

S-Pascal
on the BBC Microcomputer
and Acorn Electron

PAUL FELLOWS

1

S-Pascal
on the BBC Microcomputer
and Acorn Electron

About this book

This book describes all the features of the Acornsoft S-Pascal system and
explains how to use it, It provides a complete introduction to S-Pascal and
assumes no previous knowledge of the language. Listings of all the
example programs included in the Acornsoft S-Pascal pack are also given
in the book.

S-Pascal contains a subset of Pascal - one of the most popular
programming languages available today.

Acornsoft S-Pascal supports integer, character and Boolean types, as well
as multi-dimensional arrays. It is block structured and completely
recursive.

Since S-Pascal compiles directly to 6502 machine code it is also eminently
suitable for writing small fast utilities. The library routines provided
facilitate the use of graphics and allow operating system commands to be
accessed from within an S-Pascal program.

Acornsoft Limited, Betjeman House, 104 Hills Road, Cambridge CB2 1LQ,
England.
Copyright © Acornsoft Limited 1984 SLD14

2

Contents
__

1 Introducing the S-Pascal compiler 6
__
 1.1 About the language 6
 1.2 Who this pack is for 6
 1.3 What a compiler does 6

2 Using S-Pascal 8
__
 2.1 Loading the compiler from cassette 8
 2.2 Loading the compiler from disc 9
 2.3 Entering a source program 9
 2.4 Compiling a program 10
 2.5 Editing the source program 10
 2.6 Executing the object code 10
 2.7 Loading a source program 10
 2.8 Saving the source program 10
 2.9 Saving the object code on the BBC Microcomputer 11
 2.10 Saving the object code on the Acorn Electron 11
 2.11 Deleting a program 11
 2.12 Pressing BREAK 11

3 Programming in general 13
__
 3.1 Program structure 13

4 Data types and structures 15
__
 4.1 Data types 15
 4.2 Data structures 16
 4.3 The order of declarations 18

5 Statements 19
__
 5.1 The assignment statement 19
 5.2 The if statement 20
 5.3 The while statement 21
 5.4 The for statement 22
 5.5 The repeat statement 23

3

 5.6 The case statement 24
 5.7 Procedure calls 25
 5.8 The compound statement 25
 5.9 The null statement 26

6 Procedures and functions 27
__
 6.1 Declaring a procedure 27
 6.2 Local variables and parameters 28
 6.3 Calling a procedure 28
 6.4 Passing parameters 28
 6.5 Declaring a function 29
 6.6 Calling a function 29
 6.7 Recursive calls 30

7 Scope 31
__
 7.1 Definition of scope 31
 7.2 Forward reference 32
 7.3 Recursion and local variables 33

8 Library routines 35
__
 8.1 Input and output routines 35
 8.2 Type conversion routines 36
 8.3 Calling external routines 36

9 Operators and expressions 38
__
 9.1 Expressions 38
 9.2 Operators 38
 9.3 Operator precedence 40
 9.4 Function calls 41

10 Error handling 42
__
10.1 Syntax errors 42
10.2 Error messages 42
10.3 Other compile-time errors 46
10.4 Run-time errors 46

4

11 The memory map 48
__
11.1 Memory allocation for the BBC Microcomputer 48
11.2 Memory allocation for the Acorn Electron 49

Appendix A 50
__
Example programs 50

Appendix B 60
__
Syntax diagrams 60

Index 67
__

Electron User Review 71

5

1 Introducing the S-Pascal compiler
__

1.1 About the language

S-Pascal contains a subset of Pascal - one of the most popular
programming languages now available. This subset was developed as a
teaching language and provides an excellent introduction to structured
programming. Each program split up into blocks. Variables, procedures
and functions have to be declared :€-fore they can be used. In addition S-
Pascal does not contain a GOTO statement which is the bane of any self-
respecting programmer's life. Hence the language encourages the
programmer to think about the structure of a program and what it needs
to contain before he sits down to write it. The structure also makes a
program easy to read and understand.

1.2 Who this pack is for

The Acornsoft S-Pascal pack was designed for people who know little or
nothing about Pascal but are familiar with BASIC. It allows small programs
(up to about 3.25K for the BBC Microcomputer and 1.25K for the Acorn
Electron) to be written, compiled and executed. At the same time it gives
comprehensive error messages to help the user debug his or her
programs. The programs can be edited using the BASIC editor. For the
more adventurous programmers the use of graphics is allowed.

1.3 What a compiler does

The only instructions which a computer can understand are machine code
instructions. There are two ways in which a computer can be made to
accept instructions written in a high-level language such as BASIC or S-
Pascal. The method used for BASIC on the BBC Microcomputer and the
Acorn Electron involves 'interpreting' the commands directly. A program to
do this is contained in the BASIC ROM. It takes the instructions of the
BASIC program, one at a time and calls the relevant machine code
routines, which it provides, to perform required operations. This means
that the machine needs to have the interpreter present all the time the
program is running. The Acornsoft implementation of S-Pascal uses a
different approach. The S-Pascal package contains a compiler which reads
the whole S-Pascal program and produces an equivalent program in
machine code. This machine code program can then be run directly

6

without the presence of the S-Pascal program or the Acornsoft S-Pascal
compiler.

Compilers have certain advantages over interpreters. A compiler produces
machine code which can be used to help teach the user about assembly
language programming, whereas an interpreter does not. Also compiled
programs run very quickly since only the machine code has to be
executed. Interpreters are slower since they have to read each line of text
and try to understand it every time the line is encountered. Since
compilers produce a complete machine code version of the program, the
compiler itself doesn't need to be in the computer's memory when the
program is executed. Hence this gives more free work space for the
program. If this S-Pascal compiler was instead an interpreter it would have
to be present all the time and this would prevent the user from using the
higher resolution graphics modes

7

2 Using S-Pascal
__

You will have purchased Acornsoft S-Pascal on either a cassette or a disc.
In either case the system contains the following files:

S.PASCAL
E.FIB
E.BASES
E.RANDOM
E.HANOI
E.DIAMND1
E.DIAMND2
E.MOIRE

When using the Acornsoft S-Pascal package there are several stages you
need to go through. The first one is to write a program in the S-Pascal
language or alternatively use one of the example programs provided in the
package. S-Pascal programs are referred to as source programs.

The source programs then have to be compiled using the S-Pascal
compiler. This generates the machine code instructions which the
computer will subsequently use to do its calculations etc. The machine
code produced by a source program is known as the object code.

Finally, to run the program the object code is executed by the computer.

To tell the computer what you want to do next, for example edit a source
program or execute some machine code, you must give it certain
commands. These commands begin with an asterisk (*) and can be in
upper or lower case. All the commands which it recognises and
instructions on how to load the compiler are given below.

__

2.1 Loading the compiler from cassette

To load the compiler from cassette, place the cassette tape in the cassette
recorder and make sure it is fully rewound. Type

CHAIN “S.PASCAL”

and press RETURN. The ‘Searching’ message should appear on the screen
as you do this. Now press the PLAY button on the cassette recorder and

8

wait for the program to load. Loading will take about five minutes.

When loading is complete the heading

S-PASCAL
>

will be displayed on the screen.

__

2.2 Loading the compiler from disc

I
To load the compiler from disc, place the disc in the disc drive and close
the hatch. Acornsoft S-Pascal is loaded by means of an ‘AUTO-BOOT’, and
this is executed as follows:

1. Press SHIFT

2. While holding down SHIFT, press and release BREAK

3. Release SHIFT

When loading is complete the heading

S-Pascal
>

will be displayed on the screen.

Note that the disc will work in drive 0 of either 40 or 80 track disc drives.

__

2.3 Entering a source program

In order to enter a source program, type

*NEW

Line numbers will appear automatically and the text of the program can be
typed in. pressing RETURN at the end of each line. When the program is
typed in completely press ESCAPE. The source program can be listed and
edited at this stage using the standard BASIC editor.

9

2.4 Compiling a program

To compile a source program type

*COMPILE

The program will then be compiled and the object code produced will be
listed.

If there are any syntax errors in the program the compiler will stop at the
relevant place and print out an error message.

2.5 Editing the source program

If you wish to list your program, eg for editing, type

*EDIT

2.6 Executing the object code

To execute the machine code generated by the compiler, type

*GO

2.7 Loading a source program
To load a source program from disc or cassette, type

*EDIT

This sets the value of PAGE to the correct value for a source program to
be entered. Then type

LOAD "<filename>"

This will load a source program into the memory so that it is ready either
to edit or compile.

2.8 Saving the source program

To save the source program, type

10

*EDIT

This will list the program on the screen. Then type

SAVE “<filename>”

Any filename can be used but it must obey the same rules that apply to
BASIC program names.

2.9 Saving the object code on the BBC Microcomputer

The object code can be saved to the filing system by typing

*SAVE <filename> 1B00 2F00 1F00

This saves the block of memory from the address &1B00 to the address
&2F00. The execution address of the file is set up as &1F00.

2.10 Saving the object code on the Acorn Electron

The object code can be saved to the filing system by typing

*SAVE <filename> 1100 1F00 1100

This saves the block of memory from the address &1100 to the address
&1F00. The execution address of the file is set up as &1100.

2.11 Deleting a program

To delete the current source program from the computer’s memory, type

*NEW

This will allow you to enter a new source program.

