
1

BEEBUGSOFT

TOOLKIT

BEEBUG UTILITY ROM
FOR THE BBC MICRO MODEL B

By Mark Tilley

CONTENTS

1. INTRODUCTION

2

2. STARTING
INSTRUCTIONS

3

3. TOOLKIT COMMANDS

4

4. MEMORY USAGE

30

5. COMMAND SUMMARY

31

Copyright © 1983, BEEBUG Publications Ltd.
All rights reserved. No part of this manual may be reproduced by any means without the
prior consent of the copyright holder.

The accompanying computer program TOOLKIT, which is supplied in EPROM, is also
subject to copyright. No part of TOOLKIT shall be copied for any purpose.
Published by BEEBUG publications Ltd.,
PO BOX 50, St Albans, Herts, England.

2

BEEBUGSOFT

1. INTRODUCTION

TOOLKIT is a set of utilities held in ROM, for use in conjunction with Basic. It will not
work if Basic is not present.

The commands are all entered with an asterisk ‘*’ at the start, in the same way as the built in
operating system commands. Most commands can be entered directly without a parameter,
for example *EDIT. Some take an optional parameter, e.g. *EDIT 100. A few have a
compulsory parameter, such as *MERGE which requires a filename to be specified.

Commands may be entered in upper of lower case; TOOLKIT does not differentiate between
the two. They may also be abbreviated in the usual way by giving the first letter, or first few
letters, followed by a full stop. The minimum abbreviation required will depend on the two
other ROMs and the positioning of the TOOLKIT ROM in relation to them.

It may be that other ROMs have commands with names the same as TOOLKIT commands
(for example EDIT and MOVE are quite common). This means that if such a ROM has
higher priority than TOOLKIT it will intercept the command and TOOLKIT will not receive
it. To get around this problem TOOLKIT has a facility for entering the command name in an
alternative form in order to specify explicitly that the command is meant for TOOLKIT.
This is done simply by prefacing the command name with the letter ‘B’ (e.g. *BEDIT,
*BCHECK).

To make use of this facility, TOOLKIT should be located at a lower priority than (ie to the
left of) ROMs with which there is a potential name clash. This allows the other ROM to
accept the full version of the command name, and TOOLKIT the version prefaced with ‘B’.

3

BEEBUGSOFT

2. STARTING INSTRUCTION

(i) Fitting

TOOLKIT is supplied in an 8k EPROM, which should be fitted in one of the “Paged ROM”
sockets in the computer. It should be installed to the left of the Basic ROM. See separate
fitting sheet for full installation instructions.

(ii) Using TOOLKIT

Once installed, all the commands in TOOLKIT are available immediately whenever the
computer is switched on. TOOLKIT has a facility for enhanced error reporting. In order to
use this the *ON command must be issued. When in teletext mode, coloured displays will be
used by TOOLKIT for greater clarity. The colour is turned off by the command *OFF.

(iii) RESPONSE TO *HELP

When *HELP is entered with no parameters TOOLKIT will display a message similar to:

TOOLKIT 1.00
TOOLKIT
INFO

The number in the first line is the version number, which should be quoted in any
correspondence. The other two lines give the keywords to which TOOLKIT will respond:

*HELP TOOLKIT
gives a list of TOOLKIT commands

*HELP INFO
gives various useful information as follows:

1. The values currently set by *FX3, 4,…12.
2. The values currently set by LISTO, WIDTH and @%.
3. ERR, ERL, and the REPORT error message.
4. The same output as the command *FREE (see below).

Abbreviated forms are recognised here, e.g. *HELP TO., *H.TO., *HELP I.

4

BEEBUGSOFT

3. TOOLKIT COMMANDS

On the following pages there is a detailed description of each command. The syntax for each
command is specified at the top of the section. In these syntax descriptions, items enclosed
in parentheses ‘()’ are optional parameters, others are compulsory. Parameters may be
separated by spaces in all commands; commas may also be used (except for *MEMORY and
*CHECK).

All commands may be used either in direct mode or in a program. Thus it is possible to have
some unusual effects; such as a program renumbering itself whilst running, or even jumping
into the editor and resuming the program when you leave the editor! The results of such uses
of the commands should be regarded as unpredictable, however.

To send the results of a particular command to the printer, simply enable the printer in the
usual way (with Ctrl-B and any necessary *FX calls) before calling the TOOLKIT command.

