE MORE TO LOGO THAN THIS

80

SECIHIUN IWENIY — LOLU GRAMIVIAK

Note: The first line of a procedure is calied the title line [t
always begins with TO, followed by the name of the
procedure, folowed by the names of any variables which are
required as inputs 1o the procedure. Examples are:

TO SQUARE SIDE
T0 BOX :HEIGHT WIDTH
10 HELLO :NAME

TO STAR :POINTS :SIZE .COLOUR
The last line must always consist of END by itself

Since procedures work just like extra primitives, procedures
can in turn be used to build new procedures. For example:

TO SQUARES :SIDE :NUMBER

REPEAT :NUMBER [SQUARE :SIDE RT 360 / :NUMBER]

END
The procedure SQUARE is used to build the new procedure
SQUARES. SQUARES could be referred 1o as the
superprocedure, and SQUARE as the subprocedure. When a
subprocedure is cailed from inside a superprocedure, you are
no longer at TOPLEVEL. Logo 1s working outside your direct
control. You could only intervene by stopping it, pressing the
ESCAPE or BREAK keys.

If you type a word that has not been defined as a
procedure, you vl get @ meszage For example, iype JEAN
Logo will respond: § DONT KNOW HOW TO JEAN

Objects

Logo objects are words or lists used as inputs or outpuls
from procedures. A word is a series of alphanumeric
characters. A word is contained between two delimiters {see
next subsection, which defines delimitess). Each character in
a word is said to be an element of that word.

A double quotes mark (“) at the beginning of a word enables
Logo to distinguish words from primitives and procedure
names. There is also a word with no characters in it, called
the empty word. It is written with a double quotes mark “ .
Try

PR "R2D2

PR TWEE COME

PR -

81

SECIIUN IWENIY — LUGU GRKANMIVIAK

“R2D2 “WELCOME and * are all words in Logo Numbers
(eg 23 134.567 1000) are also words in Logo. but they can
be written without the quotation marks, w5 can the boolean
values, TRUE and FALSE

PRINT 25

PRINT ~25
produce the same response.

A list consists of a series of Logo objects usually enclosed in
square brackets | |. The objects will either be words {or
numbers) or other lists. The individual elements of a list are
separated by blank spaces. There is also an empty list,
written [} [CAT 123 MOUSE HOUSE] is a list containing four
elements. {ICAT 123} IMOUSE HOUSE]] is a list containing
two elements, each of two elements.

A Logo object may also be the THING of a vanable NAME
For example:

MAKE “FRUIT [APPLES AND PEARS]
:FRUIT is a Logo object; so is THING “FRUIT.

Delimiters

The word delimiter is one of those awful bits of computer
fargon, which strike terror into the first time user. Never fear
You already use delimiters when you read and write English
You call them punctuation marks. A sentence begins with a
capital letter and ends with a full stop. Quoted speech 1s
enclosed in quote marks. A question ends with a question
mark. Words are separated from one another by leaving
blank spaces. These are all delimiters in ordinary wrtten
English.

When a computer program scans along a hine of symbols
typed in from the keyboard, or fed into memory off a disk or
cassette, it relies on delimiters, its own form of punctuation,
to know where it is and what to expect

For example a left-handed square bracket { tells it with
absolute certainty to expect a LIST. The other bracket | telis
it the LIST has now finished. A carriage retun at the end of
a line says that the line is finished in Logo, as in Enghsh,
we leave spaces between words. and Logo gets contused if
YOu run two words together. unless they are separated by

82

SECIIUN IWENIY — LUGU GRAMIMIAK
some cther dehmiter. These other dehmiters are:
(Hy=><+-%1
But even when one of these does appear in a Logo hne, 1t
is usually cleaser to leave a space on one side or the other:
MAKE “FRUITIAPPLES}
is quite correct, but

MAKE “FRUIT { APPLES |
is a lot easier to read. Logo takes no notice of extra spaces.

Be careful with the Minus sign as PRINT 7 ~6 would
produce:

7
YOU DONT SAY WHAT TO DO WITH -6
You shouid have written PRINT 7 - 6

Inputs

Some Procedures and Primitives need inputs 1o enable
them to work. Inputs are Logo objects (words or hists). They
may either be given explicitly at TOPLEVEL or be passed 1o
the procedure at the point at which a procedure is called
inside a running procedure, as output from another
procedure. For example, at TOPLEVEL:

PRINTCOUNTIABCDEFGHIJKLMNOPQRSTUVWXYZ
26

10 CHECK :LIST :NUMBER
1f :NUMBER = COUNT :LIST [PR “CKAY]
END

CHECKIABCDEFGHIJKLMNOPQRSTUVWXYZ 26
OKAY

The procedure takes the :NUMBER as 26 and the :LIST as
the letters of the alphabet, COUNTS the latter, compares the
two values, and prints OKAY. If CHECK is used without two
inputs, LOGO wilt complain

NOT ENOUGH INPUTS TO CHECK

In the following procedure, CHECK is a subprocedure, and
one of its inputs is the output of the procedure DICE.

83

SECTIUN IWENITY — LUGU GRAMNAK
10 EVENTHROW
CHECK REMAINDER DICE 2 0
END

T0 DICE
0P 1 + RANDOM 6
END

Quotes, Dots and Brackets

Unless you specifically indicate otherwise, using QUOTES ("},
DOTS (:) or BRACKETS {{). Logo interprets every word as a
primitive or a procedure. The only exceptions are numbers
{written with digits 0. . 9). If it does not find the word in its
lists of primitives and defined procedures. it sends the
message

| DONT KNOW HOW TO ...

The QUOTES (") indicate to Logo that the sequence of
characters immediately following, and ending with a blank
space, is a word. Even if it is the name of a procedure or a
primitive, it will be treated simply as a word. For example:

PRINT “PRINT
PRINT

The DOTS {:) tell Logo that the sequence of characiers
immediately following, and ending with a blank space. aie
the name of a Logo object 10 be evaluated. The DOTS teli
Logo 1o refer to the THING attached to that name. for
example:

PRINT FRUIT
APPLES AND PEARS

Unless Logo is expecting a list of instructions, as it does
after the primitives REPEAT, RUN and IF, the words
enclosed in BRACKETS {{) are treated as a list of Logo
words, each preceded by QUOTES. For example:

PRINT {PRINT FORWARD 100]
would simply print out the words contained in the squaie
brackets. it would not attempt to execute them.

Commands and Operations

In Logo. primitives and procedures can be conveniently
divided into two cateaories: commands and operations.

84

SECIIUN IWENIY — LUGU GRAMIMIAK
A command never outputs a value, whereas an operation

always outputs a value. The value output by an operation

must be a Logo object {a word or a list. including numbers.

bootean values, and names of primitives, procedures and

variables).

Typical commands: FORWARD, SETH. REPEAT. PRINT.
SQUARE, . ..

Typical operations: SORT, WORD, EMPTY?, LIST.
REMAINDER, REVERSE ..

Consequently, any procedure which is an operalion can act
only as the provider of an input to another procedure. For
example. if one wanted to construct an operation to test if a
number was even:

TO EVEN? :NUMBER
0 = REMAINDER :NUMBER 2
END

You then try it out with:

IF EVEN? 57 [PRINT “OKAY}
and get the Logo message:

YOU DONT SAY WHAT TO DO WITH FALSE IN EVEN
The fix 1s the word OP

TO EVEN/ :NUMBER

OF & = REMAINDER NUMBER 2

Eal

it £CE0 5 [PRINT “CKAY]

OKAY
If a procedure 1s 10 work as an operation, it must include
the command, OP. It then outpuls s result to the
procedure which calls it. Another example

10 MAX A 8

If EQUAL? :A B [OP :A |

If :A > B [OP A} |OP B]

END

PRINT MAX 7 19
19

PRINT MAX 6 6
6

85

SECIIUN IWENIY — LUGU GRKANMIVIAK

If you try to use a command as input 10 another command,
you get a Logo message. For example

PRINT £D 100

FD DIDNT OUTPUT TO PRINT
You can wrn a operation into a command by changing the
word OP and substituting some other command. Try
PRINT in the examples given above.

This distinction is so important that when we come 1o hst
the primitives, we indicate in each case whether it 15 a
command or an operation.

Variables

Variables are created in two ways in Logo. First, as inputs 1o
procedures, declared in the title line, as in TO SQUARE
:SIDE. for example. And second, through assignment
statements, using the primitive MAKE.

Where variables are created as inputs 10 a procedure, they
ate LOCAL 1o that procedure and any subprocedures. For
example:

TO STAR :SIDE

REPEAT 36 [SQUARE :SIDE RT 10}

END
If you then sun STAR 200 (assuming_SQUARE has been
previously defined), the turtle will draw a star of the size
required, but then SIDE will immediately lose its vaiue. Tius
can be demonstrated by typing:

PRINT :SIDE

SIDE HAS NO VALUE
The variable :SIDE was LOCAL to those procedures (in this
case STAR and SQUARE} to which it was an input, and has
no effect on any other procedures. Note that STAR was able
to pass the variable :SIDE on 10 its subprocedure SQUARE
:SIDE

The LOCAL character of these inputs allows one 10 use the
same variable names :X :SIZE :LIST :NUM over and over
again as inputs to different procedures, all of which may be
in the memory simultaneously.

When you create a vanable using the Logo assignment word

86

SECIIUN IWENIY — LUGU GRAMIMIAK
MAKE, for example:

MAKE °X 3
MAKE “FRUIT [APPLES AND PEARS}

MAKE “ALPHABET
ABCDEFGHIJKLMNOPQRSTUVWXY
That variable is GLOBAL, and will exist independently of any
procedure which calls it, unless it is specifically ERASEd. tike
procedures, global variables can be EDITed, ERASEd. Printed
Out or SAVEd.

This is a major innovation in SOUI's implementation of
Logo for the BBC micro. To refer to a variable by name,
and to distinguish it from a procedure name, it must be
enclosed in a list and preceded by quotes. For example:

€D {FRUIT}
would move a variable calted FRUIT to the EDITOR.
Whereas:

ED "FRUIT or €D (FRUIT)
would lead Logo to look for a procedure called FRUIT. You
will find more about this in the sections dealing with each
primitive.

A variable can contain any Logo object, words (including
numbers), lists, and another variable. For example:

MAKE "ABC "ALPHABET

MAKE “ABC :ALPHABET
In the first case, :ABC stands for the word “ALPHABET. In
the second, :ABC stands for the list of letters created
previously with the name “ALPHABET. When creating a
variable, one does not have to declare the data type as one
does in some other computer programming languages. So
long as the THING attached to the name is a Logo object, it
is valid assignment.

There are two ways of getting at the value assigned 1o a
particular vanable name:

PRINT :FRUIT
APPLES AND PEARS

PRINT THING “FRUIT
APPLES AND PEARS

87

SECITIUN IWENIY — LUGU GRAMNMAK

The second form s particularly useful whete you have a
vanable name stored without DOTS as an elenent of a list
Work through the following examples:

MAKE "HEATHER [CALCIFUGE LOW-GROWING SHRUBJ
MAKE “CALCIFUGE {LIME-HATING PLANT]
MAKE “LOW-GROWING [PLANTS WHOSE HEIGHT RARELY EXCEEDS 50 CMj

MAKE “SHRUB [PLANT WITH WOODY STEMS PERSISTING FROM ONE
YEAR TO ANOTHER]

MAKE “H {EIGHTH]
MAKE “EIGHTH [BETWEEN SEVENTH AND NINTH]

PR HEATHER

PR THING "HEATHER

PR THING fIRST THING "HEATHER

PR THING THING FIRST "HEATHER

PR FIRST THING THING "HEATHER

PR THING FIRST "HEATHER

PR THING FIRST Bf ‘HEATHER

PR THING LAST HEATHER
Logo Lines

A Logo line can be much fonger than a line on your imofiiu
screen, no matter what mode you are in. It ends when you
press the RETURN key. but cannot be more than 255
characters. Before you reach the himit, a warning bleep telis
you to stop. Here 1s a complex Logo Line:

IF EQUAL? LETTER FIRST :ALPHABET {MAKE "WORD1 FPUT :LETTEK
WORDI1] {SEARCH :LETTER BF :ALPHABET
Here are some guidelines to help you interpret a complex
Logo line:

1 When you see a procedure or primitive name, be sure you
know

a whether 1t 18 @ command of an operation,
b how many inputs it should take.

2. The fist procedure of a Logo line must always be =
command

88

SECIIUN ITWENIY — LULU GRAMIVIAK
% Be sure 10 account for every iput 10 a procedure.

4 When ali the inputs 10 a command have been accounted
for, the next procedure must be another command

For example:
MAKE "WD "HAPPY

PRINT SE |i AM] WORD BL WD “IER
Analysing this line. we see that PRINT is a command with a
single input. This must be the output of SE. which s an
operation with two Inputs.

The first input 10 SE is the list [| AM|. The second is the
output of the operation WORD. The latter 1s once again an
operation with two inputs. The first is the operation

BL. which has a single input :WD. The second input

10 WORD is “IER

Since there are no more procedure names to account for on
the line, we have finished. The following diagram
summarises what we have done:

PR:NT
SE
I AM]) WOJRD
B'l "IE‘R
wo

In the instance above, Logo would punt HAPPIER

Arithmetic

Numbers are a special kind of Logo word. You don't have to
put quote marks in front of a number, but it’s fine if you do

MAKE “A 20
MAKE 8 20

PR A
20

PH B
20

89

SECIIUN IWENIY — LULU GRAMIVIAK

The following pronty 1s given 10 infix arithmetic operations.
all of which take priority over other operations appeanng 10
the left of them in a Logo lne (see below and Section 24}

Infix
Duision /
Muluphcation *
Subtraction -
Addition +
Equality/inequality =
<
>

So division is executed before multiplication; both are
executed before subtraction, which is executed before
addition. All infix operations performed before prefix
operauons appearing to theur left in the same Logo line. The
order can be changed by using parentheses ().

PR4+ 672
7

PRI +6)/2
5

If you consider that these infix operations are also prinutive
operations, you will quickly see that they don’t behave like
other Logo operations. The normal way for a Logo operation
10 worik is

operation input input

taking inputs from the right, and outputting the result to the
procedure on the left. For example:

PRINT REMAINDER 14 3

2
REMAINDER takes two inputs, divides the second into the
first, is left with a remainder of 2, which is passed back to
print.
With infix operations you have instead:
input operation input
Logo copes with this confusion by always dealing with
certain arithmetic operations first. These take prionty over all

90

SECITIUN IWENIY — LULU GRAMIVIAK
other operatons appeanng to thewr left in a Logo hne. For
example:
PR RANDOM 2 + 3
1s read by Logo as

PR RANDOM (2 + 3
and not

PR (RANDOM 2} + 3

Another example

if COUNT :ALPHABET = 26 [PRINT “OKAY}
Logo will try to compare :ALPHABET 10 26, and will output
the boolean value FALSE to COUNT, which will output 5 10
IF, at which point, there will be a Logo message

if DOESNT LIKE 5 AS INPUT
If the line had been written:

IF (COUNT :ALPHABET) = 26 [PRINT “OKAY]
the Logo interpreter would have been perfectly happy
Equally it could have coped with:

IF 3 + 4 = 7 {PRINT "OKAY]
because it would have found two infix operations = and +,
and would have dealt with them in the order of precedence
described above, first the + then the =.

{F SUM 3 4 = 7 |PR "OKAY]

SUM DOESNT LIKE FALSE AS INPUT
The confusion arises when infix operations are mixed with
prefix operations Remember, the infix arithmetical operations
{listed abovel are always evaluated before operations to the
left of them in a Logo line, unless you have indicated
otherwise by judicious use of parentheses ().

Note: this is a controversial area in the design of Logo, and
1s poorly documented in most books. Some Logo interpreters
get nd of the confusion by not allowing infix operations.

Screens, Modes and Prompts

When you type instructions to Logo. you have a choice of
three different parts of the system, each of which behaves
in a ditferent way.

At the TOPLEVEL. every instruction you type in is interpreted
and executed mside the workspace immediately you press

91

SECIIUN IWENITY — LUGU GRAMIVIAK
the RETURN key. You are at TOPLEVEL as soon as you
switch on the computer The prompt at this level 1s &
question mark at the beginning of the line. Whenever you
see that questionmark, you know Logo is wailing 10 receive
your instructions at TOPLEVEL

When a procedure is running, the workspace is under the
control of Logo, and not under your direct control, as 1t is at
toplevel, but the workspace is the same. Logo can only
attend to one set of instructions at a time

Then there is a reserved area of memory called the Logo
Editor, where you can write new procedures or change old
ones. You enter the Editor by typing

EDIT or just ED

In the Editor, the prompt is a solid square cursor, instead of
the question mark. Inside the Editor, Logo does not carry out
any instructions, it just waits and records instructions In its
own portion of the computer's memory, which 1s called the
Edit Buffer. When you have the procedure just nght, you
type CTRL C, and the Editor wiites the new procedures inlo
the workspace ready for use. Special commands are available
to allow you 10 move the cursor freely around the screen for
ease in changing procedures

Finally, you can define procedures without going into the
Editor by just typng the utie ne of a new procedure

TO name inputl nput? ...
As soon as you hit the RETURN key. you will see a new
kind of prompt
>

This tells you you are defining a new procedure You are no
longer at TOPLEVEL. it will disappear as soon as you type
the line:

> END
and return you to TOPLEVEL with the message

name DEFINED
Using the BBC Micro, you have several choices of MODE,
and this will affect the things you can do in LOGO. You

should read about the 8 different MODES in the BBC User
Guide {p 160)

92

SECIIUN IWENITY — LUGU GRAMIVIAK
You will discover that graphics are available in some MODES

(01245) and not n others (36 7). In MODE 2. you can

have 16 colour combinations; in MODES 1 & 5, four colours,

and in MODES 0 & 4, only two colours. In the text MODES

(3 & 6), you can choose a text colour and a background

colour. MODE 7 is a special kind of text called Teletext is a

subject on its own.

The problem for Logo of changing MODES stems from
the fact that the monitor demands different amounts of
memory for different MODES. When you enter Logo you
are in MODE 4. You change MODE by typing

SETMODE n.