2.12 Pressing BREAK

Usually pressing BREAK will reset the system. The compiler will still be
present as will the source code. Any object code that has been generated
will also still be in the computer’s memory. The heading

S-Pascal

11

>

should appear on the screen and the system may be used with the
commands described above.

If, however, high resolution graphics modes have been used then pressing
BREAK will still produce the heading

S-Pascal
>

but the source code and compiler will have been corrupted. The object
code will not have been lost and can still be executed using *GO or saved
as described above.

12

3 Programming in general
__

3.1 Program structure

 program
 identifier
 parameter list;

 constant
 declarations
 Declaration
 part
 variable
 declarations

 procedure/function
 declarations

 begin

 statement;
 Action
 statement; part
 statement

 end .

Structure of an S-Pascal program

S-Pascal contains several keywords, ie words in programs which the
compiler recognises and acts upon in a special way. When writing S-Pascal
programs these keywords should be in lower case. All programs must start
with the word 'program' and must be terminated with a full stop. After the
word 'program' the name of the program should occur, followed by a
parameter list contained in curved brackets. This list must contain the
word 'output' since it is assumed that every program will output results,
and it should contain the word 'input' if the program is to input data while
it is running. These are the only two parameters allowed. The body of the
program is made up of a 'block'. This consists of a series of declarations
(the declaration part) followed by the executable statements of the

13

program which occur in a 'compound statement' (the action part). This
compound statement commences with the word 'begin' and terminates
with the word 'end'. Between these words one or more statements
separated by semicolons may be used.

One type of statement is the procedure call. Procedures are also blocks, ie
they consist of declarations followed by executable statements, eg

 procedure odd; Procedure
 declaration

 var a : integer; Variable
 declarations

 begin
 a := z div 2;
 if z mod 2 = 0 Executable
 then x :- z + a statements
 end;

14

4 Data types and structures
__

4.1 Data types

The executable statements in a program operate on variables and
constants. All the variables and constants used must be declared at the
beginning of the block in which they are to be used.

Variables

The declaration of variables introduces the names of 'identifiers' of the
variables and fixes their type. The identifier can consist of a consecutive
string of up to 15 lower case letters or digits, although it must begin with a
letter and must not be an S-Pascal reserved word. Standard ISO-Pascal
allows upper case letters as well, although by convention lower case is
normally used. The use of lower case letters has been enforced in S-Pascal
for identifiers and keywords to avoid confusion with BASIC keywords.

The simple data types which are available are integers, characters and the
Boolean truth values. A single variable can be declared as follows:

var x : integer;

This declares an integer variable with the identifier 'x'.

When declaring several variables the word 'var' is only required once. All
the identifiers of the same type are separated by commas, and the
different types are terminated by semicolons.

Example

var x, left, right : integer;
 initial : char;
 answer : boolean;

Note that 'character' is always shortened to 'char' and 'Boolean' is entered
as 'boolean' but 'integer' remains unchanged.

Later in the program these variables can be assigned a value. An integer
can be any whole number in the range -32768 to +32767 or alternatively
one of the pre-defined constants: 'maxint' (the maximum integer value
allowed) or 'minint' (the minimum integer allowed). A character may be
any alpha-numeric or control character, and must be entered enclosed in

15

single quotes. A Boolean has one of two values, either 'true' or 'false'.
Trying to assign an incorrect value, for example to set a variable to the
value 27 when it was declared to be a Boolean, will result in the compiler
reporting a 'type mismatch' error during the compilation.

Constants

The value of a constant is fixed by the declaration, eg

const height = 10;
 weight = 100;

Once declared, the value of a constant cannot be altered throughout the
program.

In addition to decimal numbers, constants can be declared as hexadecimal
values. There are base 16 numbers, made up of hexadecimal digits, ie 0,
1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E and F. To distinguish a hexadecimal
number from a decimal one it is preceded by an ampersand (&) eg

const age = &2A;

is equivalent to

const age = 42;

Note: The use of hexadecimal notation is an extension to Pascal which has
been included to help people wishing to access routines in the machine
operating system (see section 8.3, 'Calling external routines'). These
routines are normally entered by their hexadecimal addresses.

4.2 Data structures

One-dimensional arrays

In addition to the simple data types described above it is possible to
declare array structures. A one-dimensional array is essentially a list of
data. Each item of data is accessed using the name of the array and an
index, either an integer, character or Boolean value, to determine which
entry in the list is wanted. Each item has to be of the same type, and this
type has to be declared. In addition, during the declaration of the array,
the range of values of the indices has to be given; the lowest and highest
values are quoted, separated by two full stops and enclosed in square
brackets, eg

16

var vec : array [1..10] of integer;

In this example, the array identified by 'vec' has ten elements numbered 1
to 10. Each element is of type integer.

Later the array elements can be assigned a value, eg

vec [5] := 27;
vec [8] := -128

Note that ':=' is used to assign a value to a variable, whereas '=' is used to
declare the value of a constant.

The following is also possible:

vec [x] := -53

where x is of type integer. However if x has a value outside the range 1 to
10 when the program is run this will cause an error due to the declaration
above.

An example of an array with indices of type character is given below:

var v : array ['b'..'g'] of integer;

This gives an array identified by 'v' containing six elements, each of type
integer.

These array elements could be assigned a value as follows:

v ['c'] := 23

If required, Boolean truth values can be used as indices to produce an
array containing two elements, eg

var vector : array [false..true] of integer;

The indices must be in the order 'false' followed by 'true'.

Multi-dimensional arrays

It is possible to have multi-dimensional arrays in S-Pascal. These are an
extension of one-dimensional arrays in that they are essentially tables of
data rather than lists. A table can have several dimensions and hence each
item of data is represented by the array name and several indices. The

17

indices need not be of the same type, but the type and range of each has
to be declared. This is done in a similar manner to one-dimensional arrays
but the index ranges are separated by commas, eg

var letter : array [-10..10 , 'a'..'z'] of char;

The array 'letter' contains 21 X 26 elements. Each could be assigned a
value as follows:

letter [-7, 'c'] := '*'

4.3 The order of declarations

It has been shown that variables and constants have to be declared at the
beginning of the block in which they are to be used. In addition, as will be
seen later, procedures and functions have to be declared similarly. If
several declarations have to be made in the same block then there is a
particular order in which these declarations must occur. Any constants
used must be declared first and then all the variables of either simple data
types or arrays. Finally the procedures and functions should be declared
although here the order is irrelevant and they may even be mixed.

18

5 Statements
__

Statements make up the action part of a program. When a program is run
'control' passes from one statement to the next. 'Control' is said to be at
the part of the program which is currently being executed. A statement
can have several effects - these include causing the control to move round
a loop, as in the case of a 'repeat...until' command, or move to
another part of the program in the case of a procedure call.

There are nine types of statement which may be used in S-Pascal. Each of
these is described below, and examples of their use are given. In addition,
each description includes the statement's 'syntax'. This is the format which
it must take, eg it might have to start with a certain keyword which must
be followed by a variable etc. Where variables, statements or expressions
are needed in a statement they are enclosed in angled brackets to show
that the word 'variable' etc is not required but an actual variable must be
used. Words not enclosed in brackets are the keywords which must be
entered as shown, and similarly any punctuation shown must be used.

The syntax of an expression can also be seen in Appendix B where it is
displayed as a syntax diagram.

5.1 The assignment statement

This is used to give a variable a value. The syntax of the statement is:

<variable> := <expression>

Essentially an expression is just a single constant or identifier, or a
sequence of these separated by operators such as '*' and '+'. For a more
complex syntax analysis of expressions see the diagram in Appendix B.

The variable and the expression must both evaluate to the same type.

Examples
Integer types

x := 1 ;
area := x * y

Character types

19

initial := 'a' ;
letter := initial

Boolean types

answer := true ;
result := (a > b) and c

If a variable is used in an expression without first assigning a value to it
then it will take an undefined value.

5.2 The if statement

The syntax on an 'if' statement is

if <expression> then <statement>

or

if <expression> then <statement> else <statement>

The expression must yield a Boolean result. If the result is true the 'then'
part is executed, otherwise the 'else' part is executed (if it exists). Should
there not be an 'else' part then control passes to the next statement.

Example

if a > b then x := x + 1
 else x := x - 1

In the above example the statements in the 'then' and 'else' parts are
both assignments. However it is possible to use any of the nine statement
types in these places. Thus the following is allowed:

if a > b
then if b > 0
 then x := x + 1
 else x := 0
else x := x - 1

In this example the 'if...then...else' statements have been 'nested',
ie one occurs within the other.

Note: Nesting 'if...then...else' statements has different effects in
BASIC and S-Pascal. In BASIC the first 'else' statement is executed if

20

either of the expressions yields the value 'false'. Hence if the equivalent
statement was written in BASIC and 'a' was given the value 4, 'b' the value
5 and 'x' the value 6 this would leave 'x' with the value 0. In contrast
assigning these values to the variables in the Pascal statement yields the
value of 5 for 'x' since the second or outermost 'else' is associated with
the outermost 'if' and the first or innermost 'else' is associated only with
the innermost 'if'.

A further example of an 'if' statement is shown below. In this case the
statements are both 'compound statements'.

if a > b
then begin
 x := x + 1 ;
 y := y + 1 ;
 z := 0
 end
else begin
 x := x - 1 ;
 y := x * y
 end

5.3 The while statement

The syntax of this is as follows:

while <expression> do <statement>

The expression must evaluate to the type Boolean. If its value is 'true' then
the statement following the 'do' is executed. Then control loops back and
the test is made again. Hence the statement is repeatedly executed until
the expression yields the value 'false'. When this occurs control is passed
beyond the 'do' statement to the next statement in the program.

