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A Corporate Dedication to
Quality and Reliability

National Semiconductor is an industry leader in the
manufacture of high quality, high reliability integrated
circuits. We have been the leading proponent of driv-
ing down IC defects and extending product lifetimes.
From raw material through product design, manufac-
turing and shipping, our quality and reliability is second
to none.

- We are proud of our success . . . it sets a standard for
others to achieve. Yet, our quest for perfection is on-
going so that you, our customer, can continue to rely
on National Semiconductor Corporation to produce
high quality products for your design systems.

Adjd

Charles E. Sporck
President, Chief Executive Officer
National Semiconductor Corporation




Wir fiihlen uns zu Qualitat und
Zuverlassigkeit verpflichtet

National Semiconductor Corporation ist flinrend bei der Her-
stellung von integrierten Schaltungen hoher Qualitdt und
hoher Zuverlassigkeit. National Semiconductor war schon
immer Vorreiter, wenn es galt, die Zahl von IC Ausfallen zu
verringern und die Lebensdauern von Produkten zu verbes-
sern. Vom Rohmaterial (ber Entwurf und Herstellung bis zur
Auslieferung, die Qualitdt und die Zuverldssigkeit der Pro-
dukte von National Semiconductor sind uniibertrotfen.

Wir sind stolz auf unseren Erfolg, der Standards setzt, die
fur andere erstrebenswert sind. Auch ihre Anspriiche steig-
en sténdig. Sie als unser Kunde kdnnen sich auch weiterhin
auf National Semiconductor verlassen.

La Qualité et La Fiabilité:

Une Vocation Commune Chez National
Semiconductor Corporation

National Semiconductor Corporation est un des leaders in-
dustriels qui fabrique des circuits intégrés d’une trés grande
qualité et d’une fiabilité exceptionelle. National a été le pre-
mier & vouloir faire chuter le nombre de circuits intégrés
défectueux et a augmenter la durée de vie des produits.
Depuis les matiéres premiéres, en passant par la concep-
tion du produit sa fabrication et son expédition, partout la
qualité et la fiabilité chez National sont sans équivalents.

Nous sommes fiers de notre succés et le standard ainsi
défini devrait devenir I'objectif & atteindre par les autres so-
ciétés. Et nous continuons & vouloir faire progresser notre
recherche de la perfection; il en résulte que vous, qui étes
notre client, pouvez toujours faire confiance a National
Semiconductor Corporation, en produisant des systémes
d’'une trés grande qualité standard.

Un Impegno Societario di Qualita e
Affidabilita

National Semiconductor Corporation & un’industria al ver-
tice nella costruzione di circuiti integrati di altd qualita ed
affidabilitd. National é stata il principale promotore per I'ab-
battimento della difettosita dei circuiti integrati e per I'allun-
gamento della vita dei prodotti. Dal materiale grezzo attra-
verso tutte e fasi di progettazione, costruzione e spedi-
zione, la qualita e affidabilita National non & seconda a nes-
suno.

Noi siamo orgogliosi del nostro successo che fissa per gli
altri un traguardo da raggiungere. li nostro desiderio di per-
fezione é d'altra parte illimitato e pertanto tu, nostro cliente,
puoi continuare ad affidarti a National Semiconductor Cor-
poration per la produzione dei tuoi sistemi con elevati livelli
di qualita.

A bgd

Charles E. Sporck

President, Chief Executive Officer
National Semiconductor Corporation
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Introduction

Series 32000 ofters the most complete solution to your 32-bit micro-
processor needs via CPUs, slave processors, system peripherals,
evaluation/development tools and software.
We at National Semiconductor firmly believe that it takes a total family
of microprocessors o effectively meet the needs of a system design-
er.
This Series 32000 Databook presents technical descriptions of Series
32000 8-, 16- and 32-bit microprocessors, slave processors, peripher-
als, software and development tools. It is designed to be updated
frequently so that our customers can have the latest technical infor-
mation on the Series 32000.
Series 32000 leads the way in state-of-the-art microprocessor de-
signs because of its advanced architecture, which includes:

© 32-Bit Architecture

® Demand Paged Virtual Memory

® Fast Floating-Point Capability

® High-Level Language Support

© Symmetrical Architecture
When we at National Semiconductor began the design of the Series
32000 microprocessor family, we decided to take a radical departure
from popular trends in architectural design that dated back more than
a decade. We chose to take the time to design it properly.
Working from the top down, we analyzed the issues and anticipated
the computing needs of the 80’s and 90’s. The result is an advanced
and efficient family of microprocessor hardware and software prod-
ucts.
Clearly, software productivity has become a major issue in computer-
related product development. In microprocessor-based systems this
issue centers around the capability of the microprocessor to maximize
the utility of software relative to shorter development cycles, im-
proved software reliability and extended software life cycles.

In short, the degree to which the microprocessor can maximize soft-
ware utility directiy affects the cost of a product, its reliabiity, and time
to market. It also affects future software modification for product en-
hancement or rapid advances in hardware technology.

Our approach has been to define an architecture addressing these
software issues most effectively. Series 32000 combines 32-bit per-
formance with efficient management of large address space. It facili-
tates high-level language program development and efficient instruc-
tion execution. Floating-point is integrated into the architecture.

This combination gives the user large system computing power at two
orders of magnitude less cost.

But we didn’t stop there. Advanced architecture isn’t enough. Our top-
down approach includes the hardware, software, and development
support products necessary for your design. The evaluation board, in-
system emulator, software development tools, including a VAX-11
cross-software package, and third party software are aiso availabie
now for your evaluation and development.

The Series 32000 is a solid foundation from which National Semicon-
ductor can build solutions for your future designs while satisfying your
needs today.

For further information please contact your local sales office.




Key Features of Series 32000®

Some of the features that set the Series 32000 family apart
as the best choice for 32-bit designs are as follows:

FAMILY OF MICROPROCESSOR CHIP SETS

Series 32000 is more than just a single chip set, it is a family
of chip sets. By mixing and matching Series 32000 CPUs
with compatible slave processors and support chips, a sys-
tem designer has an unprecedented degree of flexibility in
matching price/performance to the end product.

CLEANEST 32-BIT SUPER MINI COMPUTER
ARCHITECTURE

Series 32000 was designed around a 32-bit architecture
from the beginning. It has a fully symmetrical instruction set
so that all addressing modes and all data types can be oper-
ated on by all instructions. This makes it easy to learn the
architecture, easy to program in assembly language, and
easy to write code-efficient, high-level language compilers.

DEMAND-PAGED VIRTUAL MEMORY MANAGEMENT

Series 32000 provides hardware support for Demand-Paged
Virtual Memory Management. This allows use of low-cost
disk storage to increase the apparent size of main memory,
and is an efficient method of managing very large address
spaces. It is also the same popular memory management
method used by DEC and IBM in their minicomputers and
mainframes.

APPLICATION-SPECIFIC SLAVE PROCESSORS

Series 32000 architecture allows users to design their own
application-specific slave processors to interface with the
existing chip set. These processors can be used to increase
your overall system performance by accelerating custom-
ized CPU instructions that you would otherwise implement
in software. At the same time, software compatibility is
maintained, i.e., it is always possible to subsitute lower-cost
software modules in place of the slave processor.

FLOATING-POINT UNIT

NS32081 Floating-Point Unit provides high-speed arithmetic
computation with high precision and accuracy at low cost.
The NS32081 supports the entire Series 32000 family of
CPUs and complies with the proposed IEEE standard for
floating-point arithmetic, Task P754.

OPERATING SYSTEM SUPPORT

Series 32000 features such as hardware support for De-
mand-Paged Virtual memory management, user software
protection and modular programming make it much easier
to implement powerful, reliable and efficient operating sys-
tems. These features along with its symmetrical architecture
and powerful instruction set make the Series 32000 the
most efficient and highest performance UNIX engine.

HIGH-LEVEL LANGUAGE SUPPORT

Series 32000 has special features that support high-level
languages, thus improving software productivity and reduc-
ing development costs. For example, there are special in-
structions that help the compiler deal with structured data
types such as Arrays, Strings, Records, and Stacks. Also,
modular programming is supported by special hardware reg-
isters, software instructions, an external addressing mode,
and architecturally supported link tables.




Series 32000 Component Descriptions

Bus Width
Device Description External Process Package
Internal Type
Address Data
CENTRAL PROCESSING UNITS (CPU'’s)
NS32532 Advanced CMOS Central Processing Unit 32 32 32 M2CMOS TBD
NS32332 Advanced Central Processing Unit 32 32 32 XMOS™ 84-pin PGA
(NMTS)
NS32132 Central Processing Unit 32 24 32 XMOS 68-pin LCC
(NMOS) Leadless
Chip Carrier
NS32C032 CMOS Central Processing Unit 32 24 32 CMOS 68-pin LCC
Leadless
Chip Carrier
NS32032 Central Processing Unit 32 24 32 XMOS 68-pin LCC
(NMOS) Leadless
Chip Carrier
NS32C016 CMOS Central Processing Unit 32 24 16 CMOS 48-pin DIP
Dual-in-Line
Package
NS32016 Central Processing Unit 32 24 16 XMOS 48-pin DIP
(NMOS) Dual-In-Line
Package
NS32008 Central Processing Unit 32 24 8 XMOS 48-pin DIP
(NMOS) Dual-In-Line
Package
SLAVE PROCESSORS
NS32382 Advanced Memory Management Unit 32 32 32 XMOS PGA
(NMOS)
NS32082 Memory Management Unit 32 24 16 XMOS 48-pin DIP
(NMOS) Dual-In-Line
Package
NS32310 Intelligent Floating Point Controlier 64 — 32 M2CMOS PGA
NS32081 Floating Point Unit 64 — 16 XMOS 24-pin DIP
(NMOS) Dual-In-Line
Package
PERIPHERALS
NS32301 Advanced Timing Control Unit . = — Bipolar 28-pin DIP
NS32C201 CMOS Timing Control Unit —_ — — CMOS 24-pin DIP
Dual-In-Line
Package
NS32201 Timing Control Unit — — — Bipolar 24-pin DIP
Dual-In-Line
Package
NS32202 Interrupt Control Unit 32 - 16 XMOS 40-pin DIP
(NMOS) Dual-In-Line
Package
NS32203 Direct Memory Access Controller — — 16 XMOS 48-pin DIP
(NMOS) Dual-In-Line
Package
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Series 32000 Part Numbering
Scheme

Over the past few years, National’'s 32-bit Microprocessor
Family has come a long way. The product has met with
unprecedented acceptance in the marketplace—and is well
on its way to being the 32-bit industry standard.

To highlight the completeness of Series 32000, all related
products have a 4-character ‘Series’ prefix which will cause
them to sort together in the following sequence in published
material such as the Price Schedules.

Prefix Product Type
NSP- Technical Publications
NSR- Service

NSS- Development Systems
NSV- Evaluation Tools
NSW- Software

NS32 Components

This scheme applies to order/part numbers only. It should
be noted that certain products may, in addition to their
unique order/part number, also have a marketing name. For
example, we expect you will find it more comfortable to refer
to the Development System as “VR32" rather than VR32-
1001}

Following the 4-character prefix, the remaining 11 charac-
ters specify the product in as intelligible a fashion as possi-
ble.

We have included in the Series 32000 family of microproc-
essors a number of products that a designer most frequent-
ly requires to create a state-of-the-art system.

Among these support devices are Data Communications
and Local Area Network IC’s as well as Disk Control and
Interface and DRAM Interface devices.

These support components are numbered in Series 32000
fashion and are explained on the following page. Take as an
example the NS32965. The NS32 describes a Series 32000
component. The 9 signifies a Data Communication/LAN de-
vice and the 65 are the last two digits in the equivalent
National Semiconductor Interface device.




Components
NS32C032E~ 15 NS32 ¢ 0 32

SERIES 32000 COMPONENT / SUPPORT DEVICE] |
C DENOTES CMOS (IF USED)

DESCRIPTOR

0 =FIRST GENERATION COMPUTING CLUSTER

1 = ENHANCED FIRST GENERATION COMPUTING CLUSTER

2 =SYSTEM SUPPORT AND INTEGRATED COMPUTING CLUSTER
3=SECOND GENERATION COMPUTING CLUSTER

L MATL AALILIIIALITIAN IMN | LM AEUVIATS
4= DATA COMMUNICATION AND LAN Dnviles

5=THIRD GENERATION COMPUTING CLUSTER
6=VIDEO AND GRAPHICS SUPPORT
7=FOURTH GENERATION COMPUTING CLUSTER
8=MEMORY AND CACHE SUPPORT

9 =MASS STORAGE SUPPORT

SERIES 32000 CLUSTER

08 =EIGHT=BIT EXTERNAL DATA BUS CPU'S

16 = SIXTEEN-BIT EXTERNAL DATA BUS CPU'S

32 =THIRTY=TWO-BIT EXTERNAL DATA BUS CPU'S
8X =SLAVE PROCESSORS

SUPPORT DEVICE DIGITS CORRESPOND TO INTERFACE
DEVICE LAST TWO DIGITS

PACKAGE TYPE

E =15

SPEED(IN MHz)

Evaluation Tools
NSV = 32016=P8T=10

B11K11-1

NSv= 32016 P 8 T =10

SERIES 32000 EVALUATION TOOL

CPU TYPE

P = POPULATED

8=128k RAM

T=TDS (TINY DEVELOPMENT SYSTEM)
SPEED (IN MHz)

NSV = 32032567~ 10

B11K11-3

NSy=- 32032 S 6 T =10

SERIES 32000 EVALUATION TOOL

TARGET CPU SUPPLIED WITH BOARD. SOCKETS
PROVIDED FOR NS32016 AND NS32008 CPU'S.

S =SINGLE PROCESSING MODE
D =DUAL PROCESSING MODE

6=256K RAM

T=TINY DEVELOPMENT SYSTEM

SPEED (IN MHz)

B11K11-6

Development Tools
NSS=VR32 - 1001E

SERIES 32000 DEVELOPMENT TOOL

PRODUCT TYPE

MODEL

1xxx PRODUCT
20xx ADD-ONS
21xx MANUALS
3xxx SOFTWARE

E DESIGNATES EUROPEAN POWER (IF USED)

Software

NSW = EXEC = 9VMR NSW- EXEC- B R
SERIES 32000 SOFTWARE

SOFTWARE NAME

B =BINARY
S =SOURCE

MEDIUM IN WHICH SUPPLIED:

R=REEL TO REEL TAPE
C=CARTRIDGE TAPE
D =DISKETTE

HOST ENVIRONMENT

V=VAX
Q=VR32
T=ICM

HOST OPERATING SYSTEM

NSS= VR32- 1001 E

B11K11-5

X=UNIX
M=VMS
F=SYSTEM V
G=GENIX

Publications
NSP = EXEC= M NSP= EXEC =M
SERIES 32000 PUBLICATION

SUBJECT

TYPE OF PUBLICATION

M =MANUAL
MS = MANUAL SET

B11K11-2

B11K11-4
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Hardware Chart

SLAVE
CPUs PROCESSORS PERIPHERALS
NS32382 NS32301
Advanced 32~Bit Memory Timing Control Unit With
Managermerit Unit Support For Burst Access
| |
NS32082 NS32C201
32-Bit Data Bus/32-Bit CPU Memory Management Unit CMOS Timing Control Unit
) | |
NS32132 NSSFE:{ag poit NS32201
32=-Bit CPU With inteligent . .
Dual Processing Support Controler Timing Corttrol Unit
] |
NS32081 NS32202
. Floating Point Unit Interrupt Control Unit
| |
NS32032 NS32203
32-Bit Data Bus/32-Bit CPU DMA Controier
] ] ]
NS32C016 NS16550
CMOS NS32016 CuSToM UART
| 1
e e
16~Bit Deta Bus/32-Bit CPU

NS32008
8~Bit Data Bus/32-Bit CPU

Communication Unit

1K12-1

Note: Products in the shaded boxes are additional hardware components planned to support the Series 32000 CPUs. Please contact your local National Sales

Office for further information on their avaitability.




Systems and Software Chart

SYSTEMS AND SOFTWARE
OEM BOARDS

DEVELOPMENT
BOARDS

SOFTWARE

EMULATORS

HOST
DEVELOPMENT
ENVIRONMENTS

— T T T

DB32332 GENIX™V VAX=-11™ SERIES
Kou-3332 Includes NS32332 OPERATING SYSTEM ISE32 VNS, UNIX™0.S.
| | ] | |
=316 Dez2000 SYSTEM V™ / SE16 vR32™ maReer/
- SERIES 32000
Includes NS32032 OPERATING avarEw DEVELOPMENT SYSTEM

DB32016 GENIX
Includes NS32016 OPERATING SYSTEM
|
GNX ™ LANGUAGE TOOLS

C, PASCAL, FORTRAN,
ADA COMPILERS

SERIES 32000 ASSEMBLER!

REAL TIME
OPERATING SYSTEMS

VRTX™ , EXEC

SYS 32 /20 PC ADD-IN
DEVELOPMENT SYSTEM

1K13-1




Support Devices Chart

SUPPORT
DEVICES
HPC NS32800~2/DP8400-2
High Performance Di ‘?5559515/ DP§451' 16~Bit E2C2 Expandable Error
Controllers s a Synchronizer Checker/Corrector
L | ]
NS32405/NS405  NS32955/DP8455 oo
ROMless TMP Disk Data Synchronizer Detector And Correcior (EDAC)
] ] ]
NS32490/DP8390 NS32961,/DP8451 w}‘gmh
LAN Interface Controller Disk Data Separator Controller /Driver

NS32962/DP8462

NS32812/0P84412
NS32008/16/32 To DPB40SA/17/18/
19/28/29 Interface

NS32491/DP8391 "
Serial Network Interface DB';Q?;; Sg'_"'_c m;zer
] ] ]
NS32963/0P8463B NS32813/DP84512
- Ax"if:i% 2':8&2  ace Disk 2,7 RLL Code NS32332 To DPB403A/17/18/
Encoder /Decoder 19/28/29 Interface
| |
e | ey | LG
Encoder/Transmitter ISk Fulse Detector Controller/Driver
| | |
NS32441/0P8341 NS32828/DP8428
1BM® 3270 Biphase Seriel m':zsng:g"s‘r:fw 1 Megabit High Speed DRAM
Decoder/Receiver pa Controller/Driver (32-Bit Systems)
| |
Hih Spoct e Mot ostr NS32966/0PB4GE 1 Moganh Hoh Spocd ORAN
P Disk Data Controller : Lr
Encoder/Transmitter Controller/Driver {16=Bit Systems)
] ]
NS32443/DP8343 NS32968/DP8468
High Speed Manchester Pulse Detector And
Decoder/Recsiver Embedded Servo
] ]
NS32970/DP8470
BIT=MAPPED
Floppy Data Separator &
GRAPHICS Write Precompensation

NS32972/74/DP8472/74
Floppy Disk Controfler/

Data Separator

1K12-2




Data Sheets/Description

Series 32000® information is grouped into one of three cat-
egories depending on the type of information presented.
These categories are:

Advanced Information — This is the first official informa-
tion released about a future Series 32000 device. It contains
very basic information about a product and usually precedes
sample devices by approximately six months. This type of
data sheet is distinguished by the words “Advanced Infor-
mation” appearing in the header of the first page.

Preliminary — This document contains an extensive dis-
cussion of device operation and provides complete para-
metric information such as Maximum Ratings, Thermal
Characteristics, Electrical Characteristics, Bus Timing, and
1/0 Port Timing as applicable. Timing diagrams are included
to support the tabular material. All of the parametric infor-
mation given is the result of early testing of initial product
from the manufacturing process. Values given are subject to
change without notice. This type of data sheet is distin-
guished by the words “Preliminary” appearing in the header
of the first page.

Final Data Sheet — This data sheet evolves from the Pre-
liminary data sheet. It is a result of test information collected
from a fully-implemented manufacturing process. The para-
metric information has been analyzed and approved. Na-
tional Semiconductor considers this a fully characterized de-
vice. This type of data sheet is distinguished by the absence
of any designation appearing in the header of the first page.
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Military/Aerospace Programs
from National Semiconductor

This section is intended to provide a brief overview of mili-
tary products available from National Semiconductor. For
further information, refer to our 1986 Reliability Handbook
which is expected to be available by mid 1986.

MIL-M-38510

The MIL-M-38510 Program, which is sometimes called the
JAN IC Program, is administered by the Defense Electronics
Supply Center (DESC). The purpose of this program is to
provide the military community with standardized products
that have been manufactured and screened to government-
controlled specifications in government certified facilities.
All 38510 manufacturers must be formally qualified and their
products listed on DESC’s Qualified Products List (QPL) be-
fore devices can be marked and shipped as JAN products.

There are two processing levels specified within MIL-M-
38510: Classes S and B. Class S is typically specified for
space flight applications, while Class B is used for aircraft
and ground systems. National is a major supplier of both
classes of devices. Screening requirements are outlined in
Table Il

Tables 1 and 1l explain the JAN device marking system.

Copies of MIL-M-38510, the QPL, and other related docu-
ments may be obtained from:

Naval Publications and Forms Center
5801 Tabor Avenue

Philadelphia, PA 19120

(212) 697-2179

DESC Specifications

DESG specifications are issued to provide standardized ver-
sions of devices which are not yet available as JAN product.
MIL-STD-883 Class B screening is coupled with tightly con-
trolled electrical specifications which have been written to
allow a manufacturer to use his standard electrical tests. A
current listing of National’s DESC specification offerings can
be obtained from our franchised distributors, sales repre-
sentatives, or DESC. DESC is located in Dayton, Ohio.

MIL-STD-883

Although originally intended to establish uniform test meth-
ods and procedures, MIL-STD-883 has also become the
general specification for non-JAN military product. Revision
C of this document defines minimum requirements for a de-
vice to be marked and advertised as 883-compliant. Includ-
ed are design and construction criteria, documentation con-
trols, electrical and mechanical screening requirements,
and quality control procedures. Details can be found in par-
agraph 1.2.1 of MIL-STD-883.

National offers both 883 Class B and 883 Class S product.
The screening requirements for both classes of product are
outlined in Table il

As with DESC specifications, a manufacturer is allowed to
use his standard electrical tests provided that all critical pa-
rameters are tested. Also, the electrical test parameters,
test conditions, test limits, and test temperatures must be
clearly documented. At National Semiconductor, this infor-
mation is available via our RETS (Reliability Electrical Test
Specification) program. The RETS document is a complete
description of the electrical tests performed and is con-
trolled by our QA department. individual copies are available
upon request.

Some of National’s older products are not completely com-
pliant with MIL-STD-883, but are still required for use in mili-
tary systems. These devices are screened to the same
stringent requirements as 883 product but are marked
Ml

Military Screening Program (MSP)

National’s Military Screening Program was developed to
make screened versions of advanced products such as gate
arrays and microprocessors available more quickly than is
possible for JAN and 883 devices. Through this program,
screened product is made available for prototypes and
brassboards prior to or during the JAN or 883 qualification
activities. MSP products receive the 100% screening of Ta-
ble lll, but are not subjected to group C and D quality confor-
mance testing. Other criteria such as electrical testing and
temperature range will vary depending upon individual de-
vice status and capability.




TABLE I. The MIL-M-38510 Part Marking

JM3B510,/XXXXXYYY
L Lead Finish

Sy o, O L

Slash Sheet

A= Solder Dipped

B=Tin Plate

C=Gold Plate

X=Any lead finish above
is acceptable

Device Package
(see Table IIt)
Screening Level

o
Device Number on

Slash Sheet Number

TABLE Il. JAN Package Codes

38510
Package
Designation

Microcircuit industry
Description

For radiation hard devices

this slash is replaced by the
Radiation Hardness Assurance
Designator (M,D, R, or H per
paragraph 3.4.1.3 of MiL=M=
38510)

MIL-M=38510

JAN Prefix

(which may be applied only to
a fully conformant device per
paragraphs 3.6.2.1 and 3.6.7 of
MIL=M=38510)

B11K15-1
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14-pin 1/4" x 1/4" (metal) flat pack
14-pin 3/16" x 1/4” flat pack
14-pin 1/4” x 3/4" dual-in-line
14-pin 1/4" x 3/8” (ceramic) flat pack
16-pin 1/4"” x7/8" dual-in-line
18-pin 1/4" x 2/8°

(metal or ceramic) flat pack
8-pin TO-99 can or header
10-pin 1/4” x 1/4” (metal) flat pack
10-pin TO-100 can or header
24-pin 1/2" x 1-1/4” dual-inine
24-pin 3/8" x 5/8" flat pack
24-pin 1/4" x 1-1/4" dual-in-line
12-pin TO-101 can or header
(Note 1)
8-pin 1/4” x3/8" dual-in-line
40-pin 3/16” x 2-1/16" dual-in-line
20-pin 1/4” x 1-1/16" dual-in-line
20-pin 1/4” x 1/2" flat pack
(Note 1)
(Note 1)
18-pin 3/8” x 15/16" duakin-line
22-pin 3/8" x 1-1/8" dual-in-line

(Note 1)
(Note 1)
(Note 1)

20-terminal 0.350" x 0.350” chip carrier
28-terminal 0.450” x 0.450" chip carrier

Note 1: These letters are assigned to packages by individuai detail specifi-
cations and may be assigned to different packages in different specifica-

tions.

TABLE ill. 100% Screening Requirements

Screen Class S Class B
Method Reqmt Method Reqmt
1. Wafer Lot Acceptance 5007 All Lots —
2. Nondestructive 2023 o
Bond Pull 100% -
3. Internal Visual (Note 1) 2010, Condition A 100% 2010, Condition B 100%
4. Stabilization Bake 1008, Condition C, o 1008, Condition C, o
Min, 24 Hrs. Min 100% Min, 24 Hrs. Min 100%
5. Temp. Cycling (Note 2) 1010, Condition C 100% 1010, Condition C 100%
6. Constant Acceleration 2001, Condition E (Min) 100% 2001, Condition E (Min) 100%
Y1 Orientation Only i Y4 Orientation Only °
7. Visual Inspection (Note 3) 100% 100%
8. Particle Impact Noise 2020, Condition A 100% _
Detection (PIND) (Note 4) °
9. Serialization (Note 5) 100% —
10. Interim (Pre-Burn-In) Per Applicable Device Per Applicable Device
100% —
Electrical Parameters Specification (Note 13) Specification (Note 6)
11. Burn-In Test 1015 240 Hrs. at 125°C o 1015, 160 Hrs. at 125°C Min o
Min (Cond. F Not Allowed) 100% 100%




TABLE lil. 100% Screening Requirements (Continued)

Class S Class B
Screen
Method Reqmt Method Regmt
12. Interim (Post-Burn-In) Per Applicable Device 100% _
Electrical Parameters Specification (Note 13)
13. Reverse Bias Burn-In 1015; Test Condition A, C,
(Note 7) 72 Hrs. at 150°C Min 100% —
(Cond. F Not Allowed)
14, Interim (Post-Burn-In) Per Applicable Device 100% Per Applicable Device 100%
-] ) .
Electrical Parameters Specification (Note 13) Specification
15. PDA Calculation 5% Parametric (Note 14) Al Lots 5% Parametric (Note 14) All Lots
3% Functional — 25°C
16. Final Electrical Test Per Applicable Device Per Applicable Device
a) Static Tests Specification Specification
1) 25°C (Subgroup 1, 100% 100%
Table |, 5005)
2) Max & Min Rated 100% 100%
Operating Temp
(Subgroups 2, 3,
Table [, 5005)
b) Dynamic Tests & 100% 100%
Switching Tests,
25°C (Subgroups 4, 9,
Table |, 5005)
¢) Functional Test, 100% 100%
25°C (Subgroup 7,
Table |, 5005)
17. Seal Fine, Gross 1014 100% 1014 100%
(Note 8) (Note 9)
18. Radiographic (Note 10) 2012 Two Views 100% —
19. Qualification or Quality (Note 11) {Note 11)
Conformance Inspection Samp. Samp.
Test Sample Selection
20. External Visual 2009 o o
(Note 12) 100% 100%

Note 1: Unless otherwise specified, at the manufacturer’s option, test samples for Group B, bond strength (Method 5005) may be randomly selected prior to or
following internal visual (Method 5004), prior to sealing provided all other specification requirements are satisfied (e.g. bond strength requirements shall apply to
each inspection lot, bond failures shall be counted even if the bond would have failed internal visual).

Note 2: For Class B devices, this test may be replaced with thermal shock method 1011, test condition A, minimum.

Note 3: At the manufacturer's option, visual inspection for castastrophic failures may be conducted after each of the thermal/mechanical screens, after the
sequence or after seal test. Catastrophic failures are defined as missing leads, broken packages or lids off.

Note 4: The PIND test may be performed in any sequence after step 9 and prior to step 16. See MIL-M-38510, paragraph 4.6.3.

Note 5: Class S devices shall be serialized prior to interim electrical parameter measurements.

Note 6: When specified, all devices shall be tested for those parameters requiring delta calculations.

Note 7: Reverse bias burn-in is a requirement only when specified in the applicable device specification. The order of performing burn-in and reverse bias burr-in
may be inverted.

Note 8: For Class S devices, the seal test may be performed in any sequence between step 16 and step 19, but it shall be performed after all shearing and forming
operations on the terminals.

Note 9: For Class B devices, the fine and gross seal tests shall be performed separate or together in any sequence and order between step 6 and step 20 except
that they shall be performed after all shearing and forming operations on the terminals. When 100% seal screen cannot be performed after shearing and forming
(e.g. flatpacks and chip carriers) the seal screen shall be done 100% prior to those operations and a sample test (LTPD = &) shall be performed on each
inspection lot following these operations. If the sample fails, 100% rescreening shall be required.

Note 10: The radiographic screen may be performed in any sequence aiter step 9.

Note 11: Samples shall be selected for testing in accordance with the specific device class and fot requirements of Method 5005.

Note 12: External visual shall be performed on the lot any time after step 19 and prior to shipment.

Note 13: Read and Record when post bumn-in data measurements are specified.

Note 14: PDA shall apply to all static, dynamic, functional and switching measurements at either 25°C or maximum rated operating temperature.




Series 32000 Programs and Services

Technical Support Engineering
Center (TSEC)

SERVICE CENTER

NSC offers a full 90 day warranty period on each Develop-
ment Systems product that it sells. This warranty can be
enhanced, by purchasing at the time of sale, an added one

coverage. Contact MCS Logistics at the toll-free numbers
listed below for more information.

The Technical Support Engineering Center has highly
trained technical specialists available to assist customers
over the telephone with any Development System prob-
lems. The technical specialists utilize SPIRE, a computer-
ized technical data base designed for rapid search, to solve
customer and technical problems. This data-base can be
made available for customer use and communications to
the technical staff. Contact the SPIRE administrator at the
numbers below for more information.

Depot repair services are available for board and system
products. Our customers can use the toll-free numbers to
contact the service center for immediate solutions.

(800) 538-1866,

(800) 672-1811 for California

(800) 223-3248 for Canada.
When indicated other features of MCS service are used.
These include a service problem report (SPR) that modifies
a customer profile database, a request for engineering ac-
tion (REA) report that aids in product improvement, and an
escalation procedure that is used when necessary to in-
volve applications and design engineering to help bring any
problem to a rapid resolve.
National’s field engineers are located in Santa Ciara, Cana-
da and Europe and are available for dispatch to customer
sites to repair our Development Systems products. Exten-
sive spare parts inventories are maintained for such use.

Special Programs

Series 32000 Consultant Program

The Series 32000 Consultant Program was developed to
create a network of consulting firms throughout the United
States which act as independent agents for National Semi-
conductor’s Series 32000 Family. These agents are avail-
able to help companies design in Series 32000 products.
NSC provides a referral listing of all certified agents and
their area of expertise.

Series 32000 User Society

The charter of the Series 32000 User Society is to advance
the effective utilization of National’'s microprocessors. The
Society promotes the exchange of information and ideas
between Series 32000 software and hardware users.

The Society newsletter, which discusses design innovations
and new applications for the Series 32000 family, facilitates
the exchange of microprocessing information among Series
32000 users.

The University Program

Begun as merely a concept several years ago, National
Semiconductor’s University Program has now emerged as
one of the company’s most successful programs. The Uni-
versity Program was originally created to establish a rela-
tionship between National and the academic community
that would foster the exchange of information and keep stu-
dents abreast of modern advancements in technology.

Today, the University Program provides a wide variety of
services to universities such as university product Kits,
equipment loans, student research aid and on-campus
product demonstrations. Although probably best known for
its Series 32000 product kit, the University Program now
offers equipment from a/f departments within National, at .
substantial savings.

The University Program catalog provides a complete, up-to-
date list of all student/university services as well as pro-
gram application forms and course materials to guide in-
structors in introducing students to advanced microproces-
sors.

Because tomorrow's technology is dependent upon today’s
nurturing of up-and-coming scientists and engineers, Na-
tional is committed to supporting universities, particularly in
the area of microprocessor technology. National hopes that
more universities will share in this commitment by becoming
a part of the University Program.

For more information on any of these programs, contact
Linda Price, Program Manager, National Semiconductor
Corporation, 2900 Semiconductor Drive, M/S 7C-261, San-
ta Clara, California 95052-8090, 408-733-2600 ext. 463.

Microcomputer Systems Division

The Microcomputer Systems Division’s goal is to become a
leading force in the microcomputer systems marketplace.

To achieve this goal, a total systems approach has been
taken on the Series 32000 program to provide the customer
with the necessary hardware and software support, evalua-
tion and development tools, training, service and technicai
literature.

The focus is on upward migration paths, system integration
at all levels and the preservation of the user's software in-
vestment.

Four groups (Microprocessor, OEM Board Level Products,
Software Products and Development Systems) offer a
broad capability to solve customer needs at various levels
of performance and integration.




Introduction to Series 32000 Architecture

Introduction to Series 32000 Architecture

3rd Edition

Chapter 1
Computer Architecture

1.1 Introduction

The architecture of a computer describes what that com-
puter looks like to people who write software for it. More
precisely, the architecture is the complete and detailed
specification of the interface between the computer and
software. The architecture specifies those elementary in-
structions that are decoded and executed directly by the
machine. But it is important to keep in mind that architec-
ture describes only what the computer does, not how it
does it. Two machines are said to have the same architec-
ture if all the software written for one can execute on the
other, even if the actual hardware construction of the two
machines is entirely different. For example, the members
of the IBM System 360-370 family all have basically the
same architecture, but the technology used to implement
that architecture ranges from discrete transistors to Very
Large Scale Integration (VLS}).

Occasionally, the term architecture is used in a more
general sense as the boundary between different levels of
the whole system. (For example, terms such as “‘operating
system architecture’” are occasionally employed.) In this
document we will use “architecture” exclusively for the
boundary between the actual machine hardware and the
software.

1.1.1 The Role of the Computer Architect

A computer architect is someone who designs computer
architectures. The terms architecture and architect obvi-
ously have been adapted from their ordinary use in the
building construction industry. The words are apt because
in many ways the job of a computer architect is similar to
that of an ordinary architect. Both are more concerned
with the overall design of a structure and its appearance to
users than to the exact details of the construction, which is
the province of the structural engineer or general contrac-
tor in the buiiding industry and the hardware designer in
the computer industry.

The relationship between computer architect and com-
puter implementor is analogous to the relationship be-
tween an architect and a general contractor. The architect
designs the overall appearance of the building, balancing
a number of conflicting goals (e.g., the desirable view pro-
vided by many large windows and the equally desirable
goal of energy efficiency), always keeping in mind what is
possible with current construction technology (the avail-
ability and cost of materials). The general contractor is re-
sponsible for translating the architect’s vision into a build-
ing. If the contractor discovers that some detail of the
building’s architecture will be too difficult or too expensive
to build, or that it will iead to an unsafe structure, the archi-
tect may have to make changes.

Similarly, the computer architect designs the external ap-
pearance (to software) of the computer, balancing a num-
ber of conflicting goals (e.g., complete protection vs. sim-
plicity of use), and always keeping in mind the current
state of semiconductor technology. The computer imple-
mentor translates this design into silicon. If the implemen-
tor finds that some feature of the computer architecture is
too difficult or too expensive tc implement, or if another
feature causes the computer to run significantly slower,
the computer architect may have to make changes.

The role of the architect in both industries is to make an
intelligent compromise among a number of desirable
goals and to balance this against the limitations of current
technology to get a cost-effective design. Architectural
mistakes usually result when one goal is single-mindedly
pursued to the exclusion of other goals, or when a desired
goal is simply not technologically feasible.

A certain amount of controversy currently surrounds a
number of issues associated with computer architecture.
As defined, computer architecture is just the boundary be-
tween the hardware and software. The controversy is
fundamentally over where that boundary should be drawn,
and what trade-offs should be made between various fea-
tures for reasons of performance. Discussion has cen-
tered around three main topics:

« What is the best way to support high level languages?

¢ How should memory be organized?

* What protection features should be provided by the
hardware?

In the remaining sections of this chapter we will examine
these three topics, introduce some of the points at issue,
and present the Series 32000 approach to each topic.

1.2 High Level Language Support

All evidence suggests that programming in a high level
language (e.g., Pascal) is more productive than pro-
gramming in assembly language. Some researchers have
found that high level language programmers can produce
the same number of debugged lines of code per day as
can assembly language programmers. Since a line of
code in a high level language usually performs a more
complex operation than a line of code in assembly lan-
guage, the high level programmer is more productive.

Studies have shown that both the time to debug a program
and the difficulty in understanding and maintaining it are
proportional to the number of instructions, with little
dependency on the complexity of each instruction. Since
several instructions might be required for each high level
language statement, the savings in programming time and
cost over an equivalent assembly language program are
obvious.




Before the advent of Series 32000, however, these advan-
tages had been partially offset by the inherent inefficiency
of high level languages as opposed to assembly language
programs. Depending on the compiier, the computer, and
the application, a compiled program might be anywhere
from 0% to 300% longer and slower than the best assem-
bly language program. The basic reason for the inherent
inefficiency of high fevel languages (we will call the HLLs,
nceasionally) when they are targeted to contemporary ar-
chitectures is that these architectures were not designed
to support compilers.

1.2.1 Deficiencies of Current Architectures

The shortcomings of current computer architectures are
largely attributable to what Glenford Myers has called the
semantic gap,' a measure of the difference between the
concepts in high level languages and the concepts in the
computer architecture. The objects and operations re-
flected in these architectures are seldom closely related to
the objects and operations provided in the programming
languages. This semantic gap contributes to software un-
reliability, performance probiems, excessive program
size, compiler complexity, and distortions of the language.

Here are some of the heavily used concepts in high level
languages, along with a few comments on the architec-
tural support for these concepts provided by most com-
puter architectures:

Arrays. The array is one of the most frequently used data
structures in most HLLs. An array is a set of entries, each
with the same data type (thus we speak of arrays of inte-
gers, arrays of characters, etc.). Most languages provide
for multidimensional arrays, performing operations on en-
tire arrays and checking to see that array subscripts do not
exceed the boundary of the array. Most computer archi-
tectures, however, provide very limited architectural fea-
tures to support any of these constructions.

Records. A record consists of a number of components
(usually called fields) that can be of different data types.
Thus a record might consist of characters, integers, and
real numbers (for instance, a criminal record). There is
nothing in the architecture of most microprocessors that
supports records.

Strings. Most languages contain the concepts of fixed
and variable sized strings, and of string processing opera-
tions such as concatenation and searching for a specified
substring within a string. Many microprocessor architec-
tures provide no string processing instructions at all.

Procedures. The basic program unit in modern HLLs is
the procedure. A procedure call entails saving the state of
the calling procedure, dynamically allocating and initializ-
ing local storage for the called procedure, passing argu-
ments, and executing the called procedure. Most micro-
processor architectures provide no support for any of
these operations.

1Glentord J. Myers, Advances in Computer Architecture, Wiley 1978

Modules. Modern HLLs (Pascal, Ada) implement the con-
cept of a software module containing several procedures
and associated data. Each module may be developed in-
dependently of all other modules and combined for final
execution. This modularization reduces software develop-
ment cost and time, increases design flexibility, and sim-
plifies system design. Up to now most processors have not
supported the modular software concept.

One source of current problems is that contemporary ar-
chitectures are asymmetric, and therefore do not permit
the concepts in HLLs to be efficiently modeled in machine
language. Symmetry is the degree to which all addressing
modes exist for all operands and all required operators ex-
ist for every data type. Chapter 2 discusses symmetry in
detail and also defines the key terms, such as addressing
mode and data type.

1.2.2 The Series 32000 Approach

These deficiencies in contemporary microprocessor ar-
chitectures have been addressed by the designers of
Series 32000. They have made a major effort to bridge the
semantic gap with this new architecture. Series 32000 ar-
chitecture, in fact, is designed specifically to support high
level language compilers; it enables even relatively unso-
phisticated compilers to produce efficient code. Special
addressing modes are provided to access such HLL con-
structions as arrays and records, and new operators are
provided that are specifically tailored for high level
languages.

Addressing Modes. Series 32000 architecture supports
four standard addressing modes (i.e., mechanisms for ac-
cessing operands) common to most processors: register,
immediate, absoiute, and register relative. in addition,
Series 32000 introduces four HLL-oriented addressing
modes: top-of-stack mode is very useful for evaluating
arithmetic expressions in high level languages. Scaled
indexing mode can be used to access elements in byte,
word, double-word, or quad-word arrays. Memory relative
mode can be used for manipulating fields in a record. Ex-
ternal mode can be used to access data in separately
compiled modules. (See Chapter 2 for a discussion of ad-
dressing modes.)

New Operators. In addition to the conventional CPU in-
structions, such as data movement, arithmetic logic, and
shifts, the architecture includes advanced instructions
which are very useful in an HLL environment. The CHECK
instruction determines whether an array index is within
bounds. The INDEX instruction implements the recursive
indexing step for multi-dimensional arrays. The STRING
instruction manipulates data strings. ENTER and EXIT in-
structions minimize the overhead in procedure calls by
managing the resources (registers, stack frame) allocated
at the beginning of a procedure and reclaimed at the end.
(See Chapter 2 for more on these instructions.)
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1.2.3 Controversial Topics

The addressing modes and new operators provided by
Series 32000 clearly represent an advance over con-
temporary architectures. Yet two of the issues faced by
Series 32000 designers remain controversial.

* Should three operand instructions be provided?
* Should instructions be primarily register-oriented,
memory-to-memory, or top-of-stack?

Three Operand Instructions

It is occasionally claimed that an architecture must provide
general three operand instructions if it is to truly support a
HLL. (A three operand instruction is, as the name implies,
an instruction which contains two source operands as well
as a destination. For example, an instruction to directly im-
plement the FORTRAN statement,

A=B+C

would be a three operand instruction with operands A, B
and C and the operator +). The reasoning behind this
claim is basically that if three operand statements are
common in high level languages, then presence of three
operand instructions in the architecture will result in
greater code density. The VAX-11, for example, permits
three operand instructions for most arithmetic operations.

However, a study by D.E. Knuth of Stanford University in
19712 showed that in 250,000 lines of FORTRAN code,
80% of all assignments were of the form

AopBorA=B

It follows that three operand HLL statements are ex-
tremely rare, and the need for such a construction in the
architecture is unproven. Moreover, since provision for
three operand instructions imposes a certain burden of its
own (whether in code density or execution speed), the utili-
ty of this instruction category must certainly be
questioned. The designers of Series 32000 felt that the
need for three operand instructions was not great enough
to justify that overhead. In fact, Series 32000 provides
greater code density than the VAX-11.

Registers

Itis also occasionally claimed (for example by Glenford
Myers in his book Advances in Computer Architecture®)
that registers are alien to the concepts in HLLs and should
be done away with in the interests of bridging the semantic
gap. The designers of Series 32000 disagree. The high
level language concept that relates most strongly to regis-
ters is the idea of the set of variables that are locai to a
procedure. The modular programming methodology de-
scribed above encourages the use of a number of small
procedures instead of large monolithic programs. Each of
these procedures usually makes use of only a few vari-
ables of its own, but these variables are used over and
over again in that procedure. For instance, a procedure
that manipulates an array must constantly refer to the ar-
ray index.

2p E. Knuth, “’An Empirical Study of FORTRAN Programs,” Software Practice and

Experience, 1, 2 (April-June, 1971) 105-133.
3Nleyers. op.cit,p. 23
VAX-11 is a trademark of Digital Equipment Corporation.

The chief advantage of registers is that they allow a work-
ing set of variables to be kept close at hand where they
can be accessed quickly. This working set of variables is
stored in the register set. Studies by William Wulf, et al.*
have indicated that five registers are sufficient for almost
all applications. Series 32000 CPUs use 8 (i.e., 2%)
general-purpose registers and several specialized regis-
ters for particular pointers. Series 32000 architecture al-
lows memory-to-memory operations, but it does not re-
quire them.

Registers allow the compiler writer to optimize the execu-
tion of HLL statements, whereas a purely memory-to-
memory machine must constantly carry the overhead of
referencing all variables in main memory. A purely stack-
oriented machine (i.e., an architecture where all variables
are assumed to be on the top two locations of the stack) is
essentially equivalent to a machine with two registers.
Many studies have shown that pure stack machines do not
give any significant advantage over a general register
machine.®

1.3 Memory Organization

There are three aspects to memory organization: (1) the
overall memory architecture, which is basically how the
logical memory looks to the computer program; (2)
logical-to-physical address translation (mapping) which
maps the logical structure of memory onto hardware; and
(3) virtual memory mechanisms. Series 32000 has a linear
memory architecture; it supports page-based mapping;
and it provides a number of mechanisms which support a
virtual memory system.

1.3.1 Linear versus Segmented
Memory Architecture

The main memory of a computer is organized as a set of
consecutively numbered storage cells. In most computers
these memory cells contain eight bits (a byte). The loca-
tion number associated with one of these physical storage
cells is called a physical address, and the set of all phys-
ical addresses is called physical address space. The phys-
ical address space is thus determined by the actual hard-
ware in the computer’s memory system.

On the other hand, a program running on a computer can
generate a set of addresses that is limited only by the
number of bits in an address. This set of addresses is not
necessarily related to the actual amount of physical
memory in the system. For example, consider a computer
with a 16-bit address field in instructions and 4,096 (4K)
bytes of memory. A program on this computer can address
65,536 (64K) locations, for the simple reason that 216
(65,536) 16-bit numbers exist. The set of these numbers is
called logical address space; it is the set of logically possi-
ble addresses (even if they are not realized physically); it is
the set of all addresses that can be generated by a pro-
gram. The organization of the logical address space de-
fines the memory architecture. The two main types of
memory architecture are linear and segmented.

SW.A. Waulf, et al., The Design of an Optimizing Compiler, North Holland, 1975

5Meyers, op.cit., p. 49




In a linear address space, addresses start at location zero
and proceed in linear fashion (i.e., with no holes or breaks)
to the upper limit imposed by the total number of bitsin a
logical address. With Series 32000, there can be up to 24
bits in a logical address, resuiting in 16 miilion (224) bytes.
In fact, Series 32000 architecture makes provision for 32-
bit logical addresses, allowing 4 billion (22) bytes of log-
ical memory to be addressed.

The alternative to a linear memory architecture is a so-
caiied “‘segmented’” memory architecture. A segmented
address space is basically a collection of small linear ad-
dress spaces. A rigid distinction is made between the seg-
ment (the particular address space in which a datum is
located) and the displacement of the datum within the seg-
ment (the distance in bytes from the start of the segment
to the location in question). A segmented address is
consequently a two-component value. The first compo-
nent (the segment selector) picks out one of the segments
while the second component specifies the displacement
within the segment. (See Figure 1-1 for a comparison of
linear and segmented memory.)

The advantages of segmented memory center around
protection issues. The claim is made that a segmented
memory better accords with the organization of modern,
modular programs and structured data than does a linear
memory. Consequently, mechanisms for preventing ac-
cess to segments, or preventing segments from being
read or written into can be used to protect meaningful pro-
gram units. In other words, since the structure of the log-
ical address space of a segmented architecture reflects
the logical structure of the program, protection mecha-
nisms provided for segments naturally accrue to meaning-
ful program units.

This is in fact true. However, except for a few processors
(e.g., the MULTICS processor) few segmented machines
have consistently carried out this program. For example,
most current segmented architectures impose a limit of
64K bytes on the length of a segment. But in order for seg-
mentation to realize its protection advantages, segments
should be allowed to have arbitrary size. A 2-megabyte
segment, after all, will be needed to hold a 2-megabyte ar-
ray, if the program organization is to reflect the program
structure. And in modern bit mapped graphics systems (a
typical application for 16-bit microcomputers), 2-megabyte
arrays are common. Moreover, since programs can con-
sist of hundreds or even thousands of modules, it is im-
portant for the architecture to support large numbers of
segments if segmentation is to be used properly. Large
data bases are a typical application that will require either
segments of arbitrary size or a great many segments.

Itis unfortunately the case that most segmented architec-
tures allow only small segments (i.e., less than 64K bytes)
and usually support only a limited number of them (typical-
ly, fewer than 128). The size limitation is an artifact of earli-
er days when the entire (linear) address space was only
64K bytes long. The designers of the segmented ma-
chines expanded the address space of their earlier pro-
cessors, while attempting to preserve some measure of
software compatibility, by making the old 64K-byte linear
address space one of the new 64K bytes segments. The
8086 and its relationship to the 8080 is the most painful il-
lustration of this phenomenon.

LINEAR LOGICAL ADDRESS SPACE

OPERANG |

SINGLE-COMPONENT
ADDRESS

SEGMENTED LOGICAL ADDRESS SPACE

SEGMENT A
SEGMENT C
| OPERAND |
Two. [ DISPLACEMENT
COMPONENT
ADDRESS | SEGMENT

—
SELECTOR SEGMENT B

Figure 1-1. Linear vs. Segmented Address Space

In such segmented architectures, all data structures larger
than the maximum segment size must be broken down to
fit into several segments, since an address pointer cannot
be incremented from the top of one segment to the bottom
of another segment. By contrast, a linear address space
can accommodate data structures of any size up to the
maximum size of memory.

Series 32000 provides the protection advantages of seg-
mentation without the segment-size disadvantages, by
permitting segments to be constructed out of an arbitrary
number of fixed-size memory units. These memory units
are called pages, and they form the basis for Series 32000
mapping, virtual memory, and memory protection mecha-
nisms (see Sections 1.3.2, 1.3.3, and 1.4).

Series 32000 permits a form of segmentation—that is, it
lets the operating system keep track of collections of
pages with the same protection attributes—but it does not
require segmentation by building it into the architecture.
Moreover, the segmentation permitted by Series 32000 is
more general than that built into standard segmented ar-
chitectures (for example, segments can have arbitrary
size).
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1.3.2 Page-Based Mapping and Alternatives

Mapping is based on the distinction outlined in Section
1.3.1 between logical address space and physical address
space. Mapping is basically the process of translating a
logical address into an arbitrary physical address. Without
mapping, logical addresses are simply equated with phys-
ical addresses; by exploiting mapping, a logical address
can be assigned to an arbitrary physical address. Mapping
thus provides a kind of generalized relocation mechanism.

Unmapped memory is adequate for simple, single user,
single-task systems, which is why most microcomputer ap-
plications until now have been unmapped. However, the
large memory and increased power of 16/32-bit microcom-
puters have led to their being employed in multi-user,
multi-task applications. And in these cases mapping is
highly desirable, for without mapping, the different pro-
grams in a multiprogramming system or the different tasks
in a multitasking system must operate within the same log-
ical address space. Consequently, each program or task
must be careful not to access any address outside its as-
signed partition, and in general everyone must be familiar
with the detailed organization of memory in order to make
full use of it.

By contrast, mapping allows each program or task to be
assigned its own logical address space, with the mapping
mechanism responsible for translating these independent
logical address spaces into the same physical address
space. Since the programs and tasks have separate log-
ical address spaces, there is no chance of interference.

Since it is too cumbersome to control the translation of
each logical address individually, mapping is ordinarily
done in blocks of addresses. The simplest and historically
the earliest mapping systems mapped the entire logical
address space of a program as one unit. (See Figure 1-2
for a diagram of such a system.)

More recent systems are based on mapping smaller
chunks of memory, rather than the entire logical address
space of a program. There are basically two kinds of ad-
dress translation schemes, differing only in the structure
of the mapping blocks. One form is based on variable-
sized segments, the other is based on fixed-size units
called ‘‘pages.”” Series 32000 employs a page-based
mapping system.

With Series 32000, the logical address space is broken up
into 32,768 pages, each with a fixed size of 512 bytes. The
physical address space is broken up into the same num-
ber of pieces, each piece the same size as a page. These
pieces of physical memory into which the pages are
mapped are called page frames. Figure 1-3 shows a part
of Series 32000 mapping scheme.

A page-based mapping system is usually more efficient
than a segment-based mapping system because of the
memory fragmentation problem associated with segment-
based systems. This problem occurs often in segmented
multi-program systems when the available memory space
becomes fragmented into many small pieces and not
enough contiguous physical memory is available to con-
tain one large segment. By contrast, since all pages are
the same size, if any physical page frame is available it
can hoid any page.
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Figure 1-2. Mapping the Entire Address Space

The mapping operation is performed by the NS32082
MMU (Memory Management Unit) and is explained thor-
oughly in Chapter 3. This translation process is performed
automatically, making use of a table in memory that con-
tains the physical address of each page frame.

Each program or task can have its own such table, and
changing the current table is simply a matter of changing
an MMU register that points to the starting address of the
current table. Therefore, each program or task can have
its own map from logical memory to physical memory, and
therefore each program or task can have its own logical
address space.

Entries in the table contain protection bits along with phys-
ical addresses. These protection bits are used to provide
each page with a set of protection attributes (e.g., read
only). The operating system can treat a collection of pages
with the same attributes as a segment in the sense of Sec-
tion 1.3.1. Page based mapping thus provides a mecha-
nism for implementing segmentation.

1.3.3 Virtual Memory

In many computer systems, the logical address space is
far larger than the actual memory hardware. Virtual/
memory is amechanism for circumventing the limits on
physical memory size. Under a virtual memory system, it
appears to users as if the entire logical address space
were available for storage. But, in fact, at any given mo-
ment only a few pages of the logical address space are
mapped onto physical space. The other pages are not pre-
sent in main memory at all; instead, the informatidn in
these pages is stored on a secondary storage device, such
as a disk, whose cost-per-bit is more economicai.
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Figure 1-3. Page-Based Mapping

In a virtual memory system, whenever the computer
generates a memory address, the hardware checks
whether that address lies in a page that is actually in
memory. If it does, the address is translated to the appro-
priate physical address, and the memory reference takes
place normally. If the indicated page is not in memory, an
operation called a page swap is performed, and the
operating system software loads the missing page from
disk. If this operation is performed swiftly, the user will
have the illusion of a gigantic physical memory. For effi-
ciency, when the referenced location has to be brought
from the peripheral to the main memory, other locations
likely to be referenced next are also brought in. Informa-
tion not currently in use is removed from the main memory
and returned to peripheral storage, thus making reom for
the new material.

Of course the beauty of virtual memory is that the user or
programmer does not have to be aware of the process. He
uses one consistent set of addresses called virtual ad-
dresses. The memory management hardware keeps track
of where the information resides at any given time and
translates the virtual address into a real location in phys-
ical memory. When the CPU finds the requested virtual
address to be unavailable in main memory, it notifies the
operating system which initiates a swap.

When the data to be replaced has not been modified dur-
ing the time it was resident in main memory, there is no
need to write it back to the peripheral device since an up-
to-date copy already exists there. Under such a circum-
stance the old data is simply overwritten with the new
data.

Virtual memory was first implemented on the Atlas com-
puter at Manchester University, using special hardware.
All computers with virtual memory since the Atlas have
also required special hardware functions to implement
virtual memory. Many current microprocessors do not
have adequate mechanisms to support virtual memory
systems. For example, in both the Z8000 and the 68000 no
provision was made for restarting an instruction that
causes a page fault. in Series 32000 virtual memory sys-

tems, this special hardware is provided by the NS32082

MMU (with support from the CPU chip).

1.4 Protection

The last major area of debate about computer architecture
concerns the whole topic of protection: memory protec-
tion, program protection, user protection. The basic issue
is what should be the granularity of the protection mecha-
nisms that are provided. The basic difficulty is that the
finer the granularity, the more the overhead associated
with protection.

Some systems implement a hierarchy of protection levels
from most privileged to least privileged. These levels are
often called rings. Each ring has its own access control
information for a page. Generally, a more privileged ring
has access to all the information in a less privileged ring.
However, because the number of rings is severely limited,
usually to four, and because tasks often do not have a
strictly hierarchical relationship, ring systems are seldom
flexible enough for modern operating systems.

Instead, a capability-based protection system is often pro-
posed as an alternative which allows nonhierarchical
relationships between an arbitrary number of tasks. Ina
capability-based operating system each task has a table of
operations it is allowed to perform that may affect other
tasks in the system. This table is protected from direct
modification by the task. Thus, the only way a task can
perform an operation which could affect another task is if it
has the appropriate capability in its capability table. A task
may give a specific capability to another task. By restrict-
ing the distribution and type of capabilities it gives out, a
task may tightly control access to the services it provides.

One problem with most capability-based systems is that
the concept is carried to such lengths that it interferes with
efficient accessing and processing of information within a
task. Since the cost of protection is always high in these
capability systems, performance suffers.

The designers of Series 32000 felt that a capability based
protection scheme could be implemented at some level in
the system, but that the appropriate level to do this was in
the kernel of the operating system, not in the architecture
itself. The basic reason for leaving capabilities out of the
architecture is twofold: (1) the extra burden should not be
imposed on all programmers who use this architecture or
on every memory reference; (2) the implementation of a
capability-based system is such a new and complex task
that locking such a system into silicon before it is thor-
oughly proven can be very risky. The designers of Series
32000 preferred to work out the bugs in their operating
system before they froze it permanently in silicon.

