

 Advanced

 Computer

 Products

Advanced Disc Toolkit
User Guide

Copyright (C) 1985
All rights reserved

-1-

NOTICE

Advanced Computer Products Limited reserves the right to make
improvements to the product described in this manual at any time and
without notice.

Advanced Computer Products Ltd
6 Ava House
High Street
Chobham
SURREY GU24 8LZ

Tel: (0276) 76545

Advanced Computer Products Limited cannot be held responsible for any
loss of data or damage to equipment as a result of this product.

This product is not intended to operate in sideways RAM.

Tu

be, Electron and Econet are tradenames of Acorn Computers Limited.

-2-

CONTENTS

 1 Introduction 4

 2 ADT Commands 5

 BACKUP 8
 BFIND 9
 BUILD 10
 CATALL 11
 DCOMP 12
 DEX 13
 DFIND 15
 DIRALL 16
 DUMP 17
 ENVELOPE 18
 FCOMP 19
 FCOPY 20
 FORM 21
 FREE 23
 FSN 24
 KEYL 25
 LIST 26
 MAP 27
 MDUMP 28
 MENU 29
 MEX 30
 MFIND 32
 MLOAD 33
 MRUN 34
 ROMS 35
 SECTORS 36
 SETADR 37
 SPT 38
 SWAP 39
 TYPE 40
 UNPLUG 41
 VERIFY 42
 XFER 43
 VERIFY 44

 3 Command Summary 45

 4 Fitting ADT 46

-3-

1 INTRODUCTION

ADT is a utility Rom designed to be used in a BBC Computer or Acorn
Electron fitted with the Disc Filing System, DFS or the Advanced Disc
Filing System, ADFS.

It increases the computing power of the machine by adding new
commands to the Machine's Operating System, MOS. These commands are
instantly accessible from inside a program or typed in from the
keyboard.

22 of the commands are disc utilities which use one of the Acorn disc
filing systems. The other commands are general utilities which can be
used in any filing system, such as a TAPE machine without a disc
interface.

ADT has five utilities which are also in DFS. These are BACKUP,
BUILD, DUMP, LIST and TYPE. These are in ADT for machines which only
have ADFS as a disc filing system. This is because ADFS does not have
these utilities in Rom, they are supplied as utilities on disc.

For information on the disc filing system, refer to the filing
system's disc user guide.

Chapter 2 explains the parameters used by ADT commands followed by a
description of each command, under the headings Purpose, Examples and
Note. It is advisable not to just read the examples, but use them as
well. This will often make the description of the command much
clearer. In the examples text appearing like this should be typed
into the computer.

Chapter 3 gives a brief description of each command.

Chapter 4 shows how to fit ADT into a BBC Computer or Electron.

-4-

2 ADT COMMANDS

Type *HELP ADT

This shows a list of all the commands. Their parameters are shown in
brackets after the command. A parameter is a name, number, address or
ad letter which the command needs to operate correctly. Some
parameters are optional, meaning the command will supply its own
number or address. Optional parameters are shown in round brackets,
eg. (<start>), (<rom>), (<drive>), etc.

If a command is typed in with a parameter missing, a message will be
displayed showing the correct syntax for the command, eg.
SYNTAX : MOVE <start> <end> <dest> (<rom>).

To avoid command names conflicting with other Roms, ADT commands can
be preceded with the letter A, eg. *AMENU is the same as *MENU and
*AFORM is the same as *FORM. For instance, DFS and ADT both have
utilities *DUMP. If you wanted to be sure of using the *DUMP in ADT
then you could use *ADUMP.

Commands can be abbreviated by adding a full stop to the abbreviated
name, so long as the name remains unique to ADT and other MOS
commands, eg. *XF. is the same as *XFER and *UN. is the same as
*UNPLUG. *KEY is a MOS command and *KEYL is an ADT command. *KEYL
cannot be abbreviated because it could be interpreted as *KEY by the
MOS.

ADT commands will be accepted in both upper and lower case.

From now on, the BBC Microcomputer used with the second processor
will be referred to as the I/O processor.

Parameter Definitions

In this manual, & printed in front of a number means the number is in
hexadecimal (hex), base 16, otherwise the number is in decimal, base
10. When entering a hex number in an ADT command, & should not be
printer in front of the number.

 - bytes, 0-255.

Determines how data is printed on the screen, and how much on each
line. A byte can be printed as a hex number, an ASCII character, or
part of a disassembled line. The list below shows how a byte is
printed and the byte increments per line for different values of .

 = 0 6502 disassembler
 = 1-99 ASCII + hex in byte increments
 = 100 ASCII in 32 byte increments
 = 101-199 ASCII in - 100 byte increments
 = 200 hex in 11 byte increments
 = 201-255 hex in - 200 byte increments

<d.adr> - Disc sector address

A sector address is a hex number which refers to any one sector on a
disc. The *INFO command gives the location of a file as a disc sector

-5-

address. To translate a track, sector address into a disc sector
address and vice versa, use the following formula:

For DFS,

 SECTOR ADDRESS = TRACK*10 + SECTOR
 TRACK = SECTOR ADDRESS DIV 10
 SECTOR = SECTOR ADDRESS MOD 10

For ADFS

 SECTOR ADDRESS = TRACK*16 + SECTOR
 TRACK = SECTOR ADDRESS DIV 16
 SECTOR = SECTOR ADDRESS MOD 16

<dest> - Destination drive number.