Examples

while n < 100 do n := n + 1

while n < 100 do
 begin
 n := n + 1 ;
 x := x + n
 end

21

5.4 The for statement

This statement has the following syntax:

for <variable> := <expression> to <expression>
 do <statement>

The variable following the 'for' is known as the control variable. It is
assigned the value of the first expression and is then compared with the
value of the second expression. If the control variable is less than or equal
to the second expression, the statement following the statement 'do' is
executed. The control variable is then incremented and the comparison is
made again. Hence the body of the statement is executed once for each
value of the control variable, as it is incremented in steps of one, between
the values of the two expressions.

An alternative form of the 'for' statement is as follows:

for <variable> := <expression> downto <expression>
 do <statement>

In this case the body of the statement is executed while the control
variable is greater than or equal to the limit expression and the control
variable is decremented at each stage.

The control variable can be of any simple type, ie integer, character or
Boolean.

Examples

for initial := 'a' to 'g' do x := x + 1

for x := -10 to a * b do
 begin
 y := y + 2 ;
 z := 4 * y
 end

When using characters the meaning of the word 'increment' may not be
immediately obvious. Each character, however, is stored in the computer's
memory as a number between 0 and 255. The code which the computer
uses to represent the characters is the ASCII code (American Standard
Code for Information Interchange). Hence 'increment' means going from a
character with a lower ASCII value to one with a higher ASCII value. A full
list of the ASCII codes is given in the Appendices of the BBC
Microcomputer User Guide and the Acorn Electron User Guide.

22

For a Boolean control variable 'increment' means going from 'false' to
'true'.

In the example given above where an expression containing variables is
used as the upper limit, the limit is evaluated only once at the start of the
loop. Hence changing the value of 'a' or 'b' inside the loop will not affect
the number of times the loop is executed, as this is determined only by
their initial values, eg

i := 3;
for j := 1 to i do i := i + 1

This loop will execute three times and will leave 'i' with the value 6.

Note: This 'for' statement differs from the one in BASIC in that if the
control variable initially has a value greater than the second expression the
statement is not executed. In BASIC it is always executed at least once
since the 'test', ie the comparison of the control variable and the second
expression, occurs after the execution of the statement.

5.5 The repeat statement

The syntax of this statement is as follows:

repeat <statement>
until <expression>

or

repeat <statement> ;
 <statement> ;

 <statement> ;
 <statement>
until <expression>

If several statements are used it is not necessary to form them into a
compound statement by enclosing them in a 'begin...end' block,
because they are already enclosed by the 'repeat...until'.

Initially the statements are executed, and then the expression is
evaluated. The expression must evaluate to a Boolean. If the result is
'false' then the body of the loop is executed again and a new test is made.

23

When the result of the test is 'true' control passes to the next statement.
Note that the body of the loop will always be executed at least once.

Example

repeat
 n := n + 1 ;
 x := x + n
until n > 100

5.6 The case statement

The syntax of this statement is as follows:

case <expression> of
<case label list> : <statement> ;
<case label list> : <statement> ;
............................
<case label list> : <statement> ;
<case label list> : <statement>
end

Each case label list is a list of constants. These must be of the same type
as the result of the expression. The expression is evaluated and the result
is compared with each constant in torn. If a 'match' is found then the
statement corresponding to the 'matched' constant is executed and control
then passes to the statement following the 'end'. If no matches are found
an error will result.

Example

case k of
(1) : x := x + 1 ;
(2,3,4) : x := x - 1 ;
(5) : x := 0
end

Note: In the 'case' statement brackets are required around the case label
lists. This is not standard Pascal necessary but is necessary in this
implementation because of the BASIC system. Numbers which are not
preceded by other symbols on the same line are stored by the BASIC
editor as hexadecimal numbers or 'tokens'; this is because it assumes that
they are references to the line numbers used by GOTO statements. The
format of a tokenised number is such that it will not be recognised by the
Pascal compiler. In addition, if the program is renumbered during editing,

24

eg to insert extra program lines, the case labels will also be renumbered.
These problems are avoided by entering the list of numbers in brackets so
that they will not be tokenised.

5.7 Procedure calls

A procedure statement is the call of a procedure. The procedure can be
one of the library procedures or one which has been defined by the user
elsewhere in the program. To call a procedure just its name is used and
any parameters it may need, eg

write (x)

This calls the library procedure 'write' which, if 'x' is of type integer, will
print its value in decimal notation.

Note: Function calls, although they are very similar to procedure calls, are
not statements. Functions return a value and so are used in expressions.

The library procedures and functions are described in more detail in
chapter 6 (Library routines). Details on how to define and call your own
procedures and functions can be found in chapter 6 (Procedures and
functions).

5.8 The compound statement

A compound statement consists of a group of statements enclosed by
'begin' and 'end'. Wherever any of the statements already described can
be used it is also possible to use a compound statement, eg

begin
sum := sum + n;
if n<>0
then numb := number + 1
end

This compound statement could be used to form the body of a 'while'
loop, eg

while numb < 100 do
begin
readln (n);
sum := sum + n;
if n <> 0

25

then numb := numb + 1
end

5.9 The null statement

In S-Pascal it is possible for a statement to be 'null', ie to contain no text
at all. This is used primarily in 'empty' loops, eg

repeat until nextchar(x) = 'y'

where 'nextchar' is a user-defined function.

26

6 Procedures and functions
__

6.1 Declaring a procedure

To declare a procedure the following syntax is used:

procedure <identifier> <parameter list> ;
 <block> ;

The identifier must obey the same rules as an identifier used for variables.
The parameter list contains the identifiers of all the parameters and their
types. This list must be enclosed in curved brackets. However the syntax
of the declaration is the same as that of variables, ie identifiers of the
same type are separated by commas and those of different types by
semicolons. If no parameters are required this list may be omitted.

Examples

procedure inc (x : integer) ;
 begin
 a := a + x
 end;

procedure printn (x,n : integer ; a :char) ;
var j : integer ;
 begin
 for j := 1 to n do
 write ('a') ;
 writeln (x)
 end;

The second example, when called, will print out n copies of the character
'a' followed by the value of 'x'. It will then go to the next newline. 'write'
and 'writeln' are standard library procedures which can be found in
chapter 8 (Library routines).

These procedure declarations occur in the declaration part of the program.
When control reaches them their identifier and any parameters are noted
and control then passes to the next declaration. Control does not pass to
the body of the procedure until the procedure is called from the action part
of the program.

27

6.2 Local variables and parameters

In the last example the variable 'j' was declared within the procedure and
'j' is referred to as a local variable. It is only possible to reference 'j' from
within the block that forms the body of the procedure, any attempt to use
'j' outside this block will cause an error. The 'scope' of 'j' is therefore said
to be the block in which it is declared. Local procedures may be declared
in a similar manner.

The scope of a parameter is the same as the scope of a local variable, and
thus it cannot be referenced outside the block in which it is declared.

6.3 Calling a procedure

To call a procedure such as 'printn', declared in section 6.1, the
following kind of statement should be used:

printn (5,6,'*')

The procedure should be called with the same number, and type, of
parameters as in its definition.

6.4 Passing parameters

The parameters are said to be passed by value. This means that the
values of the parameters given in the call of a procedure are passed over
to the local parameters of the procedure definition. Hence in the above
example the value '5' is passed over to the parameter 'x', '6' to 'n' and '*'
to 'a'. However, any subsequent alteration in the values of these local
parameters does not affect the value of the parameter outside this block.

Example

procedure inc (x : integer) ;
 begin
 x := x + 1
 end ;
........
j := 1 ;
inc (j) ;
write (j)

28

This will write out the value 1 since the procedure 'inc' will only affect the
value of the local variable 'x' and will have no effect on the external
variable 'j'.

6.5 Declaring a function

Functions are similar to procedures except that they return a value
whereas procedures do not. Hence it is necessary to declare which type a
function returns, eg

function inc (x : integer) : integer ;
 begin
 inc := x + 1
 end;

This declares a function called 'inc' which returns an integer value.

6.6 Calling a function

A possible call of the function is:

j := inc (j)

where 'j' is an integer.

Control returns from a call of a function when the 'end' statement is
reached. The function should include at least one assignment to the
function identifier. The value returned is that obtained by evaluating the
expression on the right hand side of the most recent assignment, eg

function smaller (x,y : integer) : integer;
 being
 smaller := x;
 if y < x then smaller := y
 end;

If this function was created as follows:

s := smaller (5,3)

then the most recent assignment to 'smaller' gave it the value 3, hence the
value returned by the function call is 3.

29

If an assignment does not occur then control will return from the function
call but the value obtained will be undefined, eg

function odd (x : integer) : integer ;
 begin
 if x mod 2 = 0
 then odd := 0
 end;

If 'odd(1)' is called then the body of the 'if' statement will not be
executed and control will reach the 'end' of the block which forms the
body of the function without an assignment to 'odd' being made. Control
then returns but the value of 'odd' is undefined.

6.7 Recursive calls

Procedures and functions can call themselves recursively. Under certain
circumstances procedures can call other procedures. See chapter 7
(Scope) for further details.