1-21

21n)29)1Yyd4y 0002€ SBMAS 0} UO[ONPOIIU|



Introduction to Series 32000 Architecture

The protection features actually implemented in Series
32000 architecture can be divided into three groups:

1. Supervisor/user mode. A distinction is made between
two operating modes of the CPU: supervisor mode in
which all the power of the instruction set is available,
and user mode in which only a restricted subset of the
instructions are available. Supervisor mode is intended
for operating systems and other trusted programs.
User mode is intended for those programs that are not
trusted.

. Separate address spaces for each task. Each task run-

ning on Series 32000 has its own collection of pages
constituting its address space. Access to another
task’s address space is impossible.

. Protection bits in the page and pointer table entries.

Associated with each page are bits that define whether
that page can be read but not written into, read and
written into, or neither read nor written.

All these protection features are discussed in Chapter 3,
Section 3.4.
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Chapter 2

High Level Language Support

on Series 32000

2.1 Introduction

In Chapter 1, it was shown that with conventional architec-
tures, the gain in programming efficiency produced by
writing in high level languages instead of assembly lan-
guage is usually undermined by the larger amount of
memory required to store the code. This phenomenon is a
result of the large number of instructions that must be
generated by the compiler to map HLL concepts onto the
more restricted repertoire of machine instructions. Perfor-
mance is also diminished because of the large number of
memory transactions generated by the instructions. in
addition, when the differences between the abstractions
called for by a problem and the capabilities directly imple-
mented in the computer’s hardware is very great, the code
generation portion of a compiler must be extremely
complex.

A primary design objective for Series 32000 was for the
structure and behavior of the processor’s architecture to
correspond in a reasonable way with the objects and
operations of high level languages. The goal was to devel-
op a symmetrical architecture particularly suited to being
the target for compilers. The architecture of Series 32000
meets that goal; it enables symmetric use of general pur-
pose registers, memory locations, addressing modes,
data types and instructions.

Compilers can easily generate high-performance (very
dense and efficient) code for Series 32000. Series 32000
is particularly well suited to the Pascal high level lan-
guage. Because of Series 32000’s general-purpose regis-
ters, the program also executes faster. In addition, the ar-
chitecture avoids special-case instructions and address-
ing modes that compilers have difficulty making use of.

In this chapter we will examine in detail the means by
which the concepts of HLLs are supported by Series
32000 architecture; namely, by a symmetrical archi-
tecture, a sophisticated instruction set, and expanded ad-
dressing capabilities.

2.2 Data Types Supported

The objects and concepts of a high level language include
constants, variables, expressions, and functions, each of
which is of a particular data type, the type determining the
range of values which the constant, variable, expression,
or function can assume in the program.

A data type is said to be supported by a computer if the
computer’s instruction set contains operators that directly
manipulate the data type or else has operators and ad-
dressing modes that facilitate its manipulation. Data types
directly manipulated by the hardware are called primitive
data types. Those data types supported by the hardware,
but not manipulated directly, consist of ordered coliections
of primitive types and are called structured data types.

Series 32000 supports the following data types:

* -primitive data types (see Figure 2-1)
—integers (signed and unsigned)
—floating point
—booleans
—Binary Coded Decimal (BCD) digits
—bit fields

¢ structured data types
—arrays
—records
—strings
—stacks

2.2.1 Integer Data Types

The integer data type is used to represent integers, i.e.,
whole numbers without fractional parts. Integers may be
signed (negative as well as positive) or unsigned (positive
only). integer data types on Series 32000 are availabie in
three sizes: 8-bit (byte), 16-bit (word) and 32-bit (double
word). Signed integers are represented as binary two's
complement numbers and have values in the range — 27
t027 -1, -2'5t02"® — 1, or —-2%"t0 23" - 1; unsigned in-
tegers have values in the range 0to 2% — 1,010 216 -1, or
0to0 2% — 1. When integers are stored in memory, the
least-significant byte is stored at the lowest address; the
most significant byte at the highest address.

2.2.2 Floating Point Data Types

The floating point data type is used to represent real num-
bers, i.e., numbers with fractiona! parts. Floating point
numbers are represented by an encoded version of the fa-
miliar scientific notation:

n=sxfx10®

where s is the sign of the number, f is called the fraction,
or mantissa, and e is a positive or negative integer called
the exponent. (Figure 2-1 shows how these values are
represented by fields within the number.) Floating point
numbers are available in two sizes: 32-bit (single
precision) and 64-bit (doubie precision). Double precision
offers both a larger range (larger exponent) and more
precision {iarger mantissa). Series 32000 fioating point
data type is compatible with the proposed IEEE floating
point standard.

Manipulation of the floating point data type is actually
handled by the NS32081 Floating Point Processor (FPU)
(see Section 4.4, Slave Processors). If an FPU exists in the
system, the user can treat floating point numbers (both
single and double precision) as any other Series 32000
data types and may use any of the Series 32000
addressing modes to reference them. Also, conversion is
provided from every integer and floating format to every
other integer and fioating format. If an FPU is not present,
these functions must be simulated in software.
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Figure 2-1. Primitive Data Types

2.2.3 Other Primitive Data Types
(Booleans, Bits, BCD Digits)

The boolean (or logical) data type is a single bit whose
value, 1 or 0, represents the two logic values true and
false. A boolean data type has many uses in a program,
for example, to save the results of comparisons, to mark
special cases, and in general to distinguish between two
possible outcomes or conditions. Booleans are repre-
sented on Series 32000 by integers (byte, word, or double
word). True is integer 1; false is integer 0.

The bit field data type is different from other primitive data
types in that the basic addressable unit is measured in bits
instead of bytes. With Series 32000, bit fields may be 1 to
32 bits long, and located arbitrarily with respect to the
beginning of a byte. They are useful when a data structure
includes elements of nonstandard lengths, since they
allow programs to manipulate fields smaller than a byte.

With the binary-coded decimal (BCD) data type, unsigned
decimal integers can be stored in the computer, using 4

bits for each decimal digit. The BCD data type is repre-
sented on Series 32000 by three formats, consisting of 2,
4, or 8 digits. Two BCD digits may be packed into a byte,
four to a word, or eight to a double word; thus one byte
may represent the values from 0 to 99, as opposed to 0 to
225 for a normal unsigned 8-bit number. Similarly, a word
can represent values in the range 0 to 9999, or a double
word can represent values in the range 0 to 99999999.

Though BCD requires more bits to represent a large
decimal number, it does have certain advantages over
binary. For many business applications, the amount of
actual computing to be done between source input and
output is small, so that converting data from binary to
decimal formats can represent a significant fraction of the
total processing overhead. BCD arithmetic eliminates this
conversion overhead since the computations are actually
performed in decimal. Also of importance for business
applications is the loss of accuracy which can result from
conversions from decimal to binary and back again, a ioss
which is avoided by using decimal arithmetic.
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2.2.4 Arrays

An array is a structured data type consisting of a number
of components, alf of the same data type, such that each
data element can be individually identified by an integer
index. Arrays represent a basic storage mode for all high
level languages.

in Pascal programs, for example, each element of an array

ax value niving
e value alving

in raf, i
is referenced by the array name and an it

the component’s position in the array. Arrays range from
simple one-dimensional vector arrays to more complex
multi-dimensional arrays. The elements of an array may
be integers, floating point numbers, booleans, characters,
or more complex objects built up from these types.

Series 32000 provides special operators that facilitate
calculation of the array index and determination if the
index is outside the limits of the array (see Section 2.3.4,
Block, String and Array Instructions). in addition, certain
Series 32000 addressing modes facilitate quick access to
array elements (see Section 2.5.2).

2.2.5 Records

A record, like an array, is a structured data type with sev-
eral components. However, unlike arrays, the components
of a record may each be of a different data type. In high
level languages, such as Pascal, a component of a record
is selected by using both the name of the record variable
and the name of the component. Usually, records are
grouped into large arrays, called files in COBOL, struc-
tures in PL/I, and record structures in Pascal.

Series 32000 addressing modes facilitate quick access to
record elements (see Section 2.5.2, High Level Language
Addressing Modes).

2.2.6 Strings

A string is an array of integers, all of the same length. The
integers may be bytes, words, or double words. Strings
are common data structures in high level languages. For
example, strings of ASCII characters (i.e., bytes) are com-
monly used to contain alphanumeric text.

With Series 32000, a string is represented by a sequence
of integers stored in contiguous memory. Special opera-
tors exist that facilitate comparison of strings, movement
of strings, and searching strings for particular integer
values (see Section 2.3.4, Block, String and Array
instructions).

2.2.7 Stacks

A stack is a one-dimensional data structure in which vai-
ues are entered and removed one item at a time at one
end, called the top of stack. It consists of a block of mem-
ory and a variable called the stack pointer.

Stacks are important data structures in both systems and
applications programming. They are used to store return
address and status information during subroutine calls
and interrupt servicing. Also, algorithms for expression
evaluation in compiters and interpreters depend on stacks
to store intermediate results. Block-structured HLLs such
as Pascal keep local data and other information on a
stack. Parameters of a procedure in a block structured

HLL are usually passed on a stack, and assembly lan-
guage programs sometimes use this convention as well.

Series 32000 supports both a User Stack and an interrupt
Stack. Depending on the mode of operation, one of the
two stack pointers (SPy or SP,) contains the memory ad-
dress of the top item on the stack. Instructions exist which
allow for explicit manipulation of the stack pointer, and the
current stack can be used in almost all Series 32000 in-
structions to hold an operand (see Section 2.5.2, High
Level Language Addressing Modes).

For example, an item may be pushed onto the stack by
subtracting the length of the item from the stack pointer
(since stacks, by convention, grow downward in memory),
then moving the item to the address now pointed to by the
stack pointer. An item may be popped off the stack by
moving the item pointed to by the stack pointer to the
destination, then adding the length of the item to the stack
pointer. Both of these operations are performed by select-
ing the Top of Stack Addressing Mode.

Instructions also exist which push or pop the contents of
one or more registers. For example, the Jump to Subrou-
tine instruction causes the Program Counter’s contents to
be pushed on the stack, and the Enter instruction causes
the contents of the Frame Pointer and specified General
Registers to be pushed on the stack. (See Section 2.3.6,
Register Manipulation Instructions, for more details.)

2.3 Instruction Set

One of the most important considerations in evaluating a
computer architecture is the relationship between the ma-
chine’s primitive data types and the instructions that ma-
nipulate those data types.

For example, if a processor has byte, word, and double
word integers, it should have an Add operator that oper-
ates on each of these in a uniform and consistent manner.
Series 32000 architecture provides a complete and com-
prehensive set of instructions for every hardware-
recognized primitive data type. In addition, special instruc-
tions are available that facilitate manipulation of structured
data types.

The instruction set includes over 100 basic instruction
types, chosen on the basis of a study of the use and fre-
quericy of specific instructions in various applications;
special-case instructions, which compilers cannot use,
have been avoided. The instruction set is further ex-
panded through the use of special Slave processors, act-
ing as extensions to the CPU.

This instruction set is symmetrical, that is, instructions can
be used with any general addressing mode (see Section
2.3.7), any operand length (byte, word, and double-word),
and can make use of any general purpose register.

Series 32000 instructions are genuine two operand in-
structions, though many instructions use more (up to five)
operands. This, combined with the consistent and sym-
metric architecture, reduces the code size considerably.
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2.3.1 Integer Instructions

A large set of arithmetic instructions are provided for inte-
ger manipulation: addition and subtraction, multiplication
and division (with various remainder, rounding, modulus
and result-length options), two’s complement, and abso-
lute value. Other instructions include:

* Move operators that allow either zero or sign extension
(a useful feature when the size of the destination ex-
ceeds the size of the source).

Shift operators allowing logical and arithmetic shifts, as
well as rotation left or right, by any amount.

* Boolean instructions (And, Or, Exclusive Or, Comple-
ment, and Bit Clear) allowing each bit in a data word to
be manipulated independently.

* Two BCD arithmetic operators, Add and Subtract, han-
dling up to eight digits at a time.

Extended Multiply and Divide operators which return a
result which is twice the size of the operands which they
read.

2.3.2 Floating Point (FPU) Instructions

The NS32081supports 32-bit and 64-bit precision floating
point calculations, as well as 8-, 16-, and 32-bit fixed point
calculations. In addition to the floating Add, Subtract,
Muitiply, Divide, and Compare instructions, there is a
Move instruction that doubles as a conversion instruction
for converting from integer to floating point format. Instruc-
tions are also provided to ROUND off a floating point num-
ber to the nearest integer, to TRUNCate a floating point
number toward zero, and to convert a floating point num-
ber to the largest integer less than or equal to itself (the
FLOOR of that number). For positive floating point num-
bers, these last two operations have the same effect; they
differ, however, for negative numbers. For example,

- 3.17 truncates to — 3, but its floor is — 4.

These instructions are implemented by the FPU and dis-
play the same symmetry, addressing modes and flexibility
as the rest of the instruction set. The architecture of Series
32000 makes available to the FPU all Series 32000 ad-
dressing modes, and any instructions can be register-to-
register, memory-to-register or memory-to-memory.

2.3.3 Boolean, Bit, and Bit Field Instructions

Boolean instructions treat a data word as an array of bits,
and allow each bit to be handled independently. Boolean
operators include And, Or, Exclusive Or, Complement,
and Bit Clear.

Series 32000 provides a special Boolean Not instruction
for implementing high level languages which require that
TRUE =1 and FALSE = 0. To simplify the handling of
Boolean expressions in compilers, a Set on condition in-
struction stores a ‘1" into its only operand if a condition
code check is satisfied; if not, it stores a *‘0"".

Bit instructions allow convenient handling of individual bits
or arbitrarily large bit arrays. In addition to the ability to set
clear, complement, or test any bitin memory orin a regis-
ter, Series 32000 provides semaphore primitives (test and
set, test and clear) for muiltiprocessing and multitasking

s

coordination. Also provided is a Convert to Bit-Fieid Point-
er Instruction which converts a byte address and a bit off-
set into a bit address. This allows a field address to be con-
verted to an integer and thus passed to a procedure or
function, a facility which is very useful in HLLs. A Find First
Set instruction searches a sequence of bits, either in
memory or in a register and returns the bit number of the
first *“1” bit it sees.

Two Bit Field instructions can access bit fields up to 32
bits in length anywhere in memory, independent of byte
alignments. The Extract instruction reads a bit field, ex-
pands the result to the length specified in the opcode, and
then stores the expanded result into another operand. An
Insert instruction reads an operand of the length specified
in the opcode and stores the low-order part into a bit field.

2.3.4 Block, String, and Array Instructions

For the many iterative operations which are required in
high level languages, the Block Move and Block Compare
instructions facilitate efficient generation of compiler code.
They are written the same way as the standard memory-
to-memory move and comparison instructions, except for
the addition of a third displacement operand, which speci-
fies how many elements (bytes, words or double words)
are to be moved or compared.

Strings of bytes, words, or double words are easily ma-
nipulated with the Move String, Compare String, and Skip
instructions. To avoid destructive overwriting, move and
compare operations can proceed from low addresses to
high addresses, or vice versa. These operations can pro-
ceed unconditionally, or be terminated when a compari-
son condition is met (when either a specific vaiue is en-
countered or when a value is no longer encountered).
Also, a string of instructions may be interrupted or
aborted, and then restarted where it left off. These string
instructions are comparable in their power to those avail-
able on large minicomputer and mainframe computers.

For array handling, two instructions are provided, Check
and Index. The Check instruction determines whether an
array index is within bounds. It allows the user to specify
both an upper and a lower bound. It aiso subtracts the
lower bound from the value being checked and stores the
difference in a register, where it can be used in an Index
instruction or in an index addressing mode.

The array Index instruction implements one step of a
multidimensional array-address calculation. The opcode
specifies the length of the second and third operands; the
first operand is a general purpose register. The Index
instruction performs a multiplication and an addition,
leaving the result in a register. The result is then used in
another Index instruction for the next dimension, or it is
used in an index addressing mode.

2.3.5 Jumps, Branches, and Calls

A number of different Jumps and Branches are imple-
mented: simple Jump, Jump to Subroutine, simple
Branch, Conditional Branch, and Multiway Branch (a
branch is a PC-relative Jump). Since the displacement in
these instructions can be as large as the memory, there is
no limit to their range. In addition, several different returns
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are supported: return from subroutine, return from trap
and return from interrupt. The latter two are discussed in
more detail in the section covering interrupts and traps
(Section 4.3). Instructions for calls to and returns from ex-
ternal procedures are discussed in Chapter 4, Section
4.2.3 (Programming with Modules).

2.3.6 Register Manipulation Instructions

Any general purpose register (see Section 2.4) can be
accessed via the general addressing modes (see

Section 2.5). Thus any Series 32000 instruction that uses
a general addressing mode to access one of its operands
can manipulate these registers. In addition, several in-
structions are provided explicitly for register manipulation.

The Save and Restore instructions manipulate the general
purpose registers. The instruction format for these opera-
tions includes an immediate field of 8 bits, each bit
specifying which of the eight general purpose registers are
to be stored or fetched from the stack.

Instructions manipulating the special purpose registers al-
low these registers to be loaded and stored; bits in the pro-
gram status register may be set and cleared, and the stack
pointer may be adjusted. Other instructions for these
registers are discussed in Section 2.4.2, CPU Special Pur-
pose Registers.

2.3.7 Instruction Format

Series 32000 has a variable-length instruction format in
which instructions are represented as a series of bytes.
Figure 2-2 shows the general format of a Series 32000
instruction.

OPTIONAL BASIC
EXTENSIONS INSTRUCTION
SCALEDISCALED| GEN | GEN
mpuiep [2'S72{'SP1kpex | iNDex |ADDR. |ADDR. OPCODE
PERAND(S BYTE | BYTE | MODE | MODE
IMM21iMMy 5 1 1 2
<
Ve N

GEN. ADDR.
Mope | REG- NG,
7 32 0

INCREASING MEMORY

Figure 2-2. General Instruction Format

The Basic Instruction is one to three bytes iong and con-
tains the Opcode and up to two 5-bit General Addressing
Mode (“‘Gen”’) fields. (Addressing modes are discussed in
Section 2.5.) Following the Basic Instruction field is a set
of optional extensions, which may appear depending on
the instruction and the addressing modes selected.

The Opcode specifies the operation to be performed, for
example, ADD, MOV, etc., and the number of operands to
be used in the instruction. The specification of an operand
length (B, W, D, F, or L) is written appended to the opcode.
For example, ADDW, specifies the addition of two word-
long operands, white MOVF specifies a move to a single
precision floating point operand. The length specification
in integer instructions is encoded in the basic instruction
as B=00, W=01, or D = 11; the length specification in
floating point instructions is encoded in the basic opcode
asF=1orL=0.

The General Addressing Mode fields specify the address-
ing mode to be used to access the instruction’s operands.

Index Bytes appear in the instruction format when either or
both Gen fields specify Scaled Index mode. In this case,
the Gen field specifies only the Scale Factor (1, 2, 4 or 8),
and the Index Byte specifies which General Purpose Reg-
ister to use as the index, and which addressing mode cal-
culation to perform before indexing.

Following Index Bytes come any displacements (address-
ing constants) or immediate values associated with the se-
lected addressing modes. Each Disp/Imm field may con-
tain one or two displacements, or one immediate value.
The size of a Displacement field is encoded within the top
bits of that field, with the remaining bits interpreted as a
signed (two’s complement) value. (See Figure 2-3.) The
size of an immediate value is determined from the Opcode
field.

7 0

[o] sicueo oispLacement |

BYTE DISPLACEMENT: RANGE=-54 T0 +63
0

1710 ENT
l 'sl\a“E“ pseucet

WORD DISPLACEMENT. RANGE=-8K TO 8K -1
7 0

1]1] o

DOUBLE WORD DISPLACEMENT: RANGE=1/2GB TO 1/2GB -1

Figure 2-3. Displacement Encodings
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2.3.8 Special Encodings

Two other special encodings, reg and quick, allow the very
compact encoding of frequently used instructions. For
example, there are quick forms of add, move and compare
instructions which encode a small integer operand (range
from —81to +7)in place of a second general addressing
mode.

Some instructions require additional, ‘‘implied”’ imme-
diates and/or displacements, apart from those associated
with addressing modes. Any such extensions appear at
the end of the instruction, in the order that they appear
within the list of operands in the instruction definition.

2.4 Register Set

Series 32000 architecture supports thirty-seven registers,
grouped into two register sets: sixteen general purpose
registers and twenty-one special purpose registers (see
Figure 2-4). Eight of the general purpose registers are
located on the CPU; the other eight are located on the
FPU. The twenty one special purpose registers include
nine on the CPU, one on the FPU, and ten on the MMU.
Besides storing operands, and the results from arithmetic
operations, these registers may also be used for the tem-
porary storage of program instructions and control in-
formation concerning which instruction is to be executed
next.

2.4.1 CPU General Purpose Registers

Internal to the CPU are eight 32-bit general purpose regis-
ters RO through R7, which provide local, high speed stor-
age for the pracessor. They can be used to store bytes,
words, double words, and quadruple words.

All general purpose registers are available to all instruc-
tions. Thus, the computer has freedom in its use of the
registers and needn’t do much housekeeping. The archi-
tecture also enables general purpose registers to be used
as accumulators, data registers and address pointers.
This represents a great improvement over- machines that
permit only a few registers to serve as address pointers,
creating a bottleneck in address calculations, a very im-
portant function in high level language programming.

2.4.2 CPU Special Purpose Registers

The eight special purpose registers on the CPU chip are
used for storing address and status information. The MOD
register and the Processor Status Register are both 16
bits; the other registers are effectively 24 bits in length,
though an additional eight bits (which in the current imple-
mentation are always set to zero) have been provided to
allow for future expansion.

PC: The Program Counter register is a pointer to the
first btye of the currently executing instruction.
After the instruction is completed, the program
counter is incremented to point to the next in-
struction. Since this register is 24 bits wide, all
16M bytes of memory can be directly addressed
without the need for segmented addresses.

SPQ, SP1Z

FP:

SB:

INTBASE:

MOD:

PSR:

CFG:

The SPy register points to the lowest address of
the last item stored on the Interrupt Stack. This
stack is normally used only by the operating sys-
tem, primarily for temporary data storage and for
holding return information for operating system
subroutines, and interrupt and trap service rou-
tines. The SP; register points to the lowest ad-
dress of the last item stored on the User Stack.
This stack can be used by normal user programs
formation.

The Frame Pointer register is used by a proce-
dure to access parameters and local variables on
the stack. It is set up when a procedure is
entered, and points to the stack frame of the cur-
rently executing procedure, which contains the
parameters for the currently executing subrou-
tine and also the volatile (as opposed to static)
local variables. The procedure parameters are
addressed with positive offsets from the frame
pointer; the local variables of the procedure are
addressed with negative offsets from the frame
pointer.

The Static Base register points to the global vari-
ables of a software module (see Section 4.2,
Modular Software). All references to a module’s
data are relative to this register.

The Interrupt Base register holds the address of
the dispatch table for interrupts and traps (see
Sections 4.3.2 and 4.3.3).

The Module register holds the address of the

- Moduie Descriptor of the currently executing soft-

ware module (see Chapter 4, Section 4.2.2).

The Processor Status Register holds the CPU
status and control flags for Series 32000. The
PSR is sixteen bits long, and is divided into two
eight-bit halves. The low-order eight bits are ac-
cessible to all programs, but the high-order bits
are accessible only to programs executing in
Supervisor Mode. Among the bits in the PSR are
the Carry bit, the Trace bit, (which causes a trap
to be executed after every instruction), the Mode
bit (which is set when the processor is in user
mode), the Interrupt Enable bit (which if set will
cause interrupts to be accepted), and several
other bits which can be used by comparison in-
structions.

The | bitindicates the presence of external
interrupt vectoring circuitry (specifically, the
NS832202 Interrupt Control Unit). If the CFG | bit
is set, interrupts requested through the INT pin
are “‘vectored”’; if it is clear, these interrupts are
“non-vectored”. The F, M and C bits indicate the
presence of the FPU, MMU and Custom Slave
Processors. If these bits are not set, the corre-
sponding instructions are trapped as being
undefined.
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2.4.3 FPU Registers

The Floating Point Unit registers are located on the
NS32081 FPU slave processor and consist of eight 32-bit
registers and a dedicated Floating Point Status Register.
The eight floating point registers can each store a single
precision operand or half of a double precision operand.
When 64-bit double precision operands are to be operated
upon, the specified register (n) and the next register

(n + 1) are concatenated for the operation. Registern + 1
contains the high-order bits.

The Floating Point Status register (FSR) holds mode con-
trol information, error bits and trap enables. Like the other
registers, the FSR is 32-bits wide. (See Chapter 4, Section
4.4.2, for more about the FPU slave processor.)

2.4.4 MMU Registers

The optional memory management architecture uses the
following 32-bit dedicated registers to control address
translation:

PTB,,
PTB;:

The Page Table Base registers are controlled by
the operating system and point to the starting
location of the translation tables in physical
memory. All supervisor mode addresses are
translated with the PTBj, register. User mode ad-
dresses are translated using this register if the
DS bit in the MSR is one; if this bit is zero, the
PTB, register is used.

ElA: The Error/Invalidate Address register is used to
invalidate addresses in the translation buffer.
The translation buffer is a transparent cache of
the most recently used page table entries. When
an entry in a page table is modified in memory,
the copy of it in the translation buffer is deleted
by writing the address of the affected virtual page
into the ElA register. When a PTB register is
modified, all cache entries made using that regis-
ter are deleted. The ElA is also used to store the
address which caused a memory management
exception to occur.

MSR: The Memory Status Register holds fields which
control and examine the memory management
status, and is only accessible in the supervisor
mode. The functions of this register are dis-
cussed in Chapter 4, Section 4.4.2 and 4.4.3
(MMU and FPU).

Other registers in the MMU provide high level software de-
bug facilities during program execution. These are dis-
cussed in Section 4.5.3.

2.5 Addressing Modes

Information encoded in an instruction includes a specifica-
tion of the operation to be performed, the type of operands
to be manipulated, and the location of these operands. An
operand can be located in a register, in the instruction it-
self (as an immediate operand), or in memory. Instructions
can specify the location of their operands by nine address-
ing modes. Two addressing modes are used to access
operands in registers and in instructions—Register mode
and Immediate mode. The other modes are used to ac-
cess operands in memory. The address of the operand is

calculated in accordance with the desired addressing
mode. The calculation is done by taking the sum of up to
three components:

¢ adisplacement element in an instruction
¢ apointer (i.e., an address) in a register or in memory
¢ anindex value in a register

The nine addressing modes may also be divided into
those which are standard for microprocessor
architectures, and those which are particularly suited to
the operations and data structures of high level
languages.

2.5.1 Standard Modes

The following standard addressing modes are supported
by Series 32000 architecture (see Figure 2-5 for a diagram
of each one):

* Register

* Immediate

* Absolute

* Register relative

REGISTER: In the Register addressing mode, the
operand is in one of the elght general purpose registers. In
certain Slave Processor instructions, an auxiliary set of
eight registers may be referenced instead.

IMMEDIATE: The immediate mode operand is in the in-
struction. The length of the immediate mode operand is
specified by the operand length or by the basic instruction
length.

ABSOLUTE: With absolute mode, the operand address is
the value of a displacement in the instruction.

REGISTER RELATIVE: The register relative mode com-
putes an effective address (the operand address) by ad-
ding a displacement given in the instruction to a pointer in
a general purpose register.

GP REGISTER
REGISTER| REGISTER
mooe| AooRess OPERAND
OPERAND ADDRESS = GP REGISTER
GP REGISTER
REGISTER =
RELATIVE Ensp aun. | aooress OPERAND
MODE :
OPERAND ADDRESS = GP REGISTER +DISP,
IMMEDIATE
ooe| operan
OPERAND = IMMEDIATE VALUE
ABSOLUTE .
woe| oS —»| opERAND

OPERAND ADDRESS = DISP.

Figure 2-5. Standard Addressing Modes
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2.5.2 High Level Language Modes

In addition to these standard addressing mode types,
Series 32000 employs several addressing mode types
which, in combination with the aiready powerful instruc-
tion set, make Series 32000 a superb vehicle for high level
languages. They are listed below and diagrammed in Fig-
ure 2-6:

e Memory Space
viemory Reiaiive
External

Top of Stack
Scaled Index

MEMORY SPACE: This addressing mode is identical to
Register Relative, discussed above, except that the regis-
ter used is one of the dedicated registers PC, SP, SB or
FP. These registers point to data areas generally needed
by high level languages.

MEMORY RELATIVE: The Memory Relative mode allows
pointers located in memory to be used directly, without hav-
ing to be loaded into registers (as is required in other micro-
processors). Memory relative mode is useful for handling
address pointers and manipulating fields in a record. When
this addressing mode is used, the instruction specifies two
displacements. The first displacement is added to a speci-
fied special purpose register, and a double word is fetched
from this address. The operand address is the sum of this
value and the second displacement. In accessing records,
the second displacement specifies the location of a field in
the record pointed to by the double word. The exact size of
the contents of this field is programmable.

EXTERNAL: The External Addressing mode is unique to
Series 32000, and supports the software module concept,
which allows the modules to be relocated without linkage

editing. This mode is used to access operands that are ex-
ternal to the currently executing module. Associated with
each module is a Link Table, containing the absolute ad-
dresses of external variables. The external addressing
mode specifies two displacements: the ordinal number of
the external variable (i.e., the linkage table entry to be
used) and an offset to a sub-field of the referenced vari-
able (e.g., a sub-field of a Pascal record). External
addressing is discussed further in Section 4.2 (Modular
Software).

TOP OF STACK: In this addressing mode, also unique to
Series 32000, the currently selected Stack Pointer (SPy or
SP,) specifies the location of the operand. Depending on
the instruction, the SP will be incremented or decrement-
ed, allowing normal push and pop facilities. This address-
ing mode allows manipulation or accessing of an operand
on the stack by all instructions. For instance, the TOS val-
ue can be added to the contents of a memory location, a
register, or to itself, and the result saved on the stack. On
most other microprocessors, in which top of stack ad-
dressing is limited to a very small number of instructions,
these manipulations would require several instructions to
achieve the same results. The great advantage of this ad-
dressing mode is that it allows quick reference using a
minimum number of bits to intermediate values in arith-
metic computations.

SCALED INDEX: This addressing mode computes the
operand address from one of the general purpose regis-
ters and a second addressing mode. The register value is
multiplied by one, two, four or eight (index byte, index
word, index double, or index quad). The effective address
of the second addressing mode is then added to the multi-
plied register value to form the final operand address. The
Scaled Index mode is used for addressing into arrays,
when the elements of the array are bytes, words, double
words, floating point numbers or long floating point
numbers.
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ADDRESSING
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Figure 2-6. High Level Language Addressing Modes
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Chapter 3
Memory Organization

3.1 Introduction

Microprocessors were first developed when the design of
complex, special-purpose chips became so expensive that
it was more cost-effective to use a general-purpose pro-
grammable device instead of a special-purpose chip. The
programs for these early microprocessors were very
small, typically requiring 2K to 8K bytes of memory and
rarely exceeding 16K bytes. (This was just as well, since
memory was very expensive.)

Now, almost exactly a decade since the microprocessor
was invented, the memory requirements for typical ap-
plications approach those of minicomputers or even main-
frames. Consequently, the memory organization issues
discussed in Chapter 1 have arisen.

In this chapter, we will cover the memory organization and
memory management mechanisms of Series 32000. The
key topics to be discussed are page based mapping, virtu-
al memory, memory protection, and virtual machines. The
address translation, virtual memory, and memory protec-
tion mechanisms of the Series 32000 architecture are con-
tained in the NS32082 Memory Management Unit (MMU).
The MMU also contains the logic for debugging (see
Chapter 4, Section 4.5) as well as on-chip cache. Special
instructions are provided in the Series 32000 instruction
set to control the MMU.

3.2 Mapping Mechanisms with the Series 32000

Series 32000 has a logical address space of 16 million
bytes divided into 32,768 pages, each with a fixed size of
512 bytes. The physical address space is the same size
and is also divided intc similarly sized page frames. As de-
scribed in Section 1.3.2, address translation (mapping) is
the process of translating a logical address to a physical
address. In Series 32000 architecture, address translation
is done in units of a page. Thus two addresses next to
each other in the same logical page will be next to each
other in the same physical page frame, atthough two
pages which are contiguous in logical memory may not be
contiguous irf physical memory.

For purposes of implementing the address transtation, the
24 bits of a logical address may be thought of as consist-
ing of two fields: the page selector field, which is the upper
fifteen bits, and the offset field, which is the lower nine
bits. Only the page selector bits are actually translated in
the mapping process. The nine bits of the offset specify a
location within a page and are passed through the map-
ping process unaltered. The mapping process is per-
formed automatically by the MMU.

Basically the mapping operation consists of treating the
page selector field as an index into a table of physical ad-
dresses. Entries in this table hold the upper fifteen bits of
the physical address of a page frame. When a logical ad-
dress is sent to the MMU, its lower 9 bits are appended to
the 15-bit physical address in the table and the resulting
24-bit physical address is actually used to fetch data. (See
Figure 3-1 for a diagram of this operation. This figure
shows an abstract view of the Series 32000 mapping oper-
ation; in reality, a two.level mapping is employed—see
Section 3.2.).

LOGICAL ADDRESS

PROTECTION 23 9 8 0
PABI:ESTABLE _\ r ]
(LEVEL 1) —_—
0
1
2
3
P N N \
5
6
7
8

PHYSICAL ADDRESS

Figure 3-1. Mapping

3.2.1 Page Tables, Pointer Tables, and Entries

The address translation mechanism is carried out by ta-
bles in memory. The MMU contains a special register
(PTB4) that points to the beginning of the page table. This
table has 256 entries, each of which is 4 bytes wide. Thus
its total size is 1,024 bytes. Each entry in the page table
points to a pointer table. Pointer tables contain 128 entries
of 4 bytes; thus, the pointer tables are each contained in a
page. Each entry in a pointer table points to a physical
page. (See Figure 3-2 for a diagram of this pointer tree.)
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Each program or task can have its own page table, and
changing the page table is simply a matter of changing an
MMU register that points to the starting address of the cur-
rent page table. Therefore, each program or task can have
its own map from logical memory to physical memory, and
therefore each program or task can have its own logical
address space.

PAGE TABLE REGISTER

L

/ N\

PAGE
TABLE

POINTER
TABLES

PHYSICAL
PAGES

Figure 3-2. Hierarchy of Tables

Each entry in the page table or in one of the pointer tables
has the same basic format (see Figure 3-3).

The high order 23 bits contain the starting physical ad-
dress of the specified page frame.

31 30 24 23 98 4 2

BANK
SELECT RESERVED| PAGE NUMBER |UNUSED(M |R|PL|V

Figure 3-3. Page or Pointer Table Entry

Bits O through 4 contain status bits:

\ The Valid Bit indicates whether the entry specifies a
page that is present in memory. (See Section 5.3.1,
Page Faults and the Valid Bit).

R The Referenced Bit indicates whether the page has
been accessed. This bit is automatically set when
the corresponding page has been accessed for
reading or writing. (See Section 3.3.3, Support for
Page Swapping Algorithms).

M The Modified Bit indicates whether the page has
been modified during its residence in main memory.
This bit is automatically set when the corresponding
page is written to. (See Section 3.3.3, Support for
Page Swapping Algorithms).

PL  The Protection Level field indicates the level of
protection provided for the page. (See Section 3.4,
Protection).

3.2.2 The Complete Mapping Process

The mapping operation shown schematically in Figure 3-1
is actually accomplished by the following process:

The page selector component of the logical address (the
high-order 15 bits), shown in Figure 3-1, actually consists
of two subfields: the high-order 8 bits, which select an en-
try in the page table, and the lower-order 7 bits, which se-
lect an entry in the appropriate pointer table. (The offset
component of a logical address specifies the displacement
from the base of a page to the specified item). Figure 3-4
shows a more complete version of the mapping process
outlined in Figure 3-1.

To speed up the mapping process the MMU provides an
associative cache on the chip itself. The cache contains
the 32 most recently accessed logical addresses along
with their translated physical addresses. Each entry con-
sists of the high-order 15 bits of a logical address and the
high-order 15 bits of the translated physical address (see
Figure 3-5).

When a logical address is passed from the CPU to the
MMU, the MMU first attempts to match that logical ad-
dress with an entry in the cache. If the entry is present, the
physical address portion of the entry is used immediately.
If the entry is not present, the MMU must fetch the page
table and pointer table entries from memory before ad-
dress transiation can be performed.

If the entry is present, address translation requires only
one clock cycle. If the entry is not present, address
translation may take up to approximately 20 clock cycles.
This associative table is transparent to the user and calcu-
lations indicate that it dramatically speeds up address
translation since the hit ratio (the percentage of time the
cache contains the entry) is about 97%.




POINTER
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Figure 3-4. Table-Driven Mapping
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Figure 3-5. Associative Cache
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3.3 Virtual Memory Mechanisms with
Series 32000

Programs share many traits in common with human be-
ings. For example, they obey Parkinson’s Law. Just as
work expands to fill the time available, so programs tend to
expand over their lifetime to fill the physical memory avait-
able to them. Once the memory limits have been reached,
further expansion of the program is difficult and error
prone, usually requiring hard to manage overlays. The ide-
al solution to this problem is to give the program a virtually
infinite (limitless) memory. A program in an infinite memo-
ry can be enlarged without bumping into any barriers.
Unfortunately, memory costs usually preclude enormous
physical memories. Virtual memory, however, gives the
programmer the illusion of a gigantic memory at minimal
cost.

With virtual memory, the user regards the combination of
main and peripheral storage as a single large storage. The
user can write large programs without worrying about the
physical memory limitations of the system. To accomplish
this, the operating system places some of the user pro-
grams and data in peripheral storage and brings them into
main memory only as they are needed.

Series 32000 makes virtual memory operating systems
easy to implement by means of its page based mapping
mechanism. Programs and data are swapped between
main memory and secondary storage units of a page, as
was described in Chapter 1. In addition, the architecture
provides several other mechanisms which support virtual
memory.

Three bits in the page entry are important for virtual
memory systems. These bits were discussed briefly in
Section 3.2.1. In the following three subsections we will
cover in much greater detail the use of these three bits in
virtual memory systems. Also covered will be the instruc-
tion abort and re-execution facility, the other Series 32000
feature specifically designed to support virtual memory.

3.3.1 Page Faults and the Valid Bit

The Valid Bit in a page or pointer table entry indicates
whether the corresponding page is present in main memo-
ry or not. Whenever an address is generated by the CPU
and passed to the MMU for translation into a physical ad-
dress, the MMU checks the valid bit of the table entry
specified by the incoming logical address. If the valid bit is
1, the page is assumed to be present in main memory and
address translation proceeds in the normal fashion.

If, however, the valid bit is 0, then the page is assumed not
to be in main memory and a page fault occurs. A page
fault is a hardware generated trap that is used to tell the
operating system to bring the missing page in from sec-
ondary storage. The page fault occurs in the MMU, which
generates an ABORT signal to the CPU. The ABORT
signal causes the CPU to immediately halt execution of
the current instruction.

3.3.2 Instruction Abort and Re-execution

When a page fault occurs, for whatever reason, the MMU
sends the ABORT signal to the CPU. At this point the CPU

will stop executing the instruction and return any register
that was altered by the instruction to its condition before
the instruction started. The operating system will then be
called to initiate a page swap. Once the appropriate page
is in memory, the CPU and MMU also must insure that the
aborted instruction can be re-executed.

One of the problems in implementing virtual memory sys-
tems is that an instruction may generate a page fault at
any time during the course of its execution. If the instruc-
tion itself occupies several bytes, it may overlap a page
boundary, and the act of fetching an instruction may itself
cause a page fault. Or the process of fetching the source
or destination operand may cause a page fault.

In order to permit the instruction to be restarted, the
ABORT signal usually causes the CPU to be returned to
its state before the aborted instruction happened. The pro-
gram counter is automatically saved as are the processor
status register, the stack pointer and several other regis-
ters. When the operating system has completed the page
swap, it executes a RETURN FROM TRAP instruction and
execution resumes with the aborted instruction, all regis-
ters being restored to their old values.

String handling instructions require special treatment dur-
ing an abort. Obviously it is not desirable to have a long
string instruction repeated from the beginning if an abort
occurs somewhere in the string. Series 32000 provides for
the aborted instruction to be re-executed from the point
where the problem occurred.

3.3.3 Support for Page Swapping Algorithms

To facilitate virtual memory implementation, two other bits
in the page and pointer table entries are used: the Refer-
enced Bit (R) and the Modified Bit (M).

It has been tacitly assumed that there is a vacant page
frame in which to put the newly loaded page. In general
such will not be the case, and it will be necessary to re-
move some page (i.e., copy it back into the secondary
memory) in order to make room for the new page. Thus an
algorithm that decides which page to remove is needed.

Choosing a page to remove at random is certainly not a
good idea. If the page containing the instruction is the one
chosen, another page fault will bccur as soon as an at-
tempt is made to fetch the next instruction. Most operating
systems try to predict which of the pages in memory is the
least useful, in the sense that its absence would have the
smallest adverse effect on the running program. One way
of doing so is to make a prediction when the next ref-
erence to each page will occur and remove the page
whose next reference lies farthest in the future. In other
words, to try to select the page that will not be needed for a
long time.

One popular algorithm evicts the page least recently used
because that page has a high a priori probability of not be-
ing in the wording set. This algorithm is called the Least
Recently Used algorithm. The Referenced bit can be used
to implement a version of this algorithm.
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The Referenced bit is set by the hardware when the page
is referenced (read or written) by an instruction. By period-
ically checking and clearing this bit in all page and pointer
table entries, the operating system can gain insight into
the frequency with which pages are being used.! This in-
formation can be used to select pages to be swapped out;
for example, on a least recently used basis.

If a page about to be evicted has not been modified since it
ifthe nrogram contains
program rather than data) then it is not necessary to write
it back into secondary memory, because an accurate copy
already exists there. If, however, it has been modified
since it was read in, the copy in secondary storage is no
longer accurate and the page must be rewritten. The
Modified bit is set by the hardware whenever a page is
written to during the time it is resident in main memory.

wae road in la

When the time comes to swap this page the operating sys-
tem can check this bit to see if there is a need for updating
the copy on disc. If the bit is 1 (i.e., the page has been
modified) then the page must be swapped out to sec-
ondary storage. If, however, this bitis 0, then the page has
not been modified since it was last read in and it can sim-
ply be discarded.

3.4 Memory Protection Mechanisms
with Series 32000

The page mechanism can also provide the basis for memo-
ry protection within a logical address space. Each page can
have attributes associated with it that indicate how the page
can be accessed. These attributes can allow reads only,
reads and writes, or they can prevent any access at all. En-
tries in the page and pointer tables contain protection bits
(the PL field) along with physical addresses (see Section
3.2.1}. These protection bits define the attribute of that page
(e.g., read only).

The interpretation of the protection bits depends on the
operating mode of the CPU. A given setting of the PL field
will be interpreted differently when the CPU is in Supervisor
mode than when the CPU is in User mode. The bits have the
following interpretation.

PL | SupervisorMode |  UserMode
00 read only ‘ no access
01 read and write i no access
10 | read and write ‘ read only
11 read and write ! read and write

The operating system can treat a collection of pages
with the same attributes as a segment in the sense of
Section 1.3.1. For example, a constants segment might
be a set of pages containing data with the read-only at-
tribute set, so users could not modify the data. Thus,
page-based mapping provides a mechanism for imple-
menting segmentation.

peterJ Denning, ""Working Sets Past and Present,” IEEE Transactions on Software
Engineering, (SE-6, No. 1, 1980)

Intertask protection is accomplished by giving each task its

own set of page tables. Thus each task has its own address
space, providing maximum flexibility and virtug| memory for
each task. By changing the single register that points to the

page table, one can switch to the new task’s address space.

3.5 Virtual Machines

If the virtual memory hardware allows application software
to execute in a different address space from the operating
system, then it is possible to implement virtual machines.
Software running on a virtual machine believes that it is
running on a processor-whose hardware provides the
functions that are in fact provided by the operating system.
In fact, the virtual memory hardware and I/O devices are
simulated by the operating system with the aid of the real
memory management hardware and I/O devices. Thus
software which normally must be run alone (e.g., an
operating system) can be run under the control of another
operating system. This can be very useful for debugging a
new operating system or running several incompatible
operating systems on the same machine.

Figure 3-6 shows a simplified diagram of such a virtual ma-
chine.

Operating system A and operating system B run in differ-
ent address spaces. System A manipulates the actual
Series 32000 hardware, whereas system B manipulates
an illusory machine consisting of Series 32000 hardware
and virtual peripherals simulated by system A. The actual
mechanisms employed to create such a virtual machine
are somewhat technical and are covered in detail in the
Series 32000 Instruction Set Reference Manual. Basically,
system A constructs a simulated table onto the real page
table. Virtual /O devices are simulated similarly.

SERIES 32000 l
d

V|RTUAL MACHINE
FOR B

Figure 3-6. Virtual Machines
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Chapter 4
Other Features of

Series 32000 Architecture

4.1 Introduction

This chapter will discuss additional architectural features
of Series 32000 that reduce the traditional gap between
the semantics of high level programming languages and
microprocessor architectures. Specifically, these are fea-
tures which support good software design and program-
ming practices. The topics covered include support for
modular software design, input/output implementation,
extension of the instruction set by the means of slave
processors, and software debugging support.

4.2 Modular Software

Modular programming is one of the principle techniques
for the systematic design of well-structured software.
Large programs are among the most complex creations of
human intellect. This complexity has been a major factor
contributing to software unreliability. The concept of
modularity in software design provides a means of over-
coming natural human limitations for dealing with pro-
gramming complexity by specifying the subdivision of
large and complex programming tasks into smaller and
simpler subtasks, or modules, each of which performs
some well-defined portion of the complete processing
task. Such modules may then be independently designed,
written, tested, and compiled, perhaps by different pro-
grammers working in parallel.

Programs which are written as a set of modules are more
likely to be correct. They are more easily understandable
and therefore more easily modified, maintained and docu-
mented. Also, because communication between modules
is permitted only through well-defined interfaces, the inner
workings of a module need not be known to other
modules. This protects a module’s code and allows design
changes to be done locally to a module without side ef-
fects on other modules or on the use of the system.

Nearly ail HLLs incorporate features to support modular
programming. For example, programs in Ada, the new De-
partment of Defense high-order language, are composed
of one or more program units—subprograms, packages or
tasks—which can be compiled separately. in Pascal,
separately compiled program modules may refer to vari-
ables, functions or procedures declared in another module
by using certain extensions to the language, e.g., import
and Export directives.

The ultimate extension of the concept of modularity, and
the ultimate simplicity in software design and implementa-
tion, is achieved when the modules are written to be used
in ROM form. Such software modules are simple
hardware-like components and require a minimal amount
of program design overhead.

Up to now, microprocessor architectures have provided
inadequate and cumbersome architecture support for a
modular programming methodology. The following section
will discuss the problems associated with the implementa-
tion of modularity by a microprocessor; the two subse-
quent sections will explain Series 32000’s architectural
solutions to these difficulties.

4.2.1 Overview

The major difficulty limiting the widespread use of libraries
of ROM modules has been the necessity of moditying a
module’s addresses when it is linked with other separately
compiled modules and loaded into memory for execution.
Since addresses in ROM cannot be modified, it has been
difficult to devise a uniform method of employing ROM
modules in programs. Even when the module’s code can
be modified, (e.g., modules on disk), this is a tedious and
often lengthy enterprise.

The problems result from the fact that when several mod-
uies are combined into a single memory image, a
module’s final position can vary widely. Consequently, all
addresses in jumps and calls or in data accesses that are
dependent on knowing the module’s absolute address at
run time must be different according to where the module
is loaded. Similarly, when a module calls another module,
the address of the called module will be dependent on the
relative position of the two modules. Thus, a module’s
code will not be identical for each position it occupies in
memory, and a linkage editor must be used to modify the
addresses in each module according to its assigned posi-
tion in memory.

4.2.2 Support Mechanisms

Software modules which have been compiled and assem-
bled are known as Object Modules and are typically stored
in relocatable object code. The function of a linkage editor
is to merge the object modules into a single linear address
space which may then be loaded into memory for execu-
tion. This requires binding (converting to an absolute val-
ue) all unresolved addresses. Relocation refers to the bin-
ding of the non-sequential addresses within the module
(calls, returns, branches, and non-sequential data refer-
ences); linking is the process of binding the addresses of
subroutines or variables in other modules.

On Series 32000, no editing is required on non-sequential
addresses (jumps) within a module, since Series 32000
assembly language code is position independent (PIC).
This is achieved by the use of addressing modes which




To aliow the transfer of control from one moduie to
another, Series 32000 provides three structures: a Module
Table in memory and two dedicated registers on the CPU.

form an effective memory address reiative to a base regis-
ter—PC, FP, SP or SB. Since the relative distance be-
tween two non-sequential addresses remains constant,

the same offset relative to the base register can be used in
all positions in memory. This means a program can be
loaded anywhere in memory and run correctly. In addition,
facilities provided by the MMU allow a program to be
moved in memory after it has been linked and loaded. This
is especially important in time-sharing systems where pro-
grams must be swapped in and out of main memory to al-
low sharing of the processor. Also, because the base
register relative addressing mode allows 30-bit signed dis-
placements, which is 6 bits more than any logical address,
no code editing is ever necessary for branching, regard-
less of the amount of code in a module.

Position-independent code combined with the Series
32000 virtual memory mechanism allows a program to be
relocated in the virtual address space as well as the
physical address space. Machines that use paging or a
relocation register, but lack base register relative
addressing, allow programs to be moved in physical
memory but do not allow them to be moved to a different
virtual address after linking.

For references to variables and subroutines in other mod-
ules, Series 32000 provides a sophisticated linkage facility
such that no editing of a moduie’s external addresses is
required.

To begin with, all programs for Series 32000 are organized
as modules. Each module consists of three components:

-

. The Program Code component contains the code to be
executed by the processor and the module’s constant
data (or “‘literals”).

n

. The Static Data component contains the module’s glob-
al variables and data, i.e.. data which may be accessed
by all procedures within the module. In a Pascai pro-
gram, for example, this component would contain the
data structures declared in the outermost block.

w

. The Link Table contains two types of entries: External
Variable Descriptors and External Procedure Descrip-
tors. The External Variable Descriptor is the absolute
address of a variable located in the static data compo-
nent or program code area of another module. This val-
ue is used in the External Addressing mode, in conjunc-
tion with the current Mod Table address (see below), to
compute the effective address of the external variable.
The External Procedure Descriptor is used in the Call
External Procedure (CXP) instruction and will be dis-
cussed in Section 4.2.3 of this chapter. There is one en-
try in the Link Table for each external variable and pro-
cedure referenced by the module.

In a typical system, the linker program (in conjunction with
the loader) specifies the locations of the three components
of a module. The static data and Link Table typically reside
in RAM; the code component can be either RAM or ROM.
The three components can be mapped into noncontiguous
locations in memory, and each can be independently re-
located. Since the Link Table contains the absolute ad-
dresses of external variables, the linker need not assign
absolute memory addresses for these in the module itself;
they may be assigned at load time.

n

-

. The Module Table is set up in random-access memory
starting at virtual address 0 and contains a Module De-
scriptor for each module in the address space of the
program. A Module Descriptor has four 32-bit entries
corresponding to each component of a module: The
Static Base entry contains the base address of the be-
ginning of the module’s static local data area. The Link
Base points to the beginning of the module’s Link
Table. The Program Base is the address of the begin-
ning of the code and constant data for the module; since
amodule may have multipie entry points, this pointer is
used with an offset from the Link Table to find them.
One entry is currently unused but has been allocated to
allow for future expansion.

. The Mod Register on the CPU contains the address of
the Module Descriptor for the current module.

w

. The Static Base Register contains a copy of the Static
Base component of the Module Descriptor of the cur-
rently executing module, i.e., it points to the beginning
of the current module’s static data area.

See Figure 4-1 for a description of a module’s environ-
ment.

With Series 32000, modules need not be linked together
prior to loading. As modules are loaded, a linking loader
simply updates the Module Table and fills the linkage table
entries with the appropriate values. No modification of a
module’s code is required. Thus, modules may be stored
in read-only memory and may be added to a system inde-
pendently of each other, without regard to their individual
addressing. Also, since the pointers in the Module Table
reach any point within the address space, modules can be
located anywhere in memory.

STATIC BASE
REG
— STATIC DATA
MOD REG MOD TABLE _l
MOD TABLE
5B o
PROG. COUNTER L8 o
- PB
: EXT. VAR
RESERVED DESCRIPTION

_GLOBAL DATA _

PROGRAM CODE

Figure 4-1. Module Run-Time Environment
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4.2.3 Programming with Modules

The Call External Procedure (CXP) instruction is used to
execute a procedure residing in another module. Recall
that the Link Table contains two types of entries for each
module in the program’s address space: External Variable
Descriptors and External Procedure Descriptors. The lat-
ter entries each consist of two 16-bit fields. The MODULE
field contains the address of the referenced procedure’s
Module Table entry. The OFFSET field is an unsigned
number giving the position of the entry point relative to the
new module's Program Base pointer (in called module’s
Mod Table). This allows a calied procedure to be found
automatically, without requiring the calling routine to sup-
ply any addressing information.

Figure 4-2 depicts the execution of the CXP instruction
where Module #2 calls Module #3.

PROG CODE
PC #2 = w2
I ] coxe | DISP.
J 0
MOD REG #2 MOD TABLE #2
1
| ] B
LB -—-»@
P8

., LINK TABLE #2

OFF-
mo | 9%

MOD|REG #3 MOD TABLE #3

T s
LB PC #3
PB o——Pé-PI J

STATIC DATA #3

SB #3

PROG CODE #3

Figure 4-2. CXP Instruction

This instruction automaticaily performs the following se-
quence of operations:

-

. The External Procedure Descriptor for Module #3 is

found by adding a displacement specified in the instruc-

tion to the Link Table address of Module #2. (In the as-
sembly language program this displacement is repre-
sented by a label name; the actual numerical value of
the displacement is assigned by the assembler).

2. The current status of Module #2 is saved by pushing the
contents of its PC and Mod registers onto the stack.

w

. The Module field of the Link Table’s External Procedure
Descriptor for Module #3 is moved into the MOD regis-
ter so that this register now points to the Module Table
for Module #3.

4. The Static Base value in the Module Table is placed in
the Static Base Register (this is done to speed up ac-
cesses to the module’s static variables, which would
otherwise be referenced by indexing into the Module
Table).

The Offset field in the External Procedure Descriptor is
added to the contents of the Mod Table’s Program Base
and this value is placed in the PC. The CPU is now in
the environment of Module #3.

The Call External Procedure With Descriptor (CXPD) in-
struction allows an External Procedure Descriptor to be
passed as a parameter to a called module. The External
Procedure Descriptor from the calling module’s Link Table
is pushed onto the stack, and the called module may then
use this value to call the procedure.

o

The Enter and Exit instructions minimize the overhead in
procedure calls by automatically managing the resources
that must be allocated at the beginning of a procedure and
reclaimed at the end.

The Enter instruction saves the Frame Pointer (FP) of the
calling module on the stack and loads the Stack Pointer
value into the Frame Pointer register so that they now
point to the same location, i.e., the saved Frame Pointer
value on the stack. Space on the stack is allocated for the
procedure's local variables, and a specified number of
registers required for use by the procedure are pushed on
the stack. See Figure 4-3 for an example of one procedure
calling another.

Series 32000's use of the Frame Pointer allows the proce-
dure to allocate local variables on the stack and address
them as fixed offsets from the FP. Also, once the local
storage is allocated, the stack can still be used for tempo-
rary storage without affecting the addressing of the locals.
The programmer need not keep track of the changing off-
set between the SP and local storage, which is especially
advantageous for nested procedure calls and recursive
functions.

The Exit instruction automatically restores the registers
saved by the Enter instruction, loads the value of the
Frame Pointer into the Stack Pointer thus dealiocating the
procedure variables, and restores the previous Frame
Pointer.

The Return from External Procedure (RXP) instruction re-

stores the Static Base, the Mod Register and the PC of the
calling procedure. In addition, this instruction can be used
to remove the parameters which were passed to the called
procedure.




15
SP—] SAVED Ry
SAVED Rq
LOCAL
VARS
{6 BYTES)
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MOD MOD MOD
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ARG; ARG2 ARG2
15 o ARGy ARGy ARG1 15 0
SP SP '
FPl)::I | FPg— FPg—»] FPIJ::I |
STATE BEFORE STATE AFTER: STATE AFTER: STATE AFTER: STATE AFTER:
CALL SEQUENCE ADDR ARG1, TOS ENTER [R1, Rz], 6 EXIT [R1, R2] RXP 6

MOVW ARGz, TOS
CXP OUTWORD

MAIN PROCEDURE
CODE FOLLOWS

AT THIS POINT

Figure 4-3. Stack Flow for Procedure Calls

Data accesses by modules are provided in the following
manner:

1. Parameters and local variables on the stack may be
stored and accessed with the Memory Space address-
ing mode or the Memory Relative addressing mode us-
ing the Frame Pointer register. Parameters are ad-
dressed with positive offsets from the Frame Pointer;
local variables are addressed with negative offsets from
the Frame Pointer.

2. A module’s static data is accessed by using the Memory
Space addressing mode with the Static Base register.
Since displacement fields relative to SB register can be
1, 2 or 4 bytes, no limit is imposed on the amount of stat-
ic data a module may have. Note that on other micropro-
cessors, which handle static data in the same way as
any other external references, no protection is provided
for accesses by other modules. Series 32000 provides
this protection at the hardware level. The Mod Table al-
lows each module to have its own static data area so
that a procedure being executed by a module will not
modify that module’s data. in appiications requiring two
or more tasks to be executing the same code concur-
rently, this protection is essential to insure re-entrancy.