5

BEEBUGSOFT

*CHECK
Function: Verify file contents
Parameters: <filename> (<address>) (<address> +<number>)

*CHECK will perform a byte-by-byte comparison of memory contents with the contents of a
file (either on cassette or disc). If a byte is found to be different an error message will be
given and no further checking will be done.

The form without the addresses specified will compare the current Basic program (i.e. that of
PAGE) with the file. Otherwise a start and end address in memory can be specified. If no
end address is given the end will be determined by the length of the file. The ‘+’ option may
be used for the end address in the same way as it is used in *LOAD and *SAVE. All
numbers are in hexadecimal.

If the end of the file is reached before the end of the specified memory range or before the end
of a Basic program, or if no end address was given, a message ‘End of file at hhhh’ will be
displayed, the hex number being the byte in memory corresponding to the last byte of the file.

If the file is longer than the memory range no error message will be given, so it is possible to
check the contents of the first part of a file only.

Examples:
*CHECK PROG
*CHECK PROG 1900
*CHECK data 5000 5300
*CHECK file 2000 +1200

6

BEEBUGSOFT

*CLEAR
Function: Clears variables
Parameters: none

*CLEAR will clear all variable definitions exactly the same way as the Basic statement
‘CLEAR’. Additionally, though, *CLEAR will set each of the static integer variables (i.e.
A% to Z%) to zero.

The integer variables A% to Z% are not assigned any definite value on power up, so it is often
necessary to clear those required at the start of a program. This may also be useful when
running a new program when the variables retain the values set by a previous program.

7

BEEBUGSOFT

*EDIT
Function: Enter screen editor
Parameters: (<line number>)

*EDIT will enter the editor. The command has two forms: if a line number is specified, that
line will be shown first; if no line number is given the first line of the program will be
displayed. On entry to the editor the screen will be cleared and mode 7 display selected.
Then a single line of the program will be displayed with the cursor positioned at the first
character of the line (not that the line numbers may not be edited, and a space is always left
after the line number). The Escape key is used to leave the editor and return to Basic.

MOVING ALONG A LINE
The cursor may then be moved along the line by means of the left and right cursor keys. At
any position in the line any characters typed will be inserted in the line any characters typed
will be inserted into the line, so the line may be edited as required.

Pressing the left or right cursor keys and Shift at the same time causes the cursor to move to
the beginning or the end of the line.
Not that in this context a ‘line’ refers to a complete Basic program line which may occupy
several lines on the screen.

INSERT OR OVERWRITE
When the editor is entered it will be in ‘insert mode’ and will function as described above.
However, you may wish to overwrite characters in the line instead of inserting. This is done
by switching to ‘overwrite mode’, by pressing the Tab key. When Tab is pressed a soft beep
will be sounded as a warning, and an asterisk (*) will be displayed next to the line number.
This is simply to let you know that you are in ‘overwrite mode’. To revert to ‘insert mode’
press Tab again; the asterisk will disappear. Note that Shift cursor-right will position the
cursor past the last character of the line and cause ‘insert mode’ to be selected. This is then
used for adding to the end of a line.

8

BEEBUGSOFT

DELETING
The Delete key will always function as normal, i.e. the cursor is moved back one space and
the character there deleted. While editing it is often necessary to delete the character at the
position of the cursor, and move the rest of the line back one space. This is achieved by
pressing Shift and Delete together. If every character of a line is deleted the complete line
will be deleted when you move to another line.

MOVING TO ANOTHER LINE
Any changes made while editing will not be affected in the program until you move off that
line. To move to the next line press either the cursor-down key or Return. In the first case
the cursor will remain at the same position in the next line (unless the next line is shorter in
which case it will be at the end); Return moves the cursor to the beginning of the next line.
The cursor-up key will similarly move to the previous line. Pressing Shift together with
cursor-up or down will move the cursor to the first or last line of the program.

INSERTING LINES
There is a facility to insert new lines into the program. This is done by typing Ctrl and Tab
together. This will cause a line to be added to the program with a line number one higher
than that of the current line. If a line of this number already exists a warning beep will be
sounded and the editor will merely move to that line.

When a line is inserted it will consist of a single space. This may then of course be edited in
the normal way, but if no changes are made the single blank line will remain in the program.
To cancel the effect of Ctrl-Tab press Shift-Delete to delete the space from the line, and move
to the next line.