30

7 Scope
__

7.1 Definition of scope

The scope of a variable is the region of the program text in which its name
may be used. For all names declared at the head of a block, their scope is
from their declaration to the end of that block. If the block contains nested
declarations of functions and procedures then the blocks which make up
their bodies are also included in the scope of the names.

Example

 program scope (output);

 var x,y : integer;
 procedure off(z : integer);

 var a : integer;
 begin
 a := 3;
 if z mod 2 = 0
 then x := a + 3
 end; (2)

 begin
 x := 3;
 y := 2 * x;
 odd(y)
 end. (1)

In this example the scopes are as follows:

- The scope of x is block 1 and block 2.
- The scope of y is block 1 and block 2.
- The scope of z is block 2.
- The scope of a is block 2.
- The scope of odd is block 1 and block 2.

If a variable declared in an inner block has the same identifier as a
variable declared further out, then all references to that identifier made in
the inner block are to the most recently declared variable of the name.

31

Thus the scope of this variable declared on the outer level does not
include the inner block. As an example consider the program above. If the
variable 'a' was replaced by 'x' so that there were two separate variables
both with the identifier 'x', the scope of one would be block 1 and the
scope of the other block 2.

A similar situation applies to procedure identifiers. The scope of a
procedure is from its declaration to the end of the block in which it was
declared.

7.2 Forward reference

Since the scope of an identifier starts at its declaration it is not possible to
declare a pair of mutually recursive procedures in the following way:

100 procedure a (.....);
110 begin
120
130 b (.....);
140
150 end

200 procedure b (.....);
210 begin
220
230 a (.....);
240
250 end;

The scope of 'procedure b' is from its declaration on line 200 until the end
of the block. Hence the above example is not allowed because the forward
reference on line 130 to 'procedure b' from the body of 'procedure a' does
not lie within the scope of the declaration of 'procedure b'. However,
mutually recursive routines can be declared as shown below:

100 procedure a (.....);
110
120 procedure b (.....);
130 begin
140
150 a (.....);
160
170 end;
180 begin
190
200 b (.....);

32

210
220 end;

In this case the scope of 'procedure a' is from its declaration on line 100
onwards and that of 'procedure b' is from its declaration on line 200 until
the end of that local block, ie the end of 'procedure a' at line 220.

7.3 Recursion and local variables

If a recursive procedure contains local variables, each call of the procedure
brings into existence a new set of local variables. Each new set is distinct
from those of any preceding call of the procedure. Thus the most recent
manifestation of the local variables is in scope and none of the previous
one are. However the values of the previous sets of local variables are
preserved, and when a return is made from the recursive call these
previous values become accessible again.

The best known example of a recursive function is the factorial function.
This program calculates the factorial of a number which is entered from
the keyboard:

 10 program factorial (input, output);
 20 var a:integer
 30 function fac(x:integer):integer;
 40 begin
 50 if x<=1
 60 then fac:=1
 70 else fac:=x*fac(x-1)
 80 end;
 90
100 begin
110
120 while true do
130 begin
140 readln(a);
150 writeln(fac(a))
160 end
170
180 end
190.

The function 'fac' defines the factorial of x to be:

x*(x-1)*...*2*1

Note that fac(0) = 1

33

and fac(1) = 1

All others are obtained using the recursion.

The 'while' statement keeps on reading numbers as they are entered in
from the keyboard, calculating factorials and printing the results until an
error occurs, ie until ESCAPE is pressed or an arithmetic overflow is
caused.

The factorial function could of course be calculated without using any
recursion. However the function to do this is not so easy to read.

 30 function fact(x : integer) :integer;
 40 var n,product : integer;
 50 begin
 60 product:=1;
 70 for n:=1 to x do
 80 product:=product*n;
 90 fact:=product
100 end;

Also this second example needs to declare two local variables, 'n' and
'product'.

34

8 Library routines
__

Library routines are a series of routines which are included to act as an
interface between the user and the computer's operating system. These
usually take the form of procedures and functions which may be used for
several purposes, including inputting and outputting data while a program
is being executed.

8.1 Input and output routines

read() - read number/character

This takes an arbitrary number of parameters of either integer or character
type. When the routine is called the program stops and waits for the user
to enter a line/lines of text. When entering a line of text DELETE deletes
the last character on that line and CTRL U can be used to delete the entire
input line. The line is terminated by pressing RETURN.

When a line of text has been entered the program computes a value for
each of the parameters in turn, according to their respective types. If a
parameter is of type character this simply means that the next character
from the input line is returned. If the parameter is of integer type then a
number, in decimal notation, is read. This may be preceded by leading
spaces, which will be ignored, and by '+' or '-' signs. Once the spaces and
signs have been dealt with the system expects the digits 0-9 and continues
to incorporate these into the number until a non-digit is found. This non-
digit should be a space or a RETURN character; if it is not then an error
message will be printed. If the number of values entered on one line is
less than the number of parameters then the program will wait for more
values to be entered on the next line. Once values have been obtained for
all the parameters the rest of the input line will be 'preserved'.

The maximum length of an input line is 127 characters. Note that although
a character can be assigned the value corresponding to a space, it cannot
be assigned that of RETURN. Also note that numbers must be in the range
-32767 to +32767, the value of 'minint' cannot be read in.

readln() - read number/character

This is the same as 'read' but once values have been obtained for all the
parameters the rest of the input line will be 'thrown away'.

35

write() - write number/character/Boolean

This routine can take an arbitrary number of parameters of any type.
Integer parameters will be printed as decimal numbers, characters will be
printed directly and Booleans will be printed as the strings 'true' or 'false',
In addition strings enclosed in single quotes may be used.

writeln() - write number/character/Boolean

This is identical to 'write' except that a carriage return/line feed will be
produced after all the parameters have been output.

Note that if only a carriage return/line feed is required then 'writein' may
be used without a parameter list.

8.2 Type conversion routines

ord()

This takes one parameter of type character and returns the ASCII code of
the parameter.

chr()

This takes one parameter of type integer and returns the corresponding
ASCII character.

8.3 Calling external routines

call()

This statement needs four parameters, the first being a constant whose
value is the address of the location which is jumped to, and the other
three being expressions whose values are sent to the A, X and Y registers
respectively. It is useful because it allows operating system routines to be
accessed, eg

 10 program mos (output);
 20 const osbyte = &FFF4;
 30 begin
 40 write('THIS IS');
 50 call (osbyte,0,0,0)
 60 end.

36

When this program is compiled and executed the 'call' instruction will
cause a jump to the location &FFF4 with the A, X and Y registers all
containing the value 0. This causes the version name of the operating
system to be printed, eg

THIS IS
OS 1.20

More advanced users may like to use this statement to call their own
assembler routines, hence combining S-Pascal and machine code
programs.

Note: This is not a standard Pascal library routine but has been added as
an extension to allow access to the machine operating system.

37

9 Operators and expressions
__

9.1 Expressions

An expression is a sequence of constants and identifiers separated by
operators, which has a value of type integer, character or Boolean.

The syntax of an expression can be found in Appendix B.

9.2 Operators

The full list of operators is printed below along with the type or types they
act on and the type they return. Dyadic operators are those which take
two operands, ie they need to operate on or compare two integers,
characters or Booleans to give a result. Monadic operators act on just one
operand.

Dyadic operators
 Operator Types acted on Type returned
 + integer integer
 - integer integer
 * integer integer
 div integer integer
 mod integer integer
 and Boolean Boolean
 or Boolean Boolean

Relational dyadic operators
 Operator Types acted on Type returned
 = integer, character, Boolean Boolean
 <> integer, character, Boolean Boolean
 > integer Boolean
 < integer Boolean
 >= integer Boolean
 <= integer Boolean

Monadic operators
 Operator Types acted on Type returned
 not Boolean Boolean
 - integer integer

38

A brief description of these operators now follows:

Dyadic operators

+ Adds two integers together.

- Subtracts one integer from another.

* Multiplies two integers together.

div Gives the number of times that one integer will divide into

another.

mod Gives the remainder left when one integer is divided by

another.

and Compares two Boolean expressions, returning the value 'true' if

both are 'true', and 'false' if both are 'false' or they are
different

or Compares two Boolean expressions, returning the value 'false'

if both are 'false', and the value 'true' if both are 'true' or they
are different.

Relational dyadic operators

= Compares two integers, characters or Booleans, returning the

value 'true' if they are the same, and 'false' if not.

<> Compares two integers, characters or Booleans, returning the

value 'true' if they are different, and 'false' if they are both the
same.

> Compares two integers, returning the value 'true' if the first is

greater than the second, and 'false' if it is less or they are
equal.

< Compares two integers, returning the value 'true' if the first is

smaller than the second, and 'false' if it is greater or they are
equal.

>= Compares two integers, returning the value 'true' if the first is

greater than or equal to the second, and 'false' if it is smaller.

<= Compares two integers, returning the value 'true' if the first is

less than or equal to the second, and 'false' if it is greater.

39

Monadic operators

not Inverts a Boolean expression, changing the value 'true' into

'false' and the value 'false' into 'true'.

- Negates the value of an integer.

9.3 Operator precedence

To determine the order in which the constants and identifiers in an
expression are evaluated, operators are given a precedence to show how
binding they are. An operator is said to be more binding than another if it
is always performed first when the two are present in an expression. The
value of the precedence is between 0 and 3; a lower number indicates that
the operator is more binding.