You can soon see that this effects the amount of memory
you have available for writing procedures by typing PR
NODES.

When you want to change MODES, you should save your
current procedures, either on disk {or cassette) or in the
Editor. Type: EDALL; Press ESCAPE 10 leave the Edttor,
then ERALL. which erases all procedures from the
workspace, then SETMODE n; then ED to enter the Editor,
then CTRL C. and all the procedures will be read back from
the Editor into the workspace.

Ii there are 100 many procedures or vanable names to hold
n the Editor, which can contain 1,000 characlers. you will
have to SAVE them onto a disk or casselte, and then LOAD
them back into the workspace after you have changed
MODE

If you ever forget which MODE you are in, type PR MODE
Providing you are in a MODE which offers graphics (0 1 2 4
5). you can choose between wo screeens, the Graphics
Screen or the Text Screen. In the Graphics screen, you can
type in commands, or define procedures, only at the very
bottom of the screen. The main part of the screen is
reserved for the turtle and any pictures you may draw In the
Text Screen, you can wiite all over the screen When you
turn on the computer you are in Text Screen. To switch to
the Graphics Screen, either give a command to the Turtle
(see Section 21) or ype CS

To feave the Graphics Screen and return to Text Screen. type
IS you do s, any prelites you base diswn v 8 he tont

93

SECIIUN IWENIY — LUGU GRKANMIVIAK

So be sute you don‘t mind, ofr have saved the picture v i
SAVEPICT (see Section 28).

Recursion

Logo allows recursive procedures. A recursive procedure 1S
one which calls itself. Here is a recursive explanation of how
you walk. To walk, put your left foot in front of the right,
then the right foot in front of the left, then walk

Examples are given throughout this manual of recusive
procedures. The most important thing to understand about
them is that they never stop without some kind of limiting
condition, which brings them 10 an end.

You may have come across the word recursion before 1n
arithmetic. For example. express one third as a decimal
fraction:

173 = 0333333333333333333333333 recurring

We usually put a limit on such an expression by stopping it
after three repetitions, and writing 0.333.

Here is a typical procedure, including a stop clause:

T0 SPi :SIDE :ANGLE :INC

IF SIDE > 300 [STOP|

FD SIDE RT ANGLE

SPI SIDE + 4NC -ANGLE NC

che

Recursion 1s not always the most efticient way of reactung
your goal. Here, for example are two ways of generating the
nth member of the Fibonacci series (11235813 ..)

T0 FIB N

IFN <301

OP(FBN - 1) + (FIBN - 2)
END

TOFIB N

MAKE “A 1 MAKE ‘B |

FN <3P

REPEAT QUOT (N - 2) 2 [MAKE A (A + :B) MAKE "B (A + B))
IF EQUAL? REMAINDER N 2 1 [MAKE A (A + :B) OP A} {OP B
END

94

SECITIUN IWENIY — LULU GRAMIVIAK
The two procedures produce wdentical results The recursive
version {the first one} 1s far the most elegant and easy to
read. But it can gum the computer up for several minutes
producing the 20th Fibonacci number The second procedure
is not elegant, but it is efficient. Try them both out for
yourself. The recursive version is often used as a
benchmarking test, to discover how efficiently a particular
implementation of Logo handies recursion. Bad
implementations crash when asked to compute FIB 20 the
hard way. See how long it takes Logotron Logo.

The BBC Operating system

BBC Micro users soon discover two kinds of command,
which have a wide vanety of uses. These are comnimand,
which begin VDU or #. Both kinds of command are available
in Logo. The only way they differ from the way they are
described in your BBC User Guide {sections 34 and 42) is
that the pnmitive procedure VDU requites a list as its input.
For example:

VDU {191 4000
in MODE 5 would change logical colour 1 {red) to actuat
colour 4 {blue)

If you want 1o input a variable value to the hist, you have 1o
use the construction

VDU SE 19 1 :NEWCOLOUR 0 0 0
The Logo interpreter will supply the value of :NEWCOLOUR
and SE will then output a list to VDU. If one wrote:

VDU {19 1 :NEWCOLOUR 0 0 0}
You would get a Logo Message:

VDU DOESNT LIKE :NEWCOLOUR AS INPUT
in other words, it would simply be treating :NEWCOLOUR as
an element in the list, not as the name of a variable 10 be
checked against a value

Both VDU and * commands can usefully be built into
procedures, which can then be given to children as tools
This is particularly useful in cases where the children might
find the operating system hard work

95

SECIIUN IWENITY — LUGU GRAMIVIAK

The problem with % or star commands is that the star or
astensk can mean three different things in Logo. 11 can signal
the beginning of a call 1o the BBC mucro’'s operating system; act
as a wild card (see the BBC DFS manual); or act as an infix
arithmetic operator in Logo. The rules for using star(%)
commands are as follows.

If they come at the beginning of a Logo line or a Logo hist, there
is no problem. All subsequent numbers or words on the line. or
in the list, will be sent to the operating system.

i you wish to insert a star command in the middle of a Logo
line. it is necessary to enclose the star command and its inputs
in parentheses. For example:

SETBG 9 (¥FX 9,50) (aFX 10,50) FD 100

There is one exception. According to the BBC User Guide, if you
type %.1. you should be given intormation on the contents of
the disc in Drive 1. Logo. however, interprets this as a
multiplication by 0.1. The solution is 1o use the back slash (\}.
which instructs Logo to treat the next character literally. without
reference 10 its meaning. You type % \1.

If these rules are followed. there should be no problems

HNB Note the difference between the treatment of VDU and %
commands. The former acts like any other Logo primitive, 1aking
a hist of inputs, without commas separating them. Numbers
larger than 255, which require two bytes of memory, are
denoted using quotes {7), eg "1278. Whereas star (%)
commands have 10 be isolated from Logo.

WARNING: Some calls to the BBC operating system, like
#COMPACT and %FORMAT, can crash Logo. In such cases.
CTRL BREAK is required 10 reboot Logo. This is not a bug in
Logotron Logo. it is a feature of the BBC Micro.

96

SECTION TWENTY-ONE - TURTLE GRAPHICS

This section of the manual, and those which follow, consist
of descriptions of each primitive of Logotion Logo for the
BBC Micro

In bold face, at the beginning of each entry, you will find the
name of the primitive and its short form, if one exists,
followed by the type of each input it requires, in italics. We
indicate on the same line whether the primitive is a
command, an operation, or an infix operation.

Below this, we provide general information about the
primitive and examples of its use.

When you use any primitive of procedure that refers to the
turtle, Logo switches to the graphics screen. If you are in a
MODE without graphics (3, 6 & 7), you will receive a LOGO
message:

NOT POSSIBLE IN THIS MODE
Relatively few examples are given as the operation of Turtle
graphics commands is straightforward, and many examples
are given in the first sections of the manual. Where a
number is required as an input to a Turtle graphics command
it can always be a real number (eg 34.13456). The most
important idea 10 get hold of when approaching Turtle
Graphics for the first time is that you control the turtle's
“state”, its heading {the direction in which it i1s pointing), its
position, whether or not it i1s drawing a line, the colour of
the line, and the colour of the background. You also contiol
its domain, and decide whether or not it can ever disappear
from view

BACK (BK) n command

Moves the Turtle n steps back {ie in the opposite direction
to its heading). Its heading does not change. Note that BACK
0. {with PENDOWN) displays a single dot at the turtie’s
current position, without moving the turtle. Logo will protest
if nis greater than 32767.9999 or less than —32767 9999
See FORWARD

BG operation

BG outputs the current BackGround colour. See also SETBG,
PC ond SETPC PRINT 87 will past on the screen a nuinber

97

SECIUN IWENI Y-UNE — UK ILE GRAFPHILD
corresponding to the current BackGround Colour. The
numbers of the BackGround colours correspond to the
“logical colours™ available in the different modes These
logical colours can be changed using VDU commands. See
BBC User Guide (pp 160-180 , 377-390). or the SETPAL
procedure set out below.

The default colours in each graphics MODE are:

BG No. MODES 0, 4
0 BLACK
1 WHITE

MODES 1, 5
BLACK

RED
YELLOW
WHITE

MODE 2

BLACK

RED

GREEN

YELLOW

BLUE

MAGENTA

CYAN

WHITE

FLASHING BLACK/WHITE
FL. RED/CYAN

10 FL. GREEN/MAGENTA
1 FL. YELLOW/BLUE

12 FL. BLUE/YELLOW

13 FL. MAGENTA/GREEN
14 FL. CYAN/RED

15 FL. WHITE/BLACK

The numbers of the MODE 2 colours are the ones Yyou use
il you want to change the default colours in other MODES
The procedure SETPAL is helpful in this regard

TO SETPAL A B

MAKE "A (SE19:A BO G 0)

VDU A

END
where A is the number of the colour you want to be
changed (in the MODE you are in) and ‘B is the number of

98

WN =0

WONOOEBWN~O

SECITIUN IWENI Y-UNE — UK ILE GRAFPHILD
the colour you want {from MODE 2). For example, in

MODES 5 or 1, SETPAL 1 4 would remove RED from your

list of available colours and replace it with BLUE

You can use the procedure MAP (see toolkit) to change all
the colours available, as foliows:

MAP “SETPAL {01 2 3] (24 5 6

would change your available colours in MODES 5 or 1 from
Black, Red Yellow and White to Green, Blue, Magenta and
Cyan.

CLEAN command

Wipes the graphics screen, without changing the turtle’s
state (see POS & HEADING). or the displayed text in the
text window.

CcS command

Wipes the graphics screen and returns the turtie 10 position
[0 O} in the centre of the screen, and its heading to O,
pointing straight up the screen. CS does not affect displayed
text, background and foreground colours, or WRAP, FENCE
or WINDOW (see below). CS also acts as the switch from
text screen 10 graphics screen. |{ the entire screen is
dedicated to text, that text will be lost in the switch to
graphics screen

DOT x vy command

DOT does not exist as a primitive in Logotron Logo. A
procedure to leave a dot at a specified position, coordinates
x y. can easily be created as follows:

TO DOT :x 1y
MAKE “P POS
PU HT SETPOS SE X 1Y
FD O
SETPOS P PD ST
END
FENCE command

Limits the turtle’s movements to the screen boundanes
After using rENCE. Logo will not allow you to move the

99

SECIIUN IWENI Y-UNE — TURILE OGRAFHILY

turtle beyond the hmits of the screen. See also WRAP and
WINDOW.

FENCE BK 1000
BK DOES NOT LIKE 1000 AS INPUT

FORWARD (FD) n command

Moves the turtle n steps forward (ie in the direction it 1s
HEADING). Like BACK 0, FORWARD 0 (with PENDOWN)
displays a single dot at the turtle’s current POSition without
moving the turtle. Logo will protest if n is greater than
327679999 or less than —32767.9999. See BACK.

HEADING operation

Outputs the turtle’s heading. a number greater than or equal
10 0 and less than 360. This is the same as the system
used for compass bearings. where North (conventionally at
the top of a map) represents a heading of 0 degrees, East
(towards the right} is 90 degrees, South 180, and West 270.
When you enter Logo, the turtle's HEADING is 0.

HOME command

Moves the turtle to the centre of the screen and sets 11s
HEADING 10 0 it does not CLEAN the screen. If in
PENDOWN, the turtle draws a ine from its current postion
1o HOME.

HT cormmand

Stands for Hide Turtle. which makes the turtle invisible,
although it can still draw. This command speeds up the
turtie’s movements.

LEFT (LT) n command

Turns the turtle left {counterclockwise} n degrees 1 is an
eror if n is greater than 32767.9999 or less than
—~32767.9999. For example LEFT 45 or LT 45 wins the turlic
45 degrees to the left. LT —45 would turn the turtle 45
degrees 10 the right See RIGHT.

100

SECIIUN IWENIY-UNE — TURILE OGRAFHILY

PC operation

PC outputs a number corresponding to the current
PenColour. PC is 1 on entering Logo. These numbers
correspond to the logical colours available in different modes.
See the section above on BG for details of these, and how
they can be changed using SETPAL. See also SETPC.

PD command

Lowers the turtle’'s pen, so it draws a line when it moves.
See PU. Stands for Pen Down.

PE command

The turtle erases any previously drawn lines it passes over.
For example:

TO VANISH

REPEAT 4 {FD 250 RT 90]

PE

REPEAT 4 [FD 250 RT 90]

END
PD reverses the PE command.

PU cominand

Lifts the turtle’s pen so that no line is drawn when it moves.
For example: PU FD 50. See also PD and SETPOS

POS operation

Outputs the turtle’s position as a hst of coordinates [x y/.
When you enter Logo POS is [0 O}

RT 90 D 50

PR POS

500

RIGHT (RT) n command

Turns the turtie right {clockwise) n degrees. It is an error it n
is greater than 32767.9999 or less than —32767.9999. For
example RIGHT 45 or RT 45 turns the turtle 45 degrees 10
the right. KT -45 turas the turtle 45 degrees to the lelt

101

SECIIUN IWENI Y-UNE — TURILE OGRAFHILY

SCRUNCH operation

Qutputs the aspect ratio x:y, the ratio of the length of a
horizontal step to the fength of a vertical step. See
SETSCRUNCH. The default value is 1.0.

SETBG n command

Sets the BackGround colour to the colour n. See BG for the
table of values and how to change them. Warning: SETBG
wipes out any graphics currently displayed on the screen
This is not a bug in the software, it is a feature of the BBC
Micro.

SETH n command

Sets the HEADING of the turtle 10 n degrees if n >= 0 and
< 360; to REMAINDER n 360 if n > 359; 10 360 - nif n <
0 and > —-360; and to 360 + (REMAINDER n 360) i n <
-359.

SETNIB n command

This allows one to achieve spectacular graphics effects. but tt
needs to be handled with care, as it is making use of the
BBC micro’s operating system. It corresponds to the BBC
BASIC command PLOT, and variations can be found on p 319
of the BBC User Guide. The value of n corresponds to the
value of K. Try

SETNIB 85 FD 200 RT 90 £D 200

SETNIB 21 FD 300
These two values, 85 and 21, will be most useful in normal
use. The dot in front of SETNIB is there 1o warn you that
Logo cannot protect you from setting incorrect values as the
input to .SETNIB, as it is controlled by the BBC operating
system, and not by Logo.

SETPC n command

Sets the tunile’s PenColour to the colour n. See BG for the
table of values and how to change them. The number of
colours available depends on the MODE you are in

102

SECIIUN IWENIY-UNE — TURILE OGRAFHILY

SETPOS [x yl command

Given a list of two numbers {the x and y coordinates, see
XCOR & YCOR), SETPOS moves the turtie to that POSITION
if PENDOWN., the turtle leaves a trace. For example
compare:

PD SETPOS (- 189 7|

PU SETPOS (123 -90}
i you wish to input a value derived from a varnable to
SETPOS., use

SETPOS SE X :Y

SETPOS {X Y}
will prompt the Logo message

SETPOS DOESNT LIKE {X :¥] AS INPUT

SETSCRUNCH n cormmand

Sets the aspect ration x:y = n, where x is a turtie step
along the horizontal axis and y is a turtle step on the vertical
axis. Try different values for n between .5 and 1.5 on
squares and circles. For example

SETSCRUNCH 5
REPEAT 360 {fD 10 RT 1]
See also SCRUNCH.

SETX n command

Moves the turtle 1o point n on the x-coordinate (XCOR)
fleaving the y-coordinate (YCOR) unchanged. If PD the
turtle leaves a horizontal trace.

SETY n command

Moves the turtle 1o point n on the y-coordinate (YCOR)
leaving the x-coordinate (XCOR) unchanged. if PD the
turtie leaves a vertical trace.

ST command

Makes the turtle visible. See HT. Stands for Show Turtle.

103

SECIIUN IWENI Y-UNE — TURILE OGRAFHILY

WINDOW command

Enables the turtle 10 move outside the screen area, ueating
the screen as a window, viewing a small rectangle at the
centre of its circular field. The TURTLE can move up 1o
32767 steps in any direction from the centre. See FENCE
and WRAP. If you wish to change the size of the graphics
window, you must be in WINDOW. Here is a procedure,
which will split the screen vertically. giving you space on the
right for text and on the left for graphics.

T0 SPUTSCREEN

cs

VOU [26 12 28 0 31 20 0 24 “700 "0 1278 1000 29 "989 500}

CS WINDOW

END
In order to understand fully how this works, it is essential to
study the VDU commands in Section 34 (p.377) of the BBC
User Guide. See also Section 28 of this manual. Use the
command TS to reverse any windowing. This
restores all windows (text and graphics) to their default
values.

WRAP command

Makes the turlle’s field WRAP around the edges of the
screen, When the turile crosses a screen boundary. 1t
immediately reappears on the opposite side. Topologists will
tell you that WRAP maps the turtle’s field onto a torus
When you first enter Logo. the turtie’s field is in WRAP

XCOR operation

Outputs the x-coordinate of the current position of the turtle.
SETX XCOR + 20 moves the turtle 20 steps to the right.
Draws a line unless you first enter the command PU.

YCOR operation

Returns the y-coordinate of the current position of the turtle
SETY YCOR - 20 moves the turtle 20 steps down the
screen.