This is used by *MOVE to mean a destination memory address.

<end> - End memory address. See <start>

Sometimes it is easier to express an end memory address as the number
of hex bytes from the start memory address. This can be done by
preceding the number with +, eg. +100, +500, etc.

<fs.afsp> - Filing system name.ambiguous file specification.

<fsp> - File specification.

<load> - Load memory address.

(L) - Large disc, ie. double sided 80 track. (ADFS only)

(M) - Medium sized disc, ie. single sided 80 track. (ADFS only)

<n> - Decimal number, 0-255.

<rom> - Sideways ROM number, 0-15.

<spt> - Sectors per track, 10-20.

If the Acorn DFS or ADFS is the current filing system, then this
parameter need not be used. It is assumed DFS will use 10 sectors per
track and ADFS 16 sectors per track.

Some DFS's use 16,17 or 18 sectors per track, in a double density
mode. <spt> can be used to change the default number of sectors per
track.

Note. This parameter relies on the fact that the DFS supports a call
to access any sector on a track via OSWORD &7F.

<srce> - Source drive number.

<start> - Start memory address.

A memory address is a hex number from 0 to &FFFFFFFF, so called 32
bit addressing.

-6-

If a second processor is not connected, addresses 0 to &FFFEFFFF will
refer to memory in the second processor and addresses &FFFF0000 to
&FFFFFFFF will refer to memory in the I/O processor. To summarise:

I/O Processor Only

addresses 0-&FFFF - I/O processor memory

I/O Processor and Second Processor

addresses 0-&FFFEFFFF - second processor memory
addresses &FFFF0000-&FFFFFFFF - I/O processor memory

For more information on I/O and second processor memory addresses
refer to chapter 9 'Distinguishing between memories' in the 6502
Second Processor User Guide.

<str> - String.

Strings which contain spaces must be enclosed within double quotation
marks. The wildcard character # can be used to replace a single
character in a string and represent all possible characters, eg. AB#
could represent ABA, ABB, ABC, etc.

To enter a string as a hex number precede the number with &, eg.
&20F4FF.

(T) - Tube

This parameter is only effective if a second processor is connected
to the I/O processor, and turned on.

Because the second processor has more free memory than the I/O
processor, which is not affected in size by screen mode or Rom
software increasing the value of PAGE, commands which use the <T>
option can make use of this extra memory. However anything in memory
before the command is used will be overwritten. The main advantage of
using the second processor is an increase in speed.

-7-

*BACKUP <srce> <dest> (T)

Purpose

To copy the contents of one disc onto another. <srce> is the source
drive from which sectors are read and <dest> is the destination drive
to which sectors are written. If (T) is given then the second
processor will be used.

A disc can be copied using a single drive, where <srce> and <dest>
are both the source and destination drives, but swapping the disc
will be necessary between reading and writing to the discs.

Before copying the disc a message is displayed to confirm that this
is really what you want. Press Y to copy the disc, or any other key
to exit the command.

Examples

*BACKUP 0 1
Go (Y/N) ? Y

Copies the disc in drive 0 onto the disc in drive 1.

*BACKUP 0 1 T
Go (Y/N) ? Y

Copies the disc in drive 0 onto the disc in drive 1, using the second
processor.

Note

Because this program uses free memory it is advisable to save your
program first. It is not possible to copy between discs of different
sizes, eg. 40 track disc onto an 80 track disc, or of different
formats, eg. DFS disc onto an ADFS disc. This command can only be
used in a disc filing system.

-8-

*BFIND <str>

Purpose

To search a BASIC program for every occurrence of the string <str>
and print the line number and string where it is found. The rest of
the BASIC line is not listed.

Examples

*BFIND HELLO

Searches for the string "HELLO".

*BFIND P%

Searches for the integer variable P%.

*BFIND JSR#######

Searches for a string 10 characters long starting with "JSR".

*BFIND &F4

Searches for the hex byte &F4, which is the token for the BASIC
keyword REM. Any BASIC keyword can be searched for if the token of
the keyword is known. These are listed on pages 483, 484 of the BBC
User Guide.

-9-

*BUILD <fsp>

Purpose

To create a text file called <fsp>, consisting of characters typed in
from the keyboard, for the purpose of being *EXEC'd later. A line
number is printed before each new line of text. Entry of characters
into the file can be terminated by pressing <ESCAPE> at the start of
a new line.

Example

*BUILD !BOOT
0001 MODE 3
0002 VDU19,0,4,0,0,0,0
0003 *AMENU $
0004 <ESCAPE>

Creates an EXEC file called !BOOT.

-10-

*CATALL

Purpose

To list the filenames in the current directory and the directories
which are a member of the current directory. The directory name is
printed first, followed by the filenames. Directories are shown with
a D after their name. The list is identified by one space for each
level of directory entered. This command is of most use in ADFS which
uses a hierarchical 'tree' structure of directories, that can be
nested to numerous levels.

Example

*CATALL
$
 !BOOT
 menu
 GAME D
 BOARD D
 board1
 board2
 board3
 ARCADE D
 arcade1
 arcade2
 arcade3
 LIBRARY D
 utility1
 utility2
 utility3

Lists the filenames in each directory starting from the current
directory, in this example $.