 Operators Precedence
All relational operators 3
'+', '-', 'or' 2
'*', 'div', 'mod', 'and' 1
All monadic operators 0

For example in the case of the expression:

7 + 3 * 2

precedence of '+' = 2
precedence of '*' = 1

Therefore '*' is more binding so the expression is essentially:

7 + (3 * 2)

If the precedence of two operators is found to be equal evaluation then
occurs from left to right, eg

3 > 5 = false

precedence of '>' = 3
precedence of '=' = 3

Therefore the expression is evaluated from left to right so the expression
is essentially:

40

(3 > 5) = false

This will return the value 'true'.

9.4 Function calls

Function calls are evaluated immediately they are required, eg

function f (x : integer) : integer;
 begin
 a := a + 1;
 f := x + 2
 end;

If this is called as follows:

a := 4;
y := f (1) + a * 2

then 'y' will become 13.

If, however, it is called in the reverse order:

a := 4;
y := a * 2 + f (1)

then 'y' will become 11.

The example above has been included to illustrate the effects of using
functions which alter variables other than those declared in the block of
the function. As can be seen great care is needed when this is done since
the order in which the function call and other expressions are evaluated
affects the final result. In general it is bad programming style to do this
because of the side effects which can occur.

When a function is called its parameters are evaluated from left to right
before the body of the function is executed.

Note that division by zero or numeric overflow will give errors at run-time.

41

10 Error handling
__

10.1 Syntax errors

All syntax errors are handled during the first pass of the compilation. A
single error will cause the compilation to fail. The line on which the error is
detected will be printed, together with an arrow pointing to the
approximate position of the error. This arrow will either point directly to
the position or to a point beyond the error, since it corresponds to the part
of the program the compiler was analysing when it decided that it was not
able to proceed.

In the version for the BBC Microcomputer the actual error will be stated
after this, eg

Error found near 'write' in:-
100 if x = 0 write ('zero')
 ↑
then expected

In the version for the Acorn Electron an error number will be printed
instead of the error message. A reference card is included in the pack
which relates this number to the actual error message, eg

Error 5 found near 'write' in:-
100 if x = 0 write ('zero')
 ^

10.2 Error messages

The error messages which can occur are listed below, along with the most
likely causes for them being obtained. Some of the messages are given in
upper case, this indicates that the error is not due to a syntax mistake by
the programmer but occurs because of the space limitations imposed by
the compiler.

Error number 1 - := expected
This message is obtained when an assignment statement was expected.
The most common cause is using '=' instead of ':=' when assigning values
to a variable.

42

Error number 2 - end expected
This occurs when the word 'end' has been omitted from the end of a
compound statement or 'case' statement. Another common cause is when
a semicolon is missed out between statements; since when the compiler
has dealt with the first statement it expects there to be either a semicolon
followed by another statement or the word 'end'.

Error number 3 - to expected
This applies to errors in a 'for' statement. It occurs when the word 'to'
has been missed out or sometimes when the expression preceding it is
malformed.

Error number 4 - do expected
This applies to errors in a 'for' statement or 'while' statement. It occurs
when the word 'do' has been missed out completely or sometimes when
the expression preceding it is malformed.

Error number 5 - then expected
This applies to errors in an 'if' statement. It occurs when the word 'then'
has been missed out or sometimes when the expression preceding it is
malformed.

Error number 6 - wrong no. args
This occurs when a call of a procedure or function is made and it is given e
different number of arguments from the number with which it is defined.

Error number 7- file not allowed
This applies to errors in the initial parameter list. The only two files
allowed are 'input' and 'output'.

Error number 8 - file used twice
This applies to errors in the initial parameter list. The files 'input' and
'output' should each appear at most once.

Error number 9 - Assignment to const
This occurs if a constant identifier has been used on the left-hand side on
an assignment statement since the value of a constant cannot be altered
in a program.

Error number 10- output file not declared
This applies to errors in the initial parameter list. All programs must
declare 'output'.

43

Error number 11 - <punctuation> expected
The actual item of punctuation which is missing is printed when this
message is given. This applies to both the BBC Microcomputer and Acorn
Electron versions. The error occurs when the compiler is expecting some
punctuation, ie a colon, semicolon, comma, full stop, bracket or single
quote.

Error number 12 - until expected
This applies to errors in a 'repeat' statement. It occurs when the word
'until' has been missed out or when a semicolon has been missed out
between the statements inside the 'repeat...until' loop.

Error number 13 - program expected
This occurs when the first word of the program being compiled is not
'program'.

Error number 14 - Bad type
This occurs when an attempt has been made to declare a variable to be of
a type other than 'integer', 'char', 'boolean' or 'array'. Normally this occurs
because the word has been misspelt.

Error number 15 - identifier expected
This occurs when the compiler is trying to analyse an assignment
statement and expected an identifier but didn't find one. Alternatively it
will occur when the program hasn't been assigned a name.

Error number 16 - PROC/ARRAY SPACE
This occurs when the compiler has run out of work space in which to store
information about user-defined procedures or arrays. The number of
procedures which may be defined depends upon the number of
parameters associated with each one, and the number of arrays depends
upon the number of dimensions each one has.

Error number 17 - operator expected
This occurs when the compiler is trying to analyse an expression and
expected an operator but didn't find one.

Error number 18 - Type mismatch
This occurs when a variable identifier has been assigned a value with a
type other than the one with which it was defined.

Error number 19 - Bracket expected
This occurs when an unequal number of left-hand and right-hand brackets
has been used, or when brackets are required but not used.

44

Error number 20 - TOO MANY VARS
This occurs when the compiler has run out of room in which to store the
names of variables. Up to 30 are allowed to be in scope at any time.

Error number 21- STACK FULL
This occurs when the compiler has run out of stack space. This is normally
due to the use of deeply nested brackets since the program uses a
recursive method to analyse the syntax of expressions etc.

Error number 22 - structure error
This occurs if a full stop is used in the middle of a program instead of after
the final 'end'; alternatively it can occur if the compiler becomes
corrupted.

Error number 23 - wrong no. dims
This occurs when an array variable is used and it is given a different
number of indices from the number with which it was declared.

Error number 24 - TOO MANY LABELS
This occurs when the compiler has run out of space in which to store all
the labels in the object code. This means that it cannot cope with the
source program because it is too large and complicated - 'case'
statements in particular produce a large number of labels when compiled.

Error number 25 - name too long
This occurs when an identifier containing more than 15 characters has
beer used.

Error number 26 - No such func/proc
This occurs when a function or procedure is called but hasn't been
declared as such. Usually this is because the identifier was declared as a
variable rather than a procedure or function.

Error number 27 - No such var
This occurs when the compiler encounters an identifier which has not been
declared. Usually this is because the identifier has been misspelt.

Error number 28 - . . expected
This occurs during an array declaration when the range of the indices has
not been declared properly. The lowest and highest indices must be given
separated by two consecutive full stops.

45

Error number 29 - No such array
This occurs when an array element is used but the array hasn't been
declared. Usually this is because the identifier was declared as a simple
data type rather than an array.

Error number 30 - of expected
This applies to 'case' statements or the declaration of arrays. It occurs
when the word 'of' has been missed out or is preceded by a malformed
identifier.

Error number 31 - Bad array size
This applies to the declaration of arrays. It occurs when the range of the
indices is given the wrong way round, ie the highest value rather than the
lowest one is stated first.

Error number 32 - input file not declared
This applies to errors in the initial parameter list. Any program which
attempts to use the library routine 'readln' must declare 'input' in the
program heading.

Error number 33 - reserved word used
This occurs during the declaration part of the program if an attempt is
made to use a reserved word as an identifier.

Error number 34 - name already used
This occurs during the declaration part of the program if the same
identifier is used for two different entities when they would both have the
same scope.

10.3 Other compile-time errors

Compiler corrupted
This message means that the amount of machine code generated by the
source program is so great that it has filled the space allocated for it and
started writing over the space which was occupied by the compiler, hence
corrupting it. In this case the compiler will need to be reloaded and the
source program will have to be made simpler so that it generates less
object code.

10.4 Run-time errors

Numeric overflow

46

This occurs when a calculation has produced a result which is outside the
range -32768 to +32767.

Div by zero
This occurs when a calculation has tried to divide a number by zero.

Index too high
This occurs when the value of an array index exceeds the upper limit
specified in the array declaration.

Index too low
This occurs when the value of an array index is less than the lower limit
specified in the array declaration.

Escape
This occurs when ESCAPE is pressed.

Bad digit
This occurs when 'read' or 'readln' is used with an integer parameter
and a non-valid character is found in the input line where a digit or a
space is expected

Bad case index
This occurs when the value of a case subject expression is not matched by
any of the case labels.

47

11 The memory map
__

11.1 Memory allocation for the BBC Microcomputer

The memory of the machine is organised as follows:

&8000 &8000
 MODE 7 screen display
&7C00

 Text of source program 20K bytes
 used for
&6F00 high resolution
 Compiler work space graphics

&6000

 Compiler
 &3000
&2F00

 Object code

&1F00
 Run-time library
&1B00
 File systems and
 run-time stack
&D00
 * commands
&C00

 Operating
 system etc

Note that the use of high resolution graphics will corrupt the compiler and
the source program. Graphics can be used but the compiler and source
program will have to be reloaded at every stage.

