

CUMANA

DISK DRIVE GUIDE

ELECTRON

The Cumana Disk Drive Guide for the
Acorn Electron

(for use with the Cumana Floppy Disk System)

Contents

 Introduction 1

Chapter 1 Data Storage 2

Chapter 2 40/80-Track Theory 3

Chapter 3 Diskette Handling Precautions 6

Chapter 4 Connecting Up 8

Chapter 5 Formatting 11

Chapter 6 Making a Back-up 13

Chapter 7 File Specifications 16

Chapter 8 Filing System Keywords and Utilities 18

Chapter 9 Date and Time 28

Chapter 10 Random Access Files 29

Chapter 11 Using the Filing System from Assembler 33

Chapter 12 UJtilities 41

Chapter 13 Transfer from Tape to Disk 49

Appendix A Technical Information 51

Appendix B Using Different Drives 56

Appendix C Fitting An Additional ROM 58

Appendix D Replacing the Battery 59

Appendix E DFS Error Messages 60

Index 61

Introduction

The Cumana Floppy Disk system for the Electron microcomputer consists of
interface electronics and software in a plug-in cartridge, dual or single disk
drive with mains power supply and utilities diskette.

The cartridge is intended to be plugged into the Acorn Electron Plus 1
Expansion unit.

The utilities diskette and the cartridge may also be supplied separately from the
disk drives. Contact Cumana for the list of suitable alternative disk drives.

If any of the items mentioned above are missing from the package supplied,
contact the supplier.

Please fill in the warranty registration card enclosed with the package.

1

Chapter 1

Data Storage

There are various devices in which data can be stored, and in general they are
referred to as memory. Memory size is normally measured in Kilobytes of
information, where one byte is eight bits.

The Acorn Electron has 32 Kilobytes of user memory known as RAM or
Random Access Memory, and as the name suggests, it can be used in a number
of different ways. The RAM normally holds the current program and its
variables. When a new program is needed it can be loaded into RAM that was
previously occupied by the old program, thus overwriting it.

RAM can only hold information whilst the power is switched on. When the
computer is switched off any program or data contained in its RAM will be
lost.

The Electron also contains a certain amount of ROM or Read Only Memory.
This memory contains the program or operating system that the Electron needs
to communicate and interface with the outside world. It is normally known as
firmware, and unlike RAM, it cannot be overwritten and it will not be lost
when the machine is turned off.

Other types of memory associated with computers are those known as media
storage peripherals: disk drives, magnetic tape drives, punched tape and card
machines, etc. These devices are normally used for long-term data retention.
These days, the most popular devices use magnetic media for data storage.

Data stored within a computer can be saved onto magnetic media devices
before the machine is turned off or before another program is run. Similarly,
data stored on a peripheral can be loaded into a computer for manipulation.

Floppy disk drives are a popular type of magnetic media peripheral. Floppy
disk drives use diskettes, also known as floppy disks, as the data storage media.
Floppy disk storage has the following advantages over cassette recorded
storage:

a) Greatly increased speed of loading or saving data
b) All programs contained on a diskette are catalogued automatically
c) A program stored on a diskette can be accessed by specifying its name,

without having to read the programs stored on the diskette before it
d) Some advanced facilities are possible only with floppy disk storage.

2

Chapter 2

40/80 - Track Theory

A floppy disk is a thin circular piece of magnetic media contained within a
flexible cardboard or plastic jacket. When inserted in a disk drive it rotates at
300 rpm. With a stationary read/write head this would produce a circular track
around the diskette. However, the head inside a disk drive is able to move in
steps, either towards the centre of the disk, or away from its centre, thereby
producing a number of tracks, typically 40 or 80. Since the total distance
covered by the head is the same for both 40- and 80-track systems, the head
inside the 80-track drive must step twice as many times to go the same distance
as the head inside the 40-track drive. This distance is measured in Tracks Per
Inch or TPI. A 40-track drive has a pitch of 48 TPI and an 80-track drive a
pitch of 96 TPI.

Fig 2.1 below shows the basic outline of a 5.25" floppy disk. Its features are
explained below.

Index Hole

This is a small hole in the jacket of the diskette. When optically aligned with a
second hole in the diskette itself it will produce a short pulse. This is referred to
as a soft sector index and is used by the computer to time a single revolution of
the disk.

Data Window

This is an elongated hole in the jacket which allows the read/write head to
make contact with the floppy disk. The window appears on both sides of the

3

disk as 40- or 80-track drives can have double heads for recording on both
sides of a disk.

Write Enable Notch

This small notch on one side of the floppy disk is used to enable the disk drive
to write on a diskette. When this notch is covered with a write protect tab, the
disk drive will be prevented from writing data to the diskette. Useful for
preventing accidental erasure of programs and data.

Hub Ring

This exposed portion of the floppy disk is mechanically clamped between the
disk drive's clutch and drive hub, which spins at 300 rpm. The clutch engages
as the disk drive door is closed.

Format and Density

Before a brand new diskette can be used by the computer it has to be formatted.
This is a process which segments each of the tracks into a number of sectors. A
sector is like a box which is capable of holding 512 bytes of information. The
size and number if sectors placed on a single track denotes the density under
which the system will operate. The Acorn DFS for the BBC micro will hold 10
sectors of 256 bytes per track. This is called single density recording. The
Cumana filing system for the Electron will hold 9 sectors of 512 bytes per
track. This is called double density recording. These terms should not be
confused with the number of tracks per disk or whether the disk is double or
single sided.

Capacity

By knowing the number of tracks on a disk and how many sectors per track
there are, the storage capacity of a disk can be calculated. For example, in the
Cumana filing system there are 9 sectors per track with 512 bytes per sector.
This is a storage space of 4,608 bytes per track. Thus
40-track single sided drive holds 184,320 bytes,
40-track double sided drive holds 368,640 bytes,
80-track single sided drive holds 368,640 bytes and
80-track double sided drive holds 737,280 bytes.

The disk drive capacity is usually quoted in rounded form:
180 Kbytes, 360 Kbytes and 720 Kbytes respectively.

4

Catalogue

The catalogue of a floppy disk is an area of diskette that contains all the
necessary information needed for the computer to locate, and thus load, any
data contained on the diskette. The Cumana filing system uses the first five
sectors (sectors zero to four) on the first track (track zero) for the catalogue.
Note: computers always count from zero. Sectors and tracks are therefore
numbered from zero upwards.

When a program is saved to the disk, the disk filing system automatically
makes a catalogue entry. The entry contains the length of the file, the file name
and the number of the sector which describes the position of the file.

5

Chapter 3

Diskette Handling Precautions

To prevent damage to diskettes follow instructions printed on the floppy disk
sleeve. In particular:

* Do not place diskettes within a magnetic field.

 Magnetic fields are generated by loudspeakers, transformers, electric

motors, television sets, monitors and many other electric devices.

 For instance, leaving a diskette on top of an Electron is inadvisable. The

Electron contains a power supply and a loudspeaker.

* Place diskettes in their protective sleeves when not in use.

 An unprotected diskette can pick up small particles of dust that can cause

damage to the read/write head.

* Keep diskettes in a rigid plastic diskette box or library case.

* Do not bend the diskettes.

* Keep diskettes at room temperature.

* Do not touch the magnetic recording surface.

* Do not place heavy objects on top of diskettes and only write lightly on the

label, with a felt-tipped pen.

An example of these instructions printed on the floppy disk sleeve is shown in
Fig 3.1 over page.

6

7

Chapter 4

Connecting Up

* Make sure that the Electron Plus 1 is installed and working as described in

the Electron Plus 1 User Guide supplied with the Plus 1.

* Make sure that the Electron and the disk drive are switched off and

unplugged from the mains.

* Position the disk drive next to the micro.

* Firmly insert the ribbon cable protruding from the rear of the disk drive

into the socket header in the cartridge. The cable should only go in one
way, with the blue or red coloured stripe on the cable closest to the edge of
the cartridge. Do not attempt to force the cable socket into the header. If
the socket refuses to go in, check for possible bent pins in the header or
incorrect orientation of the socket.

* Insert the cartridge into the Plus 1 preferably into the rear of the two

sockets provided, so that the first is available for additional cartridges.

Remember to ensure that the Electron is switched off whenever you insert
a cartridge into the Plus 1.

* Attach the lead with the moulded plug to the mains power outlet.

8

Power Up Sequence

It is advisable to power up the computer system in the following order:

1) Display monitor or TV set.
2) Disk drive. (Some Cumana disk drives can be heard settling after being

switched on.)
3) Electron microcomputer.

If the system is connected correctly the following message will appear on the
screen:

Acorn Electron #
Cumana Disk System - 22 Nov 1984
BASIC
>

Other names may also appear if you have specialist ROM software fitted.