104

SECTION TWENTY-TWO - WORDS AND LISTS

There are two types of object in Logo: words and lists We
discussed them in Section 20 of the manual. Here we look
at some primitives 1o put them together and take them
apart. These can be quite confusing. So before defining them
one by one, here is a chant, which may help you tell one
from another. If you want to try them out, use SHOW
instead of PRINT, as PRINT stnps oft the outer brackets,
while SHOW leaves them in place. For example:

SHOW FIRST {[JOHN MARY] {SUSAN GEORGE]]

[JOHN MARY}

PRINT FIRST [[JOHN MARY] |[SUSAN GEORGE]]

JOHN MARY
Operation Input Output
FIRST “JOHN J
BF “JOHN OHN
FIRST {MARY JOHN BILL] MARY
BF {MARY JOHN BiLL] {JOKN BILL]
FIRST {{MARY JOHN] BILL| [MARY JOHN}
BF {IMARY JOHN] BILL] [BILL]
FIRST 11 Logo Messagek
Bf i1 Logo Messagek
Fust : Logo Message +
BF) Logo Message +

FIRST/BF DOESNT LIKE {| AS INPUT
+ FIRST/BF DOESNT LIKE AS INPUT

Operation Inputl input2 Output

FPUT LOGO TIME Logo Messagek
LIST “L0GO “TIME {LOGO TiME]
LRUT “LOGO TIME Logo Messagek

SE "LOGO “TIME {LOGO TIME)
WORD “L0GO “TIME LOGOTIME

FPuT {AND MORE] {TO COME] [JAND MORE] TO COME]
LIST {AND MORE| {TO COME] [IAND MORE] {TO COME]]
LPUT {AND MORE} [TO COME] [TO COME {AND MORE])
SE [AND MORE] [TO COME] [AND MORE TO COME}
WORD {AND MORE] [TO COME] Logo Message +

% LPUT/FPUT DOESNT LIKE TIME AS INPUT
+ WORD DOESNT LIKE [TO COME] AS INPUT

Note: The empty word “ | shown as isolated quotes in a
Logo line, metely appears as a blank space in Logo messages

105

SECIIUN IWENIY-1VWU —WURDS AND LID IS

In the case of the empty list, [} the delimiters
are shown (see % and + above).

ASCH character operation

Outputs the ASCH code (decimal n) for character. There is a
full list of ASCIl codes in the BBC User Guide. If the input
word contains more than one character, ASCIi returns the
code for its first character. See CHAR. For example:

TO SECRETCODE :wD

IF EMPTY? ‘WD |OP 7}

OP WORD CODE FIRST :WD SECRETCODE BF WD
END

T0 CODE €Y

MAKE "NUM {ASCIl LEY) + 3

IF NUM > ASCIl “Z [MAKE "NUM NUM - 26|
0P CHAR :NUM

END

PR SECRETCODE "CAT
FDW

PR SECRETCODE “CRAYON
FUDBRQ

The next task is 10 write a procedure which will translate
secret code back into English

BF object operation

Outputs all but the first element of object BF or BF || are
impossibilities and prompt a Logo Message. For example:

SHOW BF [BRIAN J. SMITH]
(). SMITH]

SHOW BF “DOGS
0GS

SHOW BF [DOGS]

SHOW BF 3456
456

SHOW 8F (]
BF DOESNT LIKE {} AS INPUT

106

SECIIUN IWENIY-1VWU —WURKDS AND LIS IS

The following procedure stps a word or Iist, one element at

a time;

TO TRIANGLE MESSAGE
IF EMPTY? :MESSAGE [STOP)

PRINT :MESSAGE

TRIANGLE Bf .MESSAGE

END

TRIANGLE “LOGO
L0GO

0GO

GO

0

TRIANGLE {HOW NOW BROWN COW]
HOW NOW BROWN COw
NOW BROWN COW

BROWN COwW
Cow

But watch out for this

MAKE “PAIR [3 5]

IF 5 = BF :PAIR {PR "OKAY||PR {TRY AGAIN]

TRY AGAIN

IF 5 = FIRST 8F
OKAY
The reason is that

PAIR [PR "OKAY||PR [TRY AGAIN}

BF list outputs another list. In order tc

compare the second element of the hist :PAIR t0 5, you
need to use the additional operation FIRST. BF word outputs

another word

8L opject

operation

Outputs afl but the last element of the specified object (word
or hst). It is the mirror image of BF.

SHOW 8L {1 YOU
[+ YOU SHE|

SHE WE]

SHOW BL “FLOWER

FLOwe

SHOW 8L -
BL DOESNT LIKE

AS INPUT

See BF, which also refuses 1o accept the empty word or list

as input.

107

SECITIUN IWENITY-IWU —VWURDDS AND LID IS

CHAR n operauon

Outputs the character whose ASCIl code is n {see ASCIl), an
integer from 0 through 255.

COUNT object operation

Outputs the number of elements in the specified object
(word or fist):

PRCOUNT[ABCODEF Q)
7

PR COUNT 2345
4

PR COUNT "PEACOCK
7

MAKE "PERSON [HEAD ARMS LEGS BODY]
PRINT COUNT :PERSON
4

10 PICK INFO
OP ITEM {1 + RANDOM COUNT :INFO) :INFO
END

PR PICK :PERSON
LEGS

EMPTY? object operation

Outputs TRUE if the Logo object is empty, otherwise oulpuls
FALSE:

MAKE A (|
PR EMPTY? A
TRUE

MAKE “A “CABBAGES
PR EMPTY? :A
FALSE

PR EMPTY? BF [UNICORNS)

TRUE
Where a list has only one element, as {UNICORN] above,
BF Iist is the empty list []. The following procedure

108

SECIIUN IWENI Y-1WU — WUKRUD AND LIST>
matches amrmal sounds to aninals:

TO TALK :ANIMALS :SOUNDS

IF OR EMPTY? :SQUNDS EMPTY? :ANIMALS {PR [THAT'S ALL FOR NOW/|
STOP)

PR SE FIRST :ANIMALS FIRST :SOUNDS

TALK BF :ANIMALS BF :SOUNDS

END

TALK {DOGS MOSQUITOS WOLVES MONKEYS) [BARK ZZZZZZZ1Z2Z HOWL
CHATTER]

DOGS BARK
MOSQUITOS ZZuzzzinz
WOLVES HOWL
MONKEYS CHATTER
THAT'S ALL FOR NOW

FIRST object operation

Outputs the first element of a word or list. FIRST of a word
is a character; FIRST of a list may be a word or a list:

SHOW FIRST "HAPPY NEW YEAR
H

SHOW FIRST [HAPPY NEW YEAR]
HAPPY

SHOW FIRST [fH A P P Y] [N E W] {Y E A Pl

HAPPY]
The Pumitive ITEM already exists, but ithe following
procedure shows how you could create it fromy other Logo
procedures.

TO {TEMI N .0BJECT

IF:N = | [OP FIRST :0BJECT)
OP [TEMI N - 1 BF :0BJECT
END

PR ITEME 3 [CUP PUT TUB BUD]
TuB

This illustrates an important point: beginning with LIST,
FIRST and BF, you can create most other Logo

procedures You will find other instances of this truth in the
toolkit.

109

SECIIUN IWENIY-1VWU —WURDS AND LID IS

FPUTY object hst operation

Stands for First PUT. Qutputs a new list, formed by puting
the specified object at the beginning of the specified fist
See the chart at the beginning of this section comparing

FPUT with other operations that combine words and hsts
Example:

TO REV LIST
IF EMPTY? LIST JOP |}

OP FPUT LAST :LIST REV BL LIST
END

PRINT REV :ALPHABET
IYXWVU ...

Note: FPUT requires a list as its second input. 1t will not
bind two words together.

ITEM n st operation

Outputs the ath ITEM of a specified list. See FIRST above

TO (TEMISE -OBJECT -LIST :COUNTER

If NOT MEMBER? :OBJECT -LIST [PR (SE :OBJECT [IS NOT AN ITEM Of]
LIST) STOP}

IF EQUAL? :0BJECT ITEM :COUNTER :LIST [OP (SE :0BJECT [1S ITEM|
COUNTER “OF -LIST)]

OP ITEMISE :OBJECT -LIST COUNTER + |

END

TO PICKRANDOM -L
OP (TEM 1 + (RANDOM COUNT L) :L
END

LAST object operation

Outputs the LAST element of a word or list. LAST of a word
1s a character; LAST of a list may be a word or a list

SHOW LAST "HAPPY.NEW YEAR
R

SHOW LAST [HAPPY NEW YEAR|
YEAR

SHOW LAST [(H AP P Y| [N E W [YE AR))
[(YEAR]

110

SECIIUN IWENI Y-1WU — WURDD AND LIS TS
LAST or FIRST of the empty word or empty list is an
impossibility and prompts a Logo message. Example

PR LAST *
LAST DOESNT LIKE AS INPUT

LIST object? object2 opesation

Outputs a list, whose elements are object? and object2.
MAKE “LINE LIST [ONE TWO] {THREE FOUR]

SHOW (LINE

([ONE TWOJTHREE FOUR))
Note 1: Where the input objects consist of two lists, the
hists remain as separate lists. See SE, which wouid combine
the two lists into a single list

Note 2: LIST can take only two inputs. It is unlike SE or
WORD, which can be enclosed in parentheses and given any
number of inputs. if one wishes to use LIST with more than
two inputs one must repeat the operation:

LIST object? LIST object2 object3
For Example
MAKE “LINE LIST [ONE TWO] LIST [THREE FOUR] {FIVE SIX]

SHOW :LINE
{IONE TWO] [[THREE FOUR} [FIVE SIX]}
Whereas:
MAKE “LINE {SE {ONE TWO] [THREE FOUR} {FIVE SIX))

SHOW :LINE
{ONE TWO THREE FOUR FIVE SIX}

LIST? object operation

Outputs TRUE if the object is a list, otherwise FALSE.

PR LIST? { 6 ABC LOGO]
TRUE

PR LIST? 6
FALSE

PR LIST? BF [CATS)
TRUE

111

SECIIUN IWENIY-1VWU —WURDS AND LID IS

LPUT object list operation

Stands for Last PUT. Outputs a new list which places the
object at the end of the list. LPUT is the exact counterpart
of FPUT. Like FPUT, it must have a fist as its second input
PR LPUT "STONE |WOOD IRON BRICK)
WOOD IRON BRICK STONE
But
PR LPUT "D "STONE
LPUT DOESN'T LIKE STONE AS INPUT

MEMBER? object list operaton

Outputs TRUE if the object is an element of the fist,
otherwise FALSE.

PR MEMBER? “A (B 20 A ORANGE]
TRUE

MAKE “FRUIT [APPLES PEARS PLUMS RASPBERRIES)
IF MEMBER? “PLUMS :FRUIT {PR "OKAY|

OKAY

I MEMBER? "PLUM +RUIT
FALSE

PR MEMBER? "L [AB | L | Y 7]
FALSE

PR MEMBER? "D 0DD
MEMBER? DOESNT LIKE -ODD AS INPUT

TO VOWEL LETTER
OP MEMBER? LETTER [A E 1 0 U}
END

IF VOWEL 1 [PR [THAT'S A VOWEL))
THAT'S A VOWEL

NUMBER? object operation

Outputs TRUE if the object is a number; otherwise FALSE.

PR NUMBER? 3
TRUE

If NUMBER? (7] [PR "OKAY} ¥R [TRY AGAIN]
TRY A5AN

112

SECIIUN IWENIY-1VWU —WURKDS AND LIS IS

In this case the test failed because {7} is a hist not a
number.

IF NUMBER® FIRST {7) PR "OKAY] {PR [TRY AGAIN]
OKAY

Here, FIRST extracts 7 from the list.

TO READNUMBER

MAKE "CHECKNUM RL

IF NUMBER? .CHECKNUM [OP :CHECKNUM] [FR THAT'S NOT A NUMBER
TRY AGAIN] READNUMBER)

END

Readnumber is often a useful variation on READLIST when
constructing games and quizzes, to force entry of a number
rather than a string of letters.

SE object! object2
{SE object1 object2...objectn) operation

Outputs a list composed of afl the objects in the input. See
LIST for difference. SE is extremely useful in Logotron Logo
for providing inputs to VDU commands. For example:

T0 TEXTCOL N

MAKE "N (SE 191 N0 O Q)
VDU N

END

10 PAPERLOL X

iMARE X SE 9000 G
VOU X

END

10 TEXT NPAPER :N X
TEXICOL N
PAPERCOL X
END
See also SETPOS for a similar use of SE.

WORD word! word?2
(WORD word! word?2 ... wordn) operation

WORD outputs a word consisting of its inputs, which must
themselves be words. WORD will not accept a list as input

113

SECIIUN IWENI Y-1WU — WURDS AND LISTS
For example:

PR WORD "ASTON “iSH
ASTONISH

PR (WORD “ASTON “ISH "ING)
ASTONISHING

T0 WEEK :DAYS

IF EMPTY? :DAYS [STOP]

PR WORD FIRST :DAYS “DAY
WEEK BF :DAYS

END

MAKE “DAYS [MON TUES WEDNES THURS FRI SATUR]

WEEK :DAYS
MONDAY
TUESDAY
WEDNESDAY
THURSDAY
FRIDAY
SATURDAY

WORD? object

operation

Outputs TRUE if the object is a word, otherwise FALSE

114

PR WORD? "123ABC
TRUE

PR WORD? BF “123ABC
TRUE

PR WORD? FIRST | 123ABC }
TRUE

PR WORD? 123
TRUE

PR WORD? [XYZ |
FALSE

PR WORD? {]
FALSE

SECTION TWENTY-THREE — VARIABLES

Any Logo word can be used 1o name a vanable. A vanable
names a thing. The THING which 1s named is a Logo object
and can be a word or a list. The THING is also referred to
as the value of the variable. See Section Twenty.

MAKE name object command

Creates the variable name and gives it the value object.
Once the variable has been created, you can recall its value
with dots (:). See also THING. For example:

MAKE “NATIONS (FRANCE GERMANY RUSSIA ENGLAND CHINAJ

PRINT :NATIONS
FRANCE GERMANY RUSSIA ENGLAND CHINA

PRINT “NATIONS
NATIONS

MAKE “X 8
PR X
8

MAKE "X COUNT :NATIONS
PR X
5

Variables created using MAKE are global in their scope. See
the Summary of Logo Grammar. For example:

MAKE "SIZE 200

T0 SQ
REPEAT 4 [FD :SIZE RT 90}
END

TO SQUARES

SQ

PR {SE [THE VALUE OF “SIZE IS NOW] SIZE)
MAKE "SIZE :SIZE / 2

PU SETPOS (SE XCOR - 300 YCOR) PD

SQ

PR (SE [THE VALUE OF “SIZE IS NOW] SIZE)
END

115

SECIIUN IWENI Y-1HRKEE — VARIABLED
Compare this with

TO SQUARE :SiDE
REPEAT 4 |FD :SIDE RT 90}
END

TO SQUARES

SQUARE 200

PU SETPOS (SE XCOR - 300 YCOR) PD

SQUARE 300

PR (St (THE VALUE OF "SIDE IS NOW] SIDE)

END
In the second case, unless there is already a global vanable
called SIDE, you will get a Logo Message, saying

SIDE HAS NO VALUE IN SQUARES
In other words, it is local 1o SQUARE, and has no value
anywhere else.

You may sometimes want 10 create a global variable using
MAKE, but nevertheless keep it local 10 one procedure
Logotron Logo does not have LOCAL as a primitive, but we
do make it possible 1o ERASE a variable:

TO SQUARE

MAKE “SIZE 300

REPEAT 4 {FD SIZE RT 90|
£R {7S12€)

END

TO SQUARE :Sizt
MAKE "SIZE 100
REPEAT 4 (FD :SIZE RT 90
END
SQUARE 50
PRINT :SIZE
SIZE HAS NO VALUE
it would also be possible to
£D ["SIZE)
PO {"S12£]
SAVE VAR [SIZE]
This is an outstanding new feature of Logotron Logo

116

SECIIUN IWENIY-IHRKEE — VARIABLED

NAME? object operation

Outputs TRUE if the object has a value, otherwise FALSE.
NAME? can be used to test for the existence of a global
variable (See MAKE above).

PR NAME? “SIZE
TRUE

PR NAME? “SIDE
FALSE

This last example assumes the user slill has the previous
examples in the workspace.

MAKE “FRUIT "APPLE
PR NAME? “FRUIT
TRUE

THING name operation

Outputs the value associated with name. THING “X is the
same as :X.

Note: THING :X 1s legal, but ::X is not.

MAKE "MARY “HAPPY
MAKE "HAPPY |A BIRTHDAY PARTY]

PR THING "MARY
HAPPY

PRINT THING :MARY
A BIRTHDAY PARTY

10 INC X
MAKE :X 1 + THING X
END

MAKE “TOTAL 7
PR TOTAL
7

INC “TOTAL
PR TOTAL
8

INC “TOTAL
PR TOTAL
]

117

SECTION TWENTY-FOUR — ARITHMETIC

Logo uses both integers and real numbers. or example, 6 is
an integer; -6 i1s an integes, whereas 3435 1s a real
number. Some anthmetic operations, howevesr, always return
integers: INT, RANDOM, ROUND, QUOT.

Logo provides primitive procedures for you to add, subtract,
multiply and divide numberss. You can find sines, cosines and
square roots. Other procedures, 1o raise a number 10 a
power, for example, can easily be created, (see below).

Real numbers with more than six digits are converted 10
standard form (exponential or scientific notation):

2E+6 means 2 times 10 to the power of 6, or 2,000,000

2 59E-2 means 2.53 times 10 10 the power of -2 or
00259 Logo truncates a a real number in standard form if
contains more than 9 digits

For example, 2718281828459 045 is converted to
271828183E+12.

The difference between infix and prefix operations s
discussed in detad in the Section 20 of this manual But to
repeat briefly: Logotron Logo allows both infix and prefix
arithmetical operations. Infix operations take precendence
over prefix operations appearing 10 their left s s Logc 2
there are expressions to the left of the infix operation
fequinng prior evaluation. enclose them in parcntheses

Infix Prefix
Division /
QuoT
REMAINDER
Multiplication *®
PROD
Subtraction -
Addition + SUM
Equality/inequality = EQUAL?
<
>

118

SECIIUN IVWENI Y-FOUK — ARITHIVIETIU
Prefix Operations

ARCTAN n operation

Outputs the value in degrees of the arctangent of n

PR ARCTAN }
45
Arcsines and arcosines may easily be derived as follows:

10 ARCSINE X

OP ARCTAN X / {SQRT 1 — X % X}
END

70 ARCCOSINE X

OP ARCTAN (SQRT 1 — X & X) / X
END

COS n operation

Outputs the Cosine of n degrees.

PR COS 60
5

EQUAL? object! object2 operation

Outputs TRUE if object! and object2 are identical numbers,
identical words, or identical lists; otherwise outputs FALSE.
Equivalent to the infix operation: object! = object?. EQUAL?
is both a logical and an arithmetic operation, as it accepts
boolean values (TRUE and FALSE) as well as numbers as
INputs.