Note

In DFS this command will list the filenames in the current directory
only, since DFS does not allow directories to be nested, ie. a
directory cannot contain another directory.

-11-

*DCOMP <srce> <dest> (<n>)

Purpose

To compare the source disc in drive <srce> with the destination disc
in drive <dest> sector for sector, and print the sector address of
the sectors which are not the same. The command is terminated after
the first eight different sectors are found. If <n> is used, the
command will be terminated after the first <n> different sectors. If
<n> is zero all different sector addresses will be printed.

A single drive can be used to compare two disc, where <srce> and
<dest> are both the source and destination drives, but swapping the
discs will be necessary after reading each disc.

Examples

*DCOMP 0 1

Compares the discs in drive 0 and 1 and terminates after the first
eight different sectors.

*DCOMP 0 1 1

Compares the discs in drive 0 and 1 and terminates after the first
different sector.

Note

Comparing discs uses free memory, so it is advisable to save your
program first before using this command. It is not possible to
compare two discs of different sizes, eg. a 40 and 80 track disc, and
discs of different type, eg. a DFS and ADFS disc. This command can
only be used in a disc filing system.

-12-

*DEX (<d.adr>) (<spt>)

Purpose

To examine and edit disc sectors. <d.adr> is the sector to be edited,
by default 0. <spt> is the number of sectors per track, by default 10
for DFS and 16 for ADFS.

Each sector contains 256 bytes of which come or all can be displayed
at once depending upon the screen mode. Modes 0 and 3 will display
the whole sector. The format of the display is shown below. Moving
the cursor is done using the four cursor keys. Editing a byte is done
by overtyping the byte from the keyboard. The new byte will appear as
hex inside the round brackets and as an ASCII character above the
flashing cursor. To enter numbers as hex bytes, press the <COPY> key.
The round brackets will change to square brackets. Now only hex
numbers will be accepted, ie. 0-9 and A-F. Press <COPY> again to
enter characters as ASCII. Moving forward or back a track or sector
is done using the four <SHIFT> cursor keys. If the sector has been
altered a message is displayed for saving the sector back onto the
disc. Press Y to save the sector, or any other key not to save it.

Press <ESCAPE> to exit this command.

Format of *DEX in a 40 column screen mode.

 DRIVE:0 TRACK:00 SECTOR:00 / 000000

 00 (00)00 00 00 00 00 00 00
 08 21 42 4F 4F 54 20 20 24 !BOOT $
 10 00 00 00 00 00 00 00 00
 18 00 00 00 00 00 00 00 00
 20 00 00 00 00 00 00 00 00
 18 00 00 00 00 00 00 00 00
 30 00 00 00 00 00 00 00 00
 38 00 00 00 00 00 00 00 00
 etc.

Editing Keys

CURSOR keys - cursor movement
SHIFT left cursor - back one sector
SHIFT right cursor - forward one sector
SHIFT down cursor - forward one track
SHIFT up cursor - back one track
COPY - input type, hex or ASCII
CTRL P - print screen
ESCAPE - exit command

Examples

*DEX

To edit the first sector of the disc in the current drive.

*DEX :1.30

-13-

To edit sector &30 of the disc in drive 1.

*INFO !BOOT
$.!BOOT 000000 FFFFFF 000010 127

This shows that the file !BOOT starts on sector 127.

*DEX 127

To edit the first sector of !BOOT.

Note

A disc to be edited must be of the correct format for the current
filing system, eg. if ADFS is the current filing system then this
command can only edit ADFS discs, similarly if DFS is the current
filing system then this command can only edit DFS discs. The current
filing system can be identified with the *FSN command. Editing discs
is only possible in a disc filing system, and in a screen mode which
has 40 or 80 columns.

-14-

*DFIND <str> (<d.adr>)(<d.adr>)

Purpose

To search a disc for every occurrence of the string <str> and print
the sector, byte address and string where the string is found. The
second parameter <d.adr> determines which drive and sector the search
will start, by default 0 in the current drive, and the last parameter
<d.adr> is the last sector, where the search will end.

Examples

*DFIND !BOOT

Searches all sectors in the current drive for "!BOOT".

*DFIND "!BOOT $" 0 2

Searches sectors 0 and 1 in the current drive for "!BOOT $".

*DFIND #BOOT :1.0+2

Searches the first two sectors in drive 1 for a string five
characters long, ending in "BOOT".

*DFIND &21424F4F54 :1

Searches the disc in drive 1 for the sequence of bytes &21424F4F54.

*DFIND ########

Displays all sectors in the current drive as ASCII characters.

Note

This command can only be used in a disc filing system.

-15-

*DIRALL

Purpose

To list all the directory names in the current directory and the
directories which are a member of the current directory. The list is
indented by one space for each level of directory entered. This
command is of most use in ADFS which uses a hierarchical 'tree'
structure of directories, that can be nested to numerous levels.

Example

*DIRALL
$
 GAME D
 ARCADE D
 BOARD D
 LIBRARY D

Lists all the directory names starting from the current directory, in
this example $.

Note

In DFS this command will print the current directory name only, since
DFS does not allow directories to be nested, ie. a directory cannot
contain another directory.