48

11.2 Memory allocation for the Acorn Electron

The memory of the machine is organised as follows:

&8000 &8000

 MODE 6 screen display

&6000

 Text of source program 20K Bytes

&5B00 used for
 high resolution
 Compiler work space graphics

&4B00

 Compiler &3000

&1F00
 Run-time library

 Object code

&1100
 Run-time stack
&E00
 Operating system
&D00
 * commands
&C00

 Operating system etc

Note that the use of high resolution graphics will corrupt the compiler and
the source program. Graphics can be used but the compiler and source
program will have to be reloaded at every stage.

49

Appendix A
__

Example programs

This section gives the listings of the example programs contained in the
Acornsoft S-Pascal pack. In addition a brief description of each program is
given; the later ones demonstrate the use of graphics with the S-Pascal
compiler. Note that when these programs are executed, changing into the
graphics mode corrupts the compiler which is normally situated in this part
of memory. Hence after they have been run the compiler will need to be
reloaded. Alternatively the machine code generated by these programs can
be saved so that they can be executed by means of a *RUN command
without the compiler being present. For details on how to do this see
section 2.9 (Saving the object code on the BBC Microcomputer) or 2.10
(Saving the object code on the Acorn Electron).

Note the layout of the programs. The indenting of the text and the
splitting of the different blocks etc is not necessary, but it makes the
programs much easier to read and understand. To put comments in the
programs they should be enclosed in curly brackets and then these pieces
of text will be ignored when the program is compiled.

Example 1- E.FIB

This first example calculates the first 21 Fibonacci numbers. Each number
in this sequence is the sum of the two numbers preceding it. In addition
the values of Fib(0) and Fib(1) are both set to be 1. Hence the sequence
is:

1 1 2 3 5 8 ...

 10 program fibonacci (output);
 20
 30 var n,m : integer;
 40
 50 function fib(x : integer) : integer;
 60 begin
 70 if x <= 1
 80 then fib := 1
 90 else fib := fib(x-2) + fib(x-1)
100 end;
110

50

120 begin
130 for m := 0 to 20 do
140 begin
150 n := fib(m);
160 write('Fib(',m,') is ');
170 writeln(n)
180 end
190
200 end.

The main work of the program is performed by the function 'fib'. This sets
fib(x) to be 1 if 'x' is less than or equal to 1, and to equal the sum of the
previous two numbers in the sequence if 'x' is greater than 1.

The 'action' part of the program starts on line 120. Here the function 'fib' is
called with each number in turn between 0 and 20, and the value returned
is then printed out.

Example 2- E.BASES

This program allows numbers to be entered in any base and converted
into any other base. For example to convert a number from decimal (base
10) to binary (base 2) type 10 when asked for the input base and press
RETURN. Then the program will ask you for the number to be converted -
enter any number, eg 20 followed by a space and press RETURN. Finally,
enter the base in which you want the number displayed (in this example it
is 2) and again press RETURN. The decimal number 20 will then be printed
out in binary notation, ie 10100.

Note that the program will not work if you enter bases less than 2. Bases
higher than 10 are allowed - for example with hexadecimal the extra
numerals are represented by the letters A, B, C .

 10 program bases (input,output);
 20
 30 var khar : char;
 40 number,numeral,radix : integer;
 50
 60 function nextch : char;
 70 var ch :char;
 80 begin
 90 read(ch);
100 if ord(ch) > ord('9')
110 then ch:=chr(ord(ch)-7);
120 nextch:=ch
130 end;

51

140
150 procedure wrbas(numb,base:integer);
160 begin
170 if numb >= base
180 then wrbas(numb div base,base);
190 numb:=numb mod base;
200 if numb > 9
210 then write(chr(numb+ord('@')-9))
220 else write(chr(numb+ord('0')))
230 end;
240
250 begin
260 repeat
270 write('Choose input base --->');
280 readln(radix);
290 write('Enter number >');
300 khar:=nextch;
310 number:=0;
320
330 repeat
340 number:number*radix;
350 numeral:=ord(khar)-ord('0');
360 if numeral>=radix
370 then write('error')
380 else number:=number+numeral;
390 khar:=nextch
400 until ord(khar)=32;
410
420 writeln;
430 write('Choose output base -->');
440 readln(radix);
450 write('Value is : ');
460 wrbas(number, radix);
470 writeln;
480
490 until false
500
510 end.

The program contains one function, 'nextch', and one procedure, 'wrbas'.
The function is used to read in the next character or number from the
keyboard and convert it from the character representation '0' . . . '9' and
'A' . . .'Z' etc into a numerical value. Thus 'A' becomes the decimal value
10. The procedure prints out a number in any given base (except 'silly'
bases less than 2). It uses a standard trick to do this. It calls itself re
cursively, passing on the high part of the number each time until only a
single 'digit' is left. This is then printed and the sequence of calls 'unwinds',

52

printing the appropriate 'digit' at each stage. Thus the highest 'digit' is
printed first followed by the less significant 'digits'.

The main body of the program is in three parts. These respectively select
the input base, read in numbers and print them in the chosen output base.

Example 3- E.RANDOM

This third example is a short program for generating 'random' numbers.
Although the numbers are generated according to a sequence they are
suitable for most applications which need a random element.

 10 program random (output);
 20
 30 var seed : integer;
 40
 50 function rnd(n : integer) : integer;
 60 begin
 70 seed := (seed + 49) mod 256;
 80 rnd := seed mod n
 90 end;
100
110 begin
120 seed := 10;
130 repeat
140 writeln(rnd(100))
150 until false
160 end.

The only function contained in this program returns a 'random' value. The
action part of the program causes random numbers to be printed out,
each on a new line. These numbers will be printed out indefinitely since
the 'until' expression will never return the value 'true'.

The range of numbers generated is determined by the parameter given to
the function 'rnd'. This is the value of 'n' and the numbers lie in the range
0 to n-i. In this example 'n' was given the value 100.

Example 4- E.HANOI

This program illustrates how graphics may be used with S-Pascal
programs. In this example the computer solves the classic 'Tower of Hanoi'
problem in which there is a board with three pegs in it. A pile of discs is
stacked up on one peg in order, smallest at the top and largest at the

53

bottom. The whole pile has to be moved onto one of the other pegs so
that the discs are stacked in the same way. This is to be done by moving
one disc at a time, placing it either on an empty peg or on top of a disc
which is larger than itself.

 10 program hanoi (input,output);
 20
 30 var n,j : integer
 40 one,two,three : integer;
 50
 60 procedure up(x:integer);
 70 begin
 80 case x of
 90 (1): one:=one+40;
100 (2): two:=two+40;
110 (3): three:=three+40
120 end
130 end;
140
150 procedure down(x:integer);
160 begin
170 case x of
180 (1): one:=one-40;
190 (2): two:=two-40;
200 (3): three:=three-40
210 end
220 end;
230
240 function height(x:integer):integer;
250 begin
260 case x of
270 (1): height:=one;
280 (2): height:=two;
290 (3): height:=three
300 end
310 end;
320
330 procedure bytes(x:integer);
340 begin
350 write(chr(x mod 256));
360 write(chr(x div 256))
370 end;
380
390 procedure box(col,x,y,size:integer);
400 begin
410 write(chr(18),chr(0),chr(col+128));
420 write(chr(24));
430 bytes(x-size);

54

440 bytes(y);
450 bytes(x+size);
460 bytes(y+20);
470 write(chr(16))
480 end;
490
500 procedure move(n,s,e:integer);
510 begin
520 box(0,s*400-200,height(s),n*16);
530 down(s);up(e);
540 box(n mod 7 +l,e*400-200,height(e),n*16)
550 end;
560
570 procedure hanoi (a,b,c,d:integer);
580 begin
590 if a<>0
600 then begin
610 hanoi(a-1,b,d,c);
620 move(a,b,c);
630 hanoi(a-1,d,c,b)
640 end
650 end;
660
670 begin {Main program}
680 readln(n);
690 write(chr(22),chr(2));
700 j:=n;
710
720 while j>0 do
730 begin
740 box(j mod 7 +1,200,(n-j+1)*40,j*16);
750 j:=j-1
760 end;
770
780 one:=n*40;two:=0;three:=0;
790
800 hanoi(n,1,2,3)
810
820 end. {Main program}

The procedures and functions up to line 550 are used to obtain the graphic
displays.

The procedure 'up' increments the count of the number of discs on pile 'x'
and the procedure 'down' decrements the count. The function 'height'
returns the height of column 'x'.

55

The procedure 'bytes' sends the bytes of 'x' to the VDU drivers, with the
low byte sent first and the high byte second.

The procedure 'box' draws a disc at the specified x- and y- coordinates.
The size of the box is specified by 'size' and the colour it is to be drawn in
by 'col'. The procedure is also used to delete discs that have been moved
elsewhere by giving the 'col' parameter the value 0 so that the disc is
drawn in black.

The procedure 'move' arranges for a disc to be moved from pile 's' to pile
'e' by calling the relevant procedures described above with the necessary
parameters.

The other procedure 'hanoi' determines which disc should be moved and
where it should be moved to.

The action part of the program inputs a value for the number of discs the
user wants to start with. It then initialises everything by putting the screen
into MODE 2, drawing a pile of that number of discs on the left-hand peg
and initialising the heights of the piles. It then calls the procedure 'hanoi'
to solve the problem and display the solution.

Example 5 - E.DIAMND1

This second graphics example program draws out a series of diamonds,
each inside the others, by dividing each diamond into four others at every
stage. Hence the diamonds become smaller and smaller until they
eventually merge together.