3. For operands that are external to the currently execut-
ing module, the External addressing mode is used. This
addressing mode specifies two displacements. The first
is added to the Link Base entry in the Mod Table to
obtain the External Variable Descriptor entry in the Link

Table. The second displacement is added to the Ex-
ternal Variable Descriptor to compute the effective ad-
dress of the operand. Since both displacements may be
as large as the logical address space, there is no limit to
the size of the Link Table or to the size of the external
variable (which might be a structure rather than a single
data element).

Indexing by the contents of any one of the CPU’s eight
general purpose registers is an option on alt addressing
modes which generate an effective address to memory, so
that a static or external variable can also be an array. For
example, to access an array that has been passed by
reference, the starting address of the array may be found
by using the Memory Space Mode relative to the FP; this
value can then be ioaded into a general purpose register
and used with the Scaled index mode.

4.3 Input/Output

The input/output structure defined by a computer’s archi-
tecture provides the interface between the central proces-
sor and the outside world, as well as between the proces-
sor and its secondary storage devices, external support
circuits and slave processors.

The first two sections wili discuss one aspect of Series
32000’s architectural support for I/O operations, specif-
ically, its sophisticated and efficient exception handling
mechanism.
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4.3.1 Overview

Program exceptions are conditions which alter the normal
sequence of instruction execution, causing the processor
to suspend the current process and call the operating sys-
tem for service. An exception resulting from the activity of
a source external to the processor is known as an
interrupt; an exception which is initiated by some action or
condition in the program itself is called a trap. Thus, an
interrupt need have no relationship to the executing pro-
gram, while a trap is caused by the executing program and
will recur each time the program is executed. Series
32000 recognizes twelve exceptions: nine traps and three
interrupts.

The exception handling technique employed by an inter-
rupt-driven processor determines how fast the processor
can perform input/output transfers, the speed with which
transfers between tasks and processes can be achieved,
and the software overhead required for both. Therefore, it
determines to a large extent the efficiency of a processor’s
multiprogramming and muititasking (including reai-time)
capabilities.

Exception handling on Series 32000 makes use of the
hardware structures provided for external procedure calls
(see Section 4.2.2) and, in addition, establishes a Dispatch
Table in memory whose base address is contained in the
CPU Interrupt Base register. This table contains an Ex-
ternal Procedure Descriptor for each interrupt service
procedure required. See Figure 4-4.

INT BASE

0 NON-VECTORED INTERRUPT
1 NON-MASKABLE INTERRUPT
! S
3| U |rPu TRAP
4| WL |iLLEGAL OPERATION TRAP
s| svc |supeavisor cALL TRaP
6| Dvz |owiDE BY ZERO TRAP
7| Fe  |racTRae
8] BPT  |BREAKPOINT TRAP
9 TRACE TRAP
10 UNDEFINED INSTRUCTION TRAP
11-15
16| VECTORED

Figure 4-4. Dispatch Table

For purposes of addressing the Dispatch Table, each of
the twelve exceptions has been assigned a number. This
exception number (or Interrupt vector) is used to compute
the starting address of the service procedure for the par-
ticular exception required, i.e., the exception number is

multiplied by 4, added to the contents of the Interrupt Base
register, and this value is used as an index into the Dis-
patch Table to obtain the External Procedure Descriptor of
the service routine to call.

When an exception occurs, the CPU automatically pre-
serves the complete machine state of the program imme-
diately prior to the occurrence of the exception. Depen-
ding on the kind of exception, it will restore and/or adjust
the contents of the Program Counter, the Processor Sta-
tus register, and the current Stack Pointer. A copy of the
PSR is made and pushed onto the Interrupt Stack. The
PSR is set to reflect Supervisor Mode and the selection of
the service routine’s Interrupt Stack. The Interrupt excep-
tion number is then used to obtain the address of the Ex-
ternal Procedure Descriptor from the Dispatch Table, and
an External Procedure Call is made. As with any such call,
the Mod register and the Program Counter are pushed
onto the Interrupt Stack. See Figure 4-5.

To return control to the interrupted program, one of two in-
structions is used. The Return From Trap instruction
(RETT) is used for all traps and nonmaskable interrupts. It
restores the PSR, the Mod register, and the PC and SB
registers to their previous contents and, since traps are of-
ten used deliberately as a call mechanism for Supervisor
Mode procedures, it discards a specified number of pa-
rameters from the User’s stack. See Figure 4-6.

q5<—-. PB
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T I
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EXCEPTION |
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Figure 4-5. Non-Vectored Interrupts and Traps
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Figure 4-6. Return from Trap Instruction

For maskable interrupts, the Return from Interrupt (RETI)
instruction is used. It is basically the same as the Return
From Trap instruction except that any Interrupt Control
Units (see Section 4.3.3 below) are informed that interrupt
service has completed. Also, since interrupts are generally
asynchronous external events, this instruction does not
pop any parameters.

Series 32000 implements a five level priority system for
scheduling exceptions which occur in the same
instruction. They are ordered as follows:

1. Traps other than trace (highest priority)
2. Abort trap

3. Non-maskable interrupt

4. Maskable interrupts

5. Trace trap (lowest priority)

Maskable interrupts may individually be assigned sepa-
rate relative priorities (see below). Exceptions with the
same priority are serviced in the order received.

This, then, is the basic plan for exception handling on
Series 32000. The specifics of interrupt and traps are dis-
cussed in the following two sections of this chapter.

4.3.2 Interrupts

Series 32000 provides three types of interrupts: Nonmask-
able, Vectored, and Non-vectored.

Non-maskable interrupts cannot be disabled and occur
when catastrophic events (such as imminent power
failure) require immediate handling in order to preserve
system integrity. A non-maskable interrupt also occurs
when a breakpoint condition is met. (See Chapter 4, Sec-
tion 4.5.2).

The Non-vectored interrupt mode may be used by smaller
systems in which an interrupt priority system is not re-
quired. In this case, no index into the Dispatch Table is
needed, and the CPU simply uses a default vector of zero.

For Vectored interrupts, prioritization of interrupt requests
is provided by the NS32202 Interrupt Control Unit. The ba-
sic idea in a priority interrupt mechanism is that each de-
vice along with its interrupt handler is assigned a rank in-
dicating its priority. An interrupt handler can then be inter-

rupted only by devices with a higher priority.

Each interrupt Control Unit can prioritize up to sixteen inter-
rupt requests, eight of which can be from external peripher-
al devices. The ICU provides a vector used as an index into
the Dispatch Table to obtain the address of the service rou-
tine required. In a system with only one ICU, the vectors pro-
vided must be in the range of 0 through 127.

To further expand the interrupt handling capability of a
system, a single NS32202, acting as the Master ICU, can
be cascaded with up to sixteen additional NS32202s,
providing up to 256 levels of hardware or software inter-
rupt. To support the cascaded configuration, a Cascade
Table is established in memory, in a negative direction
from the Dispatch Table. The entries in the table are the
32-bit addresses pointing to the Vector Registers in each
ICU. To address the Cascade Table, the ICU provides a
negative vector number. The fact that it is a negative num-
ber indicates to the CPU that the interrupt vector is from a
cascaded ICU. See Figure 4-7 for a detailed explanation of
cascaded interrupts.

The Interrupt Control Unit can function in either a fixed
priority or an auto-rotate mode. In auto-rotate mode, the
interrupt source, after being serviced, is rotated automat-
ically to the lowest priority position.

All interrupts except the non-maskable interrupt may be
disabled by the program with the Bit Clear in PSR instruc-
tion; each of the ICU’s 16 interrupt sources can be indi-
vidually masked by setting a bit in that device’s Mask
Register.

Interrupt handling on Series 32000 provides a number of
features which contribute to efficiency and programming
flexibility. For example, rather than saving all registers
when an interrupt occurs, Series 32000 automaticaily
saves only the Program Counter, the Program Status
Register and the Mod Register; the other registers are un-
der program control. They may be saved and restored by
specifying the required ones in a single instruction, allow-
ing for extreme fiexibility in adjusting interrupt response
speed. Fast context switching for interrupts is facilitated
by the treatment of all memory locations as though they
are internal general purpose registers by virtue of memory
to memory operations. This allows a temporary variable to
be left in memory during a context switch. Also, the use of
an Interrupt Stack allows context switching in a multipro-
gramming or multitasking environment to be done without
having to disable interrupts.
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Figure 4-7. Cascaded Vectored Interrupts

4.3.3 Traps

Series 32000 recognizes nine traps. Three of the traps are
implemented by explicit instructions: the Flag Trap (FLAG)
allows overflow checking in any arithmetic operation and
is enabled by setting the F bit in the PSR; the Supervisor
Call Trap (SVC) is used to transfer to system mode soft-
ware in a controlled way, typically to access facilities pro-
vided by the operating system. The Breakpoint Trap (BPT)
instruction is used for program debugging and is dis-
cussed in this chapter, Section 4.5.2.

The Abort Trap (ABT) occurs when an attempt is made to
access a protected page in memory or when page swap-
ping is required in the MMU. If the page fault occurs in a
string instruction, the processor state is set to reflect the
progress made by the instruction up to the time of the trap;
all other instructions are re-executed from the beginning.

The lllegal Trap (ILL) results when a privileged instruction
occurs while the processor is in the User mode. Traps are
also provided for undefined opcodes (UND), for attempted
division by zero (DVZ), and for the occurrence of an
exceptional condition in an FPU or Custom Slave
instruction (FPU). The Trace Trap is enabled by setting the
T bitin the PSR and is used for program debugging (see
Section 4.5.2).

All traps except the Trace trap occur as an integral part of
the execution of an instruction, and are serviced before
interrupts. The return address pushed by any trap except
the Trace trap is the address of the first byte of the instruc-
tion during which the trap occurred; the return address of
a Trace trap is the address of the next instruction to be
traced. (See Section 4.5.3).

4.3.4 Memory-Mapped /0

The architecture of Series 32000 implements a memory-
mapped I/0 system, in which peripheral devices are treat-
ed as a specified section of memory. The basic motivation
of a memory-mapped system is to allow the use of the full
range of the microprocessor’s instructions and addressing
modes for I/O operations.

Each device interface is organized as a set of registers (or
ports) that responds to read and write commands to loca-
tions in the normal address space of the microprocessor.
For example, a memory store becomes an /O write if a pe-
ripheral device is addressed; a load from memory be-
comes an /O read. A compare with memory is a very
powerful instruction that can take a group of input sourced
data and successively compare their magnitude with a val-
ue in a register. Also, data in an external device register
can be tested or modified directly, without bringing it into
memory or disturbing the general registers.

Memory-mapped 1/0 allows I/O operations to be performed
directly in a high level language, i.e., an /O device may be
declared as a data structure and then manipulated with the
use of pointers. In an isolated I/O system, assembly lan-
guage subroutines for /O must be written and then called
by the HLL. Memory-mapped I/O also insures that the I/O
space is protected by the same memory management facili-
ties that are used to protect critical areas of memory.

4.4 Slave Processors

A slave processor is an auxiliary processing unit that oper-
ates in coordination with Series 32000 CPUs, allowing ar-
chitectural capabilities which, in view of the limitations in
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contemporary integration technology, could not otherwise
be provided. Communication between the master CPU
and the slave processors takes place by means of a very
fast, well defined, and self-contained protocol which is
transparent to the programmer.

Series 32000 includes two slave processors: the NS32081
Floating Point Unit (FPU) and the NS32082 Memory
Management Unit (MMU). In addition, the CPUs provide
the capability of communicating with a user-defined,
generalized ‘“Custom’’ Slave Processor.

4.4.1 Overview

Series 32000 CPUs recognize three groups of instructions
as being executable by external Slave Processors: 1)
Memory Management Instructions, 2) Floating Point In-
structions, and 3) Custom Instructions.

Slave Processor instructions have a three-byte Basic In-
struction field, consisting of an 1D byte followed by an
Operation Word. The ID Byte identifies the instruction, as
being a Slave Processor instruction, specifies which Slave
Processor will execute it, and determines the format of the
following Operation Word of the instruction. The Operation
Word specifies the size and number of operands, the ad-
dressing modes used to access them, and the type of
operation to be performed.

In all siave operations, the CPU fetches the instruction,
performs any address calculation that may be needed,
and then routes the instruction with the appropriate data to
the slave processor for execution. The actual data ma-
nipulation is handied by the Siave Processor. If the neces-
sary slave processor chip is not in the system, the CPU
generates a software trap, aliowing the instruction to be
emulated with software routines.

Though the slave processor is external to the host CPU, all
of the CPU’s registers and facilities (such as effective ad-
dress calculation, memory bus interface, etc.) can be con-
sidered an integral part of the system.

A four-bit CFG register, located in the control section of all
Series 32000 CPUs, indicates to the CPU the presence of
Slave Processors in the system configuration (see Figure
2-4). The F, M, and C bits indicate the availability of the
FPU, the MMU and a Custom Slave Processor, The | bit in-
dicates the presence of the NS32202 Interrupt Control
Unit (see Section 4.3.2). These four bits must be set by the
user during system initialization with the Set Configuration
Instruction (SETCFG).

There are no restrictions on the number of slaves that can
be used in the system, so long as only one slave of each
kind is on the bus. Thus, four or five slave processors,
each with a different instruction set, could work alongside
the CPU on the same bus.

The slave processor concept has two main advantages for
software development. First, the slave processors are so
designed that when integration technology advances to
the point where slave processor hardware can be in-
corporated within the CPU chip, no software modifications
will be required—the same programs will simply execute
much faster. Secondly, the programmer has the option of

building an entry-level system without slaves by using soft-
ware emulators. Later, higher performance systems can
be built by simply adding the slave chips and removing the
emulators.

4.4.2 MMU

The MMU provides dynamic address translation, virtual
memory management, memory protection, and both hard-
ware and sofiware debugging support.

The MMU address translation and virtual memory mecha-
nisms are described in Chapter 3; Section 4.5 of this chap-
ter covers the debugging facilities of the MMU. In addition,
six instructions are provided for manipulating the MMU’s
status. The Read Address Validate (RDVAL) instruction
and the Write Address Validate (WRVAL) instruction pro-
vide read and write address translation validation for the
user mode. The Load MMU Register (LMR) instruction al-
lows the programmer to store data into any of the MMU
registers. The Store MMU Register (SMR) instruction
aliows any register to be read.

The MOVSU and MOVUS instructions permit the
operating system to transfer data to and from user space.
Without these instructions, the operating system would
have no way of accessing data in the user’s address
space. Many microprocessors that distinguish supervisor
mode from user mode lack this instruction, and the design
of operating systems for these machines is adversely
affected.

4.4.3FPU

The FPU extends the Series 32000 instruction set with
very high-speed floating-point operations for both single-
and double-precision operands, as well as 8, 16 and 32-bit
fixed-point calculations. :

The FPU contains eight 32-bit data registers and a 32-bit
Floating Point Status Register (FSR) which contains mode
control information, the floating point error bits and trap
enables. The data registers contain 32-bit single precision
operands; for 64-bit double precision operands, two regis-
ters are concatenated.

Unlike other microprocessors which support floating point
operations, the architecture of Series 32000 makes avail-
able to the FPU all Series 32000 addressing modes. For
example, the Scaled Index mode permits an array of float-
ing point data elements to be addressed by its logical in-
dex, rather than its physical address. Also, any instruc-
tions can be register-to-register, register-to-memory, or
memory-to-memory.

The FPU executes 18 instructions which supplement the
integral arithmetic instructions and provide conversion
from one precision type to another. Three separate
processors in the chip manipulate the mantissa, sign, and
exponent, respectively, under the control of microcode
stored on the chip. See Chapter 2, Section 2.3.2 for more
about FPU operators.

Traps are provided for overflow, underflow, divide by zero,
reserved operand, invalid operations, illegal instructions
and inexact resuilts. All traps can be individually enabled
or disabled by the programmer.
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4.4.4 Custom Slaves

The user-defined Custom Slave instruction set can be
used to control any generic external chip. This chip is as-
sumed to need some opcodes for arithmetic-like calcula-
tions, some opcodes for data moves, and some opcodes
for examining and modifying status registers. The instruc-
tion set defines the instruction formats, the operand class-
es and the communication protocol. Left to the user are
the interpretations of the Op Code fields, the programming
model of the Custom Slave, and the actual types of data
transferred. The protocol specifies only the size of an
operand, not its data type.

4.5 Debugging Facilities

Debugging is one of the most difficult stages in program
development. Though structured design techniques and
modular programming have helped to reduce program de-
bugging time, 20% of software development effort
remains committed to this enterprise. Clearly, any debug-
ging assistance provided by the hardware is of particular
value. The support provided by Series 32000 is unique for
MiCroprocessors.

4.5.1 Overiew

Hardware support is provided for two operations that are
crucial to program debugging: flow tracing and break-
pointing. The implementation of these operations uses two
sets of registers on the MMU—the Breakpoint and Flow
Tracing registers—and the Breakpoint Trap instruction.

4.5.2 Breakpoint Trap and MMU Breakpoint
Registers

Setting breakpoints is a technique for halting a program’s
execution at a particular instruction or data access for pur-
poses of examining the program’s state and thereby
determining the cause of improper program behavior.

With Series 32000, breakpoints may be set either when a
specified address is accessed or after a specified number
of such accesses have been made. Also, more than one
breakpoint address may be simultaneously selected, al-
lowing a halt to be implemented after either fork of a condi-
tional branch. These facilities are provided by the Break-
point Trap instruction (BPT) and three dedicated registers
located on the MMU.

The Breakpoint Trap instruction is a one byte instruction
which replaces the first byte of the opcode of the instruc-
tion that is to be breakpointed. To allow breakpoints to be
set in PROM, as well as RAM, two Breakpoint registers,
BPR, and BPR; are provided. These registers hold the
doubleword addresses of two selected breakpoints which
are compared with the contents of the address bus for ev-
ery memory cycle. When a breakpoint address appears in
the program, and when other conditions specified by the
contents of the register are met, a non-maskable interrupt
oceurs.

Because these registers are located in the MMU, they may
be selected to look at either the virtual addresses from the
CPU or the physical addresses from the MMU. In addition,

the Breakpoint registers may be designated to operate
when the indicated address is either written to or read
from, or when there is an instruction fetch.

A third register on the MMU, the Breakpoint Count
register, specifies the number of matches of the BPRg
register breakpoint condition to pass over before a break-
point occurs. This is useful for selecting a particular itera-
tion in a loop instruction. See Figure 4-8 for a schematic
representation of the operation of the three Breakpoint
registers. In this example, the program contains a loop
which will be executed 100 times. For purposes of debug-
ging, the breakpoint is set to occur on the last time through
the loop. This is done by setting BPRg to the address of
the particular instruction, and setting the BC register to 99,
this being one less than the number of times the loop will
be executed in the program.

EXAMPLE PROGRAM
A
N=100 I
MMU REGISTERS
BPRo N=N-1
BPRy
BC=99
e N\ N0
YEs

Figure 4-8. Breakpointing

In most other microprocessors, breakpointing is provided
by a trap or breakpoint instruction which single steps the
CPU. This can result in myriad probiems for a virtual
memory system. First and foremost is the fact that all ad-
dresses emanating from the CPU are virtual addresses. it
is often necessary when debugging supervisor-mode soft-
ware to be able to set breakpoints as absolute addresses;
i.e., as addresses in physical memory. This is not possible
with CPU-based debugging techniques, since the CPU
has no concept of the distinction between the two types of
addresses. Also, the setting of breakpoints with special in-
structions that overlay existing code can cause much addi-
tional overhead for the memory manager. For these and
other reasons, the designers of Series 32000 have chosen
to implement debug support on the MMU.
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4.5.3 MMU Flow Tracing Registers

Flow tracing provides a chronicle of the actions and re-
sults of individual steps in a program during its execution.
It allows the program’s recent history to be examined at
specified instructions or breakpoints in order to determine
the reason for any undesired program behavior.

Series 32000 supports program flow tracing with four ded-
icated registers in the MMU and the Trace trap bit in the
CPU’s PSR. if fiow tracing is aciivaied (by means of a bit
in the MSR), two 32-bit Program Flow registers (PFg and
PF,) will always hold the addresses of the last two instruc-
tions which were executed out of sequence. The two 16-bit
Sequential Count registers (SCg and SC,) will keep a
record of the number of sequential instruction fetches be-
tween each change in program fiow. All four of these regis-
ters may be cleared by the Load Memory Register (LMR)
instruction. Figure 4-9 shows an example of the use of the
Flow Tracing registers to determine which of two paths
through a program were taken prior to the execution of the
instruction pointed to by Breakpoint Register 0.

The user can select an instruction or series of instructions
to trace by means of the Trace trap, which is enabled by
setting a bit in the PSR. When the Trace trap is enabled at
the beginning of an instruction, a trace trap will occur at
the end of that instruction, and user software may then be
employed to investigate the contents of the CPU registers.
The trap will occur after each instruction, so long as the bit
is set.

This trap is implemented in such a way that one and only
one trace trap has the lowest priority of any exception, any
other trap or interrupt request which occurs during a
traced instruction is allowed to complete its entire service
procedure before the Trace trap occurs. Also, unlike other
traps, where the address of the first byte of the instruction
during which the trap occurred is pushed onto the stack,
the Trace trap insures that the return address to be
pushed is that of the next instruction to be traced.

IF. THEN. ELSE.
CASE 1. A EXECUTED,
ADDROFC | PFo 100
A | instRuc-
ADDROFD | PF1 TIONS
scif 100 { 50 ]S J O
CASE2. B EXECUTED 150
NsTRUC-| B
ADDR OF C TIONS
ADDR OF B '
150 50
50
BPR i INSTRUCTIONS

Figure 4-9. Flow Tracing
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Benefits of Demand Paged Virtual Memory %

Chapter 1
An overview of the
past, present, and future.

Microprocessors were originally designed as general-
purpose, software-programmable devices that would pro-
vide an alternative to prohibitively expensive special-pur-
pose chips. The limitations of early technology, while equal
to the modest performance requirements of original appli-
cations, generally limited the size of memory to 16K bytes.

1.1 Microprocessor memory architecture was
primitive at first. The address on the micro-
processor’s address bus went directly to
main memory'—an address was an address.

Even today, most microprocessor systems based on this
architecture are either limited to 64K bytes of total memory,
or stuck with a small number of 64K byte segments (typi-
cally, fewer than 128).

In a segmented address space, the address space neces-
sarily consists of a small number of distinct uniform ad-
dress spaces. Since an address pointer can only be incre-
mented from the top of one segment to the bottom of
another segment, all data structures larger than the maxi-
mum segment size must be broken down to fit into two or
more segments. Consequently, a program that needs
100,000 bytes of data in main memory requires the user to
split the total data into two segments, neither of which can
be larger than 65,536 bytes. And, to allow the system to ac-
cess the data, the user must create complex instructions
that enabie the system to figure out where in the two seg-
ments the data it needs actually resides, and how to effi-
ciently access that data when it overiaps both segments.

Altogether, the complications inherent in segmentation
(usually requiring hard-to-manage overlays) present pitfalls
to the user. The development of the 8086 from the 8080,
though a heroic attempt to expand address space while
preserving some measure of software compatibility,
resulted in the most striking example of the problems

of segmented architecture.

1.2 Programs share many traits in common with
human beings. For one thing, they follow
Parkinson’s Law.

Just as work expands to fill the time available in which to do
it, programs tend to expand, over their lifetime, to fill the
memory available to them. The memory requirements of
typical applications today commonly strain the capacity of

1 Also called semiconductor, or real memory.

minis and even mainframes. Programs such as high-level
language compilers, or the recently enhanced version of
VisiCalc™, need over 250K bytes of main memory alone;
graphics programs can require over a million bytes of sec-
ondary storage.?

With the advent of extremely fast VLSI (very-large-scale-
integration) technology, it is now possible to close the
performance and capacity gap between a mainframe and
a microprocessor-based system. But for a small micro-
processor-based system to expand to the full capability

of a mini or a mainframe, its architecture must optimize
performance without compromising user protection. it must
accommodate the largest applications, yet remain cost-
effective. Also, to put off obsolescence and minimize
development costs, it must be able to utilize the enormous
software inventory available on minis and mainframes.

1.3 Increasingly, systems designers and pro-
grammers are coming to the conclusion that
Series 32000 will be the foundation for the
next generation of high-performance, low-
cost computers.

Why? Because, among its virtues, Series 32000 features a
totally new, totally practical microprocessor architec-
ture—not simply an enhancement of an existing one.

Unlike any other commercial processor (micro, mini, or
mainframe) it is designed to fully support the use of high-
level languages and modular-software programming.

It introduces a powerful, highly symmetrical, instruction set
that includes over 100 genuine two-operand instruction
types, but avoids special-case instructions that compilers
cannot use.

It is the first commercial microprocessor capable of imple-
menting Demand Paged Virtual Memory as a means of
solving large-memory-management problems. Its architec-
ture also supports uniform addressing—addresses start at
location zero and proceed uniformly until the entire virtual
address space® is filled. As a consequence, the memory
configuration of a Series 32000-based system is com-
pletely flexible. A designer can maximize the use of the
system’s main and virtual memory resources, and achieve
a heretofore-unrealizable level of performance at a min-
imal cost (Figure 1).

2 piso called peripheral, or mass storage.
3 Also called the logical address space.
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LINEAR LOGICAL ADDRESS SPACE

OPERAND
SINGLE-COMPONENT
ADDRESS
SEGMENTED LOGICAL ADDRESS SPACE
SEGMENT A
SEGMENT C
OPERAND
DISPLACEMENT
TWe-
COMPONENT
ADDRESS | seqmENT
SELECTOR SEGMENT B

Figure 1: Uniform vs. segmented architecture TERseRe

1-49

Aowapy fenA palied puewaq o sjijausg



Benefits of Demand Paged Virtual Memory

Chapter 2

With virtual memory, a system
appears to have more memory

than it actually does.

Although memory hardware is becoming less expensive,
few systems can afford to have megabytes of main
memory. A megabyte of secondary disk storage is likely to
remain considerably less expensive than a megabyte of
RAM for some time. To circumvent this practical limitation
on the size of main memory, Series 32000’s sophisticated
architecture was deliberately designed to support the
implementation of virtual memory. This memory strategy
uses a secondary storage device, such as the usuaily
standard hard disk, as an adjunct to the main memory
under the control of an operating system.

2.1 In a virtual-memory system, every address
used by the CPU is called a virtual address
and each virtual address is subject to
dynamic address translation*—a mapping
function that translates a virtual address in
virtual memory into a physical address in
main memory.

All virtual addresses are translated into physical addresses
by a common formula, and are all given access protection.
If a datum is not in main memory when an instruction calls
for it, the address translation subsystem must so inform the
CPU by requesting an instruction abort. The CPU then
aborts the current instruction, and transfers control to an
operating system routine that interprets the cause of the
abort. If the abort was caused by a reference to a location
available only in secondary storage, the CPU first transfers
the contents of the page containing the location from sec-
ondary storage to main memory, and then retries the
aborted instruction. This transiation process is called
swapping.

If this process can be done automatically, then as far as the
user is concerned the combination of main memory and
secondary storage becomes one immense, contiguous
memory resource. Consequently, the user is able to take
full advantage of extremely large operating-system soft-
ware and applications programs without worrying about the
actual hardware limitations of the system.

4 Also called memory mapping. or address relocation.

2.2 From the standpoint of system designs and
manufacturing, the price/performance trade-
offs that virtual memory affords are particu-
larly important, and readily apparent.

For example, a small business system may need several
million bytes of memory in order to run word processing,
financial planning, and data-base management programs
efficiently. Yet a manufacturer may wish to ship only 1
Mbyte of main memory in order to keep the price of the
system competitive. Since this hypothetical system proba-
bly includes a hard disk as standard equipment, imple-
menting virtual memory is a viable technique for
expanding the address space. The result is that the user
sees a system which performs like one with, say 5 Mbytes
of main memory, yet pays for only 1 Mbyte.

It must be emphasized that for a memory management
strategy to truly implement virtual memory, the user must
be presented with the illusion that all of the addressable
memory is available for use at any given time. To the extent
that the user is aware of the memory-management strat-
egy, the benefit of “virtual-ness” disappears.

2.3 The first wave of 16-bit microprocessors were
not designed with virtual memory in mind.

As a result, designers must overcome a great many obsta-
cles, to adapt earlier designs for use in virtual memory
systems.

Early 68000-based virtual memory-management systems,
for example, required two 68000s. One executed the pro-
grams, but any time it needed to access a new virtual ad-
dress, the other had to stop the first and repair the “page
fault”.

The designers of the 68010, which attempts to support vir-
tual memory with a single CPU, were forced to interrupt the
internal microcode machine between two microcycles of
the executing instruction, and to save 26 words of “invisi-
ble” internal state on the external stack before freeing the
CPU to perform the memory-management tasks.

Series 32000 eliminates the need for any such “‘kludges.”




Chapter 3

The two predominant approaches
to virtual memory-management:

cannmantatinn and

An nA N
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Virtual memory works because programs, instead of ad-
dressing locations in memory at random, tend to stay local-
ized for long periods. If a system has enough main memory
1o hold these “locales,” a program will run smoothly...for a
while.

Eventually, though, a program will call for data not present
in main memory. The CPU must then obtain that data by
swapping one of the current physical-memory regions of
data with the desired externally stored region. This swap-
ping task must be accomplished as quickly as possible—
preferably “on demand”—to carry out a program instruc-
tion. However, the swapped region should contain as littte
unusable data as possible.

3.1 In a uniform memory space, the size of the
swap is based on a fixed-sized unit called a
page, which can be any size the system
designer specifies. In a segmented memory
system, the size of the swap is determined
by the size of the segment, which varies.

Segmentation is a comparatively simple form of memory
management. Most segmented systems have few seg-
ments. Each segment must therefore cover a large portion
of the virtual address space. As large segments get
swapped in and out of main memory, the available memory
space tends to become “fragmented” into many small
pieces, until not enough contiguous main memory is avaii-
able to contain one large segment. To avoid this problem,
and eliminate the wasteful allocation of large portions of
main memory to unused virtual addresses, segments are
generally allowed to be of variable size.

AN

Specific segments of virtual address space are generally
associated with specific aspects of a running task. In an
80286, the four segments are “hard-wired” to be a code
segment, a stack segment, a data segment, and an alter-
nate data segment. This approach allows swapping and
access protection in minimal hardware, but creates havoc
in a virtual memory-management system because the seg-
ments coincide with the pages.

Because of the variable size of segments and their associ-

ation with a running task, the implementation of segmented
virtual-memory management systems is difficult. No matter
how much, or how little, of each segment is needed, all of it
must be swapped; a part of a segment cannot be swapped
independently (Figure 2).

3.2In a Demand Paged Virtual Memory system,
on the other hand, there is no need for the
virtual memory-management strategy to deal
with large, odd-sized blocks of main
memory, or to take into account any
information about how any memory will be
used by the running task.

Series 32000 does provide the protection advantages of
segmentation, without the segment-size disadvantages,
by permitting ‘“segments’’ to be constructed out of an arbi-
trary number of fixed-size pages that can be indepen-
dently swapped. But Series 32000 does not require
segmentation as a built-in feature of its architecture.

The formidable advantage of demand paging over seg-
mentation, in general, is the simplicity with which pages
can be swapped in and out of main memory. The resultis a
particularly low-overhead memory allocation algorithm
that improves system performance (Figure 3).
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Figure 2: Fragmentation in segmented address space schemes
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Chapter 4

In Series 32000, dynamic address translation
is performed automatically by the NS32082
Memory Management Unit (MMU).

The NS32082 MMU is an auxiliary (slave) processing unit
that operates in coordination with the master Series 32000
CPUs. Communication between the two units takes place
by means of a very fast, well-defined, self-contained proto-
col that is transparent to the user.s Together, the CPU and
MMU allow architectural capabilities that otherwise, be-
cause of the limitations of contemporary integration tech-
nology, would be impossible on a single chip (Figure 4).

The MMU provides a Series 32000-based system with
dynamic address translations, memory management,
memory protection, and both hardware and software
debugging support.

4.1 Series 32000 has a virtual address space of 16
Mbytes divided into 32,768 pages, each with
afixed size of 512 bytes. The physical
address space is the same size, and is also
divided into similarly-sized pages.

This scheme is an ideal one for managing a virtual-memory
system because the fixed-sized pages are easy to swap
via disk: page numbers can map directly to disk sectors,
and paging is transparent to the user-program. Studies
have also shown that pages of approximately this size ex-
hibit a good tradeoff between “locality” and “graininess.”

4.2 In dynamic address translation, the MMU
keeps track of each virtual address
requested by the CPU and its corresponding
value in main memory at all times.

To do this, it uses two levels of page tables containing
pointers that indicate where to go in main memory.

Among its set of registers, the MMU contains two Page Ta-
ble Base registers: PTB, in System mode, and PTB, in
User mode. (A system program can force the MMU to use
PTB, in both modes, if desired.) Either register's contents
points to a location in main memory that holds a page table.
(Itis the job of the operating system to load the PTB regis-
ters and build the corresponding table.)

The total size of the page table that each PTB register
points to is 1,024 bytes, divided into 256 entries, each 32
bits wide. Each one of the 256 entries in each page table
points to a pointer table.

S Because the ion of the MMU is by these in-line
instructions, integrating the MMU's memory management capabilities with
any future CPU in Series 32000 will entail only a few, localized software
modifications.

6 See section2.1.

Each pointer table is divided into 128 entries, each 32 bits
wide: thus, each pointer table fits on a 512-byte page. Each
of the 128 entries in a pointer table points to a 512-byte
page in virtuai memory.

4.3 Surprisingly, the page and pointer tables do
not require large amounts of memory. Practi-
cally speaking, each program or task can
have its own page table.

An entire 16-Mbyte virtual memory map will use only one
1024-byte page table (resident in main memory) to point to
256 pointer tables, of 512 bytes each, for a maximum of
132,096 bytes devoted to mapping. (The pointer tables
need not be in main memory—they can be brought in from
secondary storage on demand.)

Changing the page table is simply a matter of changing the
MMU register that points to the location in memory that
holds the current page table. Therefore, each program or
task can have its own map from virtual memory to main
memory, and its own virtual address space of 16 Mbytes
(Figure 5).

4.4 Each entry in a page table, or one of the
pointer tables, has the same basic format.

Bits 9 through 23 specify the starting physical address of
the specified page. Bits zero through four contain the fol-
lowing status bits:

0 The Valid bit (V)—indicates whether the entry may be
used for address transtation.

1-2 The Protection Level field (PL)—indicates the level of
protection provided for the page.

3 The Referenced bit (R)—indicates whether the page
has been accessed. (It is automatically set when the
corresponding page has been accessed for reading
or writing.)

The Modified bit (M)—indicates whether the page has
been modified during its residence in main memory.
(It is automatically set when the corresponding page
is written to.)

4.5 To implement dynamic address translation,
the page selector field of an address is used
to index the page and pointer tables.

The 24 bits of a virtual address may be thought of as
consisting of two fields: the page selector field (the high-
order fifteen bits), and the offset fieid (the lower nine bits).
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Figure 5: Dynamic address translation

The fifteen-bit page selector field is again divided into
subfields: the upper eight bits, which index an entry in the
page tabie, and the lower seven bits, which index an entry
in the appropriate pointer table.

The lower nine bits of the virtual address become the lower
nine bits of the physical address, and index the location of
a byte within a page.

The result? The 24-bit virtual address becomes a 24-bit
physical address, which is the address actually used to
refer to memory.

4.6 Because the mapping tables are too large to
store in the MMU, they must be stored in main
memory. Reading a table entry from memory
would normally take at least two memory ac-
cesses per memory access generated by a
program—a clearly unacceptable delay.

To speed up the process of dynamic address translation,
the NS32082 MMU utilizes an associative on-chip transla-
tion cache.

The cache contains the 32 most recently accessed virtual
addresses and their translated physical addresses
(Figure 6).

B gsersy 98 @ers) ©
PAGE NUMBER OFFSET V/ ™~
51
3 } Bvres
{1 PAGE|
MAIN MEMORY
TUEE/B666-5
v 9
[}
1
2
3
4
5
A ~ -~ -~
)
30
3
VIRTUAL ADDRESS PHYSICAL ADDRESS PROTECTION
BiTS
TUEE/B666-6

Figure 6: Associate cache

When the CPU passes a virtual address to the MMU, the
MMU first attempts to match the virtual address with an
entry in the cache. If the address requested by the CPU
matches one of the 32 cache entries, the MMU will then
check the protection level and, if access is permitted, im-
mediately make the physical address available for memory
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reference. This virtual-to-physical address translation can
occur in just one clock cycle (100 nanoseconds with a 10-
MHz microprocessor clock).

If, however, the requested address is not present in the
cache, the MMU must fetch both page and pointer table

entries from memory before address translation can be
performed—a process that may take an average of twenty
clock cycles (2 microseconds with a 10-MHz microproces-
sor clock) (Figure 7).
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Memory access through the NS32082 MMU
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4.7 The NS32082 MMU'’s net performance de-
pends directly on the frequency with which
the cache contains the necessary table
entries: observations show that in typical
programs the cache contains the entries
over 98 percent of the time

Therefore, the operation of the MMU is transparent to the
user-program.

When the MMU'’s cache is full, room must be made for a
newly translated page address. To do this efficiently,
however, requires an algorithm that decides which is the
best page address to remove, in the sense that its
absence will have the smallest adverse effect on the
running program. The NS32082 MMU uses what is called
the Least Recently Used (LRU) aigorithm: it evicts the
least recently accessed page address in the cache on the
basis of that page having a high a priori probability of not
being in the running program’s working set.

The MMU'’s ability to achieve a 98 percent “hit rate” (com-
parable to that of the VAX-11™) is directly related to its use
of this very fast algorithm.

4.8 The powerful Referenced bit (R), in
conjunction with the Modified bit (M) in the
table entries, also directly influence the
MMU’s net performance.

The Referenced bit is set by the hardware when the page
is referenced (read or written) by an instruction. By periodi-
cally checking and clearing this bit in all page and pointer
table entries, the operating system can monitor the fre-
quency with which pages are being used, and select pages
to be swapped out according to the LRU algorithm. If a
page about to be swapped out has not been modified since
it was read in (a likely occurrence if the page contains code
rather than data), it is unnecessary to write it back into sec-
ondary memory, since an accurate copy already exists
there. If, however, the page has been modified since being
read in, the copy in secondary storage is no longer accu-
rate and must be rewritten.

The Modified bit is set to “1" by the hardware whenever a
page is written to while resident in main memory. When the
page is to be released, the operating system can check this
bit to see if the copy on disk must be updated. If the bit is
“1,” the page must be written to secondary storage; if it is
“0,” then the page has not been modified since it was read
in, and can simply be overlaid.

4.9 Two other MMU registers facilitate the interac-
tion of the MMU, C_PU, and operating system.

The Error/invalidate Address (EIA) register provides a
“window” between the MMU cache and the CPU that al-
lows the software to remove an entry from the cache. (If it
were changed in memory alone, the MMU would continue
to use the old value stored in the cache.) The EIA register
also returns the address that caused an MMU exception,
for use in case of error or a required virtual-memory swap.

7 Motorola’s 68451 MMU, for example, which also has 32 on-chip transiation
registers, must interrupt the 68010 CPU if the required informationis not in one of its
registers—a procedure that can easily take 50 to 100 times the less-than-2us
required by the NS32082 MMU.

The ElA’s high-order bit indicates which PTB is being used
for translation. Changing a PTB value automatically re-
moves all cache entries based on that PTB.

The Memory Status Register (MSR) holds the many indica-
tors that allow software to monitor and control the MMU's
actions. Itis accessible only in the Supervisor mode.

4.10 The NS32082 MMU can abort an instruction
during execution by the CPU—to load a page
from secondary storage into main
memory—and immediately retry the
instruction.

This feature is unique to Series 32000 and is fully imple-
mented in hardware. No complex restart routine or
externally saved internal state is required’.

After fetching and decoding an instruction, the CPU sends
the virtual address of the operand to the MMU. The Valid
bit (V) in a page or pointer table entry indicates whether or
not the corresponding page is present in main memory.
Whenever an address is generated by the CPU, and
passed to the MMU for translation into a physical address,
the MMU checks the Valid bit of the table entry specified by
the incoming virtual address. If the Valid bit is “1,” the page
is assumed to be present in main memory, and address
translation proceeds directly.

If the Valid bit is “0,” the page is assumed not to be in main
memory, and a page fault occurs. A page fault is a hard-
ware-generated trap that is used to tell the operating sys-
tem to read the missing page in from secondary storage.
The page fault occurs in the MMU, which generates an
ABORT signal to the CPU that immediately halts execution
of the current instruction. (A memory-access abort will also
occur if the CPU tries to access a protected section of
memory.)

One of the problems in implementing virtual memory sys-
tems is that an instruction may generate a page fauit at any
time during the course of its execution. If the instruction oc-
cupies several bytes, it may overlap a page boundary, and
the act of fetching an instruction may itself cause a page
fault. The process of fetching the source or destination
operand may cause a page fault as well.

In Series 32000, when a page fault occurs, for any reason,
the MMU sends the ABORT signal to the CPU. 0 permit
the instruction to be restarted, the CPU not only halts the
execution of the instruction, it also returns any register
that was altered by the instruction to the state it was in
before the aborted instruction began. At the same time,
the program counter is automatically saved, as are the
processor-status register and the stack pointer, among
other registers, so that, as soon as the operating system
completes the page swap, the CPU automatically retries
the aborted instruction.

4.11 The exception to this process is in the case
of string instructions, which get special
treatment during an abort.

Since it would be extremely undesirable to have a long
string instruction repeated from the beginning if an abort
occurred in the middle of the string, Series 32000 CPUs
allow an aborted string instruction to be re-executed from
the point at which the page fault accurred.
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Chapter 5

In a Series 32000-based system,

each page can have protection attributes to limit
the ways in which the page can be accessed.
This provides the basis for memory protection
within the virtual address space.

The protection features actually implemented in Series
32000 architecture can be divided into three groups:

1. 5.1 Supervisor/User mode. The CPU has two operating
modes: Supervisor mode, in which the entire instruction
set is available, and User mode, in which only a re-
stricted subset of instructions are available. Supervisor
mode is intended for operating systems and other
trusted programs, User mode for programs that are not
trusted.

2. 5.2 Separate address spaces for each task.Each task
running on a Series 32000-based system has a unique
collection of pages that constitutes its address space:
access to another task’s address space is impossible.

3. 5.3 Protection bits along with the physical addresses in
the page- and pointer-table entries.

To keep order in today’s multi-tasking, multi-user, and multi-
processor systems, the protection bits define whether a
page can be read, but not written into; read and written
into; or, neither read nor written. How the protection bits are
interpreted depends on the operating mode of the CPU: a
given setting of the Protection Level (PL) field will be inter-

preted differently in Supervisor mode than in User mode,
as shown below.

PL SUPERVISOR MODE USER MODE
00 read only no access

01 read/write no access

10 read/write read only

1 read/write read/write

As a result, the operating system can treat a collection of
pages with the same protection level as a segment. For
example, a constants segment might be a set of pages
containing data with the read-only protection level, so
users could not modify the data. In this way, page-based
dynamic address translation provides a mechanism for
implementing segmentation.

Inter-task protection is accomplished by giving each task its
own set of page tables, so that each task has its own
address space, which provides flexibility and virtual
memory for each task. By changing the single register that
points to the page table, the user can switch to the new
task’s address space.
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Benefits of Demand Paged Virtual Memory

Chapter 6

At best, debugging is one of the most
difficult stages of program development.
In a virtual memory system,

it could be a nightmare.

The debugging facility provided by the NS32082 MMU is
unique and unsurpassed among microprocessor families.
It would prove invaluable even if the MMU did nothing else
but provide for the two crucial, program-debugging opera-
tions: breakpointing, and flow tracing.

6.1 In most other microprocessors, breakpoint-
ing is provided by a trap, or breakpoint
instruction.

This can result in a myriad of problems for a virtual memory
system. It is often necessary, when debugging Supervisor-
mode software, to be able to set breakpoints as absolute
addresses, i.e., as addresses in physical memory. This

is not possible with CPU-based debugging techniques,
since all addresses emanating from the CPU are virtual
addresses—the CPU has no concept of the distinction be-
tween the two types of addresses. Moreover, the setting of
breakpoints with special instructions that overlay existing
code can cause a great deal of additional overhead for the
memory manager.

6.2 For these reasons, among others, the
designers of Series 32000 chose to imple-
ment debugging support on the MMU.

To implement breakpointing and fiow tracing, the
NS32082 MMU uses two sets of registers—the Breakpoint
and Flow Tracing registers—and one instruction, the
Breakpoint Trap instruction.

6.3 Setting breakpoints is a technique for halting
a program’s execution at a particular instruc-
tion or data access for the purpose of examin-
ing the program’s state, and thereby deter-
mining the cause of improper program
behavior.

With Series 32000, breakpoints may be set either when a
specified address is accessed, after a specified address
ns accessed, or after a specified number of such accesses
have been made. Aiso, more than one breakpoint address
may be selected simuitaneously, allowing a halt to be
implemented after either fork of a conditional branch.
These facilities are provided by the Breakpoint Trap
instruction (BPT) and three dedicated registers located on
the MMU.

The Breakpoint Trap instruction is a one-byte instruction
that replaces the first byte of the opcode of the instruction
that is to be breakpointed. To allow breakpoints to be set in
PROM, as well as RAM, two breakpoint registers, BPR,
and BPR, are provided. These registers hold the double

word addresses of two selected breakpoints, which are
compared with the contents of the address bus at every
memory cycle. When a breakpoint address appears in the
program, and when other conditions specified by the con-
tents of the register are met, a non-maskable interrupt
oceurs.

Because these registers are located in the MMU, they may
be set to look at either the virtual addresses from the CPU
or the physical addresses from the MMU. They may also
be set to operate when the indicated address is either writ-
ten to or read from, or when there is an instruction fetch.

A third register on the MMU, the Breakpoint Count register,
specifies the number of matches of the BPR,, register
breakpoint condition to be passed over before a breakpoint
occurs. This is useful for selecting a particular interaction in
a loop instruction.

The breakpointing process occurs parallel to the execution
of the running program, and exacts a negligible perfor-
mance penalty. Consider how a programmer might want to
use software breakpointing or tracing to debug a virtual-
memory system in which the memory area where the
Breakpoint Trap instruction is located might have been
swapped out onto disk. This task would be alf but impossi-
ble without hardware support such as that provided in the
NS32082 MMU (Figure 8).

MMU REGISTERS

8PRy

BPR,

BC=99

R TLIEE/8666-8
Figure 8: Breakpointing




6.4 Flow tracing provides a chronicle of the
actions and results of individuai steps in a
program during its execution.

it allows the program’s recent history to be examined at
specified instructions or breakpoints in order to determine
the cause of any undesired program behavior.

Series 32000 supports program flow tracing with four
dedicated registers in the MMU, and the Trace trap bit in
the CPU’s PSR. If flow tracing is activated (by means of a
bit in the MSR), two Program Flow registers (PF, and PF4)
will always hold the addresses of the last two instructions
which were executed out of sequence. The two 16-bit
Sequence Count registers (SCp and SC) will keep a
record of the number of sequential instructions executed
between each change in program flow.

The MMU thus performs the following steps every time a
branch, call, return, interrupt, or other non-sequential in-
struction is executed:

—Store PFg into PF4

—Store new program-counter value into PFg
—Store SCy into SC4

—Clear SCy

6.5 The user can also select an instruction, or
series of instructions, to trace by means of
the Trace trap, which is enabled by setting a
bit in the PSR.

When the Trace trap is enabled at the beginning of an in-
struction, a trace trap will occur at the end of that instruc-
tion, and user software may then be employed to investi-
gate the contents of the CPU registers. The trap will occur
after each instruction, so long as the bit is set.

In Series 32000, the Trace trap is implemented in such a
way that one and only one Trace trap will be taken for each
instruction. The Trace trap always has the lowest priority
of any exception. Any other trap, or any interrupt request
that occurs during a traced instruction, is allowed to com-

plete its entire service procedure before the Trace trap oc-
curs. Also, unlike other traps, where the address of the
first byte of the instruction during which the trap occurred
is pushed on the stack, the Trace trap insures that the re-
turn address to be pushed is that of the next instruction to

be traced (Figure 9).

CASE 1. A EXECUTED

IF.THEN ELSE.

ADDA OF € PRy 100
A INSTRUC-
ADDR OF D PFy TIONS
SE, 100 l 50 s¢y l_
CASE 2. B EXECUTED 150
INSTRUC- B
TIONS
ADDR QF C
ADDR OF 8
)
150 50
} 50
BPRy ¢ INSTRUCTONS
TUEEIB666-9
Figure 9: Flow tracing
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Benefits of Demand Paged Virtual Memory

Chapter 7
Conclusion.

The simplicity and efficiency of Demand Paged Virtual
Memory, as implemented in Series 32000, offers features
formerly available only in much larger systems—but in a
combination not available on any one system, nor any-
where near microprocessor prices (Figure 10).

VAX-11/780

1BM 4341
VAX-11/750
whk X: 54
SYSTEM @
-

cost 100K Ns32032 )

DOLLARS)
: Ns32016 CPY
10K -

.__‘f\ 1 Il 1

0.6 LX) 1
PERFORMANCE —»

TUEE/8666-10

Figure 10: Comparison, Series 32000 to
minis and mainframes
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32-Bit Advanced Microprocessor with Virtual Memory

General bescription

The NS32332 is a 32-bit, virtual memory microprocessor
with 4 GByte addressing and an enhanced Series 320009
microarchitecturs. it is fully object code compatible with oth-
er Series 32000 microprocessors, and it has the added fea-
tures of 32-bit addressing, higher instruction execution
throughput, cache support, and expanded bus handling ca-
pabilities. The new bus features include bus error and retry
support, dynamic bus sizing, burst mode memory accessing,
and enhanced slave processor communication protocol.
The higher clock frequency and added features of the
NS32332 enable it to deliver 2 to 3 times the performance
of the NS32032.

The NS32332 microprocessor is designed to work with both
the 16- and 32-bit slave processors of the Series 32000
family.

Feaiures
m 32-bit architecture and implementation
B 4 Gbyte uniform addressing space
m Software compatible with the Series 32000 Family
m Powerful instruction set
— General 2-address capability
— Very high degree of symmetry
— Address modes optimized for high level languages
m Supports both 16- and 32-bit Slave Processor Protocol
— Memory management support via NS32082 or
NS32C382
— Floating point support via NS32081 or NS32310
® Extensive bus feature
— Burst mode memory accessing
— Cache memory support
— Dynamic bus configuration (8-, 16-, 32-bits)
— Fast bus protocol
= High speed XMOS™ technology
W 84 Pin grid array package

Block Diagram
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FIGURE 1

*Shaded areas indicate enhancements from the NS32032.
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1.0 Product Introduction

The Series 32000 Microprocessor family is a new genera-
tion of devices using National’s XMOS and CMOS technolo-
gies. By combining state-of-the-art MOS technology with a
very advanced architectural design philosophy, this family
brings mainframe computer processing power to VLSI proc-
essors.

The Series 32000 family supports a variety of system con-
figurations, extending from a minimum low-cost system to a
powerful 4 gigabyte system. The architecture provides com-
plete upward compatibility from one family member to an-
other. The family consists of a selection of CPUs supported
by a set of peripherals and slave processors that provide
sophisticated -interrupt and memory management facilities
as well as high-speed floating-point operations. The archi-
tectural features of the Series 32000 family are described
briefly below:

Powerful Addressing Modes. Nine addressing modes
available to all instructions are included to access data
structures efficiently.

Data Types. The architecture provides for numerous data
types, such as byte, word, doubleword, and BCD, which may
be arranged into a wide variety of data structures.

Symmetric Instruction Set. While avoiding special case
instructions that compilers can’t use, the Series 32000 fami-
ly incorporates powerful instructions for control operations,
such as array indexing and external procedure calls, which
save considerable space and time for compiled code.

Memory-to-Memory Operations. The Series 32000 CPUs
represent two-operand machines with each operand ad-
dressable by all addressing modes. This powerful memory-
to-memory architecture permits memory locations to be
treated as registers for all useful operations. This is impor-
tant for temporary operands as well as for context switch-
ing.
Memory Management. Either the NS32382 or the
NS32082 Memory Management Unit may be added to the
system to provide advanced operating system support func-
tions, including dynamic address translation, virtual memory
management, and memory protection.

Large, Uniform Addressing. The NS32332 has 32-bit ad-
dress pointers that can address up to 4 gigabytes without
requiring any segmentation; this addressing scheme pro-
vides flexible memory management without added-on ex-
pense.

Modular Software Support. Any software package for the
Series 32000 family can be developed independent of all
other packages, without regard to individual addressing. In
addition, ROM code is totally relocatable and easy to ac-
cess, which allows a significant reduction in hardware and
software cost.

Software Processor Concept. The Series 32000 architec-
ture allows future expansions of the instruction set that can
be executed by special slave processors, acting as exten-
sions to the CPU. This concept of slave processors is
unique to the Series 32000 family. It allows software com-
patibility even for future components because the slave
hardware is transparent to the software. With future ad-
vances in semiconductor technology, the slaves can be
physically integrated on the CPU chip itself.

To summarize, the architectural features cited above pro-
vide three primary performance advantages and character-
istics:

¢ High-Level Language Support

e Easy Future Growth Path

o Application Flexibility

1.1 NS32332 KEY FEATURES

The NS32332 is a 32-bit CPU in the Series 32000 family. It
is totally software compatible with the NS32032, NS32016,
and NS32008 CPUs but with an enhanced internal imple-
mentation.

The NS32332 design goals were to achieve two to three
times the throughput of the NS§32032 and to provide the full
32-bit addressing inherent in the architecture.

The basic approaches to higher throughput were: fewer
clock cycles per instruction, better bus use, and higher
clock frequency.

An examination of the block diagram of the NS32332 shows
it to be identical to that of the NS32032, except for en-
hanced bus interface control, a 20-byte (rather than 8-byte)
instruction prefetch queue, and special hardware in the ad-
dress unit. The new addressing hardware consists of a high-
speed ALU, a barrel shifter on one of its inputs, and an
address register. Of the throughput improvement not due to
increased clock frequency, about half is derived from the
new address unit hardware, about 30% from the bus en-
hancements, about 15% from the larger prefetch queue,
and the rest from microcode improvements.

Other important aspects of the enhanced bus interface cir-
cuitry of the NS32332 are a burst access mode, designed to
work with nibble and static column RAMSs, read and write
timing designed to support caches, and support for bus er-
ror processing.

An enhanced slave processor communication protocol is
designed to achieve improved performance with the
NS32382 MMU and NS32310 FPC, while still working di-
rectly with the existing NS32082 MMU and NS32081 FPU.

2.0 Architectural Description

2.1 PROGRAMMING MODEL

The Series 32000 architecture has 8 general purpose and 8
dedicated registers. All registers are 32 bits wide except the
STATUS and MODULE register. These two registers are
each 16 bits wide.

2.1.1 General Purpose Registers

There are eight registers for meeting high speed general
storage requirements, such as holding temporary variables
and addresses. The general purpose registers are free for
any use by the programmer. They are thirty-two bits in
length. If a general register is specified for an operand that
is eight or sixteen bits long, only the low part of the register
is used; the high part is not referenced or modified.

2.1.2 Dedicated Registers

The eight dedicated registers of the processor are assigned
specific functions.

PC: The PROGRAM COUNTER register is a pointer to the
first byte of the instruction currently being executed. The PC
is used to reference memory in the program section.

SP0, SP1: The SPO register points to the lowest address of
the last item stored on the INTERRUPT STACK. This stack
is normally used only by the operating system. It is used
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2.0 Architectural Description (continueq)
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FIGURE 2-1. The General and Dedicated Registers

primarily for storing temporary data, and holding return infor-
mation for operating system subroutines and interrupt and
trap service routines. The SP1 register points to the lowest
address of the last item stored on the USER STACK. This
stack is used by normal user programs to hold temporary
data and subroutine return information.

In this document, reference is made to the SP register. The
terms “SP register” or “SP" refer to either SPO or SP1,
depending on the setting of the S bit in the PSR register. If
the S bit in the PSR is 0 the SP refers to SPO. If the S bit in
the PSR is 1 then SP refers to SP1.

Stacks in the Series 32000 family grow downward in memo-
ry. A Push operation pre-decrements the Stack Pointer by
the operand length. A Pop operation post-increments the
Stack Pointer by the operand length.

FP: The FRAME POINTER register is used by a procedure
to access parameters and local variables on the stack. The
FP register is set up on procedure entry with the ENTER
instruction and restored on procedure termination with the
EXIT instruction.

The frame pointer holds the address in memory occupied by
the old contents of the frame pointer.

SB: The STATIC BASE register points to the global vari-
ables of a software module. This register is used to support
relocatable global variables for software modules. The SB
register holds the lowest address in memory occupied by
the global variables of a module.

INTBASE: The INTERRUPT BASE register holds the ad-
dress of the dispatch table for interrupts and traps (Sec.
3.8). The INTBASE register holds the lowest address in
memory occupied by the dispatch table.

MOD: The MODULE register holds the address of the mod-
ule descriptor of the currently executing software module.
The MOD register is sixteen bits long, therefore the module
table must be contained within the first 64K bytes of memo-
ry.

PSR: The PROCESSOR STATUS REGISTER (PSR) holds
the status codes for the microprocessor.

The PSR is sixteen bits long, divided into two eight-bit
halves. The low order eight bits are accessible to all pro-
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FIGURE 2-2. Processor Status Register

grams, but the high order eight bits are accessible only to
programs executing in Supervisor Mode.

C: The C bit indicates that a carry or borrow occurred
after an addition or subtraction instruction. It can be
used with the ADDC and SUBC instructions to perform
multiple-precision integer arithmetic calculations. it may
have a setting of 0 (no carry or borrow) or 1 (carry or
borrow).