If the date is incorrect, this can be adjusted as described in Chapter 9 (Page xx).

Place the utility diskette into the disk drive marked '0' or the disk drive selected
as drive 0 or master and close the door.

9

Insertion

Depending on the type of drive you have purchased either:-

a) Push the diskette fully home and turn the locking lever clockwise (5.25"
drive)

or
b) Push the diskette fully home until a click is heard or shown (3.5" drive).

Once the disk has been inserted, press the key marked 'BREAK' then type the
command *CAT and press 'RETURN'. Note the correct syntax and avoid
putting spaces in the command line. The disk drive should start for a short
period and the TV screen display the catalogue of the diskette.

The computer will access the diskette in drive 0 and catalogue its contents. In
the case of a dual drive system, *CAT 1 will catalogue the content of diskette
in drive 1.

10

Chapter 5

Formatting

Diskettes must be formatted before they are used for data storage in a disk
system.

The process of formatting erases any data that may have been stored on a
floppy disk.

Two formatting programs are supplied on the utilities diskette, FORMAT (for
Cumana DFS diskettes) and SFORMAT (for Acorn DFS diskettes).

To format a blank floppy disk that will be used in the Cumana disk system,
insert the utilities diskette and type:'

*RUN FORMAT and then press 'RETURN'

The utility disk will be accessed, following which the screen will go blank for a
short period and then display the CUMANA name and the program issue
number.

Replace the utilities diskette in drive 0 with the diskette to be formatted.

The following prompt will be displayed:-

Disk Title:

Type the title of the diskette followed by 'RETURN'. The title should reflect
the type of information that is going to be stored on the diskette. For example,
GAMES. The title can be up to ten characters long.

The following prompt will be displayed:-

Are you sure you want to format drive 0 with 80
tracks double sided?

or

Are you sure you want to format drive 0 with 40
tracks single sided?

Type 'Y' to format the diskette to the stated dimensions. Type 'N' to abort the
formatting process.

11

The full syntax of the command is:-

*RUN FORMAT <DRIVE><TRACKS> S/D

where <drive> specifies the drive containing the diskette to be formatted ('0' or
'1'), <tracks> should be 40 or 80 and S/D means single or double sided. Thus,
to format a double sided 40-track diskette in drive 1 type:-

*RUN FORMAT 1 40 D and press 'RETURN'

and to format a single sided 80 track diskette in drive 0 type:-

*RUN FORMAT 0 80 S and press 'RETURN'

The formatting process must not be interrupted. The following message is
displayed while the disk is being formatted:-

Formatting Track nn

'nn' will be updated as each track is formatted. When the formatting has
finished, each track is checked for correct format.

The following message is displayed while the diskette is being checked:-

Verifying Track nn

'nn' will be updated as each track is verified. If an error is detected in the
diskette format, a message Disc Error XX will be displayed and the verifying
stopped.

Only diskettes that verified with no errors should be used for data storage.

Note that the Cumana disk system uses double density recording on diskettes.
These diskettes are not interchangeable with diskettes formatted with single
density recording, such as the standard Acorn DFS. To convert disks between
the Acorn DFS format and Cumana DFS format use the utility programs
described in Chapter 12 (page !).

12

Chapter 6

Making a Back-up

Copies of all important information should be kept on different diskettes. The
'Grandfather, Father, Son' principle of copying information is now a standard
routine. Assuming the information is held on a master disk the following
sequence is used:-

Day 1, master is copied to Grandfather
Day 2, master is copied to Father
Day 3, master is copied to Son

This system allows a record of changing information to be kept and recovered
if accidentally erased from the master. On day 4, the cycle is repeated and the
master copied back to the Grandfather.

There are two different BASIC programs supplied on the utilities diskette,
called BACKUP and COPY, which allow diskettes to be copied from one to
another.

BACKUP

This program takes an exact copy of the floppy disk being copied. Each sector
is read individually and written to the second disk. This sort of copying is
called a physical backup.

To perform a physical backup ensure that the utilities disk is inserted in the
drive. Make sure that BASIC is selected on the Electron and type:-

CHAIN "BACKUP" and press 'RETURN'

The Cumana name will be displayed together with the version number of the
program. The following prompt will be displayed:-

Source Drive ?

Type the drive number for the source diskette. The following prompt will be
displayed:-

Destination Drive ?

13

Type the drive number for the destination diskette. The following message will
be displayed:-

Insert Source Disk in Drive 'n'
and Press Space to Continue

'n' is the source drive selected. Ensure that the source diskette is in the correct
drive and then press the 'SPACE' bar. The diskette will then be read and its size
printed on the screen, e.g.

80 Tracks Double Sided.

The following message will be displayed:-

Insert Destination Disk in Drive 'n'
and Press Space to Continue

'n' is the destination drive selected. Ensure that the destination diskette is in the
correct drive. If the source and destination drive are the same, remove the
source diskette from the drive before inserting the destination diskette. From
now on the 'Insert Source Disk' and 'Insert Destination Disk' prompts will only
appear if both source and destination drives are the same. When the backup has
finished, the following message will be printed:-

Backup Complete

COPY

The copy program allows the copying of selected files from one disk to
another. It may also help to speed up access to the files. A diskette that has
been used for some time may have the files spread over a large proportion of its
area. When the files are copied, they will all be placed at the beginning of the
diskette.

The diskette that contains the file to be copied is called the source diskette. The
diskette to which the file is to be copied is called the destination diskette.

Using the program:-

- Insert the utility diskette into drive 0 and type CHAIN "COPY" and press

'RETURN'.

- For a dual drive system, insert the destination diskette into drive 1. For a

single drive system, it is necessary to swap source and destination diskettes
in drive 0 when requested by the program, which will also request the drive
numbers for the source and destination diskettes.

14

- All files in a given directory or all files on the source diskette can be

copied.

- As each file is found, the information about it is displayed:-

 Files found:
 FILE1
 FILE2

 '1a' stands for load address, 'ea' stands for exec address and 'len' stands for

file length.

- To select the files to be copied, the program prompts with each file name in

turn and the files to be copied are selected by typing 'Y'. To skip a file, type
'N'.

- The program indicates its progress while copying by displaying:-

 Reading FILE1
 Reading FILE2
 Writing FILE1
 Writing FILE2

- Before writing each file, if a file with the same name is already on the

destination diskette a new name can be specified, so that the existing file is
not overwritten.

At this point, it is wise to take a copy of the utilities diskette for safe keeping.
The utility disk is not of a standard format and therefore the BACKUP program
cannot be used. The COPY program however, will work as normal.

15

Chapter 7

File Specifications

Programs or files are normally given names to identify them. This name or
<fsp> (filespec) can consist of numbers and letters to a maximum of ten. There
are, however, some characters reserved for special purposes. These are #:.*!
and they should not be included as part of the filespec. When a file is saved on
diskette it is given a name. This name is recorded in the catalogue together with
other information.

Example

SAVE ":0.$.TEST"

':0.' specifies drive 0
'$.' specifies the directory $
'TEST' is the name of the file

In practice the <fsp> can be shortened thus:-

SAVE "TEST"

This is because unspecified drive and directory are set by default to 0 and $
respectively.

Within a catalogue, files may be placed in various directories. This allows the
use of the same file name for different programs provided that each one is
placed in a different directory. In the above example the directory was '$' (the
default directory assumed by the computer at power on). To change the
directory the following command is used:-

*DIR <dir>

Any alphabetical character can be used but reserved characters #:.*! should
again be avoided. To change the default drive number, the command:-

*DRIVE <drive>

is used where <drive> is either '0' or '1'.

Wildcards

16

By using wildcards a group of files with similar filespecs can be processed to
achieve a common end. Two of the special characters '#' and '*' are used. The
symbol '#' is used to replace a single character and the symbol '*' is used to
replace a group of characters. A filespec which includes a wildcard is called an
alternative filespec or <afsp>.

For example:-

*INFO ABC2 command will give information about the file ABC2 only.

Whereas:

*INFO ABC# command will give information about all files beginning with
ABC and having one more character making up the filename e.g. ABC1,
ABC2, ABCD etc.

*INFO *.B* command will give information about all files in any directory,
beginning with 'B'. If information on all the files is required, *INFO *.* can be
used.

17

Chapter 8

Filing System Keywords and
Utilities

All Cumana disk system keywords begin with the character '*'.

*ACCESS <afsp> L

This command will lock or unlock a file. Locking a file will prevent it from
being overwritten. To lock a file use:-

*ACCESS <afsp> L

To unlock a file use:-

*ACCESS <afsp>

Wildcards can be used. To lock all files on a diskette, use the command:-

*ACCESS *.* L

*BOOT <string>

This command will set an option which will be executed on pressing 'BREAK'
and starting the Cumana filing system. The <string> can be quoted ("<string>")
or not quoted. To include quotes in a quoted string, double quotes must be
used.