PR EQUAL? FIRST "ORANGE FIRST “OGLE
TRUE

PR EQUAL? ITEM 3 [SHERGAR SECRETO TROY TULYAR MORSTON] ITEM
2 {ROME TROY CARTHAGE)
TRUE

PR EQUAL? (7 % 3) (2 % 11}
FALSE

IF EQUAL? 27 [COUNT “TEA) * (SQRT 81) {PRINT TRUE] [PRINT FALSE}
TRUE

PR EQUAL? 10€2 1000

TRUE

119

SECITIUN IWENIY-FUOUK — ARITHMETIC

INT n operation

Outputs the next whole number (INTeger) below real number
n by removing any decimal fraction. Note watch out for the
operation INT on negative numbers.

PRINT 52129
5

PRINT 56

5

PR INT -55
-6

PROD a b
{(PROD a b ... n) operation

Outputs the product of the inputs. It is equivalent to the infix
operation #. If PROD has more than two inputs. parentheses
must enclose PROD and its inputs.

PRPROD 55

25

PR (PROD 5 5 2)
50

10 CUBE X

0P (PROD X X X
END

PR CUBE 2
8

QuUOT a b operdtion

Outputs the integer quotient obtained by dividing b into 4.
and removing any decimal fraction.

PR QUOT 6 3
2

PR QUOT 53 17
3

PR537/17
311764706

PR63 7117
3./0588235
120

SECIIUN IVWENIY-FUOUK — ARITHMEITIC
FroQuoi €317
3
PR QUOT 25 0
QUOT DOESNT LIKE 0 AS INPUT

RANDOM n operation

Outputs a RANDOM integer between 0 and (n —~ 1). The
input n must be an integer. RANDOM 6 could output 0 1 2
34 o0r5.

10 DICE
QUTPUT 1 + RANDOM 6
END

If DICE = 6 [START]

Note: RANDOM 6 + 1 would returmn any of 0 1 23 4 5 6,
because the + takes precedence over RANDOM and would
be evaluated first, giving RANDOM 7. The alternative to the
form shown would be OUTPUT (RANDOM 6) + 1

REMAINDER a b operation

Outputs the integer REMAINDER when a s divided by b If
the REMAINDER is a real number it is ROUNDED 10 output
the nearest integer

PR REMAINDER 167 4.3
4

PR REMAINDER 167 41
0

PR REMAINDER 167 42
4

PR REMAINDER 88 9

7
Here ts a procedure 10 test whether one integer is exaclly
divisible by another:

TO DIVISOR? :INT1 INT2

OP O = REMAINDER INT] INT2

END

PR DWISOR! € 4
FALSE

121

SECIIUN IWENI Y-FOUK — ARITHNMETIC

ROUND n opeTation

Outputs the nearest integer 1o n. Compare these examples
with INT

PR ROUND 5219
5

PR ROUND 55
6

PR ROUND -53
-5

SIN n operation

Outputs the sine of n degrees.

PR SIN 30
5

SART n operation

Outputs the square root of n. n must be positive

PR SQRT 4567
675795827

See the procedure DIST in the toolkit.

SUM n
{(SUM ab . n) operation

Outputs the sum of the inputs. It is equivalent to the infix
operation +. If SUM has more than two inputs, parentheses
must appear around SUM and its inputs

PR{SUM 5 2 3)
10

PRSUM {47 2) (7 % 3)
23

TAN n operation

Outputs the tangent of n degrees

122

SECIIUN IWENI Y-FOUK — ARITHMETIC

Infix Operations

Although it 1s not necessary. it is good practice 1o leave a
space both before and after an infix operator: Take especial
care with the minus sign (-)

a+b operation

The plus sign (+) outputs the sum of two inputs a and b.

PR5+ 2
7

R-54+2
-3

a->b operation

The mmus sign (-} outputs the difference between the
inputs @ and b.

PR7 -2

5

PR-7-3

-10

PR -7 - -2

-5
Note: Be careful of the minus sign (—). The same characier
1s used 1o represent three different things :

1. Part of a number to indicate that it is negative, as in —3,
with no space between the sign and the digit

2. A procedure taking one input. calied unary minus, which
outputs the additive inverse of its input, as in —XCOR or
—:NUM.

3. An infix procedure of two inputs, as here, outputting the
difference between its first input and its second.

123

SECITIUN IWENIY-FUOUK — ARITHMETIC

axob operaton

The multiplication sign (%) outputs the product of two inputs
a and b.

PR6 % 2
12

PR6 % -2
-12
PR2 + 3 %4
24

PR+ 3 %4
2

alb operation

The division sign /) outputs the dividend of a and b (a
divided by b). The output is a real number with no
remainder.

PRS /25

2

PR53/ 21
2.52380952

PRE/0
S UOLSNY LIME O AS IHPUT

a<b operauon

The “less-than” sign {<) outputs TRUE if a4 1s less than b
The inputs must be numbers

FR8 <9

TRUE

PR9 <9

FALSE
If one wished to use the less-than and greater-than signs to

sort words by their inital letiers, one might use the
construction:

IF (ASCH LET1) < (ASCIH AET2) |....

124

SECIIUN IWENI Y-FOUK — ARITHMETIC

a>b operalion

The “greater-than” sign (>) outputs TRUE if a is greater than
b. Both inputs must be numbers:

PR 6.789 > 6788
TRUE

objectl = object2? operation

The equals sign (=) outputs TRUE if objectl is equal to
object2. Unlike > and <, the inputs need not be numbers,
they can be any logo objects {words or lists). it is equivalent
in every way 10 the prefix operation EQUAL?

PR 80 =100 - 20
TRUE
PR 80 = 100 -20
FALSE

YOU DONT SAY WHAT 70 DO WITH -20

Further Operations For Toolkit

TO MAX A B
0P If A > B [A] 8]
END

TO MIN :A B
OP If A < B [A] B}
END

TO BALRAN :DEL
OP :DEL - RANDOM (2 % DEL + 1)
END

TO FACTORIAL :NUMBER

IF :NUMBER =] [OUTPUT :NUMBER]

OUTPUT :NUMBER % (FACTORIAL
:NUMBER - 1)

END

TO EXPONENT :NUMBER :POWER

IF .POWER = O [OUTPUT 1]

QUTPUT :NUMBER % (EXPORENT
‘NUMBER :POWER - 1)

END

125

SECIIUN IWENI Y-FOUK — ARITHNMETIC

TO XOR PRED1 PRED2
OP NOT £QUAL? :PRED] :PRED2
END

TO MULT :NUM -LIST

I EMPTY? :LIST OP {))

OP FPUT :NUM % FIRST LIST
MULT :NUM BF LIST

END

TO LINEMULT -LIST1 LIST2

IF EMPTY? :LIST1 {OP]}

OP FPUT MULT FIRST LIST) :LiST2
LINEMULT BF -LISTY :11ST2

END

YO ABS :NUM

IF :NUM > 0 {OP NUM]
{OP —NUM)

END

T0 P
OP 31415927
END

Computers do not do arithmetic quite as we do, especially when
they are dealing with real numbers, with decimal fractions They
are constantly truncating, and rounding numbers. Computer
aninmeuc s accurale only 1o a limited degree of precision. For
example, Type

PR EQUAL? (SIN 30) * (SIN 30) + (COS 30) * (COS 30) i
This will sometimes return TRUE and sometimes FALSE. Ttus 1S
true of BASIC as well as Logo. but we think it is important 1o

recognise the fact. and not to regard it as a disgraceful or
shameful bug. It is the nature of finite computer arithmetic

126

SECTION TWENTY-FIVE - EDITING

There are two ways of defining procedures. as we saw in
the introduction. Al toplevel, working disectly into the
workspace, you can define procedures using the prmitive TO
name. {for a third method, which is occasionally needed, see
SETWRITE in Section 28 dealing with the Qutside World)

It is often more convenient to define procedures inside the
EDITOR, which reserves a special area of the computer's
memory, the edit buffer, for buiiding and changing
procedures. In the EDITOR you can move the cursor keys
about, write words onto the screen, and press the return
key. without bringing any procedure to life. Logo does not
execute instiuctions when in the EDITOR.

You will also find the keys work diffesently when you are in
the EDITOR. The ammow keys, for example, can be used to
diive the cursor around the screen. Because the EDITOR has
its own reserved part of the computer's memory. the edit
buffer, it can also be used as a temporary storage place for
procedures, when changing MODE, for example

EDALL command

This command moves everything currently in your workspace
into the EDIT buffer, which holds 1,500 characters. If there is
an overflow, EDALL moves in as much as it can, before
reporting OUT OF SPACE. You can then SAVE onio a disk if
necessary. For a detailed description of the editor, see
below.

EDIT (ED)
EDIT (ED) name
EDIT (ED) namelist command

Typing EDIT takes you into the EDITOR. The screen changes,
and you see a line across the bottom of the screen.

LOGO EDITOR
C <exit> ESC <«abort>

The cursor {(now a flashing square) will be at the top
left-hand corner, ready for you to begin typing. If you have

127

SECIIUN IWENI Y-FIVE — EUITING
not used the EDITOR before, thete will be nothing writlen
on the screen. If you have used the EDITOR previously, you
will see exactly the same words as were there when you
left it

It you use the form

EDIT name
you clear the edit buffer of whatever was stored there. For
example,

ED “SQUARE
and, provided you had previously defined SQUARE or loaded
into your workspace from disk or cassette, Logo will have
the definition waiting for you in the EDITOR. If there is no
procedure SQUARE in the workspace, you will read:

TO SQUARE

END
at the top of the screen, all ready for you to type the
definition. You will find it very easy to change lines, insert
words, and generally mess around with your procedures

If you have made a global variable, say SHIPS and then want
to add some more, you can lype

EDIT ["SHIPS]
Logo will take you into the Editor and you might find:

MAKE "SHIPS [CANBERRA QE2 SHEFFIELD BELGRANO]
Hemember, Logo knew you were referring 1o a variable nanie
and not a procedure name, because [“SHIPS] was written
with quotes (“) inside a hst.

The four ARROW keys move the cursor one space in each
direction, up, down, nght and left. SHIFT ARROW keys (ie
press the SHIFT key and the ARROW key simultaneously)
move the cursor to the top of the page, to the bottom of
the page. to the beginning of the line, and 10 the end ol the
line.

The delete key deletes the character 1o the left of the
cursor, just as it does at top level, but there are other
function keys, which wipe out whole lines, move the cursot
10 the end of the buffer, or to the beginning, if you have
more than one page in the EDITOR at the time.

128

SECIIUN IWENI Y-FIVE — EDITING
The most novel feature of the Logotron Logo’s EDITOR s

the FIND & REPLACE function. Press the F9 key, the

rightermost of the red keys at the top of the keyboard The

words

FIND:
REP:

will appear at the bottom of the screen beiow the line of
dashes, with the cursor positioned in front of the FIND. You
type in the word or string of words you want replaced, press
the RETURN key, and the cursor moves down a line. Type in
the word or words you want to insert instead of the first
string. Press RETURN and the substitution will be made. For
example, imagine the procedure SQUARE was in the
EDITOR.

T0 SQUARE SIDE

REPEAT 4 {FD 200 RT 90]

END
You realise that you should have written FD :SIDE instead of
FD 200. So you press F9.

FIND: £D 200
REP. FD :SIDE
Press RETURN and you will see

TO SQUARE -SIDE

REPEAT 4 {FD SIDE RT 90|

END
if there had been further instances of the same subsutution
required, you would have executed the first, and then
pressed the COPY key, followed by F3
The F8 key performs a simple FIND without a REP line. In
other respects #t works in the same way

Note. Before pressing the F8 or F9 keys, be sure the cursor
is at the beginning of the text to be searched as Logo scans
forward from the cursor.

From the example given above, 1t might seem hardly
worthwhile. The real benefit can be seen when you have a
large number of linked procedures in the EDITOR
simultaneously. and want to change variable names, for
example, or the name of a procedure which is called a
number of times

129

SECIIUN IWENIY-FIVE — EDITING

SUMMARY OF EDITOR COMMANDS

LEFT ARROW ()

RIGHT ARROW (—)

DOWN ARROW (|}
UP ARROW (1)
SHIFT LEFT ARROW ()

moves the cursor one
character position o the left;

moves the cursor one character
position to the right;

moves the cursor down one line:
moves the cursor up one fine;

moves the cursor to the
beginning of the current line;

SHIFT RIGHT ARROW (-») moves the cursor to the end

of the current fine;

SHIFT DOWN ARROW { |) moves the cursor 10 the end

SHIFT UP ARROW (1)

DELETE

Fo

F1

130

of the current page;

moves the cursor to the
beginning of the current page;

etases the character 10 the
left of the cursor;

erases the character at
the cursor position;

erases text from the cursor
position to the end of the
current line and places it
in the kill buffer;

F2

F3
F4

F6

F7

F8
COPY F8
F9
COPY F9

CTRL C

ESCAPE

SECITIUN IWENIY-FIVE — EDITING

inserts the text from the kill
buffer at the cursor posttion;

Moves Cursor 1o next page;
moves Cursofr 1o previous page;

scrolls screen to place current
line at its nud point;

moves cursor 10 the beginning
of Edit Buffer;

moves cursor to the end of
the Edit Buffer;

FIND
repeats the last FIND command,
FIND and REPLACE

repeats the last FIND
and REPLACE command,

Exit from Editor, executing
changes in the workspace;

Aborts editing, leaves workspace
unchanged, and contents
of Editor intact

131

SECIIUN IWENI Y-FIVE — EDITING
To load a number of procedures into the edit buffer together.
type:

ED {PROC1 PROC2 PROC3 ... PRONn)
This is particularly useful when you want to move procedures
temporarily into the edit buffer when changing modes For
example:

PR MODE
4

ED [POLYSPI SQUARE CIRCLE FACE FOREVER MOVETO FLOWER]
nl C

ERALL

SETMODE 2

2]

Cul €

PR MODE

2
This is an example. You could not try it out without first

writing a collection of procedures to switch in and out of the
EDITOR.

However, the EDITOR isn't only for procedures. You can also
wnie and edit varable assignment statements:

MAKE "CITIES [ROME PARIS BONN}

MAKE "SQS {1 4 9 16 25 36 49 64)
or Logo commands

REPEAT 10 {FD 100 RT 90 FD 100 LT 90)
When you leave the EDITOR by typing Ctri C, Logo reads
each line in the Edit buffer. Hf it is part of a procedure,
enclosed between TO ... END, it will be incorporated into
the Logo workspace, and Logo will tell you which procedures
have been DEFINED. These may include some which already
existed but have been modified in the EDITOR.

Logo will also tell you which variable names have been
defined or redefined in the EDITOR.

if it comes across a list of instructions in the edit buffer, it
will simply RUN them, as if they had been typed in at top
level

132

SECIIUN IWENI Y-FIVE — EUITING
If for any reason, you do not want 1o incorporate the

contents of the edi buffer into your workspace, you can

feave the EDITOR by pressing the ESC key, which aborts the

edit without making any changes to your workspace.

END special word

END is necessary. when you are using TO, to tell Logo that
you are done defining the procedure. It must be on a line by
itself. However, if you leave off END when wiriting a
procedure in the EDITOR, Logo will put it on for you. END is
neither a command nor an operation. It is really just a signat
to Logo that it has finished executing a procedure. If you just
type END, Logo complains:

YOU ARE AT TOP LEVEL

TO name inputl input2 . .. inputn command

TO tells Logo that you are defining a procedure called name,
with inputs (if any) as indicated. At toplevel, the prompt
changes from a question mark {?) to a greater-than sign (>)
to remind you that you are defining a procedure. This special
prompt will remain on the screen, every time you press the
RETURN key, untit you have written a line with the special
word END on its own, to tell Logo that the procedute is
complete.

if you have already defined a procedure, say REVERSE. and
then type: TO REVERSE L You will receive a Logo message:

REVERSE IS ALREADY DEFINED
You get the same message if you try to define a procedure
with the name of a primitive, for example:

10 FORWARD

133

SECTION TWENTY-SIX — FLOW OF CONTROL

Logo is an interpreted language. which means that it reads
procedures line by line, following the instiuctions as it meets
them. If a procedure contains a call to a subprocedure. togo
reads the lines of the subprocedure before continuing to
finish the superprocedure.

For example, fet us imagine a call 10 SUPERPROCEDURE.
This is executed as follows: linel line2 line3 where it
meets a call to SUBPROCEDURE, which it executes as
follows: linel line2 END., it then returns 1o tine3 of the
SUPERPROCEDURE and continues ... line3 line4 END

The phrase Flow of Control reters 10 the order in which Logo
follows instructions. There are times when you want to
interfere with Logo’s normat way of doing things. There are
sevesal ways of doing this. Let's ook at them:

Conditionat instructions tefl Logo 10 execule a parucular

instruction or list of instructions, IF a particular condition is
TRUE.

REPEAT instructions tell Logo to execute a list af instructions
2 ot more times

The STOP, OP or TOPLEVEL instructions tell Logo to
STOP the current procedure without continuing to the END
STOP and OP only halt the procedure in which they
appear. If that procedure is a subprocedure, the
superprocedure continues to run. TOPLEVEL stops the
superprocedure too, and returns contiol to the user.

IF pred instructionlist1 instructionlist2
command or operation

IF is a very powerful Logo primitive. The first input it needs
is a predicate A predicate is a statement which can be
tested by the computer to be either TRUE or FALSE. Here
are some Logo primitives which can be tested i this way.
EMPTY? object

EQUAL? object! object2

LIST? object

MEMBER? object list

NAME? word

134

SECIHIUN IWENIY-OIA — FLOUVW UF CUN I RUL

NUMBER? object
WORD? object
numl > num2
numl < num2
object! = object?

You can create your own procedures which perform similar
functions. We have shown in this manual (Section 24),
VOWEL? letter and DIVISOR? num1 num?2.

All that is needed is a procedure which will QUTPUT either
TRUE or FALSE 10 IF.

If the predicate outputs TRUE, then Logo executes the list of
instructions enclosed in square brackets immediately
following, [instructionlist1]. If the predicate outputs FALSE,
Logo looks to see if there is a second st of instructions on
the tine. If there is, it executes [Instructionlist2].

