SWI Calls

Econet_CreateReceive
(swi &40000)

Creates a Receive Control Block

On entry

RO = port number

R1 = station number
R2 = net number

R3 = buffer address

R4 = buffer size in bytes

On exit
RO = handle
R2 =0 if R2 on entry is the local net number

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This call creates a Receive Control Block (RxCB) to control the reception of an
Econet packet. It returns a handle to the RxCB.

The buffer must remain available all the time that the RxCB is open, as data
received over the Econet is read directly from hardware to the buffer. You must not
use memory in application space if your program is to run under the Desktop.
Instead, you should use memory from the RMA. To do so, claim the memory using
0OS_Module 6 (see page 1-233}, and - after abandoning the receive control block —
return the space to the RMA using OS_Module 7 (see page 1-234).

2-647

Econet _ExamineReceive
(swi &40001)

Reads the status of an RxCB

On entry

RO = handle
On exit

RO = status
Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use
This call reads the status of an RxCB, which may be one of the following:
7 Status_RxReady
8 Status_Receiving
9 Status_Received

It returns less information than Econet_ReadReceive, so is faster and corrupts
fewer registers. You should use it to poll a reception when not using
Econet_WaitForReception.

Related SWis

Econet_CreateReceive (page 2-647), Econet_WaitForReception (page 2-654),
Econet_ConvertStatusToString (page 2-664),
Econet_ConvertStatusToError (page 2-666)

2-649

Econet_ReadReceive
(swi &40002)

Returns information about a reception, including the size of data

On entry

RO = handle
On exit

RO = status

Rl =0, or flag byte if RO = 9 (Status_Received) on exit

R2 = port number

R3 = station number

R4 = net number

R5 = buffer address

R6 = buffer size in bytes, or amount of data received if RO = 9 on exit
(Status_Received)

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

SWI is re-entrant

This call returns information about a reception; most importantly, it tells you how
much data was received, if any, and the address of the buffer in which it was placed.
The buffer address is the same as that passed to Econet_CreateReceive

(page 2-647). You can call this SWI before a reception has occurred.

The status of the RxCB may be one of the following:

7 Status_RxReady
8 Status_Receiving
9 Status_Received

2-651

2-652

The returned values in R3 and R4 (the net and station numbers) are those of the
transmitting station if the status is Status_Received; otherwise they are the same
values that were passed in to Econet_CreateReceive.

Related SWils
Econet}heateReceNe(page2-647),Econet)NahForRecepﬁon(page2-654y
Econet_AbandonAndReadReceive (page 2-683)

Related vectors

None

Econet _AbandonReceive
(swi &40003)

Abandons an RxCB

On entry

RO = handle
On exit

RO = status
Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use
This call abandons an RxCB, returning its memory to the RMA. The reception may
have completed (RO = 9 — Status_Received — on exit), in which case the
information in the RXCB (such as the sending station number, and the amount of
data sent) will be lost. The data in the receive buffer remains unaffected. If the
reception is in progress when this SWI is called, then information in the RxCB is
lost, as above.

Related SWis

Econet_CreateReceive (page 2-647), Econet_WaitForReception (page 2-654),
Econet_AbandonAndReadReceive (page 2-683)

Related vectors

None

2-653

2-654

Econet_WaitForReception
(swi &40004)

Polls an RxCB, reads its status, and abandons it

On entry

RO = handle
R1 = delay in centiseconds
R2 =0 to ignore Escape; else Escape ends waiting

On exit

RO = status

R1 =0, or flag byte if R0 = 9 (Status_Received) on exit
R2 = port number

R3 = station number

R4 = net number

R5 = buffer address

R6 = buffer size in bytes, or amount of data received if RO = 9 on exit
(Status_Received)

Interrupts
Interrupts are enabled
Fast interrupts are enabled
Processor mode

Processor is in SVC mode and in USR mode

Re-entrancy

SWI is not re-entrant

Use

This call repeatedly polls an RxCB (that you have already set up with
Econet_CreateReceive) until a reception occurs, or a timeout occurs, or the user

interferes (say by pressing Escape). It then reads the status of the RxCB before
abandoning it.