T: The T bit causes program tracing. If this bitis a 1, a
TRC trap is executed after every instruction (Sec. 3.8.5).

L: The L bit is altered by comparison instructions. In a
comparison instruction the L bit is set to “1” if the sec-
ond operand is less than the first operand, when both
operands are interpreted as unsigned integers. Other-
wise, it is set to “0”. In Floating Point comparisons, this
bit is always cleared.

F: The F bit is a general condition flag, which is altered
by many instructions (e.g., integer arithmetic instructions
use it to indicate overflow).

Z: The Z bit is altered by comparison instructions. In a
comparison instruction the Z bit is set to “1” if the sec-
ond operand is equal to the first operand; otherwise it is
set to “0”.

N: The N bit is altered by comparison instructions. In a
comparison instruction the N bit is set to “1” if the sec-
ond operand is less than the first operand, when both
operands are interpreted as signed integers. Otherwise,
it is set to “0”.

U: If the U bit is “1” no privileged instructions may be
executed. If the U bit is 0" then all instructions may be
executed. When U = 0 the processor is said to be in
Supervisor Mode; when U = 1 the processor is said to
be in User Mode. A User Mode program is restricted
from executing certain instructions and accessing cer-
tain registers which could interfere with the operating
system. For example, a User Mode program is prevent-
ed from changing the setting of the flag used to indicate
its own privilege mode. A Supervisor Mode program is
assumed to be a trusted part of the operating system,
hence it has no such restrictions.

S: The S bit specifies whether the SPO register or SP1
register is used as the stack pointer. The bit is automati-
cally cleared on interrupts and traps. It may have a set-
ting of 0 (use the SPO register) or 1 (use the SP1 regis-
ter).

2-8




2.0 Architectual Description (continued)

P: The P bit prevents a TRC trap from occurring more
than once for an instruction (Sec. 3.8.5.). It may have a
setting of 0 (no trace pending) or 1 (frace pending).

I: If 1 = 1, then all interrupts will be accepted (Sec. 3.8.).
If | = 0, only the NMI interrupt is accepted. Trap en-
ables are not affected by this bit.

2.1.3 The Configuration Register (CFG)*

Within the Control section of the CPU is the CFG Register,
which declares the presence and type of external devices. It
is referenced by only one instruction, SETCFG, which is in-
tended to be executed only as part of system initialization
after reset. The format of the CFG Register is shown in
Figure 2-3.

*The NS32332 CPU has four new bits in the CFG Register, namely P, FC,
FM and FF.

7 0
[p]rc|mmlre| c{m|F ] 1]
FIGURE 2-3. CFG Register

The CFG | bit declares the presence of external interrupt
vectoring circuitry (specifically, the iInterrupt Control Unit). If
the CFG | bit is set, interrupts requested through the INT pin
are “Vectored.” If it is clear, these interrupts are “Non-Vec-
tored.” See Sec. 3.8.

The F, M and C bits declare the presence of the FPU, MMU
and Custom Slave Processors. If these bits are not set, the
corresponding instructions are trapped as being undefined.

The FF, FM, FC bits define the Slave Communication Proto-
col to be used in FPU, MMU and Custom Siave instructions
(Sec. 3.4.9). If these bits are not set, the corresponding in-
structions will use the 16-bit protocol (32032 compatible). If
these bits are set, the corresponding instructions will use
the new (fast) 32-bit protocol.

The P bit improves the efficiency of the Write Validation
Buffer in the CPU. It is set if the Virtual Memory has page
size(s) larger than or equal to 4 Kbytes. It is reset otherwise.
In Systems where the MMU is not present, the P bit is not
used.

2.1.4 Memory Organization

The main memory is a uniform linear address space. Memo-
ry locations are numbered sequentially starting at zero and
ending at 232 - 1. The number specifying a memory location
is called an address. The contents of each memory location
is a byte consisting of eight bits. Unless otherwise noted,
diagrams in this document show data stored in memory with
the lowest address on the right and the highest address on
the left. Also, when data is shown vertically, the lowest ad-
dress is at the top of a diagram and the highest address at
the bottom of the diagram. When bits are numbered in a
diagram, the least significant bit is given the number zero,
and is shown at the right of the diagram. Bits are numbered
in increasing significance and toward the left.

A

Byte at Address A

Two contiguous bytes are called a word. Except where not-
ed (Sec. 2.2.1), the least significant byte of a word is stored
at the lower address, and the most significant byte of the
word is stored at the next higher address. In memory, the
address of a word is the address of its least significant byte,
and a word may start at any address.

15 MSB’s 8|7 LSB’s 0]

A+1 A
Word at Address A

Two contiguous words are called a double word. Except
where noted (Sec. 2.2.1), the least significant word of a dou-
ble word is stored at the lowest address and the most signif-
icant word of the double word is stored at the address two
greater. In memory, the address of a double word is the
address of its least significant byte, and a double word may
start at any address.

16]15 8|7 LsBs 0

A+2 A+1 A

Double Word at Address A

Although memory is addressed as bytes, it is actually orga-
nized as double-words. Note that access time to a word or a
double-word depends upon its address, e.g. double-words
that are aligned to start at addresses that are multiples of
four will be accessed more quickly than those not so
aligned. This also applies to words that cross a double-word
boundary.

2.1.5 Dedicated Tables

Two of the dedicated registers (MOD and INTBASE) serve
as pointers to dedicated tables in memory.

The INTBASE register points to the Interrupt Dispatch and
Cascade tables.

The MOD register contains a pointer into the Module Table,
whose entries are called Module Descriptors. A Module De-
scriptor contains four pointers. The MOD register contains
the address of the Module Descriptor for the currently run-
ning module. It is automatically up-dated by the Call Exter-
nal Procedure instructions (CXP and CXPD).

31 MSB’s 24|23
A+3

15 0

- —
o I |
STATIC BASE -]
LINK TABLE ADDRESS
PROGRAM BASE
RESERVED
L -

TL/EE/8673-4
FIGURE 2-4. Module Descriptor Format

The format of a Module Descriptor is shown in Figure 2-4.
The Static Base entry contains the address of static data
assigned to the running module. It is loaded into the CPU
Static Base register by the CXP and GXPD instructions. The
Program Base entry contains the address of the first byte of
instruction code in the module. Since a module may have
multiple entry points, the Program Base pointer serves only
as a reference to find them.

2-9
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2.0 Architectual Description (continued)

The Link Table Address points to the Link Table for the

currently running module. The Link Table provides the infor-

mation needed for:

1) Sharing variables between modules. Such variables are
accessed through the Link Table via the External ad-
dressing mode.

2) Transferring control from one module to another. This is
done via the Call External Procedure (CXP) instruction.

The format of a Link Table is given in Figure 2-5. A Link
Table Entry for an external variable contains the 32-bit ad-
dress of that variable. An entry for an external procedure
contains two 16-bit fields: Module and Offset. The Module
field contains the new MOD register contents for the mod-
ule being entered. The Offset field is an unsigned number
giving the position of the entry point relative to the new
module’s Program Base pointer.

For further details of the functions of these tables, see the
Series 32000 Instruction Set Reference Manual.

ENTRY |31 T
] ABSOLUTE ADDRESS {VARIABLE)
1 ABSOLUTE ADDRESS (VARIABLE)
2 OFFSET MODULE (PROCEDURE)
- .

TL/EE/8673-5
FIGURE 2-5. A Sample Link Table

2.2 INSTRUCTION SET

2.2.1 General Instruction Format

Figure 2-6 shows the general format of a Series 32000 in-
struction. The Basic Instruction is one to three bytes long
and contains the Opcode and up to two 5-bit General Ad-
dressing Mode (“Gen”) fields. Following the Basic Instruc-
tion field is a set of optional extensions, which may appear
depending on the instruction and the addressing modes se-
lected.

Index Bytes appear when either or both Gen fields specify
Scaled Index. In this case, the Gen field specifies only the
Scale Factor (1, 2, 4 or 8), and the Index Byte specifies
which General Purpose Register to use as the index, and
which addressing mode calculation to perform before index-
ing. See Figure 2-7.

Following Index Bytes come any displacements (addressing
constants) or immediate values associated with the select-

GEN. ADDR. MODE REG. NO.

TL/EE/8673-7
FIGURE 2-7. iIndex Byte Format

ed address modes. Each Disp/Imm field may contain one or
two displacements, or one immediate value. The size of a
Displacement field is encoded with the top bits of that field,
as shown in Figure 2-8, with the remaining bits interpreted
as a signed (two’s complement) value. The size of an imme-
diate value is determined from the Opcode field. Both Dis-
placement and Immediate fields are stored most significant
byte first. Note that this is different from the memory repre-
sentation of data (Sec. 2.1.4).

Some instructions require additional, “implied” immediates
and/or displacements, apart from those associated with ad-
dressing modes. Any such extensions appear at the end of
the instruction, in the order that they appear within the list of
operands in the instruction definition (Sec. 2.2.3).

2.2.2 Addressing Modes

The CPU generally accesses an operand by calculating its
Effective Address based on information available when the
operand is to be accessed. The method to be used in per-
forming this calculation is specified by the programmer as
an “addressing mode.”

Addressing modes are designed to optimally support high-
level language accesses to variables. In nearly all cases, a
variable access requires only one addressing mode, within
the instruction that acts upon that variable. Extraneous data
movement is therefore minimized.

Addressing Modes fall into nine basic types:

Register: The operand is available in one of the eight Gen-
eral Purpose Registers. In certain Slave Processor instruc-
tions, an auxiliary set of eight registers may be referenced
instead.

Register Relative: A General Purpose Register contains an
address to which is added a displacement value from the
instruction, yielding the Effective Address of the operand in
memory.

Memory Space. Identical to Register Relative above, ex-
cept that the register used is one of the dedicated registers
PC, SP, SB or FP. These registers point to data areas gen-
erally needed by high-level languages.

OPTIONAL BASIC
EXTENSIONS INSTRUCTION
A
4 Y Y
H
DISPZIDISN olspzlmsm :
'
IMPLIED INDEX INDEX GEN | GEN
IMMEDIATE DISP DISP ADDR !  ADDR OPCODE
OPERAND(S) BYTE BYTE MCXDE i u%oe
MM IMM H
1

1

L._J'

L

TL/EE/8673-6




2.0 Architectual Description (continued)

BYTE DISPLACEMENT: RANGE —64 TO +63
7 0

1] SIGNED DISPLACEMENT

WORD DISPLACEMENT: RANGE —8192 TO +8191
7 0

I

DI

o

DOUBLE WORD DISPLACEMENT:
RANGE —(229—224) o +(229—1)*

#*

TL/EE/8673-8
FIGURE 2-8. Displacement Encodings
“Note: The pattern “11100000” for the most significant byte of the dis-
placement is reserved by National for future enhancements.
Thersfore, it should never be used by the user program. This
causes the lower limit of the displacement range to be
—(228—224) Instead of —229,
Memory Relative: A pointer variable is found within the
memory space pointed to by the SP, SB or FP register. A
displacement is added to that pointer to generate the Effec-
tive Address of the operand.
Immediate: The operand is encoded within the instruction.
This addressing mode is not aliowed if the operand is to be
written,
Absolute: The address of the operand is specified by a
displacement field in the instruction.
External: A pointer value is read from a specified entry of
the current Link Table. To this pointer value is added a dis-
placement, vielding the Effective Address of the operand.

Top of Stack: The currently-selected Stack Pointer (SPO or
SP1) specifies the location of the operand. The operand is
pushed or popped, depending on whether it is written or
read.

Scaled Index: Although encoded as an addressing mode.
Scaled Indexing is an option on any addressing mode ex-
cept Immediate or another Scaled Index. It has the effect of
calculating an Effective Address, then multiplying any Gen-
sral Purpose Registsr by 1, 2, 4 of 8 and adding it into the
total, yielding the final Effective Address of the operand.
Table 2-1 is a brief summary of the addressing modes. For a
complete description of their actions, see the Instruction Set
Reference Manual.

2.2.3 Instruction Set Summary
Table 2-2 presents a brief description of the Series 32000
instruction set. The Format column refers to the Instruction
Format tables (Appendix A). The Instruction column gives
the instruction as coded in assembly language, and the De-
scription column provides a short description of the function
provided by that instruction. Further details of the exact op-
erations performed by each instruction may be found in the
Instruction Set Reference Manual.
Notations:
i = Integer length suffix: B = Byte

W = Word

D = Double Word
f = Floating Point length suffix: F = Standard Floating

L = Long Floating

gen = General operand. Any addressing mode can be
specified.
short = A 4-bit value encoded within the Basic Instruction
(see Appendix A for encodings).
imm = Implied immediate operand. An 8-bit value append-
ed after any addressing extensions.
disp = Displacement (addressing constant): 8, 16 or 32
bits. All three lengths legal.
reg = Any General Purpose Register: R0O-R7.
areg = Any Dedicated/Address Register: SP, SB, FP,
MOD, INTBASE, PSR, US (bottom 8 PSR bits).
mreg = Any Memory Management Status/Control Regis-
ter.
creg = A Custom Slave Processor Register (Implementa-
tion Dependent).
cond = Any condition code, encoded as a 4-bit field within
the Basic Instruction (see Appendix A for encodings).

G1-CEETESN/CL-ZEETESN/OL-2EECESN
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ENCODING
Register
00000
00001
00010
00011
00100
00101
00110
00111
Register Relative
01000
01001
01010
01011
01100
01101
01110
01111
Memory Relative
10000
10001
10010

Reserved
10011
Immediate
10100

Absolute
10101
External
10110

Top of Stack
10111

Memory Space
11000

11001

11010

11011

Scaled Index
11100

11101

11110

11111

MODE

Register 0
Register 1
Register 2
Register 3
Register 4
Register 5
Register 6
Register 7

Register 0 relative
Register 1 relative
Register 2 relative
Register 3 relative
Register 4 relative
Register 5 relative
Register 6 relative
Register 7 relative

Frame memory relative
Stack memory relative
Static memory relative

2.0 Architectual Description (Continued)

TABLE 2-1
NS32332 Addressing Modes

ASSEMBLER SYNTAX

RO or FO
R1orF1
R2orF2
R3or F3
R4 orF4
R5 or F5
R6 or F6
R7 or F7

disp(R0)
disp(R1)
disp(R2)
disp(R3)
disp(R4)
disp(R5)
disp(R6)
disp(R7)

disp2(disp1(FP))
disp2(disp1(SP))
disp2(disp1(SB))

(Reserved for Future Use)

Immediate

Absolute

External

Top of stack

Frame memory
Stack memory
Static memory
Program memory

Index, bytes

Index, words

Index, double words
Index, quad words

value

@disp

EXT (disp1) + disp2

TOS

disp(FP)
disp(SP)
disp(SB)
*+disp

mode[Rn:B]
mode[Rn:W]
mode[Rn:D]
mode[Rn:Q]

EFFECTIVE ADDRESS

None: Operand is in the specified
register

Disp + Register.

Disp2 + Pointer; Pointer found at
address Disp1 + Register. "'SP”

is either SP0 or SP1, as selected

in PSR.

None: Operand is input from
instruction queue.

Disp.

Disp2 + Pointer; Pointer is found
at Link Table Entry number Disp1.

Top of current stack, using either
User or Interrupt Stack Pointer,
as selected in PSR. Automatic
Push/Pop included.

Disp + Register; “SP" is either
SPO or SP1, as selected in PSR.

EA (mode) + Rn.

EA (mode) + 2X Rn.

EA (mode) + 4X Rn.

EA (mode) + 8 X Rn.

‘Mode’ and ‘n’ are contained
within the Index Byte.

EA (mode) denotes the effective
address generated using mode.
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2.0 Architectural Description (continued)

TABLE 2-2
Series 32000 Instruction Set Summary
MOVES
Format Operation Operands Description
4 MOVi gen,gen Move a value.
2 MOVQi short,gen Extend and move a signed 4-bit constant.
7 MOVMI gen,gen,disn Move Muttiple: disp bytes (1 to 16).
7 MOVZBW gen,gen Move with zero extension.
7 MOVZiD gen,gen Move with zero extension.
7 MOVXBW gen,gen Move with sign extension.
7 MOVXiD gen,gen Move with sign extension.
4 ADDR gen,gen Move Effective Address.
INTEGER ARITHMETIC
Format Operation Operands Description
4 ADDI gen,gen Add.
2 ADDQi short,gen Add signed 4-bit constant.
4 ADDCi gen,gen Add with carry.
4 SuBi gen,gen Subtract.
4 SUBCi gen,gen Subtract with carry (borrow).
6 NEGi gen,gen Negate (2's complement).
6 ABSI gen,gen Take absolute value.
7 MULi gen,gen Multiply
7 QUOI gen,gen Divide, rounding toward zero.
7 REMiI gen,gen Remainder from QUO.
o7 Divi gen,gen Divide, rounding down.
7 MODi gen,gen Remainder from DIV (Modulus).
7 MEIi gen,gen Multiply to Extended Integer.
7 DEli gen,gen Divide Extended Integer.
PACKED DECIMAL {(BCD) ARITHMETIC
Format Operation Operands Description
6 ADDPi gen,gen Add Packed.
6 SUBPI gen,gen Subtract Packed.
INTEGER COMPARISON
Format Operation Operands Description
4 CMPi gen,gen Compare.
2 CMPQi short,gen Compare to signed 4-bit constant.
7 CMPMi gen,gen,disp Compare Multiple: disp bytes (1 to 16).
LOGICAL AND BOOLEAN
Format Operation Operands Description
4 ANDiI gen,gen Logical AND.
4 ORi gen,gen Logical OR.
4 BICi gen,gen Clear selected bits.
4 XORi gen,gen Logical Exclusive OR.
6 COMi gen,gen Complement all bits.
6 NOTi gen,gen Boolean complement: LSB only.
2 Scondi gen Save condition code (cond) as a Boolean variable of size i.

GL-CEETESN/TI-CEETESN/OL-CEETESN
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2.0 Architectural Description (continued)

SHIFTS
Format Operation Operands Description
6 LSHi gen,gen Logical Shift, left or right.
6 ASHi gen,gen Arithmetic Shift, left or right.
6 ROTi gen,gen Rotate, left or right.
BITS
Format Operation Operands Description
4 TBITi gen,gen Test bit.
6 SBITi gen,gen Test and set bit.
6 SBITIi gen,gen Test and set bit, interlocked
6 CBITi gen,gen Test and clear bit.
6 CBITli gen,gen Test and clear bit, interlocked.
6 IBITi gen,gen Test and invert bit.
8 FFSi gen,gen Find first set bit
BIT FIELDS

Bit fields are values in memory that are not aligned to byte boundaries. Examples are PACKED arrays and records
used in Pascal. “Extract” instructions read and align a bit field. “Insert” instructions write a bit field from an aligned
source.

Format Operation Operands Description
8 EXTi reg,gen,gen,disp Extract bit field (array oriented).
8 INSi reg,gen,gen,disp Insert bit field (array oriented).
7 EXTSi gen,gen,imm,imm Extract bit field (short form).
7 INSSi gen,gen,imm,imm Insert bit field (short form).
8 CVTP reg,gen,gen Convert to Bit Field Pointer.
ARRAYS
Format Operation Operands Description
8 CHECKIi reg,gen,gen Index bounds check.
8 INDEXi reg,gen,gen Recursive indexing step for multiple-dimensional arrays.
STRINGS
String instructions assign specific functions to the Gen- Options on all string instructions are:
eral Purpose Registers: B (Backward):  Decrement string pointers after each step
R4 - Comparison Value rather than incrementing.
R3 - Translation Table Pointer U (Untit match): End instruction if String 1 entry matches
R2 - String 2 Pointer Rd.
R1 - String 1 Pointer W (While match): End instruction if String 1 entry does not
RO - Limit Count . maich Rd.
All string instructions end when RO decrements to zero.
Format Operation Operands Descriptions
5 MOVSi options Move String 1 to String 2.
MOVST options Move string, translating bytes.
5 CMPSi options Compare String 1 to String 2.
CMPST options Compare translating, String 1 bytes.
5 SKPSi options Skip over String 1 entries
SKPST options Skip, translating bytes for Until/While.
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2.0 Architectural Description (continued)

JUMPS AND LINKAGE
Format Operation Operands
3 JUMP gen
0 BR disp
0 Bcond disp
3 CASEi gen
2 ACBi short,gen,disp
3 JSR gen
1 BSR disp
1 CXP disp
3 CXPD gen
1 svC
1 FLAG
1 BPT
1 ENTER [reg list],disp
1 EXIT [reg list]
1 RET disp
1 RXP disp
1 RETT disp
1 RETI
CPU REGISTER MANIPULATION
Format Operation Operands
1 SAVE [reg list]
1 RESTORE {reglist]
2 LPRi areg,gen
2 SPRi areg,gen
3 ADJSPi gen
3 BISPSRi gen
3 BICPSRi gen
5 SETCFG [option list]
FLOATING POINT
Format Operation Operands
1 MOvf gen,gen
9 MOVLF gen,gen
9 MOVFL gen,gen
9 MOVif gen,gen
9 ROUNDfi gen,gen
9 TRUNCfi gen,gen
9 FLOOR(i gen,gen
1 ADDf gen,gen
11 SuUBf gen,gen
11 MULf gen,gen
11 Divf gen,gen
11 CMPf gen,gen
11 NEGf gen,gen
11 ABSft gen,gen
12 REMf gen,gen
12 SQRTf gen,gen
12 POLYf gen,gen
12 DOTf gen,gen
12 SCALBf gen,gen
12 LOGBf gen,gen
12 ATAN2f gen,gen
12 SICOsf gen,gen
9 LFSR gen
9 SFSR gen

Description

Jump.

Branch (PC Relative).

Conditional branch.

Multiway branch.

Add 4-bit constant and branch if non-zero.
Jump to subroutine.

Branch to subroutine.

Call external procedure.

Call external procedure using descriptor.
Supervisor Call.

Flag Trap.

Breakpoint Trap.

Save registers and allocate stack frame (Enter Procedure).

Restore registers and reclaim stack frame (Exit Procedure).

Return from subroutine.

Return from external procedure call.
Return from trap. (Privileged)
Return from interrupt. (Privileged)

Description

Save General Purpose Registers.

Restore General Purpose Registers.

Load Dedicated Register. (Privileged if PSR or INTBASE)
Store Dedicated Register. (Privileged if PSR or INTBASE)
Adjust Stack Pointer.

Set selected bits in PSR. (Privileged if not Byte fength)
Clear selected bits in PSR. (Privileged if not Byte length)
Set Configuration Register. (Privileged)

Description

Move a Floating Point value.

Move and shorten a Long value to Standard.
Move and lengthen a Standard value to Long.
Convert any integer to Standard or Long Floating.
Convert to integer by rounding.

Convert to integer by truncating, toward zero.
Convert to largest integer less than or equal to value.
Add.

Subtract.

Multiply.

Divide.

Compare.

Negate.

Take absolute value.

Remainder.

Square Root.

Polynomial Step.

Dot Product.

Binary Scale.

Binary Log.

Arctangent.

Sine and Cosine.

Load FSR.

Store FSR.

2-15
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2.0 Architectural Description (continued)

MEMORY MANAGEMENT
Format Operation
14 LMR
14 SMR
14 RDVAL
14 WRVAL
8 MOVSUi
8 MOVUSI
MISCELLANEOUS
Format Operation
1 NOP
1 WAIT
1 DIA
CUSTOM SLAVE
Format Operation
155 CCALOc
16.5 CCAL1c
15.5 CCAL2c
15.5 CCAL3c
15.7 CCAL4c
15.7 CCALSc
15.7 CCAL6c
15.7 CCAL7¢c
15.7 CCALS8c
15.7 CCAL9c
15.5 CMOVOc
15.5 CMOV1ic
15.5 CMOV2¢c
15.5 CMOV3c
15.7 CMOV4c
15.7 CMOV5c
15.7 CMOV6c
15.7 CMOV7¢
155 CCMPc
15.5 CCMP1c
15.1 CCVoci
15.1 CCVici
15.1 CCVaci
151 CCV3ic
151 Cccv4aDQ
15.1 CCV5QD
15.1 LCSR
15.1 SCSR
15.0 CATSTO
15.0 CATST1
15.0 LCR
15.0 SCR

Operands

mreg,gen
mreg,gen
gen

gen
gen,gen

gen,gen

Operands

Operands

gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen

gen
gen

gen

gen
creg,gen
creg,gen

Description

Load Memory Management Register. (Privileged)
Store Memory Management Register. (Privileged)
Validate address for reading. (Privileged)
Validate address for writing. (Privileged)

Move a value from Supervisor

Space to User Space. (Privileged)

Move a value from User Space

to Supervisor Space. (Privileged)

Description

No Operation.

Wait for interrupt.

Diagnose. Single-byte “‘Branch to Self” for hardware
breakpointing. Not for use in programming.

Description
Custom Calculate.

Custom Move.

Custom Compare.

Custom Convert.

Load Custom Status Register.
Store Custom Status Register.

Custom Address/Test. (Privileged)
(Privileged)

Load Custom Register. (Privileged)
Store Custom Register. (Privileged)




3.0 Functional Description
The following is a functional description of the NS32332
CPU.

3.1 POWER AND GROUNDING

The NS32332 requires a single 5-volt power supply, applied
on 7 pins. The Logic Vottage pins (Vgcl1 and Vggl2) sup-
ply the power to the on-chip logic. The Buffer Voltage pins
(Vces1 to Veoers) supply the power to the output drivers of
the chip. The Logic Voltage pins and the Buffer Voltage pins
should be connected together by a power (Vog) plane on
the printed circuit board.

The NS32332 grounding connections are made on 8 pins.
The Logic Ground pins (GNDL1 and GNDL2) are the ground
pins for the on-chip logic. The Buffer Ground pins (GNDB1
to GNDB6) are the ground pins for the output drivers of the
chip. The Logic Ground pins and the Buffer Ground pins
should be connected together by a ground plane on the
printed circuit board.

In addition to Ve and Ground, the NS32332 CPU uses an
internally-generated negative voltage. It is necessary to filter
this voltage externally by attaching a pair of capacitors (Fig-
ure 3.7) from the BBG pin to Ground.

+5V
2
Veew, Veorz
OTHER Ve
Veos1-Voess | CONNECTIONS
(Vcc PLANE)
N$32332
ey
j— 3 2
—T
GNDL1, GNDL2
_l OTHER GROUND
GNDB1-GNDBG =& » CONNECTIONS
(GND PLANE)
TL/EE/8673-11
FIGURE 3-1. Recommended Supply Connections

3.2 CLOCKING

The NS32332 inputs clocking signals from the Timing Con-
trol Unit (TCU), which presents two non-overlapping phases
of a single clock frequency. These phases are called PHI1
(pin 22) and PHI2 (pin 23). Their relationship to each other is
shown in Figure 3-2.

Each rising edge of PHI1 defines a transition in the timing
state (“T-State”) of the CPU. One T-State represents the
execution of one microinstruction within the CPU, and/or
one step of an external bus transfer. See Sec. 4 for com-
plete specifications of PHI1 and PHI2.

==

f~=—ONE T-STATE -»

{1

PHI2

NON-OVERLAPPING

TL/EE/8673-9
FIGURE 3-2. Clock Timing Relationships

As the TCU presents signals with very fast transitions, it is
recommended that the conductors carrying PHI1 and PHI2
be kept as short as possible, and that they not be connect-
ed anywhere except from the TCU to the CPU and, if pres-
ent, the MMU. A TTL Clock signal (CTTL) is provided by the
TCU for all other clocking.

3.3 RESETTING

The RST/ABT pin serves both as a Reset for on-chip logic
and as the Abort input for Memory-Managed systems. For
its use as the Abort Command, see Sec. 3.5.2.

The DT/SDONE pin is sampled on the rising edge of the
reset signal to select the data timing during write cycles. If
DT/SDONE is sampled high, ADO-AD31 are floated during
state T2 and the data is output during state T3. This mode
must be selected if an MMU is used (Section 3.5). If
DT/SDONE is sampled low, the data is output during state
T2. See Figure 3-7.

The CPU may be reset at any time by pulling the RST/ABT
pin low for at least 64 clock cycles. Upon detecting a reset,
the CPU terminates instruction processing, resets its inter-
nal logic, and clears the Program Counter (PC) and Proces-
sor Status Register (PSR) to all zeroes.

On application of power, RST/ABT must be held low for at
least 50 psec after Vg is stable. This is to ensure that all

{C

[ ]

LY

RST/ABT

264 CLOCK

L

[ LITL

CYCLES

g

250 usec -
|
J

TL/EE/8673-10

FIGURE 3-3. Power-on Reset Requirements
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3.0 Functional Description (Continued)

on-chip voltages are completely stable before operation.
Whenever a Reset is applied, it must also remain active for
not less than 64 clock cycles. The rising edge must occur
while PHI1 is high. See Figures 3-3 and 3-4.

The Timing Control Unit (TCU) provides circuitry to meet the
Reset requirements of the NS32332 CPU. Figure 3-5a
shows the recommended connections for a non-Memory-
Managed system. Figure 3-5b shows the connections for a
Memory-Managed system.

i‘— Z 64 CLOCK ———
CYCLES
F(i

LU
TL/EE/8673~12
FIGURE 3-4. General Reset Timing

vee
o] TCU CPU
| E s A s
| ! <
R 1 === \ . —
| AES >_—D~ﬁ: : : ASTI  ASTO RST/ABT
I [ l | L
1 i 1 + ]
e e L L L DT 4 i :
EXTERNAL RESET | !
(OPTIONAL) b= ; = 250 usec
{ I |
RESET SWITCH SYSTEM RESET
(OPTIONAL)
TL/EE/8673-13
FIGURE 3-5a. Recommended Reset Connections, Non-Memory-Managed System
vVee
(o] TCU MMU CPU
| ittt - s
| i <
1 [ ot | \ - _ -
| RESET >—%: T : RSTI  ASTO ASTI AST/ABT RST/ABT
i P L
H i i
e e = 4 1 i I
EXTERNAL RESET ! j_ !
(OPTIONAL) I = = =50 usec
L—_J
RESET SWITCH
OPTIONAL,
TL/EE/8673-14

FIGURE 3-5b. Recommended Reset Connections, Memory-Managed System

3.4 BUS CYCLES

The NS32332 CPU will perform Bus cycles for one of the

following reasons:

1) To write or read data to or from memory or peripheral
interface device. Peripheral input and output are memory
mapped in the Series 32000 family.

2) To fetch instructions into the 20-byte instruction queue.
This happens whenever the bus would otherwise be idle
and the queue is not already full.

3) To acknowledge an interrupt and allow external circuitry
to provide a vector number, or to acknowledge comple-
tion of an interrupt service routine.

4) To transfer information to or from a Slave Processor.

In terms of bus timing, cases 1 through 3 above are identi-
cal. For timing specifications, see Sec. 4. The only external

difference between them is the 4-bit code placed on the Bus
Status pins (STO-ST3). Slave Processor cycles differ in that
separate control signals are applied (Sec. 3.4.6).

For case 1 (only Read) and case 2, 3, the NS32332 sup-
ports Burst cycles which are suitable for memories that can
handle “nibble mode” accesses. (Sec. 3.4.2).

The sequence of events in a non-Slave, non-Burst Bus cy-
cle is shown in Figure 3-6 for a Read cycle, and Figure 3-7
for a Write cycle. The cases shown assume that the select-
ed memory or interface device is capable of communicating
with the CPU at full speed. If it is not, then cycle extension
may be requested through the RDY line (Sec. 3.4.1).

A full speed Bus cycle is performed in four cycles of the
PHI1 clock, labeled T1 through T4. Clock cycles not associ-
ated with a Bus cycle are designated Ti (for idle).




3.0 Functional Description (continued)

PHI 1
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FIGURE 3-6. Read Cycle Timing
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3.0 Functional Description (Continued)
NS32332 CPU BUS SIGNALS
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FIGURE 3-7. Write Cycle Timing
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3.0 Functional Description (continued)

During T4 or Ti which preceed T1 of the current Bus cycle,
the CPU applies a Status Code on pins ST0-ST3. It also
provides a low-going pulse on the STS pin to indicate that
the status code is valid.

The ADS signal has the dual purpose of informing the exter-
nal circuitry that a Bus cycle is starting and of providing
control to an external latch for demultiplexing address bits
0-31 from ADO-AD31 pins. (See Figure 3-8.)
During this time, the control signal DDIN, which indicates
the direction of the transfer, and BEO-BE3 which indicate
which of the four bus bytes to be referenced, become valid.
Note that during Instruction Fetch cycles BEO-BE3 are all
active, but in operand Read or Write cycles they indicate the
byte(s) to be referenced.
Note: if a burst cycle occurs during an operand read, all the memory banks
should be enabled, during the burst cycle, regardless of BEn. The
CPU BER lines, in this case, are valid in the middie of T3 of the burst
cycle—thus, there may not be enough time to selectively enable the
different memory banks, unless a WAIT state is added. See Figure
46
During T2 the CPU floats ADO-AD31 lines unless
DT/SDONE is sampled low on the rising edge of reset and
the bus cycle is a write cycle. T2 is a time window to be
used for virtual to physical address translation by the Memo-
ry Management Unit, if virtual memory is used in the system.
The T3 state provides for access time requirements and it
occurs at least once in a bus cycle. In the middle of T3 on
the falling edge of PHI1, the RDY line is sampled to deter-
mine whether the bus cycle will be extended (Sec. 3.4.1).

if the CPU is performing a Read cycle, the Data Bus (ADO-
AD31) is sampled on the falling edge of PHI2 of the last T3
state. See Sec. 4. Data must, however, be held at least until
the beginning of T4. The T4 state finishes the Bus cycle.
Data from the CPU during Write cycles remains valid
throughout T4. Note that the Bus Status lines (STO-ST3)
change at the beginning of T4, anticipating the following bus
cycle (if any).

3.4.1 Cycle Extension

To allow sufficient strobe widths and access times for any
speed of memory or peripheral device, the NS32332 pro-
vides for extension of a bus cycle. Any type of bus cycle
except a Slave Processor cycle can be extended.

In Figures 3-7 and 3-8, note that during T3 all bus control
signals from the CPU and TCU are flat. Therefore, a bus
cycle can be cleanly extended by causing the T3 state to be
repeated. This is the purpose of the RDY (Ready) pin.

In the middle of T3 on the falling edge of PHI1, the RDY line
is sampled by the CPU. If RDY is high, the next T-state will
be T4, ending the bus cycle. If RDY is low, then another T3
state will be inserted and the RDY line will again be sampled
on the falling edge of PHI1. Each additional T3 state after
the first is referred to as a “WAIT STATE". See Figure 3-9.
Figure 3-10 illustrates a typical Read cycle, with two WAIT
states requested through the RDY pin.

DDIN
D0-D31
ADO-AD3 BUFFER
NS32332
_ s BE0-BE3
BEO-BE3
ADS

A

-
A2-A31

LATCH

TL/EE/8673-17

FIGURE 3-8. Bus Connections
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3.0 Functional Description (continued)
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FIGURE 3-9. RDY Pin Timing
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3.0 Functional Description (continued)
3.4.2 Burst Cycles

The NS32332 is capable of performing Burst cycles in order
to increase the bus throughput. Burst is available in instruc-
tion Fetch cycles and operand Read cycles only. Burst is
not supported in operand Write cycles or Slave cycles.
The sequence of events for Burst cycles is shown in Figure
3-11. The cases shown assume that the selected memory is
capable of communicating with the CPU at full speed. If it is

| T2/ Tmmy 3 T4

not, then cycle extension may be requested through the
RDY line (Sec. 3.4.1).

A Burst cycle is composed of two parts. The first part is a
regular cycle (i.e. T1 through T4), in which the CPU outputs
the new status and asserts all the other relevant control
signals discussed in Sec. 3.4. In addition, the Burst Out Sig-
nal (BOUT) is activated by the CPU indicating that the CPU
can perform Burst cycles. If the selected memory allows

B ow ra|r4|rs]u[

Sigigipiplpigigisigligiizi;

= T\/

UL L
\/

—

el XD

OO0

2 3

TL/EE/8673-20

(a) Normal Termination of Burst
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(b) External Termination of Burst
FIGURE 3-11. Burst Cycles (For Read Only)
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3.0 Functional Description (Continued)
Burst cycles, it will notify the CPU by activating the burst in
signal (BIN). BIN is sampled by the CPU in the middle of T3
on the falling edge of PHI1. If the memory does not allow
burst (BIN high), the cycle will terminate through T4 and
BOUT will go inactive immediately. If the memory allows
burst (BIN low), and the CPU has not deasserted BOUT, the
second part of the Burst cycle will be performed (see Figure
3-11) and BOUT will remain active until termination of the
Burst.
The second part consists of up to 3 nibbles. In each nibble,
a data item is read by the GPU. The duration of each nibble
is 2 clock cycles labeled T3 and T4.
The Burst chain will be terminated in the following cases:
1. The CPU has reached. a 16 byte boundary i.e. the byte
address of the current nibble is x..x1111 (binary).

Note: In 16-bit bus systems {see Sec. 8.4.7) the Burst chain will be terminat-
ed by the CPU on an 8-byte boundary i.e. address x..x111 (binary) and
in 8-bit bus system on a 4-byte boundary i.e. address x..x11 (binary).

2. BIN, sampled in the current nibble’s last T3, is not active
any more. (See Figure 3.11b).

3. Bus Error or Bus Retry occurs (see Sec. 3.4.8).

Case 2 enables the Burst termination externally.

Any nibble’s T3 may be extended with WAIT states using

the RDY line as described in Sec. 3.4.2.

The control signals BOUT, STO-ST3, DDIN and BEO-BE3

remain stable during the Burst chain.

BOUT is initially set by the CPU according to the known bus

width. Its state may change in a subsequent T3 as a result

of a change in the bus width. Figure 3-12 shows the result-

ing BOUT timing.

Note: If the selected memory is capable of handling burst transfers, it

should activate BIN regardless of the state of BOUT.

The reason is that BOUT may be activated by the CPU after the BIN
sampling time. The BOUT signal indicates when the CPU is going to
burst, and should not be interpreted as a ‘Burst Request’ signal.

-~ T | 2 | 3 | 13 | 3 | 4 |
wl ML LM
e [1_ 1T 1 1 1
WS-—

N

(1) BOUT [.- \

(Z)W[

Note 1: CPU deasserts BOUT.
Note 2: CPU asserts BOUT.

TL/EE/8673-88

FIGURE 3-12. BOUT Timing Resulting from a Bus Width Change
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3.0 Functional Description (Continued)
3.4.3 Bus Status
The NS32332 CPU presents four bits of Bus Status informa-
tion on pins STO-ST3. The various combinations on these
pins indicate why the CPU is performing a bus cycle, or, if it
is idle on the bus, then why is it idle.
Referring to Figures 3-6 and 3-7, note that Bus Status leads
the corresponding Bus Cycle, going valid one clock cycle
before T1, and changing to the next state at T4. This allows
the system designer to fully decode the Bus Status and, if
desired, latch the decoded signals before ADS initiates the
Bus Cycle.
The Bus Status pins are interpreted as a four-bit value, with
STO the least significant bit. Their values decode as follows:
0000 — The bus is idle because the CPU does not yet
need to perform a bus access.

0001 — The bus is idle because the CPU is executing the
WAIT instruction.

0010 - (Reserved for future use.)

0011 — The bus is idle because the CPU is waiting for a
Slave Processor to complete an instruction.

0100 - Interrupt Acknowledge, Master.
The CPU is performing a Read cycle. To ac-
knowledge receipt of a Non-Maskable Interrupt
(on NMI) it will read from address FFFFFF004g,
but will ignore any data provided.
To a_(ir_wowledge receipt of a Maskable Interrupt
{on TNT) it will read from address FFFFFF001e,
expecting a vector number to be provided from
the Master Interrupt Gontrol Unit. If the vectoring

. mode selected by the last SETCFG instruction

was Non-Vectored, then the CPU will ignore the
value it has read and will use a default vector
instead. See Sec. 3.4.5.

0101 - Interrupt Acknowledge, Cascaded.
The CPU is reading a vector number from a Cas-
caded Interrupt Control Unit. The address provid-
ed is the address of ICU’s Hardware Vector regis-
ter. See Sec. 3.4.6.

0110 - End of Interrupt, Master.
The CPU is performing a Read cycle to indicate
that it is executing a Return from interrupt (RETI)
instruction. See Sec. 3.4.6.

0111 - End of Interrupt, Cascaded.
The CPU is reading from a Cascaded Interrupt
Control Unit to indicate that it is returning
(through RETI) from an interrupt service routine
requested by that unit. See Sec. 3.4.6.

1000 -

1001 -

1010 -

1011 -

1100 -

1101 -

1110 -

1111 -

Sequeniiali Instruction Fetch.

The CPU is reading the next sequential word
from the instruction stream into the Instruction
Queue. it will do so whenever the bus would oth-
erwise be idle and the queue is not already full.
Non-Sequential Instruction Fetch.

The CPU is performing the first fetch of instruc-
tion code after the Instruction Queue is purged.
This will occur as a result of any jump or branch,
or any interrupt or trap, or execution of certain
instructions.

Data Transfer.

The CPU is reading or writing an operand of an
instruction.

Read RMW Operand.

The CPU is reading an operand which will subse-
quently be modified and rewritten. If memory pro-
tection circuitry would not allow the following
Write cycle, it must abort this cycle.

Read for Effective Address Calculation.

The CPU is reading information from memory in
order to determine the Effective Address of an
operand. This will occur whenever an instruction
uses the Memory Relative or Externai addressing
mode.

Transfer Slave Processor Operand.

The CPU is either transferring an instruction op-
erand to or from a Slave Processor, or it is issu-
ing the Operation Word of a Slave Processor in-
struction. See Sec. 3.9.1.

Read Slave Processor Status.

The CPU is reading a Status Word from a Slave
Processor. This occurs after the Slave Processor
has signalled completion of an instruction. The
transferred word tells the CPU whether a trap
should be taken, and in some instructions it pre-
sents new values for the CPU Processor Status
Register bits N, Z, L or F. See Sec. 3.9.1.
Broadcast Slave ID.

The CPU is initiating the execution of a Slave
Processor instruction. The 1D Byte (first byte of
the instruction) is sent to all Slave Processors,
one of which will recognize it. From this point the
CPU is communicating with only one Slave Proc-
essor. See Sec. 3.9.1.
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3.0 Functional Description (continueq)
3.4.4 Data Access Sequences

The 32-bit address provided by the NS32332 is a byte ad-
dress; that is, it uniquely identifies one of up to 4 billion
eight-bit memory locations. An important feature of the
NS32332 is that the presence of a 32-bit data bus imposes
no restrictions on data alignment; any data item, regardless
of size, may be placed starting at any memory address. The
NS32332 provides special control signals. Byte Enable
(BEO-BE3) which facilitate individual byte accessing on a
32-bit bus.

Memory is organized as four eight-bit banks, each bank re-
ceiving the double-word address (A2-A31) in paraflel. One
bank, connected to Data Bus pins ADO-AD7 is enabled
when BED is low. The second bank, connected to data bus
pins AD8-AD15 is enabled when BET is low. The third and
fourth banks are enabled by BE2 and BES, respectively.
See Figure 3-13.

BE3 BE2 BE1 T
8BTS | eBITs | 8BITS | 8BITS

A2-A31

Y

TL/EE/B673-22
FIGURE 3-13. Memory Interface

Since operands do not need to be aligned with respect to
the double-word bus accessed performed by the CPU, a
given double-word access can contain one, two, three, or
four bytes of the operand being addressed, and these bytes
can begin at various positions, as determined by A1, A0.
Table 3-1 lists the 10 resulting access types.

TABLE 3-1
Bus Access Types
Type Bytes Accessed A1,A0 BE3 BE2 BE1 BEO
1 1 00 1 1 1 0
2 1 01 1 1 0 1
3 1 10 1 o] 1 1
4 1 ih! 0 1 1 1
5 2 00 1 1 0 0
6 2 01 1 0 0 1
7 2 10 0 0 1 1
8 3 00 1 0 0 0
9 3 01 0 0 0 1
10 4 00 0 0 0 0

Accesses of operands requiring more than one bus cycle
are performed sequentially, with no idle T-States separating
them. The number of bus cycles required to transfer an op-
erand depends on its size and its alignment. Table 3-2 lists
the bus cycles performed for each situation.

3.4.4.1 Bit Accesses

The Bit Instructions perform byte accesses to the byte con-
taining the designated bit. The Test and Set Bit instruction
(SBIT), for example, reads a byte, alters it, and rewrites it,
having changed the contents of one bit.

3.4.4.2 Bit Field Accesses

An access to a Bit Field in memory always generates a Dou-
ble-Word transfer at the address containing the least signifi-
cant bit of the field. The Double Word is read by an Extract
instruction; an Insert instruction reads a Double Word, modi-
fies it, and rewrites it.

3.4.4.3 Extending Multiply Accesses

The Extending Muitiply instruction (MEI) will return a result
which is twice the size in bytes of the operand it reads. If the
multiplicand is in memory, the most-significant half of the
result is written first (at the higher address), then the least-
significant half. This is done in order to support retry if this
instruction is aborted.

3.4.5 Instruction Fetches

Instructions for the N§32332 CPU are “prefetched”; that is,
they are input before being needed into the next available
entry of the twenty-byte Instruction Queue. The CPU per-
forms two types of Instruction Fetch cycles: Sequential and
Non-Sequential. These can be distinguished from each oth-
er by their differing status combinations on pins STO-ST3
(Sec. 3.4.3).

A Sequential Fetch will be performed by the CPU whenever
the Data Bus would otherwise be idle and the Instruction
Queue is not currently full. Sequential Fetches are always
type 10 Read cycles (Table 3-1).

A Non-Sequential Fetch occurs as a result of any break in
the normally sequential flow of a program. Any jump or
branch instruction, a trap or an interrupt will cause the next
Instruction Fetch cycle to be Non-Sequential. In addition,
certain instructions fiush the instruction queue, causing the
next instruction fetch to display Non-Sequential status. Oniy
the first bus cycle after a break displays Non-Sequential
status, and that cycle depends on the destination address.
If a non-sequential fetch is followed by additional sequential
fetches which are burst continuation of the non-sequential
fetch, then the Status Bus (STO-ST3) remains the same.

Note: During instruction fetch cycles, BEO-BES are all active regardess of
the alignment.

3.4.6 Interrupt Control Cycles

Activating the INT or NMI pin on the CPU will initiate one or
more bus cycles whose purpose is interrupt control rather
than the transfer of instructions or data. Execution of the
Return from Interrupt instruction (RETI) will also cause Inter-
rupt Control bus cycles. These differ from instruction or data
transfers only in the status presented on pins STO-ST3. All
Interrupt Control cycles are single-byte Read cycles.

This section describes only the Interrupt Control sequences

associated with each interrupt and with the return from its
service routine.
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3.0 Functional Description (continued)

Cycle Type Address BE3
A. Word at address ending with 11
1. 4 A 0
2. 1 A+1 1

B. Double word at address ending with 01

1. 9 A 0
2. 1 A+3 1

C. Double word at address ending with 10

1. 7 A 0
2. 5 A+2 1

D. Double word at address ending with 11

1. 4 A 0
2. 8 A+ 1

E. Quad word at address ending with 00
1. 10 A 0

TABLE 3-2
Access Sequences
Data Bus
I ~ N
BE2 BE1 BEO Byte 3 Byte 2 Byte 1 Byte 0
BYTE 1|BYTEO| «— A
1 1 1 Byte 0 X X X
1 1 0 X X X Byte 1

[evrea]BvTE 2[BYTE 1]BYTED| « A

0 0 1 Byte2  Bytel  ByteO X
1 1 0 X X X Byte 3
[evTE 3[BYTE 2[BYTE 1]BYTEO] <A
1 1 Bytel  ByteO X x
1 0 0 X X Byte3  Byte2
[ByTE 3BYTE 2[BYTE 1]BYTEO| < A
1 1 1 Byte 0 X X X
0 0 0 X Byte 3 Byte 2 Byte 1

[BvTE7|BYTE 6]BYTE 5[BYTE 4]BYTE 3[BYTE 2[BYTE 1]BYTE O] < A

0 0 0 Byte 3 Byte 2 Byte 1 Byte 0

Other bus cycles (instruction prefetch or siave) can occur here.

2. 10 At+4 0

F. Quad word at address ending with 01

0 0 0 Byte 7 Byte 6 Byte 5 Byte 4

[BvTe 7]BvTe 6|BYTE 5BYTE 4]BYTE 3[BYTE 2[BYTE 1]BYTEO| « A

1. 9 A 0 0 0 1 Byte 2 Byte 1 Byte 0 X

2. 1 A+3 1 1 1 0 X X X Byte 3
Other bus cycles (instruction prefetch or slave) can occur here.

3. 9 A+ 4 0 0 0 1 Byte 6 Byte 5 Byte 4 X
4. 1 A+7 1 1 1 0 X X X Byte 7

G. Quad word at address ending with 10

[BYTe 7]BYTE 6|BYTE 5[BVTE 4]BYTE 3[BYTE 2[BYTE 1]BYTEO| <« A

1. 7 A 0 o 1 1 Byte 1 Byte 0 X X

2. 5 A+ 2 1 1 0 0 X X Byte 3 Byte 2
Other bus cycles (instruction prefetch or slave) can occur here.

3. 7 A+ 4 0 0 1 1 Byte 5 Byte 4 X X
4 5 A+6 1 1 0 0 X X Byte 7 Byte 6

H. Quad word at address ending with 11

[BYTE 7]BYTE 6|BYTE S[BYTE 4]BYTE 3[BYTE 2[BYTE 1]BYTE O] < A

1. 4 A 0 1 1 1 Byte 0 X X X

2. 8 A+1 1 0 0 0 X Byte 3 Byte 2 Byte 1

Other bus cycles (instruction prefetch or slave) can occur here.

1. 4 A+4 0 1 1 1 Byte 4 X X X

2. 8 A+5 1 0 0 0 X Byte 7 Byte 6 Byte 5
X = Don’t Care
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3.0 Functional Description (continued)

TABLE 3-3
Interrupt Sequences
Data Bus
r - =
Cycle Status Address DDIN BE3 BE2 BE1 BEO Byte3 Byte2 Bytel Byte 0
A. Non-Maskable Interrupt Control Sequences
Interrupt Acknowledge
1 0100 FFFFFF004g 0 1 1 1 0 X X X X
Interrupt Return
None: Performed through Return from Trap (RETT) instruction.
B. Non-Vectored Interrupt Control Sequences
Interrupt Acknowledge
1 0100 FFFFFEQO1g 0 1 1 1 0 X X X X
Interrupt Return
1 0110 FFFFFEQO1¢ o] 1 1 1 0 X X X X
C. Vectored Interrupt Sequences: Non-Cascaded,
Interrupt Acknowledge
1 0100 FFFFFE0O+g 0 1 1 1 0 X X X Vector:
Range: 0-127
Interrupt Return
1 0110 FFFFFEQO4g 0 1 1 1 0 X X X Vector: Same as
in Previous Int.
Ack. Cycle
D. Vectored Interrupt Sequences: Cascaded
Interrupt Acknowledge
1 0100 FFFFFE0O+g 0 1 1 1 o] X X X Cascade Index:
range —16to —1
(The CPU here uses the Cascade Index to find the Cascade Address.)
2 0101 Cascade 0 See Note Vector, range 9-255; on appropriate byte of
Address data bus.
Interrupt Return
1 0110 FFFFFEQO4¢ (4] 1 1 1 0 X X X Cascade Index:
Same as in
previous Int.
Ack. Cycle
(The CPU here uses the Cascade Index to find the Cascade Address)
2 0111 Cascade 0 See Note X X X X

Address
X = Don’t Care

Note: BED-BES signals will be activated according to the cascaded ICU address. The cycle type can be 1, 2, 3 or 4, when reading the interrupt vector. The vector
value can be in the range 0-255.
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3.0 Functional Description (continued)
3.4.7 Dynamic Bus Configuration

The NS32332 interfaces to external data buses with 3 differ-
ent widths: 8-bit, 16-bit and 32-bit. The N§32332 can switch
from one bus width 1o another dynamically i.e. on a cycle by
cycle basis.

This feature allows the user to include in his system differ-
ent bus sizes for different purposes, like 8-bit bus for boot-
strap ROM and 32-bit bus for cache memory, etc.

In each memory cycle, the bus width is determined by the
inputs BWO and BW1.

Four combinations exist:

BW1 BWO
0 0 reserved
0 1 8-bit bus
1 0 16-bit bus
1 1 32-bit bus

The dynamic bus configuration is not applicable for slave
cycies (see Sec. 3.4.1).

The BWO-BWH1 lines are sampled by the CPU in T3 with the
falling edge of PHI1 (see Figure 3-14).

| T4 l m | T2/Tmmy | I | L& | T3 l T4 ‘ T | T2/Tmmu

- LU

If the bus width didn’t change from the previous memory
cycle, the CPU terminates the cycle normally.

If the bus width of the current cycle is different from the bus
width of the previous cycle, then two WAIT states (see Sec.
3.4.1) must be inserted in order to let the CPU switch to the
new width.

The additional 2 WAIT states count from the moment BWO
BW1 change. This can be overlapped with the wait states
due to slow memories.

In write cycles, the appropriate data will be present on the
appropriate data lines. The CPU presents the data during T3
in a way that would fit any bus width.

If the operand being written is a byte, it will be duplicated on
the 4 bytes ADO-AD31 depending on the operand address:

AddressA0— 1 = 00 XX XX XX oP

01 XX XX OP OP
10 XX OoP XX oP
1 opP XX opP opP

JEEEE

p...z[T_I'T_r] 1 ]

1
ML

1
gl

« TS

BWO-BW1 [

|

|
|
|

TL/EE/8673-23

FIGURE 3-14. Bus width changes. Two wait states are required after the signals BW0-BW1 change.
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3.0 Functional Description (continued)

If the operand being written is a word, 4 cases exist. The
operand address can be x...x00 (binary) or x...x01 (binary) or
x..x10 or x..x11 (binary).

See the duplications for each case:

OPERAND STARTS HERE ——
oP op
X1 X | wew | row
1m0 o 00
X op 0P op
HiGH | Low | Low
11 10 (3] 00
op op op op
HIGH | LOW | WiGH | Low
1 10 0 00
r—
| or oy, op op
| HIGH Low Low | Low
-
A1AD 1 10 01 00
TL/EE/8673-25
DPERAND STARTS HERE ——
o op op oP
HIGH2 | HIGH1 | LOW2 | Low1
-
1 o op op oP op
1 HIGH2 | WIGH1 | Low2 | Low1 | Low1
[
Te=1--
| o | op oP op op op
| HIGH2 | WIGH1 | Low2 | Low1 | Low2 | Lowd
demmd o
T==T-=1~=-
t 0P | O | OP op X op op -
| HIGH2 | HIGH1 | LOW2 | LOW1 w1 | Low1
—mdeedae
A1 A0 1 10 0 00
TL/EE/8673-26

If the operand being written is a double word 4 cases exist:
The operand address can be x...x00 (binary) or x...x01 (bina-
1y) or x..x10 (binary) or x...x11 (binary).

See the duplications for each case:
Note that the organization of the operand described applies

‘o the initial part of the operand cycle. For instance, if the

CPU writes a double word operand to a 16-bit bus and the
operand address is x..x11 (binary) it needs three memory
cycles.

The description above applies to the first cycle. In the other
2 memory cycles belonging to the same operand, the data
will be presented on the data bus lines to fit 16-bit bus width
and take into account the operand length.

Example:

The CPU has to write a double word DDCCBBAA to address
HEX 987653 which is in a 16-bit bus area. In the first cycle,
the CPU does not know the width until T3 so it generates a
cycle to address 987653 which activates the BE3 line and
puts on the data bus AA XX AA AA (X = don’t care). After
this cycle, the CPU knows it has a 16-bit bus and it gener-
ates a cycle to address 987654 which activates the BEQ,
BE1 and BEZ2 lines and puts on the data bus XX XX CC BB.
The last cycle will address 987658, activate BE2, and put on
the data bus XX XX XX DD. The BEO-BES3 lines are always
activated as if the bus is 32-bit wide, regardless of BW0O-
BW1 state. ‘

The CPU does not support a change of the bus width during
a sequence of several memory references belonging to the
same operand e.g. nonaligned double word. In other words,
any operand should not be split between two memory
spaces having different bus widths.

Instruction Fetches do not fall in this category and an in-
struction Fetch can have its own bus width regardiess of the
bus width in the previous cycle.

3.4.8 Bus Exceptions

Any bus cycle may have a bus error during its execution.
The error may be corrected during the current cycle or may
be incorrectable. The NS32332 can handle both types of
errors by means of BUS RETRY and BUS ERROR.

3.4.8.1 Bus Retry

If a bus error can be corrected, the CPU may be requested
to repeat the erronous bus cycle. The request is done by
asserting the BRT (Bus Retry) signal.

The CPU response to Bus Retry depends on the cycle type:

Instruction Fetch Cycle—If the RETRY occurs during an
instruction fetch, the fetch cycle will be retried as soon as
possible. If the RETRY is requested during a burst chain,
the burst is stopped and the fetch is retried. The only delay
in retrying the instruction fetch may result from pending op-
erand requests (and, of course, from hoid or wait requests).
Operand Read Cycle—if the RETRY occurs on an operand
read, the bus cycle is inmediately repeated. If the data read
is “multiple” e.g. non-aligned, only the problematic part will
be repeated. For instance, if the cycle is a non-aligned dou-
ble word and the second half failed, only the second part
will be repeated. The same applies for a RETRY occeurring
during a burst chain. The repeated cycle will begin where
the read operand failed (rather than the first address of the
burst) and will finish the original burst.
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3.0 Functional Description (continued)

Operand Write Cycle—If the RETRY occurs on a write, the
bus cycle is immediately repeated. If the operand write is
“multiple” e.g. non-aligned, only the problematic part will be
repeated. For instance, if the cycle is a non-aligned doubie
word and the second half failed, only the second part will be
repeated.