If there is no second list, then Logo passes on 10 the next
line. There are many examples of the use of IF in the
sample procedures in this manual. It 1s hard to write
procedures without the word, especially when it comes to
stopping recursive procedures.

iF you are familiar with other computer programming
languages, THEN you will recogrise the IF ... THEN ...
ELSE construction. ELSE this paragraph may help you
understand it

IF is one of only two Logo primitive procedures, which
sometimes work as a command, and sometimes as an
operation. As we saw in the introduction, a procedure is an
operation if it outputs a value, a command if it does not
output a value. Look at these three versions of the DECIDE
procedure. [n every case the procedure returns the answer
YES or NO, at random Every parent needs one.

if as a command:

TO DECIDE

IF 0 = RANDOM 2 0P “YES]

OP "NO

END

10 DECIDE

IF 0 = RANDOM 2 {OP “YES] [OP "NO]
END

135

SECITIUN IWENI Y-SIX — FLUW UF CUN I KUL
If as an operation:

TO DECIDE
OP If 0 = RANDOM 2 [YES] {"NO)
END

PR DECIDE
NO

REPEAT 5 [PR DECIDE]
YES
YES
NO
Yes
N

OP object command

Unlike most other commands, OP cannot be used at

top level (STOP and TOPLEVEL are the other examples), only
nside a procedure. This is not really surprising because the
effect of all three procedures is to interrupt a running
procedure, and they could therefore have no meaning at top
level. OP makes object the OutPut of the running

procedure, and returns control to the caller.

Note: OP itself is a command, but the procedure

contaiming it is an operation because the procedure outputs a
value to another procedure, which could be a primitive, typed
at top level, or it could be another running procedure

This can be clearly seen in the DECIDE procedures shown in
the discussion of If above.

¥ one simply typed DECIDE, A Logo message would
complain:

YOU DONT SAY WHAT TO DO WITH YES
DECIDE has 1o OP to a command like PRINT. Once a
value has been OP. the procedure has done its work,
and the flow of control goes back, either 1o top level. or 1o a
superprocedure, which called the subprocedure containing
OP. For this reason, it has a similar effect to STOP.

OP can be used 1o return any Logo object as its value.

136

SECITIUN TWENIT Y-SIX — FLUW UF CUN I KUL
Examples:

TO FRANCE

OP {PARIS IS THE CAPITAL OF FRANCE. FRANCOIS MiT TERKAND IS THE
PRESIDENT OF THE REPUBLIC}

END

PR FRANCE
PARIS IS THE CAPITAL OF FRANCE. FRANCOIS MITTERRAND IS THE
PRESIDENT OF THE REPUBLIC

T0 CUBE N
0P (PROD :N N :N)
END

CUBE 6
YOU DONT SAY WHAT TO DO WITH 216

REPEAT n instructionlist command

Repeats a list of instructions n times; n must be a positive
integer, so a decimal fraction is truncated to an integer. Note
n can be output from an operation:

REPEAT 4 {FD 100 RT 90)

TO POLY :SIDE :ANGLE
REPEAT 360 / :ANGLE (FD :SIDE RT :ANGLE
END

10 LETTERSQUARE
REPEAT COUNT -ALPHABET {PRINT -ALPHABET}
END

RUN instructionhist command or operalion

With a Logo list as its input, RUN executes the hist as if it
were a Logo line. If the instruction list is an operation, then
RUN behaves as an operation and outputs whatever has
been output 1o it by the instructionlist.

TO CALCULATOR
PRINT RUN READLIST
PRINT [}
CALCULATOR

£ND

137

SECIIUN IVWENI Y-3SIA — FLUOUVW UF CUN I KUL
CALCULATOR
2+3
5

175 % 3
525

L=8%7
FALSE

The ESCAPE key takes you out of the otherwise endless koop.

RUN (PR {GOOD MORNING)

GOOD MORNING
The procedure WHILE runs a list of instructions while a
specified condition is true.

TO WHILE :CONDITION :INSTRUCTIONLIST
I NOT RUN CONDITION [STOP|

RUN :INSTRUCTIONLIST

WHILE :CONDITION :INSRUCTIONLIST
END

WHILE [YCOR < 100] FD 25 PR YCOR|
%

50
»
100
You will sometimes find a use for the procedure FOREVER
(see BOXES and PHRASEBOOK in Section 18 of the manual)
TO FOREVER :INSTRUCTIONLIST
RUN ANSTRUCTUCTIONLIST

FOREVER :INSTRUCTIONLIST
END

FOREVER {FD 10 RT 1}
sends the turtle around an endless circle.

FOREVER (PR RUN RL PR {|)
is the equivalent of the CALCULATOR procedure

sTOP command

Stops the procedure running and returns control to the caller.
The command STOP works only from inside a procedure,
and has no effect on other procedures. It is often used as

138

SECITIUN IWENIY-OIX — FLOUVW UF CUN I RKUL

the brake on recursive procedures {sce also OP and
TOPLEVEL}):

TO POLYSPI SIDE :ANGLE
IF SIDE < 10 {STOP)

D SIDE RT ANGLE
POLYSP! :SIDE - 5 :ANGLE
END

TO COUNTDOWN :NUM

PR :NUM

I :NUM = 0 [PR [BLAST OFF!} STOP)
COUNTDOWN :NUM - 1

END

LAST OFF!

TOPLEVEL comimand

TOPLEVEL warks in exactly the same way as STOP, except
that it returns control 1o top level. and does not just stop the
currently running procedure, but also any superpiocedures.
Once Logo meets TOPLEVEL in a program, it i2tuflis COLION
to the user. The next thing you see is the ? pron:pt. and
Logo is waiting for you to do something For example.
compare:

T0 LOOKFOR! X L

IF EMPTY? L [STOP]

If X = FIRST L [MAKE "OBS i STOP|
LOOKFORI X BF L

END

LOOKFORY “Z "AZBCZXY
PR :08J
XY

with: LOOKFORZ X L
IF EMPTY? :L |STOP}
IF X = FIRST :L {MAKE "OBJ :L TOPLEVEL|
LOOKFOR2 X Bf it
END

139

SECIIUN IWENI Y-SIX — FLUW UF CUN I KUL
LOOKFOR2 "2 “AZBLZXY
PR 0B}
IBCIXY
The difference is that once LOOKFOR2 has found a condition
which satisfies the predicate in the third fine (IF :X = FIRST
‘L) it makes the required assignment and returns contro! 1o
the user. LOOKFOR1 hunts on for another instance.

TRACE n command

The TRACE command allows you to look fight into the
workings of a Logo procedure, showing you how the values
of variables change, and the inputs and outputs of each
operation. For example, enter the following procedure:

TO REPLACE :NEW :OLD :08J

IF EMPTY? -:08J (IF WORD? :084 [OP ~ } {OP {]])

IF LIST? .08J {IF EQUAL? :OLD FIRST :08J [OP FPUT :NEW REPLACE
NEW :OLD BF :0BJ} [OP FPUT FIRST :08) REPLACE :NEW -OLD BF :0HJ)|

IF WORD? :08Y [If EQUAL? :OLD FIRST :0BJ {OP WORD :NEW REPLACE
NEW :0LD BF :0BJ} [OP WORD FIRST :0BJ REPLACE :NEW :OLD BF
0844

END

Then type
TRACE
PRINT REPLACE "E A "BEAR
ot PRINT REPLACE "PLUM "APPLE [ORANGE PEAR APPLE LEMON)

The TRACE command is activated by typing TRACE. After that,
all Logo operations are traced on the screen. Typing TRACE

a second time switches it off and returns Logo 1o normal
working. This is very useful when debugging a procedure. ht
is also helpful when learning about how recursion works on
lists.

WAIT n command

Tells Logo to WAIT for n 60ths of a second before executing
the next instruction. Example:

TO SLOWFD .DIST
REPEAT :DIST [FD | WAIT 2
END

SLOWFD 80

140

SECTION TWENTY-SEVEN — AND, OR, NOT

In the description of the pnmitive IF in the last Section, we
discussed the concept of a predicate, which had 10 output
either TRUE or FALSE to IF, in order 1o establish whether
Logo should next execute finstructionfist1] ot [instructionlist2]
We are now going to discuss three predicates, whose inputs,
like their outputs, must be the boolean values TRUE or
FALSE. They are AND, OR and NOT. They are used to
combine predicates into logical expressions.

This is similar to the way arithmetic operations are combined
to form arithmetic expressions. Just as arithmetic operations
have numbers as both their inputs and their outputs. so
logical operations have only TRUE or FALSE as their inputs
and outputs. In fact, TRUE and FALSE behave very like
numbers, and can easily be represented as 1 and 0. ON and
OFF, and so on. This has made them especially valuable to
people who make computers or write computer programs.

The Logo primitives, which, with their inputs, form predicates
are listed in Section 26 dealing with Flow of Contro! in the
description of IF. It is slightly artificial to confine our
discussion of Logical Operations to these few primitives
Most Logo operations are “logical”, and one needs to
consider the relationship of AND, OR and NOT 10 the
Arithmetical Operations and the Flow of Control.

AND pred! pred?
{AND pred1 pred2 pred3 ... predn) operation

Requires two or more inputs. AND outputs TRUE if all its
inputs are TRUE, otherwise FALSE. If there are more than 2
inputs, AND and its inputs must be enclosed in parentheses
For example:

PRINT AND TRUE TRUE
TRUE

PRINT AND TRUE FALSE
FALSE

PRINT 4 % 4 = 16
TRUE

PRINT 12/ 3
Tt

It
o~

141

SECIIUN IWENI Y-DEVEN — AND, UK, NU |
PRINT AND (4 % 4 = 16} (12 + 3 = 4)
TRUE
Note: the parentheses in the last example are unneccessary,
but make for easier reading

TO EVEN? -0B)
OP AND NUMBER? :0B CHECK -0BJ
END

TO CHECK :0B)

OP 0 = REMAINDER :0BJ 2

END
This pair of procedures could be used 1o check whether a
Logo object was an even number. It is quite a useful
convention 1o label procedures which can be used as
predicates by ending their names with a ?. They all output
TRUE or FALSE (eg EMPTY? MEMBER? NUMBER? etc)

Some teachers believe children find ALL.OF /st an easier
concept than AND with more than two inputs. It is easy to
constiuct:

TO ALLOF? 4

IF RUN SE SE | { AND | L ~ | [OP TRUE] [OP FALSE}

END

PRALLOF? [TRUE (4 /2 = 2 (5 % 5 = 25) FIRST “GREEN = “G)
TRUE

FALSE bwolean value

FALSE, like TRUE. is a boolean value. It is neither a
command nor an operation, but is the input/output of logical
operations. It behaves rather like a number, and therefore
does not require QUOTES in front of it. As with numbers
QUOTES are optional.

PR FALSE = "FALSE
TRUE

NOT predicate operaluon

Outputs TRUE if the predicate 1s FALSE and FALSE if the
predicate is TRUE

PR NOT EQUAL? "A 2
TRUE

142

SECIIUN IWENI Y-SEVEN — AND, UK, NUI
PRNOT 4 .- 3
FALSE

PR NOT VOWEL’ “A
FALSE

OR pred1 pred?
{OR pred! pred2 pred3 . .. predn) operation

Outputs true if any of the predicates is tiue. f OR has more
than two inputs, parentheses must enclose the primitive and
its inputs. Examples:

PRINT OR TRUE TRUE
TRUE

PR OR TRUE FALSE
TRUE

PR OR FALSE FALSE
FALSE

PRNTOR4 %4 =162=3
TRUE

PRINT (OR FIRST "BEE = B3 % 5=128=14/3

TRUE
Again, some teachers would prefer to formulate (OR pred!
pred2 ..predn) as ANY.OF list. This is easily constructed:

T0 ANY.OF? .LIST
IF EMPTY? -LIST [OP FALSE)
If FIRST -LIST {OP TRUE)
ANY.OF BF :LIST

END

TRUE boolean value

TRUE is a boolean value, acting as input/output for logical
operations. See FALSE.

143

SECTION TWENTY-EIGHT - GUTSIDE WORLD

When your BBC micro is running Logo it 1s really a different
“machine” from when it is running BASIC. When people
used the word machine before computers were invented,
they meant a physical object. made of metal, wood or
plastic. usually with moving parts. which had physically
measurable inputs and outputs.

Computer folk use the word machine in a rather different
way. They are tatking about a combination of physical
objects, which you can see and touch (hardware), and non-
physical objects. which exist, but cannot be seen or touched
{software). This machine needs some physical inputs kke
energy and may produce physical outputs ke marks on
Paper, but the most important inputs and outputs are
abstract, words and numbers. You know what the number
five is; you can write it down, but you cannot see the thing
which is represented by the name 5

The Logo machine consists of a series of instructions, which
are wiitten in a 16K ROM chip inside your computer,
interacting with the hardware of the BBC Micro. As you use
it the Logo machine grows, occupying the workspace wiih
new procedures {instructions) written by you. It also grows
nside your head, as you grow more fluent in the language

The “Outside World”, wiith we aie idiing about i s
section heading. consists partly oi other prograrms {sets of
Instructions) fiving in the BBC Micro (the operating system
and the disk filing system), and partly of the hardware uself,
the computer, the monitor, disc dnves or cassetle recorders,
prnnters, floor turtles. robots, sprite boards, or any other
devices you invent or buy.

In fact, we have already looked at part of the outside world
in the first section dealing with twrtle graphics. Turtle
graphics are a good way of learning to program because your
programs are working on a microworld. consisting of the
monitor screen, with a single inhabitant, the turtle, and you
can quite easily understand and control its state and
behaviour {changing states).

144

SECIIUN IWENIY-EIOGHI —UUIDIVE WURLD

*ksuffix command

As well as being an infix anthmetic operation, the asterisk
() is the prefix to 8 whole series of commands which aliow
you to control the BBC operating system. These are
summarised on pages 416 & 417 of the BBC User Guide.

Perhaps the most important for you are

% LOGO. which takes you from BASIC or, say. WORDWISE into
Logo. and #B.. which takes you out of Logo into BASIC. %W.
takes you into WORDWISE. ¥10GO cannot be abbreviated to
#L. as the computer would confuse the command with
*LOAD. #CAT displays a catalogue or directory of files stored
on your disk or cassetie. Watch out for. # .1, which in BASIC
would also give you details of the contents of a disk on a
particular drive. You must type % \ 1. The backslash ensures that
Logo simply passes the number to the operating systenm.

You will find many uses for other STAR commands as you
explore the system. Here are two examples:

Teachers of young children can often help them better if
they know exactly what they are doing at the keyboard. The
following procedure (which existed as a prinitive on the
original mainframe Logo systems) allows you to capture
every keystroke of a Logo session as a file which can be
printed out afterwards:

TO DRIBBLE :FILENAME
#SPOOL FILENAME
END

TO UNDRIBBLE

*SPOOL

END
The following procedure is a useful one because you cannot
SAVE a file to disk with the same name as an existing file
This is a nuisance if you simply want to replace an old
version with a new version. | use

TO REFILE :FILENAME :PROCNAMELIST

*DELETE :FILENAME

SAVE :FILENAME :PROCNAMELIST

END

145

SECIIUN IWENI Y-EIGHIT — UU I SIVE WUKLD

One omission from the list of pnmitive procedures 1s
SAVEPICT. 1ogether with its partner LOADPICT. They were
left out, partly because of lack of space in the 16k ROM,
and panly because the BBC operating system makes it very
easy for you to write your own SAVEPICT and LOADPICT.
See p.392 in the BBC User Guide and p.460ff in the
Advanced User Guide for the BBC Micro. The procedures
which follow will do the job for you. Please note, if you
make a picture in one mode, SAVE it, and LOAD it in
another MODE, you will get some strange but ofien
interesting results. One way of keeping track of the original
MODE is to include in the name of :PICT, say TREES or
HOUSEA, 10 show that the TREE was originally drawn in
MODE 5 and HOUSE in MODE 4

TO SAVEPICT -PICT

IF {OR EQUAL? MODE 3 EQUAL? MODE 6 EQUAL MODE 7)
[PR [SAVEPICT MAY NOT BE USED IN THIS MODEJ}

If (OR EQUAL? MODE 0 EQUAL? MODE | EQUAL? MODE 2}
{%SAVE PICT 3000 8000}

IF OR EQUAL? MODE 4 EQUAL? MODE S
[#SAVE PICT 5800 8000}

£ND

10 LOADPICT :PiCT

If (OR EQUAL? MODE 3 EQUAL? MODE 6 EQUAL MODE 7)
(PR [LOADRICT MAY NOT BE USEG IN THIS MUBE)]

HI

If (OR EQUAL? MODF O EQIIAL? MODE 1 EQUAL? MODE)
[%LOAD -PICT 3000|

If OR EQUAL? MODE 4 EQUAL? MODE 5
{%LOAD :PICT 5800]

RUN PICT

END

Warning: Some % commands can crash Logo In
particular, %COMPACT and %FORMAT, which load
programs off disk into RAM, overwrite areas of memory
used by Ltogo. This will not only wipe out procedures in
the workspace, it actually crashes Logo. SAVE your
Logo workspace to disk before using these commands
Logo can be restored by pressing CTRL BREAK. This
resets the system, and you can load your workspace
back from disk. This i1s not a bug in Logo; 1t 1s an

146

SECIIUN IWENI Y-EIGH | —UU I SIVE WUKLDU
inherent imnation of the BBC Micro 1t shouid not
bother you unless you are not expecting it

¥FX num1 num2 almost deserves a section on ils
own, but again, it is better to go straight 1o the source,
and consult the BBC User Guide {p. 418 ff). %FX is not
for novice users, and certainly not essential fot
enjoyable and productive use of the computer.

The rules for incorporating ¥suffix or ¥FX calls in Logo
procedures are as follows. It they come at the beginning of a
Logo line or bst. the remaining contents of that ine or list are
passed to the operating system. it they are inserted in a ne. the
command and 1ts inputs should be enciosed i parentheses.
Inputs to ¥FX calls must be separated by commas, as they
would be in BASIC, (not by spaces). Logo vanables can be
passed 10 these operating system calls. For example % DELETE
‘NAME or #FX A

cT command

CT, for Clear Text, is the counterpart for the text screen of
CLEAN, which clears the graphics screen (see Section 21) It
clears the screen of text and places the cursor and prompt
(?) in the top lefthand corner of the screen, ready for
entering text. If you have a graphics screen displayed,

CT clears the text only from the text window.