9

BEEBUGSOFT

LEAVING THE EDITOR
To finish editing press Escape. Note that any changes made to the current line will be
ignored, so after editing a line press Return (for example) before Escape. This means that if
you make a mistake while editing you can, by pressing Escape, cancel the changes made to
the current line.

Summary of *EDIT functions

 <cursor-left> move one space left
 <cursor-right> move one space right
 <cursor-up> move to previous line
 <cursor-down> move to next line
 Return move to start of next line
Shift <cursor-left> move to start of line
Shift <cursor-right> move to end of line and enter insert mode
Shift <cursor-up> move to first line
Shift <cursor-down> move to last line

 Delete backspace and delete
Shift Delete delete current character
 Tab toggle insert mode on/off
Ctrl Tab insert line
 Escape leave editor, ignoring changes on current line

NOTE that the Editor is only entered, on called *EDIT, if there is a program in the machine to
be edited. Otherwise you will be return to immediate mode in Basic. If you have pressed
Break, you will need to reinstate the program with OLD or *OLD before you can use *EDIT
upon it.

10

BEEBUGSOFT

*FREE
Function: Display Basic memory variables
Parameters: none

This command displays the number of bytes of free memory, the size of the current program,
the next free memory locations (after the variable storage space), and the values of PAGE,
TOP, LOMEM, and HIMEM. Below is an examples printout.

*FREE

Free memory = 14963 bytes
Program size = 10381 bytes
Next free location = &418D
PAGE= &1900 LOMEM = &418D
TOP = &418D HIMEM= &7C00

11

BEEBUGSOFT

*MEMORY
Function: List contents of memory
Parameters: (<start address>) (<end address> +<number>)

The *MEMORY command will give a hexadecimal dump of the memory contents between
the two specified addresses. The ASCII representation of the memory contents is displayed
at the right of the screen.

Pages mode will be engaged so press Shift as usual to get the next page. This selection of
paged mode does not affect the setting of paged mode otherwise (i.e. if paged mode was off
before using *MEMORY it will remain off afterwards).

Each of the parameters is optional. If the end address is omitted it will default to &FFFF; if
both are omitted the listing will start at PAGE.
The second parameter may be given as an offset from the first, using the +<number> form as
in the *SAVE and *LOAD commands. Both parameters must be given in hexadecimal.

Examples:

*MEMORY list from PAGE.
*MEMORY 1900 list from &1900.
*MEMORY 1900 1BFF list from &1900 to &1BFF

inclusive.
*MEMORY 1900 +300 same as above.

12

BEEBUGSOFT

*MERGE
Function: Merge program file with program in memory.
Parameters: <filename>

This provides a useful command that BBC Basic lacks. The effect is to merge a program
stored on disc or cassette with the program currently in memory to produce a single program
in memory. The lines of the program are read from the program file and added to the
program in memory. If it happens that the two programs each contain a line of a given
number, the line from the file will overwrite the line already there, and a warning message
will be given to this effect.

As an example of the use of *MERGE, it is convenient to save frequently used procedures as
separate files. The may then be appended to development programs using *MERGE.

If you attempt to *MERGE using a file which is not in Basic (eg using a text file, data file or
machine code) the message ‘Bad File’ will be issued.

13

BEEBUGSOFT

*MOVE
Function: Relocate a Basic program
Parameters: <address>

This command moves the current Basic program (i.e. the program at PAGE) to the highest
page boundary not greater than the specified address, and changes PAGE to this address. It
also alters all the necessary internal pointers so that the program will run at is new location.

The address must be in hexadecimal, but may be given in two forms: either the complete
address or just the high byte.

*MOVE is most useful for moving a program down in memory after loading from disc, if
there is not enough memory for the program to run at &1900. If a program is being moved
into the disc workspace (&E00 to &18FF) it is safest to issue the command *TAPE before
*MOVE. This prevents the program being corrupted. To resave a program relocate it back
up with *MOVE 1900, select *DISC, and then save.

Example of disc use:

*TAPE
*MOVE E00

Examples of cassette use:

*MOVE D00

The following are all equivalent:

*MOVE E00
*MOVE E49
*MOVE E

Note that:

(1) If you have moved a program into the disc workspace, pressing Break will
corrupt it.

(2) If you have a Watford DFS, in the old 1.2 version you should not attempt to

relocate Basic programs to below &1400.