-16-

*DUMP <fsp> ()

Purpose

To display the contents of file <fsp>. determines the format of
the display, by default 8, which displays the file as hex bytes and
ASCII characters in increments of 8 bytes (see page 5).

Example

*DUMP !BOOT

Displays !BOOT in hex and ASCII.

*DUMP MCODE 0

Displays MCODE in disassembler.

*DUMP LETTER 100

Displays LETTER in ASCII only.

*DUMP NUMBERS 200

Displays NUMBERS in hex only.

Note

Because DFS has a similar utility *DUMP, it might appear that this
command is not working properly. To be sure of using the *DUMP in
ADT, precede the command with the letter A, eg. *ADUMP.

-17-

*ENVELOPE (<n>) ...

Purpose

To list envelope definition <n>, by default envelope definitions 1 to
16. An explanation of the envelope parameters can be found on pages
182 and 245 of the BBC User Guide.

Examples

*ENVELOPE

Lists envelope definitions 1 to 16.

*ENVELOPE 1

Lists envelope definition 1.

*ENVELOPE 1 2 3

Lists envelope definitions 1, 2 and 3.

-18-

*FCOMP <fsp> <fsp> (<n>)

Purpose

To compare file <fsp> with file <fsp> byte for byte and print the
address and bytes for the two files in hex and ASCII where they
differ. The command is terminated after the first eight differences
are found. If <n> is used the command is terminated after the first
<n> differences. If <n> is zero, all differences will be printed.

Examples

*FCOMP LETTER LETTER2

Compares LETTER with LETTER2 and terminates after the first eight
different bytes.

*FCOMP LETTER LETTER2 1

Compares LETTER with LETTER2 and terminates after the first different
byte.

Note

A comparison of two files is only possible if they are the same
length.

-19-

*FCOPY <fsp> <fsp> (T)

Purpose

To create a copy of file <fsp> and give it a new name <fsp>. The file
names must be different. If (T) is given then the second processor
will be used. This is useful for copying large files.

Examples

*FCOPY LETTER LETTER2

Creates a copy of LETTER called LETTER2.

*FCOPY :0.LETTER :1.LETTER2

Creates a copy of LETTER in drive 0 called LETTER2 in drive 1.

-20-

*FORM 40/80 (<drive>)(M)(L)(C)...

Purpose

To initialise a new disc for reading and writing. The first parameter
is the number of tracks to be formatted onto the disc. A 40 track
drive will use 40 track discs, and an 80 track drive will use 80
track discs. <drive> is the drive number which contains the disc to
be formatted. (M) and (L) only apply to formatting ADFS discs - use M
to format a single sided 80 track disc, and L to format a double
sided 80 track disc. (C) only applies to formatting a DFS disc. It is
used to create a dual catalogue disc. The second and third parameters
(<drive>) and (M)(L)(C) can be repeated in the command to format more
than one disc in the same command. Before formatting the first disc a
message is displayed to confirm that this is really what you want.
Press Y to format the disc or any other key to exit the command.

Examples for DFS

*FORM80
Format which drive ? 0
Go (Y/N) ? Y

Formats an 80 track disc in drive 0.

*FORM40
Format which drive ? 0
Go (Y/N) ? Y

Formats a 40 track disc in drive 0.

*FORM80 0 C 2 C
Go (Y/N) ? Y

Formats both sides of an 80 track disc in drive 0 with dual
catalogues.

Examples for ADFS

*FORM80
Format which drive ? 0 (M) (L) ? M
Go (Y/N) ? Y

Formats a single sided 80 track disc in drive 0.

*FORM40 0
Go (Y/N) ? Y

Formats a single sided 40 track disc in drive 0. It is not possible
to format a double sided 40 track disc.

*FORM80 0 L 1 L
Go (Y/N) ? Y

Formats a double sided 80 track disc in drive 0 and 1.

Note

-21-

DFS and ADFS use discs formatted to a different specification. The
*FORM command will format a disc for use in the current disc filing
system. For example, it is not possible to format a DFS disc whilst
ADFS is the current filing system. Use the *FSN command to identify
the current filing system. Formatting an ADFS disc uses free memory,
so it is advisable to save your program first before using this
command in ADFS.

Formatting an ADFS disc can cause parts of the screen to be
overwritten in some screen modes. However, this will not affect the
formatting command.

-22-

*FREE (<drive>)

Purpose

To display the number of free and used files and disc space remaining
and used on the disc in drive <drive>, by default the current drive.
Free and used files are given in decimal. Disc space is given as
sectors is hex and bytes in decimal.

Examples

*FREE

Displays the free space on the current drive.

*FREE 2

Di

splays the free space on drive 2.

Note

This command only operates in DFS on a DFS disc. However, ADFS has a
similar command *FREE, which displays the amount of free space in the
current drive.

-23-

*FSN (<n>)

Purpose

To identify the current filing system by name. If <n> is used, the
filing system name which has the filing system number <n> will be
printed.

Examples

*FSN
Disc filing system

DFS is the current filing system.

*FSN 3
ROM filing system

Filing system number 3 is the ROM filing system.

-24-

*KEYL (<n>) ...