Control characters in <string> must be preceded by '¦'. For example, 'CTRL'-M
would be represented as '¦M', which performs the same function as pressing
'RETURN'. To make the Electron print "HELLO" on start-up use:-

*BOOT "PRINT ""HELLO""¦¦M"

To turn the boot option off, type *BOOT and press 'RETURN'.

*BUILD <fsp>

18

This command will create a command file that can be directly executed by the
command *EXEC <fsp>. As each line is typed, it will be given a line number.
To save this file, press 'ESCAPE'. The command can also be used to create the
auto-boot function. Pressing 'SHIFT' and holding it down while pressing
'BREAK', will automatically execute the !BOOT file. See *OPT for more
details. Useful boot files are those that do repetitive tasks, e.g. a boot file that
CHAINs a menu program to assist easy program selection, or a boot file that
sets the function keys for specific tasks, such as word processing.

*CAT <drive>

This command produces on the screen the catalogue of files on a diskette. It
will also show the current directory, the diskette title, whether the file is locked
or unlocked, open or closed (see Chapter 10), the date and time each file was
last updated and the current library. The <drive> is optional; if included, it can
be '0' or '1'.

*CLOSE

This command will close any currently open files. This is similar to the
CLOSE#0 facility in BASIC. However, it can be used even if BASIC is not
selected.

*DELETE <afsp>

This command can be used to delete a single file or a number of files. If no
wildcards are used the specified file is removed. If wildcards are used, each file
matching the <afsp> is listed together with a prompt 'Y/N:'. Type 'Y' to delete
the file. Type 'N' to leave it on the diskette. Open or locked files cannot be
deleted. These are listed for information only.

For example, to delete file DATA, type:-

*DELETE DATA

To delete files DATA1, DATA2 and DATA3A, but leave DATA and
DATAFILE on the diskette, type:-

DELETE DATA

and answer the prompts as follows:-

DATA Y/N : N

19

DATA1 Y/N : Y
DATA2 Y/N : Y
DATA3A Y/N : Y
DATAFILE Y/N : N

*DIR:<drive>.<dir>

This command is used to set the current drive and the current directory. It can
also be used to set only the current directory e.g. *DIR B, where 'B' is the
directory to be selected.

If the directory is omitted from <fsp>, the current directory will be used.
Similarly if the drive number is omitted from the <fsp>, the current drive will
be used. For example, assuming the current directory is 'A' and the current
drive is '1',

LOAD "PROGNAME" is equivalent to LOAD ":1.A.PROGNAME"

After pressing 'CTRL' and 'BREAK' together on powering on, drive 0 will be
selected and the directory will default to '$'.

*DRIVE <drive>

This command is used to change the current drive. The drive number can be
either 0 or 1. After pressing 'CTRL' and 'BREAK' together or powering on,
drive 0 will be selected.

*DUMP <fsp>

This command will display a hexadecimal listing of the file with ASCII
equivalent characters on the right hand side of the screen.

*EXEC <fsp>

This command executes files created with *BUILD command.
The content of these files is treated as equivalent to the keyboard input. Thus,
to save repetitive typing EXEC file can be used to auto-run *BUILD files.

*FREE <drive>

20

This command returns the hexadecimal number of used directory entries and
the number of free sectors on the diskette.

*HELP <keys>

This command is used to gain information about the computer and the ROM
software that is fitted into it, including the Cumana filing system ROM. Typing
*HELP on its own will list the ROMs installed in the computer together with a
list of keywords to which they will respond. Typing *HELP DFS will display
the correct syntax for all the Cumana filing system commands. For example,
type:-

*HELP DFS and press 'RETURN'

The following will be displayed:-

Cumana Disk System Version 1.00
 ACCESS <afsp> (L)
 BOOT <string>
 DELETE <afsp>
 DIR (<directory>)
 DRIVE <drive>
 FREE <drive>
 INFO <afsp>
 LIB <directory>
 PBOOT
 RENAME <old fsp> <new fsp>
 TITLE <string>

Typing *HELP UTILS will produce a list of the general utilities available
within the Cumana disk system. For example, type:-

*HELP UTILS and press 'RETURN'

The following will be displayed:-

Cumana Filing System Version 1.00
 BUILD <fsp>
 CLOSE
 DISC
 DISK
 DATE
 DUMP <fsp>
 TYPE <fsp>

21

*INFO <afsp>

This command displays information about files on the diskette. The
information is displayed in the form:-

<fsp> (LO) <load address> <exec address> <length> <date>

Where <fsp> is the full name of the file. (LO) is an abbreviation for locked or
open. <load address> is the address to which the file would be loaded if a
*LOAD command was used, <exec address> is the address at which execution
would start if the file was *RUN, <length> is the length of the file and <date>
is the date on which the file was last updated. The <load address> <exec
address> and <length> are all in hexadecimal. For example:-

*INFO DATA

$.DATA L 00003000 00003000 001234 24 Nov 1984 10:20

*INFO *

$.DATA L 00003000 00003000 001234 24 Nov 1984 10:20
$.DATA1 L FFFF2000 FFFF1000 000100 24 Nov 1984 10:22
$.DATA2 FFFF2000 FFFF1000 000200 23 Nov 1984 23:10
$.DATAFILE 0 00003000 00002000 002000 23 Nov 1984 23:30
$.MYPROG FFFF0E00 FFFF8023 001034 19 Oct 1984 13:21

*LIB:<drive>.<dir>

This command is used to set the library drive and directory. Typing *LIB :1.C
will set the drive to '1' and the directory to 'C'. After pressing 'CTRL' and
'BREAK' together or on powering on, the library is reset, the drive becomes '0'
the directory '$'. These are the default values.

The correct use of the *LIB command is to redirect machine operating system
(MOS) calls to the selected library drive and directory. For example:-

Typing *TEST or *RUN TEST and then pressing 'RETURN' will make the
Electron search for the command 'TEST', initially in the MOS ROM. If it is not
found there, the following sequence of searches will automatically ensue:
sideways ROM, current drive and directory. If this command is not found in
any of the above, the current library drive and directory is searched, in this case
drive 1 and directory C. If the command is not found anywhere an error
message 'Bad Command' will result.

22

*LOAD <fsp> <address>

This command loads a file into memory. The starting address is specified by
<address>. If <address> is omitted the default load address is used from the
diskette. For example:-

*LOAD M.CODE 2000 will load the file M.CODE into memory starting at
address location &2000 (HEX).

*OPT N n

There are two OPT commands that concern the use of disk drives. They are:-

*OPT 1 n

Information about a file is not normally displayed when it is accessed. *OPT 1
1 causes the information about each file to be displayed every time a file is
accessed. *OPT 1 0 turns this option off.

*OPT 4 n

Where (n) is a value in the range 0 to 3. The OPT 4 n command is displayed in
the catalogue just above the library and to the right of the screen. The OPT 4 n
command specifies the auto-boot function of the computer.

*OPT 4 0 do nothing, the auto-boot function is off

*OPT 4 1 automatically *LOADs the file !BOOT

*OPT 4 2 automatically *RUNs the file !BOOT

*OPT 4 3 automatically *EXECs the file !BOOT

If the file !BOOT is not on the diskette the 'File not found' error message will
be produced.

When setting the option, the *OPT 4 n values are stored on the diskette. A
write protected diskette will generate the error 'Disk Read Only'.

*PBOOT

23

This command prints out the boot option set by the *BOOT command. If no
option is set, the reply will be:-

No option

*RENAME <old fsp> <new fsp>

This command is used to rename a file, but can also be used to transfer files
from one directory to another. For example:-

*RENAME A.MYCODE B.MYCODE

This has transferred the file MYCODE from the A. directory to the B.
directory.

*RUN <fsp> or *<fsp> or */<fsp>

This command is used to load the file <fsp> into the memory at the saved load
address and start the execution at the saved execution address (see *SAVE).

If the execution address of the file is -1 (&FFFFFFFF), the file will be
EXECuted as if *EXEC <fsp> had been typed.

The alternatives are provided in order that files with the same name as disk
system commands can be used. For example, if a file is called 'CAT', *CAT
would generate a catalogue of the disk. Type */ CAT or *RUN CAT instead.

*SAVE <fsp> <start> <end> <exec> <reload>

This command is used to save a portion of memory, typically machine code.
<start> is the 32 bit (4 bytes) HEX location of the start address, <end> is the 32
bit HEX location of the end address, and <reload> is the 32 bit relocation
address. Both the execution address and the relocation address can be omitted,
in which case they are assumed to be the same as the start address. For
example:-

*SAVE PROG 2000 2800 2100 1900

will save the portion of memory between &2000 and &2800. The address at
which execution begins is &2100 and if the file is called up again it will load at
address &1900, unless otherwise instructed.