14

BEEBUGSOFT

*NEW
Function: Clear program
Parameters: None

*NEW is identical in effect to the Basic command ‘NEW’, i.e. it will reset Basic’s pointers to
show that there is no program in memory. The only difference is that *NEW may be used
within a program.

*OLD
Function: Restore program.
Parameters: none

*OLD has the same effect as Basic’s ‘OLD’, but again may be used within a program.

15

BEEBUGSOFT

*ON
Function: Enable TOOLKIT error reporting and colour displays (if previously cancelled with
*OFF)

*ON will initialise TOOLKIT so that the enhanced error reporting facilities will be used. It
will also enable various messages etc. to appear in colour when in mode 7 (if previously
cancelled with *OFF).

(i) Error reporting:
After issuing the command *ON, TOOLKIT will intercept the error vector. Any error that
occurs while a program is running will then first cause the unusual error message, e.g.
‘Mistake at line 120’. Secondly the screen editor will be entered at the current line, with the
cursor at the approximate position of the error. The error can then be corrected in the usual
way (see *EDIT above), and the program re-run.

Note: this facility makes error correction considerably easier, but has its limitations. The
cursor position may not be at the exact position of the error. This depends on the type of
statement; in some cases Basic will have read past the error before the TOOLKIT error
handling routine is called, so TOOLKIT has no way of knowing the exact position of the
error.

(ii) Teletext colours:
This command also controls the use of colour. Once *ON has been selected all error
messages will appear in red, some warning messages in yellow, and other messages in various
colours.

Note that if the output of TOOLKIT commands is sent a printer the teletext colours will
corrupt the printout, so enter *OFF before printing.

16

BEEBUGSOFT

Notes:
(a) After power-on or Break a compromise between *ON and *OFF statements is

initialised. Toolkit screens appear in colour, but the special error handling
facility is not enabled. *ON will enable this, and *OFF will cancel the colour.

(b) *ON and *OFF may both be used either in direct mode or in a program, so it is
possible to use TOOLKITs error handling just for a selection of a program.

(c) If the memory from &A00 to &AFF is overwritten (e.g. by using the RS423
for input) while *ON is selected, the effects are unpredictable since this area is
used by TOOLKIT. If this occurs simply press Break and don’t use
TOOLKIT until you have finished using this memory for other purposes.

17

BEEBUGSOFT

*ONF
Function: As *ON but sets function keys f0-f1

*ONF is identical to *ON except that two function keys are set as follows to allow single key
access to *EDIT and *UTIL:

f0 - *BEDIT
f1 - *BUTIL

*OFF
Function: cancel *ON. Cancel colour displays.

18

BEEBUGSOFT

*PACK
Function: Compacts a Basic program.
Parameters: (<options>)

*PACK will compact a Basic program by removing all spaces that are not strictly necessary,
and by removing all REM statements and comments after ‘/’ in assembly language sections.
A message is given detailing the length of the program after compacting, and the number of
bytes saved by the process.

Although all vital spaces are left in (e.g. in ‘IF A=B A=C’), spaces between variable name
and a keyword are removed. These spaces are necessary when entering a program from the
keyboard, since the keyword would otherwise not be recognised, but since the keyword has
already been tokenised this is all right. However if a compacted program is now edited by
using the Copy and cursor keys the keyword will not be recognised and an error will ensue
when the program is run. To overcome this use *EDIT; this automatically reinserts those
vital spaces in any editing which you subsequently perform.

There are three forms of the compacting command:

*PACK removes spaces, REMs and comments.
*PACK S just removes spaces.
*PACK R just removes REMs with their succeeding text, and assembler comments.

Note that if you use *PACK to remove REMs, you program should contain no GOTO
statements whose destination is a REM line. If this does occur, you will get a “No such line”
error message when you run the program. It is generally wise to take a copy of a program
before using *PACK for such reasons.

19

BEEBUGSOFT

*RECOVER
Function: Recover bad program
Parameters: (+) (<address>)

The ‘Bad Program’ error means that a program has somehow become corrupted. However it
is often the case that only a small part of it has actually been affected and this could be easily
corrected if only the program could be listed and edited. *RECOVER will achieve this in
most cases.

How to use *RECOVER:

When you receive the error message ‘Bad program’. Use the following procedure:
(i) Enter *RECOVER. If control does not return to Basic press Escape and see (iv), below.

Otherwise list the program and depending on the result, apply step (ii) or step (iii).