CURSOR operation

CURSOR outputs the current position of the text cursor. As
with the graphics operation POS, position i1s a pair of
numbers. The first element of CURSOR gives the cotumn
number, 0-79 in MODE 0, 0-39 in the other 7 MODES. The
second element gives the line number. 0-31 on the text
screen, and 0-7 below the graphics screen, n MODES 0-6.
0-24 in MODE 7. See SETCURSOR.

ENVELOPE num! num2 num14 operation

See SOUND. below

147

SECIIUN IWENIY-EIOGHI —UUIDIVE WURLD

EOF? ope;anon

The predicate EOF? stands for End Of File, and is used in
conjuction with SETREAD. It outputs TRUE if the end of file
has been reached, FALSE otherwise. For example:

T0 CHECK

IF EOF? {STOP]
END

KEY? operauon

Qutputs TRUE if there is at least one key waiting 10 be read
on the keyboard or any other device set by SETREAD,
otherwise FALSE. The following procedure allows a child t0
drive the turtle around the screen using just two keys

Q and P.

10 STEER

FD 2

IF KEY? [TURN RC}
WA 4

STEER

END

10 TURN DIR
DIR = “Q |17 30}
O S

£END

LOAD filename command

LOADs the contents of filename into the workspace, as it
they were typed in directly from the keyboard If filename
doesn't exist. you will receive a Logo Message. advising you
of the fact. As procedures are loaded in, Logo will confirm
their presence by printing, for example:

SQUARE DEFINED

MOVETO DEFINED
MAP DEFINED

PRINT (PR} object command

PRINT prints its inputs on the screen {or on any other device
set by SETWRITE} When the object 1s a LIST, PRINT sirps

148

SECIIUN IWENIY-EIOGHI —UUIDIVE WURLD

off the outermost brackets. When the object 1S a word, the
QUOTES (”) are not pninted

Note PRINT causes a hnefeed to occur after the inputs have
been printed. This makes PRINT {| a simple way of leaving a
space between 1wo lines of pnnt. See SHOW and TYPE:

PRINT {GOOD MORNING]
GOOD MORNING

TO GREET :AGE
REPEAT :AGE [PRINT (SE [HAPPY BIRTHDAY TO YOU] :AGE TODAY!))
END

GREET §

HAPPY BIRTHDAY TO YOU, 5 TODAY!
HAPPY BIRTHDAY 10 YOU, 5 TODAY!
HAPPY BIRTHDAY TO YOU, 5 TODAY!
HAPPY BIRTHDAY TO YOU, 5 TODAY!
HAPPY BIRTHDAY 10 YOU, 5 TODAY!

RC command

Qutputs the first character read from a device (set by
SETREAD) or the keyboard. This character is not echoed on
the screen. If no character is waiting 1o be read, READCHAR
waits untit the user types something. The command is
frequently used to assign a value to a variable. For example.

TO RESPOND
PR {DO YOU WANT AN ICECREAM? TYPE YES/NQ)
MARE "ANSWER RC
If ANSWER = "Y [PR [GO TO THE ZOO AND LOOK FOR A POLAR
COW|j {PR [THAT'S A PITY, THERE'S A FRESH STRAWBERY
SUNDAE IN THE FRIDGE]]
END
See also RL. RC can also be used to build STEER (See KEY?
above). RC stands for Read Character.

When Logo meeis the backslash {\}. it treats the nexi character
hterally, without reference 1o its meaning. This aliows you to
create 3 procedure name consisting of two words. TO

BIG \ HOUSE. for example. would be accepted by Logo.
whereas TO BiG HOUSE wouid not.

149

SECIIUN IWENIY-EIOGHI —UUIDIVE WURLD

RL

command

Outputs the first line of words read from a device (set by
SETREAD) or the keyboard. This hist 1s echoed on the screen
If no list is waiting 10 be read, READLIST waits untif the
user types something. If lists have already been typed, it
oulputs the first line that has been typed but not read. The
command is frequently used to assign a value to a variable
RL stands for Read List. For example:

150

MAKE “CAPITALS {{NIGERIA LAGOSIJ{FRANCE PARIS] {INDIA DELHI)
{ARGENTINA BUENOS AIRES] [TALY ROME] {SPAIN MADRID|

T0 QUIZ :CUE ST

WELCOME

MAKE “PAIR PICKRANDOM :LIST

PR {SE :CUE FIRST :PAIR *, WORD :CONTESTANT -7}

MAKE “ANSWER RL

F :ANSWER = FIRST BF :PAIR [PR (SE [WELL DONE] :CONTESTANT |00
YOU WANT ANOTHER ONE?)} AGAIN]

PR (SE {BAD LUCK] CONTESTANT) (THE ANSWER IS | FIRST BF :PAIR)
AGAIN

END

TO PICKRANDOM -LIST
OP (TEM 1 + (RANDOM COUNT -LIST) -LIST
END

T0 AGAIN

PR [DO YOU WANT ANOTHER ONE?)
PR [ANSWER YES/NO}

MAKE “ANSWER RC

IF ANSWER = °Y (QUIZ)

END

TO WELCOME

PR [HELLO. WHAT IS YOUR NAME?]

MAKE “CONTESTANT RL

PR [}

PR (SE "WELL WORD :CONTESTANT *, (LET'S GET ON WITH THE GAME!)
END

QUIZ {WHAT IS THE CAPITAL OF} :CAPITALS

SECIIUN IWENIY-EIGHI —UU I SIVE WURLD
HELLO. WHAT IS YOUR NAME?
HARRY

WELL HARRY, LET'S GET ON WITH THE GAME!

WHAT 1S THE CAPITAL Of NIGERIA?
NAIROBt

BAD LUCK HARRY. THE ANSWER S LAGOS. DO YOU WANT ANOTHER
ONE?

ANSWER YES/NO
This structure could be used to create an infinite number of
quiz programs. Please also note a stylistic point. The
WELCOME and AGAIN subprocedures could be included in
the QUIZ procedure, but AGAIN would create very long lines,
which would be hard 10 read. if WELCOME was pan of the
procedure, it would be repeated if :CONTESTANT wanted
another turn. If a section of a procedure can be turned into a
subprocedure, it is usually worth it.

SAVE filename

SAVE filename procname

SAVE filename proclist

SAVE filename varnamelist command

SAVEs the contents of filename onto disk or casselte from
the workspace. f SAVE filename is used without specifying a
procname, proclist or varnamelist, the entire workspace will
be SAVED. For example, SAVE “SUSAN might be used to
save all the work in progress of a girl called Susan at the
end of her Logo session.

If Susan wanted only three of her procedures, she might
type SAVE “SUSAN [POLYSPI DRAGON WHILE]. On the
other hand, SAVE “SUSAN “HOUSE. saves a single
procedure called HOUSE. If filename already exists, you will
receive a Logo Message, advising you of the fact. (See .
above, for the REPLACE procedure.}

151

SECIIUN IWENI Y-EIGH | —UU I SIVE WUKLD

in most other Logos. global vanables could be saved only in
association with the procedures in which they were used. or
as part of a whole workspace. Logotron Logo allows you 1o
save global variables. using the same syntax as EDIT,
ERASE, and PO. For example.

MAKE "LANGUAGES (ALGOL FORTRAN PASCAL ADA FORTH LOGO LISt
POPLOG SNOBOL COBOL MAD MANIAC|

SAVE {"LANGUAGES)
You could save a mixture of procedures and vartiables in a
single list:

SAVE {SQUARE "LANGUAGES WELCOME “SHIPS)
You would have saved two procedures, and two variables |f

one of these names was incorrect, the whole SAVE would
abort, and you would be asked to start again.

SETCURSOR Iist command

SETCURSOR sets the cursor to fist. As with the graphics
command SETPOS, the first element of list gives the column
number, 0-79 in MODE 0, 0-39 in the other 7 MODES. The
second element gives the line number, 0-31 on the text
screen, and 0-7 below the graphics screen, in MODES G-6,
0-24 in MODE 7. For example, in MODE 4, textscreen:
SETCURSOR [20 15] will place the cursor right in the nuddie
of the screen, and when you begin to type, that is where
the text will appear See CURSOR, above

Note If you want 10 wnte on the graphics screen,
SETCURSOR does not work, and you have 10 use:

VDU (SE 5 X)
wheie :X and :Y are the coordinates on the graphics screen
at which you want to start wiiting, the text cursor and the
graphics cursor are joined together.

VDU [41 reverses the effect of VDU {5} and returns control to
the text cursor at its normal position below the Graphics
Screen

152

SECIIUN IWENIY-EIOGHI —UUIDIVE WURLD

SETREAD filename
SETREAD [} command

SETREAD is used for reading a file from disk or cassette.
filename can be a program file or a data file created through
SETWRITE or DRIBBLE (see %suffix above). After the
command SETREAD s given, RC or RL read information
from filename. SETREAD || closes the file being read For
example:

SETREAD “CITIES

REPEAT 4 [PR |} PR RL] SETREAD [}
DAKAR

DELHI

DJAKARTA

DUBLIN

You can only read from one file at a time, but you can open
a file for reading (SETREAD) and writing (SETWRITE) at the
same time.

SETWRITE filename
SETWRITE [} command

Opens a file named filename and sends a copy of all
characters appeanng on the screen to that file. SETWRITE { |
closes the file. Used together, SETWRITE and SETREAD can
be used to create databases for quiz games, address hsts
and telephone numbers. They can also be used 1o define
procedures, which sometimes come as pnmitives in Logo
systems, but which could not be fitted into the Logotron 16k
ROM:

TO COPYDEF :NEWDEFINITION :OLDDEFINITION

MAKE “OLDDEFINITION TEXT :OLDDEFINITION

DEFINE NEWDEFINITION (BF BF FIRST :OLODEFINITION) (BF
‘OLDEFINITION)

END

153

SECIUN IWENI Y-EIGH | — UU I SIVE WURLD
TO DEFINE :NAME INPUT -LIST
SETWRITE “PROG
PRINT (SE “TO :NAME AINPUT)
PROUT :LIST
PR “END
SETWRITE [
LOAD °“PROG
ERASEFILE “PROG
END

TO PROUT -LIST

IF EMPTY? :LIST [STOP)
PR FIRST -LIST

PROUT BF LIST

END

TO TEXT :NAME

SAVE "PROG :NAME

SETREAD °PROG

OP FPUT BF Bf RL READLINE |]
END

TO READLINE -TEXT

MAKE "LINE RL

IF {END} = :LINE {ERASEFILE "PROG OP TEXT}
0P READLINE LPUT -LINE TEXT

END

TO ERASEFILE :FILENAME
DELETE FILENAME
ENG

DEFINE “SPIRAL ({:SIZE :ANGLE] {FD :SIZE] [RT :ANGLE] [SPIRAL :SIZE +
15 :ANGLE]
would output

TO SPIRAL :SIZE :ANGLE
FD SIZE
RT :ANGLE
SPIRAL :SIZE + 15 :ANGLE
END
While TEXT “SPIRAL would output:

[l :SIZE :ANGLE} [FD SIZE] [RT :ANGLE] {SPIRAL :SIZE +15 :ANGLE])

154

SECIIUN IWENI Y-EIGH | —UU I SIVE WUKLDU
Another usetul pair of procedures, STARTUP and COPY allow
you 1o create procedutes on disk which can be run simply by
LOADing them into the workspace. The procedures also
demonstrate how SETREAD and SETWRITE can work
together.

TO STARTUP :FILENAME :STARTUPFILENAME :STARTPROC
:SCREENMODE

SETWRITE STARTUPFILENAME

PR "ERALL

(PR "SETMODE :SCREENMODE}

SETREAD :FILENAME

COPY

PR :STARTPROC

SETWRITE {}

END

TO COPY

IF EOF? {STOP)
PR RL

CoPY

END

SHOW object command

SHOWSs olyect on the screen, followed by a carriage return
in fact, it works just like print, except that if object 1s a hst.
it does not strip away the outermost brackets. For example:

SHOW “A SHOW |A B C]
A

lA8C|

PRINT “A PRINT {A B C|

A

ABC

TYPE "ATYPE [A B ()

AMBC
These examples clearly show the difterences between
PRINT. TYPE and SHOW

155

SECIIUN IWENIY-EIOGHI —UUIDIVE WURLD

SOUND num! num2 num3 numd command

For a full discussion of the production of sound (music and
other noises) on the BBC micro, the user is referred to
pages 180-187 in the BBC User Guide. The inputs 10 sound
are numbers, which are not enclosed in a list. They appear
just as they do in BASIC (ie as described in the BBC User
Guide), but without commas between the numbers. eg

SOUND 2 -3 121 99
numl (0 to 3) is the channel number

num2 (0 1o —15) is the amplitude
num 3 (0 to 255) controls pitch
num4 (0 to 255) controls duration

The command ENVELOPE num! num2 ... numi4 ges the
user even greater control over the possible sound effects.
For example:

T0 TRIAL

ENVELOPE 212 -22102010100 -1 100 100

SOUND 1 2 100 100

END
The possibilities are endless, and well explained in the BBC
User Guide. One could easily develop a library of noiscs,
each a procedure which could be called into a program to
create appropriate sound effects. One could imagine
TRUMPETS SIREN TAKEOFF BIRDSONG GUNFIRE etc

You could also use RC to turn the computer into a keyboard
instrument.

TS command

TS is the switch from the graphics screen to the

fult text screen. It clears the screen of graphics, and places
the cursor and prompt (?) in the top lefthand corner of the
screen, ready for entering text. Anything {text or graphics)
displayed on the screen when this command is used will be
lost. TS is also the default value, and is displayed.

when you enter Logo. TS is therefore used to

clear any windows you may have created (see WINDOW,

156

SECIIUN IWENI Y-EIGHI — UU I SIVE WUKLD
Section 21 and VDU commands below). CS

swilches you to the normal graphics screen, with a

seven-ine text window below it.

TYPE object
(TYPE object] object2 . .. objectn) command

Prints object or objects 10 the screen or other device, but
there is no linefeed once the printing is completed. If TYPE
has two or more inputs, then TYPE and all the inputs must
be enclosed in parentheses.

TPE{ABC]
ABC

(YPEABI[DEFIGHI)
ABCOEFGH!I

VDU list command

VDU is another primitive (like *suffix) which gives you direct
access 10 the BBC micro’s own operating system. The VDU
commands, as you might expect, all have 1o do with the
monitor {or Visual Display Unit}. You may have already met
some VDU commands in this manual. You will certainly have
met VDU cominands if you have been using the BBC
microcomputer for any length of time. They are descrabed in
detail 1s Chapter 34 of the BBC User Guide (pp 377-389)

From a Logo users point of view, the important thing 1o
remember is that VDU takes a list of numbers as its input. if
you want one of those numbers 1o be generated by
evaluating a variable (:X :NUM :COL :LINE for example), you
must create the list with the operation SE. For example

VDU SE(19X:Y00OQ)
SE outputs 2 st to VDU with :X and :Y properly evaluated
as numbers. If a number required as an input is greater than
255 and therefore occupies two bytes of memory. prefix it
with quotes (7). and Logo will do the rest. For example
"1278 Here 1s a list of some of the more useful VDU

157

SECIIUN IWENI Y-EIGH | —UU I SIVE WUKLD
commands with examples of how they mught be used in
Logo:

Printing

VDU [1] is used to send a character or string of characters
to the printer only, and not to the screen. This is used to
send control codes, which change the print style. For
example, VDU [1 14} would instruct an Epson MX-80 to print
double width characters. Of course, this assumes the printer
is in place and turned on.

VDU { 2] is used to turn on the printer {assuming you have
a printer in place and plugged in} while VDU { 3 | turns it
off. If children are turned off (as | am} by VDU commands,
then here is an example of how a VDU command can be
incorporated into a command which is more faithful to the
spirit of the language. This way you get the power of the
VDU commands, combined with the friendliness of Logo:

10 PRINTER :SWITCH

IF SWITCH = “ON [VDU { 2 |}
IF :SWITCH = “OFF (VDU [3
END

PRINTER “ON
PRINTER “OfF

Labelling the Graphics Screen

VDU [5] is a wonderful tool which allows you to
wirite text on the graphics screen. For example:

CS VDU { 5] PRINT [TURTLE AT HOME]
The words TURTLE AT HOME will be printed in the middie
of the screen, just below the turtle. VDU (4] returns the text
€ursor to its normal position, and disables VDU [5)

VDU { 5] can be used for labelling pictures or diagrams. For
example, 10 teach a child the screen coordinates. you could

158

SECIIUN IWENIY-EIOGHI —UUIDIVE WURLD

use the following little program.

TO NAVIGATE

Py

MAKE “DRIVE RC

IF :DRIVE = “L (LT 10}

IF :DRIVE = “R [RT 10]

If :DRVE = °F [FD 20}

IF :DRIVE = “B |BK 20}

IF -DRIVE = °X [MAKE X POS VDU [5] PR SE {X =] ROUND XCOR

SETPOS X}

IF :DRIVE = Y [MAKE "Y POS VDU | 5 | PR SE {Y =] ROUND YCOR

SETPOS 1Y)

IF :DRVE = "P [MAKE "P POS VDU [5] PR {SE [POS =] ROUND

FIRST POS ROUND FIRST BF POS) SETPOS :Pj

IF :DRIVE = “S [VDU | 4] STOP]

NAVIGATE

END
Some of you will recognise a new use for the INSTANT
procedure. The best way to understand this procedure is to
type it in and use the controls, LR F B X Y P and S. It will
give you lots more ideas for using VDU [5]. Warning: It
doesn’t work very well in MODES 2 and 5 as the characters
are too large.

Carriage Return

VDU [10] and VDU [13 } together allow you to build a
carriage return into your programs. It is the equivalent of the
Logo command PRINT []

Changing Colours

VDU {17]}1VDU[18] VDU [19] and VDU [20 } all
affect the colours available in different modes. They are
discussed in some detail in Section 21 of this manual. See
especially the discussion of BACKGROUND.