The alternative syntax for *SAVE is:-

24

*SAVE <fsp> <start> + <length> <exec> <reload>

Where <length> is a 32 bit hexadecimal value which must be preceded by '+'.
Again the execution and relocation addresses are optional. For example:-

*SAVE PROG 2000+0800

will save a portion of memory from address &2000 to address &2800.

*SPOOL <fsp>

This command will open a file <fsp> and then any ASCII text sent to the
screen will be written into the open file. To close the file, type *SPOOL again.
This utility is particularly useful for creating text files from BASIC programs.
Once created they can be printed with the *TYPE command.

Another powerful feature of *SPOOL command is the ability to merge two
BASIC programs together. For example, to make two BASIC programs, called
"FIRST" and "SECOND", into one program, called "ONE", then "FIRST" must
have lower line numbers than "SECOND" (the BASIC RENUMBER command
should be used). The procedure is as follows:-

LOAD "FIRST"
*SPOOL LISTING (opens the file "LISTING")
LIST (lists the file "FIRST")
*SPOOL (closes the file "LISTING")

A spooled file, called "LISTING", has been created.

LOAD "SECOND" (loads the second file)
*EXEC LISTING (lists the file "LISTING" as fast keyboard entry)
 (The two programs are now merged)

SAVE "ONE" (saves the merged program on diskette)

Note: when closing the spooled file, *SPOOL must be typed without a file
name.

*TITLE <disk name>

This command is used to give a diskette a name. The name can be up to ten
characters long but must not contain any spaces. If spaces are required the
whole title must be placed in quotes. For example:-

25

*TITLE "GAMES DISK"

*TYPE <fsp>

This command will display a file as lines of ASCII text. The command is
useful for displaying files created using *BUILD or *SPOOL. However, it is
not intended for typing out programs created by the BASIC language. A
BASIC program is stored in compressed or tokenised form and when displayed
under *TYPE appears as rubbish. However, BASIC programs can be converted
into ASCII text using *SPOOL.

ABBREVIATIONS FOR CUMANA FILING SYSTEM COMMANDS

The filing system commands may be abbreviated as follows:-

*ACCESS *A.
*BOOT *BO.
*BUILD *BU.
*CAT *.
*CLOSE *C.
*DATE *DA.
*DELETE *DE.
*DIR *DIR
*DISC *D.
*DISK *D.
*DRIVE *DR.
*DUMP *DU.
*EXEC *E.
*FREE *FR.
*HELP *H.
*INFO *I.
*LIB *LIB
*LOAD *L.
*OPT *O.
*PBOOT *P.
*RENAME *RE.
*RUN *R.
*SAVE *S.
*SPOOL *SP.
*TITLE *TI.
*TYPE *TY.

For example:-

26

*RE. B.MYCODE C.MYCODE is equivalent to *RENAME B.MYCODE
C.MYCODE

27

Chapter 9

Date and Time

The date and time are kept by the disk cartridge even when the computer is
switched off and can be accessed by typing *DATE and pressing 'RETURN'.
This will give an answer in the form:-

26 Nov 1984 10:31

The program SET TIME is used to adjust the time and date (see Chapter 12).
This program can also be used to provide a continuous display of time and date
on the screen. Use *RUN SET_TIME and press 'RETURN'.

Advanced Programmer Interface

The program SET_TIME uses the OSWORD interface (see Electron User
Guide) to access the date and time information. The OSWORD calls use
A=&50 to read the time and A=&51 to set the time. The X and Y registers
point to a control block with the following format:-

Entry address: &FFF1
Indirection operators: &020C

Byte 00 Seconds (0-59)

Byte 01 Minutes (0-59)

Byte 02 Hours (0-23; 0 = 12 am, 23 = 11 pm)

Byte 03 Day of week (1-7; 1 = Sunday)

Byte 04 Date of Month (1-31)

Byte 05 Month (1-12; 1 = January)

Byte 06 Year (0-99)

28

Chapter 10

Random Access Files

A disk drive can position its read/write head at any point on the diskette, and
read or write just one piece of information.

When using text files the computer reserves an area of memory, called a buffer.
A buffer is 512 bytes in length, which is the same size as one section on a
floppy disk. When writing to diskette, the buffer is filled by the user program.
Then it is written out to the diskette, freeing the buffer for more information.
When a file is read, the buffer is filled with one sector's worth of information.
As it is emptied by the user's program, so it is filled again from diskette until
the end of a file is reached.

There are certain BASIC keywords that aid manipulation of text files. They
are:-

BGET# (gets one byte from the buffer)
BPUT# (puts one byte into the buffer)
EOF# (used for detecting the end of file)
EXT# (indicates the length of file)
INPUT# (inputs a block of data from the buffer)
OPENIN# (opens a file for data input only)
OPENUP# (opens a file for data update - read or write)
OPENOUT# (creates a file and opens it for data output)
PRINT# (outputs a block of data to the buffer)
PTR# (points to the current file position)

See the Electron User Guide for detailed explanation of the keywords.

Example Program

To store a list of names on a diskette type:-

 10 A = OPENOUT "MYFILE"
 20 PRINT#A, "EUGENE"
 30 PRINT#A, "JOHN"
 40 PRINT#A, "SHIRLEY"
 50 PRINT#A, "STEPHEN"
 60 CLOSE#A

29

The keyword OPENOUT in this case, opens a file called "MYFILE". The "A"
is the channel variable allocated to the file. A maximum of eight files can be
open at any one time.

The PRINT#A outputs the name string to channel A. The CLOSE#A stores the
incomplete buffer onto the disk and in so doing closes "MYFILE".

If the file "MYFILE" already exists on the diskette it will be deleted and the
file name "MYFILE" re-entered in the diskette catalogue under the currently
selected directory.

Using the BASIC function PRINT# causes the bytes of the string to be written
in reverse order preceded by two bytes. The first byte is the type and the second
is the length of the string. The three possible types in BASIC are:-

Integer numbers - &40
Real numbers - &FF
Strings - &00

The result of PRINT#A, "EUGENE" would be:-

Byte 0 &00 (type for a string)
Byte 1 &06 (six letters in "EUGENE")
Byte 2 &45 (= "E" in ASCII)
Byte 3 &4E (= "N" in ASCII)
Byte 4 &45 (= "E" in ASCII)
Byte 5 &47 (= "G" in ASCII)
Byte 6 &55 (= "U" in ASCII)
Byte 7 &45 (= "E" in ASCII)

Random access files have a pointer which points to the current position in the
file. After the above print statement, the pointer will be eight. The pointer
increments every time a byte is put into the file and can be interrogated using
the BASIC PRINT function. At this stage, PRINT PTR# A would result in "8"
being printed.

To read out all the names in the file use function OPENIN. Use the following:-

 10 A = OPENIN "MYFILE"
 20 INPUT#A, A$
 30 PRINT A$
 40 INPUT#A, A$
 50 PRINT A$
 60 INPUT#A, A$
 70 PRINT A$
 80 INPUT#A, A$

30

 90 PRINT A$
100 CLOSE #A

Line 10 opens the file "MYFILE" for input and places the channel number in
"A". Line 20 then reads the first name and line 30 prints it out. Line 40 reads in
the text name and line 50 prints it out. This continues until line 100 is reached.
This closes the file.

The value of the pointer can be written or read. Thus, the first name can be
omitted by replacing lines 20 and 30 with PTR# A=8. The pointer was set to 8,
because the first name contains 6 letters and two bytes are occupied by type
and length.

If the number of names in this file is unknown, then a loop is required. This
loop continuously reads in a name and then prints it out. To find out when the
end of the file is reached, the current pointer is compared with the length of the
file:-

 10 A = OPENIN "MYFILE"
 20 REPEAT
 30 INPUT #A, A$
 40 PRINT A$
 50 UNTIL PTR#A = EXT #A
 60 CLOSE #A

Alternatively, line 50 can be replaced with UNTIL EOF #A.

When a file is opened for input, the data within cannot be changed. To change
the data, the file must be opened for update with OPENUP. To change the first
name in the file to "RONALD" the following program is needed:-

 10 A = OPENUP "MYFILE"
 20 PRINT #A, "RONALD"
 30 CLOSE #A

Note that the new name has to be the same length as the old one. This is to
ensure that the format of the file is not changed and following INPUT#
statements will execute correctly.

The bytes of a file can be read and written individually using BGET# and
BPUT#. If the above file is again opened for update with the channel number in
A, a "BGET #A" will return &06 (the length of the string). If the next action is
"PTR #A=7" followed by "BPUT #A, ASC"D"" the "R" in "RONALD" will be
replaced by a "D", created the name "DONALD".