(ii) If the program is all there, correct the parts that were corrupted. If any line numbers are

out of sequence it will be necessary first to renumber the program; otherwise it will be
impossible to edit some of the lines. When the program was originally corrupted it may
be that control codes (i.e. byte of value less than 32) were inserted into the program. In
order that the program lists correctly, and to make it easy to pick out these bytes,
*RECOVER changes them to # symbols.

(iii) If the ‘recovered’ program is shorter than the original, the ‘+’ option can be used to

recover further lines. Simply enter ‘*RECOVER +’ repeatedly until the program is fully
recovered (this may not always be possible if the program was badly corrupted at the end).
Then see (ii), above.

20

BEEBUGSOFT

(iv) If *RECOVER fails to terminate it probably means that the end-of-program marker (a
byte &FF) is missing. There are two ways to get around this:
(a) insert an end-of-program marker manually, or
(b) use the second option on the *RECOVER command. To do the latter, estimate where the

program ends and specify this address (in hexadecimal) as a parameter.
e.g. *RECOVER 3200

The effect of this will be to insert the required byte at the first suitable place after the
specified address. If this recovers only part of the program use *RECOVER + as above.

The two options may be used together, so if *RECOVER + fails to terminate normally, press
Escape and use something like *RECOVER + 3500.

How *RECOVER works:

Each Basic program line contains a byte which is set to the length of the line, in bytes. Every
line starts with carriage return (a byte of value &D). At various times Basic checks that the
program is intact by using these line length bytes to follow through the program. Each line
length is added to the address of the start of the line, and should then give the address of the
start of the next line, which should contain &D. If at any stage the expected &D is not
present, Basic gives a ‘Bad program’ and refuses to do any more.

21

BEEBUGSOFT

*RECOVER gets around this by sometimes inserting missing &D bytes to the end of a line,
or correcting corrupted line length bytes. Which one it does depends upon which seems to be
the most likely cause of the error; the correct one is virtually always chosen. Once recovery
has taken place, the program will need careful editing to restore it to its original state. As
mentioned above control codes are replaced by # to allow easy correction by editing, and all
occurrences of ‘#’ should be inspected and replaced with whatever occupied that place before
corruption occurred. Note that if a program is badly corrupted, lines may be split or joined
together. New lines created by TOOLKIT as it attempts to repair the damage, will be given
the line number 0. Renumbering will restore sequential numbering.

Summary and examples:

*RECOVER will attempt to recover a program so that it may be listed
and edited.

*RECOVER + will remove the present end-of-program marker and
attempt to recover further program lines.

*RECOVER 2600 will insert an end-of-program marker at the first suitable
position beyond the hex address 2600.

*RECOVER + 2600 will do both of the above.

22

BEEBUGSOFT

*RENUMBER
Function: Renumber program or part of program
Parameters: (<first no.>) (<incr>) (<start line>) (<end line>)

This is an enhanced version of the Basic ‘RENUMBER’ command, which enables you to
renumber any section of a program. *RENUMBER takes 4 parameters, all of which are
optional. If the last two are omitted, the effect is exactly the same as using Basic’s
RENUMBER, i.e. the whole program is renumbered starting with the given <first no.> (10 if
this is omitted), and in increments of <incr> (10 if omitted).

The other two parameters are an addition to the Basic command. If present they specify the
section of the program to be renumbered. If either is omitted they default to the first and last
lines of the program.

Direct references to line numbers (such as GOTO 100 for example) in this section will be
altered throughout the program.

The parameters of *RENUMBER may be separated by commas so that any may be omitted
by typing ‘,,’. Line numbers must lie between 0 and 32767 inclusive. The increment must be
positive, and may take values greater than 255 (unlike the Basic command).

If the parameters are specified in such a way that after renumbering the program would have
line numbers out of sequence, an error message is given, and the program is not changed.
This can occur if, for example, a section of a program is renumbered, and the last new number
in this section is not lower than the number of the following line (which has not been
renumbered). The message ‘Overlap’ will be given in this case. Other errors that can occur
are ‘Overflow’ if the line numbers become greater than 32767 - renumbering is not carried out
in this case, and ‘Failed at …’ if a reference to a non existent line is found. This latter is just
a warning message, and the program is renumbered regardless.

Note: *RENUMBER causes all variables to become undefined (as does the Basic
RENUMBER command).