A Bus Retry is requested by activating the BRT line (see
Figure 3-15). BRT is sampled by the CPU during T3 on the
falling edge of PHI1. If BRT is not active, the cycle will be
terminated in a regular way. If BRT is active, BRT will be
sampled again during T4 on the falling edge of PHI1. If BRT
is not active, the cycle will be terminated in a regular way. If
BRT is active, T4 will be followed by an idle state and

| # | m

iy

| T2/Tmm |

the cycle will be repeated, i.e. a new T4 for setting the
Status Bus and issuing STS and then T1 through T4 will be
performed.

Although the decision about Retry is taken by the CPU on
T4, BRT must have an early activation in T3 as described
above in order to prevent the internal pipeline to advance.
Holding the pipeline allows the repeated cycle to override
the original one. If BRT is activated only in T3 and not in T4,
there might be one cycle penalty in the performance of the
execution unit in operand read cycles.

Retry is applicable for regular memory cycles and burst cy-
cles, but not for Slave cycles.

B | ™ | TmoRn |
-

o LI

r’”’iﬁ

A T\

m[

ol

TL/EE/8673-27

(a) Bus Cycle Not Retried

I T4 ' T ’ T2/Tmmu l T3 [ T4 ‘ Ti I T4 .

1T

PH|1[

T l T2/Tmmu |

1T

JEEEERERS

RETRIED CYCLE

o

-
[ LML
\/ vV

TL/EE/8673-28

(b) Bus Cycle Retried
FIGURE 3-15. Bus Cycle Retry
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3.0 Functional Description (continued)
3.4.8.2 Bus Error

if a Bus Error is incorrectable the CPU may be requested to
abort the current process and branch to an appropriate rou-
tine to handle the error. The request is performed by activat-
ing the BER signal.

BER is sampled by the CPU during T4 on the falling edge of
PHI1. If BER is active the bus will go to Tidle after T4 and
the CPU will jump to the Bus Error handler (see Sec. 3.8).
The CPU response to Bus Error depends on the cycle type:
Instruction Fetch Cycles—If the bus error occurs on an
instruction fetch, additional fetches are inhibited including
the one which failed. If, after inhibiting instruction fetches,
some operand cycles are still pending within the CPU, they
are executed normally, delaying the access to the bus error
exception. If and when the internal instruction queue be-
comes empty, the CPU will enter the BUS ERROR excep-
tion. This arrangement enables the CPU to ignore bus errors
which belong to fetch ahead cycles if these fetches are not
to be used as a result of a jump.

Operand Read Cycles—If the bus error occurs on an oper-
and read, the bus error is immediately accepted, and the
CPU enters the BUS ERROR exception.

]

T4 ‘ T
PHH[ 7 ’_

Operand Write Cycles—If the bus error occurs on an oper-
and write, the exception is immediately accepted.

Note 1: When a bus eror occurs, the instruction that caused the error is
generally not re-executable.

The process that was being executed should either be aborted or
should be restarted from the last checkpoaint.

Note 2: Bus error has top priority and is accepted even during the acknowl-
edge sequence of another CPU exception (i.e. Abort, Interrupt, etc.).

It is the responsibility of the user software to detect such an occur-
ence and to take the appropriate comective actions.
3.4.8.3 Fatal Bus Error

As previously mentioned, the CPU response to a bus error is
to interrupt the current activity and enter the error routine.
An exception to this rule occurs when a bus error is sig-
nalled to the CPU during the acknowledge of a previous bus
error. In this case the second error is interpreted by the CPU
as a fatal bus error.

The CPU will respond to this event by halting execution and
The Halt condition is indicated by the setting of STO-ST3 to
zero and by the assertion of MC/EXS.

The CPU can exit this condition only through a hardware
reset.

1 I T2/Tmmu | T3 | T4 | Ti ‘ Ti ]

1T

LI
ul

[T LTI
= T\/ \/

=1 \J

=| \/

TL/EE/8673-30

FIGURE 3-16. Bus Error During Read or Write Cycle
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3.0 Functional Description (continued)

3.4.9 Slave Processor Communication

The SPC pin is used as the data strobe for Slave Processor
transfers. In this role, it is referred to as Slave Processor
Control (SPC). In a Slave Processor bus cycle, data is trans-
ferred on the Data Bus and the status lines (STO-ST3) are
monitored by each Slave Processor in order to determine
the type of transfer being performed. SPC is bidirectional,
but is driven by the CPU during all Slave Processor bus
cycles. See Sec. 3.9 for full protocol sequences.

PREV.CYCLE
i TdorTi T l

w [ LT

ADO-AD3H
AT/SPC

NS32332

CPU

STO-ST3

G

SPC

SLAVE
PROCESSOR

STO-ST3

TL/EE/8673-31

FIGURE 3-17. Slave Processor Connections

T4

3

-

NEXT CYCLE
T1ORTi |

o [ LT

[ ]

L

1

N\

ADO-AD31

-<DATA

CSEAS

@

N
g

><

NEXT STATUS

C

“ [
= |
= [

\/

NEXT

Notes:
(1) CPU samples Data Bus here.
(2) Slave Processor samples CPU Status here.

FIGURE 3-18. CPU Read from Slave Processor

TL/EE/8673-32
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3.0 Functional Description (continued)
3.4.9.1 Slave Processor Bus Cycles

A Slave Processor bus cycle always takes exactly two clock
cycles, labeled T1 and T4 (see Figures 3-18 and 3-79). Dur-
ing a Read cycle, SPC is activated at T1, data is sampled at
T4, and SPC is removed. The Cycle Status pins lead the
cycle by one clock period, and are sampled at the leading
edge of SPC. During a Write cycle, the CPU applies data
and activates SPC at T1, removing SPC at T4. The Slave
Processor latches status on the leading edge of SPC and
latches data on the trailing edge.

The CPU does not pulse the address (ADS) and status
(STS) strobes during a slave protocol. The direction of a
transfer is determined by the sequence (“protocol”) estab-
lished by the instruction under execution; but the CPU indi-
cates the direction on the DDIN pin for hardware debugging
purposes.

3.4.9.2 Slave Operand Transfer Sequences

A Slave Processor operand is transferred in one or more
slave operand cycles. The NS32332 supports two slave
protocols which can be selected by the configuration regis-
ter (CFG).

T

1. The regular Slave protocol is fully compatible with
NS32032, NS32016 and NS32008 slave protocols.

In this protocol the NS32332 uses only the two least sig-
nificant bytes of the data bus for slave cycles. This allows
the NS32332 CPU to work with the current slaves (like
NS32082, NS32081 etc.)

A byte operand is transferred on the least significant byte
of the data bus (ADO-AD15).

A double word is transferred in a consecutive pair of bus
cycles least significant word first. A quadword is trans-
ferred in two pairs of slave cycles.

2. The fast slave protocol is unique to the NS32332 CPU. In

this protocol the NS32332 uses the full width of the data
bus (ADO-AD31) for slave cycles.
A byte operand is transferred on the least significant byte
of the data bus (ADO-AD7), a word operand is trans-
ferred on bits ADO-AD15 and a double word operand is
transferred on bits ADO-AD31. A quad word is trans-
ferred in two pairs of slave cycles with other bus cycies
possibly occurring between them.

NEXT CYCLE
T4 T1ORTi !

L L

V-

DATA OUT

[§)]
X NEXT

NEXT STATUS

\/

PREV. CYCLE
| TaomTi
ot | _] l_l
=[_/
ADC-AD31 : 27////
jo
$T0-ST3 [ Z%( VALID
T
S8 -
-
= | 77/

Note:
(1) Arrows indicate points at which the Slave Processor samples.

W
Nz

TL/EE/8673-33

FIGURE 3-19. CPU Write to Slave Processor
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3.0 Functional Description (continueq)
3.5 MEMORY MANAGEMENT OPTION

The NS32332 CPU, in conjunction with the Memory Man-
agement Unit (MMU), provides full support for address
translation, memory protection, and memory allocation
techniques up to and including Virtual Memory.
When an MMU is used, the states T2 and TMMU are over-
lapped. During this time the CPU places ADO-AD31 into the
TRI-STATE mode, allowing the MMU to assert the translat-
ed address and issue the physical address strobe PAV. Fig-
ure 3-20 shows the Bus Cycle timing with address transla-
tion. .
Note 1: If an NS32382 MMU is used, the bus lines ADO-AD31 can be used
during T2 by the CPU to output data during write cycles, since the
NS32382 uses a separate physical address bus—this data timing
can be selected by forcing DT/SDONE low during reset as shown in
Figure B-2 in Appendix B.
DT/SDONE must be forced high during reset if an NS32082 MMU is
used since, in this case, no separate physical address bus is provid-
ed.

Note 2: If an NS32082 MMU is used, in order for it to operate properly, it
must be set to the 32-Bit mode by forcing a A24/HBF low during
reset. In this mode the bus lines AD16~-AD24 are floated after the
MMU address has been latched, since they are used by the CPU to
transfer data.

3.5.1 The FLT (Float) Pin

The FLT signal is used by the CPU for address translation
support. Activating FLT during Tmmu causes the CPU to
wait longer than Tmmu for address translation and valida-
tion. This feature is used occasionally by the MMU in order
to update its Translation Lookaside Buffer (TLB) from page
tables in memory, or to update certain status bits within
them.

Figure 3-21 shows the effect of FLT. Upon sampling FLT
low, late in Tmmu, the CPU enters idle T-States (Tf) during
which it:

1) Sets ADO-AD31, and DDIN to the TRI-STATE condition
(“floating”).

2) Suspends further internal processing of the current in-
struction. This ensures that the current instruction re-
mains abortable with retry. (See RST/ABT description.)

The above conditions remain in effect until FLT again goes
high. See Sec. 4.

3.5.2 Aborting Bus Cycles

The RST/ABT pin, apart from its Reset function (Sec. 3.3),

also serves as the means to “abort”, or cancel, a bus cycle

and the instruction, if any, which initiated it. An Abort re-

quest is distinguished from a Reset in that the RST/ABT pin

is held active for only one clock cycle.

If RST/ABT is pulled low during Tmmu or Tf, this signals

that the cycle must be aborted. Since it is the MMU PAV

signal which triggers a physical cycle, the rest of the system

remains unaware that a cycle was started.

The MMU will abort a bus cycle for either of two reasons:

1) The CPU is attempting to access a virtual address which
is not currently resident in physical memory. The refer-
enced page must be brought into physical memory from
mass storage to make it accessible to the CPU.

2) The CPU is attempting to perform an access which is not
allowed by the protection level assigned to that page.
When a bus cycle is aborted by the MMU, the instruction
that caused it to occur is also aborted in such a manner that

it is guaranteed re-executable later.

m T2/Tmmu 13 T4

L
w LI

— - -

X vIRTUAL \/PHYSICAL
”’“"‘“3" ADDRESE A\ ADDRESS '( OAR )'“
— = -

= T\/

“
e
e XX

| 7\
e

— [ 4
WR [ Y "] |
A B
TL/EE/8673-87
FIGURE 3-20. Read (Write) Cycle with
Address Translation

3.5.2.1 The Abort Interrupt

Upon aborting an instruction, the CPU immediately performs
an interrupt through the ABT vector in the Interrupt Table
(see Sec. 3.8). The Return Address pushed on the Interrupt
Stack is the address of the aborted instruction, so that a
Return from Trap (RETT) instruction will automatically retry
it.

The one exception to this sequence occurs if the aborted
bus cycle was an instruction prefetch. If so, it is not yet
certain that the aborted prefetched code is to be executed.
Instead of causing an interrupt, the CPU only aborts the bus
cycle, and stops prefetching. If the information in the In-
struction Queue runs out, meaning that the instruction will
actually be executed, the ABT interrupt will occur, in effect
aborting the instruction that was being fetched.

3.5.2.2 Hardware Considerations

In order to guarantee instruction retry, certain rules must be

followed in applying an Abort to the CPU. These rules are

followed by the Memory Management Unit.

1) If FLT has not been applied to the CPU, the Abort pulse
must occur during Tmmu.
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3.0 Functional Description (continued)

2) If FLT has been applied to the CPU, the Abort pulse must
be applied before the T-State in which FLT goes inactive.
The CPU will not actually respond to the Abort command
until FLT is removed.

3) The Write half of a Read-Modify-Write operand access
may not be aborted. The CPU guarantees that this will
never be necessary for Memory Management functions
by applying a special RMW status (Status Code 1011)
during the Read half of the access. When the CPU pres-
ents RMW status, that cycle must be aborted if it would
be illegal to write to any of the accessed addresses.

T T2/Tmmu Tt

-

PHI1

If RST/ABT is pulsed at any time other than as indicated
above, it will abort either the instruction currently under exe-
cution or the next instruction and will act as a very high-pri-
ority interrupt. However, the program that was running at the
time is not guaranteed recoverable.

3.6 BUS ACCESS CONTROL

The NS32332 CPU has the capability of relinquishing its
access to the bus upon request from a DMA device or an-
other CPU. This capability is implemented on the HOLD
(Hold Request) and HLDA (Hold Acknowledge) pins. By as-
serting HOLD low, an external device requests access to
the bus. On receipt of HLDA from the CPU, the device may
perform bus cycles, as the CPU at this point has set the

Tt e e Tt K]

-

PHI 2

| [

-

ADQ-AD31*

[NNN|

VIRTUAL PP SR .
ADDRESS

S . e R R

§TS

~

L

= [T\
w [ Z00)

)

STO-ST3' VALID

VALID

VALID

______ __.ﬂ. +——

VALID

BEO-BE3 VALID

y

*See MMU data sheet for details on physical address timing and MMU initiated Bus cycles.

TL/EE/8673-34

FIGURE 3-21. FLT Timing
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3.0 Functional Description (continued)
AD0-AD31, ADS, DDIN and BEO-BE3 pins to the TRI-
STATE condition. To return control of the bus to the CPU,
the device sets HOLD inactive, and the CPU acknowledges
return of the bus by setting HLDA inactive.

How quickly the CPU releases the bus depends on whether
it is idle on the bus at the time the HOLD request is made,
as the CPU must always complete the current bus cycle.
Figure 3-22 shows the timing sequence when the CPU is
idle. In this case, the CPU grants the bus during the immedi-
ately following clock cycle. Figure 3-23 shows the sequence
if the CPU is using the bus at the time that the HOLD re-

‘ Ti

quest is made. If the request is made during or before the
clock cycle shown (two clock cycles before T4), the CPU
will release the bus during the clock cycle following T4. If
the request occurs closer to T4, the CPU may already have
decided to initiate another bus cycle. In that case it will not
grant the bus until after the next T4 state. Note that this
situation will also occur if the CPU is idle on the bus but has
initiated a bus cycle internally.

In a Memory-Managed system, the HLDA signal is connect-
ed in a daisy-chain through the MMU, so that the MMU can
release the bus if it is using it.

Ti Ti ' TIORle TiORT1 I

B |
[T T r

LT

anpEpily

’

o | \__{(

BE0-BE3 ”_-._
ao-Apa1 | %7///%7///// { -t

AFFECTED SIGNALS

s e e A/

\/
DDIN \---”-__ _____ S va \ NEXT

_____ - —— - _.—_———4.4 NEXT ADDR

STO-ST3 PREVIOUS W/A«Z

N N

TL/EE/8673-35

FIGURE 3-22. HOLD Timing, Bus Initially Idle
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3.0 Functional Description (continued)
3.7 INSTRUCTION STATUS

In addition to the four bits of Bus Cycle status (STO-ST3),
the NS32332 CPU also presents Instruction Status informa-
tion on three separate pins. These pins differ from STO-
ST3 in that they are synchronous to the CPU's internal in-
struction execution section rather than to its bus interface
section.

PFS (Program Flow Status) is pulsed low as each instruction
begins execution. It is intended for debugging purposes.
U/S originates from the U bit of the Processor Status Regis-
ter, and indicates whether the CPU is currently running in
User or Supervisor mode. It is sampled by the MMU for

} T20RT3 ‘ T3 i T4 ' Ti

~[ L1

M

mapping, protection, and debugging purposes. U/S line is
updated every T4.

TLO (Interlocked Operation) is activated during an SBIT! (Set
Bit, Interlocked) or CBIT! (Clear Bit, Interlocked) instruction.
It is made available to external bus arbitration circuitry in
order to allow these instructions to implement the sema-
phore primitive operations for multi-processor communica-
tion and resource sharing.

While ILO is active, the CPU inhibits instruction fetches. In
order to prevent MMU cycles during ILO, the CPU executes
a dummy Read cycle with status code 1011 (RMW) prior to
activating ILO. Thereafter, ILO is activated and the Read is
performed again but with status code 1010 (operand trans-
fer). Refer to Figure 3-24.
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FIGURE 3-23. HOLD Timing, Bus Initially Not idie
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3.0 Functional Description (continued)

MC/EXS (Multiple Cycle/Exception Status) is activated dur-
ing the access of the first part of an operand that crosses a
double-word address boundary. The activation of this signal
is independent of the selected bus width. Its timing is shown

in Figure 3-25. The MMU or other external circuitry can use
it as an early indication of a CPU access to an operand that
crosses a page boundary.

(1

HEEN

l T2/ Tmmu

I

ul

| TZ/Tmmu

w"[J—L_I'I_ﬂ_FL_I—LJ_LJ_L_l_L_FL_I"LJ_I_FLJ_L

MC/EXS is also activated during the first non-sequential in-
struction fetch (status code 1001) following an abort, and
when the GPU enters the idle state (Status Code 0000) fol-
lowing a fata! bus error.
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FIGURE 3-25. Non-aligned Write Cycle—MC/EXS Timing
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3.0 Functional Description (continued)
3.8 NS32332 INTERRUPT STRUCTURE
INT, on which maskable interrupts may be requested,
NMI, on which non-maskable interrupts may be request-
ed, and
RST/ABT, which may be used to abort a bus cycle and
any associated instruction. See Sec. 3.5.2.

In addition there is a set of internally-generated “traps”
which cause interrupt service to be performed as a result
either of exceptional conditions (e.g., attempted division by
zero) or of specific instructions whose purpose is to cause a
trap to occur (e.g., the Supervisor Call instruction).

3.8.1 General Interrupt/Trap Sequence

Upon receipt of an interrupt or trap request, the CPU goes
through four major steps:

1) Adjustment of Registers.

Depending on the source of the interrupt or trap, the CPU
may restore and/or adjust the contents of the Program

Counter (PC), the Processor Status Register (PSR) and
the currently-selected Stack Pointer (SP). A copy of the
PSR is made, and the PSR is then set to reflect Supervi-
sor Mode and selection of the Interrupt Stack.

2) Saving Processor Status.

The PSR copy is pushed onto the Interrupt Stack as a 16-
bit quantity.

3) Vector Acquisition.

A Vector is either obtained from the Data Bus or is sup-
plied by default.

4) Service Call.

The Vector is used as an index into the Interrupt Dispatch
Table, whose base address is taken from the CPU Inter-
rupt Base (INTBASE) Register. See Figure 3-26. A 32-bit
External Procedure Descriptor is read from the table en-
try, and an External Procedure Call is performed using it.
The MOD Register (16 bits) and Program Gounter (32
bits) are pushed on the Interrupt Stack.

le o4
MEMORY { 3 o]”
NVI NON-VECTORED INTERRI
CASCADE ADDR 0 veT
< NMI NON-MASKABLE INTERRUPT
CASCADETABLE 2= .
hd ABT ABORT
CASCADE ADDR 14
SLAVE SLAVE PROCESSOR TRAP
INTERRUPT BASE CASCADE ADDR 15 ILL ILLEGAL OPERATION TRAP
REGISTER
L FXEDINTERRUPTS L 5| sve SUPERVISOR CALL TRAP
AND TRAPS M
A VECToRED |, UISPATOHTASLE 6| ovz DIVIDE BY ZERO TRAP
- INTERRUPTS ™~
C A 71 FLG FLAG TRAP
8| BPT BREAKPOINT TRAP
9| TRC TRACE TRAP
0| unD UNDEFINED INSTRUCTION TRAP
11| RESERVED
12| BER BUS ERROR TRAP
13-15 A= RESERVED ~
16 VECTORED
INTERRUPTS
~o

TL/EE/8673-39

FIGURE 3-26. Interrupt Dispatch Table




3.0 Functional Description continued)

This process is illustrated in Figure 3-27, from the viewpoint Interrupt on INT or NMI pin:
of the programmer. Abort Interrupt:
Full sequences of events in processing interrupts and traps Traps (except Trace):
may be found as follows: Trace Trap:
RETURN ADDRESS (PUSH) l P—
STATUS MODULE 32BITS
(PUSH)
PSR MOD INTERRUPT
STACK
. .
. .
. .
______________ -
CASCADE TABLE
INTBASE REGISTER 1
I INTERRUPT BASE ‘} DISPATCH
TABLE
VECTOR x4 D]
DESCRIPTOR (32 BITS)
DESCRIPTOR
16 16
OFFSET MODULE
< 0
MOD REGISTER MODULE TABLE
MODULE TABLE ENTRY
MODULE TABLE ENTRY
32
STATIC BASE POINTER —
J LINK BASE POINTER
D PROGRAM BASE POINTER
(RESERVED) i
PROGRAM COUNTER SB REGISTER

;—E ENTRY POINT ADDRESS J NEW STATIC BASE

FIGURE 3-27. Interrupt/Trap Service Routine Calling Sequence

Sec. 3.8.7.1.
Sec. 3.8.7.4.
Sec. 3.8.7.2.
Sec. 3.8.7.3.

TL/EE/8673-40
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2-41

G1-CEETESN/CL-CEETESN/OL-CEETESN



NS32332-10/NS32332-12/NS32332-15

3.0 Functional Description (continued)
3.8.2 Interrupt/Trap Return

To return control to an interrupted program, one of two in-
structions is used. The RETT (Return from Trap) instruction
(Figure 3-28) restores the PSR, MOD, PC and SB registers
to their previous contents and, since traps are often used
deliberately as a call mechanism for Supervisor Mode pro-
cedures, it also discards a specified number of bytes from
the original stack as surplus parameter space. RETT is used
to return from any trap or interrupt except the Maskable
Interrupt. For this, the RETI (Return from Interrupt) instruc-
tion is used, which also informs any external Interrupt Con-
trol Units that interrupt service has completed. Since inter-
rupts are generally asynchronous external events, RETI
does not pop parameters. See Figure 3-29.

3.8.3 Maskable Interrupts (The INT Pin)
The INT pin is a level-sensitive input. A continuous low level

put is maskable, and is therefore enabled to generate inter-
rupt requests only while the Processor Status Register | bit
is set. The | bit is automatically cleared during service of an
INT, NMI or Abort request, and is restored to its original
setting upon return from the interrupt service routine via the
RETT or RETI instruction.

The INT pin may be configured via the SETCFG instruction
as either Non-Vectored (CFG Register bit | = C) or Vec-
tored (bit | = 1).

3.8.3.1 Non-Vectored Mode

In the Non-Vectored mode, an interrupt request on the INT
pin will cause an Interrupt Acknowledge bus cycle, but the
CPU will ignore any value read from the bus and use instead
a default vector of zero. This mode is useful for small sys-
tems in which hardware interrupt prioritization is unneces-

v sary.
is allowed for generating multiple interrupt requests. The in-
PROGRAM COUNTER
RETURN ADDRESS Jl } 32BITS
STATUS MODULE } 32BITS
PSR Moo INTERRUPT
H STACK M
. L]
0
MODULE
TABLE
MODULE TABLE ENTRY
_J
MODULE TABLE ENTRY
STATIC BASEPOINTER ~ —
LINK BASE POINTER
PROGRAM BASE POINTER
(RESERVED)
PARAMETERS
n
BYTES
SB REGISTER
r STATIC BASE STACK SELECTED
INNEWLY-
POPPED PSR.

POP AND
DISCARD

FIGURE 3-28. Return from Trap (RETT n) Instruction Flow

TL/EE/8673-42
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3.0 Functional Description (continued)

“END OF INTERRUPT"

BUSCYCLE
INTERRUPT
CONTROL
UNIT
PROGRAM COUNTER
] (POP)
L RETURN ADDRESS i
1 (POP)
L STATUS ! MODULE ~
PSR MOD
INTERRUPT
STACK

.

. L

.

0
MODULE
TABLE
-=| MODULE TABLE ENTRY.
J
MODULE TABLE ENTRY
STATICBASEPOINTER ~ —
LINK BASE POINTER
PROGRAM BASE POINTER
(RESERVED)
L STATIC BASE
SBREGISTER

TL/EE/8673-43

FIGURE 3-29. Return from Interrupt (RETI) Instruction Flow
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3.0 Functional Description (continued)

3.8.3.2 Vectored Mode: Non-Cascaded Case

In the Vectored mode, the CPU uses an Interrupt Control
Unit (ICU) to prioritize many interrupt requests. Upon receipt
of an interrupt request on the INT pin, the CPU performs an
“Interrupt Acknowledge, Master” bus cycle (Sec. 3.4.3)
reading a vector value from the low-order byte of the Data
Bus. This vector is then used as an index into the Dispatch
Table in order to find the External Procedure Descriptor for
the proper interrupt service procedure. The service proce-
dure eventually returns via the Return from Interrupt (RETI)
instruction, which performs an End of Interrupt bus cycle,
informing the ICU that it may re-prioritize any interrupt re-
quests still pending. The ICU provides the vector number
again, which the CPU uses to determine whether it needs
also to inform a Cascaded ICU (see below).

In a system with only one ICU (16 levels of interrupt), the
vectors provided must be in the range of 0 through 127; that
is, they must be positive numbers in eight bits. By providing
a negative vector number, an ICU flags the interrupt source
as being a Cascaded ICU (see below).

3.8.3.3 Vectored Mode: Cascaded Case

In order to allow more levels of interrupt, provision is made
in the CPU to transparently support cascading. Note that
the Interrupt output from a Cascaded ICU goes to an Inter-
rupt Request input of the Master ICU, which is the only ICU
which drives the CPU INT pin. Refer to the ICU data sheet
for details.

In a system which uses cascading, two tasks must be per-
formed upon initialization:

1) For each Cascaded ICU in the system, the Master ICU
must be informed of the line number on which it receives
the cascaded requests.

2) A Cascade Table must be established in memory. The
Cascade Table is located in a NEGATIVE direction from
the location indicated by the CPU Interrupt Base (INT-
BASE) Register. Its entries are 32-bit addresses, pointing
to the Vector Registers of each of up to 16 Cascaded
ICUs.

Figure 3-26 illustrates the position of the Cascade Table. To
find the Cascade Table entry for a Cascaded ICU, take its
Master ICU line number (0 to 15) and subtract 16 from it,
giving an index in the range —16 to —1. Multiply this value
by 4, and add the resulting negative number to the contents
of the INTBASE Register. The 32-bit entry at this address
must be set to the address of the Hardware Vector Register
of the Cascaded ICU. This is referred to as the “Cascade
Address.”

Upon receipt of an interrupt request from a Cascaded ICU,
the Master ICU interrupts the CPU and provides the nega-
tive Cascade Table index instead of a (positive) vector num-
ber. The CPU, seeing the negative value, uses it as an index
into the Cascade Table and reads the Cascade Address
from the referenced entry. Applying this address, the CPU
performs an “Interrupt Acknowledge, Cascaded” bus cycle
(Sec. 3.4.3), reading the final vector value. This vector is
interpreted by the CPU as an unsigned byte, and can there-
fore be in the range of 0 through 255.

In returning from a Cascaded interrupt, the service proce-
dure executes the Return from Interrupt (RETI) instruction,
as it would for any Maskable Interrupt. The CPU performs
an “End of Interrupt, Master” bus cycle (Sec. 3.4.3), where-
upon the Master ICU again provides the negative Cascade

Table index. The CPU, seeing a negative value, uses it to
find the corresponding Cascade Address from the Cascade
Table. Applying this address, it performs an “End of Inter-
rupt, Cascaded” bus cycle (Sec. 3.4.3), informing the Cas-
caded ICU of the completion of the service routine. The byte
read from the Cascaded ICU is discarded.

Note: If an interrupt must be masked off, the CPU can do so by setting the
corresponding bit in the interrupt mask register of the interrupt con-
troller.

However, if an interrupt is set pending during the GPU instruction that
masks off that interrupt, the CPU may still perform an interrupt ac-
knowledge cycle foliowing that instruction since it might have sampled
the INT line before the ICU deasserted it. This could cause the ICU to
provide an invalid vector. To avoid this problem the above operation
should be performed with the CPU interrupt disabled.

3.8.4 Non-Maskable Interrupt (The NMI Pin)

The Non-Maskable Interrupt is triggered whenever a falling
edge is detected on the NMI pin. The CPU performs an
“Interrupt Acknowledge, Master” bus cycle (Sec. 3.4.3)
when processing of this interrupt actually begins. The Inter-
rupt Acknowledge cycle differs from that provided for Mask-
able Interrupts in that the address presented is
FFFFFF004g. The vector value used for the Non-Maskable
Interrupt is taken as 1, regardiess of the value read from the
bus.

The service procedure returns from the Non-Maskable In-
terrupt using the Return from Trap (RETT) instruction. No
special bus cycles occur on return.

For the full sequence of events in processing the Non-
Maskable Interrupt, see Sec. 3.8.7.1.

3.8.5 Traps

A trap is an internally-generated interrupt request caused as
a direct and immediate result of the execution of an instruc-
tion. The Return Address pushed by any trap except Trap
(TRC) is the address of the first byte of the instruction during
which the trap occurred. Traps do not disable interrupts, as
they are not associated with external events. Traps recog-
nized by the NS32332 CPU are:

Trap (SLAVE): An exceptional condition was detected by
the Floating Point Unit or another Slave Processor during
the execution of a Slave Instruction. This trap is requested
via the Status Word returned as part of the Slave Processor
Protocol (Sec. 3.9.1).

Trap (ILL): lilegal operation. A privileged operation was at-
tempted while the CPU was in User Mode (PSR bit U = 1).
Trap (SVC): The Supervisor Call (SVC) instruction was exe-
cuted.

Trap (DVZ): An attempt was made to divide an integer by
zero. (The FPU trap is used for Floating Point division by
zero.)

Trap (FLG): The FLAG instruction detected a “1” in the
CPU PSR F bit.

Trap (BPT): The Breakpoint (BPT) instruction was execut-
ed.

Trap (TRC): The instruction just completed is being traced.
See below.

Trap (UND): An undefined opcode was encountered by the
CPU.

Trap (BER): A bus error condition was encountered.
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3.0 Functional Description (continued)

A special case is the Trace Trap (TRC), which is enabled by
setting the T bit in the Processor Status Register (PSR). At
the beginning of each instruction, the T bit is copied into the
PSR P (Trace “Pending™) bit. If the P bit is set at the end of
an instruction, then the Trace Trap is activated. If any other
trap or interrupt request is made during a traced instruction,
its entire service procedure is allowed to complete before
the Trace Trap occurs. Each interrupt and trap sequence
handles the P bit for proper tracing, guaranteeing one and
only one Trace Trap per instruction, and guaranteeing that
the Return Address pushed during a Trace Trap is always
the address of the next instruction to be traced.

Note: A slight difference exists between the NS32332 and previous Series
32000 CPUs when tracing is enabled.

The NS32332 always clears the P bit in the PSR before pushing the
PSR on the stack. Previous CPUs do not clear it when a trap (ILL)
occurs.

The resutt is that an instruction that causes a frap (ILL) exception is
traced by previous Series 32000 CPUs, but is never traced by the
NS32332.

3.8.6 Prioritization

The NS32332 CPU internally prioritizes simultaneous inter-
rupt and trap requests as follows:

1) Traps other than Trace
2) Abort

3) Bus Error

4) Non-Maskable Interrupt
5) Maskable Interrupts

6) Trace Trap

(Highest priority)

(Lowest priority)

3.8.7 Interrupt/Trap Sequences: Detailed Flow

For purposes of the following detailed discussion of inter-
rupt and trap service sequences, a single sequence called
“Service” is defined in Figure 3-30. Upon detecting any in-
terrupt request or trap condition, the CPU first performs a
sequence dependent upon the type of interrupt or trap. This
sequence will include pushing the Processor Status Regis-
ter and establishing a Vector and a Return Address. The
GCPU then performs the Service sequence.

For the sequence followed in processing either Maskable or
Non-Maskable interrupts (on the INT or NMI pins, respec-
tively), see Sec. 3.8.7.1 For Abort Interrupts, see Sec.
3.8.7.4. For the Trace Trap, see Sec. 3.8.7.3, and for all
other traps see Sec. 3.8.7.2.

3.8.7.1 Maskable/Non-Maskable Interrupt Sequence
This sequence is performed by the CPU when the NMI pin
receives a falling edge, or the INT pin becomes active with
the PSR | bit set. The interrupt sequence begins either at
the next instruction boundary or, in the case of the String
instructions, at the next interruptible point during its execu-
tion.
1. If a String instruction was interrupted and not yet com-
pleted:
a. Clear the Processor Status Register P bit.

b. Set “Return Address” to the address of the first byte of
the interrupted instruction.

Otherwise, set “Return Address” to the address of the

next instruction.

2. Copy the Processor Status Register (PSR) into a tempo-
rary register, then clear PSR bits S, U, T, P and I.

w

. If the interrupt is Non-Maskable:
a.Read a byte from address FFFFFF004g, applying
Status Code 0100 (interrupt Acknowledge, Master,
Sec. 3.4.3). Discard the byte read.
b. Set “Vector” to 1.
c. Go to Step 8.
. If the interrupt is Non-Vectored:
a.Read a byte from address FFFFFF004g, applying
Status Code 0100 (Interrupt Acknowledge, Master:
Sec. 3.4.3). Discard the byte read.

b. Set “Vector” to 0.

c. Go to Step 8.

. Here the interrupt is Vectored. Read “Byte” from address

FFFFFE0O46, applying Status Code 0100 (Interrupt Ac-

knowledge, Master: Sec. 3.4.3).

If “Byte” > 0, then set “Vector” to “Byte” and go to Step

8.

7. If “Byte” is in the range — 16 through —1, then the inter-
rupt source is Cascaded. (More negative values are re-
served for future use.) Perform the following:

a. Read the 32-bit Cascade Address from memory. The
address is calculated as INTBASE +4* Byte.

b. Read “Vector,” applying the Cascade Address just
read and Status Code 0101 (Interrupt Acknowledge,
Cascaded: Sec. 3.4.3).

. Push the PSR copy (from Step 2) onto the Interrupt Stack
as a 16-bit value.

9. Perform Service (Vector, Return Address), Figure 3-30.

N

(9,2

o

o]

Service (Vector, Return Address):

1) Read the 32-bit External Procedure Descriptor from the Interrupt
Dispatch Table: address is Vector* 4 + INTBASE Register contents.

2) Move the Module field of the Descriptor into the MOD Register.

3) Read the new Static Base pointer from the memory address con-
tained in MOD, placing it into the SB Register.

4) Read the Program Base pointer from memory address MOD + 8,
and add to it the Offset tield from the Descriptor, placing the result
in the Program Counter.

5) Flush queue: Non-sequentially fetch first instruction of iInterrupt
routine.

6) Push MOD Register into the Interrupt Stack as a 16-bit vaiue. (The
PSR has aiready been pushed as a 16-bit value.)

7) Push the Return Address onto the Interrupt Stack as a 32-bit quanti-
ty.
FIGURE 3-30. Service Sequence
Invoked during all interrupt/trap sequences.

3.8.7.2 Trap Sequence: Traps Other Than Trace

1) Restore the currently selected Stack Pointer and the
Processor Status Register to their original values at the
start of the trapped instruction.

2) Set “Vector” to the value corresponding to the trap type.

SLAVE: Vector = 3.
ILL: Vector = 4.
SVC: Vector = 5.
DvZ: Vector = 6.
FLG: Vector = 7.
BPT: Vector = 8.
UND: Vector = 10.

3) Copy the Procaessor Status Register (PSR) into a tempo-
rary register, then clear PSR bits S, U, P and T.
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3.0 Functional Description (continued)

4) Push the PSR copy onto the Interrupt Stack as a 16-bit
value.

5) Set “Return Address” to the address of the first byte of
the trapped instruction.

6) Perform Service (Vector, Return Address), Figure 3-30.

3.8.7.3 Trace Trap Sequence

1) In the Processor Status Register (PSR), clear the P bit.

2) Copy the PSR into a temporary register, then clear PSR
bits S,Uand T.

3) Push the PSR copy onto the Interrupt Stack as a 16-bit
value.

4) Set “Vector” to 9.

5) Set “Return Address” to the address of the next instruc-
tion.

6) Perform Service (Vector, Return Address), Figure 3-30.

3.8.7.4 Abort Sequence

1) Restore the currently selected Stack Pointer to its originai
contents at the beginning of the aborted instruction.

2) Clear the PSR P bit.

3) Copy the PSR into a temporary register, then clear PSR
bits S, U, T and .

4) Push the PSR copy onto the Interrupt Stack as a 16-bit
value.

5) Set "“Vector” to 2.

6) Set “Return Address” to the address of the first byte of
the aborted instruction.

7) Perform Service (Vector, Return Address), Figure 3-30.

3.8.7.5 Bus Error Sequence
1) The same as Abort sequence above, but set vector to 12.

3.9 SLAVE PROCESSOR INSTRUCTIONS

The NS32332 CPU recognizes three groups of instructions
being executable by external Slave Processor:

Floating Point instruction Set

Memory Management Instruction Set
Custom Instruction Set

Each Slave Instruction Set is validated by a bit in the Config-
uration Register (Sec. 2.1.3). Any Slave Instruction which
does not have its corresponding Configuration Register bit
set will trap as undefined, without any Slave Processor com-
munication attempted by the CPU. This allows software sim-
ulation of a non-existent Slave Processor.

In addition, each slave instruction will be performed either
through the regular (32032 compatible) slave protocol or
through a fast slave protocol according to the relevent bit in
the configuration register (Sec. 2.1.3).

A combination of one slave communicating with an old pro-
tocol and another with a new protocol is allowed, e.g. 16-bit
FPU (32081) and 32-bit MMU (32382) or vice versa.

3.9.1 16-Bit Slave Processor Protocol

(32032 Compatible)

Slave Processor instructions have a three-byte Basic In-
struction field, consisting of an ID Byte followed by an Oper-
ation Word. The ID Byte has three functions:

1) It identifies the instruction as being a Slave Processor
instruction.

2) It specifies which Slave Processor will execute it.

3) It determines the format of the following Operation Word
of the instruction.

Upon receiving a Slave Processor instruction, the CPU initi-
ates the sequence outlined in Figure 3-31. While applying
Status Code 1111 (Broadcast 1D, Sec. 3.4.3), the CPU
transfers the 1D Byte on the least-significant byte of the
Data Bus (ADO-AD?7). All Slave Processors input this byte
and decode it. The Slave Processor selected by the ID Byte
is activated, and from this point the CPU is communicating
only with it. If any other slave protocol was in progress (e.g.,
an aborted Slave instruction), this transfer cancels it.

The CPU next sends the Operation Word while applying
Status Code 1101 (Transfer Slave Operand, Sec. 3.4.3).
Upon receiving it, the Slave Processor decodes it, and at
this point both the CPU and the Slave Processor are aware
of the number of operands to be transferred and their sizes.
The operation Word is swapped on the Data Bus, that is,
bits 0-7 appear on pins AD8-AD15 and bits 8-15 appear
on pins ADO-AD7.

Using the Address Mode fields within the Operation Word,
the CPU starts fetching operand and issuing them to the
Slave Processor. To do so, it references any Addressing
Mode extensions which may be appended to the Slave
Processor instruction. Since the CPU is solely responsible
for memory accesses, these extensions are not sent to the
Slave processor. The Status Code applied is 1101 (Transfer
Slave Processor Operand, Sec. 3.4.3).

After the CPU has issued the last operand, the Slave Proc-
essor starts the actual execution of the instruction. Upon
completion, it will signal the GPU by pulsing SPC low. To
allow for this SPC is normally held high only by an internal
pull-up device of approximately 5 kQ.

While the Slave Processor is executing the instruction, the
CPU is free to prefetch instructions into its queue. If it fills
the queue before the Slave Processor finishes, the CPU will
wait, applying Status Code 0011 (Waiting for Slave, Sec.
3.4.3).

Upon receiving the pulse on SPC, the CPU uses SPC to
read a Status Word from the Slave Processor, applying
Status Code 1110 (Read Slave Status, Sec. 3.4.3). This
word has the format shown in Figure 3-34. If the Q bit
(“Quit”, Bit 0) is set, this indicates that an error was detect-
ed by the Slave Processor. The CPU will not continue the
protocol, but will immediately trap through the SLAVE vector
in the Interrupt Table. Certain Slave Processor instructions
cause CPU PSR bits to be loaded from the Status Word.

The last step in the protocol is for the GPU to read a result,
if any, and transfer it to the destination. The Read cycles
from the Slave Processor are performed by the CPU while
applying Status Code 1101 (Transfer Slave Operand, Sec.
3.4.3).

An exception to the protocol above is the LMR (Load Mem-
ory Management Register) instruction, and a corresponding
Custom Slave instruction (LCR: Load Custom Register). In
executing these instructions, the protocol ends after the
CPU has issued the last operand. The CPU does not wait for
an acknowledgement from the Slave Processor, and it does
not read status.
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3.0 Functional Description (continued)

Status Combinations:
Send ID (iD): Code 1111
Xfer Operand (OP): Code 1101
Read Status (ST): Code 1110
Step Status Action
1 1D CPU Send ID Byte.

OP  CPU Sends Operaton Word.

OP CPU Sends Required Operands

- Slave Starts Execution. CPU Pre-fetches.
Slave Puises SPC Low.

ST CPU Reads Status Word. (Trap? Alter Flags?)
OP  CPU Reads Results (If Any).

N e e s N
|

Status Combinations:

Send ID (I0D): Code 1111
Xfer Operand (OP): Code 1101

Read Status (ST): Code 1110
Step Status Action

1 ID CPU sends ID and Operation Word.

2 OP  GCPU sends required operands (if any).

3 — Slave starts execution (CPU prefetches).*

4 —  Slave pulses SDONE or SPC low.

5 ST  CPU Reads Status word (only if SDONE or SPC
pulse is two clock cycles wide).

6 OP  CPU Reads Results (if any).

FIGURE 3-31. 16-Bit Slave Processor Protocol

3.9.2 32-Bit Fast Slave Protocol

Upon receiving a Slave Processor instruction, the CPU initi-
ates the sequence outlined in Figure 3-32. While applying
Status code 1111 (Broadcast ID Sec. 3.4.2), the CPU trans-
fers the ID Byte on bits AD24-AD31, the operation word on
bits AD8-AD23 in a swapped order of bytes and a non-used
byte xx0000 (x = don’t care) on bit ADO-AD7 (Figure
3-33).

Using the addressing mode fields within the Operation word,
the CPU fetches operands and sends them to the Slave
Processor. Since the CPU is solely responsible for memory
accesses, addressing mode extensions are not sent to the
Slave Processor. The Status Code applied is 1101 (Transfer
Slave Processor Operand Sec. 3.4.2). After the CPU has
issued the last operand, the Slave Processor starts the ac-
tual execution of the instruction. Upon completion, it wili sig-
nal the CPU by pulsing SDONE or SPC low for one clock
cycle.

Unlike the old protocol, the SLAVE may request the CPU to
read the status by activating the SDONE or SPC line for two
clock cycles instead of one. The CPU will then read the
slave status word and update the PSR Register, unless a
trap is signalled. If this happens, the CPU will immediately
abort the protocol and start a trap sequence using the
SLAVE vector in the interrupt table.

While the Slave Processor is executing the instruction, the
CPU is free to prefetch instructions into its queue. If it fills its
queue before the Slave Processor finishes, the CPU will
wait applying status code 0011 (waiting for Slave, Sec.
3.4.2).

Upon recsiving the pulse on either SDONE or SPC, the CPU
uses SPC to read the result from the Slave Processor and
transfer it to the destination. The Read cycles from the
Slave Processor are performed by the CPU while applying
Status Code 1101 (Transfer Slave Operand, Sec. 3.4.2).

FIGURE 3-32. 32-Bit Fast Slave Protocol

Certain Slave Processor instructions affect CPU PSR. For
these instructions only the CPU will perform a Read Slave
status cycle as described in 3.9.1.1 before reading the re-
sult. The relevent PSR bits will be loaded from the status
word.
byte 3 byte 2

byte 1 byte 0

ID OPCODElow OPCODE high  Don't Care

FIGURE 3-33. ID and Opcode Format
for Fast Slave Protocol

3.9.3 Floating Point Instructions

Table 3-4 gives the protocols followed for each Floating
Point instruction. The instructions are referenced by their
mnemonics. For the bit encodings of each instruction, see
Appendix A.

The Operand class columns give the Access Class for each
general operand, defining how the addressing modes are
interpreted (see Instruction Set Reference Manual).

The Operand Issued columns show the sizes of the oper-
ands issued to the Floating Point Unit by the CPU. “D” indi-
cates a 32-bit Double Word. “i”” indicates that the instruction
specifies an integer size for the operand (B = Byte, W =
Word, D = Double Word). “f” indicates that the instruction
specifies a Floating Point size for the operand (F = 32-bit
Standard Floating, L = 64-bit Long Floating).

The Returned Value Type and Destination column gives the
size of any returned value and where the CPU places it. The
PSR Bits Affected column indicates which PSR bits, if any,
are updated from the Slave Processor Status Word (Figure
3-34).
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3.0 Functional Description (continued)

TABLE 3-4
Floating Point Instruction Protocols.
Mnemonic Operand 1 Operand 2 Operand 1 Operand 2 Returned Value PSR Bits
Class Class Issued Issued Type and Dest. Affected
ADDf read.f rmw.f f f ftoOp.2 none
susf read.f rmw.f f f ftoOp. 2 none
MULf read.f rmw.f f f ftoOp. 2 none
Divf read.f rmw.f f f ftoOp. 2 none
MOVF read.f write.f f N/A ftoOp.2 none
ABSf read.f write.f f N/A ftoOp. 2 none
NEGf read.f write.f f N/A ftoOp. 2 none
CMPf read.f read.f f f N/A N,Z,L
FLOOR(i read.f write.i f N/A itoOp. 2 none
TRUNCHi read.f write.i f N/A itoOp.2 none
ROUNDAi read.f write.i f N/A itoOp. 2 none
MOVFL read.F write.L F N/A LtoOp. 2 none
MOVLF read.L. write.F L N/A Fto Op. 2 none
MOVif read.i write.f i N/A fto Op. 2 none
REMf read.f rmw.f f f ftoOp.2 none
SQRTf read.f write.f f N/A fto Op.2 none
POLYf read.f read.f H f fto FO none
DOTf read.f read.f f f fto FO none
SCALBf read.f rmw.f f f ftoOp.2 none
LOGBf read.f write.f f N/A fto Op.2 none
ATAN2f read.f rmw.f f f ftoOp.2 none
SICOSf read.f rmw.f f N/A ftoOp.2 & FO none
LFSR read.D N/A D N/A N/A none
SFSR N/A write.D N/A N/A DtoOp. 2 none
Note:
D = Double Word

i = Integer size (B,W,D) specified in mnemonic.
f = Floating Point type (F,L) specified in mnemonic.
N/A = Not Applicable to this instruction.

15 87 0

00000000 [NZFOOLOQI

New PSR Bit Value(s) /
“Quit": Terminate Protocol, Trap(FPU).
TL/EE/8673-44
FIGURE 3-34. Slave Processor Status Word Format

Any operand indicated as being of type “f” will not cause a
transfer if the Register addressing mode is specified. This is
because the Floating Point Registers are physically on the
Floating Point Unit and are therefore available without CPU
assistance.

3.9.4 Memory Management Instructions

Table 3-5 gives the protocols for Memory Management in-
structions. Encodings for these instructions may be found in
Appendix A.

In executing the RDVAL and WRVAL instructions, the CPU
calculates and issues the 32-bit Effective Address of the
single operand. The CPU then performs a single-byte Read
cycle from that address, allowing the MMU to safely abort
the instruction if the necessary information is not currently in
physical memory. Upon seeing the memory cycle complete,
the MMU continues the protocol, and returns the validation
result in the F bit of the Slave Status Word.

The size of a Memory Management operand is always a 32-
bit Double Word. For further details of the Memory Manage-
ment Instruction set, see the Instruction Set Reference
Manual and the MMU Data Sheet.




3.0 Functional Description (continued)

TABLE 3-5
Memory Management Instruction Protocols.
Operand 1 Operand 2 Operand 1 Operand 2 Returned Value PSR Bits
Mnemonic Class Class Issued Issued Type and Dest. Affected
RDVAL* addr N/A D N/A N/A F
WRVAL* addr N/A D N/A N/A F
LMR* read.D N/A D N/A N/A none
SMR* write.D N/A N/A N/A DtoOp.1 none
Note:

In the RDVAL and WRVAL instructions, the CPU issues the.address as a Double Word, and performs a single-byte Read cycle from that memory address. For
details, see the Instruction Set Reference Manual and the Memory Management Unit Data Sheet.

D = Double Word
* = Privileged Instruction: will trap if CPU is in User Mode.
N/A = Not Applicable to this instruction.

3.9.5 Custom Slave Instructions

Provided in the NS32332 is the capability of communicating
with a user-defined, “Custom” Slave Processor. The in-
struction set provided for a Custom Slave Processor defines
the instruction formats, the operand classes and the com-
munication protocol. Left to the user are the interpretations
of the Op Code fields, the programming model of the Cus-
tom Slave and the actual types of data transferred. The pro-
tocol specifies only the size of an operand, not its data type.
Table 3-6 lists the relevant information for the Custom Slave
instruction set. The designation “c” is used to represent an

operand which can be a 32-bit (“D”) or 64-bit (“Q”) quantity
in any format; the size is determined by the suffix on the
mnemonic. Similarly, an “i” indicates an integer size (Byte,
Word, Double Word) selected by the corresponding mne-
monic suffix.

Any operand indicated as being of type “c” will not cause a
transfer if the register addressing mode is specified. it is
assumed in this case that the slave processor is already
holding the operand internally.

For the instruction encodings, see Appendix A.
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3.0 Functional Description (Continued)

Operand 1

Mnemonic Class
CCALOc read.c
CCAL1c read.c
CCAL2c read.c
CCAL3c read.c
CCAL4c read.c
CCAL5c read.c
CCAL6c read.c
CCAL7c read.c
CCAL8c read.c
CCALSc read.c
CMOVOc read.c
CMOVic read.c
CMOV2c read.c
CMOV3c read.c
CMOV4c read.c
CMOV5¢c read.c
CMOV6e read.c
CMOV7¢ read.c
CCMPOc read.c
CCMP1c read.c
CCVOoci read.c
CCV1ci read.c
CCVaci read.c
CCV3ic read.i

ccv4bQ read.D
CCV5QD read.Q
LCSR read.D
SCSR N/A

CATSTO* addr

CATST1* addr

LCR* read.D
SCR* write.D

Note:
D = Double Word
i = Integer size (B,W,D) specified in mnemonic.

TABLE 3-6

Custom Slave Instruction Protocols.

Operand 2
Class
rmw.c
rmw.c
mw.c
mw.c

rmw.c
mw.c
rmw.c
mw.c
read.c
read.c
write.c
write.c
write.c
write.c
write.c
write.c
write.c
write.c
read.c
read.c
write.i
write.i
write.i
write.c
write.Q
write.D
N/A
write.D
N/A
N/A
N/A
N/A

¢ = Custom size (D:32 bits or Q:64 bits) specified in mnemonic.
* = Privileged instruction: will trap if CPU is in User Mode.

N/A = Not Applicable to this instruction.

Operand 1
Issued

OODU—-000 0 0 0DOOO0OO OO0 600000 0000

N/A

O oo

N/A

Operand 2
issued

OO0 0000 0000

N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A

N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A

N/A
N/A
N/A
N/A

Returned Value
Type and Dest.
ctoOp. 2
ctoOp. 2
ctoOp. 2
ctoOp.2
ctoOp.2
ctoOp.2
ctoOp.2
ctoOp.2
ctocreg
ctoc.reg
ctoOp.2
ctoOp.2
ctoOp.2
ctoOp.2
ctoOp.2
ctoOp.2
ctoOp.2
ctoOp.2
N/A
N/A
itoOp. 2
itoOp.2
itoOp. 2
ctoOp. 2
QtoOp. 2
DtoOp.2
N/A
DtoOP.2
N/A
N/A
N/A

D to Op.1

PSR Bits
Affected
none
none
none
none

none
none
none
none
none
none
none
none
none
none
none
none
none
none
N,Z,L
N,ZL
none
none
none
none
none
none
none
none
F
F

none
none




4.0 Device Specifications

4.1 NS32332 PIN DESCRIPTIONS

The following is a brief description of all NS32332 pins. The
descriptions reference portions of the Functional Descrip-
tion, Section 3.

Unless otherwise indicated, reserved pins should be left
open.

4.1.1 Supplies

Logic Power Vecy 1, 2 +5V positive supply.

Buffers Power (VeeBy, 2, 3, 4, 5): +5V positive supply.
Logic Ground (GNDL1, GNDL2): Ground reference for on-
chip logic.

Buffer Grounds (GNDB1, GNDB2, GNDB3, GNDB4,
GNDBS, GNDBS6): Ground references for on-chip drivers.
Back Bias Generator (BBG): Output of on-chip substrate
voltage generator.

4.1.2 Input Signals

Clocks (PHI, PHI2): Two-phase clocking signals.

Ready (RDY): Active high. While RDY is not active, the CPU
adds wait cycles to the current bus cycle. Not applicable for
slave cycles.

Hold Request (HOLD): Active low. Causes the CPU to re-
lease the bus for DMA or multiprocessing purposes.

Note: If the HOLD signal is generated asynchronously, it's set up and hold
times may be violated. In this case it is recommended to synchronize
it with CTTL to minimize the possibility of metastable states.

The CPU provides only one synchronization stage to minimize the
HLDA tatency. This is to avoid speed degradations in cases of heavy
HOLD activity (i.e. DMA coniroller cycles interleaved with CPU
cycles.)

Interrupt (INT): Active low. Maskable Interrupt request.
Non-Maskable Interrupt (NMi): Active low. Non-Maskable
Interrupt request.

Reset/Abort (RST/ABT): Active low. If held active for one
clock cycle and released, this pin causes an ABORT. If held
longer, it is interpreted as RESET.

Bus Error (BER): Active low. When active, indicates that an
error occurred during a bus cycle. It is treated by the CPU as
the highest priority exception after RESET. Not applicable
for slave cycles.

Bus Retry (BRT): Active low, when active, the CPU will re-
execute the last bus cycle. Not applicable for slave cycles.
Bus Width (BW1, BWO): Define the bus width (8, 16, 32) in
every bus cycle. 01-8 bits, 10-16 bits, 11-32 bits. 00 is a
reserved combination. Not applicable for slave cycles.
Burst in (BIN): Active low. When active, the CPU may per-
form burst cycles.

Float (FLT): Active low. Float command input. In non-
memory managed systems, this pin shouid be tied to Voo
through a 10 kQ resistor.

Data Timing/Slave Processor Control (DT/SDONE): Ac-
tive low. Used by a 32-bit slave processor to acknowledge
the completion of an instruction and/or indicate that the
slave status should be read (Section 3.9.2). Sampled on the
rising edge of reset to select the data timing during write
cycles (Section 3.3).

4.1.3 Output Signals

Address Strobe (ADS): Active low. Controls address latch-
es, indicates the start of a bus cycle.

Data Direction in (DDIN): Active low. Indicates the direc-
tions of data transfers.

Byte Enables (BEO-BE3): Active low. Enable the access of
bytes 0-3 in a 32 bit system.

Status (ST0-ST3): Bus cycle status code, STO least signifi-
cant. Encodings are:

0000 — ldle: CPU Inactive on Bus.

0001 — Idle: WAIT Instruction.

0010 — (Reserved).

0011 — Idle: Waiting for Slave.

0100 — Interrupt Acknowledge, Master.
0101 — Interrupt Acknowledge, Cascaded.
0110 — End of Interrupt, Master.

0111 — End of Interrupt, Cascaded.

1000 — Sequential Instruction Fetch.

1001 — Non-Sequential Instruction Fetch.
1010 — Data Transfer.

1011 — Read Read-Modify-Write Operand.
1100 — Read for Effective Address.

1101 — Transfer Slave Operand.

1110 — Read Slave Status Word.

1111 — Broadcast Slave ID.

Status Strobe (STS): Active low. Indicates that a new
status (STO-ST3) is valid. Not applicable for slave cycles.
Multiple Cycle/Exception Status (MC/EXS): Active low.
This signal is activated during the access of the first part of
an operand that crosses a double word address boundary.
It is also activated during Abort Acknowledge and when a
fatal bus error occurs.

Hold Acknowledge (HLDA): Active low. Activated by the
CPU in response to HOLD input. Indicates that the CPU has
released the bus.

User/Supervisor (U/S): User or Supervisor Mode status.
Interlocked Operation (ILO): Active low. Indicates that an
interlocked cycle is being performed.

Program Flow Status (PFS): Active low. A pulse that indi-
cates the beginning of an instruction execution.

Burst Out (BOUT): Active low. When active, indicates that
the CPU will perform burst cycles.

4.1.4 Input Output Signals

Address/Data 0-31 (ADO-AD31): Multiplexed address
and data lines.

Slave Processor Control (SPC): Active low. Used by the
CPU as a data strobe output for slave processor transfers.
Used by a 16-bit slave processor to acknowledge the com-
pletion of an instruction.
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NS32332-10/NS32332-12/NS32332-15

4.0 Device Specifications (Continued)
Specifications for Military/Aerospace products are not
contained in this datasheet. Refer to the associated
reliability electrical test specifications document.