31

Note: The following commands open files: *EXEC, *SPOOL, *TYPE,
*BUILD and *DUMP. These are counted as part of the maximum of eight open
files allowed. Any file which is open will have an 'O' after its name in the
catalogue.

32

Chapter 11

Using the Filing System from
Assembler

This chapter assumes familiarity with the assembly language for the Electron
micro, as described in the Electron User Guide.

All facilities described in the previous chapters are also available from
assembler. Additionally, some other facilities are only available from
assembler. Both types are described in this chapter.

An area of memory is prepared as a control block which contains the
information relevant to the command. The A, X and Y registers may also be
relevant. Functions are performed by preparing the control block and the
registers and then calling a particular address. All functions are indicated via a
vector which can be redirected to a user supplied routine if a different function
is required. The following list contains all routines, their entry address,
indirection address and their function.

routine entry vector indirection function (BASIC equivalent)

OSFIND &FFCE FINDV &021C Open or close a file (OPENIN,

OPENOUT, OPENUP)
OSARGS &FFDA ARGV &0214 Read or write information

about an open file (PTR#,
EXT#).

OSFILE &FFDD FILEV &0212 Load or save a file (LOAD,
SAVE).

OSBGET &FFD7 BGETV &0216 Read a byte from an open file
(BGET#)

OSBPUT &FFD4 BPUTV &0218 Write a byte to an open file
(BPUT#)

OSGBPB &FFF1 GBPBV &021A Read or write a number of
bytes from/to an open file.

X and Y registers are used to point to an area of memory in most cases (X
contains the low byte and Y the high byte of an address). For example, if the
address of the area of memory is Hex &1234 then X must be &34 and Y must
be &12.

OSFIND

33

Entry Address: &FFCE
Indirection address: &021C

This routine opens a file for input, output or update or will close a specific file
or all files.

If A is non-zero, X,Y must point to the name of a file which is terminated with
a carriage return (Hex &0D).

A=&40 the named file will be opened for input.
A=&80 the named file will be opened for output.
A=&C0 the named file will be opened for update.

On exit, if A=0, this means that the named file was not found. If A is non-zero,
the named file is opened and the channel number is returned in A.

If A=0 on entry, then the action depends on Y. If Y=0, then all open files will
be closed (equivalent to BASIC's CLOSE#0). If Y is non-zero, it must contain
the channel number of an open file which will then be closed.

OSARGS

Entry address: &FFDA
Indirection address: &0212

This routine reads or writes the attributes (length and pointer) of an open file. It
can also be used to read various filing system parameters.

If Y is non-zero, then it must contain an open file's channel number. A
determines the effect of the routine. X contains the low byte of the control
block address. The high byte of the address is assumed to be zero (i.e. the
control block is in zero page).

A=0 means read the file's sequential pointer and place its value in zero

page.

A=1 means write the file's sequential pointer from the value supplied in

zero page.

A=2 means return the file's length in zero page.

A=&FF this is used to 'ensure' that a file is up to date. As explained in

Chapter 10, an open file may have a partially updated block in

34

memory. This call is used to make sure that such a block is written
to disk.

If Y is zero, again the function is determined by A.

A=0 means return the type of the filing system in A. Current types of

filing system on the Electron are:-

 0 No file system
 1 1200 baud cassette file system
 2 300 baud cassette file system
 3 ROM pack file system
 4 Cumana disk file system
 5 Econet file system

A=1 means return the address of the rest of the command line. This is

used to obtain the address of any parameters that may have been
passed when a file is *RUN. The address of anything else that
might have been typed in is returned. This will point to a carriage
return (Hex &0D) if nothing else was typed.

A=&FF is used to 'ensure' all files are up to date on disk. This is similar to

A=&FF, Y=channel number above, but ensures all open files are
up to date.

X and Y are preserved, but all other registers may be altered.

OSFILE

Entry address: &FFDD
Indirection address: &0212

This routine is used for loading or saving a file, or for updating file attributes.
On entry, X,Y should point to a control block in the following format:-

Byte 00 Address of the file name terminated by &0D.
 01 Least significant byte first.

Byte 02 Load address of file. Least significant byte first.
 03
 04
 05

Byte 06 Execution address of file. Least significant byte first.
 07

35

 08
 09

Byte 10 Start address of data for write operations.
 11 Length of file for read operations.
 12 Least significant byte first.
 13

Byte 14 End address of data, i.e. the address of the byte after the
 15 last byte to be written or file attributes.
 16 Least significant byte first.
 17

A determines the type of operation to be performed:-

A=0 save a section of memory as the named file. The catalogue

information is also written. This is equivalent to *SAVE.

A=1 writes a file's load address, execute address and attributes (locked

or unlocked and the creation date).

A=2 write the load address of the named file.

A=3 write the execution address of the named file.

A=4 write the attributes of a file.

A=5 read file load address, execution address, length and the attributes.

A=6 delete the named file. This is equivalent to *DELETE

A=&FF load the named file. The file is loaded into the position determined

by the first byte of the execution address supplied in the control
block (byte 6). If this byte is zero, the file will be loaded at the load
address supplied in the control block. If the byte was non-zero, the
file's own load address is used.

The attributes consist of the date the file was last updated and the access to the
object:-

Byte 14 bits 7 to 3: year (relative to 1983)
 bits 2 to 0 and
Byte 15 bit 7: month (1-12, 1 = January)
 bits 6 to 2: date (1-31)
 bits 1 to 0 and
Byte 16 bits 7 to 5: hour (0-23, 0 = 12 a.m., 23 = 11 p.m.)

36

 bits 4 to 0 and
Byte 17 bit 7:minutes (0-59)
 bits 6 to 1 are user definable.
 bit 0 is access (0=unlocked, 1=locked)

For example, if the attributes are as follows:- byte 14 = &0D, byte 15 = &E1,
byte 16 = &4B and byte 17 = &81, (in binary byte 14 = 00001101, byte 15 =
00001110, byte 16 = 000011111 and byte 17 = 10000001) then:

Year = 00001 = 1 = 1984
Month = 1011 = 11 = November
Date = 11000 = 24
Hour = 01010 = 10 am
Minutes = 010111 = 23
Access = 1 = Locked

The X and Y registers are preserved.

On exit, A=1 if the file was found and A=& if the file was not found.

OSBGET

Entry address: &FFD7
Indirection address: &0216

This routine reads a single byte from the current pointer position of the file (the
file's channel number is in Y). The byte is returned in A. If the end of the file
has been reached, the carry flag is set and the value &FE is returned. The carry
is clear if the transfer was successful. X and Y registers are preserved.

OSBPUT

Entry address: &FFD4
Indirection address: &0218

This routine writes a single byte at the current pointer position of the file (the
file's channel number is in Y). The byte written is supplied in A. X and Y
registers are preserved.

OSGBPB

Entry address: &FFD1
Indirection address: &021A

37

This routine reads or writes a multiple number of bytes from or to a file. The
function of the routine depends on A. It can also be used to read information
about the current catalogue. On entry X, Y must point to a control block
containing the following information:

Byte 00 Channel number

Byte 01 Pointer to the data.
 02
 03
 04

Byte 05 Number of bytes to read from or
 06 write to a diskette.
 07 Least significant byte first.
 08

Byte 09 PTR# value. Should be set before
 10 the transfer (if used).
 11 Least significant byte first.
 12

A determines the function of the routine:-

A=1 Set PTR# pointer to the value supplied (bytes 9 to 12). Write the

specified number of bytes to the file from the given address.

A=2 Write the specified number of bytes to the file from the given

address. Ignore PTR# value supplied (bytes 9 to 12).

A=3 Set PTR# pointer to the value supplied.
 Read the specified number of bytes from the file to the given

address.

A=4 Read the specified number of bytes from the file to the given

address. Ignore PTR# value supplied.

If the value of A is greater than four, the routine returns information on the
current catalogue. The control block is identical to that above, but only the
address field is used.

A=5 The title of the currently selected drive and the current boot option

are returned to the address supplied in the control block.
 The data returned is in the format:-
 single byte giving the length of the title (i.e. 10)

38

 the title in ASCII characters
 single byte boot option
 0 = No option
 1 = *LOAD the !BOOT file
 2 = *RUN the !BOOT file
 3 = *EXEC the !BOOT file

A=6 Read the currently selected directory and drive number. The data

returned is in the following format:-
 single byte giving the size of the drive number (i.e. 1)
 the drive number in ASCII
 single byte giving size of the directory name (i.e. 1)
 the currently selected directory name.

A=7 Read the currently selected library directory and the library drive

number. They are returned in the same format as A=6 above.