23

BEEBUGSOFT

Examples:
 renumbers: start no. incr
*RENUMBER all 10 10
*RENUMBER 100 all 100 10
*RENUMBER 100 100 all 100 100
*RENUMBER 100,10,200,300 200-300 100 10
*RENUMBER 20 20 400 400-end 20 20
*RENUMBER ,,1000 1000-end 10 10
*RENUMBER 100,,,499 start-499 100 10

24

BEEBUGSOFT

*REPORT
Function: Display error report
Parameters: none

*REPORT is equivalent to the Basic ‘REPORT:PRINT” at line”;ERL. The error report will
be in red if in mode 7 and colour messages have been enabled (see *ON). *REPORT will
give the correct error message no matter where the error occurred since it uses the number of
the ROM in which the error occurred. (Basic’s REPORT will produce nonsense if the last
error occurred in, for example, TOOLKIT).

Examples of use:

IF ERR=17 THEN RUN ELSE *REPORT

25

BEEBUGSOFT

*SCREEN
Function: Save screen display to a file.
Parameters: <filename>

*SCREEN saves the current screen memory to a file with the specified name on cassette or
disc. It works in any mode. If using cassette, no messages are given so the screen is not
corrupted. When a beep is heard ‘play’ and ‘record’ should be pressed, then press any key to
save. The screen display can be loaded back in at any time by the statement *LOAD
SCREEN.

This command is designed to be used within a program, e.g. after creating a screenful of
graphics.

Note: *SCREEN should only be used if the screen has not scrolled since the last mode
change, and should also be reloaded to an un-scrolled screen. To achieve this, clear the
screen with a mode change before loading.

26

BEEBUGSOFT

*UTIL
Function: Enter utility editor
Parameters: (<digit>)

The utility editor provides 9 separate utilities which streamline the debugging and editing of
programs. When *UTIL is typed, a menu will be displayed and the top will be the first and
last line numbers of the program currently in memory (see below). The menu lists the 9
commands which can be chosen, as well as an option to move directly to the line editor (see
*EDIT). The prompt ‘Enter option:’ simply requires an option number (you do not need to
press Return). After each command you will be prompted for another; pressing Return
instead of a number here will return you to the menu.

The exit the utility editor and return to basic simply press Escape when the ‘Enter option:’
prompt is displayed. Pressing Escape while a command is executing will stop that command
and prompt for another. If an error occurs during a command, control will return to Basic.

Each option can be used without the menu being displayed, simply by entering, for example,
*UTIL 1. This form should be used when printing the output of a command, so that the
menu is not printed.

Paged mode is used for all TOOLKIT commands, so press Shift when the display pauses.
This does not affect the status of paged mode (ON or OFF) as previously set.

Note: *UTIL output normally uses colours, so if a printout is required enter *OFF first.

There follows an explanation of each option. In each case any required input will be
explained on screen.

27

BEEBUGSOFT

1. String search
All occurrences of the required string in the current Basic program will be found; and the
complete line where each occurred will be listed with the search string highlighted in cyan
(unless *OFF has been entered).

The literal string will be used so keywords will not be tokenised unless the string is prefixed
with a ‘£’, when the entire string will be tokenised as if it were a Basic program line. Note
that searching for part of a keyword is not possible. Also, the following keywords must be
followed by an opening bracket: INSTR(, LEFT$(, MID$(, POINT(, RIGHT$(, STRING$(,
and TAB(.

Wildcards may be used; if the character ‘@’ appears in a string it can be matched by any
character. Thus for example, searching for FILE@NAME will match both FILE NAME and
FILE-NAME. This facility only applies to strings of at least 3 characters. This enables ‘@’
itself to be searched for (e.g. to find all uses of the variable ‘@%’.)

The search option can be restricted to a section of the program by using option 9, below.

2. Search and replace
The first part of this command is identical to the above command (with keywords tokenised,
wildcards, etc). But in this case, when each string is found, it is replaced by the second string
(which may be the same length, shorter, longer, or even of zero length). The new line is then
listed. If a string is replaced by a longer string any variables will become undefined since the
program will encroach into the variable space.

To replace occurrences only in a part of a program use option 9 to restrict the range.

28

BEEBUGSOFT

3. Move lines.
This option moves a section of a Basic program to a position elsewhere within the program.
The program will then have line number out of sequence, and must be completely renumbered
before doing anything else. Three line numbers will be requested; the first two specify the
section of the program to be moved, and the last is the line number after which the moved
lines will be placed. The latter must not lie between the first two, for obvious reasons. If
the last line number does not exist the lines will be moved to the place where the line number
would be if it existed.