Purpose

To list function key definition <n>, by default definitions 0 to 15.
A definition includes the *KEY syntax and key number so it can easily
be edited using the cursor and copy keys. Function keys with no
definitions are not listed.

Examples

*KEYL

Lists key definitions 0 to 15.

*KEYL 5

Lists key definition 5.

*KEYL 0 1

Lists key definitions 0 and 1.

-25-

*LIST <fsp>

Purpose

To list the text file <fsp> with line numbers.

Example

*LIST !BOOT
0001 MODE 3
0002 VDU19,0,4,0,0,0,0
0003 *AMENU $

Lists the text file !BOOT.

-26-

*MAP (<drive>)

Purpose

To list a map of the free space on the disc in drive <drive>, by
default the current drive. The map is printed as a list of disc
addresses and lengths of free space in sectors, both in hex.

The free space map changes whenever a file is saved or deleted. This
causes spaces to form between files, fragmenting the disc space. To
eliminate the free spaces use the filing system command *COMPACT.

Examples

*MAP

Lists the free space map on the current drive.

*MAP 1

Lists the free space map on drive 1.

Note

This command only operates in DFS on a DFS disc. However, ADFS has a
similar command *MAP, which lists the free space map on the current
drive.

-27-

*MDUMP <start> <end> () (<rom>)

Purpose

To display the contents of memory starting from address <start> and
ending at address <end>. determines the format of the display, by
default 8, which displays memory as hex bytes and ASCII characters in
increments of 8 bytes (see page 5). <rom> determines which Rom is
used if memory is read from addresses &8000 to &BFFF in the I/O
processor.

Examples

*MDUMP 1900 1A00

Displays memory from &1900 to &1A00 in hex and ASCII.

*MDUMP 8000+4000 0 14

Disassembles memory in Rom 14 from &8000 to &C000.

*MDUMP FFFF8000+4000 0 14

Disassembles memory in Rom 14 from &8000 to &C000 in the I/O
processor. Same as previous example but with a second processor.

MODE 0
*MDUMP 0 FFFF 172

Displays memory in Mode 0 from 0 to &FFFF in ASCII.

MODE 0
*MDUMP 0 FFFF 18

Displays memory in Mode 0 from 0 to &FFFF in hex and ASCII.

-28-

*MENU (<dir>)

Purpose

To display the files in directory <dir>, by default the current
directory, on the screen so that one can be selected for execution.
The title of the directory is printed at the top of the screen and
the entry names are printed below. An entry pointer => can be moved
using the four cursor keys to point to one of the entries on the
screen. To execute a program move the pointer opposite the filename
and press <RETURN>. The program will be loaded into memory and RUN.
To load a program only, press L. To enter directory $, press $.

The program is RUN according to the type of program it is, ie. BASIC,
EXEC, or machine code using the *MRUN command. Alternatively, press E
to *EXEC a file, R to *RUN a file or C to CHAIN a BASIC program.

In ADFS a directory entry can be a directory name. A directory name
is shown with a D after it. To enter the directory, move the pointer
opposite the directory's name and press <RETURN>. To move to a
directory's parent, ie. one level back, press ^. To move to the
previous directory, press B. Using these keys it is possible to enter
all directories on a disc and consequently to find any program.

Press <ESCAPE> to exit this command.

Key Definitions

CURSOR keys - pointer movement
RETURN - RUN program
L - LOAD program
C - CHAIN BASIC program
R - *RUN program
E - *EXEC program
$ - enter directory $
ESCAPE - exit command

ADFS Key Definitions

^ - enter parent directory
& - enter Root directory, same as $
B - enter previous directory

Examples

*MENU

Displays files from the current directory.

*MENU $

Displays files from directory $.

Note

It is not possible to use this command in screen modes 2 and 5.

-29-

*MEX (<start>) () (<rom>)

Purpose

To examine and edit the contents of memory. <start> is the start
address from which memory is displayed, by default PAGE.
determines the format of the display, by default 8, which displays
memory as hex bytes and ASCII characters, in increments of 8 bytes
(see page 5). <rom> determines which Rom is used if memory is read
from addresses &8000 to &BFFF in the I/O processor.

The cursor points to the current memory byte which is displayed as a
hex byte surrounded by round brackets and an ASCII character above a
flashing cursor. Moving the cursor is done using the four cursor
keys. Editing is done by overtyping the current memory byte from the
keyboard. The display will be updated to reflect the change in
memory.

To enter numbers as hex bytes press <COPY>. The round brackets will
change to square brackets. Now only hex numbers will be accepted, ie.
0-9 and A-F. Press <COPY> again to enter characters in ASCII.

Moving forward or back a screen is done using the SHIFT cursor keys.
To move the current memory byte to the top left of the window press
CTRL ^ (CTRL . on an Electron). Whilst viewing memory from a Rom,
press CTRL R to view memory from the next Rom number. To examine
memory on the other side of the Tube, if a second processor is
connected, press T.

If memory is viewed in disassembler, it is possible to follow the
address of a JSR, JMP or branch instruction by pressing <RETURN>
whilst the memory pointer is over the instruction opcode.

Press <ESCAPE> to exit this command.