Redefining Characters

VDU [23)] allows you to redesign characters. It is not for the
novice.

159

SECIIUN IVWENIY-EIGHI —OUUISIVE WURKLD
Changing the Turtle’s field

VDU [24] allows the user 1o change the size of the graphics
window. This can only be done when the turtle field is a
window. If it is in WRAP or FENCE, you cannot change the
size of its field. Note if you do this, you also need to change
the origin of the turtle, using VDU [29 |:

VDU (SE 29 X :Y)
where :X and :Y are the coordinates of the new origin of
the graphics cursor. Note: These coordinates can be mapped
from the planning sheet on page 494 of the BBC User
Guide. Once again, this is probably not one for the novice
programmer. The procedure for doing it is given in Section
21 under WINDOW. It may be very useful in cases where
children want to be able 10 see more of their commands as
they sun. This could be particularly true of children and
teachers who have worked with the DART turtle graphics
program.

Control Codes

The VDU drivers can be replaced at TOPLEVEL by using the
CTRL characters, by simuhtaneously pressing the CTRL key
and the key required by a given code. For example, CTRL U
deletes the current line. CTRL E allows you 10 write on the
graphics screen. just beneath the turtle

A tull hst of these CTRL codes 1s provided on p 378 of the
BBC User Guide

Important note: The only exception 10 the information you
will find there, is that in the LOGO EDITOR, CTRL C is used
1o move you from the Edior, back into your wortkspace

160

SECTION TWENTY-NINE — WORKSPACE

Part of the memory of the computer is reserved for the
variables and procedures that you have written or loaded in
from a disk or cassette. This is called your workspace

The available space is measured in NODES, each of which is
five bytes long. You can discover how many NODES are tiee
at any one time by typing PR NODES. The number of
NODES returned by this operation will range from 4,631 in
MODE 7 with an empty workspace down to 755 in MODES
0. 1 & 2 with an empty workspace.

The difference is due 1o the memory taken up by the BBC in
mapping the screen. This is as little as 1k bytes in MODE 7
and as much as 20k bytes in MODES 0, 1 and 2.

As procedures run, they use up memory space. sometimes
temporarily, and sometimes permanently. The memory held
temporarily is freed by a httie procedure you cannot see
called “the garbage collector”, which bustles round clearing
memory for reuse

The garbage collector works automatically, but you can force
an extra collection by typing RECYCLE. If you wirite lots of
procedures and never SAVE any of them on disk or cassette,
you will run out of memory, especially if you want to play
with all the colour combinations avaiable in MODE 2. for
example

Mowving {rom one MODE 10 another with SETMODE adds an
extra ditmension to programming n Logo with the BBC
Micro. We have made it as easy as possible by prowiding an
EDITOR which acts as a temporary store for procedures,
when you are switching from one MODE to another

If you switch MODE without storing your procedures in the
EDITOR, you may get a message saying LOGO NOT FRESH.
This means there are procedures in the memory, which Logo
does not want to destroy, and therefore cannot adjust the
size of the workspace, as it must if it 1s 1o allocate rmore
mernory 10 screen managernenL when movmg, Say, from
MODE 5 1o MODE 2

The maximum number of NODES avaidable in each MODE s

161

SECIIUN IVWENI Y-NINE — VWWURKSFACLLE
as follows:

MODE 7 4,631
MODE 6 3,203
MODE 5 2,795

MODE 4 2795
MODE 3 1571

MODE 2 755
MODE 1 755
MODE 6 755

It you are lucky enough to have a second processof, you
have the same number of NODES in each MODE, 5,500

As we have seen, Logo will not let you move from a MODE
with more available NODES to a MODE with fewer avaidable
NODES, unless you first erase all procedures from your
workspace, with the command ERALL. Needless 1o say. you
should be careful first to protect your procedures and variable
names, either by SAVEing them to disk or cassette, or more
conveniently, by typing EDALL and stashing them in the
EDITOR. where you have room for 1,500 characters. Then
leave the Editor by using the ESCAPE key before

changing MODES

Once you have changed MODES it is a simple matter to
move your procedures and variable names back into the
workspace, by first typing ED or EDIT without any procedure
names following the command, and then CTRL C.

¥ you want to move from a MODE with fewer NODES to
a MODE with more NODES, Logo does not protest, but
it does not take up the extra available memory unless
you have gone through the process of moving
procedures into the EDITOR and ERasing them from the
workspace.

The system was designed in this way 10 give you the
maximum possible number of NODES to work with in all
MODES. We stress this because it is different from other
Logos you may have seen, both on other computers or on
the BBC micro. But compare the number of procedures you
can fit in your workspace, or in your editor, with those other
Logos.

162

SECIIUN IWENI Y-NINE — WURKSFALE
i you are familiar with other Logos, you will notice
some changes. We have got rid of POPS, PONS, POTS,
ERN, ERPS and ERNS. The main reason for this was that
we believed they were confusing. There are now two
basic commands PO {for Print Out} and ERASE (ER) and
two operations, OPPS (for OutPut ProcedureS) and OPNS
{for OutPut NameS). Combining the commands and
operations, you can do everything the old systems did,
and more. This change was conceived in conjunction
with the new syntax for SAVEing, EDITing, Printing Out
and ERASEing named variables, using [“name]

Here are the primitives you will need to manage your
workspace, know your way around it, and generally keep it in
good order. They include some which affect the Logo
system itself. You can use them 1o access the computer
memory directly. The more dangerous primitives start with a
dot (). Before using them, be sure to SAVE all your work on
disk or cassette.

.CALL n command

Transfers control 10 a machine language subroutine starting
at address n (decimal). For advanced programmers only

.CONTENTS operation

Outputs a list of everything contained in the Logo
workspace, including procedure and variable names, tut NOT
the names of primitive procedures. It will also include odds
and ends of unfinished or cancelled business which the
garbage collection cannot reach. You can get rid of this
rubbish by saving your workspace to the Editor or 1o disk,
and then reloading it into your workspace. This can
sometimes help with space problems.

DEFINED? word operation

Qutputs TRUE if the specified word is the name of a
procedure, otherwise outputs FALSE. If word is a primitve
procedure, DEFINED? outputs FALSE (see PRIMITIVE?). For

163

SECITIUN IWENI Y-NINE — WUKRKSFALE
example:

PR DEFINE? “SQUARE
TRUE

assuming you do have SQUARE in your workspace

PR DEFINE? "RANDOM

FALSE
even though RANDOM is a primitive procedure. Compare
with the operation of PRIMITIVE? on the same two words.

.DEPOSIT n byte command

Writes the specified byte into machine address n (decimal).
This command is provided for the use of experienced
programmers. It is the equivalent of POKE in most dialects
of BASIC (not BBC BASIC, see p409 of the BBC User
Guide). See .EXAMINE below.

ERALL command

ERrase ALL. Erases all the procedures and variables in your
workspace. This command also frees up all the nodes
available to you. Make sure that all the procedures you want
0 keep are stored safely in the EDITOR or on a disk or
cassette before you use this file. Note especially the use of
ERALL when changing MODE. It allows Logo to take fult
advantage of the extra workspace in a different MODE

ERASE (ER) name namelist command

Erases the named procedure(s) or variables from the
workspace. Neither of the ERase commands (ERALL ERASE)
affect procedures in the EDITOR or SAVEd on disk or
cassetle. The command works differently with procedures
and variables. For example ER “TRIANGLE erases a
procedure named TRIANGLE.

ER (TRIANGLE POLYGON SQUARE}
erases a list of procedures, TRIANGLE, POLYGON and
SQUARE. ER [“TRIANGLE]. on the other hand, erases a
vanable named TRIANGLE.

£R ["TRIANGLE “SQUARE SHAPES|
erases variables named TRIANGLE and SQUARE and a

164

SECIIUN IWENI Y-NINE — WURKSFALE
procedure named SHAPES. if one of these variables or

procedures cannot be found, Logo aborts the ERASE and

returns you 1o toplevel. This protects you from erasing

variables or procedures in erfor.

The variables you can erase in this way are the global
variables, created by using the Logo primitive MAKE. For
example:

MAKE “FLOWERS {ROSES PANSIES BUTTERCUPS DAISIES)

MAKE “TRIANGLE [REPEAT 3 {FD 200 RT 120)}

PRINT :FLOWERS
RUN TRIANGLE
Now type

ER [FLOWERS TRIANGLE]
and try again. They are still there. Now type

ER {"FLOWERS “TRIANGLE}
and try again. Logo has wiped them out. Now type:

TO FLOWERS
PR {ROSES PANSIES BUTTERCUPS DAISIES]
END

TO TRIANGLE

REPEAT 3 [FD 200 RT 120}

END
First test these procedures by typing first FLOWERS, then
TRIANGLE. Then type:

ER [TFLOWERS “TRIANGLE]
and they will, of course, survive. Type

£R |[FLOWERS TRIANGLE]
and Logo forgets them. The same principle applies 10 the
command EDIT (ED) where names can either apply 10
procedures or variables, also PO and SAVE.

Note 1: If you want 10 refer 10 a single variable name. it has
to be a list with one element. For example ER |"FLOWER].
Logo would treat “FLOWER, withoul square brackets around
it, as a procedure name. It also means you cannot have
procedure names beginning with QUOTES Logo would treat
them as if they were variable names.

165

SECIIUN IVWENI Y-NINE — WURKSFACLE

Note 2: ERNS and ERPS do not exist as pnmitves in
Logotron Logo. It is easy to create them:

TO ERNS
ERASE OPNS
END

TO €RPS
ERASE OPPS
END

EXAMINE n operation

Outputs the contents of address n (decimal). See .DEPOSIT.
Provided for experienced programmers.

MODE operation

MODE outputs the number of the current MODE. When you
enter Logo, you are in MODE 4. So when you swilch on the
computer, type:

PR MODE

4
See also SETMODE

NODES operation

Outputs the number of free NODES. Thus is very useful
when calculating precisely how to fit procedures into your
workspace. Try running the following procedure:

70 FIB :NUM

If :NUM < 3 [OP 1]

PR NODES

OP (FIB :NUM - 1) + (FIB :NUM - 2}
END

This is an extravagant way of generating Fibonacci numbers.
This is the series which runs 1 1 2 3 5 8 13, in which each
number is the sum of the preceding two. The output from
FIB is the nth Fibonacci number. So FIB 3, outputs 2, FIB 7
outputs 13, and so on. In making this calculation, Logo uses
up NODES. The line PR NODES has been included to show
this actually happening. Try PR FIB 10, then RECYCLE PR
NODES. The RECYCLE procedure frees up all the NODES
which were temporarily uscé by FIB.

166

SECIIUN IVWENI Y-NINE — WURKSFACLE

OPNS operation

Here is a brand new Logo primitive. It outputs all the names of
global variables contained in your workspace as a list. Using
OPNS (it stands for OutPut NameS). you can easily create ERNS
or PONS (see below under ERASE and PO}.

OPPS operation

Here's another brand new Logo primitive, the counterpart of
OPNS (see above). It outputs the names of all procedures
contained 1n your workspace as a list. Using OPPS (it stands for
OulPut ProcedureS). you can easily create ERNS. ERPS, POPS or
POTS {see above and below under ERASE and PO).

PO name namelist command

Stands for Paunt Out the definitions of the named
procedure(s) and variables. You cannot PO Logo primitive
procedures

PO “SQUARE

TO SQUARE :SIDE

REPEAT 4 [FD SIDE LT 90}
END

PO [SPINCOIN DICE "FRUIT}

TO SPINCOIN

IF EQUAL? RANDOM 2 0 {OP "HEADS] [OP “TAILS]
END

T0 DICE
OP 1 + RANDOM 6
END

MAKE “FRUIT [ORANGES BANANAS PINEAPPLE]

POALL command

Stands for Print Qut ALL. Prints the definition of every
procedure and the name and value of every variable in the
workspace

Note PONS POPS and POTS do not exist in Logotron Logo.
PONS and POPS can be created exactly like ERNS and ERPS
{see ER above). POTS is rather different, as it only prints out

167

SECITIUN IWENI Y-NINE — WUKRKSFALE
the utles. It needs a combination of twon small procedures:

T0 POTS
POTS1 OPPS
END

10 POTS] L

IF EMPTY? 4 |STOP)
{PR "TO FIRST 1}
POTS] BF L

END

PRIMITIVE? word operation

Outputs TRUE if the specified word is a primitive procedure,
otherwise outputs FALSE. See DEFINED? above. For
example:

PR PRIMITIVE? "RANDOM
TRUE

PR PRIMITIVE? “SQUARE
FALSE

PRIMITIVES command

Prints out a list of all the PRIMITIVE procedures. In order to
Inspect them, either print them out, using VDU (2} or stow
thermn down by using CTRL N, then page through them using
the SHIFT key.

RECYCLE command

Performs a garbage collection (see NODES above), freeing as
many NODES as possible. Garbage collections happen
automatically where necessary, but each one takes at least a
second. Running RECYCLE before a time-dependent activity
prevents the automatic garbage collector from slowing things
down at an awkward moment. In fact the Logotron garbage
collector is very efficient, and you will not often be aware of
its existence. But it you ever see the turtle pause in the
middle of a highly recursive procedure. it 1s likely 1o be the
garbage collector at work.

168

SECTION THIRTY - LOGO MESSAGES

Sometimes, even when you know a good deal about Logo.
the system will fail to understand you. When this happens,
Logo sends you a message. We don’t call them “error
messages”, because that suggests you have made an error,
whereas it often means only that the poor old computer isn't
as smart as you. Where we leave dots, Logo will fili
in the name of the procedure and/or the word which is
bothering it.

1 DONT KNOW HOW TO ...
You will see a ot of this when you begin. Often because
you have mistyped the name of a procedure, or left off
quotes {“) or dots (:). so that Logo thinks a word is a
procedure, when really it is a word 1o be printed. or a
variable name to be evalutated.

YOU DONT SAY WHAT TO DO WITH ...
Here's another common message. Usually you should have
typed PRINT in front of a procedure which is an operation,
which outputs a value. Operations need to be preceded by
commands. Operations don’t know what to do with the
values they output, unless you tell them.

.... HAS NO VALUE
Logo has come across a word preceded by dots :. (:SIDE for
exampie), and cannct fing a vatue. Check that you have given
it a value, either as an input 10 the procedure, of by creating
a global varnable with MAKE.

NOT ENOUGH INPUTS TO
Perhaps you have provided a procedure with only one input,
where it expects two or more. For example:

1F EQUAL? SQRT 16 {PRINT “OK]
would get the message:

NOT ENOUGH INPUTS TO EQUAL?

.... DIDNT OUTPUT TO ...
This may mean that you have tried to create a procedure 10
work as an operation, but forgotten to include the command
OP to make sure it OUTPUTS a value 1o the calling
procedure. Or that you have putl two commands together.

169

SECIIUN THIKITY — LUGU MESSAGED
For example

PR FD 100
The turtie draws a line on the screen, but doesn’t output 1o
PRINT, which expects al least one input. So Logo sends a
message:

FD DIDNT OUTPUT TO PRINT

.... DOESN'T LIKE AS INPUT
Logo sends this message when a procedure requires inputs,
but gets the wrong kind.

PRINT SQRT "APPLE
SQRT DOESNT LIKE “APPLE AS INPUT

SETPOS {X :¥]

SETPOS DOESNT LIKE [:X :Y} AS INPUT
Go back to the reference sections, look at the Logo woids
you have used, and discover what kind of inputs they
expect. It isn’t always obvious what is wrong. For example,
SETPOS expects two numbers. Since :X and :Y are enclosed
as a list in square barackets, they cannot be evaluated. You
should have written

SETPOS SE X Y
We have indicated. wherever possible, the traps of this kind.

OUT OF SPACE
This frustrating message is sent when Logo cannot fil
another definition into its workspace, of when a procedure
uses up all the available nodes while running and cannot
finish its work. The solution is 1o tidy up your workspace,
getting rid of unwanted variables and procedures, or maybe
rewriting your procedure so that it uses less memory. Some
recursive procedures are particularly greedy. Another solution
may be to move to a MODE where you have more space.
You can sometimes win space by freshening your Logo. You
do this by saving you entire workspace:

SAVE -FILENAME

ERALL

LOAD :FILENAME
This gets rid of some unwanted bits and pieces that the
garbage collector may miss. You can do the same thing
more quickly by moving everything into the Editor with
EDALL, but if your problem is that you are OUT OF SPACE,
there may not be room in the Editor for all the procedures
YOu nave 1o save.

170

SECIIUN ITHIKTY — LUGU VMESSALLEDS

LOGO NOT FRESH
This message warns you when you try to change MODE
with procedures in the workspace. You have 1o clear them
out with ERALL (saving them in the Editor or on Disk before
you erase).

NOT POSSIBLE IN THIS MODE
This one is quite obvious and will be sent if you try to use
graphics commands in MODES 3, 6 or 7. where text only is
available.

.... ALREADY EXISTS
Occasionally, you try to define a procedure using a name
which you have already given to another procedure, or you
use the name of a primitive procedure, or you try to SAVE a
file under a filename which is already used. in all these
cases, Logo will stop you. For example:

TO COUNT -LIST
COUNT ALREADY EXISTS

STOPPEDU!
This is the message Logo sends when a procedure is
stopped while it is running by the user pressing the ESCAPE
key.

Other Logo Messages are:

WURL 100 LONG {more than 255 characters)

TOO MUCH INSIDE ()

UNEXPECTED }

NUMBER TOO BIG

BAD FILE NAME (eg. more than seven characters.)
YOU ARE AT TOP LEVEL (eg. type STOP or END at top
level)

171

SECTION THIRTY-ONE — GLOSSARY

The following 1s an alphabetically arranged glossary of all the
primitives contained in Logotron Logo for the BBC Micio. it
is designed for quick reference. More detailed descriptions
are given elsewhere in the manual. Consult the index for
page references. The # sign indicates a procedure is
“greedy”. It can handle any number of inputs, provided you
enclose them in parentheses (). See Section 20 for an ex
planation of the italicised Inputwords.

#AND pred? pred2 Outputs TRUE if all its inputs are

TRUE.

ASCH char Outputs ASCII code (decimal) for char

ARCTAN n Outputs ARCTAN of n in degrees.