4. List procedures and functions.
This will search a program for DEFPROC and DEFFN statements and list all program lines
where these occur. So this give a complete list of all procedures and functions, together with
their formal parameter lists. It does not matter if DEF and PROC are separated by one or
more spaces or if they are adjacent.

5. List A% to Z%.
The current values of the static integer variables A% to Z% will be listed, both in decimal and
hexadecimal.

6. List other numeric variables.
All currently defined numerical variables (other than A% to Z%) will be listed, with their
values in decimal and hexadecimal.

7. List string variables.
As above for string variables, listing the contents of the string.

8. List arrays.
Lists all currently defined arrays, with their dimensions. The values assigned to their various
elements are not displayed.

29

BEEBUGSOFT

9. Change edit range
This will select a part of the program to be used by options 1 and 2. If one of the line
numbers is not entered (i.e. only Return is pressed) it will remain unaltered. If neither is
entered, the entire program will be selected. Hence *UTIL 9 <return> <return> <return> is a
simple means of discovering a program’s first and last line number.

After using this option, the menu will be displayed, with the range of lines at the top. If
option 1 or 2 is then selected the search will be restricted to the new edit range. This is
cancelled by leaving the utility editor. If *UTIL 1 is used (i.e. without using the menu) the
whole program will be used for the search.

30

BEEBUGSOFT

4. MEMORY USAGE

TOOLKIT has been designed to be fully compatible with Basic and EXMON. The main
uses of the lower part of the memory are summarised here.

PAGE
0 0-&4F BASIC (and EXMON) workspace.

&50-&6F TOOLKIT workspace.
&70-&8F Free for user.
&90-&FF MOS/DFS workspace.

1 Processor stack

2-3 MOS workspace

4 BASIC static variables and variable pointers.

5 BASIC FOR/REPEAT/GOSUB stack.
TOOLKIT utility editor workspace.
(EXMON processor stack save space).

6 BASIC string buffer.
TOOLKIT edit buffer, input buffers.
(EXMON string search buffer).

7 BASIC input buffer.
(EXMON workspace)

8 Sound workspace.

9 Cassette workspace.
RS423 transmit buffer.

A RS423 receive buffer.
TOOLKIT workspace.

The memory from &A00 to &AFF should be reserved for TOOLKIT ROM, though if it is
overwritten, using any TOOLKIT command will restore it.

The other workspace (e.g. &50 to &6F) may be used, but will be overwritten by using
TOOLKIT commands.

31

BEEBUGSOFT

5. COMMAND SUMMARY

*B___ All commands can be entered prefixed by a
‘B’. This enables commands to be used if
another ROM intercepts it first.

*CHECK <fsp> (<addr>) (<addr>) Verify byte by byte a program (or data) in
memory against the contents of a file.

*CLEAR Clear all variables, A%-Z% to zero.

*EDIT (<line>) Enter the screen editor.

*FREE Display Basic memory variables.

*MEMORY (<addr>) (<addr>) Hex. & ASCII memory dump.

*MERGE <fsp> Merge a program from file with a program in
memory.

*MOVE <addr> Move and relocate a BASIC program.

*NEW As BASIC ‘NEW’ (can be used in a
program).

*OFF Reverses *ON.

*OLD As BASIC ‘OLD’.

*ON Enables TOOLKIT error reporting and use of
colours in teletext mode.

*ONF As *ON, plus defines f0 as ‘*EDIT’ and f1 as
‘*UTIL’

32

BEEBUGSOFT

*PACK (RS) Compact a program, removing unnessary

space and/or comments.

*RECOVER (+) (<addr>) Recover a bad program.

*RENUMBER (<line>) (<incr>) (<line>)
(<line>)

Renumber a program.

*REPORT Equivalent to ‘REPORT:PINRT” at line
“;ERL’

*SCREEN <fsp> Saves the screen display to a file.

*UTIL Enter the menu-driven utility editor.

*UTIL1 String search.

*UTIL 2 Search and replace.

*UTIL 3 Move program lines.

*UTIL 4 List procedures and functions.

*UTIL 5 List variables A% to Z%.

*UTIL 6 List other numeric variables.

*UTIL 7 List string variables.

*UTIL 8 List arrays.

*UTIL 9 Select subrange for use by UTIL1, UTIL2.