Editing Keys

CURSOR keys - cursor movement
SHIFT left cursor - move cursor to left margin
SHIFT right cursor - move cursor to right margin
SHIFT down cursor - move one page down
SHIFT up cursor - move one page up
COPY - swap cursor, hex/ASCII
TAB (CTRL I on Electron) - cycle display format
CTRL ^ (CTRL . on Electron) - home current memory byte
CTRL P - print screen
CTRL R - increment Rom number
CTRL T - examine other side of Tube
ESCAPE - exit command

Disassembler Only

RETURN - follow JMP, JSR or Branch
CTRL X - return from JSR

Examples

*MEX

-30-

To examine memory at PAGE, in hex and ASCII.

*MEX 8000 0 14

To disassemble memory from &8000 in Rom 14.

MODE 0
*MEX 8000 172 14

To examine memory in Mode 0 from &8000 in Rom 14 in ASCII.

MODE 3
*MEX 8000 18 14

To examine memory in Mode 3 from &8000 in Rom 14 in hex and ASCII.

-31-

*MFIND <str>(<start>)(<end>)(<rom>)

Purpose

To search screen memory for the string <str>, starting from address
<start>, by default 0, and ending at address <end>, by default &FFFF.
<rom> is the Rom number to read if the search includes memory from
&8000 to &BFFF, in the I/O processor. The address of the string in
hex and the string is printed for every occurrence of the string.

Examples

*MFIND BASIC

Searches memory for the string "BASIC".

*MFIND BASIC D000 DFFF

Searches memory from &D000 to &DFFF, for the string "BASIC".

*MFIND &4241534943

Searches all of memory for the bytes &4241534943.

*MFIND ################

Displays all of memory in ASCII, in increments of 16 bytes.

Note

Using this command in screen mode 7 can produce some surprising
results, when the search includes screen memory, from &7C00 to &7FFF
in the I/O processor. Every occurrence of the string is printed on
the screen, which in so doing produces another occurrence, rapidly
filling the screen with strings. To solve this, confine the search to
memory above or below screen memory, or change to another screen
mode.

-32-

*MLOAD <fsp> (<load>)

Purpose

To load file <fsp> into memory and move it to the address <load>. If
<load> is omitted from the command, the file's load address is used
instead.

This command is useful for loading a program from disc which is
designed to run at an address below PAGE.

Example

*MLOAD GAME

Loads GAME and then moves it to its load address.

*MLOAD GAME E00

Loads GAME and then moves it to &E00.

Note

If a program is moved to an address below OSHWM, normally PAGE, the
TAPE filing system is selected.

-33-

*MOVE <start> <end> <dest> (<rom>)

Purpose

To move a block of memory starting at address <start>, ending at
address <end>, and moved to address <dest>. <rom> is the Rom number
used if start is an address between &8000 and &BFFF, in the I/O
processor.

Examples

*MOVE 1900 1A00 1B00

Moves memory from &1900 to &1A00 to address &1B00.

*MOVE 8000+4000 2000 15

Moves contents of Rom 15 to address &2000.

*MOVE FFFF8000+4000 800 15

Moves contents of Rom 15 to address &800. If a second processor was
connected, memory would be copied from the I/O processor to the
second processor.

-34-

*MRUN <fsp> (<load>) (<exec>)

Purpose

To load file <fsp>, move it to the address <load>, and start
execution of the program at address <exec>. If <load> and/or <exec>
are omitted from the command the files load and/or execution
addresses, respectively, are used instead. This command is useful for
executing a BASIC or machine code program which is designed to run at
an address below PAGE.

This command makes a sensible guess about a program's language ie.
BASIC, EXEC or machine code and RUNS the program accordingly. It
reads the file's execution address to determine its language. The
list below shows which execution addresses can be used to identify a
program. A file's addresses can be changed with the *SETADR command.

Language Execution Address

BASIC - &8023
 " - &801F
 " - &B823
 " - &B82B
EXEC - &00000000
 " - &FFFFFFFF
machine code - any other address

Examples

*MRUN GAME

Runs GAME using the file's own load and execution addresses.

*MRUN GAME E00 E00

Runs GAME at &E00

Note

If a program is loaded below OSHWM, normally PAGE, the TAPE filing
system is selected.

-35-

*ROMS (<rom>) ...

Purpose

To catalogue sideways Rom <rom>, by default Roms 0 to 15. <rom> can
be the title of the Rom as an alternative to the Rom number. The
catalogue of a Rom shows its Rom socket number, the type of program
in the Rom, the title of the Rom and its version number, if it has
one. A Rom can be a language shown as (L), a service Rom (like ADT)
shown as (S), or both a language and a service Rom shown as (SL). A
m which has been unplugged will appear as (**). See *UNPLUG. Ro

Examples

*ROMS

Catalogues Roms 0 to 15.

*ROMS 15

Catalogues Rom socket 15.

*ROMS BASIC

Catalogues the Rom socket containing BASIC.

*ROMS 12 13 14 15

Catalogues Rom sockets 12, 13, 14 and 15.

-36-

*SECTORS <d.adr><d.adr><start> R/W

Purpose

To read or write sectors from or to a disc. The first parameter
specifies the drive and first sector to read or write. If a drive is
not specified the current drive is used. The second parameter
specifies the last sector to read or write. <start> is the memory
address to which the sectors are read or written. The last parameter,
by default R, determines whether sectors are used from disc into
memory, R or written onto disc from memory, W.