BACK (BK) n Moves turtle n steps back.

8G Outputs number representing
background colour.

BF object Outputs all but last element of object

8L obyect Outputs all but fast element of object

{CALL n Transfers control 10 a machine code
subroutine starting at addiess n

CHAR n Outputs character whose ASCHl code
s n

CLEAN Erases graphics without affecting the
turtle’s state

cSs Erases graphics, restores turtie to
home position [0 0] and heading
to 0.

CcT Erases text.

CONTENTS Prints out fist of workspace contents,
including mistypes etc.

COUNT object Outputs the number of elements in
object

CURSOR Outputs the current position of the

text cursor.

COS n Outputs the cosine ol n degrees

172

DEFINED? name

.DEPOSIT n byte
EDALL

EDIT (ED) name/ist
EMPTY? object
END

ENVELOPE

numl . ..
EOF? filename

numl4

EQUAL?

object] object?
ERALL
ER name/list

EXAMINE n

FALSE

FENCE

FIRST object
FORWARD (FD) n
FPUT opject hst

HEADING
HT

SEUITUN THIKT Y-UNE — GLUSSAKY
Quiputs TRUE f name s achined
procname

Wirites byte to address n

Wirites all procedures and vanables in
the workspace 1o the editor.

Writes named procedures and/or
variables to the editor.

Outputs TRUE it object is empty, ~
orfl

Special word indicating end of
procedure definition.

Controls output of SOUND, see BBC
User Guide.

1f End Of File outputs TRUE, used in
conjunction with SETREAD and
SETWRITE.

Outputs TRUE if its inputs are equal

Erases everything in workspace, does
not affect contents of editor

Erases named procedures and/or
variables from workspace.

Outputs contents of address n (see
DEPOSIT).

Special input for AND, IF, NOT, OR,
output by predicates.

Limits turtle’s movements to the
screen boundaries. See WRAP and
WINDOW

Qutputs first element of object.
Moves turtle forward n steps.

Outputs new list formed by putting
object n front of hst.

Outputs turtle’s heading.
Makes turtle invisible.

173

SECIIUN ITHIKITY-UNE — GLUDOAKY

HOME

IF pred list1 list2

INT n
ITEM n Iist
KEY?

LAST object
LEFT (LT) n

LIST object! object2
LIST? object
LOAD filename

LPUT object list
MAKE name object
MEMBER? object iist
MODE

NAME? name

NODES

NOT pred
NUMBER? object
OPNS

OoPPS

#OR pred1 pred2

174

Moves turtle 10 {0 0| and sets
heading to 0, but does not clean
graphics

IF pred is true, THEN run listl,
ELSE run list2.

Outputs INTeger portion of n.
Outputs ITEM n of kst

Outputs TRUE il a key has been
pressed but not yet read.

Outputs LAST element of object

Turns turtle n degrees
counteiclockwise.

Outputs a LIST of its inputs.
Outputs TRUE if object is a list

Loads filename from disk or cassetie
into workspace.

Outputs new list formed by putting
object at end of list.

Makes name refer to object. Sce
THING

Outputs TRUE if object s included n
list.

Outputs number of current
MOODE (1- 7)

Outputs TRUE if name has a value
(THING).

Outputs number of free NODES.
Outputs TRUE if pred is FALSE.
Outputs TRUE if object is a number

Outputs NameS of vanables cutrently
in workspace.

Outputs names of ProcedureS
currently in workspace.

Outputs TRUE if any of its inputs aie
TRUE

OP object

PC
PD
PE

PU

PO nameflist

POALL

=S

PRIMITIVE? name

PRIMITIVES

#PRINT (PR} object

#PROD a b
QuoT a b

RANDOM n

RC

RL

RECYCLE

SECIIUN ITHIKITY-UNE — GLUDOAKY

Returns control 10 calter, with object
as OUTPUT.

Outputs current pen colour.
Puts turtle’s pen down, and drawing.

Turtle erases lines if it draws over
them.

Lifts turtle’s pen so it is no longer
drawing.

Prints definitions of named procedures
and variables.

Prints out definitions of ali procedures
and variables.

Outputs coordinates of turtle’s
position, x y.

Outputs TRUE if name refers
10 a primitive procedure.

Prints the list of all primitive
procedures included in Logotron
Logo.

Prints object, stripping outer brackets

and quotes, follows with carnage
return

QOutputs @ multiplied by b.

Outputs the INTeger QUOTient
obtained by dividing 3 by band
truncating the answer.

Outputs random positive integer
between 0 and n - 1.

Outputs character read by the current
device {default is keyboard), waits if
necessary. Does not echo
output to screen.

Outputs line read by the current
device (default is keyboard), waits if
necessary. Echoes output to screen

Forces garbage collection, freeing
available NODES.

175

SECIIUN ITHIKITY-UNE — GLUDOAKY

REMAINDER a b

ROUND n

RIGHT (RT) n

RUN Ilist

SAVE filename
name/ list

SCRUNCH

#SE obj1 obj2
SETBG n
SETCURSOR (x yi

SETH n
SETMODE n

.SETNIB n

SETPC n
SETPOS [x yi

SETREAD filename

SETREAD {]
SETSCRUNCH »n

SETWRITE filename

176

Outputs integer remainder obtarcy
by dwiding a by b and rounding
the result.

Qutputs n rounded off to the nearest
integer.

Turns turtle n degrees clockwise
Runs Iist, outputs what fist outputs

SAVEs to disk or casselte named
procedures or variables, or enure
workspace if no names are specified

Qutputs current ratio of honzontal 10
vertical turtle steps.

Outputs unified fist of its inputs.

Sets background colour to colour n

Sets text cursor at position
indicated by coordinates x and y

Sets turlles heading to n degrees (0
up the screen).

Sets MODE 1o n of BBC Micro's
MODES 1-7. see BBC User Guide

Produces special graphics effects: n
must be inthe range 0-255,
equivalent to parameter K in BBC's
PLOT command.

Sets pencolour to colour n

Moves turtle to position given by x
and y on graphics screen.

Sets the filename from which RC and
AL, will receive inputs.

Closes the file opened with SETREAD

Sets ratio (n) of horizontal turtle step
to vertical turtle step.

Opens file and sends copy of all
characters displayed on the screen
to filename.

SETX x

SETY y

SHOW opect

SHOWN?
ST
SIN n

SOUND num!. .num4

SQRT n
STOP

#SUM a b
TAN n
TS

THING name

TO namie inputs

TOPLEVEL

TRACE procname

TRUE

#TYPE objectl . ..

USE modulename

SECITIUN THIKIT Y-UNE — GLUSDAKY
Moves turile honzontally 10 x-
coordinate at x

Moves turtle honzontally to y-
coordinate at y.

Prints object without stitpping outer
brackets

Outputs TRUE if turtle is showing
Makes turtle visible.
Outputs the sine of n degrees.

Provides access to BBC Micio's
sound facilities, see User Guide

Outputs square oot of positive n

Stops current procedure and returns
control to caller.

Qutputs the sum of its inputs.
Qutpuls the tan of n degrees.

Switches from graphics screen to text
screen, clearing graphics and text.

Outputs object referred to by name,
equivalent 1o :name

Signals start of uile line of defined
procedure.

Stops all procedures and returns
control to top level (ie keyboard)

Enables user 10 trace all inputs and
outputs of running procedures, used
for debugging procedures.

Special input for AND, IF, NOT, OR,
output by predicates, see FALSE.
Prints object. but leaves cursor at the
end of line, without carnage return

Links external modules containing
special primitives or extensions
to Logo.

177

SECITIUN THIKI Y-UNE — GLUSSAKY

VDU Ist Gives access to BBC operating
system. List contains parameters
required to control VDU drivers.
See BBC User Guide.

WAIT n Causes Logo to WAIT n 60ths of a

second before executing next
instruction.

#WORD word! word2 Outputs word made up of its inputs

WRAP Maps turtle field onto torus, so that
whenever it leaves screen, it
reappears on opposite edge.

XCOR OQutputs x-coordinate of turtle’s
posttion.

YCOR Outputs y-coordinate of turtle’s
position.

*suffix inputs Star commands, like VDU commands,

give direct access to BBC Micro’s

operating system. See section 20 {p 96)

and 28 (p.147).

a+b Outputs a plus b.

a—-»b Qutputs a minus b.

a¥%b QOulputs a times b.

alb Qutputs a divided by b.

a<b Qutputs TRUE if a is less than b

a>b Outputs TRUE if a is greater than b

objectl = obfect2 Qutputs TRUE if object! is equal to

object2.

\ Tells Logo 10 treat the next character
literally. without reference to its
meaning.

178

SECTION THIRTY-TWO -

INDEX

Logo Primitives are listed in BOLD CAPITAL ietters, other
procedures, mentioned in the text, are listed in CAPITAL

letters.

ABS 126
Abelson, Harold 45
Addition 90
ADDTOVOCAB 69
Advanced Logo 5
AGAIN 71, 151
Alphabet 19
AND 141
ANY.OF 143
ARC 15
ARCOSINE 119
ARCSINE 19
ARCTAN 119
Asrctangent 119
Arithmetic 89, 118
Arrows 128
ASCll 106, 108
ASK 70
*8. 96
BABBLE 47
BACK 7. 97
Bad Filename 23, 171
BALRAN 125
BASIC 96
BBC User Guide 8
BEND 15
BF 46, 61, 105
BG 97
BK 9
BL 46, 61, 107
BLUEPEN 35
Boolean values 82, 119
BOX 28
BOXES 67
BRACKETS {1 11, 84
BREAK key 81

ButLast 107
ButFirst 105
CALCULATOR 137
CALL 163
Caniage Return 159
*CAT 145
Changing colours 159
CHAR 108
CHATTER 47
CHECK 65, 83
CHOOSE 69
CLEAN 8, 99
Colours 35, 93. 97
Command 50, 85, 135
*COMPACT 96, 146
.CONTENTS 71, 163
Control Codes 160
COPY key 8. 129, 155
COPYDEF 155
COPY F8 131
COPY FS 131
cos 119
Cosine 119
COUNT 46, 61, 108
COUNTDOWN 139
CREATE 68, 71
cs 7,93, 99
cT 147
CTRL BREAK 96, 146
CTRL C 93, 131, 160
CTRL N 168
CUBE 120
CURSOR 147
Dart 160
DECIDE 135

179

SECIIUN IHIKI

DEFINE 154
DEFINED? 163, 168
DEL 66
DELETE 67, 72
Dehmiter 82
.DEPOSIT 164
DICE 49, 84
DiSessa, Andy 45
DISPLAY 64
DIST 75
DIST1 75
Division 90, 124
DIVISOR? 121, 135
DO 66
DOT 99
Dots (:) 17, 84, 169
DRIBBLE 69, 145
ED 116, 127
EDALL 93, 127
EDIT 20, 127
Edit Buffer 92
Editor 20, 127, 162
Editor Commands 130
Else 56, 135
EMPTY? 108, 134
Empty iist {] 106
Empty word 105
END 15, 80, 133
ENVELOPE 147, 156
EOF? 148
EQUAL 73
EQUAL? 118, 134
Equality 90
Equals sign 125
ER 16, 163
ERALL 162, 164
ERASEFILE 155
ERN 163
ERNS 55, 163
ERPS 163
ESCAPE key 6. 81, 131
EVEN 85
EVEN.THROW 4

180

Y-1WU — INDEAX

.EXAMINE 166
EXPONENT 125
Exponential 118
FACTORIAL 125
FALSE 55, 82, 135, 141
FD 9
FENCE 99
FETCH 66
FIB 94
Filename 23
FiLL 65
FIND 61, 65, 129
FIRST 46, 61, 105, 109
Flow of contirol 134
FOREVER 64. 71, 74
FORGET 67
#FORMAT 96, 146
FORWARD 7. 100
FPUT 61, 105, 110
Function keys 130, 131
FO, F1 etc. 130, 131
*FX 147
GET 71
Global 87. 115, 165
Glossary 172
Grammar 79
Graphics $3. 97, 153
GREETY 149
Gieater-than (=) 124
HEADING 44, 97, 100
HELLO 80
HOME 100
HOUSE 24
HT 12, 100
IF 32, 56, 134, 141
INC 17
Inequality 90
infix 90. 118. 123
fnput 70, 718, 105, 170
inputs 83
INSERT 51

Instalistion 1
INT 118, 120
Integers 118
INTERSECT 74
ITEM 46, 61, 110
ITEM1 109
KEY? 57, 148
LAST 46, 61, 110
LEFT 7, 100
Less-than (<} 124
LID 29
LINE 75
LINEMULT 126
LISP 5
LIST 61, 105, 109, 111
LIST? 111, 134
Lists 11, 3. 81, 105
%LOAD 146
LOAD 148
LOADPICT 146
l.ocal 86. 116
Logical 119
Logical operations 141
Logo 1
#LOGO 96, 145
Logo Message 7. 169
L.ogomoton 60
Logotron 95. 172
LOOKFOR1 139
LOOKUP 66, 70
LPUT 61, 105, 112
LT 9
Machine 144
MAKE 17, 86, 115, 165
MANY 64
MAP 7%
MATCHES 65
MAX 85, 125
MEMBER? 74, 112, 134
MIN 125
Minus sign 74,123
MODE 36, 92, 161 166

SECIHIUN ITHIKITY-1TWU — INDEAX

Modes 91, 16}
MOVE 59
MOVETO 43, 75
MULT 126
Multiplication sign 124
NAME 82, 134
NAME? 117
Names 17
NEWSQUARE 17
NEWTRIANGLE 17
NODES 37, 93, 161, 166
NOT 141, 142
Notation 79
NUMBER? 112, 135
Numbers 82
Obijects 81
op 48, 134, 136, 169
Operating System 95
Operation 50. 85, 105
OPNS 163, 167
oPPS 163, 167
OR 141, 143
P 66
PAPERCOL 113
Papert, Seymour 18
Parentheses 91
PC 101
PD 9, 101
PE 10, 101
PHRASEBOOK 67
Pl 126
PICK 108
PICKRANDOM 47, 151
Plus sign 27,123
PO 116, 163, 167
POALL 167
POLY a0
POLYSPI 40, 139
POLYTRIP 39
PONS 163, 167
POPS 163. 167
POS 43, 101

181

SECIIUN ITHIKTY-TWU — INDEAX

Pasition 97
POTS 163, 167
Postfix 55
POTS 168
Prefix 54, 90, 118
Prettyprinting 75
Primitive 80
PRIMITIVE? 168
PRIMITIVES 168
PRINT 17, 27, 105, 148
PR 17, 27, 105, 148
Printing 158
Procedure 15, 80
PROD 54, 118, 120
Promps 91
PR.OUT 154
PU 9, 100
PUT 67. 70
Quotes () 17, 84, 169
Quiz 151
auoTt 118, 120
RANDOM 44, 90, 118, 121
RC 39, 57, 149, 156
READLINE 154
READNUMBER 113
Real numbers 118
Recursion 94
Recursive procedures 30
RECYCLE 101, 166, 168
Redefine Characters 159
REDPAPER 35
REDPEN 35
REFILE 145
REMAINDER 118, 121
REMEMBER 58
REMOVE 61, 71
REPEAT 11, 134, 137
REPLACE 129
RESPOND 149
RETURN key 6
REV 52, 110
REVERSE 51

182

RIGHT 7, 9, 101
RL 150
ROM 1
ROUND 118, 122
Ross, Peter 45
RUBOUT 58
RT 7,9, 101
RUN 137
SAVE 23, 116, 152
SAVEPICT 146
SCAN n
Scientific notation 118

Screens 91
SCRUNCH 102
SE 39, 46, 61, 105, 113
Second Processor 162
SETBG 34, 102
SETCURSOR 153
SETH 44, 102
SETMODE 36, 93, 161
SETNIB 102
SETPAL 37. 98
SETPC 34, 102
SETPOS 43, 103
SETREAD 148, 150, 153
SFTSCRUNCH 103
SETUP 57, 67
SETWRITE 148, 154
SETX 42, 103, 104
SETY 42, 103, 104
Sharples, Mike 61
SHIFT ARROW keys 128
SHOW 47, 105, 155, 156
SIMPLIFY 57
SIN 122
SLOWFD 140
SOUND 147, 156
SPI 94
SPIRAL 31
SPUTSCREEN 104
#SPOOL 59, 145
Sprite Board 4
SQRT 122

SQUARE 15, 26
SQUIGGLE 30
ST 12, 103
STAR 44, 86
STARTUP 155
sTOP 31, 134, 136, 138
STOPPED!!! 7
STROBE 59
Subprocedure 81, 134
SUBSET 73
Subtraction 90
kSUFFIX 145, 157
SUMm 54, 118, 122
SUN 15
Superprocedure 51, 134
Syntax 79
TALK 109
TALLY 30
TAN 122
TDIST 75
TEACH 61, 64
Texier, Alain 60
TEXT 154
TEXTCOL 113
TEXT'N'PAPER 13
Then 135
THING 82, 87, 117
Things 17
Title ine 81
TO 15, 80, 133
TOPLEVEL 80, 91, 134
TRACE 140
TRIANGLE 20, 25, 107
TRUE 55, 82, 135, 141
TS 93, 157
Turtle graphics 97
Turtle’s field 160
TYPE 156, 157
UNDRIBBLE 145
UNION 74
UNTIL 74
USE S

SECIHIUN ITHIKITY-1TWU — INDEAX

Vanables 86, 115
Variables 35, 95, 104
VOWEL? 135
*W. 145
WAIT 140
Watt, Daniel 45
WEEK 114
WELCOME 151
WHILE 74

WINDOW 9, 104, 157, 160

WORD 61, 89, 105, 113
WORD? 114, 135
Words 81, 105
Workspace 20, 161, 80
WRAP 9, 104
XCOR 104
XOR 42, 126
YELLOWPAPER 35
YCOR 42, 104
ZIGZAG 15
= 90, 118, 125, 135
/ 27, 54, 90, 118, 124
> 90, 118, 125, 135
< 90, 118, 124, 135
+ 90, 118, 123
- 90, 118, 123
* 217, 54, 90, 118
\ 96, 147, 149

183