Values of A greater than seven are used to return the file names in the
catalogue. The format of the control block is altered:-

Byte 00 Sequence number of the catalogue

Byte 01 Pointer to memory area for transferring the file names to.
 02
 03
 04

Byte 05 Number of file names to be read.
 06
 07
 08

Byte 09 Number of file names to be skipped before the file names
 10 are transferred.
 11
 12

A can have the following values:-

A=8 This reads file names from the currently selected directory.
 The file names are returned in the form:-
 length of file name1
 file name1
 length of file name2
 file name2
 etc.

39

A=9 This reads file names from the beginning of the catalogue

regardless of selected directory. File names are held in alphabetical
order. The names are returned in the following format:-

 length of directory + length of file name1
 directory of file name1
 file name1
 length of directory + length of file name2
 directory of file name2
 file name2
 etc.

After any of these calls, the address is updated to point to the end of the data
transferred. The number field is updated to show the number of file names
remaining to be transferred (normally zero unless the end of the file or
catalogue has been reached). The pointer value or file number to be skipped is
set so that it points to the next byte or file name. If the end of the catalogue or
file is reached before the call is completed the carry flag is set. A, X and Y are
preserved.

40

Chapter 12

Utilities

MENU

The menu allows a rapid and easy selection of the utility programs on the
utility disc.

Using the program:-

- Insert the utility disc and press and release the BREAK key while holding

down the SHIFT key. Do not release the SHIFT key before the BREAK
key has been released.

- Each utility program name is shown on a separate line, preceded by the

letter to be typed to select it and followed by a summary of the program's
use. Hit the key corresponding to the program you wish to run.

- Some of the programs need parameters specified before running. For

example, the FORMAT utility needs to know the drive number of the disc
to be formatted. If any parameters are required, each will be requested by
the MENU program in turn, followed by the possible options in brackets.
Type the first letter of the option required, or simply press RETURN for
the default (the default is always the first option shown in brackets).

- Finally the command that could have been typed to run the utility directly

is displayed, and the program is loaded and run automatically.

The following utilities are supplied:-

BACKUP
COPY
D_TO_S
DISK_EDIT
FORMAT
SET_TIME
SFORMAT
S_TO_D
SVERIFY
VERIFY
A_TO_C

BACKUP and COPY programs are described in Chapter 6.

41

The FORMAT program is described in Chapter 5.

D_TO_S

This program copies file from double density Cumana DFS system, onto a
single density Acorn DFS diskette that can be used on the BBC
microcomputer.

Using the program:-

- Insert the utility diskette into drive 0 and type CHAIN "D_TO_S" then

press 'RETURN'.

- The program requests the number of the destination drive: reply with '0' if

the files are to be copied onto the top surface of the destination diskette or
'2' if they are to be copied on the bottom surface.

- For a dual drive system, insert the double density source diskette into

drive 1. For a single drive system, it is necessary to swap source and
destination diskette in drive 0 when requested by the program, which will
also request the drive number of the source diskette.

- All files in a given directory or all files on source diskette can be copied.

- As each file is found the information about it is displayed:-

 Files found:

 FILE1 laE00 ea8023 len212
 FILE2 la1200 ea1200 len300

- If there is not enough space left on the diskette or not enough space in the

diskette catalogue to hold all the files to be copied, the program will ask
for a selection of files to be copied.

- The program indicates its progress while copying by displaying:-

 Reading FILE1
 Reading FILE2
 Writing FILE1
 Writing FILE2

- Before writing each file, if a file with the same name is already on the

destination diskette a new name can be specified, so that the existing file
is not overwritten.

42

If a file name on the source diskette is more than 7 characters long, it must be
shortened.

DISK_EDIT

This program reads and writes diskettes directly. It can be extremely useful, but
should be used with care and is intended for advanced users. To experiment
with this program, format a diskette and save some test files. Never
experiment with the utilities or other valuable diskettes in the drive.

Using the program:-

- Insert the utilities diskette and type CHAIN "DISK_EDIT" and then press

'RETURN'.

- Remove the utilities diskette and insert the diskette to be read or altered.

- The program operates in Cumana format double density double sided

mode on the current default drive. To change drive number and/or drive
parameters use the procedure described in Changing Drive Option below.

- To exit the program press 'BREAK'.

- Press 'E' to edit a sector of the diskette. Enter the number of the sector to

be edited. Cumana format diskettes have 512 byte sectors and 9 sectors
per track. Sector 9, for example, is therefore the first sector of the second
track.

- Each of the lower 256 bytes of the 512 byte sector is displayed as ASCII

equivalents preceded by a space. If there is no ASCII equivalent, the byte
is displayed as two hexadecimal digits.

- To obtain a pure hexadecimal display, press 'FUNC' and 'H' together.

- To alter a byte, overtype the byte in the appropriate place. Each byte

occupies two positions. If the cursor starts in the left-most position, the
program expects two hex digits. If the cursor starts in the right-most
position, the program expects a single ASCII character to be entered.

- To write out the altered sector to diskette, press 'FUNC' and 'W' together.

- To move to the upper part of the same 512 byte sector or to the next

sector, press 'FUNC' and 'N' together.

43

- To move to the lower part of the same sector or to the previous sector
press 'FUNC' and 'P' together.

- Press 'ESCAPE' to finish editing.

Changing Drive Options

- Type 'D' to change drive parameters.

- Diskettes formatted in different ways can be read by selecting appropriate

drive parameters.

 The program prompts with:-

 Double density (No = single density Acorn DFS format)
 512 byte sectors (No = 256 byte sectors, 16 sectors/track)
 Cylinder access (No = surface access)
 Drive number

- Cylinder access is only possible with double sided drives. With cylinder

access and 512 byte sectors, sectors 0-8 are read from track 0 of the top
surface of the disc, sectors 9-17 are read from track 0 of the bottom
surface of the disc. sectors 18-26 are on track 1 of the top surface etc.

- If single density is selected, 256 byte sectors with surface access will be

assumed.

- The drive number permitted is 0 or 1 for cylinder access, and 0 to 3 for

surface access. For surface access, drives 2 and 3 select the lower surfaces
of the drives which have top surfaces 0 and 1 respectively.

- 40-track drives may be used. However, it is possible in this case to enter

sector numbers which are not on the diskette, resulting in disk errors
being displayed and possible damage to the drive.

SET_TIME

This program sets the date and time.

Using the program:-

- Insert the utility diskette and type *SET_TIME and press 'RETURN'.

44

- The date and time will be read from the cartridge and displayed. If any
part of the date read is obviously incorrect, question marks will be
displayed. The reason for this error is usually reduced power in the
battery. The battery will recharge during use.

- The time will be updated continuously until any key is pressed. Thus, this

program may be used to show a continuous time and date display on the
computer.

 To change the date or time, move the flashing cursor under the digit to be

altered by using cursor left and right keys.

- Make the new setting by overtyping with the correct value. The program

will ignore obviously incorrect entries.

- The display will not always alter by just one digit for every keystroke.

The program may 'guess' to save typing and ensure that entries are not
only part-made. For example, the month may be Jan and you enter 'S' for
September. The month is automatically updated to Sep.

- The cursor moves to the next position that may be altered. For example,

the month is May and it is to be changed to Jul. Enter J and the month
changes to Jan with the cursor under the 'a', enter U and the month is Jun
with the cursor under the 'n', finally enter L and the month changes to Jul
with the cursor under the next alterable year digit.

- Enter year digits of 83 or above for 20th century dates, and below 83 for

21st century dates.

- The new date and time will only be saved following 'RETURN'. If

incorrect date for the month is entered e.g. 31 Sep, the computer will
beep, when 'RETURN' is pressed. Press ESCAPE to exit the program
without writing the new date and time.

SFORMAT

This is the single density formatter. It allows diskettes to be formatted as Acorn
DFS diskettes. This utility together with the D_TO_S utility allows files to be
copied onto Acorn DFS diskettes and therefore files to be transferred from
Electron to BBC micro. The single density formatter works in the same way as
the double density formatter except that it produces Acorn DFS diskettes. For
example, to format an 80-track disk on drive 2, type:-

*RUN SFORMAT 2 80 and press 'RETURN'

45

or to format a 40-track disk on drive 1 type:-

*RUN SFORMAT 1 40 and press 'RETURN'

Type in a diskette title (up to 13 characters). The following prompt appears:-

Are you sure you want to format drive 1 with 40 tracks?

Note: the process of formatting destroys any data previously recorded on
the diskette.

Type 'Y' to format (type 'N' to exit the program). The diskette is then formatted.
During this process the track number being formatted is displayed. All sectors
are then checked to ensure they were correctly formatted. The diskette is now
suitable for use in an Acorn DFS system. Cumana DFS files may be copied
onto Acorn DFS diskettes using the D_TO_S utility.