4.2 ABSOLUTE MAXIMUM RATINGS
Temperature Under Bias

Storage Temperature

0°Cto +70°C
—65°Cto +150°C

All Input or Output Voltages with

Respect to GND —-0.5Vto +7V
Power Dissipation 3 Watt
Note: Absolute maximum ratings indicate limits beyond
which permanent damage may occur. Continuous operation
at these limits is not intended; operation should be limited to
those conditions specified under Electrical Characteristics.

4.3 ELECTRICAL CHARACTERISTICS T = 0° to +70°C, Vg = 5V 5%, GND = 0V

Symbol Parameter Conditions Min Typ Max Units
ViH Logical 1 Input Voltage 2.0 Ve +0.5 \
ViL Logical O Input Voltage -0.5 0.8 \
VcH Logical 1 Clock Voltage PHI1, PHI2 pins only Vge —0.5 Ve +0.5 \
VoL Logical 0 Clock Voltage PHI1, PHI2 pins only —-0.5 0.3 v
VeRT Clock Input Ringing Tolerance PHI1, PHI2 pins only —-0.5 0.5 \
VoH Logical 1 Output Voltage lon = —400 pA 24 '
VoL Logical 0 Output Voltage loL=2mA 0.45 \"
iLs SPC Input Current (low) V|N = 0.4V, SPCin input mode 0.05 1.0 mA
Iy Input Load Current 0 < VN < Vi, Allinputs except _
PHI1, PHI2, AT/SPC 20 2 wA
looFR O-utp.ut Leakage Current.(.Output 0.4 < Vout < Vee _20 20 A
pins in TRI-STATE condition)
Icc Active Supply Current loyT = 0, T = 25°C 320 450 mA
Connection Diagram®
NS32332 Pinout Descriptions
’ 84 Pin Grid Array
N @@@@@@@@@@@ w Desc Pin Desc Pin Desc Pin
GNDB1 Bl AD29 N6 BOUT E12
"@@@@@@@@@@@ AD6 B2 AD30 M6 ST D13
AD7 c1 AD31 N7 MC/EXS D12
RIOXO) © @ AD8 c2  vcou M7 VGOBS c13
AD9 D1 VCClL2 N8 ADS ci2
[CXO) @ © ADt0 D2 INT M8  GNDB6 B13
ADM1 Et  NMI N9  DDIN A12
1@ © © O GNDB2 E2 °RESERVED M9  BEO B12
AD12 F1  *RESERVED N10  BET A1
W@ ©@ ©© AD13 F2  °*RESERVED M0 BEZ B11
AD14 G1 *RESERVED N11  BE3 A10
s|® © NS32332 © © ADI5 G2 10 Mi1  FALDA B10
VCCB2  H1  VCCB4 Ni2  HOLD A9
Fl@ @ ©® © ADI6  H2 ST3 Mi3  RDY 89
AD17 J1 ST2 M12  DT/SDONE A8
E AD18 J2  sm L3 PHI2 B8
@ @ @ @ AD19 K1 STO 12 PHI1 A7
D GNDB3 K2  STS K13  BBG B7
@ @ @ @ AD20 L1 GNDBS Ki2  GNDL2 A6
¢ AD21 L2 PFS J13 GNDL1 B6
@ @ @ @ @ AD22 M1 USS Ji2 veest A5
B AD23 N2 BW1 H13  ADO B5
@ @ @ @ @ @ @ @ @ @ @ VCCB3 M2 BWO H12  AD1 A4
A AD24 N3 BN G13  AD2 B4
\ @@@@@@©@@@@J AD25 M3 FOT G12  AD3 A3
AD26 N4  RST/ABT F13  AD4 B3
1 2 3 a4 5 6 7 8 9 10 1 12 B ADD? Wi BT F12  ADS a2
TL/EE/8673-45 GNDB4 N5 BER E13  POSITIONPIN  C3
Bottom View AD26 M5

FIGURE 4-1. Pin Grid Array Package
* AMP sockets are recommended for use with NS32332 CPU. AMP sockets are manufactured by AMP INCORPORATED, Harrisburg PA.

2-52




4.0 Device Specifications (continued)
4.4 SWITCHING CHARACTERISTICS

4.4.1 Definitions

All the timing specifications given in this section refer to
2.0V on the rising or falling edges of the clock phases PHI1
and PHI2 and 0.8V or 2.0V on all other signals as illustrated
below, unless specifically stated otherwise.

ABBREVIATIONS:
L.E. — leading edge
T.E. — trailing edge

R.E. — rising edge
F.E. — falling edge

r
PHin 20v PHin
( ————24V -
SIG1 SIG1
1S1G11
0.8V
L 0.45V L
r 2.4V -
tSiG2h
2.0v
SIG2 siG2
L ————————— 0.45v -

TL/EE/8673-46

FIGURE 4-2. Timing Specification Standard
(Signal Valid After Clock Edge)

4.4.2 Timing Tables

4.4.2.1 Output Signals: Internal Propagation Delays, NS32332-10, NS32332-12, N$32332-15*
Maximum times assume capacitive loading of 100 pF.
*15 MHz Timing is Advance Information

20v

TL/EE/8673-47

FIGURE 4-3. Timing Specification Standard
(Signal Valid Before Clock Edge)

Symbol | Figure Description I:l:efe;?tl_lce/ N$32332-10 | NS32332-12 | NS32332-15* Units
onditions Min |Max| Min |Max| Min |Max
tALY 4-5 | Address bits 0-31 valid after R.E., PHi1 T1 50 35 | ns
tALh 4-5 | Address bits 0-31 hold after R.E., PHI1 T2/Tmmu 5 5 ns
tov 4-5 | Data valid (write cycle) after R.E., PHI1 T3 or T2 50 38 | ns
toh 4-5 | Data hold (write cycle) after R.E,, 0 0 ns
PHI next T1 or Ti
taLADSs| 4-4 | Address bits 0-31 setup before ADS reaches 2.0V 25 20 ns
taLADsh| 4-17 | Address bits 0-23 hold after ADS reaches 2.0V 10 10 ns
taLf 4-4 | Address bits 0-31 after R.E., PHI1 T2/Tmmu 25 18 | ns
floating (no MMU)
tALMS 4-17 | Address bits 0-31 after R.E., PHI1 T2/Tmmu 25 23 | ns
floating (by FLT line)
tsTsa | 4-3,4-5| STS signal active (low) after R.E., PHI1 T4 of 35 25 | ns
previous bus cycle or Ti
tsTsia | 4-3,4-5]STS signal inactive after R.E., PHI2 T4 of 45 34 | ns
previous bus cycle or Ti
tSTSw 4-3 | STS pulse width at 0.8V (both edges) 35 24 ns
tBENY 4-4,4-6 | BEn signals valid after R.E., PHI2, T4 or Ti 140 o5 ns
{Operand Read Cycles Only)
teEy 4-5,4-6 | BEn signals valid after R.E., PHI2, T4 or Ti 85 58 | ns
tsEh 4-4 | BEn signals hold after R.E., PHI2, T4 0 0 ns
tsTv 4-5 | Status (STO-ST3) valid after R.E., PHI1 T4 50 35 | ns
(before T1, see note)
tsTh 4-5 | Status (STO-ST3) hold after R.E., PHI1 T4 (after T1) 0 0 ns
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NS32332-10/NS32332-12/NS32332-15

4.0 Device Specifications (continued)

4.4.2.1 Output Signals: Internal Propagation Delays, NS32332-10, NS32332-12, NS32332-15* (Continued)
*15 MHz Timing is Advance Information

Reference/ NS32332-10 | NS32332-12 | NS32332-15*
Symbol | Figure Description Units
Conditions Min | Max [ Min | Max | Min | Max
tDDINV 4-4 | DDIN signal valid after R.E., PHI1 T1 35 25 ns
tDDING 4-4 | DDIN signal hold after R.E., PHI1 nextTiorTi| O 0 ns
tADSa 4-5 | ADS signal active (low) after R.E., PHI1 T1 35 26 ns
tADSia 4-5 | ADS signal inactive after R.E., PHI2 T1 45 29 ns
tADSw 4-5 | ADS pulse width at 0.8V (both edges) 35 24 ns
tMCa 4-1,4-2 | MC signal active (low) after R.E., PHI1 T1 50 38 ns
tmcia | 4-1,4-2 | MC signal inactive after R.E., PHI1 T1 50 38 ns
or T3 (burst)
taLt 4-14 | ADO-AD31 floating after R.E., PHI1 T1 25 18 ns
(caused by HOLD)
tADSE 4-14, | ADS floating after RE., PHI1 Ti 55 40 ns
4-15 | (caused by HOLD)
taef 4-14, | BEn floating after R.E., PHI1 Ti 55 40 ns
4-15 | {caused by HOLD)
tDDINE 4-14, | DDIN floating after R.E., PH Ti 55 40 ns
4-15 | (caused by HOLD)
tHLpAa | 4-14, | FILDA signal active (fow) | after R.E., PHI1 T4 75 55 ns
4-15
tyipaia | 4-16 | HLDA signal inactive after R.E., PHI1 Ti 75 55 ns
tapsr 4-16 | ADS signal retumns from after R.E., PHI Ti 55 40 ns
floating (caused by HOLD)
tgEr 4-16 | BEnsignalsreturnfrom | after R.E, PHH Ti 55 40 ns
floating (caused by HOLD)
tDDINF 4-16 | DDIN signal returns from | after R.E., PHI1 Ti 55 40 ns
floating (caused by HOLD)
toDINg 4-17 | DDIN signal floating after FLT F.E. 50 38 ns
(caused by FLT)
tDDINF 4-18 | DDIN signal returns from | after FLT R.E. 40 28 ns
floating (caused by FLT)
tspCa 4-19 | SPC output active (low) after R.E., PHI1 T1 30 21 ns
tsPCia 4-19 | SPC output inactive after R.E., PHI1 T4 2 35 2 26 ns
tSPCnf 4-22 | SPC output nonforcing after R.E., PHI2 T4 10 8 ns
tov 4-19 | Data valid (slave after R.E., PHI1 T1 50 38 ns
processor write)
tDh 4-19 | Data hold (slave after R.E., PHI1 0 0 ns
processor write) nextT1or Ti
tPFSw 4-24 | PFS pulse width at 0.8V (both edges) 70 45 ns
tPEsa 4-24 | PFS pulse active (low) after R.E., PHI2 50 38 ns
tPESia 4-24 | PFS pulse inactive after R.E., PHI2 50 38 ns
tusy 4-31 | U/S signal valid after R.E., PHI1 T4 48 35 ns
tush 4-31 | U/S signal hold after R.E., PHI1 T4 10 6 ns
tNSPF 4-26 | Nonsegquential fetch to after R.E., PHI1 T1 4 3
next PFS clock cycle top
tPENS 4-25 | PFS clock cycle to next before R.E., PHI1 T1 4 3 s
non-sequential fetch P
tsTsi :11 1;, STS floating (HOLD) after R.E., PHI1 Ti 55 40 ns
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4.0 Device Specifications continued)

4.4.2.1 Output Signals: Internal Propagation Delays, NS32332-10, NS32332-12, NS32332-15* (Continued)
*15 MHz Timing is Advance Information

Symbol | Figure Description I::efe;_etpcel NS32332-10 | NS32332-12 | NS32332-15* Units
onditions Min | Max | Min | Max | Min | Max
tsTSr 4-16 | STS not floating (HOLD) | after R.E., PHI1 Ti, T4 55 40 ns
tBouTa 4-4, | BOUT output active after R.E., PHI2 Tmmu
4-6, 100 66 ns
4-9
tBoUTIa 4-4, | BOUT output inactive after R.E., PHI2
4-6, T3orT4 75 50 ns
4-9
tiLoa 4-13 | ILO signal active after R.E., PH1 T4 50 38 ns
tiLOia 4-13 | TLO signal inactive after R.E., PHI1 Ti 50 38 ns
Note: Every memory cycle starts with T4, during which Cycle Status is applied. !f the CPU was idling, the sequence will be: . . . Ti, T4, T1. . .”. If the CPU was
not idling, the sequence will be: “. . . T4, T1. . .”.
4.4.2.2 Input Signal Requirements: NS32332-10, NS32332-12, NS32332-15*
*15 MHz Timing is Advance Information
Symbol | Figure Description gef;e;;?oe/ NS32332-10 | NS32332-12 | NS32332-15* Units
onditions Min | Max | Min | Max| Min | Max
tPwR 4-29 Power stable to after Voo
RSTRE. reaches 4.5V 50 33 kS
tDIs 4-4 Data in setup before F.E., PHI2 T3 10 7 ns
(read cycle)
tDIh 4-4 Data in hold after R.E., PHI1 T4
(read cycle) 10 6 ns
tHLDa 4-14, HOLD active (low) setup | before F.E., PHI2 25 17 ns
4-15 time (see note) T2/Tmmu or T3 or Ti
tHLDia 4-16 HOLD inactive setup before F.E., PHI2 Ti .
time 25 17 ns
tHLDh 4-14, 4-15, | HOLD hold time after R.E., PHI1 0 0 ns
4-16 TiorT3
trLTa 4-17 FLT active (low) before F.E., PHI2
setup time Tmmu 25 17 ns
tFLTia 4-18 FLT inactive setup before F.E., PHI2 T3 25 17 ns
time
tRDYs 4-4,4-5, | RDY setup time before F.E., PHI1 T3 25 17 ns
4-6
tRDYh 4-4,4-5, | RDY hold time after F.E., PHI2 T3 0 0 ns
4-6
tABTs 4-27 ABT setup time before F.E., PHI2 20 13 ns
(FLT inactive) T2/Tmmu
tABTs 4-28 ABT setup time before F.E., PHI2 Tf 20 13 ns
(FLT active)
tABTH 4-27, ABT hold time after R.E., PHI1 T3 0 0 ns
4-28
tRSTs 4-29, 4-30 | RST setup time before F.E., PHI1 20 13 ns
tRSTwW 4-29, 4-30 | RST pulse width at 0.8V (both edges) 64 64 top
tINTs 4-32 | INT setup time before F.E., PHI1 20 13 ns
tNMIw 4-33 NMI pulse width at 0.8V (both edges) 40 27 ns
tDIs 4-22 Data setup (slave before F.E., PHI2 T1 10 7 ns
read cycle)
tDih 4-22 Data hold (slave after R.E., PHI1 T4 10 7 ns
read cycle)
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NS32332-10/NS32332-12/NS32332-15

4.0 Device Specifications (continued)

4.4.2.2 Input Signal Requirements: NS32332-10, NS32332-12, NS32332-15* (Continued)
*15 MHz Timing is Advance Information

- - = *
Symbol | Figure Description I;ef:;_etpc:l NS32332-10 NS32332-12 NS32332-15 Units
oncitions Min | Max | Min | Max | Min | Max
1oTs 4-29 | DT setup time before RST R.E. 90 60 ns
DTh 4-29 | DT hold time after RST R.E. 50 33 ns
tspcd 4-22 SPC pulse delay after R.E., PHI2 T4 10 8 ns
from slave
tspCs 4-22 SPC setup time before F.E., PHI1 25 15 ns
tsPcw 4-22 SPC pulse width at 0.8V (both edges) 20 13 ns
tSDNd 4-21 SDONE pulse delay after R.E., PHI2 T4 10 8
ns
from slave
tSDNs 4-21 SDONE setup time before F.E., PHI1 25 15 ns
tSDNw 4-21 SDONE pulse width at 0.8V (both edges) 20 13 ns
tSDNSTW 4-21 SDONE pulse width at 0.8V (both edges)
(to force CPU to 175 115 ns
read slave status)
tBws 4-2,. g-s BW 0-1 setup time before F.E., PHI1 T3 25 17 ns
tBWh 4-4,4-6 | BWO-1 hold time after R.E., PHI1 T4 0 0 ns
tBINS 4-6 BIN setup time (for before F.E., PHI1 T3 o5 17 ns
each cycle of the burst)
tBINh 4-6 BIN hold time after R.E., PHI1 T4 0 0 ns
1BERs 4-11,4-12 | BER setup time before F.E., PHI1 T4 25 17 ns
tBERR 4-11,4-12 | BER hold time after R.E., PHI1 Ti 0 0 ns
tBRTs 4-7,4-8, | BRT setup time before F.E., PHI1
4-9,4-10 T3and T4 % 17 ns
taRTh 4-7,4-9 | BRT Hold Time after R.E., PHII Ti 0 0 ns

Note: This setup time is necessary to ensure prompt acknowledgement via ALDA and the ensuing floating of CPU off the buses. Note that the time from the receipt
of the HOLD signal until the CPU floats is a function of the time HOLD signal goes low, the state of the RDY input (in MMU systems), and the length of the current
MMU cycle.

4.4.2.3 Clocking Requirements: NS32332-10, NS32332-12, NS32332-15"
*15 MHz Timing is Advance Information

Symbol | Figure Description Reference/ NS32332-10 NS32332-12 | NS32332-15* Units
Conditions Min | Max | Min | Max | Min | Max
toLr 4-23 | PHH, PHI2rise time | 0.8V to Vog—0.9V 7 a | s
On R.E., PHI1, PHI2
toLt 4-23 | PHI1, PHI2 fall time Vcoc—0.9V to 0.8V 7 4
OnF.E., PHI1, PHI2 ns
top 4-23 | Clock period R.E., PHI1, PHI2 to next
RE. PHI1, PHI2 100 5000 66 1000 | ns
toLw(1,2) 4-23 | PHI1, PHI2 Pulse Width | At 2.0V on PHI1, PHI2 0.5t 0.5 tep
(Both Edges) - 6ns —10ns
tcLht,2) | 4-23 | PHI, PHI2 high time AtVgc-0.9Von 0.5t 0.51cp
PHI1, PHI2 (Both Edges) —15ns —10ns
thovL(1,2)| 4-23 Non-overlap time 0.8V on F.E., PHI1, PHI2 to 0 7 0 6 n
0.8V on R.E., PHI2, PHi1 S
thOvLas Non-overlap asymmetry | At 0.8V on PHI1, PHI2
_ —4 4 -3 3 ns
(thovL() ~thovi(e)
tcLhas PHI1, PHI2 asymmetry | At Vgg-0.9V on PHIT, PHI2
—5 5 -3 3 ns
(toLh() —toLh@)
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4.0 Device Specifications (continued)

4.4.3 Timing Diagrams

| T4 | n |T2/Tmmu 13 | 13 | i |r1 onn|
PHH[ I
— - —
sz’ —-I —l I I |
tsTsa —" e r_lsma

|

- ISTSw

e

STATUS VALID

NEXT STATUS

m[

l-—-—— TALADs

|
VIRTUA|

ﬂ(

ADO-31 [ NEXT ADDR
tooINy R |[«—— tDDINK
DDIN [ NEXT
i
thoys ! [~ lmom
ROY [
— —1tpws —— l«!swn
o )
il
186 '
2 —=| |a—tgen
(2) BEO-3 l X% VALID % NEXT
| 1
tmca — |~— —| |e—tmcis
4

mmlfﬁ[

S

/

m[

Note 1: Asserted (low) when the bus transaction crosses a double-word boundary (address bits AO-1 wrap around during the transaction).

(HIGH)

Note 2: BEO-BES are all active during instruction fetch cycles.

FIGURE 4-4. NS32332 Read Cycle Timing

TL/EE/8673-48
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4.0 Device Specifications (continued)

] T4 | T l T2/Tmmu 13 I T3 | T4 | TIORTI |

e TR e T e I e D e T e D, e D wd
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—
15Ty — Lt_ —| [*—1ADSia
ADSa -1
ADS [ \ /
taosw —> |- 4 \
I o et [ —{|+—lon
. P p——
ADD-31 [ ADDRESS — DATA OUT [ NEXT ADDR
A -— { W
— L— —4 L—lALn
___ A}
DOIN / —=| |—thovs N NEXT
— thovh | W
1R0Ys —>] [+— — |<—!nnvn
ROY [
4

tBWs-—->| [e—

| X

1
- tgEv ] — l——— taen

| XA = XX
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mzm[ ‘L F4
[ I s v —————
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FIGURE 4-5. NS32332 Write Cycle Timing
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4.0 Device Specifications (continued)

[ T4 | ™ nrnznfu| w43 Te | B|W|W|B|W|MD |r;fn/u| T3] TA | T3 | T4 [T1ORTH
put 1] L L LT [
we| LA L Ly 11
a5 \V} \W/
§T0-3 [ :x STATUS VALID X STATUS VALID X
s [ NIBBLE 1 NIBBLE 2 NIBBLE 3 NIBBlLE 4 \J \J
o —DCIH-HD-+ - - 11~ H - DO
T [ VIRT ADDR DATA DATA DATA DATA  [VIRT ADDR DATA DATA  NEXTADDR
VALID N N N N VALID O ,——
WI \ | | 4 NEXT
tMea—| Mg~ | &
E/BS | T ;i j
T Sean , — —teouTis “
a0t | | \f ‘ I \ A
taiNs —f {— —| (— tRDYn tINs —] fo— \
o | 1 s I s / 1 | [
| | 1mm~q f— ‘
le —et e tBWh — o—lm
taws tows —| le— l
e ) 1
1By - ey _t;; — i

FIGURE 4-6. N$32332 Burst Cycle Timing
(Instruction fetches followed by Operand Reads)
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4.0 Device Specifications (Continued)
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|
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l T4 | Al . T2/Tmmu I 73 [ T4 | Ti l T4 l T l T2/Tmmu |

11 [ LT LI L
LU L

_-\-/ RETRIED (;YCLE 7
[«—terts  —> 18ATH
__Sl- RETRY _£E
1 1
TL/EE/8673-51
FIGURE 4-7. Bus Retry During Normal Bus Cycle
] T4 1 3] ‘ T2/Tmmu | T3 I T4 l m ] T2/Tmmu l
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YCLE
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N

\/

tBRTs

FIGURE 4-8. BRT Activated, but no Bus Retry
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4.0 Device Specifications (continued)

lu ln ITZ/TmmuI T4 | 1 |u | n | w |

pigigipigiigiyl

|

e ] i I"l [LT1

RETRIED CYCLE
(FOR NIBBLE 2)

=[T\/ \/

tBATs —>| |*— — teRTh
_ RETRY
B 4
— | tBoura ‘*‘ “— tB0UTia

| i

NIBBLE 1 NIBBLE 2

pd

=]

@
e

TL/EE/8673-53
FIGURE 4-9. Bus Retry During Burst Bus Cycle

[ e [ [ m [ | [
Sigipia s gl
w LT B

=\ \/
= \/ \/
taATs --———-1 le— toRTs
s \ i

s \ /

NIBBLE 1 NIBBLE 2

*NEXT BUS CYCLE

TL/EE/8673-54

*The next bus cycle is a normal bus cycle used to read data otherwise read as nibble 3 of the burst cycle (if BRT not activated) or other data.
FIGURE 4-10. BRT Activated During Burst Bus Cycle, but no Bus Retry
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4.0 Device Specifications (continued)

| T4 | T ’ T2/Tmmu | T3 | T4 | Ti | Ti ’

|

PHIZ[
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|
JEpEpNpN)

[

)

ar

LT

< 5

\/

|

\/

—> {BERR
1BERS e—

TL/EE/8673-55

FIGURE 4-11. Bus Error During Normal Bus Cycle
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ol T JEpEEEN)
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| \/ B

NIBBLE 1

NIBBLE 2
TL/EE/8673-56

FIGURE 4-12. Bus Error During Burst Bus Cycle
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4.0 Device Specifications (continued)

m ’ T2/Tmmy l T3 | T4 I Ti ‘ T l m l T2/Tmmu I 3 1 T4 l Ti |

SRRl ipigigigiipl
AL LT
S Vi

N v
= . ‘

*End of Dummy Read cycle with the address of the interlocked operand. TL/EE/8673-57
FIGURE 4-13. Timing of Interlocked Bus Transactions

wl LU o

B
1

—t—

— {
AOLD |_ | - tHLDh
T

tHLDa
! —'{LIHL: Aa

HLDA [

— taDst
205 ;.‘BD_'NL_.. ______ l_ ______
DDIN ‘ {FLOATING)
i BEf ] l
BE6-BE3 [ : X }____’ _____________
(FLOATING)
ALt '

ADo-ADzs[ ).____..______ ______
1 (FLOATING)
——*\] tapt
§T8 [ j : ----- |
' i ]
i i i

(FLOATING)
|

TL/EE/8673-58
FIGURE 4-14. Floating by HOLD Timing (CPU Not Idle Initially)

Note that whenever the GPU is not idling (not in Ti), the HOLD request (HOLD low) must be active tHLDa before the falling edge
of PHI2 of the clock cycle that appears two clock cycles before T4 (TX1) and stay low until tHLDh after the rising edge of PHI1 of
the clock cycle that precedes T4 (TX2) for the request to be acknowledged.
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4.0 Device Specifications (continueq)
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FIGURE 4-15. Floating by HOLD Timing (CPV initially idle)

Note that during Ti1 the CPU is already idling.
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FIGURE 4-16. Release from HOLD
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4.0 Device Specifications

CPU STATES
MMU STATES

- (]

PHI2 [

(Continued)
T1 Tramu
T Tmmu
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ADO-31
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(CPU) [

N

taLt

‘FLTir@ALMf
——<ADDRES$ CPU ;1-—_ ———
(CPU) el (FLOATING)

U tALADSh

=

X

FIGURE 4-17. FLT Initiated Cycle Timing
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t
+——={ tDDINF
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\_/
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X

Note that when FLT is deasserted the CPU restarts driving DDIN before the MMU releases it. This, however, does not causs any

FIGURE 4-18. Release from FLT Timing

conflict, since both CPU and MMU force DDIN to the same logic level.

TL/EE/8673-61

TL/EE/8673-62
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4.0 Device Specifications (Continued)
T4 ‘

"
WL L] |

PHI2 [ | I PHI2 [ | I
tDis f
- 'on ADO-31 I
AD0-15) | — VALID
DATA (FROM SLAVE)

[
(T | [ 2\

NEXTEY 'E sT0-3 [ STATUS VALID NEXT STATUS
ST0-3 [ STATUS VALID s
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,f_j_
E

ADO-31 [ _| DATA
(AD0-15) o ‘

A0S [ HIGH)
TL/EE/8673-64 ‘TL{EE/BS73-65
FIGURE 4-19. Slave Processor Write Timing FIGURE 4-20. Slave Processor Read Timing

T T4

SHalpiiy gt
Wl LML

tspent
ﬁ[ _T_.-__-.__
(FROM CPU) \ -
le—>] tsoNs
smNE_-----T-—-- 15DNw e e =
(FROM SLAVE) /

-
je——1SDNSTW

FIGURE 4-21. DT/SDONE Timing (32-Bit Slave Protocol)

W LM

w1 T1 MI1rrt
N Lt e

TL/EE/8673-63

SPC
(FROM CPU)
tsped
tspes
- - - - - -
(FROM SLAVE) [ !
spew

TL/EE/8673-66
FIGURE 4-22. SPC Timing (16-Bit Slave Protocol)
After transferring last operand to a Slave Processor, CPU
turns OFF driver and holds SPC high with internal 5 kQ pullup.
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4.0 Device Specifications (continueq)
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TL/EE/8673-67
FIGURE 4-23. Clock Waveforms
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FIGURE 4-24. Relationship of PFS to Clock Cycles
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FIGURE 4-25. Guaranteed Delay, PFS to Non-Sequential Fetch
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FIGURE 4-26. Guaranteed Delay, Non-Sequential Fetch to PFS
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TL/EE/8673-70

2-67

G1-CEETESN/Z1-CEETESN/OI-CEECESN



NS32332-10/NS32332-12/NS32332-15

4.0 Device Specifications (Gontinued)

, Tt ’ T2Tmmu I L] l Ti l
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AST/ABT

taABTs taBTh

o TL/EE/8673-71
FIGURE 4-27. Abort Timing, FLT Not Applied
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1L [T

| alils

FIGURE 4-28. Abort Timing, FLT Applied

TL/EE/8673-72

asv —~if
vee /|
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FIGURE 4-29. Power-On Reset
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4.0 Device Specifications (continued)
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FIGURE 4-30. Non-Power-On Reset
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FIGURE 4-31. U/S Relationship to Any Bus Cycle — Guaranteed Valid Interval
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FIGURE 4-32. INT Interrupt Signal Detection
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FIGURE 4-33. NMI interrupt Signal Timing
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Appendix A: Instruction Formats

NOTATIONS
i= Integer Type Field
B = 00 (Byte)
W = 01 (Word)
D = 11 (Doubie Word)
f= Floating Point Type Field
F = 1 (Std. Fioating: 32 bits)
L = 0 (Long Floating: 64 bits)
c= Custom Type Field
D = 1 (Double Word)
Q = 0 (Quad Word)
op= Operation Code
Valid encodings shown with each format.
gen, gen 1, gen 2= General Addressing Mode Fieid
See Sec. 2.2 for encodings.
reg= General Purpose Register Number
cond= Condition Code Field
0000 = EQual: Z = 1
0001 = Not Equak: Z = 0

0010 = Carry Set: C = 1
0011 = Garry Clear: C = 0
0100 = Higher: L = 1

0101 = Lower or Same: L = 0
0110 = Greater Than: N = 1
0111 = LessorEqual: N = 0
1000 = Flag Set: F = 1

1001 = Flag Clear: F = 0

1010 = LOwer: L =0andZ = 0

1011 = Higher or Same: L = torZ = 1
1100 = Less Than:N = 0and Z = 0
1101 = Greateror Equal: N = 1orZ = 1

1110 = (Unconditionally True)
1111 = (Unconditionally Faise)
short= Short Immediate value. May contain
quick: Signed 4-bit value, in MOVQ, ADDQ,
CMPQ, ACB.
cond: Condition Code {above), in Scond.
areg: CPU Dedicated Register, in LPR, SPR.

0000 = US
0001 — 0111 = (Reserved)
1000 = FP
1001 = SP
1010 = SB

1011 = (Reserved)
1100 = (Reserved)

1101 = PSR
1110 = INTBASE
1111 = MOD

Options: in String Instructions

luw BT

T = Translated

B = Backward

U/W = 00: None
01: While Match
11: Until Match

Configuration bits, in SETCFG:
lplrc|em|rr|c|m|F|1]

mreg: MMU Register number, in LMR, SMR.

0000 = BPRO

0001 = BPR1

0010 = (Reserved)

0011 = (Reserved)

0100 = PFO

0101 = PF1

0110 = (Reserved)

0111 = (Reserved)

1000 = SC
1001 = (Reserved)
1010 = MSR
1011 = BCNT
1100 = PTBO
1101 = PTB1
1110 = (Reserved)
1111 = EIA
7 0
Format 0
Beond (BR)
7 0
Format 1
BSR -0000 ENTER -1000
RET -0001 EXIT -1001
CXP -0010 NOP -1010
RXP -0011 WAIT -1011
RETT -0100 DIA -1100
RETI -0101 FLAG -1101
SAVE -0110 SVC -1110
RESTORE 0111 BPT -1111
15 8 | 7 0
T T T T T T T T T T T ¥
gen | short l op | 11 i l
Format 2
ADDQ -000 ACB -100
CMPQ -001 MovQ -101
SPR -010 LPR -110
Scond 011

2-70




Appendix A: Instruction Formats (continueq)

15 s|7 0 23 1s|15 8|7 0
T T T T L T T T T T T T T T T T T T T T T T T T T T T L] T
I gen I op i11111|i] [gem | gen2 | op |i1100111';]
Format 3 Format 7
CXPD -0000 ADJSP -1010 MOVM 10000 MUL 1000
BICPSR -0010 JSR -1100
CMPM -0001 ME! -1001
JUMP -0100 CASE -1110
INSS 0010 Trap (UND) -1010
BISPSR 0110
Tran (UND) on XXX, 1000 EXTS -0011 DE! -1011
rap (UND) on XXX1, MOVXBW -0100 Quo -1100
MOVZBW 0101 REM -1101
15 8|7 0 MOVZiD 0110 MOD -1110
|""l|"‘|'T'|TJ MOVXIiD 0111 DIV 1111
gen 1 gen2 op i
Format 4 23 1615 8|7 0
FTTTTTT T i i I TTTTT
ADD -0000 suB -1000 I gen 1 gen2 reg | i 101110
CMP -0001 ADDR -1001 op 7
BIC -0010 AND -1010 TL/EE/8673-78
ADDC -0100 SUBC -1100 Format 8
MoV -0101 TBIT -1101 EXT -000 INDEX -100
OR -0110 XOR -1110 CvTP 001 FFs -101
INS 010
23 1G| 15 8|7 0 CHECK 011
| ’ T i ] ‘ 1 T T I I T 1 T ‘ I 1 T T T T T 1 | MOVSU -110'reg=001
0| short1 | short |0| op iloooo1110 MOVUS 110 reg = 011
Format 5 23 16 |15 87 0
MOVS -0000 SETCFG* -0010 T T T T 1T I T T T T T 17T
CMPS -0001 SKPS 0011 | gen ! gen2 | op if, iloo11111 o]
Trap (UND) on 1XXX, 01XX
rap (UND) on Format 9
23 1s| 15 8|7 0 MoVt -000 ROUND -100
L 1 1 t ‘ T { T 1 T T L l t T T T T T 1 ¥ | LFSR _001 TRUNC _,1 01
geni gen2 op i|j0o1001110 MOVLF 010 SFSR 110
MOVFL 011 FLOOR 111
Format 6
ROT -0000 NEG -1000 T 0
ASH 01 NoT 1001
CBIT -0010 Trap (UND) -1010
TL/EE/8673-79
Tm@ND o0 ABS 1100 Format 10
rap - -
LSH 0101 COM -1101 Trap (UND) Always
SBIT 0110 IBIT -1110
SBITI 0111 ADDP 1111

*Short 1 in format 5 applies only for SETCFG instruction. In other instruc-
tions this field is 0.
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Appendix A: Instruction Formats (continued)

23 1G| 15 8|7 0 23 16(15 8(7 0
T T T T 4 1 l 1] T T 1 T T 1) T T T ¥ T 1 T ] 1 ] 1
[gen1 I gen2! op |0|f10111110 nnn10110

Operation Word ID Byte
Format 11
ADDf 0000  DIVf -1000 Format 15
MOvF -0001 Trap (SLAVE) -1001 (Custom Slave)
CMPf -0010 Trap (UND) -1010 nnn Operation Word Format
Trap (SLAVE) -0011 Trap (UND) -1011
SuBt -0100 MULf -1100 23 16| 15 8
NEGf -0101 ABSf -1101 T T T T T T
Trap (UND) -0110 Trap (UND) -1110 000 gen i l short |x| op [ i
Trap (UND) 0111 Trap (UND) -1111
Format 15.0
23 16] 15 8l7 o CATSTO -0000 LCR -1010
T T T T 7 LI T T T Y CATST1 -0001 SCR -1011
I gen i | gen2 | op |0|f11111110
Trap (UND) on all others
Format 12 23 1G| 15 8
T 1T T 7T T LI T 1 T
REMf -0000 Trap (SLAVE) -1000 0ot il I gen2 I op C’ i
SQRTt -0001 Trap (SLAVE) -1001
POLYf -0010 Trap (UND) -1010 Format 15.1
DOTf -0011 Trap (UND) -1011 cova 000 cev2 100
SCALBf -0100 ATAN2f -1100
LCSR -001 CcCcV1 -101
LOGBf 0101 SICOSsf -1101
CCV5 010 SGSR -110
Trap (UND) -0110 Trap (UND) -1110 ceva 011 CCVo 411
Trap (UND) 0111 Trap (UND) 111
7 0 23 16|15 8
. T T 7T T L LI
101 gen1 i gen2 I op 1x | c
TL/EE/8673-81
Format 13 Format 15.5
Trap (UND) Always CCALO -0000 CCAL3 -1000
23 16] 15 8|7 o CMovo -0001 CMOV3 -1001
™TT7T LI T 7 T T T T T T T CCMPO -0010 Trap (UND) <1010
| gen 1 I short IOI op l ijooo111 1_d CCMP1 -0011 Trap (UND) -1011
CCAL1 -0100 CCAL2 -1100
Format 14 CMOV2 0101 CMOV1 -1101
Trap (UND) -0110 Trap (UND) -1110
RDVAL -0000 LMR -0010 Trap (UND) 0111 Trap (UND) 111
WRVAL -0001 SMR -0011

Trap (UND) on 01XX, 1XXX
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Appendix A: Instruction Formats (continued)

23 16| 15 8
1T T 1 T 1 T T T 7T
111 gen I gen2 ! op lx'c
Format 15.7
CCAL4 -0000 CCAL7 -1000
CMOV4 -0001
CCALS 0010 CMOV7 -1001
Trap (UND) -1010
CCALS -ooti Trap (UND) -1011
CCAL5 -0100 CCAL6 -1100
CMOV6 -0101 CMOV5 -1101
Trap (UND) -0110 Trap (UND) -1110
Trap (UND) -0111 Trap (UND) 1111

If nnn = 010, 011, 100, 110 then Trap (UND) Always.

<
©

TL/EE/8673-82

Format 16
Trap (UND) Always
- 7 0
TL/EE/8673-83
Format 17
Trap (UND) Always
7 0
TL/EE/8673-84
Format 18
Trap (UND) Always

TL/EE/8673-85

Format 19
Trap (UND) Always
Implied Immediate Encodings:
7 0

0 2 r3 4 5 6 7
! | | TR A A

Register Mark, appended to RESTORE, EXIT
7 0

offset length - 1
| | | |

Offset/Length Modifier appended to INSS, EXTS
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High-Performance Microprocessors

General Description

The NS32132 is a 32-bit, virtual memory microprocessor
with a 16-MByte linear address space and a 32-bit external
data bus. It has a 32-bit ALU, eight 32-bit general purpose
registers, an eight-byte prefetch queue, and a slave proces-
sor interface. A dual processing capability is also provided
that allows two NS32123 to share the same bus and memo-
ry with a resulting performance enhancement of up to 80%.
The NS32132 is fabricated with National Semiconductor’s
advanced XMOS process, and is fully object code compati-
ble with other Series 32000 processors. The Series 32000
instructions set is optimized for modular high-level lan-
guages (HLL). The set is very symmetric, it has a two ad-
dress format, and it incorporates HLL oriented addressing
modes. The capabilities of the NS32132 can be expanded
with the use of the NS32081 floating point unit (FPU), and
the NS32032 demand-paged virtual memory management
unit (MMU). Both devices interface to the NS32132 as slave
processors. The NS32132 is a general purpose microproc-
essor that is ideal for a wide range of computational inten-
sive applications.

Features
m 32-bit Architecture and Implementation
= Virtual Memory Support
B 16-MByte Linear Addressing Space
m 32-bit Data Bus
m Tightly Coupled Dual Processing Support
m Powerful Instruction Set
— General 2-Address Capability
— High Degree of Symmetry
— Addressing Modes Optimized for High Level
Language
m Series 320009 Slave Processor Support
m High-Speed XMOS™ Technology
m 68-pin Leadless Chip Carrier

Block Diagram

ADD/DATA  CONTROLS & STATUS

BUS INTERFACE CONTROL
INSTRUCTIONS | 32
MICROCODE ROM
AND
eBYTE CONTROL LOGIC
QUEUE
1
INSTRUCTION
=1 DECODER
DISPLACEMENT AND §
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E
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RO
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1.0 Product Introduction

The Series 32000 Microprocessor family is a new genera-
tion of devices using National’s XMOS and CMOS technolo-
gies. By combining state-of-the-art MOS technology with a
very advanced architectural design philosophy, this family
brings mainframe computer processing power to VLS| proc-
essors.

The Series 32000 family supports a variety of system con-
figurations, extending from minimum low-cost system to a
powerful 4 gigabyte system. The architecture provides com-
plete upward compatibility from one family member to an-
other. The family consists of a selection of CPUs supported
by a set of peripherals and slave processors that provide
sophisticated interrupt and memory management facilities
as well as high-speed floating-point operation. The architec-
tural features of the Series 32000 family are described brief-
ly below:

Powerful Addressing Modes. Nine addressing modes
available to all instructions are included to access data
structures efficiently.

Data Types. The architecture provides for numerous data
types, such as byte, word, doubleword, and BCD, which may
be arranged into a wide variety of data structures.
Symmetric Instruction Set. While avoiding special case
instructions that compilers can’t use, the Series 32000 fami-
ly incorporates powerful instructions for control operations,
such as array indexing and external procedure calls, which
save considerable space and time for compiled code.
Memory-to-Memory Operations. The Series 32000 CPUs
represent two-operand machines with each operand ad-
dressable by all addressing modes. This powerful memory-
to-memory architecture permits memory locations to be
treated as registers for all useful operations. This is impor-
tant for temporary operands as well as for context switch-
ing.

Memory Management. Either the NS32382 or thev

NS32082 Memory Management Unit may be added to the
system to provide advanced operating system support func-
tions, including dynamic address translation, virtual memory
management, and memory protection.

Large, Uniform Addressing. The NS32132 has 24-bit ad-
dress pointers that can address up to 16 megabytes without
requiring any segmentation; this addressing scheme pro-
vides flexible memory management without added-on ex-
pense.

Modular Software Support. Any software package for the
Series 32000 family can be developed independent of all
other packages, without regard to individual addressing. In
addition, ROM code is totally relocatable and easy to ac-
cess, which allows a significant reduction in hardware and
software cost.

Software Processor Concept. The Series 32000 architec-
ture allows future expansions of the instruction set that can
be executed by special slave processors, acting as exten-
sions to the CPU. This concept of slave processors is
unique to the Series 32000 family. It allows software com-
patibility even for future components because the slave
hardware is transparent to the software. With future ad-
vances in semiconductor technology, the slaves can be
physically integrated on the CPU chip itself.

To summarize, the architectural features cited above pro-
vide three primary performance advantages and character-
istics:

¢ High-Level Language Support

e Easy Future Growth Path

e Application Flexibility

2.0 Architectural Description

2.1 PROGRAMMING MODEL

The Series 32000 architecture includes 16 registers on the
NS32132 CPU.

2.1.1 General Purpose Registers

There are eight registers for meeting high speed general
storage requirements, such as holding temporary variables
and addresses. The general purpose registers are free for
any use by the programmer. They are thirty-two bits in
length. if a general register is specified for an operand that
is eight or sixteen bits long, only the low part of the register
is used; the high part is not referenced or modified.

2.1.2 Dedicated Registers

The eight dedicated registers of the NS32132 are assigned
specific functions.

PC: The PROGRAM COUNTER register is a pointer to
the first byte of the instruction currently being executed.
The PC is used to reference memory in the program
section. (In the NS32132 the upper eight bits of this
register are always zero.)

SPO, SP1: The SPO register points to the lowest address
of the last item stored on the INTERRUPT STACK. This
stack is normally used only by the operating system. Itis
used primarily for storing temporary data, and holding
return information for operating system subroutines and
interrupt and trap service routines. The SP1 register
points to the lowest address of the last item stored on
the USER STACK. This stack is used by normal user
programs to hoid temporary data and subroutine return
information.

In this document, reference is made to the SP register.
The terms “SP register” or “SP” refer to either SP0 or
SP1, depending on the setting of the S bit in the PSR
register. If the S bit in the PSR is 0 the SP refers to SPO.
If the S bit in the PSR is 1 then SP refers to SP1. (in the
NS32132 the upper eight bits of these registers are al-
ways zero).

Stacks in the Series 32000 family grow downward in
memory. A Push operation pre-decrements the Stack
Pointer by the operand length. A Pop operation post-in-
crements the Stack Pointer by the operand length.

FP: The FRAME POINTER register is used by a proce-
dure to access parameters and local variables on the
stack. The FP register is set up on procedure entry with
the ENTER instruction and restored on procedure termi-
nation with the EXIT instruction.

The frame pointer holds the address in memory occu-
pied by the old contents of the frame pointer. (In the
NS32132 the upper eight bits of this register are always
zero.)

SB: The STATIC BASE register points to the global vari-
ables of a software module. This register is used to sup-
port relocatable global variables for software modules.
The SB register holds the lowest address in memory
occupied by the global variables of a module. (In the
NS32132 the upper eight bits of this register are always
zero.)

INTBASE: The INTERRUPT BASE register holds the
address of the dispatch table for interrupts and traps
(Sec. 3.8). The INTBASE register holds the lowest ad-
dress in memory occupied by the dispatch table. (In the
NS32132 the upper eight bits of this register are always
zero.)
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2.0 Architectural Description (continued)

DEDICATED
32

[ o | PROGRAM COUNTER | PC

[ o | STATICBASE | 5B
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GENERAL
32

3
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HiEEE ...

R7

TL/EE/8583-3

FIGURE 2-1. The General and Dedicated Registers

MOD: The MODULE register holds the address of the
module descriptor of the currently executing software
module. The MOD register is sixteen bits long, therefore
the moduie table must be contained within the first 64K
bytes of memory.

PSR: The PROCESSOR STATUS REGISTER (PSR)
holds the status codes for the NS32132 microproces-
Sor.

The PSR is sixteen bits long, divided into two eight-bit
halves. The low order eight bits are accessible to all
programs, but the high order eight bits are accessible
only to programs executing in Supervisor Mode.

15 8|7 0
PIXIXIX] 1 Je]sJulnTz[F XD L T] <]
TL/EE/8583-4
FIGURE 2-2. Processor Status Register
C: The C bit indicates that a carry or borrow occurred
after an addition or subtraction instruction. it can be
used with the ADDC and SUBC instructions to perform
multiple-precision integer arithmetic calculations. It may
have a setting of O (no carry or borrow) or 1 (carry or
borrow).

T: The T bit causes program tracing. If this bitis a 1, a
TRC trap is executed after every instruction (Sec. 3.8.5).

L: The L bit is altered by comparison instructions. In a
comparison instruction the L bit is set to “1” if the sec-
ond operand is fess than the first operand, when both
operands are interpreted as unsigned integers. Other-
wise, it is set to “0". In Floating Point comparisons, this
bit is always cleared.

F: The F bit is a general condition flag, which is altered
by many instructions (e.g., integer arithmetic instructions
use it to indicate overflow).

Z: The Z bit is altered by comparison instructions. In a
comparison instruction the Z bit is set to “1” if the sec-
ond operand is equal to the first operand; otherwise it is
set to “0”.

N: The N bit is altered by comparison instructions. In a
comparison instruction the N bit is set to “1” if the sec-
ond operand is less than the first operand, when both
operands are interpreted as signed integers. Otherwise,
it is set to “0”.

U: If the U bit is “1” no privileged instructions may be
executed. If the U bit is “0” then all instructions may be
executed. When U = 0 the NS32132 is said to be in
Supervisor Mode; when U = 1 the NS32132 is said to
be in User Mode. A User Mode program is restricted
from executing certain instructions and accessing cer-
tain registers which could interfere with the operating
system. For example, a User Mode program is prevent-
ed from changing the setting of the flag used to indicate
its own privilege mode. A Supervisor Mode program is
assumed to be a trusted part of the operating system,
hence it has no such restrictions.

S: The S bit specifies whether the SPO register or SP1
register is used as the stack pointer. The bit is automati-
cally cleared on interrupts and traps. it may have a set-
ting of 0 (use the SPO register) or 1 (use the SP1 regis-
ter).

P: The P bit prevents a TRC trap from occurring more
than once for an instruction (Sec. 3.8.5.). It may have a
setting of O (no trace pending) or 1 (trace pending).

I: If | = 1, then all interrupts will be accepted (Sec. 3.8.).
It 1 = 0, only the NMI interrupt is accepted. Trap en-
ables are not affected by this bit.

2.1.3 The Configuration Register (CFG)

Within the Control section of the NS32132 CPU is the four-
bit CFG Register, which declares the presence of certain
external devices. It is referenced by only one instruction,
SETCFG, which is intended to be executed only as part of
system initialization after reset. The format of the CFG Reg-
ister is shown in Figure 2-3.

o mfe]]

FIGURE 2-3. CFG Register

The CFG | bit declares the presence of external interrupt
vectoring circuitry (specifically, the NS32202 Interrupt Con-
trol Unit). If the CFG | bit is set, interrupts requested through
the INT pin are “Vectored.” If it is clear, these interrupts are
“Non-Vectored.” See Sec. 3.8.

The F, M and C bits declare the presence of the FPU, MMU
and Custom Slave Processors. If these bits are not set, the
corresponding instructions are trapped as being undefined.
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2.0 Architectural Description (continued)

2.1.4 Memory Organization

The main memory of the NS32132 is a uniform linear ad-
dress space. Memory locations are numbered sequentially
starting at zero and ending at 224 - 1. The number specify-
ing a memory location is called an address. The contents of
each memory location is a byte consisting of eight bits. Un-
less otherwise noted, diagrams in this document show data
stored in memory with the lowest address on the right and
the highest address on the left. Also, when data is shown
vertically, the lowest address is at the top of a diagram and
the highest address at the bottom of the diagram. When bits
are numbered in a diagram, the least significant bit is given
the number zero, and is shown at the right of the diagram.
Bits are numbered in increasing significance and toward the

left.

A
Byte at Address A

Two contiguous bytes are called a word. Except where not-
ed (Sec. 2.2.1), the least significant byte of a word is stored
at the lower address, and the most significant byte of the
word is stored at the next higher address. In memory, the
address of a word is the address of its least significant byte,
and a word may start at any address.

15 MSB's 8 7 LSB's 0|

A+1 A
Word at Address A

Two contiguous words are called a double word. Except
where noted (Sec. 2.2.1), the least significant word of a dou-
ble word is stored at the lowest address and the most signif-
icant word of the double word is stored at the address two
greater. in memory, the address of a double word is the
address of its least significant byte, and a double word may
start at any address.

31 MSB’s 24|23 16| 15 8 | 7 LSB’540|
A+3 A+2 A+1 A
Double Word at Address A

Although memory is addressed as bytes, it is actually orga-
nized as double-words. Note that access time to a word or a
double-word depends upon its address, e.g. double-words
that are aligned to start at addresses that are multiples of
four will be accessed more quickly than those not so
aligned. This also applies to words that cross a double-word
boundary.

2.1.5 Dedicated Tables

Two of the NS32132 dedicated registers (MOD and INT-
BASE) serve as pointers to dedicated tables in memory.

The INTBASE register points to the Interrupt Dispatch and
Cascade tables. These are described in Sec. 3.8.

The MOD register contains a pointer into the Module Table,
whose entries are called Module Descriptors. A Module De-
scriptor contains four pointers, three of which are used by
NS32132. The MOD register contains the address of the
Module Descriptor for the currently running module. It is au-
tomatically up-dated by the Call External Procedure instruc-
tions (CXP and CXPD).

The format of a Module Descriptor is shown in Figure 2-4.
The Static Base entry contains the address of static data
assigned to the running module. It is loaded into the CPU
Static Base register by the CXP and CXPD instructions. The
Program Base entry contains the address of the first byte of
instruction code in the module. Since a module may have
multiple entry points, the Program Base pointer serves only
as a reference to find them.

15 0

31 [}
STATIC BASE

LINK TABLE ADDRESS

PROGRAM BASE

RESERVED

b -
TL/EE/8583-5
FIGURE 2-4. Module Descriptor Format

The Link Table Address points to the Link Table for the
currently running module. The Link Table provides the infor-
mation needed for:

1) Sharing variables between modules. Such variables are
accessed through the Link Table via the External ad-
dressing mode.

2) Transferring control from one module to another. This is
done via the Call External Procedure (CXP) instruction.

The format of a Link Table is given in Figure 2-5. A Link
Table Entry for an external variable contains the 32-bit ad-
dress of that variable. An entry for an external procedure
contains two 16-bit fields: Module and Offset. The Module
field contains the new MOD register contents for the mod-
ule being entered. The Offset field is an unsigned number
giving the position of the entry point relative to the new
module’s Program Base pointer.

For further details of the functions of these tables, see the
Series 32000 Instruction Set Reference Manual.

-t —
ENTRY |31 9
0 ABSOLUTE ADDRESS (VARIABLE)
1 ABSOLUTE ADDRESS (VARIABLE)
2 OFFSET MODULE (PROCEDURE)
—— -t
TL/EE/8583-6

FIGURE 2-5. A Sample Link Table
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2.0 Architectural Description (continued)
2.2 INSTRUCTION SET

2.2.1 General Instruction Format

Figure 2-6 shows the general format of a Series 32000 in-
struction. The Basic Instruction is one to three bytes long
and contains the Opcode and up to two 5-bit General Ad-
dressing Mode (“Gen”) fields. Following the Basic Instruc-
tion field is a set of optional extensions, which may appear
depending on the instruction and the addressing modes se-
lected.

Index Bytes appear when either or both Gen fields specify
Scaled Index. In this case, the Gen field specifies only the
Scale Factor (1, 2, 4 or 8), and the Index Byte specifies
which General Purpose Register to use as the index, and
which addressing mode calculation to perform before index-
ing. See Figure 2-7.

GEN. ADDR. MODE REG. NO.

TL/EE/8583-8
FIGURE 2-7. Index Byte Format

Following Index Bytes come any displacements (addressing
constants) or immediate valuss associated with the select-
ed address modes. Each Disp/Imm field may contain one or
two displacements, or one immediate value. The size of a
Displacement field is encoded with the top bits of that field,
as shown in Figure 2-8, with the remaining bits interpreted
as a signed (two’s complement) value. The size of an imme-
diate value is determined from the Opcode field. Both Dis-
placement and Immediate fields are stored most significant
byte first. Note that this is different from the memory repre-
sentation of data (Sec. 2.1.4).

Some instructions require additional, “implied” immediates
and/or displacements, apart from those associated with ad-
dressing modes. Any such extensions appear at the end of
the instruction, in the order that they appear within the list of
operands in the instruction definition (Sec. 2.2.3).

Byte Displacement: Range —64 TO +63

0 SIGNED DISPLACEMENT

Word Displacement: Range —8192 TO +8191

1lo a‘gﬂ
P

Double Word Displacement:
Range (Entire Addressing Space)

Mf

ep&

TL/EE/8583-9
FIGURE 2-8. Displacement Encodings

2.2.2 Addressing Modes

The NS32132 CPU generally accesses an operand by cal-
culating its Effective Address based on information avail-
able when the operand is to be accessed. The method to be
used in performing this calculation is specified by the pro-
grammer as an “addressing mode.”

OPTIONAL BASIC
EXTENSIONS INSTRUCTION
N R
msnlmsmlmsm]msm
IMPUED INDEX INDEX Sen GEN
IMMEDIATE DISP DISP BYTE ADDR ADDR OPCODE
OPERAND(S) 8vte ugDE u%oe
MM IMM
oL r
; i
I
| @
J

TL/EE/8583-7

FIGURE 2-6. General Instruction Format
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2.0 Architectural Description (continued)

Addressing modes in the NS32132 are designed to optimal-
ly support high-level language accesses to variables. In
nearly all cases, a variable access requires only one ad-
dressing mode, within the instruction that acts upon that
variable. Extraneous data movement is therefore minimized.

NS32132 Addressing Modes fall into nine basic types:

Register: The operand is available in one of the eight Gen-
eral Purpose Registers. In certain Slave Processor instruc-
tions, an auxiliary set of eight registers may be referenced
instead.

Register Relative: A General Purpose Register contains an
address to which is added a displacement value from the
instruction, yielding the Effective Address of the operand in
memory.

Memory Space. Identical to Register Relative above, ex-
cept that the register used is one of the dedicated registers
PC, SP, SB or FP. These registers point to data areas gen-
erally needed by high-level languages.

Memory Relative: A pointer variable is found within the
memory space pointed to by the SP, SB or FP register. A
displacement is added to that pointer to generate the Effec-
tive Address of the operand.

Immediate: The operand is encoded within the instruction.
This addressing mode is not allowed if the operand is to be
written.

Absolute: The address of the operand is specified by a
displacement field in the instruction.

External: A pointer value is read from a specified entry of
the current Link Table. To this pointer value is added a dis-
placement, yielding the Effective Address of the operand.

Top of Stack: The currently-selected Stack Pointer (SPO or
SP1) specifies the location of the operand. The operand is
pushed or popped, depending on whether it is written or
read.

Scaled Index: Although encoded as an addressing mode.
Scaled Indexing is an option on any addressing mode ex-
cept Immediate or another Scaled Index. it has the effect of
calculating an Effective Address, then multiplying any Gen-
eral Purpose Register by 1, 2, 4 or 8 and adding it into the
total, yielding the final Effective Address of the operand.

Table 2-1 is a brief summary of the addressing modes. For a

complete description of their actions, see the Instruction Set
Reference Manual.

2.2.3 Instruction Set Summary
Table 2-2 presents a brief description of the NS32132 in-
struction set. The Format column refers to the Instruction
Format tables (Appendix A). The Instruction column gives
the instruction as coded in assembly language, and the De-
scription column provides a short description of the function
provided by that instruction. Further details of the exact op-
erations performed by each instruction may be found in the
Instruction Set Reference Manual.
Notations:
i = Integer length suffix: B = Byte

W = Word

D = Double Word
f = Floating-Point length suffix:. F = Standard Floating

L = Long Floating

gen = General operand. Any addressing mode can be
specified.
short = A 4-bit value encoded within the Basic Instruction
(see Appendix A for encodings).
imm = Implied immediate operand. An 8-bit value append-
ed after any addressing extensions.
disp = Displacement (addressing constant):- 8, 16 or 32
bits. All three lengths legal.
reg = Any General Purpose Register: RO-R?7.
areg = Any Dedicated/Address Register: SP, SB, FP,
MOD, INTBASE, PSR, US (bottom 8 PSR bits).
mreg = Any Memory Management Status/Control Regis-
ter.
creg = A Custom Slave Processor Register (Implementa-
tion Dependent).
cond = Any condition code, encoded as a 4-bit field within
the Basic Instruction (see Appendix A for encodings).