 10 program diamond (input,output);
 20
 30 var m : integer;
 40
 50 procedure plot(p,x,y : integer);
 60 begin
 70 write(chr(25),chr(p));
 80 write(chr(x mod 256),chr(x div 256));
 90 write(chr(y mod 256),chr(y div 256))
100 end;
110
120 procedure square(x,y,s : integer);
130 begin
140 plot(4,x+s,y);
150 plot(5,x,y+s);
160 plot(5,x-s,y);
170 plot(5,x,y-s);

56

180 plot(5,x+s,y)
190 end;
200
210 procedure diamond(x,y,s : integer);
220 begin
230 if s >=m
240 then begin
250 s:=s div 2;
260 diamond(x+s,y,s);
270 diamond(x-s,y,s);
280 diamond(x,y-s,s);
290 diamond(x,y+s,s);
300 square(x,y,s)
310 end
320 end;
330
340 begin
350 write(chr(22),chr(0));
360 m:=400;
370
380 repeat
390 diamond(640,512,512);
400 write(chr(18),chr(0),chr(1));
410 m:=m div 2
420 until m<4;
450 end.

The procedure 'square' draws a square centred at (x,y) by moving to the
position of one corner and drawing the four lines which make up the
square.

The procedure 'diamond' then draws squares of half the size centred on its
corners. Similarly each of these squares has four squares of half the size
again on its corners. This continues until the square of minimum size is
reached.

The action part of the program puts the screen into MODE 0, sets the
initial size of the diamond and where it is to be drawn. Then it repeatedly
causes more diamonds to be drawn within the others until the size reaches
the minimum value of four.

Example 6 - E.DIAMIND2

This program is similar to the one in example 5, however it works in a
different way.

57

 10 program diamond2 (input,output);
 20
 30 var m : integer;
 40 ch : char;
 50 procedure plot(p,x,y : integer);
 60 begin
 70 write(chr(25),chr(p));
 80 write(chr(x mod 256),chr(x div 256));
 90 write(chr(y mod 256),chr(y div 256))
100 end;
110
120 procedure du(d,x,y,s :integer);
130 begin
140 if s >= m
150 then begin
160 plot(4,x,y-s);
170 plot(5,x,y+s);
180 du(0,x,y+s,s div 2);
190 du(0,x,y-s,s div 2);
200 plot(4,x-s,y);
210 plot(5,x+s,y);
220 du(1,x+s,y,s div 2);
230 du(1,x-s,y,s div 2)
240 end
250 end;
260
270 begin
280 repeat
290 write(chr(22),chr(0));
300 write('size ');
310 readln(m);
320 if m<2 then write('silly')
330 else du(0,640,512,256);
340 readln(ch);
350 until ch <> 'y'
360 end.

Example 7- E.MOIRE

This final example program draws out a high resolution Moire pattern.

 10 program moire (input,output);
 20
 30 var n,m,x,y : integer;
 40
 50 procedure mode(x:integer);
 60 begin
 70 write(chr(22));

58

 80 write(chr(x))
 90 end;
100
110 procedure plot(p,x,y:integer);
120 begin
130 write(chr(25),chr(p));
140 write(chr(x mod 256));
150 write(chr(x div 256));
160 write(chr(y mod 256));
170 write(chr(y div 256))
180 end;
190
200 begin
210
220 mode(0);
230
240 n:=0;
250 m:=0;
260 x:=1280;
270 y:=1024;
280
290 while n<1280 do
300 begin
310 plot(4,n,m);
320 plot(5,x,y);
330 n:=n+12;
340 x:=x-12
350 end;
360
370 n:=0;
380 x:=1280;
390
400 while m<1024 do
410 begin
420 plot(4,n,m);
430 plot(5,x,y);
440 m:=m+12;
450 y:=y-12
460 end
470 end.

The action part of the program starts with the coordinates of the bottom
left and top right-hand points of the screen and draws a line joining them.
Then the x-coordinates are altered and a new line is drawn. This continues
until the coordinates reach the other edge. This is repeated with the y-
coordinates being altered instead of the x-coordinates so that the whole
screen is covered.

The pattern obtained is due to the overlapping of the lines.

59

Appendix B
__

Syntax diagrams

Program

Block .

Identifier () ; Identifier

,

program

Block

const Identifier = Constant

;

,

Identifier Type:

;

var

;; Block Simple type

procedure

function

begin

Identifier

Identifier

Statement

Parameter list

Parameter list :

;

end

60

Statement

Variable

Function identifier

Procedure identifier

:=

(

begin Statement

;

if

while

repeat

for

case

:

Statement

Case label list

Expression

Expression

Statement

;

:= Expression

Expression

Expression

do

of

Statement

end

to

downto

Expression

Expression

,

end

)

Statementthen

else

do

until Expression

Statement

Statement

Identifier

;

61

Expression

Simple expression

= < > <> <= >=

Simple expression

Simple expression

+

- + or -

Term

Term

Term

and moddiv*

Factor

Factor

62

Factor

Unsigned constant

Variable

Function identifier ()

,

Expression

Factor not

)(Expression

Simple type

integer

boolean

char

63

Type

Simple type

array [] of Simple type

Constant .. Constant

,

Variable

Identifier

[

,

Expression]

Parameter list

(

,

:)

;

Identifier Simple type

Function identifier

Identifier

64

Identifier

Letter

Letter

Digit

Letter
Any lower case letter.

Constant

+

-

Constant identifier

Unsigned number

'Character'

Character
Any printable character.

Unsigned constant

Constant identifier

Unsigned number

'Character'

65

Unsigned number

Digit

& Hexadecimal number

Digit
Any decimal digit 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Hexadecimal number

Hexadecimal digit

Hexadecimal digit
Any hexadecimal digit 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.

Case label list

,

Constant)(

66

Index
__

() (curved brackets) 13, 27 [] (square brackets) 16

* 38, 39, 40 { } (curly brackets) 50
* commands 8-12
*COMPILE 10 A
*EDIT 10 Acorn Electron
*GO 10, 22 error messages on 42-47
*NEW 9,11 memory allocation for 49
*RUN 50 Acorn Electron User Guide 22
*SAVE 11 and 38, 39, 40
 array
+ 38, 39, 40 element 16, 17, 18
 index 16, 17, 18, 46
, (comma) arrays
 separating identifiers 15, 27 multi-dimensional 18
 separating index ranges 17 one-dimensional 16, 17
 ASCII code 23
- (minus sign) 38, 39, 40 assignment statement 16-19

. (full stop) B
 indicates range of values 17 BASIC
 terminates program 13 editor 6, 9
 S-Pascal differences 6, 21, 22
:= 17 BBC Microcomputer
 error messages on 42-47
; (semicolon) memory allocation for 48
 separates statements 13, 14, 43 BBC Microcomputer User Guide 22
 terminates identifiers 15, 27 begin 13, 14, 25
 binding
< 38, 39, 40 definition of 40
<= 38, 39, 40 block
<> as command 38, 39, 40 as limit of scope 28, 31-33
 (angled brackets) 19 definition of 14, 60
 Boolean/boolean 15-16
= as operator 38, 39, 40 values 16
 declaring constant's value 18 values as indices 17
 BREAK
> 38, 39, 40 use of 11-12
>= 38, 39, 40

67

C of a constant 13, 16
call 36 of a function 13, 29
case 24-25 of a procedure 13, 14, 27
case, upper/lower 8, 13, 15, 42 of a variable 13, 14, 15-16
case label list 24-25 part of a program 13, 14
cassette declarations
 loading from 8 order of 18
char 15 digit 66
character disc
 definition of 16, 65 loading from 9
chr 36 div 38, 39, 40
commands division
 *COMPILE 10 by zero 41, 46
 *EDIT 10 dyadic operators 38, 39
 *GO 10, 12
 *NEW 9, 11 E
 *RUN 50 end 13, 14, 24, 25
 *SAVE 11 error messages 10, 42-47
 LOAD 10 errors
 SAVE 11 compile-time 42-47
comments run-time 47
 within programs 50 syntax 42-46
compiler ESCAPE 34
 corruption of 12, 46-49 expression
 definition of 6-7 definition of 19, 38, 62
 effect of graphics modes on 12, external routines
 46-49 calling from S-Pascal 36-37
compound statement
 definition of 14, 25 F
 use of 21, 26 filename 10-11
const 16 for 22-23
constants 13, 15, 16, 18, 65 functions
control calling 25, 29-30, 41
 definition of 19 declaring 13, 29
control variable 22, 23 library 25, 29, 30
corruption recursive 30
 by graphics modes 12, 48, 49, 50
 of compiler 12, 47, 48, 49, 50 G
 of source program 12, 48, 49 GOTO 6, 25
 graphics modes 12, 48, 49, 50
D
data structures 16-18 H
data types 15-16 hexadecimal
declaration digit 16, 66
 of an array 16-18 number 16, 25, 66