S_TO_D

This program copies the files from single density Acorn DFS diskettes onto
double density Cumana DFS diskettes.

Using the program:-

- Insert the utility diskette and type CHAIN "S_TO_D" and press

'RETURN'

- When the program is running, remove the utility diskette and insert the

single density source diskette into drive 0.

- The program requires the drive number of the source diskette: type '0' if

the files are on the top surface of the diskette or '2' if they are on the
bottom surface.

- For a dual drive system, insert the double density destination diskette into

drive 1. For a single drive system, it is necessary to swap source and
destination diskettes in drive 0 when requested by the program, which
will also request the drive number of the destination diskette.

- The catalogue is read from the source diskette and as each file is found

the information about it is displayed:-

 Files found:

 FILE1 laE00 ea8023 len212

46

 FILE2 la1200 ea1200 len300

- The program prompts with 'Copy all files? (Y/N)'. Type 'Y' if all files are

to be copied. Type 'N' for selective copying. Then the program will
prompt with each file name in turn and only the files to which 'Y' is typed
will be copied.

- The program indicates its progress while copying by displaying:-

 Reading FILE1
 Reading FILE2
 Writing FILE1
 Writing FILE2

SVERIFY

This utility verifies all sectors on Acorn DFS diskettes (single density). To
check a diskette for accumulated errors, type:-

*RUN SVERIFY and press 'RETURN'

The program will attempt to read in every sector from the diskette in drive 0.
Errors and their track position are reported. To verify drive 3, type:-

*RUN SVERIFY 3 and press 'RETURN'

VERIFY

This utility verifies all sectors on Cumana DFS diskettes (double density). The
program operation is identical to operation of SVERIFY.

A_TO_C

This program copies files from an Acorn Electron ADFS format diskette onto a
double density Cumana format diskette.

Specifying the source directory:-

- The program is very similar as the S_TO_D utility, with the exception

that the files from only one specified directory are copied. Therefore there
is an additional first stage to determine the ADFS directory holding the
files to be copied. The program scans the root directory, and prompts for
each further directory found there. If you respond that a directory is in the

47

pathname of the files, this new directory is scanned as for the root. This
process is continued until the point where there are no further directories
in the path specified, and at that point all the filenames found in the final
directory are listed.

- The destination directory will be the directory selected before the

program was started.

- The program will now continue as for S_TO_D.

48

Chapter 13

Transfer from Tape to Disk

The Cumana Disk System does not use Electron user RAM. PAGE remains at
Hex &0E00 and therefore all programs written for the TAPE Filing System
should run on the Cumana Disk System. Transferring a file from TAPE to
DISK is straightforward:-

For a BASIC program, type:-

*TAPE and then press 'RETURN'
LOAD"NAME" and then press 'RETURN', where "NAME" is the file name.
Remember diskette file names can only contain a maximum of ten characters.
Thus, some cassette file names will have to be shortened. Type:-

*DISK or *DISC and press 'RETURN' followed by
SAVE "NAME" then 'RETURN'

The file is now present on the diskette.

When transferring machine code files to diskette, certain additional information
is required. Type:-

*TAPE and press 'RETURN' then
*OPT 1 2 and press 'RETURN' this will give information about the file
 after it has been loaded.

For example:-

*LOAD NAME 2000 'RETURN' the file is forced to load at &2000.

The following will be displayed:-

Loading

NAME 04 0500 00000E00 00000E3C

Where "NAME" is the file name, '04' is the number of blocks, '0500' is the
length in bytes (Hex), '00000E00' is the loading address (Hex), and '00000E3C'
is the execution address (Hex).

This information is used in saving the file to the disk drive.

49

*DISK 'RETURN'
*SAVE "NAME" 2000 + <length> <exec address> <load address>
'RETURN'

Where "NAME" is the file name required, <length> is the length of the file
given above ('0500'), <exec address> is the execution address ('00000E3C') and
<load address> is the reload address ('00000E00'). The file is now stored on the
diskette and can be *RUN in the same way as from tape.

50

Appendix A

Technical Information

Sector numbering

Sectors are 512 bytes long and there are nine sectors per track. Sector 0 is
sector 0 of track 0, sector 1 is sector 1 of track 0 etc. Sector 9 is either sector 0
of track 1 for a single sided diskette, or sector 0 of track 0 side 1 for a double
sided diskette. In this way, a double sided diskette is treated as a single sided
diskette.

Files

To avoid the error 'Can't Extend' which is very common in other filing systems,
each file has a single sector allocated to it which describes the position of all
the other sectors of the file. The descriptions are organised in pairs {sector
number, length}. The sector number is the first sector in a series of contiguous
sectors. The length is the number of contiguous sectors making up that part of
the file. The block is therefore organised as follows:-

Byte 00 Sector number (low byte)
 01 Sector number (high byte)

Byte 02 Length (low byte)
 03 Length (high byte)

Byte 04 Sector number (low byte)
 05 Sector number (high byte)

Byte 06 Length (low byte)
 07 Length (high byte)

 .
 .
 .

Byte 508 Sector number (low byte)
 509 Sector number (high byte)

Byte 510 Length (low byte)
 511 Length (high byte)

51

Sector number zero is used to denote the end of descriptors if a file requires
less than 128 (this is equivalent to one sector). In the worst case each entry
describes just one sector. Thus, the minimum file size before a 'Can't Extend'
error message is generated is 64 Kbytes (128*512 bytes). In practice, this
situation is very difficult to achieve.

Free Space

A single sector holds a bit for every sector on the diskette. If this bit is one, the
sector is free. If this bit is zero, the sector is in use. This sector is called the 'bit
map'.

When space is required, the bit map is scanned from the beginning until the
first free sector is found. The number of this sector is then recorded in a
descriptor sector with the number of consecutive free sectors. If this was not
enough for the file, the bit map is scanned until the next free sectors are found
and the process is repeated. If a file is being extended and therefore already has
some sectors allocated to it, the search for free sectors begins with the last
sector already allocated to the file.

Catalogue

The catalogue contains the size of the diskette, location of the bit map, number
of directory entries used, free space available, diskette title and the directory
entries. The catalogue is kept on track 0 of the diskette in the first 5 sectors.
Sector 0 contains the following general information:-

Bytes 00 to 09 The disk title

Byte 10 The sequence number

Byte 11 Current boot option

Byte 12 Number of used directory entries

Byte 13 Free space (low byte)

Byte 14 Bits 0-2 free space (high order)
 Bit 6 number of sides (0=1, 1=2)
 Bit 7 number of tracks (0=40, 1=80)

Byte 15 Address of bit map (low order)

High order address of bit map is always zero

52

Each directory entry contains the following information:-

Byte 00 Directory of entry

Bytes 01 to 11 Name of entry

Byte 12 Bits 0-2: sector number (high order)
 Bits 4-7: size (high order)

Bytes 13 to 16 Load address (low order first)

Bytes 17 to 20 Execution address (low order first)

Byte 21 Size (low order)
 22 Size (middle order)

Bytes 23 to 25 Date

Byte 26 Bit 7: top bit of date
 Bit 0: access

Catalogue entries start immediately after the header information. Only
complete entries are allowed in each sector, but as many as possible are fitted.
When the end of one sector is reached, the next entry is at the beginning of the
next sector. The bit map is in the sector immediately after the catalogue.
Therefore, the sector number of the bit map is also the number of sectors
making up the catalogue.

Direct Disk Access

To write programs which bypass the filing system, or which format the diskette
or use single density diskettes, an OSWORD call is provided (see Electron
User Guide for details of OSWORD calls). Cumana Disk Filing System uses
Western Digital WD1793 equivalent Floppy Disk Controller chip. The
OSWORD is entered with A=&72 and with the X and Y registers pointing to a
control block in the following form:-

Entry Address: &FFF1
Indirection Address:&020C

Byte 00 Control byte:
 bit 0: Side select (0=1, 1=2)
 bit 1: Drive 0 select
 bit 2: Drive 1 select

53

 bit 3: Double density select
 (0=double, 1=single)

Byte 01 Command register (see below)

Byte 02 Track register

Byte 03 Sector register

Byte 04 Data register

Byte 05 Address (low order)
 06 Address
 07 Address
 08 Address (high order)

Byte 09 Return code

If the command register is set to &FF, the drive running state is toggled, i.e. if
the drive was spinning it will stop; if it was stopped, it would start spinning. If
the track, sector or data registers are &FF, they will not be written to the
relevant WD1793 register. Other commands are:-

&80 Read sector
&A0 Write sector

Track and sector registers within WD1793 must be set up prior to issuing a
read sector or write sector command.