ENCODING
Register
00000
00001
00010
00011
00100
00101
00110
00111
Register Relative
01000
01001
01010
01011
01100
01101
01110
01111
Memory Relative
10000
10001
10010

Reserved
10011
Immediate
10100

Absolute
10101
External
10110

Top of Stack
10111

Memory Space
11000

11001

11010

11011

Scaled Index
11100

11101

11110

11111

2.0 Architectural Description (continued)

TABLE 2-1
NS32132 Addressing Modes

MODE ASSEMBLER SYNTAX
Register 0 RO or FO
Register 1 R1orF1
Register 2 R2 or F2
Register 3 R3orF3
Register 4 R4 or F4
Register 5 R5or F5
Register 6 R6 or F6
Register 7 R7 or F7
Register O relative disp(R0)
Register 1 relative disp(R1)
Register 2 relative disp(R2)
Register 3 relative disp(R3)
Register 4 relative disp(R4)
Register 5 relative disp(R5)
Register 6 relative disp(R6)
Register 7 relative disp(R7)

Frame memory relative disp2(disp1(FP))
Stack memory relative disp2(disp1(SP))
Static memory relative disp2(disp1(SB))
(Reserved for Future Use)

Immediate value

Absolute @disp

External EXT (disp1) + disp2
Top of stack TOS

Frame memory disp(FP)

Stack memory disp(SP)

Static memory disp(SB)
Program memory *+disp

Index, bytes mode[Rn:B]
Index, words mode[Rn:W]
Index, double words mode[Rn:D]
Index, quad words mode[Rn:Q]

EFFECTIVE ADDRESS

None: Operand is in the specified
register

Disp + Register.

Disp2 + Pointer; Pointer found at
address Disp1 + Register. “SP”
is either SPO or SP1, as selected
in PSR.

None: Operand is input from
instruction queue.

Disp.

Disp2 + Pointer; Pointer is found

at Link Table Entry number Disp1.

Top of current stack, using either
User or Interrupt Stack Pointer,
as selected in PSR. Automatic
Push/Pop included.

Disp + Register; “SP” is either
SPO or SP1, as selected in PSR.

EA (mode) + Rn.

EA (mode) + 2X Rn.

EA (mode) + 4X Rn.

EA (mode) + 8 X Rn.

‘Mode’ and ‘n’ are contained
within the Index Byte.

EA (mode) denotes the effective
address generated using mode.
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2.0 Architectural Description (continued)

MOVES
Format

ANNNNNNDSA

Operation
MOVi
MOVQi
MOVMi
MOVZBW
MOVZiD
MOVXBW
MOVXiD
ADDR

INTEGER ARITHMETIC

Format

NNNNNNNOO AR ANS

Operation

ADDI
ADDQi
ADDCi
SUBI
SUBCi
NEGi
ABSI
MULI
QUOI
REMi
Divi
MODi
MEI
DEli

TABLE 2-2

NS32132 Instruction Set Summary

Operands
gen,gen
short,gen
gen,gen,disp
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen

Operands

gen,gen
short,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen

PACKED DECIMAL (BCD) ARITHMETIC

Format

6
6

Operation

ADDPi
SUBPI

INTEGER COMPARISON

Format

4
2
7

Operation
CMPi
CMPQiI
CMPMi

LOGICAL AND BOOLEAN

Format
4

NOOR RN

Operation

ANDi
ORi
BICi
XORi
COMi
NOTi
Scondi

Operands

gen,gen
gen,gen

Operands
gen,gen
short,gen
gen,gen,disp

Operands

gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen

Description

Move a value.

Extend and move a signed 4-bit constant.
Move Multiple: disp bytes (1 to 16).

Move with zero extension.

Move with zero extension.

Move with sign extension.

Move with sign extension.

Move Effective Address.

Description

Add.

Add signed 4-bit constant.
Add with carry.

Subtract.

Subtract with carry (borrow).
Negate (2's complement).
Take absolute value.

Multiply

Divide, rounding toward zero.
Remainder from QUO.
Divide, rounding down.
Remainder from DIV (Modulus).
Multiply to Extended Integer.
Divide Extended Integer.

Description

Add Packed.
Subtract Packed.

Description

Compare.
Compare to signed 4-bit constant.
Compare Multiple: disp bytes (1 to 16).

Description

Logical AND.

Logical OR.

Clear selected bits.

Logical Exclusive OR.

Complement all bits.

Boolean complement: LSB only.

Save condition code (cond) as a Boolean variable of size i.

2-86




2.0 Architectural Description (continued)

SHIFTS
Format Operation Operands Description
6 LSHi gen,gen Logical Shift, left or right.
6 ASHi gen,gen Arithmetic Shift, left or right.
6 ROTi gen,gen Rotate, left or right.
BITS
Format Operation Operands Description
4 TBITi gen,gen Test bit.
6 SBITi gen,gen Test and set bit.
6 SBITIi gen,gen Test and set bit, interlocked
6 CBITi gen,gen Test and clear bit.
6 CBITIi gen,gen Test and clear bit, interlocked.
6 IBITi gen,gen Test and invert bit.
8 FFSi gen,gen Find first set bit
BIT FIELDS

Bit fields are values in memory that are not aligned to byte boundaries. Examples are PACKED arrays and records
used in Pascal. “Extract” instructions read and align a bit field. “Insert” instructions write a bit field from an aligned
source.

Format Operation Operands Description
8 EXTi reg,gen,gen,disp Extract bit field (array oriented).
8 INSI reg,gen,gen,disp Insert bit field (array oriented).
7 EXTSi gen,gen,imm,imm Extract bit field (short form).
7 INSSi gen,gen,imm,imm Insert bit field (short form).
8 CVTP reg,gen,gen Convert to Bit Field Pointer.
ARRAYS
Format Operation Operands Description
8 CHECKi reg,gen,gen Index bounds check.
8 INDEXi reg,gen,gen Recursive indexing step for muitipie-dimensionai arrays.
STRINGS
String instructions assign specific functions to the Gen- Options on all string instructions are:
eral Purpose Registers: B (Backward):  Decrement string pointers after each step
R4 - Comparison Value rather than incrementing.
R3 - Translation Table Pointer U (Until match):  End instruction if String 1 entry matches
R2 - String 2 Pointer Ra.
R1 - String 1 Pointer W (While match): End instruction if String 1 entry does not

match R4.

RO - Limit Count
All string instructions end when RO decrements to zero.

Format Operation Operands Descriptions
5 MOVSi options Move String 1 to String 2.
MOVST options Move string, translating bytes.
5 CMPSI options Compare String 1 to String 2.
CMPST options Compare translating, String 1 bytes.
5 SKPSi options Skip over String 1 entries
SKPST options Skip, transtating bytes for Until/While.
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2.0 Architectural Description (continued)

JUMPS AND LINKAGE
Format Operation Operands
3 JUMP gen
] BR disp
0 Bcond disp
3 CASEi gen
2 ACBI short,gen,disp
3 JSR gen
1 BSR disp
1 CXP disp
3 CXPD gen
1 SVC
1 FLAG
1 BPT
1 ENTER [reg list],disp
1 EXIT [reg list]
1 RET disp
1 RXP disp
1 RETT disp
1 RETI
CPU REGISTER MANIPULATION
Format Operation Operands
1 SAVE [reg list]
1 RESTORE [reg list]
2 LPRi areg,gen
2 SPRi areg,gen
3 ADJSPi gen
3 BISPSRi gen
3 BICPSRi gen
5 SETCFG [option list]
FLOATING POINT
Format Operation Operands
11 MOVE gen,gen
9 MOVLF gen,gen
9 MOVFL gen,gen
9 MOVif gen,gen
9 ROUNDfi gen,gen
9 TRUNCHi gen,gen
9 FLOORfi gen,gen
" ADDf gen,gen
11 SuBf gen,gen
11 MULF gen,gen
11 Divf gen,gen
1 CMPf gen,gen
11 NEGf gen,gen
11 ABST gen,gen
9 LFSR gen
9 SFSR gen
MEMORY MANAGEMENT
Format Operation Operands
14 LMR mreg,gen
14 SMR mreg,gen
14 RDVAL gen
14 WRVAL gen
8 MOVSUi gen,gen
8 MOVUSI gen,gen

Description

Jump.

Branch (PC Relative).

Conditional branch.

Multiway branch.

Add 4-bit constant and branch if non-zero.

Jump to subroutine.

Branch to subroutine.

Call external procedure.

Call external procedure using descriptor.

Supervisor Call.

Flag Trap.

Breakpoint Trap.

Save registers and allocate stack frame (Enter Procedure).
Restore registers and reclaim stack frame (Exit Procedure).
Return from subroutine.

Return from external procedure call.

Return from trap. (Privileged)

Return from interrupt. (Privileged)

Description

Save General Purpose Registers.

Restore General Purpose Registers.

Load Dedicated Register. (Privileged if PSR or INTBASE)
Store Dedicated Register. (Privileged if PSR or INTBASE)
Adjust Stack Pointer.

Set selected bits in PSR. (Privileged if not Byte length)
Clear selected bits in PSR. (Privileged if not Byte length)
Set Configuration Register. (Privileged)

Description

Move a Floating Point value.

Move and shorten a Long value to Standard.
Move and lengthen a Standard value to Long.
Convert any integer to Standard or Long Floating.
Convert to integer by rounding.

Convert to integer by truncating, toward zero.
Convert to largest integer less than or equal to value.
Add.

Subtract.

Multipiy.

Divide.

Compare.

Negate.

Take absolute value.

Load FSR.

Store FSR.

Description

Load Memory Management Register. (Privileged)
Store Memory Management Register. (Privileged)
Validate address for reading. (Privileged)

Validate address for writing. (Privileged)

Move a value from Supervisor

Space to User Space. (Privileged)

Move a value from User Space

to Supervisor Space. (Privileged)
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2.0 Architectural Description (continued)

MISCELLANEOUS
Format Operation
1 NOP
1 WAIT
1 DIA
CUSTOM SLAVE
Format Operation
15.5 CCALOc
15.5 CCALic
155 CCAL2c
155 CCAL3c
15.5 CMOV0c
155 CMOV1ic
15.5 CMOV2c
CMOV3c
15.5 CCMPOc
CCMP1¢
15.1 CCVOci
151 CCV1ci
15.1 CCVaci
151 CCV3ic
161 CCv4DQ
15.1 CCv5QD
15.1 LCSR
15.1 SCSR
15.0 CATSTO
15.0 CATST1
15.0 LCR
15.0 SCR

Operands

Operands

gen,gen
gen,gen
gen,gen
gen,gen

gen,gen
gen,gen
gen,gen

gen,gen
gen,gen
gen,gen

gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen

gen

gen
gen

creg,gen
creg,gen

Description

No Operation.

Wait for interrupt.

Diagnose. Single-byte “Branch to Self” for hardware
breakpointing. Not for use in programming.

Description
Custom Calculate.

Custom Move.

Custom Compare.

Custom Convert.

Load Custom Status Register.
Store Custom Status Register.

Custom Address/Test. (Privileged)
(Privileged)

Load Custom Register. (Privileged)
Store Custom Register. (Privileged)
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3.0 Functional Description

3.1 POWER AND GROUNDING

The NS32132 requires a single 5-volt power supply, applied
on pin 18 (Vco)-

Grounding connections are made on four pins. Logic
Ground (GNDL; pin 51) is the common pin for on-chip logic,
and Buffer Grounds (GNDB1, pin 52, GNDB2, pin 16 and
GNDB3, Pin 60) are the common pins for the output drivers.
For optimal noise immunity it is recommended that GNDB1
and GNDB2 be connected together through a single con-
ductor, and GNDL be directly connected to the middle point
of this conductor. All other ground connections should be
made to the common line as shown in Figure 3-1.

In addition to Vog and Ground, the NS32132 CPU uses an
internally-generated negative voltage. It is necessary to filter
this voltage externally by attaching a pair of capacitors (Fig.
3-1) from the BBG pin to ground. Recommended values for
these are:

Cq: 1 pF, Tantalum.

Co: 1000 pF, low inductance. This should be either a disc or
monolithic ceramic capacitor.

OTHER GROUND
CONNECTIONS

TL/EE/8583-10
FIGURE 3-1. Recommended Supply Connections
3.2 CLOCKING

The NS32132 inputs clocking signals from the NS32201
Timing Control Unit (TCU), which presents two non-overlap-
ping phases of a single clock frequency. These phases

are called PHI1 (pin 26) and PHI2 (pin 27). Their relationship
to each other is shown in Figure 3-2.

Each rising edge of PHI1 defines a transition in the timing
state (“T-State”) of the CPU. One T-State represents the
execution of one microinstruction within the CPU, and/or
one step of an external bus transfer. See Sec. 4 for com-
plete specifications of PHI1 and PHI2.

AL
A

TL/EE/8583-11
FIGURE 3-2. Clock Timing Relationships

As the TCU presents signals with very fast transitions, it is
recommended that the conductors carrying PHI1 and PHI2
be kept as short as possible, and that they not be connect-
ed anywhere except from the TCU to the CPU and, if pres-
ent, the MMU. A TTL Clock signal (CTTL) is provided by the
TCU for all other clocking.

3.3 RESETTING

The RST/ABT pin serves both as a Reset for on-chip logic
and as the Abort input for Memory-Managed systems. For
its use as the Abort Command, see Sec. 3.5.4.

The CPU may be reset at any time by pulling the RST/ABT
pin low for at least 64 clock cycles. Upon detecting a reset,
the CPU terminates instruction processing, resets its inter-
nal logic, and clears the Program Counter (PC) and Proces-
sor Status Register (PSR) to all zeroes.

On application of power, RST/ABT must be held low for at
least 50 psec after Vgg is stable. This is to ensure that all
on-chip voltages are completely stable before operation.
Whenever a Reset is applied, it must also remain

{C

45V

vee _/

PHI1

"

J LT

RST/ABT

264 CLOCK
CYCLES

]
L

—

w

{

7

250 usec

TL/EE/8583-12

FIGURE 3-3. Power-on Reset Requirements




3.0 Functional Description (continued)
active for not less than 64 clock cycles. The rising edge
must occur while PHI1 is high. See Figures 3-3 and 3-4.
The NS32201 Timing Control Unit (TCU) provides circuitry
to meet the Reset requirements of the NS32132 CPU. Fig-
ure 3-5a shows the recommended connections for a non-
Memory-Managed system. Figure 3-5b shows the connec-
tions for a Memory-Managed system.

!——— =64 CLOCK ———|
CYCLES
RST/ABT N ’
(4

13
TL/EE/8583-13
FIGURE 3-4. General Reset Timing

Vee
N§32201 NS32132
o TCU CcPU
>
fo=—sems———- == 2
] 1 <
— [ i D AN = = S
: RESET > "/\l, e T RSTI RASTO RST/ABT
! [ 'Il oL
bece e ———— d } |
EXTERNAL RESET ! _I !
(OPTIONAL) l = ! =+ > 50 usec
Lo--J
RESET SWITCH SYSTEM RESET
(OPTIONAL)
TL/EE/8583~14
FIGURE 3-5a. Recommended Reset Connections, Non-Memory-Managed System
vee N§32201 N$32082 NS32132
o] TCU MMU cPU
- ———— | s
I 1 2
[ i r=—== AY — —_ P, —_—
: RESET > D : : : AV RSTI RSTO RSTI RST/ABT RST/ABT
| i L
Lemmmmccccmeee 4 i |
EXTERNAL RESET [ i !
(OPTIONAL) V= : = > 50 usec
L—_J
RESET SWITCH
(OPTIONAL)
TL/EE/8583-15
FIGURE 3-5b. Recommended Reset Connections, Memory-Managed System
3.4 BUS CYCLES 3) To acknowledge an interrupt and allow external circuitry

The NS32132 CPU has a strap option which defines the Bus

Timing Mode as either With or Without Address Translation.

This section describes only bus cycles under the No Ad-

dress Translation option. For details of the use of the strap

and of bus cycles with address translation, see Sec. 3.5.

The CPU will perform a bus cycle for one of the following

reasons:

1) To write or read data, to or from memory or a peripheral
interface device. Peripheral input and output are memory-
mapped in the Series 32000 family.

2) To fetch instructions into the eight-byte instruction queue.
This happens whenever the bus would otherwise be idle
and the queue is not already full.

to provide a vector number, or to acknowledge comple-
tion of an interrupt service routine.

4) To transfer information to or from a Slave Processor.

In terms of bus timing, cases 1 through 3 above are identi-
cal. For timing specifications, see Sec. 4. The only external
difference between them is the four-bit code placed on the
Bus Status pins (STO-ST3). Slave Processor cycles differ in
that separate control signals are applied (Sec. 3.4.6).

The sequence of events in a non-Slave bus cycle is shown
below in Figure 3-7 for a Read cycle and Figure 3-8 for a
Write cycie. The cases shown assume that the selected
memory or interface device is capable of communicating
with the CPU at full speed. If it is not, then cycle extension
may be requested through the RDY line (Sec. 3.4.1).
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3.0 Functional Description (continued)

A full-speed bus cycle is performed in four cycles of the
PHI clock signal, labeled T1 through T4. Clock cycles not
associated with a bus cycle are designated Ti (for “Idle”).

‘During T1, the CPU applies an address on pins AD0-AD23.

It also provides a low-going pulse on the ADS pin, which
serves the dual purpose of informing external circuitry that a
bus cycle is starting and of providing control to an external
latch for demultiplexing Address bits 0-23 from the ADO-
AD23 pins. See Figure 3-6. During this time also the status
signais DDIN, indicating the direction of the transfer, and
BEO-BES, indicating which of the four bus bytes are to be
referenced, become valid.

During T2 the CPU switches the Data Bus, ADO-AD31 to
either accept or present data. It also starts the data strobe
(DS), signalting the beginning of the data transfer. Associat-
ed signals from the NS32201 Timing Control Unit are also
activated at this time: RD (Read Strobe) or WR (Write
Strobe), TSO (Timing State Output, indicating that T2 has
been reached) and DBE (Data Buffer Enable).

The T3 state provides for access time requirements, and it
occurs at least once in a bus cycle. At the end of T2, on the
falling edge of the PHI2 clock, the RDY (Ready) line is sam-
pled to determine whether the bus cycle will be extended
(Sec. 3.4.1).

If the CPU is performing a Read cycle, the Data Bus (ADO-
AD31) is sampled at the falling edge of PHI2 of the last T3
state. See Timing Specification, Sec. 4. Data must, howev-
er, be held at least until the beginning of T4. DS and RD are
guaranteed not to go inactive before this point, so the rising
edge of either of them may safely be used to disable the
device providing the input data.

The T4 state finishes the bus cycle. At the beginning of T4,
the DS, RD or WR, and TSO signals go inactive, and at the
rising edge of PHI2, DBE goes inactive, having provided for
necessary data hold times. Data during Write cycles re-
mains valid from the CPU throughout T4. Note that the Bus
Status lines (STO-ST3) change at the beginning of T4, an-
ticipating the following bus cycle (if any).

DOIN 1
| D0-D31
o =)
NS32132
BEG-BE3
ADS
PHI1  PHI2 DS/FLT
DS
PHI1  PHI2 ADS DDIN  DBE B
RD
_ WR
NS32201 WA
_ TS0
TS0

TL/EE/8583-16

FIGURE 3-6. Bus Connections
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3.0 Functional Description (continued)
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3.0 Functional Description (continued)

PHI1

PHI 2

RDY

\\\\\

NN

' T40RTi | T \ T2

]

-

-

NS32132 CPU BUS SIGNALS

5

B

’ A& I T4 I TIORTi l

2l

5

[T

NN

N
=

STATUS VALID

A

NEXT STATUS

NN

Y/

7

Y

9]

VALID

NEXT

|/

\

/

YV %

W

Y

27

NS32201 TCU BUS SIGNALS

ny

/
_/
/

FIGURE 3-8. Write Cycle Timing

TL/EE/8583-18

2-94




3.0 Functional Description (continued)

3.4.1 Cycle Extension

To allow sufficient strobe widths and access times for any
speed of memory or peripheral device, the NS32016 pro-
vides for extension of a bus cycle. Any type of bus cycle
except a Slave Processor cycle can be extended.

In Figures 3-7 and 3-8, note that during T3 all bus control
signals from the CPU and TCU are flat. Therefore, a bus
cycle can be cleanly extended by causing the T3 state to be
repeated. This is the purpose of the RDY (Ready) pin.

At the end of T2 on the falling edge of PHi2, the RDY line is
sampled by the CPU. If RDY is high, the next T-states will be
T3 and then T4, ending the bus cycle. If RDY is low, then
another T3 state will be inserted after the next T-state and
the RDY line will again be sampled on the falling edge of
PHI2. Each additional T3 state after the first is referred to as
a “WAIT STATE”. See Figure 3-9.

w LT 1]

The RDY pin is driven by the NS32201 Timing Control Unit,
which applies WAIT States to the CPU as requested on
three sets of pin:

1) CWAIT (Continuous WAIT), which holds the CPU in
WAIT states until removed.

2) WAIT1, WAIT2, WAIT4, WAIT8 (Collectively WAITR),
which may be given a four-bit binary value requesting a
specific number of WAIT States from 0 to 15.

3) PER (Peripheral), which inserts five additional WAIT
states and causes the TCU to reshape the RD and WR
strobes. This provides the setup and hold times required
by most MOS peripheral interface devices.

Combinations of these various WAIT requests are both legal

and useful. For details of their use, see the NS32201 Data

Sheet.

Figure 3-10 illustrates a typical Read cycle, with two WAIT
states requested through the TCU WAITn pins.

~ LT

> 77770

A7/

NEXT
STATE:
T3

NEXT
STATE:
T4

TL/EE/8583-19

FIGURE 3-9. RDY Pin Timing

3.4.2 Bus Status
The NS32132 CPU presents four bits of Bus Status informa-
tion on pins STO-ST3. The various combinations on these
pins indicate why the CPU is performing a bus cycle, or, if it
is idle on the bus, then why is it idle.
Referring to Figures 3-7 and 3-8, note that Bus Status leads
the corresponding Bus Cycle, going valid one clock cycle
before T1, and changing to the next state at T4. This allows
the system designer to fully decode the Bus Status and, if
desired, latch the decoded signals before ADS initiates the
Bus Cycle.
The Bus Status pins are interpreted as a four-bit value, with
STO the least significant bit. Their values decode as follows:
0000 - The bus is idle because the CPU does not need
to perform a bus access.
0001 - The bus is idle because the CPU is executing the
WAIT instruction.
0010 - (Reserved for future use.)

0011 — The bus is idle because the CPU is waiting for a
Slave Processor to complete an instruction.
0100 - Interrupt Acknowledge, Master.
The CPU is performing a Read cycle. To ac-
knowledge receipt of a Non-Maskable Interrupt
(on NM1) it will read from address FFFF004g, but
will ignore any data provided.

To acknowledge receipt of a Maskable Interrupt
(on INT) it will read from address FFFE00g, ex-
pecting a vector number to be provided from the
Master NS32202 Interrupt Control Unit. If the
vectoring mode selected by the last SETCFG in-
struction was Non-Vectored, then the CPU will
ignore the value it has read and will use a default
vector instead, having assumed that no NS32202
is present. See Sec. 3.4.5.
0101 - Interrupt Acknowledge, Cascaded.

The CPU is reading a vector number from a Cas-
caded NS32202 Interrupt Control Unit. The ad-
dress provided is the address of the NS32202
Hardware Vector register. See Sec. 3.4.5.

0110 - End of interrupt, Master.
The CPU is performing a Read cycle to indicate
that it is executing a Return from Interrupt (RETI)
instruction. See Sec. 3.4.5.

0111 — End of Interrupt, Cascaded.
The CPU is reading from a Cascaded Interrupt
Control Unit to indicate that it is returning
(through RETI) from an interrupt service routine
requested by that unit. See Sec. 3.4.5.

1000 - Sequential Instruction Fetch.

The CPU is reading the next sequential word
from the instruction stream into the Instruction
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3.0 Functional Description (continued)

PREV. CYCLE NS32132 CPU BUS SIGNALS NEXT CYCLE

[reorTi| ™ | T2 | ™ | wam | owam | T¢ |momTi]

e[ T
wr [ _ LT LT
wooron | 7Y~ OO0 77000 o) rion
wsn | 20000000 oy O
\/

[ -t
i
STO-ST3 [ Z jy STATUS VALID NEXT STATUS

w [ 7770 =
BE0-BE3 [ Z VALID X NEXT

=[_/ /

N\

ADS

N$32201 TCU CYCLE EXTENSION SIGNALS

bLob |
s | Zzz220.7 NG

& [ 22700 ‘W*A’V//A%/ Y7
= | L = W
ROY [ J

(7 T\
w[_/
=[ [/ /
w[_Y

|
|

AN

N$32201 TCU BUS SIGNALS

TL/EE/8583-20

FIGURE 3-10. Extended Cycle Example
Note: Arrows on CWAIT, PER, WATTn indicate points at which the TCU samples. Arrows on ADO-AD15 and RDY indicate points at which the CPU samples.
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3.0 Functional Description (continueq)
Queue. it will do so whenever the bus would oth-
erwise be idle and the queue is not already full.
Non-Sequential Instruction Fetch.

The CPU is performing the first fetch of instruc-
tion code after the Instruction Queue is purged.
This will occur as a result of any jump or branch,
or any interrupt or trap, or execution of certain

1001 -

instructions.

1010 - Data Transfer.
The CPU is reading or writing an operand of an
instruction.

1011 - Read RMW Operand.

The GPU is reading an operand which will subse-
quently be modified and rewritten. If memory pro-
tection circuitry would not allow the following
Write cycle, it must abort this cycle.

Read for Effective Address Calculation.

The CPU is reading information from memory in
order to determine the Effective Address of an
operand. This will occur whenever an instruction
uses the Memory Relative or External addressing
mode.

Transfer Slave Processor Operand.

The CPU is either transferring an instruction op-
erand to or from a Slave Processor, or it is issu-
ing the Operation Word of a Slave Processor in-
struction. See Sec. 3.9.1.

Read Slave Processor Status.

The CPU is reading a Status Word from a Slave
Processor. This occurs after the Slave Processor
has signalled completion of an instruction. The
transferred word telis the CPU whether a trap
should be taken, and in some instructions it pre-
sents new values for the CPU Processor Status
Register bits N, Z, L or F. See Sec. 3.9.1.

Broadcast Slave ID.

The CPU is initiating the execution of a Slave
Processor instruction. The ID Byte (first byte of
the instruction) is sent to all Slave Processors,
one of which wilf recognize it. From this point the
CPU is communicating with only one Slave Proc-
essor. See Sec. 3.9.1.

3.4.3 Data Access Sequences

The 24-bit address provided by the NS32132 is a byte ad-
dress; that is, it uniquely identifies one of up to 16,777,216
eight-bit memory locations. An important feature of the
NS32132 is that the presence of a 32-bit data bus imposes
no restrictions on data alignment; any data item, regardless
of size, may be placed starting at any memory address. The
NS32132 provides special control signals. Byte Enable
(BEO-BE3) which facilitate individual byte accessing on a
32-bit bus.

Memory is organized as four eight-bit banks, each bank re-
ceiving the double-word address (A2-A23) in parallel. One
bank, connected to Data Bus pins AD0-AD7 is enabled

1100 -

1101 -

1110 -

111 -

when BED is low. The second bank, connected to data bus
pins AD8-AD15 is enabled when BET is low. The third and
fourth banks are enabled by BE2 and BES, respectively.
See Figure 3-11.

BE3 T BE1 BED
8 BITS 8 BITS 8 BITS 8 BITS
A2-A23 |
¥ - x 3 4
DO-D31 BYTE BYTE BYTE BYTE
#3 _#2 #1 #0

TL/EE/8583-21
FIGURE 3-11. Memory Interface

Since operands do not need to be aligned with respect to
the double-word bus accessed performed by the CPU, a
given double-word access can contain one, two, three, or
four bytes of the operand being addressed, and these bytes
can begin at various positions, as determined by A1, AQ.
Table 3-1 lists the 10 resulting access types.

TABLE 3-1
Bus Access Types

Type Bytes Accessed A1,A0 BE3 BE2
1 00 1 1
01
10
11
00
01
10
00
01
00

1

BE
1
0
1
1
0
0
1
0
0
0

O WO ~NOUGHWN -
A WWOMNDNON = =
OO A O = et O =
OO OO0 - - O -
o_no_;_so_._._.oml
[=]

e

Accesses of operands requiring more than one bus cycle
are performed sequentially, with no idle T-States separating
them. The number of bus cycles required to transfer an op-
erand depends on its size and its alignment. Table 3-2 lists
the bus cycles performed for each situation.
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3.0 Functional Description (continued)

Cycle Type Address BE3
A. Word at address ending with 11

1. 4 A 0
2. 1 A+1 1

B. Double word at address ending with 01

1. 9 A 0
2. 1 A+3 1

C. Double word at address ending with 10

1. 7 A 0
2. 5 A+2 1

D. Double word at address ending with 11

1. 4 A 0
2. 8 A+1 1

E. Quad word at address ending with 00
1 10 A 0

Other bus cycles (instruction prefetch or slave) can occur here.

2. 10 A+4 0

F. Quad word at address ending with 01

TABLE 3-2
Access Sequences
Data Bus
- r * N
E2 BET BEO Byte3 Byte2 Bytel  ByteO
BYTE 1|{BYTEO| < A

1 1 Byte 0 X X X

1 1 0 X X X Byte 1
[evTE 3[BYTE 2]BYTE 1]BYTEO| < A

0 0 1 Byte2  Bytel  ByteO X

1 1 0 X X X Byte 3
[evTE 3[BYTE 2[BYTE 1]BYTEO] <A

0 1 1 Byte1  ByteO X X

1 0 0 X X Byte3  Byte2
[8vTE 3]BYTE 2[BYTE 1]BYTEO| « A

1 1 1 Byte 0 X X X

0 0 0 X Byte3  Byte2  Bytel

[svTE 7]BYTE 6[BYTE 5[BYTE 4]BYTE 3[BYTE 2[BYTE 1[BYTEO| « A

0 0 0 Byte 3 Byte 2 Byte 1 Byte 0

0 0 0 Byte 7 Byte 6 Byte 5 Byte 4

[8vTe 7[BYTE 6]BYTE 5[BYTE 4]BYTE 3[BYTE 2|BYTE 1]BYTEO| « A

1. 9 A 0 0 0 1 Byte 2 Byte 1 Byte 0 X
2. 1 A+3 1 1 1 0 X X X Byte 3
Other bus cycles (instruction prefetch or slave) can occur here.

3. 9 A+4 0 0 0 1 Byte 6 Byte 5 Byte 4 X
4, 1 A+7 1 1 1 0 X X X Byte 7

G. Quad word at address ending with 10

[Bvre 7[BvTE 6BYTE 5[BYTE 4]BYTE 3]BYTE 2|BYTE 1]BYTEO| « A

1. 7 A 0 0 1 1 Byte 1 Byte O X X

2, 5 A+2 1 1 0 0 X X Byte 3 Byte 2
Other bus cycles (instruction prefetch or slave) can occur here.

3. 7 A+4 0 0 1 1 Byte 5 Byte 4 X X
4. 5 A+86 1 1 0 0 X X Byte 7 Byte 6

H. Quad word at address ending with 11

[svE 7[BvTE 6[BYTE 5[BYTE 4|BYTE 3[BYTE 2[BYTE 1]BYTEO| « A

1. 4 A 0 1 1 1 Byte 0 X X X

2. 8 A+1 1 0 0 0 X Byte 3 Byte 2 Byte

Other bus cycles (instruction prefetch or slave) can occur here.

1. 4 A+4 0 1 1 1 Byte 4 X X X

2. 8 A+5 1 [o] 0 0 X Byte 7 Byte 6 Byte 5
X = Don’t Care
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3.0 Functional Description (continued)

3.4.3.1 Bit Accesses

The Bit Instructions perform byte accesses to the byte con-
taining the designated bit. The Test and Set Bit instruction
(SBIT), for example, reads a byte, alters it, and rewrites it,
having changed the contents of one bit.

3.4.3.2 Bit Field Accesses

An access to a Bit Field in memory always generates a Dou-
ble-Word transfer at the address containing the least signifi-
cant bit of the field. The Double Word is read by an Extract
instruction; an Insert instruction reads a Double Word, modi-
fies it, and rewrites it.

3.4.3.3 Extending Multiply Accesses

The Extending Multiply Instruction (MEI) will return a result
which is twice the size in bytes of the operand it reads. If the
muitiplicand is in memory, the most-significant half of the
result is written first (at the higher address), then the least-
significant half. This is done in order to support retry if this
instruction is aborted.

3.4.4 instruction Feiches

Instructions for the NS32132 CPU are “prefetched”; that is,
they are input before being needed into the next available
entry of the eight-byte Instruction Queue. The CPU performs
two types of Instruction Fetch cycles: Sequential and Non-
Sequential. These can be distinguished from each other by
their differing status combinations on pins STO-ST3 (Sec.
3.4.2).

A Sequential Fetch will be performed by the CPU whenever
the Data Bus would otherwise be idle and the Instruction
Queue is not currently full. Sequential Fetches are always
type 10 Read cycles (Table 3-1).

A Non-Sequential Fetch occurs as a result of any break in
the normally sequential flow of a program. Any jump or
branch instruction, a trap or an interrupt will cause the next
Instruction Fetch cycle to be Non-Sequential. In addition,
certain instructions flush the instruction queue, causing the
next instruction fetch to display Non-Sequential status. Only
the first bus cycle after a break displays Non-Sequential
status, and that cycle depends on the destination address.

Note: During non-sequential fetches BEO--BES are all active regardless of
the alignment.

3.4.5 Interrupt Control Cycles

Activating the INT or NMI pin on the CPU will initiate one or
more bus cycles whose purpose is interrupt control rather
than the transfer of instructions or data. Execution of the
Return from Interrupt instruction (RETI) will also cause Inter-
rupt Control bus cycles. These differ from instruction or data
transfers only in the status pesented on pins ST0-ST3. All
Interrupt Control cycles are single-byte Read cycles.

This section describes only the Interrupt Control sequences
associated with each interrupt and with the return from its
service routine. For full details of the NS32132 interrupt
structure, see Sec. 3.8.
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3.0 Functional Description (continued)

TABLE 3-3
Interrupt Sequences

Data Bus
r “ N
Cycle Status Address DDIN BE3 BE2 BE1 BE0 Byte3 Byte2 Bytet Byte 0
A. Non-Maskable Interrupt Control Sequences
Interrupt Acknowledge
1 0100 FFFFO04g 0 1 1 1 o] X X X X
Interrupt Return
None: Performed through Return from Trap (RETT) instruction.
B. Non-Vectored Interrupt Control Sequences
interrupt Acknowledge
1 0100 FFFEQOO46 0 1 1 1 0 X X X X
Interrupt Return
1 0110 FFFEO0O16 0 1 1 1 0 X X X X
C. Vectored Interrupt Sequences: Non-Cascaded.
Interrupt Acknowledge
1 0100  FFFE0O4g 0 1 1 1 0 X X X Vector:
Range: 0-127
Interrupt Return
1 0110 FFFEOO4g 0 1 1 1 0 X X X Vector: Same as
in Previous Int.
Ack. Cycle
D. Vectored Interrupt Sequences: Cascaded
Interrupt Acknowledge
1 0100 FFFE0016 0 1 1 1 0 X X X Cascade Index:

(The CPU here uses the Cascade Index to find the Cascade Address.)

range —16to —1

2 0101 Cascade 0 See Note Vector, range 9-255; on appropriate byte of
Address data bus.
Interrupt Return
1 0110 FFFEOO4g 0 1 1 1 0 X X X Cascade Index:

(The CPU here uses the Cascade Index to find the Cascade Address)
2 0111 Cascade 0 See Note X X X
Address

X = Don’t Care

Same asin
previous Int.
Ack. Cycle

X

Note: BEG-BES signals will be activated according to the cascaded ICU address. The cycle type can be 1, 2, 3 or 4, when reading the interrupt vector. The vector

value can be in the range 0-255.
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3.0 Functional Description (continued)

3.4.6 Slave Processor Communication

In addition to its use as the Address Translation strap (Sec.
3.5.1), the AT/SPC pin is used as the data strobe for Slave
Processor transfers. In this role, it is referred to as Slave
Processor Control (SPC). In a Slave Processor bus cycle,
data is transferred on the Data Bus (AD0O-AD15), and the
status lines STO-ST3 are monitored by each Slave Proces-
sor in order to determine the type of transfer being per-
formed. SPC is bidirectional, but is driven by the CPU during
all Slave Processor bus cycles. See Sec. 3.9 for full protocol
sequences.

PREV. CYCLE
I TdorTi

]

PHI 1

T

20015 K'———> o019

XF/5PC G5
Nss2132 sLave
- PROCESSOR
STO-ST3 STO-ST3

TL/EE/8583-22

FIGURE 3-12. Slave Processor Connections

T4

]

NEXTCYCLE
TIORTI !

PHI 2

[ ]

M

E

1
N
)=

VALID

NEXT STATUS

[

\/
=

Note:
(1) CPU samples Data Bus here.

(2) DBE and all other N§32201 TCU bus signals remain inactive because no ADS pulse is received from the CPU.

FIGURE 3-13. CPU Read from Slave Processor

TL/EE/8583-23

2-101

01-CELZESN/8-CELZESN/9-2ELZESN



NS32132-6/NS32132-8/NS32132-10

3.0 Functional Description (continued)

3.4.6.1 Slave Processor Bus Cycles

A Slave Processor bus cycle always takes exactly two clock
cycles, labeled T1 and T4 (see Figures 3-13 and 3-74). Dur-
ing a Read cycle, SPC is activated at T1, data is sampled at
T4, and SPC is removed. The Cycle Status pins lead the
cycle by one clock period, and are sampled at the leading
edge of SPC. During a Write cycle, the CPU applies data
and activates SPC at T1, removing SPC at T4. The Slave
Processor latches status on the leading edge of SPC and
latches data on the trailing edge.

Since the CPU does not pulse the Address Strobe (ADS),
no bus signals are generated by the NS32201 Timing Con-
trol Unit. The direction of a transfer is determined by the
sequence (“protocol”) established by the instruction under
execution; but the CPU indicates the direction on the DDIN
pin for hardware debugging purposes.

=

3.4.6.2 Slave Operand Transfer Sequences

A Slave Processor operand is transferred in one or more
Slave bus cycles. A Byte operand is transferred on the
least-significant byte of the Data Bus (ADO-AD?7), and a
Word operand is transferred on bits ADO-AD15. A Double
Word is transferred in a consecutive pair of bus cycles,
least-significant word first. A Quad Word is transferred in
two pairs of Slave cycles, with other bus cycles possibly
occurring between them. The word order is from least-signif-
icant word to most-significant.

Note that the NS32132 uses only the two least significant
bytes of the data bus for slave cycles. This is to maintain
compatibility with existing slave processors.

NEXT CYCLE
T4 TIORTi |

i

\ ]

3}

DATA OUT

X ven

PREV.CYCLE
T4ORTi
- [ ]
g
=1/
e | 772,
8$T0-ST3 i Z%

VALID

NEXT STATUS

il

\/

V 7

[ s |

NN\

N

G [

1/

Note:
(1) Slave Processor samples Data Bus here.

TL/EE/8583-24

(2) DBE, being provided by the NS32201 TCU, remains inactive due to the fact that no pulse is presented on ADS. TCU signals RD, WR and TSO also remain

inactive.

FIGURE 3-14. CPU Write to Slave Processor
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3.0 Functional Description (continued)

3.5 MEMORY MANAGEMENT OPTION

The NS32132 CPU, in conjunction with the NS32082 Mem-
ory Management Unit (MMU), provides full support for ad-
dress translation, memory protection, and memory alloca-
tion techniques up fo and including Virtual Memory.

3.5.1 Address Translation Strap

The Bus Interface Control section of the NS32132 CPU has
two bus timing modes: With or Without Address Translation.
The mode of operation is selected by the CPU by sampling
the AT/SPC (Address Translation/Slave Processor Control)
pin on the rising edge of the RST (Reset) puise. If AT/SPC

l T40RTI I T | Tmmu

a

is sampied as high, the bus timing is as previously described

in Sec. 3.4. If it is sampled as low, two changes occur:

1) An extra clock cycle, Tmmu, is inserted into all bus cy-
cles except Slave Processor iransfers.

2) The ﬁ/iﬁ pin changes in function from a Data Strobe
output (DS) to a Float Command input (FLT).

The NS32082 MMU will itself pull the CPU AT/SPC pin low

when it is reset. In non-Memory-Managed systems this pin

should be pulled up to Vg through a 10 kQ resistor.

Note that the Address Translation strap does not specifical-

ly declare the presence of an NS32082 MMU, but only the

[ ]

)i

TN >~ K772

[
[
[

STATUS VALID

X NEXT STATUS

NEXT

558 //%

VALID NEXT

—~

A | Gz

TL/EE/8583-25

FIGURE 3-15. Read Cycle with Address Translation (CPU Action)
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3.0 Functional Description (Continued)
presence of external address translation circuitry. MMU in-
structions will still trap as being undefined unless the
SETCFG (Set Configuration) instruction is executed to de-
clare the MMU instruction set valid. See Sec. 2.1.3.

3.5.2 Transtated Bus Timing

Figures 3-15 and 3-16 illustrate the CPU activity during a
Read cycle and a Write cycle in Address Translation mode.
The additional T-State, Tmmu, is inserted between T1 and
T2. During this time the CPU places ADO-AD23 into the
TRI-STATE® mode, allowing the MMU to assert the trans-
lated address and issue the physical address strobe PAV.
T2 through T4 of the cycle are identical to their counterparts
without Address Translation. Note that in order for the

NS32082 MMU to operate correctly it must be set to the
32132 mode by forcing A24/HBF low during reset. in this
mode the bus lines AD16-AD23 are floated after the MMU
address has been latched, since they are used by the CPU
to transfer data.

Figures 3-17 and 3-18 show a Read cycle and a Write cycle
as generated by the 32132/32082/32201 group. Note that
with the CPU ADS signal going only to the MMU, and with
the MMU PAV signal substituting for ADS everywhere else,
Tmmu through T4 look exactly like T1 through T4 in a non-
Memory-Managed system. For the connection diagram, see
Appendix B.

[ LT e
sl Cia G ) G
e | o /
=

emers [ X -
= |7 e |
- [ 272777 | 0222477

TL/EE/8583-26

FIGURE 3-16. Write Cycle with Address Translation (CPU Action)
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3.0 Functional Description (continue
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FIGURE 3-17. Memory-Managed Read Cycle
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3.0 Functional Description (continued)
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3.0 Functional Description (continued)

3.5.3 The FLT (Float) Pin

The FLT pin is used by the CPU for address translation
support. Activating FLT during Tmmu causes the CPU to
wait longer than Tmmu for address translation and valida-
tion. This feature is used occasionally by the NS32082 MMU
in order to update its internal translation look-aside buffer
(TLB) from page tables in memory, or to update certain
status bits within them.

Figure 3-19 shows the effect of FLT. Upon sampling FLT
low, late in Tmmu, the CPU enters idle T-States (Tf) during
which it:

T Tmmu Tt

w [

-

1) Sets ADO-AD23, D24-D31 and DDIN to the TRI-STATE
condition (“floating”).

2) Suspends further internal processing of the current in-
struction. This ensures that the current instruction re-
mains abortable with retry. (See RST/ABT description,
Sec. 3.5.4))

Note that the ADO-AD23 pins may be briefly asserted dur-

ing the first idle T-State. The above conditions remain in

effect until FLT again goes high. See the Timing Specifica-

tions, Sec. 4.
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FIGURE 3-19. FLT Timing
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3.0 Functional Description (continued)

3.5.4 Aborting Bus Cycles

The RST/ABT pin, apart from its Reset function (Sec. 3.3),
also serves as the means to ““abort”, or cancel, a bus cycle
and the instruction, if any, which initiated it. An Abort re-
quest is distinguished from a Reset in that the RST/ABT pin
is held active for only one clock cycle.

If RST/ABT is pulled low during Tmmu or Tf, this signals
that the cycle must be aborted. The CPU itself will enter T2
and then Ti, thereby terminating the cycle. Since it is the
MMU PAV signal which triggers a physical cycle, the rest of
the system remains unaware that a cycle was started.

The NS32082 MMU will abort a bus cycle for either of two
reasons:

1) The CPU is attempting to access a virtual address which
is not currently resident in physical memory. The refer-
enced page must be brought into physical memory from
mass storage to make it accessible to the CPU.

2) The CPU is attempting to perform an access which is not
allowed by the protection level assigned to that page.

When a bus cycle is aborted by the MMU, the instruction
that caused it to occur is also aborted in such a manner that
it is guaranteed re-executable later. The information that is
changed irrecoverably by such a partly-executed instruction
does not affect its re-execution.

3.5.4.1 The Abort Interrupt

Upon aborting an instruction, the CPU immediately performs
an interrupt through the ABT vector in the Interrupt Table
(see Sec. 3.8). The Return Address pushed on the Interrupt
Stack is the address of the aborted instruction, so that a
Return from Trap (RETT) instruction will automatically retry
it.

The one exception to this sequence occurs if the aborted
bus cycle was an instruction prefetch. If so, it is not yet
certain that the aborted prefetched code is to be executed.
Instead of causing an interrupt, the CPU only aborts the bus
cycle, and stops prefetching. If the information in the In-
struction Queue runs out, meaning that the instruction will
actually be executed, the ABT interrupt will occur, in effect
aborting the instruction that was being fetched.

3.5.4.2 Hardware Considerations

In order to guarantee instruction retry, certain rules must be
followed in applying an Abort to the CPU. These rules are
followed by the NS32082 Memory Management Unit.

1) If FLT has not been applied to the CPU, the Abort pulse
must occur during or before Tmmu. See the Timing Spec-
ifications, Figure 4-22.

2) If FLT has been applied to the CPU, the Abort pulse must
be applied before the T-State in which FLT goes inactive.
The CPU will not actually respond to the Abort command
until FLT is removed. See Figure 4-23.

3) The Write half of a Read-Modify-Write operand access
may not be aborted. The CPU guarantees that this will
never be necessary for Memory Management functions
by applying a special RMW status (Status Code 1011)
during the Read half of the access. When the CPU pres-
ents RMW status, that cycle must be aborted if it would
be illegal to write to any of the accessed addresses.

If RST/ABT is pulsed at any time other than as indicated
above, it will abort either the instruction currently under exe-
cution or the next instruction and will act as a very high-pri-
ority interrupt. However, the program that was running at the
time is not guaranteed recoverable.

3.6 BUS ACCESS CONTROL

The NS32132 CPU has the capability of relinquishing its
access to the bus upon request from a DMA device or an-
other CPU. This capability is implemented on the HOLD
(Hold Request) and HLDA (Hold Acknowiedge) pins. By as-
serting HOLD low, an external device requests access to
the bus. On receipt of HLDA from the GPU, the device may
perform bus cycles, as the CPU at this point has set the
ADO0-AD23, D24-D31, ADS, DDIN and BEO-BES pins to
the TRI-STATE condition. To return control of the bus to the
CPU, the device sets HOLD inactive, and the CPU acknowl-
edges return of the bus by setting HLDA inactive.

How quickly the CPU releases the bus depends on whether
it is idle on the bus at the time the HOLD request is made,
as the CPU must always complete the current bus cycle.
Figure 3-20 shows the timing sequence when the CPU is
idle. In this case, the CPU grants the bus during the immedi-
ately following clock cycle. Figure 3-21 shows the sequence
if the CPU is using the bus at the time that the HOLD re-
quest is made. If the request is made during or before the
clock cycle shown (two clock cycles before T4), the CPU
will release the bus during the clock cycle following T4. If
the request occurs closer to T4, the CPU may already have
decided to initiate another bus cycle. In that case it will not
grant the bus until after the next T4 state. Note that this
situation will also occur if the CPU is idle on the bus but has
initiated a bus cycle internally.

In a Memory-Managed system, the HLDA signal is connect-
ed in a daisy-chain through the NS32082, so that the MMU
can release the bus if it is using it.
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3.0 Functional Description (continued)
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FIGURE 3-20. HOLD Timing, Bus Initially Idle
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3.0 Functional Description (continued)
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3.0 Functional Description (continued)

3.7 DUAL PROCESSING

An important feature of the NS32132 is its ability to cooper-
ate with another NS32132, sharing the same bus and mem-
ory in a mode known as “Tightly-Coupled Dual Processing.”
With the addition of one NS32132 and a minimal amount of
standard TTL logic, this feature may enhance performance
up to 80%. This is possible because the NS32132 average
bus usage is in the range of 45% to 55%.

In a memory-managed system, an extra NS32201 TCU is
required since a single TCU cannot drive two CPUs and two
MMUs. In this case, a delay line may be needed to deskew
the clock outputs from the two TCUs to avoid speed degra-
dations.

Figure 3.22 shows a basic dual processing system configu-
ration. A more complete connection diagram of a memory-
managed system is given in Appendix B.

47 v JV
g 3=

RD WR TS0 % 85 SEL
NS32201 b3
Tcu < STO-ST3
RESET y—>| 75T PHIt » PHit MUX —ﬁsm-sﬁ
PHI2 > php  NSS2132
]
»| A05 DOIN __
RSTO > ::T_Q/ABT - P 5E0-563
s B HOLD |« i-1 < HOD
cm DDIN ¢ —> BRI AR | |
HLDA
f 024-D31  ADO-AD23 —i—
I: o o b— ADDRESS
75574 | AR jmp 20-423
CLK { | - ADS
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5V M D24-D31  ADO-AD23
-— BRO HOLD j¢= oATA
—G: IR e R — BUFFERS 00-031
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FIGURE 3-22. Dual Processor System Basic Interconnections
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3.0 Functional Description (continued)

3.7.1 Bus Arbitration

The NS32132 provides two signals for the arbitration of the
bus in a dual processing system:

* bus request out (BRO)

e bus request in (BRI)

A third signal (BB), activated only when the CPU is in control
of the bus, is provided for testing purposes and for control-
ling external logic.

At any given time only one CPU is in control of the bus,
while the other has its address/data lines and other relevant
signals floating. Whenever the CPU not in control of the bus
needs to perform a bus cycle, it asserts BRO requesting the
other CPU to release the bus. The CPU in control of the bus,
detecting a low signal on its BRI pin, will keep the bus for no
more than two bus cycles and release it. It then notifies the
other CPU by deactivating its BRO signal, and bus control
switches.

READ CYCLE
CPU 1
CONTROLS THE BUS
CPU 1 STATES T4 "o o1 l T3 ‘ T4
CPYU 2 STATES T+ T4 I T4 T4 T4

mo [N 1T

An exception to this rule occurs if the CPU in control of the
bus is executing an interlocked instruction. In this case, the
bus is released at the end of the instruction rather than at
the end of the current bus cycle.

When a bus switch occurs, the address/data lines and the
BEO-BES lines from the CPU in control of the bus are float-
ed a half clock cycle before the other CPU starts driving
these lines. This scheme ensures that no contentions occur
during the switching when the lines from the two CPUs are
hardwired.

If a bus switch follows a read cycle, the T4 cycle of the CPU
in control of the BUS is immediately followed by the T1 cy-
cle of the other CPU. If the bus switch follows a write cycle,
the CPU in control of the bus adds an extra clock cycle and
releases the bus during this cycle. This ensures that the
data hold times for single and dual processor configurations
are the same. A bus switching timing diagram is shown in
Figure 3-23.

WRITE CYCLE WRITE CYCLE
CPU 2 Ut
CONTROLS THE BUS CONTROLS THE BUS
Ti T4 T4 T4 T4 ™
m T2 T3 T4 T T4

[ TU L T T
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FIGURE 3-23. Dual Processor Bus Arbitration Timing
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3.0 Functional Description (continued)

3.7.2 Processor Assignment

One problem with a multiprocessing system is ensuring that
after a common initialization sequence, each processor
branches to a different location in memory to execute a cer-
tain program. In cases where external hardware makes the
system asymmetrical, the solution to this problem is simple.
In a perfectly symmetrical system it is still possible to identi-
fy each processor uniquely so that tasks can be assigned to
different processors. It is impossible, however, to know
which processor will be assigned to a certain task.

The NS32132 relies on the fact that two tightly-coupled
CPUs will switch bus control after at most fwo bus cycles,
except when an interlocked instruction is executed. Figure
3.24 shows an instruction sequence that can be used to
assign processors to different tasks.

SEM: BLKB 1

MOVQB 0, SEM
NOP
SBITI 0, SEM

BFC TSK1

TSK1:

Both CPUs clear the same memory location on subsequent
bus cycles. This ensures that both CPUs have cleared the
memory location before any one of them executes the inter-
locked instruction. The CPU that exited the reset condition
first executes the Set Bit Interlocked Instruction (SBITI),
finding the bit clear. The other CPU will then execute the
same instruction, but will find the bit set. Both CPUs will
execute Branch on Flag Clear (BFC) instruction. The CPU
that found the bit clear executes the branch; the other CPU
continues to the next instruction. in this case the time con-
straint which delays one processor’s exit from the reset con-
dition makes it possible to know which processor will be
assigned to a certain task.

;Reserve storage
;location for semaphore

;Clear semaphore

;Set bit interlocked

;Branch on flag clear

CODE FOR TASK 2

CODE FOR TASK 1

FIGURE 3-24. Instruction Sequence to Assign CPUs to Different Tasks
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3.0 Functional Description continued)

3.8 INSTRUCTION STATUS

In addition to the four bits of Bus Cycle status (ST0O-ST3),
the NS32132 CPU also presents Instruction Status informa-
tion on three separate pins. These pins differ from STO-
ST3 in that they are synchronous to the CPU’s internal in-
struction execution section rather than to its bus interface
section.

PFS (Program Flow Status) is pulsed low as each instruction
begins execution. It is intended for debugging purposes, and
is used that way by the NS32082 Memory Management
Unit.

U/S originates from the U bit of the Processor Status Regis-
ter, and indicates whether the CPU is currently running in
User or Supervisor mode. It is sampled by the MMU for
mapping, protection, and debugging purposes. Although it is
not synchronous to bus cycles, there are guarantees on its
validity during any given bus cycle. See the Timing Specifi-
cations, Figure 4-21.

1LO (Interlocked Operation) is activated during an SBITI (Set
Bit, Interlocked) or CBITI (Clear Bit, Interlocked) instruction.
It is made available to external bus arbitration circuitry in
order to allow these instructions to implement the sema-
phore primitive operations for muiti-processor communica-
tion and resource sharing. As with the U/S pin, there are
guarantees on its validity during the operand accesses per-
formed by the instructions. See the Timing Specification
Section, Figure 4-19.

3.9 NS32132 INTERRUPT STRUCTURE
INT, on which maskabie interrupts may be requested,
NMI, on which non-maskable interrupts may be request-
ed, and

RST/ABT, which may be used to abort a bus cycle and
any associated instruction. It generates an interrupt re-
quest if an instruction was aborted. See Sec. 3.5.4.

In addition there is a set of internally-generated “traps”
which cause interrupt service to be performed as a result
either of exceptional conditions (e.g., attempted division by
zero) or of specific instructions whose purpose is to cause a
trap to occur (e.g., the Supervisor Call instruction).

3.9.1 General Interrupt/Trap Sequence

Upon receipt of an interrupt or trap request, the CPU goes

through four major steps:

1) Adjustment of Registers.
Depending on the source of the interrupt or trap, the CPU
may restore and/or adjust the contents of the Program
Counter (PC), the Processor Status Register (PSR) and
the currently-selected Stack Pointer (SP). A copy of the
PSR is made, and the PSR is then set to reflect Supervi-
sor Mode and selection of the Interrupt Stack.

2) Saving Processor Status.
The PSR copy is pushed onto the Interrupt Stack as a 16-
bit quantity.

3) Vector Acquisition.
A Vector is either obtained from the Data Bus or is sup-
plied by default.

4) Service Call.
The Vector is used as an index into the Interrupt Dispatch
Table, whose base address is taken from the CPU Inter-
rupt Base (INTBASE) Register. See Figure 3-25. A 32-bit
External Procedure Descriptor is read from the table en-
try, and an External Procedure Call is performed using it.
The MOD Register (16 bits) and Program Counter (32
bits) are pushed on the Intermrupt Stack.

q-/
.
MEMORY | 3 o
NVI NON-VECTORED INTERRUPT
CASCADE ADDR 0
5 NMI NON-MASKABLE INTERRUPT
CASCADETABLE  AY .
o ABT ABORT
CASCADE ADDR 14
SLAVE SLAVE PROCESSOR TRAP
INTERRUPT BASE CASCADE ADDR 15 L JLLEGAL OPERATION TRAP
REGISTER

L FxeowTerRuPTS | 5| sve SUPERVISOR CALL TRAP

> AND TRAPS ~
A VECTORED L DISPATCH TABLE ovz DIVIDE BY ZERO TRAP
T INTERRUPTS ~

7| FLG FLAG TRAP
-~ o
s| spT BREAKPOINT TRAP
9! TRC TRACE TRAP
10{ UND UNDEFINED INSTRUCTION TRAP

11-15 A RESERVED <™

VECTORED
INTERRUPTS

16

~~

TL/EE/8583-34

FIGURE 3-25. Interrupt Dispatch and Cascade Tables




3.0 Functional Description (continued)
This process is illustrated in Figure 3-26, from the viewpoint

of the programmer.

Interrupt on INT or NMI pin:
Abort Interrupt:

Full sequences of events in processing interrupts and traps Traps (except Trace):
may be found as follows: Trace Trap:
RETURN ADDRESS (PUSH) 2BITS
STATUS MODULE 328ITS
(PUSH)
PSR Moo INTERRUPT
STACK
.
.
.
______________ -
CASCADE TABLE
INTBASE REGISTER
INTERRUPT BASE jﬁ DISPATCH
TABLE
VECTOR x4 ©)
DESCRIPTOR (32 BITS)
DESCRIPTOR
16 16
OFFSET MODULE
]
MOD REGISTER MODULE TABLE
NEW MODULE
MODULE TABLE ENTRY
MODULE TABLE ENTRY
32
STATIC BASE POINTER —
LINK BASE POINTER
J) PROGRAM BASE POINTER
(RESERVED)
PROGRAM COUNTER SB REGISTER
;[—— ENTRY POINT ADDRESS j NEW STATIC BASE

FIGURE 3-26. Interrupt/Trap Service Routine Calling Sequence

Sec. 3.9.7.1.
Sec.3.9.7.4.
Sec.39.7.2.
Sec.3.9.7.3.