68

 value 16 object code 8
 executing 10, 50
I saving on the Acorn
identifier 13, 15, 27, 64, 65 Electron 11
if 20-21 saving on the BBC
increment Microcomputer 11
 definition of 23 one-dimensional arrays 16-17
indices 16, 17, 18 operator precedence 40
input routines 35-36 operators 38-40
integer 15, 16 dyadic 38, 39
interpreters 6, 7 monadic 39, 40
 or 38, 39, 40
K ord 36
keyword output routines 35-36
 definition of 13
 position in statements 19 P
 parameters 13, 25, 27-28
L definition of 64
layout of programs 50 passing 28-29
library routines 25, 27, 35-37 Pascal 6, 16, 25, 37
LOAD 10 procedure 14, 27-28
local variables 28, 33-34 procedures
loop 19, 21, 23, 24 calling 25, 28
 empty 26 declaring 13, 14, 27
 library 25, 27, 35, 36
M scope of 32-33
machine code program 13
 instruction 6 programs
memory action parts of 13, 14
 allocation for the Acorn declaration parts of 13, 14
 Electron 49 definition of 13, 60
 allocation for the BBC example 50-59
 Microcomputer 48 structure of 13
mod 38, 39, 40
monadic operators 39, 40 R
multi-dimensional arrays 18 read 35
 readln 26, 33, 35
N recursion 30
nesting reference card 42
 definition of 20 repeat 23-24
not 39, 40 routines
null statement 26 external 36-37
numeric overflow 41, 46 input 35-36
 library 25, 27, 35-37
O output 35-36

69

 type conversion 36 W
 while 21-22
S write 25, 27, 29, 36
SAVE 11 writeln 27, 33, 36
scope
 definition of 31-32 Z
 of a local variable 28 zero
 of a parameter 28 division by 41, 46
source programs
 corruption of 12, 48, 49
 deleting 11
 editing 10
 effect of graphics modes on 48-49
 loading 10
 saving 11
statement
 assignment 19
 case 24
 compound 25
 for 22
 if 20
 null 26
 procedure 25, 28
 repeat 23-24
 while 21-22
syntax
 definition of 19
 diagrams 60-66
 errors 10, 42-46

T
tokenised number 25
tokens 25
type
 definition of 64
type conversion routines 36
type mismatch 16

V
var 15
variables
 control 22, 23
 declaring 13, 14, 15-16
 definition of 64
 local 28, 33-34

70

Review (Electron User)
PASCAL is the latest in a series of programming languages from
Acornsoft. It arose from investigations into possible developments
resulting from the inclusion of data structuring facilities in an ALGOL-
60 like language.

It was designed around 1970 mainly by Professor Niklaus Wirth working at
the Institute for Informatics in Zurich, but also benefited by the
inclusion of some of the ideas of C. A. R. Hoare who was also working on
data structuring facilities in programming languages.

He published his language in 1971 and named it after the great
seventeenth century French philosopher Blaise Pascal, who invented one
of the earliest known calculators.

Two years later, in 1973, Hoare and Wirth attempted a formal definition
of the language in response to user experience to shed light on areas of
uncertainty. This led to a revision and extension of the original
language.

As with all computer languages, Pascal was designed for a specific
purpose. Niklaus Wirth's main objective was a language better suited to
teaching programming than any existing language at the time. He was
successful in his aims and it soon became popular as a teaching
language.

Very quickly, user groups sprang up in several countries to exchange
information and ideas on Pascal and the language was adopted by the
University of California, San Diego in 1973/4 as their main teaching
language. UCSD were responsible for a implementing Pascal for a wide
range of computers.

One of the main reasons for Pascal catching on so quickly is that it is
concise - the rules of grammar can be written down on just four or five
pages.

Pascal is fairly simple to learn although complete beginners may have
trouble initially as the knowledge required to write your first program
is greater than for Basic.

Pascal is a highly structured language with a rigid format that the
programmer is required to adhere to. Everything is laid out so neatly
and logically that it is difficult to go wrong. It encourages a style of
programming in which programs are built up step by step from small well
defined procedures.

All programs start with the word 'program' followed by the name of the
program. All the constants and variables used must be declared after the
title, plus their type - for example, integer. Any procedures used are
defined following the variables and constants and the action part of the
program commences with 'begin' and finishes with 'end'.

Pascal programs are very readable, being almost self documenting and
needing very few comments. The program flow is easy to follow and the
structure clear; making alterations, improvements and debugging very
simple.

Lisp is quite interesting, Forth is fast and powerful, Basic just a
Mickey Mouse toy for kids - but Pascal is a real programmer's language
and a delight to use. Pascal is a complied language, not an interpreted
one like Basic which means that Pascal programs run many times faster
than their Basic equivalents.

There are two popular ways of implementing Pascal, each with its own

71

advantages. Either the text of the source code can be decompiled to pure
machine code - which makes it very fast but specific to that machine -
or it can be compiled to P-Code which is then interpreted when run, not
unlike Forth.

This is slower but more easily transferred to other machines.
Acornsoft's S-Pascal is not a full blown version but contains a subset
of Pascal to teach the language and provide an introduction to
structured programming. It is designed for people who know little or
nothing about Pascal but are familiar with Basic. It allows short
programs of up to 1.25k to be written, compiled and executed.

There are several important differences between this latest language
from Acornsoft and the previous ones. The first is noticed immediately
on opening the box - which is slightly larger than normal. Inside is the
cassette and manual whereas with the other languages, the manual had to
be purchased separately on top of the cassette. This makes S-PASCAL some
seven pounds cheaper than the others.

The second difference is noticed when S-PASCAL is loaded and totally
confused me at first - it wouldn't have if I'd read the instructions,
but who does? When loading is complete, after about five minutes, the
Electron is still in Basic. The loader can be listed and Basic programs
typed in and run. I thought that it hadn't loaded and wondered where the
Pascal program was.

S-PASCAL is a compiler only - not an interpreter - so commands cannot be
entered in direct mode. What you get are several new * commands to
enable you to write, compile and run Pascal programs.

To type in a Pascal program *NEW is entered. Programs can be typed in,
edited and listed as with Basic, but using lower case characters so as
not to confuse the compiler when it is run with Basic keywords which are
stored as tokens.

*COMPILE will activate the compiler producing code which is stored in a
reserved area of memory. It can then be executed with *GO.

Pascal programmers will be disappointed with Acornsoft's S-PASCAL as
there are so many omissions compared to a full implementation and they
will feel very restricted with the subset. However, this is only
designed to be a simple, limited version to give people an insight into
how Pascal works.

Most Pascal reserved words are present with procedures, functions and
arrays being possible, and all the mathematical operators are available.
However, hardly any of the predefined functions or procedures have been
included such as SIN, COS and ABS.

Variables can be character, Boolean or integer, but not real, which
explains why many of the functions are not available.

CALL has been added - not a standard Pascal word - to allow machine code
routines and the operating system to be accessed from within Pascal.

Acornsoft have chosen to compile the source text directly to machine
code instead of P-Code as with many implementations.

The code is placed at &1100 and there is enough room for about 2.5k. The
source text can be saved in the same way as basic and the object code
produced, saved with *SAVE.

Compiling the source text directly to machine code has several
advantages over compiling to P-Code. After compiling, the compiler -

72

actually a Basic program 11k long plus 4k workspace, residing at &1F00 -
is no longer needed.

This means the object code can be *RUN on its own, or the compiler space
used for a Basic program which calls the machine code, or high
resolution graphics - for example Mode 0.

Instead of using a Basic compiler program, why not write in Pascal, a
far superior language and compile that? A Pascal compiler is far more
powerful than a Basic equivalent, with far fewer restrictions. Can a
Basic compiler cope with multi-dimensional arrays, procedures and
functions to which parameters are passed and that have local variables?
Acornsoft's S-PASCAL can.

The compiler uses a two pass assembly, printing the mnemonics and object
code each time, and if the printer is enabled, it can be listed. Errors
are spotted on the second pass and the appropriate line listed with an
arrow pointing to the mistake, and a message is printed saying what the
error number is and where it occurred in the line. The error can then be
looked up in the manual or on the reference card supplied.

I was curious to find out just how fast Pascal was. How efficient is the
machine code? So I wrote equivalent - or near enough - programs in
Basic, Forth, Lisp, Pascal and assembly language. It simply involved
setting a variable to zero, then going round a loop 30,000 times,
incrementing the variable by one each time. The speed test results are
shown below:

Assembler 1.4 seconds
Pascal 11.3 seconds
Forth 12.5 seconds
Basic 34.9 seconds
Lisp 285.0 seconds

The test showed Pascal to be up to three times as fast as Basic and
marginally faster than Forth, which is generally reckoned to be a fast
language itself. The test also highlighted the incredible inefficiency
of the code produced - Pascal taking some eight times longer than the
specifically written machine code routine.

This is not a criticism of S-PASCAL but is just a fact of life.
Compilers cannot hope to be as efficient as a purpose written machine
code program.

Acornsoft has achieved their main objective of producing a simple subset
of Pascal for teaching the language and structured programming. The
compiler is straightforward to use and the manual is short - 67 pages -
but clear, and covers every aspect in detail.

The tape, and manual, contain seven demonstration programs showing what
the system is capable of, which is quite a lot.

S-PASCAL has a further function as a tool for writing short machine code
routines which can be *RUN or called from within a Basic program. This
is probably more useful to the experienced programmer.

Programmers are strongly recommended to look at Pascal - especially
those writing so called 'spaghetti' programs full of GOTOs. It will
improve their structure no end. If you already write structured
programs, then learning Pascal will be a doddle.

S-PASCAL is a welcome addition to the list of programming languages for
the Electron, and if they ever bring out a full blown version on a ROM
Cartridge you can bet that I will be one of the first to get it.

Roland Waddilove, ELECTRON USER 2. 6

73

	SLL08_S_PASCAL.doc
	SLL08_REFERENCE_A.jpg
	SLL08_REFERENCE_B.jpg