The second parameter <d.adr> can be given as the number of bytes in
hex to read or write if preceded by +. This makes it easy to read a
file into memory using a file's sector address and length.

Examples

*SECTORS 0 2 1900

Reads sectors 0 and 1 from the current drive to address &1900.

*SECTORS :1.0 2 1900

Reads sector 0 and 1 from drive 1 to address &1900.

*INFO !BOOT
$.!BOOT 000000 FFFFFF 000010 027

This shows the first sector of !BOOT is on sector &27.

*SECTORS 27+10 1900

Reads !BOOT at sector &27 or address &1900.

Note

This command can only be used in a disc filing system.

-37-

*SETADR <fsp> <load> (<exec>)

Purpose

To set the load address of file <fsp> to <load> and the execution
address to <exec>. If <exec> is omitted, the file's execution address
will remain unaltered. Use the filing system's *INFO command to
display a file's addresses.

Examples

*SETADR GAME 1900

Changes GAME's load address to &1900.

*SETADR GAME 1900 2300

Changes GAME's load address to &1900 and execution address to &2300.

*SETADR GAME 1900 8023

Changes GAME's load address to &1900 and execution address to &8023.
(The execution address &8023 is used by the *MRUN command to identify
a BASIC program.)

-38-

*SPT (<n>)

Purpose

To change the default number of sectors per track to <n>. The default
is 10 as used by the Acorn DFS. Some Acorn compatible DFS's can
operate in a double density mode which use up to 18 sectors per
track. This command can be used so that ADT commands like DEX, DFIND,
SECTORS will work on discs which have up to 18 sectors per track.

Examples

*SPT 18

Changes the number of sectors per track to 18.

*SPT

Changes the number of sectors per track to 10.

Note

This command can only be used in the Disc Filing System. Pressing
<BREAK> resets the number of sectors per track to 10. This command
will accept a decimal number between 10 and 31 inclusive. Any other
number will be treated as 10.

-39-

*SWAP <drive>

Purpose

To swap the two catalogues on a dual catalogue disc in the current
drive. See the *FORM command.

Examples

*SWAP

Swaps the catalogues on the disc in current drive.

*SWAP 1

Swaps the catalogues on the disc in drive 1.

Note

This command can only be used in the Disc Filing System on a dual
catalogue DFS disc, formatted by the FORM command. All DFS commands
should operate normally on a dual catalogue disc, with the exception
of *BACKUP. It is possible to backup a dual catalogue disc with the
*BACKUP command providing the right catalogue n the disc in the
current catalogue. The right catalogue is the one which has the most
free and used disc space as displayed by the *FREE command. One of
the two catalogues will have twice as much free and used disc space
as the other. Ensure this is the current catalogue before using the
*BACKUP command.

-40-

*TYPE <fsp>

Purpose

To list text file <fsp> without line numbers. See *LIST,

Example

*TYPE !BOOT
MODE 3
VDU 19,0,4,0,0,0,0
*AMEND $

Types the text file !BOOT.

-41-

*UNPLUG (<rom>) ...

Purpose

To 'unplug' sideways Rom <rom>. This has the effect of turning a Rom
off, without having to physically remove it from its socket. <rom>
can be the title of the Rom as an alternative to the Rom number.

If <rom> is omitted from the command, each Rom title is displayed
followed by :. Press Y to 'unplug' the Rom or any other key to leave
the Rom intact. If a Rom which has already been 'unplugged', is
displayed and the response to the prompt is N, the Rom will be
'plugged' back in.

Examples

*UNPLUG 14

To unplug the Rom in socket 14.

*UNPLUG DFS

To unplug DFS. The value of PAGE will not be effected until <BREAK>
or <CTRL><BREAK> is pressed.

Note

This command should be used with caution. Some Roms can respond
unpredictably to this command, and not produce the intended effect.
Pressing <BREAK> or <CTRL><BREAK> after unplugging a Rom may or may
not plug it back in. Type *HELP to see if the Rom has been plugged
back in. To recover any 'lost' Roms turn the machine off and then on,
or use *FX200,2 and then press <CTRL><BREAK>.

-42-

*VERIFY (<drive>)

Purpose

To verify all sectors of the disc in drive <drive> for legibility. If
<drive> is omitted from the command a message is displayed for a
drive to verify. Press the number of the drive to verify. <drive> can
be repeated in the command to verify more than one disc in the same
command. A track number is printed in hex as each track is verified.

If verifying a track fails on the first attempt a ? is printed after
the track number. This could mean temporary corruption of the disc,
caused by dust, lint or other foreign matter adhering to the surface
of the disc.

If verifying a track fails after six attempts the command is
terminated and a disc fault is printed. This could mean permanent
corruption of the disc, caused by physical damage to the surface of
the disc.

Examples

*VERIFY

Verifies the disc in drive 0.

*VERIFY 0 1

Verifies the discs in drive 0 and 1.

Note

This command will not overwrite a program in memory, and can only be
used in a disc filing system.

-43-

*XFER <fs.fsp> <fs.fsp> (T)

Purpose

To copy a file from one filing system to another. The first parameter
specifies the source filing system and filename. The second parameter
specifies the destination filing system and filename. The filing
system should be given as a name. eg. TAPE, DISC, ADFS, ETC. If (T)
is given then the second processor will be used. This is useful for
transferring large files.