TL/EE/8583-35

TL/EE/8583-36

2-115

01-2E1LTESN/8-CELZESN/9-CELTESN



NS32132-6/NS32132-8/NS32132-10

3.0 Functional Description (continueq)

3.9.2 Interrupt/Trap Return

To return control to an interrupted program, one of two in-
structions is used. The RETT (Return from Trap) instruction
(Figure 3-27) restores the PSR, MOD, PC and SB registers
1o their previous contents and, since traps are often used
deliberately as a call mechanism for Supervisor Mode pro-
cedures, it also discards a specified number of bytes from
the original stack as surplus parameter space. RETT is used
to return from any trap or interrupt except the Maskable
Interrupt. For this, the RETI (Return from Interrupt) instruc-
tion is used, which also informs any external Interrupt Con-
trol Units that interrupt service has completed. Since inter-
rupts are generally asynchronous external events, RETI
does not pop parameters. See Figure 3-28.

3.9.3 Maskable Interrupts (The INT Pin)

The INT pin is a level-sensitive input. A continuous low level
is allowed for generating multiple interrupt requests. The in-
put is maskable, and is therefore enabled to generate inter-
rupt requests only while the Processor Status Register | bit
is set. The | bit is automatically cleared during service of an
TNT, NMI or Abort request, and is restored to its original

setting upon return from the interrupt service routine via the
RETT or RETI instruction.

The INT pin may be configured via the SETCFG instruction
as either Non-Vectored (CFG Register bit | = C) or Vec-
tored (bit | = 1).

3.9.3.1 Non-Vectored Mode

In the Non-Vectored mode, an interfupt request on the INT
pin will cause an Interrupt Acknowledge bus cycle, but the
CPU will ignore any value read from the bus and use instead
a default vector of zero. This mode is useful for small sys-
tems in which hardware interrupt prioritization is unneces-
sary.

3.9.3.2 Vectored Mode: Non-Cascaded Case

In the Vectored mode, the CPU uses an Interrupt Control
Unit (ICU) to prioritize up to 16 interrupt requests. Upon re-

ceipt of an interrupt request on the INT pin, the CPU per-
forms an “Interrupt Acknowledge, Master” bus cycle

PROGRAM COUNTER
1 (PO}
RETURN ADDRESS J 32BITS
(POP)
STATUS MODULE 328ITS

PSR Mmoo INTERRUPT
: STACK :
. L]

0
MODULE
TABLE
MODULE TABLE ENTRY
,
-
MODULE TABLE ENTRY
STATIC BASE POINTER —
LINK BASE POINTER
PROGRAM BASE POINTER
(RESERVED)
PARAMETERS
n
BYTES
SB REGISTER
| STATIC BASE STACK SELECTED
IN NEWLY-
POPPED PSR.
. :
L] .
: :
POP AND
DISCARD

TL/EE/8583-37
FIGURE 3-27. Return from Trap (RETT n) Instruction Flow
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3.0 Functional Description (continued)

“END OF INTERRUPT”

BUSCYCLE
INTERRUPT
CONTROL
UNIT
PROGRAM COUNTER
1 (POP)
[ RETURN ADDRESS !
| (POP)
L STATUS } MODUL “T
PSR MOD
INTERRUPT
STACK
.
. .
. .
0
MODULE
TABLE
MODULE TABLE ENTRY
{ )
MODULE TABLE ENTRY
STATIC BASE POINTER -1
LINK BASE POINTER
PROGRAM BASE POINTER
(RESERVED)
I STATIC BASE
SB REGISTER

FIGURE 3-28. Return from Interrupt (RETI) Instruction Flow

TL/EE/8583-38
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3.0 Functional Description (continued)

(Sec. 3.4.2) reading a vector value from the low-order byte
of the Data Bus. This vector is then used as an index inio
the Dispatch Table in order to find the External Procedure
Descriptor for the proper interrupt service procedure. The
service procedure eventually returns via the Return from In-
terrupt (RETI) instruction, which performs an End of Inter-
rupt bus cycle, informing the ICU that it may re-prioritize any
interrupt requests still pending. The ICU provides the vector
number again, which the CPU uses to determine whether it
needs also to inform a Cascaded ICU (see below).

In a system with only one ICU (16 levels of interrupt), the
vectors provided must be in the range of 0 through 127; that
is, they must be positive numbers in eight bits. By providing
a negative vector number, an ICU flags the interrupt source
as being a Cascaded ICU (see below).

3.9.3.3 Vectored Mode: Cascaded Case

In order to allow up to 256 levels of interrupt, provision is
made both in the CPU and in the NS32202 Interrupt Control
Unit (ICU) to transparently support cascading. Figure 3-30,
shows a typical cascaded configuration. Note that the Inter-
rupt output from a Cascaded ICU goes to an Interrupt Re-
quest input of the Master ICU, which is the only ICU which
drives the CPU INT pin.
In a system which uses cascading, two tasks must be per-
formed upon initialization:
1) For each Cascaded ICU in the system, the Master ICU
must be informed of the line number (0 to 15) on which it
receives the cascaded requests.

2) A Cascade Table must be established in memory. The
Cascade Table is Jocated in a NEGATIVE direction from
the location indicated by the CPU Interrupt Base (INT-
BASE) Register. Its entries are 32-bit addresses, pointing
to the Vector Registers of each of up to 16 Cascaded
ICUs.

Figure 3-25 illustrates the position of the Cascade Table. To

find the Cascade Table entry for a Cascaded ICU, take its

Master ICU line number (O to 15) and subtract 16 from it,

giving an index in the range —16 to —1. Multiply this value
by 4, and add the resulting negative number to the contents
of the INTBASE Register. The 32-bit entry at this address
must be set to the address of the Hardware Vector Register
of the Cascaded ICU. This is referred to as the “Cascade
Address.”

Upon receipt of an interrupt request from a Cascaded ICU,
the Master ICU interrupts the CPU and provides the nega-
tive Cascade Table index instead of a (positive) vector num-
ber. The CPU, seeing the negative value, uses it as an index
into the Cascade Table and reads the Cascade Address
from the referenced entry. Applying this address, the CPU
performs an “Interrupt Acknowledge, Cascaded” bus cycle
(Sec. 3.4.2), reading the final vector value. This vector is
interpreted by the CPU as an unsigned byte, and can there-
fore be in the range of 0 through 255.

In returning from a Cascaded interrupt, the service proce-
dure executes the Return from Interrupt (RETI) instruction,
as it would for any Maskable Interrupt. The CPU performs
an “End of Interrupt, Master” bus cycle (Sec. 3.4.2), where-
upon the Master ICU again provides the negative Cascade
Table index. The CPU, seeing a negative value, uses it to
find the corresponding Cascade Address from the Cascade
Table. Applying this address, it performs an “End of Inter-
rupt, Cascaded” bus cycle (Sec. 3.4.2), informing the Cas-
caded ICU of the completion of the service routine. The byte
read from the Cascaded ICU is discarded.

NOTE: If an interrupt must be masked off, the CPU can do so by setting the

corresponding bit in the interrupt mask register of the interrupt con-
troller.
However, if an interrupt is set pending during the CPU instruction that
masks off that interrupt, the CPU may still perform an interrupt ac-
knowledge cycle following that instruction since it might have sam-
pled the INT line before the ICU deasserted it. This could cause the
ICU to provide an invalid vector. To avoid this problem the above
operation should be performed with the CPU interrupt disabled.

DATA
le—IR1 )
®) te—IR3
CONTROL = IRs HARDWARE
) o R? merg;up'rs
NS32132 ADDRSBITS nsazzoz [ IR | CASCACED
cPU e— IR11
GROUP e
—IR15
STATUS 4 e GONRO
= G1/IR2
T INT e G2/IR4
-~ aune | "R
== G4/IRE oo
= G5/IR10
- SO S iy
DECODER e G7/1R14

TL/EE/8583-39

FIGURE 3-29. Interrupt Control Unit Connections (16 Levels)
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3.0 Functional Description (continueq)

DATA

[~—IR1
=—IR3

[~—IRS

CONTROL

CONTROL

ADDR 5 BITS

=—1R7

—=—IR9

HARDWARE

CASCADED
NS32202 INTERRUPTS

Icu

=—1IR11
=—IR13
=—1IR15§ _J

[ GO/IRO 7

STATUS 1

== G1/IR2
e G2/IR4
== G3/IR6
= G4/IR8
== G5/IR10
= G6/IR12
[ G7/IR14
-

INTERRUPTS
OR
BITIVO

ls— IR1
l=—IR3

=—IR5

NS32132

CPU ADDR
GROUP

STATUS 1

[=—iR?

t— |R8

[ R11
—IR13
~=—IR15

=== GO/IRC

[~ G1/IR2

FROM -—
ADDRESS —! CS
DECODER

[~-=-G2/IR4
[~=G3/IR6
[ G4/IR8
==-GS5/R10
[~==G6/IR12
[~+>-G7/IR14

TL/EE/8583-40

FIGURE 3-30. Cascaded Interrupt Control Unit Connections

3.9.4 Non-Maskable Interrupt (The NMI Pin)

The Non-Maskable Interrupt is triggered whenever a falling
edge is detected on the NMI pin. The CPU performs an
“Interrupt Acknowledge, Master” bus cycle (Sec. 3.4.2)
when processing of this interrupt actually begins. The Inter-
rupt Acknowiedge cycle differs from that provided for Mask-
able Interrupts in that the address presented is FFFF00+g.
The vector value used for the Non-Maskable Interrupt is
taken as 1, regardless of the value read from the bus.

The service procedure returns from the Non-Maskable In-
terrupt using the Return from Trap (RETT) instruction. No
special bus cycles occur on return. '

For the full sequence of events in processing the Non-
Maskable Interrupt, see Sec. 3.9.7.1.

3.9.5 Traps

A trap is an internally-generated interrupt request caused as
a direct and immediate result of the execution of an instruc-
tion. The Return Address pushed by any trap except Trap
(TRC) is the address of the first byte of the instruction during
which the trap occurred. Traps do not disable interrupts, as
they are not associated with external events. Traps recog-
nized by the NS32132 GPU are:

Trap (SLAVE): An exceptional condition was detected by
the Floating Point Unit or another Slave Processor during
the execution of a Slave Instruction. This trap is requested
via the Status Word returned as part of the Slave Processor
Protocol (Sec. 3.10.1).
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3.0 Functional Description (continued)

Trap (ILL): lilegal operation. A privileged operation was at-
tempted while the CPU was in User Mode (PSR bitU = 1).

Trap (SVC): The Supervisor Call (8VQ) instruction was exe-
cuted.
Trap (DVZ): An attempt was made to divide an integer by
zero. (The FPU trap is used for Floating Point division by
zero.)

Trap (FLG): The FLAG instruction detected a “1” in the
CPU PSR F bit.

Trap (BPT): The Breakpoint (BPT) instruction was execut-
ed.

Trap (TRC): The instruction just completed is being traced.
See below.

Trap (UND): An undefined opcode was encountered by the
CPU.

A special case is the Trace Trap (TRC), which is enabled by
setting the T bit in the Processor Status Register (PSR). At
the beginning of each instruction, the T bit is copied into the
PSR P (Trace “Pending”) bit. If the P bit is set at the end of
an instruction, then the Trace Trap is activated. If any other
frap or interrupt request is made during a traced instruction,
its entire service procedure is allowed to complete before
the Trace Trap occurs. Each interrupt and trap sequence
handles the P bit for proper tracing, guaranteeing one and
only one Trace Trap per instruction, and guaranteeing that
the Return Address pushed during a Trace Trap is always
the address of the next instruction to be traced.

3.9.6 Prioritization

The NS32016 CPU internally prioritizes simultaneous inter-
rupt and trap requests as follows:

1) Traps other than Trace (Highest priority)
2) Abort

3) Non-Maskable Interrupt

4) Maskable Interrupts

5) Trace Trap (Lowest priority)

3.9.7 Interrupt/Trap Sequences: Detailed Flow

For purposes of the following detailed discussion of inter-
rupt and trap service sequences, a single sequence called
“Service" is defined in Figure 3-31. Upon detecting any in-
terrupt request or trap condition, the CPU first performs a
sequence dependent upon the type of interrupt or trap. This
sequence will include pushing the Processor Status Regis-
ter and establishing a Vector and a Return Address. The
CPU then performs the Service sequence.

For the sequence followed in processing either Maskable or
Non-Maskabie interrupts (on the INT or NMi pins, respec-
tively), see Sec. 3.9.7.1 For Abort Interrupts, see Sec.
3.9.7.4. For the Trace Trap, see Sec. 3.9.7.3, and for all
other traps see Sec. 3.9.7.2.

3.9.7.1 Maskable/Non-Maskable Interrupt Sequence

This sequence is performed by the CPU when the NMI pin
receives a falling edge, or the INT pin becomes active with
the PSR | bit set. The interrupt sequence begins either at
the next instruction boundary or, in the case of the String
instructions, at the next interruptible point during its execu-
tion.

-

. If a String instruction was interrupted and not yst com-
pleted:
a. Clear the Processor Status Register P bit.

b. Set “Return Address” to the address of the first byte of
the interrupted instruction.

Otherwise, set “Return Address” to the address of the
next instruction.

2. Copy the Processor Status Register (PSR) into a tempo-
rary register, then clear PSR bits S, U, T, P and 1.

3. If the interrupt is Non-Maskable:

a. Read a byte from address FFFF004¢, applying Status
Code 0100 (Interrupt Acknowledge, Master, Sec.
3.4.2). Discard the byte read.

b. Set “Vector” to 1.
c. Go to Step 8.
4. If the interrupt is Non-Vectored:
a. Read a byte from address FFFF004¢, applying Status

Code 0100 (Interrupt Acknowledge, Master: Sec.
3.4.2). Discard the byte read.

b. Set “Vector” to 0.
c.Goto Step 8.
5. Here the interrupt is Vectored. Read “Byte” from address

FFFEOO4s, applying Status Code 0100 (Interrupt Ac-
knowledge, Master: Sec. 3.4.2).

6. If “Byte” > 0, then set “Vector” to “Byte” and go to Step
8.

. If “Byte” is in the range — 16 through —1, then the inter-
rupt source is Cascaded. (More negative values are re-
served for future use.) Perform the following:

a. Read the 32-bit Cascade Address from memory. The
address is calculated as INTBASE +4* Byte.

b. Read “Vector,” applying the Cascade Address just
read and Status Code 0101 (Interrupt Acknowledge,
Cascaded: Sec. 3.4.2).

8. Push the PSR copy (from Step 2) onto the Interrupt Stack

as a 16-bit value.

9. Perform Service (Vector, Return Address), Figure 3-31.

~

Service (Vector, Return Address):

1) Read the 32-bit External Procedure Descriptor from the Interrupt
Dispatch Table: address is Vector* 4 + INTBASE Register contents.

2) Move the Module field of the Descriptor into the MOD Reglster.

3) Read the new Static Base pointer from the memory address con-
tained in MOD, placing it into the SB Register.

4) Read the Program Base pointer from memory address MOD + 8,
and add to it the Offset field Irom{yl,he Descriptor, placing the resuit
in the Program Counter. R

5) Flush queue: N y fetch first of
routine.

6) Push MOD Register into the Interrupt Stack as a 16-bit value. (The
PSR has already been pushed as a 16-bit value.)

7) Push the Return Address onto the Interrupt Stack as a 32-bit quanti-
ty.

q P

FIGURE 3-31. Service Sequence
Invoked during all interrupt/trap sequences.
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3.0 Functional Description (continued)

3.9.7.2 Trap Sequence: Traps Other Than Trace

1) Restore the currently selected Stack Pointer and the
Processor Status Register to their original values at the
start of the trapped instruction.

2) Set “Vector” to the value corresponding to the trap
type.

SLAVE: Vector = 3.
ILL: Vector = 4.
SVC: Vector = 5.
DvZz: Vector = 6,
FLG: Vector = 7.
BPT: Vector = 8.
UND: Vector = 10.

3) Copy the Processor Status Register (PSR) into a tem-
porary register, then clear PSR bits S, U, Pand T.

4) Push the PSR copy onto the Interrupt Stack as a 16-bit
value.

5) Set “Return Address” to the address of the first byte of
the trapped instruction.

6) Perform Service (Vector, Return Address), Figure 3-31.

3.9.7.3 Trace Trap Sequence

1) Inthe Processor Status Register (PSR), clear the P bit.

2) Copy the PSR into a temporary register, then clear
PSR bits S, Uand T.

3) Push the PSR copy onto the Interrupt Stack as a 16-bit
value.

4) Set “Vector” to 9.

5) Set “Return Address” to the address of the next in-

struction.
6) Perform Service (Vector, Return Address), Figure 3-31.
3.9.7.4 Abort Sequence

1) Restore the currently selected Stack Pointer to its origi-
nal contents at the beginning of the aborted instruction.

2) Clear the PSR P bit.

3) Copy the PSR into a temporary register, then clear
PSR bits S, U, T and I.

4) Push the PSR copy onto the Interrupt Stack as a 16-bit
value.

5) Set “Vector” to 2.

6) Set “Return Address” to the address of the first byte of
the aborted instruction.

7) Perform Service (Vector, Return Address), Figure 3-31.

3.10 SLAVE PROCESSOR INSTRUCTIONS

The NS32132 CPU recognizes three groups of instructions
being executable by external Slave Processor:

Floating Point Instruction Set

Memory Management Instruction Set
Custom Instruction Set

Each Slave instruction Set is validated by a bit in the Config-
uration Register (Sec. 2.1.3). Any Slave Instruction which
does not have its corresponding Configuration Register bit
set will trap as undefined, without any Slave Processor com-
munication attempted by the CPU. This allows software sim-
ulation of a non-existent Slave Processor.

3.10.1 Slave Processor Protocol

Slave Processor instructions have a three-byte Basic In-
struction field, consisting of an ID Byte followed by an Oper-
ation Word. The ID Byte has three functions:
1) It identifies the instruction as being a Siave Proc-
essor instruction.

2) It specifies which Slave Processor will execute it.

3) It determines the format of the following Opera-
tion Word of the instruction.

Upon receiving a Slave Processor instruction, the CPU initi-
ates the sequence outlined in Figure 3-32. While applying
Status Code 1111 (Broadcast ID, Sec. 3.4.2), the CPU
transfers the |ID Byte on the least-significant byte of the
Data Bus (ADO-AD?7). All Slave Processors input this byte
and decode it. The Slave Processor selected by the ID Byte
is activated, and from this point the CPU is communicating
only with it. If any other slave protocol was in progress (e.g.,
an aborted Slave instruction), this transfer cancals it.

The CPU next sends the Operation Word while applying
Status Code 1101 (Transfer Slave Operand, Sec. 3.4.2).
Upon receiving it, the Slave Processor decodes it, and at
this point both the CPU and the Slave Processor are aware
of the number of operands to be transferred and their sizes.
The operation Word is swapped on the Data Bus, that is,
bits 0-7 appear on pins AD8-AD15 and bits 8-15 appear
on pins ADO-AD7.

Using the Address Mode fields within the Operation Word,
the CPU starts fetching operand and issuing them to the
Slave Processor. To do so, it references any Addressing
Mode extensions which may be appended to the Slave
Processor instruction. Since the CPU is solely responsible

Status Combinations:

Send ID (ID): Code 1111
Xter Operand (OP): Code 1101
Read Status (ST): Code 1110

Step Status Action

1 ID  GPUSend iD Byte.

2 OP  CPU Sends Operaton Word.

3 OP  CPY Sends Required Operands

4 —_ Siave Starts Execution. CPU Pre-fetches.

5 — Slave Pulses SPC Low.

6 ST CPU Reads Status Word. (Trap? Alter Flags?)
7 oP CPU Reads Results (If Any).

FIGURE 3-32. Slave Processor Protocol
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3.0 Functional Description (continued)
for memory accesses, these extensions are not sent to the
Slave processor. The Status Code applied is 1101 (Transfer
Slave Processor Operand, Sec. 3.4.2).

After the CPU has issued the last operand, the Slave Proc-
essor starts the actual execution of the instruction. Upon
completion, it will signal the CPU by pulsing SPC low. To
allow for this, and for the Address Translation strap func-
tion, AT/SPC is normally held high only by an internal pull-
up device of approximately 5 kf2.

While the Slave Processor is executing the instruction, the
CPU is free to prefetch instructions into its queue. If it fills
the queue before the Slave Processor finishes, the CPU will
wait, applying Status Code 0011 (Waiting for Slave, Sec.
3.4.2). ‘

Upon receiving the pulse on SPC, the CPU uses SPC to
read a Status Word from the Slave Processor, applying
Status Code 1110 (Read Slave Status, Sec. 3.4.2). This
word has the format shown in Figure 3-33. If the Q bit
(“Quit”, Bit 0) is set, this indicates that an error was detect-
ed by the Slave Processor. The CPU will not continue the
protocol, but will immediately trap through the SLAVE vector
in the Interrupt Table. Certain Slave Processor instructions
cause CPU PSR bits to be loaded from the Status Word.

The last step in the protocol is for the CPU to read a result,
if any, and transfer it to the destination. The Read cycles
from the Slave Processor are performed by the CPU while
applying Status Code 1101 (Transfer Slave Operand, Sec.
3.4.2).

An exception to the protocol above is the LMR (Load Mem-
ory Management Register) instruction, and a corresponding
Custom Slave instruction (LCR: Load Custom Register). In
executing these instructions, the protocol ends after the
GPU has issued the last operand. The CPU does not wait for
an acknowledgement from the Slave Processor, and it does
not read status.

3.10.2 Floating Point Instructions

Table 3-4 gives the protocols followed for each Floating
Point instruction. The instructions are referenced by their
mnemonics. For the bit encodings of each instruction, see
Appendix A.

The Operand class columns give the Access Class for each
general operand, defining how the addressing modes are
interpreted (see Instruction Set Reference Manual).

The Operand Issued columns show the sizes of the oper-
ands issued to the Floating Point Unit by the CPU. “D” indi-
cates a 32-bit Double Word. “i” indicates that the instruction
specifies an integer size for the operand (B = Byte, W =
Word, D = Double Word). “#’ indicates that the instruction
specifies a Floating Point size for the operand (F = 32-bit
Standard Floating, L = 64-bit Long Floating).

The Returned Value Type and Destination column gives the
size of any returned value and where the CPU places it. The
PSR Bits Affected column indicates which PSR bits, if any,
are updated from the Slave Processor Status Word (Figure
3-33).

TABLE 3-4
Floating Point Instruction Protocols.
Mnemonic Operand 1 Operand 2 Operand 1 Operand 2 Returned Value PSR Bits
Class Class Issued Issued Type and Dest. Affected
ADDf read.f rmw.f f f ftoOp.2 none
Susf read.f rmw.f f f ftoOp. 2 none
MULf read.f rmw.f f f ftoOp.2 none
DIvf read.f rmw.f f f ftoOp. 2 none
MOVf read.f write.f f N/A ftoOp.2 none
ABSf read.f write.f f N/A ftoOp. 2 none
NEGf read.f write.f f N/A ftoOp. 2 none
CMPf read.f read.f f f N/A N,Z,L
FLOORfi read.f write.i f N/A itoOp. 2 none
TRUNCHi read.f write.i f N/A itoOp. 2 none
ROUNDfi read.f write.i f N/A itoOp. 2 none
MOVFL read.F write.L F N/A LtoOp.2 none
MOVLF read.L write.F L N/A FtoOp. 2 none
MOVif read.i write.f i N/A ftoOp.2 none
LFSR read.D N/A D N/A N/A none
SFSR N/A write.D N/A N/A DtoOp.2 none
Note:

D = Double Word

i = Integer size (B,W,D) specified in mnemonic.

{ = Floating Point type (F,L) specified in mnemonic.
N/A = Not Applicabie to this instruction.
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3.0 Functional Description (continued)

3.10.3 Memory Management Instructions

Table 3-5 gives the protocols for Memory Management in-
structions. Encodings for these instructions may be found in

15 87 o Appendix A.
In executing the RDVAL and WRVAL instructions, the CPU
00000000 ]N ZFooLO (ﬂ calculates and issues the 32-bit Effective Address of the
- single operand. The CPU then performs a single-byte Read
New PSR Bit Value(s) / h
~Quit™: Terminate  Trap(FPU). cycle from that address, allowing the MMU to safely abort

the instruction if the necessary information is not currently in

TL/EE/8583-41 N -
physical memory. Upon seeing the memory cycle complete,
FIGURE 3-33. Slave Processor Status Word Format the MMU continues the protocol, and returns the validation

Any operand indicated as being of type “f” will not cause a result in the F bit of the Slave Status Word.
transfer if the Register addressing mode is specified. This is The size of a Memory Management operand is always a 32-

gﬁjcaat:":e l:’l;ient': 5;{'2%:;:,’: tﬁ:rgelzt;;ss/raeil :t:);s‘;::zuc:nctgs bit Double Word. For further details of the Memory Manage-
9 ment Instruction set, see the Instruction Set Reference

assistance. Manual and the NS32082 MMU Data Sheet.
TABLE 3-5
Memory Management Instruction Protocols.
Operand 1 Operand 2 Operand 1 Operand 2 Returned Value PSR Bits
Mnemonic Class Class Issued Issued Type and Dest. Affected
RDVAL* addr N/A D N/A N/A F
WRVAL* addr N/A D N/A N/A F
LMR* read.D N/A D N/A N/A none
SMR* write.D N/A N/A N/A DtoOp.1 none
Note:

In the RDVAL and WRVAL instructions, the CPU issues the address as a Double Word, and performs a single-byte Read cycle from that memory address. For
details, see the Instruction Set Reference Manual and the NS32082 Memory Management Unit Data Sheet.

D = Double Word
* = Privileged Instruction: will trap if CPU is in User Mode.
N/A = Not Applicable to this instruction.
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3.0 Functional Description (continued)

3.10.4 Custom Slave Instructions

Provided in the NS32132 is the capability of communicating
with a user-defined, “Custom” Slave Processor. The in-
struction set provided for a Custom Slave Processor defines
the instruction formats, the operand classes and the com-
munication protocol. Left to the user are the interpretations
of the Op Code fields, the programming model of the Cus-
tom Slave and the actual types of data transferred. The pro-
tocol specifies only the size of an operand, not its data type.

Table 3-6 lists the relevant information for the Custom Slave
instruction set. The designation “c” is used to represent an
operand which can be a 32-bit ('D”) or 64-bit (“Q”) quantity
in any format; the size is determined by the suffix on the
mnemonic. Similarly, an “i” indicates an integer size (Byte,
Word, Double Word) selected by the corresponding mne-
monic suffix.

Any operand indicated as being of type “c” will not cause a
transfer if the register addressing mode is specified. It is
assumed in this case that the slave processor is already
holding the operand internally.

For the instruction encodings, see Appendix A.

TABLE 3-6
Custom Slave Instruction Protocols.
Operand 1 Operand 2 Operand 1 Operand 2 Returned Value PSR Bits
Mnemonic Class Class Issued Issued Type and Dest. Affected
CCALOc read.c rmw.c c c ctoOp.2 none
CCAL1c read.c rmw.c c c ctoOp. 2 none
CCAL2¢c read.c rmw.c c c ctoOp. 2 none
CCAL3c read.c mw.c c c ctoOp.2 none
CMOVOc read.c write.c c N/A ctoOp. 2 none
CMOVic read.c write.c c N/A ctoOp.2 none
CMOV2c¢ read.c write.c c N/A ctoOp. 2 none
CMOV3c read.c write.c c N/A ctoOp.2 none
CCMPc read.c read.c c c N/A N,Z,L
CCMP1c read.c read.c c c N/A N,ZL
CCVO0ci read.c write.i c N/A itoOp.2 none
CCVici read.c write.i c N/A itoOp. 2 none
CCV2ci read.c write.i c N/A itoOp. 2 none
CCV3ic read.i write.c i N/A ctoOp.2 none
ccv4DQ read.D write.Q D N/A QtoOp.2 none
CCv5QD read.Q write.D Q N/A DtoOp. 2 none
LCSR read.D N/A D N/A N/A none
SCSR N/A write.D N/A N/A Dto OP. 2 none
CATSTO* addr N/A D N/A N/A F
CATST1* addr N/A D N/A N/A F
LCR* read.D N/A D N/A N/A none
SCR* write.D N/A N/A N/A Dto Op.1 none
Note:
D = Double Word

i = Integer size (B,W,D) specified in mnemonic.

¢ = Custom size (D:32 bits or Q:64 bits) specified in mnemonic.
* = Privileged instruction: will trap if CPU is in User Mode.

N/A = Not Applicable to this instruction.

2-124




4.0 Device Specifications

4.1 NS32132 PIN DESCRIPTIONS

The following is a brief description of all NS32132 pins. The
descriptions reference portions of the Functional Descrip-
tion. Sec. 3.

Unless otherwise indicated (see pin 34) reserved pins
should be left open.

4.1.1 Supplies

Power (Vgg): +5V Positive Supply. Sec. 3.1.

Logic Ground (GNDL): Ground reference for on-chip logic.
Sec. 3.1.

Buffer Grounds (GNDB1, GNDB2, GNDB3): Ground refer-
ences for the on-chip output drivers.

Back-Bias Generator (BBG): Cutput of on-chip substrate
voltage generator. Sec. 3.1.

4.1.2 Input Signals

Clocks (PHI1, PHI2): Two-phase clocking signals. Sec. 3.2.
Ready (RDY): Active high. While RDY is inactive, the CPU
extends the current bus cycle to provide for a slower memo-
ry or peripheral reference. Upon detecting RDY active, the
CPU terminates the bus cycle. Sec. 3.4.1.

Hold Request (HOLD): Active low. Causes the CPU to re-
lease the bus for DMA or multiprocessing purposes.

Note 1. HOLD must not be asserted untl HLDA from a previous
HOLD/HLDA sequence is deasserted.

Note 2. If the HOLD signal is generated asynchronously, its set up and hold
times may be violated.

In this case it is recommended to synchronize it with CTTL to mini-
mize the possibility of metastable states.

The CPU provides only one syr ion stage to minimize the
HLDA latency. This is to avoid speed degradations in cases of
heavy HOLD activity (i.e. DMA controller cycles interleaved with
CPU cycles.)
Interrupt (INT): Active low. Maskable Interrupt request.
Sec. 3.9.
Non-Maskable Interrupt (NMI): Active low. Non-Maskable
Interrupt request. Sec. 3.9.
Reset/Abort (RST/ABT): Active low. {f held active for one
clock cycle and released, this pin causes an instruction
Abort, Sec. 3.5.4. If held longer, it initiates a Reset. Sec. 3.3.
Bus Request IN (BRI): Active Low. Used in Dual-Process-
ing systems to signal one NS32132 that the other NS32132
in the system is requesting the bus. Sec. 3.7.
This pin should be connected to V¢ through a 4.7 k) resis-
tor if dual processing is not used.

4.1.3 Output Signals

Address Strobe (ADS): Active low. Controls address latch-
es: indicates start of a bus cycle. Sec. 3.4.

Data Direction in (DDIN): Active low. Status signal indicat-
ing direction of data transfer during a bus cycle. Sec. 3.4.

Byte Enable (BEO-BE3): Active low. Four control signals
enabling data transfers on individual bus bytes. Sec. 3.4.3.
Status (STO-ST3): Bus cycle status code, STO least signifi-
cant. Sec. 3.4.2. Encodings are:

0000 — Idle: CPU Inactive on Bus.

0001 — Idle: WAIT Instruction.

0010 — (Reserved).

0011 — Idle: Waiting for Slave.

0100 — Interrupt Acknowledge, Master.
0101 — Interrupt Acknowledge, Cascaded.
0110 — End of Interrupt, Master.

0111 — End of Interrupt, Cascaded.

1000 — Sequential Instruction Fetch.

1001 — Non-Sequential Instruction Fetch.
1010 — Data Transfer.

1011 — Read Read-Modify-Write Operand.
1100 — Read for Effective Address.

1101 — Transfer Slave Operand.

1110 — Read Slave Status Word.

1111 — Broadcast Slave ID.

Hold Acknowledge (HLDA): Active low. Applied by the
CPU in response to HOLD input, indicating that the bus has
been released for DMA or multiprocessing purposes. Sec.
3.6.

User/Supervisor (U/S): User or Supervisor Mode status.
Sec. 3.7. High state indicates User Mode, low indicates Su-
pervisor Mode. Sec. 3.8.

Interiocked Operation (ILO): Active low. Indicates that an
interlocked instruction is being executed. Sec. 3.8.

Bus Request OUT (BRO): Active Low. Used in Dual-Proc-
essing Systems by the NS32132 to signal the other CPU in
the system that the bus is needed. Sec. 3.7.

Bus Busy (BB): This signal is used in Dual-Processing Sys-
tems and is activated by the CPU in control of the bus.
When BB is inactive the Address-data-bus, BEO-BE3 and
DDIN are floated. Sec. 3.7.

Program Flow Status (PFS): Active low. Pulse indicates
beginning of an instruction execution. Sec. 3.8.

4.1.4 Input/OQutput Signals

Address/Data 0-23 (ADO-AD23): Multiplexed Address/
Data information. Bit O is the least significant bit of each.
Sec. 3.4.

Data Bits 24-31 (D24~D31): The high order 8 bits of the
data bus.

Address Translation/Slave Processor Control (AT/
SPC): Active low. Used by the CPU as the data strobe out-
put for Slave Processor transfers; used by Slave Processors
to acknowledge completion of a SLAVE instruction. Sec.
3.4.6; Sec. 3.9. Sampled on the rising edge of Reset as
Address Translation Strap. Sec. 3.5.1.

In Non-Memory-Managed Systems this PIN should be
pulled-up to Vgg through a 10 kQ resistor.

Data Strobe/Float (DS/FLT): Active low. Data Strobe out-
put, Sec. 3.4, or Float Command input, Sec. 3.5.3. Pin func-
tion is selected on AT/SPC pin, Sec. 3.5.1.

2-125

0L-CELCESN/8-CELCESN/9-CELTESN



NS32132-6/NS32132-8/NS32132-10

4.0 Device Specifications (continued)

4.2 ABSOLUTE MAXIMUM RATINGS

All Input or Output Voltages With

Specifications for Military/Aerospace products are not Respect_to _GNP —08Vio +7V
contained in this datasheet. Refer to the associated Power Dissipation 1.5 Watt
reliability electrical t'est specifications document. Note: Absolute maximum ratings indicate limits beyond
Temperature Under Bias 0°Cto +70°C which permanent damage may occur. Continuous operation
Storage Temperature —65°Cto +150°C at these limits is not intended; operation should be limited to

those conditions specified under Electrical Characteristics.
4.3 ELECTRICAL CHARACTERISTICS Tp = 0° to +70°C, Vog = 5V £5%, GND = 0V

Symbol Parameter Conditions Min Typ Max Units
ViH Logical 1 Input Voltage 20 Ve +0.5 \"
ViL Logical O Input Voltage —0.5 0.8 \
VcH Logical 1 Clock Voltage PHI1, PHI2 pins only Vcc —0.35 Vo +0.5 Vv
Vou Logical 0 Clock Voltage PHI1, PHI2 pins only -0.5 0.3 \
Logical 0 Clock Voltage. . _
Vour Transient (ringing tolerance) PHI1, PHI2 pins only 05 0.6 v
VoH Logical 1 Output Voltage loH = —400 pA 2.4 A
VoL Logical 0 Output Voltage loL = 2mA 0.45 Vv
liLs AT/SPC Input Current (low) Vin = 0.4V, AT/SPC in input mode 0.05 1.0 mA
0 < V|N < Vg, Allinputs except _
Iy Input Load Current PHI1, PHI2, AT/SPC 20 20 HA
loorr) | Output Leakage Current 0.4 < Vourt < Voo _20 30 A
(Output Pins in TRI-STATE Condition) B
lcc Active Supply Current louT = 0, Tp = 25°C 200 300 mA
Connection Diagram
68 Pin LCC Package
o~
@ -
N - a [ o
SCEcEEZSSE885883¢%
Zguje JUO0U0OUOUHE
RESERVED AD22
ST3 AD21
PFS AD20
DDIN AD19
RESERVED AD1B
RESERVED ADT?
PHI AD16
PHI2 AD1S
A0S ADM
uss AD13
RESERVED AD12
BB ADTY
ATISPC AD10
[ AD9
ASTIABT ADS
BRO AD7
BRI AD6

stalninnnninenennnnuinnnennnnaic
2lZElEIE|sl 5538858833
5 = Ix ‘z,g
FIGURE 4-1
Bottom View

Order Number NS32132E-6, NS32132E-8, NS32132E-10,
NS32132V-6, NS32132V-8 or NS32132V-10
See NS Package E68B or V68A

TL/EE/8583-2
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4.0 Device Specifications (continueq)
4.4 SWITCHING CHARACTERISTICS

4.4.1 Definitions

All the timing specifications given in this section refer to
2.0V on rising or falling edges of the clock phases PHI1 and

PHIn

20V -

1SIG1)

TL/EE/8583-42

FIGURE 4-2. Timing Specification Standard

(Signal Valid After Clock Edge)

4.4.2 Timing Tables
4.4.2.1 Output Signals: Internal Propagation Delays N$32132-6, NS32132-8, NS32132-10

Maximum times assume capacitive loading of 100 pF.

PHI2, and 0.8V or 2.0V on ail other signais as iilusiraied in
Figures 4-2 and 4-3, unless specifically stated otherwise.
ABBREVIATIONS:
L.E. — leading edge
T.E. — trailing edge

R.E. — rising edge
F.E. — falling edge

PHIn 20v
SIG1 i
SiG2

t! - /e 0.45V

TL/EE/8583-43
FIGURE 4-3. Timing Specification Standard
(Signal Valid Before Clock Edge)

Name | Figure Description Reference/Conditions NS32132-6 NS32132-8 NS32132-10 Units
Min | Max | Min | Max | Min | Max

taLy 4-4 | Address bits 0-23 valid | after R.E., PHI1 T1 80 65 50 ns

taLh 4-4 | Address bits 0-23 hold | after R.E., PHI1 Tmmu or T2 5 5 5 ns

iov 4-4 | Data valid (write cycle) after R.E., PH1 T2 80 65 50 ns

ton 4-4 | Data hold (write cycle) after R.E., PHI1 next T1 or Ti o] 0 0 ns

taLapss | 4-4 | Address bits 0-23 set up | before ADS T. E. 25 25 25 ns

taALADSh | 4-10 | Address bits 0-23 hold | after ADST. E. 15 15 15 ns

taLs 4-5 | Address bits 0-23 after R.E., PHI1 T2 25 25 25 ns
floating (no MMU)

tADt 4-5 | Data bits D24-D31 after R.E., PHI1 T2 25 25 25 ns
floating (no MMU)

taLME 4-9 | Address bits 0-23 after R.E., PHI1 Tmmu 25 25 25 ns
floating (with MMU)

tADMf 4-9  Data bits 21-31 after R.E., PHI1 Tmmu 25 25 25 ns
floating (with MMU)

tgEY 4-4 | BEn signals valid after R.E., PHI2 T4 95 70 45 ns

18EN 4-4 | BEn signals hold after R.E., PHI2 T4 or Ti 0 0 0 ns

tsTv 4-4 | Status (STO-ST3) valid | after R.E., PHI1 T4 90 70 45 ns

(before T1, see note)
tsTh 4-4 | Status (STO-ST3) hold | after R.E., PHI1 T4 (after T1) 0 0 0 ns
tDDINY 4-4 | DDIN signal valid after R.E., PHI1 T1 110 90 65 ns
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NS32132-6/NS32132-8/NS32132-10

4.0 Device Specifications (Continued)
4.4.2.1 Output Signals: Internal Propagation Delays NS32132-6, NS32132-8, NS32132-10 (Continued)

e NS32132- X x
Name | Figure Description I::efe;?:ce/ S32132-6 NS32132-8 | NS32132-10 Units
onditions Min | Max | Min | Max | Min | Max

topinh | 4-4 | DDIN signal hold after R.E.,PHItnextTiorTi| O 0 0 ns

taDsa 4-4 | ADS signal active (low) after R.E., PHI1 T1 55 45 35 ns

taDsia 4-4 | ADS signal inactive after R.E., PHI2 T1 60 55 45 ns

taDsw 4-4 | ADS pulse width at 0.8V (both edges) 50 40 30 ns

tpsa 4-4 | DS signal active (low) after R.E., PHI1 T2 70 60 45 ns

tpsia 4-4 | DS signal inactive after R.E., PHI1 T4 50 50 40 ns

taLs 4-6 | ADO-AD23 floating after R.E., PHI1 T1 100 65 25 ns
(caused by HOLD)

tADf 4-6 | D24-D31 floating after R.E., PHI1 T1 100 65 25 ns
(caused by HOLD)

tost 4.6 | DS floating after R.E., PHI1 T1 100 80 55 ns
(caused by HOLD)

tADSt 4-6 | ADS floating after R.E., PHI1 Ti 100 80 55 ns
(caused by HOLD)

tBEs 4-6 | BEn floating after R.E., PHI1 Ti 100 80 55 | ns
(caused by HOLD)

tDDINF 4-6 | DDIN floating after R.E., PHI1 Ti 100 80 55 ns
(caused by HOLD)

tHLpAa | 4-6 | HLDAsignal active (low) | after RE.,, PHI Ti 100 90 75 ns

tHLDAia| 4-8 | HLDA signal inactive after RE., PHI1 Ti 100 90 75 ns

tosr 4-8 | DS signal returns from after R.E., PHI1 T1 100 80 55 ns
floating (caused by HOLD)

taDsr 4-8 | ADS signal returns from after R.E., PHI1 Ti 100 80 55 ns
floating (caused by HOLD)

tREr 4-8 | BEn signals return from after REE., PHI1 Ti 100 80 55 ns
floating (caused by HOLD)

tDDINF 4-8 | DDIN signal returns from | after R.E., PHI1 Ti 100 80 55 ns
floating (caused by HOLD)

toDING 4-9 | DDIN signal floating after FLT F.E. 80 65 50 ns
(caused by FLT)

topine | 4-10 | DDIN signal returns from | after FLT R.E. 75 65 50 ns
floating (caused by FLT)

tspca | 4-13 | SPC output active (low) after R.E., PHI1 T1 50 45 35 ns

tspcia | 4-13 | SPC output inactive after R.E., PHI1 T4 50 45 35 ns

tspcnt | 4-15 | SPC output nonforcing after R.E., PHI2 T4 40 25 10 ns

toy 4-13 | Data valid (slave processor | after R.E., PHI1 T1 80 65 50 ns
write)

toh 4-13 | Data hold (slave processor | after R.E., PHI1 0 0 0 ns
write) nextT1orTi

tprsw | 4-18 | PFS pulse width at 0.8V (both edges) 70 70 70 ns

tPFSa 4-18 | PFS pulse active (low) after R.E., PHI2 70 60 50 ns

tprsia | 4-18 | PFS pulse inactive after R.E., PHI2 70 60 50 ns

tiLos 4-20a | ILO signal setup before R.E., PHI1 T1 of first 30 30 30 ns

interlocked read cycle
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4.0 Device Specifications (continued)
4.4.2.1 Output Signals: Internal Propagation Delays, NS32132-6, NS32132-8, NS32132-10 (Continued)

Name | Figure Description Féefedr?t?ce/ NS32132-6 NS32132-8 | NS32132-10 Units
onditions Min | Max | Min | Max | Min | Max
tiLon 4-20b | ILO signal hold after R.E., PHI1 T3 of last 10 10 10 ns
interlocked write cycle
tiLoa 4-21 | iLO signal active (low) | after R.E., PHI1 70 65 55 ns
tiLoia | 4-21 | IO signal inactive after R.E., PHI1 70 65 55 ns
tusy 4-22 | U/S signal valid after R.E., PHI1 T4 70 60 45 ns
tush 4-22 | U/S signal hold after R.E., PHI1 T4 10 10 10 ns
tnspe | 4-19b | Nonsequential fetchto | after R.E., PHI1 T1 4 4 4 tcp
next PFS clock cycle
tprns | 4-19a | PFS clock cycle to next | before R.E., PHI1 T1 4 4 4 tcp
non-sequential fetch
txpF 4-29 | Last operand transfer before R.E., PHI1 T1 of first 0 0 0 tcp
of an instruction to next | bus cycle of transfer
PFS clock cycle
{3Ba 4-30 | BB signal active after R.E., PHI1 T4 90 75 60 ns
tBBia 4-20 | BB signal inactive after R.E., PHI1 T4 90 75 60 ns
tsroa | 4-20 | BRO signal active after R.E., PHI2 90 75 60 ns
tBROIa | 4-20 | BRO signal inactive after R.E., PHI2 90 75 60 ns
tBEf 4-30 | BEn signals floating after R.E., PHI2 T4 100 80 55 ns
(caused by BRI)
tEr 4-30 | BEn signals return after R.E., PHI1 T1 100 80 55 ns
from floating (caused
by BRI)
toDINT 4-30 | DDIN floating (caused after R.E., PHI1 T1 100 80 55 ns
by BRI)
topine | 4-30 | DDIN return from after R.E., PHI1 T1 100 80 55 ns
floating (caused by
BRI)
taLs 4-30 | ADO-AD23 floating after R.E., PHI1 T4 45 35 25 ns
(caused by BRI)
tADt 4-30 | D24-D31 Floating after R.E., PHI1 T4 45 35 25 ns
(caused by BRI)
Note: Every memory cycle starts with T4, during which Cycle Status is applied. If the CPU was idling, the sequence will be: . . . Ti, T4, T1. . .". I the CPU was
not idling, the sequence will be: “. . . T4, T1. . ..
4.4.2.2 Input Signal Requirements: NS32132-6, NS32132-8, NS32132-10
Name | Figure Description Reference/Conditions NS32132:6 NS32132-8 NS32132-10 Units
Min Max Min Max Min Max
tPwR 4-25 | Power stable to after Vg reaches 4.5V 50 50 50 pus
RSTT.E.
tois 4-5 Data in setup before F.E., PHI2 T3 20 15 10 ns
(read cycle)
toih 4-5 | Datain hold after R.E., PHI1 T4 10 10 10 ns
(read cycle)
tHLDa 4-6 | HOLD active (low) setup | before F.E., PHI2 TX1 25 25 25 ns
time (see note)
tHLDia | 4-8 | HOLD inactive setup before F.E., PHI2 Ti 25 25 25 ns
time
tHLDh 4-6 | HOLD hold time after R.E., PHI1 TX2 0 0 0 ns
tFLTa 4-9 | FLT active (low) before F.E,PHI2 Tmmu | 25 25 25 ns
setup time
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NS32132-6/NS32132-8/NS32132-10

4.0 Device Specifications (continued)
4.4.2.2 Input Signal Requirements NS32132-6, NS32132-8, NS32132-10 (Continued)

- Reference/ NS32132-6 | NS32132-8 NS32132-10 .
Name | Figure Description . Units
9 Conditions Min | Max | Min | Max | Min | Max
tFLTia 4-10 FLT inactive setup before F.E., PHI2 T2 25 25 25 ns
time
trDys | 4-11, 4-12 | RDY setup time before F.E., PHI2T20rT3 | 25 20 15 ns
trDYh | 4-11,4-12 | RDY hold time after F.E., PHI1 T3 0 0 0 ns
tABTs 4-23 ABT setup time before F.E., PHI2 Tmmu 30 25 20 ns
(FLT inactive)
tABTs 4-24 ABT setup time before F.E., PHI2 T2 30 25 20 ns
(FLT active)
tABTh 4-23 ABT hold time after R.E., PHI 0 0 0 ns
trsTs | 4-25, 4-26 | RST setup time before F.E., PHI1 20 15 10 ns
tRSTW 4-26 RST pulse width at 0.8V (both edges) 64 64 64 tcp
UNTs 4-27 INT setup time before F.E., PHI1 20 20 20 ns
INMIw 4-28 NMI pulse width at 0.8V (both edges) 70 70 70 ns
tDis 4-14 Data setup (slave before F.E., PHI2 T1 20 20 10 ns
read cycle)
toih 4-14 Data hold (slave after R.E., PHI1 T4 10 10 10 ns
read cycle)
tspcd 4-15 | SPC pulse delay after R.E., PHI2 T4 17 13 10 ns
from slave
tspCs 4-15 SPC setup time before F.E., PHI1 42 32 25 ns
tsPow 4-15 SPC pulse width (from | at 0.8V (both edges) 30 25 20 ns
slave processor)
tATs 4-16 AT/SPC setup for ad- | before R.E., PHI of cycle 1 1 1 tcp
dress translation strap | during which RST
pulse is removed
tath 4-16 AT/SPC hold for ad- | after F.E., PHI1 of cycle 2 2 2 tcp
dress transiation strap | during which RST
pulse is removed
tBRis 4-20 BRI Setup Time before F.E. PHI2 15 15 15 ns
{BRIn 4-20 BRI Hold Time after R.E. PHI1 10 10 10 ns

Note: This setup time is necessary to ensure prompt acknowledgement via HLDA and the ensuing floating of CPU off the buses. Note that the time from the receipt
of the HOLD signal until the CPU floats is a function of the time HOLD signal goes low, the state of the RDY input (in MMU systems), and the length of the current

MMU cycle.
4.4.2.3 Clocking Requirements: NS32132-6, NS32132-8, NS32132-10
Name |Figure Description 2efedr$tPce/ NS32132-6 NS32132-8 NS32132-10 Units
onditions Min | Max| Min |Max| Min | Max

toLr 4-17 |PHN, PHI2rise time  |0.8V to Vo — 0.9V 9 8 7 | ns
on R.E., PHI1, PHI2

toLs 4-17 |PHI1, PHI2 fall time Voo — 0.9V10 0.8V 9 8 7 ns
on F.E., PHI1, PHI2

top 4-17 |Clock period R.E., PHI1, PHI2 to next 170 5000 130 5000 100 5000| ns
R.E., PHI1, PHI2

toLw(1,2) | 4-17 |PHIN, PHI2 pulse width |At2.0V on 0.5tcp—14 0.5tgp—12 0.5tcp—10 ns
PHI1, PHI2 (both edges)

toth(t,2) | 4-17 PHI1, PHI2 high time AtVgc — 0.9Von 0.5tcp— 18 0.5tcp—17 O.Stcp—15 ns
PHI1, PHI2 (both edges)

thovL(1,2)| 4-17 Non-overlap time 0.8V on F.E., PHI1, PHI2 to 0 7 0 7 0 7 ns
0.8V on R.E., PHI2, PHI1

thOVLas Non-overlap asymmetry|at 0.8V on PHI1, PHI2 —4 4 —4 4 -4 4 ns

(thovi) —thoviie)
tcLwas PHI1, PHI2 asymmetry [at 2.0V on PHI1, PHI2 -5 5 -5 5 -5 5 ns
(toLw(1) —toLw(@)

2-130




4.0 Device Specifications (continued)

4.4.3 Timing Diagrams

T4ORTi | ™ T2 3 T4
PHI1 [ | | I_‘
|
L U, 1 rlin
ADO-AD23 [ .‘.Kmuness DATA OUT
={tov toh |
D24-D31 [ DATA OUT
= taDSia
ADS [ taDsw
tADSa | tBEN |
BE0-BE3 [ | VALID ;
>ty !
5o [ ‘ (HIGH)
oy il
§T0-3 [ X ‘ VALID QSTEQ(LNE)(T
- [ ; ﬂ'os: /—__
|

T4ORTI

FIGURE 4-4. Write Cycle

™ T2

-

(HIGH)

= |~ {DSia

T4

FIGURE 4-5. Read Cycle

[ ADDRESS | \.. - ___.4 DATAN I
ALt —~[~!om
ADDRESS | \L| oo __-.<, DATAN
b i
tant
tALADSS
>< VALID X
tDDINV —=1 tDDINh
NEXT CYCLE
X VALID )< STAT;S
—
/|
(HIGH)

TL/EE/8583-44

TL/EE/8583-45
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NS32132-6/NS32132-8/NS32132-10

4.0 Device Specifications (continued)

o

o[

HOLD [

e |
oS

oo

BE0-BE3 [

ADO-AD23 [

024-D31 [

| X2

Il_|

T4

=
[T

[

———l tHLDh
T

tost
taDst
tDDINS

tBEt

(FLOATING)
|

FIGURE 4-6. Floating by HOLD Timing (CPU Not Idle Initially)

TL/EE/8583-46

Note that whenever the CPU is not idling (not in Ti), the HOLD request (HOLD low) must be active tHLDa before the falling edge
of PHI2 of the clock cycle that appears two clock cycles before T4 (TX1) and stay low until tHLDh after the rising edge of PHI1 of
the clock cycle that precedes T4 (TX2) for the request to be acknowledged.

| | | |
m‘[_nnr—lnﬂnr—l
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tHLDA

I
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HLDAG
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tDDINY
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“(FLoaTNG)

ADO-AD23 [

D24-D31 [------.b--—-

( FLOATING )

R
( FLOATING )

TL/EE/8583-47

FIGURE 4-7. Floating by HOLD Timing (CPU initially idie)
Note that during Ti1 the CPU is already idling.
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FIGURE 4-8. Release from HOLD
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4.0 Device Specifications (continued)
CPU STATES m TMMU 7t T¢
MMU STATES T TMMU T4 ™
PHI 1 [ I |
I !
!
T [ LMt \i_i*
FLTa
ADO-AD23 . R
(CPU) [_ ADORESS (cvu: (rLoAmED m
D24-D31
401 [ =<aooRess (cPu) ) ——--C}- ————————————
_ - tADME
s [ 7]
&0 [T N\ Hauaosn
PAV
(MM \_/—
Bow | ) I {
topint
_ TL/EE/8583-49
FIGURE 4-9. FLT Initiated Float Cycle Timing
CPU STATES Tt T2 T3 t T4
MMU STATES Tmmu '
PHI1 [ | I l I I

-

[] I

M
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oy || A FiTia

Ate-23 l

(CPU) (FLOATING, DRIVEN BY MMU)
ooN - .| [——ltDDINr

{cPU) [ {
ADS

(CPU) [

e85 |

Note that when FLT is deasserted the CPU restarts driving DDIN before the MMU releases it. This, however, does not cause any

FIGURE 4-10. Release from FLT Timing

conflict, since both CPU and MMU force DDIN to the same logic level.
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FIGURE 4-11. Ready Sampling (CPU Initially READY)
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4.0 Device Specifications (continued)

|
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| |T4
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RDY [
T tRDYs
TL/EE/8583-52

FIGURE 4-12. Ready Sampling (CPU Initially NOT READY)
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dsite FIGURE 4-14. Slave Processor Read Timing

FIGURE 4-13. Slave Processor Write Timing
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— TL/EE/8583-83
FIGURE 4-15. SPC Timing

After transferring last operand to a Slave Processor, CPU
turns OFF driver and holds SPC high with internal 5 k2 puliup.

|

RST/aBT

AT/SPC [
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taTs tATh——1
TL/EE/8583-56
FIGURE 4-16. Reset Configuration Timing
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4.0 Device Specifications (continued)

teLw(1)
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FIGURE 4-17. Clock Waveforms
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FIGURE 4-18. Relationship of PFS to Clock Cycles
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FIGURE 4-19a. Guaranteed Delay, PFS to Non-Sequential Fetch
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FIGURE 4-19b. Guaranteed Delay, Non-Sequential Fetch to PFS
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4.0 Device Specifications (continued)
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FIGURE 4-20a. Relationship of ILO to First Operand Cycle of an Interlocked Instruction
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FIGURE 4-20b. Relationship of ILO to Last Operand Cycle of an Interlocked Instruction
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FIGURE 4-21. Relationship of ILO to Any Clock Cycle
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FIGURE 4-22. U/S Relationship to Any Bus Cycle — Guaranteed Valid Interval
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4.0 Device Specifications (continued)

taABTs tABTh

FIGURE 4-23. Abort Timing, FLT Not Applied
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FIGURE 4-24. Abort Timing, FLT Applied
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FIGURE 4-25. Power-On Reset
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FIGURE 4-26. Non-Power-On Reset
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4.0 Device Specifications (continued)

ol I I O I

b tinTe
= L

TL/EE/8583-69

FIGURE 4-27. INT Interrupt Signal Detection

FIRST BUS CYCLE

I ™ T2

PHH[ _"—I ]

TL/EE/8583-70

FIGURE 4-28. NMI interrupt Signal Timing
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TiorT '

UxPF
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L
/
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FIGURE 4-29. Relationship Between Last Data Transfer of an Instruction and PFS Pulse of Next Instruction
Note: In a transfer of a Read-Modify-Write type operand, this is the Read transfer, displaying RMW Status (Code 1011).
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4.0 Device Specifications (continued)

READ CYCLE WRITE CYCLE WRITE CYCLE
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FIGURE 4-30. Dual Processor Bus Arbitration Timing
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Appendix A: Instruction Formats

NOTATIONS
i= Integer Type Field
B = 00 (Byte)
W = 01 (Word)
D = 11 (Doubie Word)
f= Floating Point Type Field
F = 1 (Std. Floating: 32 bits)
L = 0 (Long Floating: 64 bits)
c¢= Custom Type Field
D = 1 (Double Word)
Q = 0 (Quad Word)
op= Operation Code
Valid encodings shown with each format.
gen, gen 1, gen 2= General Addressing Mode Field
See Sec. 2.2 for encodings.
reg= General Purpose Register Number
cond= Condition Code Field
0000 = EQual: Z = 1

0001 = NotEqual: Z = 0
0010 = Carry Set: C = 1

0011 = Canry Clear: C = 0
0100 = Higher: L = 1

0101 = Lower or Same: L = 0

0110 = Greater Than: N 