&04 Restore (move heads to track zero)
&14 Seek (desired track number in data register)
&50 Step-in (one track)
&70 Step-out (one track)

The bottom two bits (0 & 1) of any command which moves the heads, hold the
head stepping rate.

The stepping rates available are:-

0 0 6 ms
0 1 12 ms
1 9 20 ms
1 1 30 ms

On completion of the command, byte 2 will contain the new value of the track
register, byte 3 will contain the new value of the sector register and byte 9 will

54

contain a copy of the status register. For read sector, the status register value
should be masked with &1C. If the result is zero, the command has completed
with no errors. For write sector, the status register value should be masked with
&5C. For head moving commands, the status register value should be masked
with &18.

The address supplied is a full four byte address for use with a second processor,
if fitted. This can only be used with single sector read or write, because a sector
is buffered in the filing system's own internal memory. For multiple sector read
or write and read or write track, the data cannot be buffered and therefore the
address has to be in the I/O processor. The Electron also has to be in a low
resolution mode, such as Mode 6. This is because of the way the display is
generated on the Electron. For a high resolution display, the processor's
bandwidth to the memory is too limited for the time-critical regions of code in
the filing system. Reading and writing across the tube is also too slow.

Sector Written To

The maximum number of sectors on an 80-track double sided diskette is 1,440.
This requires 1,440/8 = 180 bytes for the bit map.

The bit map is therefore split in two halves and the second half is used to
record if the sector is written to. This is particularly useful when a large
random access file is required which is all initialised to zero. The file is opened
for output and the pointer set to the relevant size. The bits in the written to map
remain set. Whenever a request is received to read in a sector, the written to
map is checked, and if the bit is found to be one, the sector is not read in. In
this case, an area of store is set to zero. As soon as any data is written to the
sector, the written to map is adjusted and written to diskette.

55

Appendix B

Using Different Drives

The default head stepping rate for the Cumana disk system is 6ms. If a different
head stepping rate is required, OSBYTE with A=255 should be used. This call
alters some operating system values, including the screen mode which is
selected on 'BREAK', the head stepping rate and a bit which reverses the action
of 'SHIFT'+'BREAK'. The call address of OSBYTE is &FFF4 and it functions
as follows:-

<new value> = (<old value> AND Y) EOR X

Bits 4 and 5 are used to set the head stepping rate and should be:-

Bit 5 4

 0 0 6ms
 0 1 12ms
 1 0 20ms
 1 1 30ms

The disk system records the value every time the disk is accessed and saves it
in its own non-volatile memory. The value is then reset whenever 'BREAK' is
pressed or on power-up. In order to ensure the value has been stored, the disk
must be accessed before the power is switched off.

The disk system records the value of the entire byte and resets it on 'BREAK',
so that the machine will power-up with options set.

The other bits in the byte have the following meaning:-

Bits 0 to 2 Screen mode.
Bit 3 Reverse 'SHIFT'+'BREAK' action.
Bits 4 and 5 Disk stepping rate, as described above.
Bits 6 and 7 Reserved for future expansion.

Instead of using the assembly language entry point, *FX can be used. This is
explained in the Electron User Guide, but some examples are given here:-

*FX 255,14 Sets 6ms, Mode 6, normal <SHIFT>+<BREAK> action
*FX 255,30 Sets 12ms, Mode 6, normal <SHIFT>+<BREAK> action
*FX 255,46 Sets 20ms, Mode 6, normal <SHIFT>+<BREAK> action
*FX 255,62 Sets 30ms, Mode 6, normal <SHIFT>+<BREAK> action

56

*FX 255,2 Sets 6ms, Mode 2, normal <SHIFT>+<BREAK> action

57

Appendix C

Fitting An Additional ROM

The Cumana cartridge has space for an extra ROM (word processor, spread
sheet, graphics extension, etc).

The cartridge can be returned to Cumana for the fitting or the following
procedure may be adopted:-

1. Disconnect the unit from the mains supply
2. Remove the cartridge from the Plus 1
3. Unscrew the four screws on the back of the cartridge.
 The back can then be removed, exposing the empty ROM socket inside
4. Holding the cartridge with the components facing you and the cable

socket to your right, pin 1 of the ROM is at the bottom left corner of the
spare socket. Carefully insert the ROM the correct way round into the
empty socket, taking care to ensure all the pins of the ROM are in place.
Do not touch any of the other components, as some are CMOS and could
be damaged.

5. Replace the back of the cartridge reversing the procedure in 3
6. Reconnect the cartridge as described in Chapter 4

58

Appendix D

Replacing the Battery

The battery used is a Mempac 3.6V NiCad rechargeable battery and should last
a considerable time. However, when the battery requires replacing, a warning
message will be printed on the Electron screen on power up:-

At this stage the battery should be replaced. Forward the complete cartridge to:
 Service Division
 Cumana Ltd
 Daimler Close
 Royal Oak Industrial Estate
 Daventry, Northants
 NN11 5QJ
 Telephone: (03272 79494)

NOTE: This battery must not be forced open or disposed of by fire.

59

Appendix E

Disk System Error Messages

Already exists &C4
is returned when an attempt is made to rename a file to the name of an existing
file.

Bad attribute &CF
is returned when an illegal character follows the file name for the *ACCESS
command.

Bad Command &FE
is returned when an unrecognised disk system command or utility is given.

Bad directory &CE
is returned if more than one letter is entered for the *DIR or *LIB command.

Bad drive &CD
is returned if the number entered is not '0' or '1'.

Bad filename &CC
is returned if the file name used is less than one or more than ten characters in
length or contains illegal characters.

Bad Option &CB
is returned if the value given in *OPT is not '1' or '4'.

Bad String &FD
is returned if the string specified in a *BOOT command is invalid.

Bad Title &D7
is returned if invalid characters or too many characters are used in a *TITLE
command.

Can't Extend &BF
is returned on the very rare occasion of the free space being so scattered on the
diskette that it cannot be described in one sector.

Catalogue Full
is returned when an attempt is made to save more than 90 files to a diskette.

Channel &DE

60

is returned when an invalid channel number is specified in a random access
operation.

Disk changed &C8
is returned when a new diskette is put in the drive whilst files were open on the
old diskette.

Disk error &C7
is returned when a corrupt, damaged or incorrect type of diskette is used.

Disk Full &C6
is returned when an attempt is made to write to a diskette that has insufficient
room to allocate to the file.

Disk read only &C9
is returned when a write command is issued to a diskette that is write protected.

EOF &DF
is returned when an attempt is made to read off the end of a random access file.

File locked &C3
is returned when an attempt is made to overwrite or delete a locked file.

Not found &D6
is returned when the named file does not exist or is not on the currently
selected drive and directory.

Open &C2
is returned when an attempt is made to delete or open an already open file.

Read only &C1
is returned when an attempt is made to write to a read only file opened with
OPENIN.

Too many open files &C0
is returned when an attempt is made to open the ninth file. Only eight files can
be open at the same time.

If the "Disk fault" message ever occurs, there will be an extension to the error
message. For example:-

Disk Fault xx at yyy

Where xx is the fault code and yyy is the sector number at which the fault
occurred.

61

The most common fault is 10. This means that the diskette is corrupt or
unformatted.

Fault code 08 is a CRC error. This means that the diskette is probably getting
old and the data should be transferred to a new diskette as soon as possible.

62

Index

Abbreviations 29 *FREE 24
*ACCESS 21 free space 56
Additional ROM 63 *HELP 24
afsp 20 *INFO 25
Assembler 37 INPUT# 33
A_TO_C 51 Keywords 21
BACKUP utility 15,45 library 25
Battery 65 *LIB 25
BGET# 33 *LOAD 26
*BOOT 21 OPENIN 33
BPUT# 33 OPENOUT 33
*BUILD 22 OPENUP 33
capacity 4 *OPT 1 26
*CAT 22 *OPT 4 26
catalogue 5, 56 *PBOOT 26
*CLOSE 22 PRINT# 33
command abbreviations 29 PTR# 33
connecting up 9 Random Access 33
COPY utility 16 *RENAME 27
*DATE 31 *RUN 27
*DELETE 22 *SAVE 27
*DIR 19, 23 Sectors 55
directories 12 Sector numbering 55
direct disk access 57 Sector written to 59
diskettes 7 SET_TIME utility 48
disk drive 1 SFORMAT utility 49
DISK_EDIT utility 47 *SPOOL 28
*DRIVE 19, 23 S_TO_D utility 50
D_TO_S utility 46 SVERIFY utility 51
*DUMP 23 *TITLE 28
EOF# 33 tracks 3
error messages 67 transfer from Tape to Disk 53
*EXEC 23 *TYPE 29
EXT# 33 Utilities 45
files 55 VERIFY utility 51
filespecs 19 Wildcards 20
fsp 19 Write enable 4
FORMAT utility 13

63