Examples

*XFER TAPE DISC

To transfer all files from TAPE to DFS. Filenames will be
concatenated to seven characters.

*XFER TAPE.MUSIC DISC

To transfer MUSIC from TAPE to DFS. The destination filename is
MUSIC.

*XFER DISC.:1.$.MUSIC ADFS.:0.$.LIBRARY.SOUNDS

To transfer $.MUSIC in drive 1 to DFS to LIBRARY.SOUNDS in drive 0 in
ADFS.

*XFER DISC ADFS T

To transfer all files in the current directory in DFS to the current
directory in ADFS using the second processor.

Note

This command will transfer files between filing systems which support
the commands to read and write files. It is not possible to transfer
a file from DISC to ROM. Copying a large file from TAPE might cause
part of the file to overwrite the screen in some modes, and
consequently display a 'No room' error. This might be avoided by
selecting Mode 7 (Mode 6 on Electron) before transferring the file or
alternatively, using the (T) option is a second processor is
connected.

-44-

3 COMMAND SUMMARY

*BACKUP - copy one disc onto another

*BFIND - search a BASIC program for a string

*BUILD - create a text file

*CATALL - list filenames from the current directory

*DCOMP - compare two discs

*DEX - disc sector editor

*DFIND - search a disc for string

*DIRALL - list directories from the current directory

*DUMP - display the contents of a file

*ENVELOPE - list the envelope definitions

*FCOMP - compare two files

*FCOPY - create a copy of a file

*FORM - initialise a new disc for reading and writing

*FREE - display the amount of free space on a disc

*FSN - identify the current filing system

*KEYL - list the function key definitions

*LIST - list a text file with line numbers

*MAP - display a map of the free space on a disc

*MDUMP - display the contents of memory

*MENU - select a program from a menu for execution

*MEX - memory editor

*MFIND - search memory for a string

*MLOAD - load a program to a specific memory address

*MOVE - move a block of memory

*MRUN - run a program at a specific memory address

*ROMS - catalogue the sideways Rom sockets

*SECTORS - read or write sectors onto a disc

*SETADR - change a file's load and execution addresses

*SPT - change the default sectors per track

*SWAP - swap catalogues on a dual catalogue disc

*TYPE - list a text file without line numbers

*UNPLUG - turn off a Rom

*VERIFY - verify a disc for legibility

*XFER - transfer files between two filing systems

-45-

4 FITTING ADT

For the BBC Computer

After turning off the power, take off the top cover of the computer
by removing the four fixing screws located at the rear of the
computer and on the underside near the front. Remove the four screws
securing the keyboard to the computer and move carefully to one side
just enough to expose the four Rom sockets located on the right side
of the board. Insert ADT into one of the empty Rom sockets, with the
little notch on the chip having the back of the computer. Take care
not to bend any of the legs on the chip. Replace the keyboard and top
cover.

To check the Rom has been properly inserted into the socket turn on
the power and type *HELP ADT. A list of commands should appear on the
screen. If no list appears it is likely the Rom is not correctly in
position. Check that all the legs of the Rom are in place and the Rom
is facing the right way.

For the Electron

For some ADT disc utilities to operate correctly in screen modes
0,1,2 and 3 a small link, LK1 must be joined inside the Plus 3. This
may invalidate the warranty on the Plus 3. If necessary see your
dealer.

Checking LK1

The link in the Plus 3 may already be joined. This can be checked by
performing the following procedure. First, fit the Rom cartridge into
the Plus 1 as described below. With the computer turned on, select
screen mode 0, by typing MODE 0, and then try verifying a disc, by
inserting a formatted disc into the disc drive and typing *VERIFY. If
the disc verifies OK then the link has already been joined, and
nothing more need be done. If none of the tracks verify then the link
has not been joined. If the disc verifies OK you will have noticed a
'snow storm' effect on the screen while the disc drive is spinning.
This will occur when some ADT disc utilities are used in screen modes
0, 1, 2 and 3 and is confirmation that LK1 has been joined.

Joining LK1

After turning off the power, isolate the Plus 3 by disconnecting the
Plus 1 and Electron. Remove the top cover of the Plus 3, by
unscrewing the nine fixing screws on the bottom of the Plus 3.

Locate LK1 situated to the top left of the disc drive between IC16
and IC10. If the link is not joined make the connection with a small
piece of wire, ideally soldering it to the board. Replace the cover
to the Plus 3 and re-connect to the Electron and Plus 1. Fit the Rom
cartridge to the Plus 1 as described below. To check the link has
been properly joined, follow the procedure above, 'Checking LK1'.

Fitting the Rom cartridge

Turn off the power and insert the Rom cartridge into one of the slots
in the top of the Plus 1. Ensure the label on the cartridge faces the

-46-

keyboard. If in doubt refer to 'Using cartridges' on page 16 of the
Plus 1 User Guide. To check that the cartridge has been properly
inserted turn on the power to the computer and type *HELP ADT. A list
of commands should appear on the screen. If no list appears, it is
likely the Rom cartridge is not correctly positioned in the Plus 1.

ACP, 6 Ava House, Chobham, SURREY. Tel: 0276 76545

-47-