The status of the RxCB may be one of the following:

8 Status_Receiving
9 Status_Received
10 Status_NoReply

11 Status_Escape

The returned values in R3 and R4 (the net and station numbers) are those of the
transmitting station if the status is Status_Received; otherwise they are the same
values that were passed in to SWI Econet_CreateReceive.

Note that because this interface enables interrupts it should not be called from
within either interrupt service code or event routines.

During the loop when the polling of the RxCB and of Escape takes place, the
processor is put in USR mode with IRQs enabled; this allows callbacks to occur.

Related SWis

Econet_ExamineReceive (page 2-649), Econet_ReadReceive (page 2-651),
Econet_AbandonReceive (page 2-653),
Econet_AbandonAndReadReceive (page 2-683)

Related vectors

None

2-655

2-656

Econet _EnumerateReceive
(swi &40005)

Returns the handles of open RxCBs

On entry

RO = index (1 to start with first receive block)

On exit

RO = handle (0 if no more receive blocks)

Interrupts
Interrupt status is unaltered
Fast interrupts are enabled
Processor mode

Processor is in SVC mode

Re-entrancy
Not defined

Use

This call returns the handles of open RxCBs. On entry RO is the number of the RxCB
being asked for (1, 2, 3...). If the value of RO is greater than the number of open
RxCBs, then the value returned as the handle will be 0, which is an invalid handle.

This call should not be made from an IRQ or event routine as, although it will not
fail, errors and omissions are likely to occur in the returned information.

Related SWis

Econet_CreateReceive (page 2-647),
Econet_ReadReceive (page 2-651), Econet_AbandonReceive (page 2-653)

Related vectors

None

Econet_StartTransmit
(swi &40006)

Creates a Transmit Control Block and starts a transmission

On entry

RO = flag byte

R1 = port number

R2 = station number

R3 = net number

R4 = buffer address

R5 = buffer size in bytes
R6 = count

R7 = delay in centiseconds

On exit

RO = handle

R1 corrupted

R2 = buffer address
R3 = station number
R4 = net number

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

SWI is re-entrant

This call creates a Transmit Control Block (TXCB) to control the transmission of an
Econet packet. It then starts the transmission.

The buffer must remain available all the time that the TxCB is open, as data
transmitted over the Econet is read directly from the buffer to hardware. You must
not use memory in application space if your program is to run under the Desktop.

2-657

Instead, you should use memory from the RMA. To do so, claim the memory using
OS_Module 6 (see page 1-233), and — after abandoning the transmit control
block — return the space to the RMA using OS_Module 7 (see page 1-234).

The value returned in R4 (the net number) will be the same as that passed in R3
unless that number is equal to the local net number; in that case the net number
will be returned as zero.

Related SWis

Econet_PollTransmit (page 2-659), Econet_AbandonTransmit {(page 2-660),
Econet_DoTransmit (page 2-661)

Related vectors

None

2-658

Econet_PollTransmit
(swi &40007)

Reads the status of a TxCB

On entry

RO = handle

On exit

RO = status

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

This call reads the status of a TxCB, which may be one of the following:

Use

0

1

2

3

4

5

6
Related SWis

Status_Transmitted
Status_LineJammed
Status_NetError
Status_NotListening
Status_NoClock
Status_TxReady
Status_Transmitting

Econet_StartTransmit (page 2-657), Econet_AbandonTransmit (page 2-660)

Related vectors

None

2-659

Econet_AbandonTransmit
(swi &40008)

Abandons a TxCB

On entry
RO = handle

On exit
RO = status

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This call abandons a TxCB, returning its memory to the RMA. The returned status is
the same as for Econet_PollTransmit.

Related SWis
Econet_StartTransmit (page 2-657), Econet_PollTransmit (page 2-659)

Related vectors

None

2-660

Econet_DoTransmit
(swi &40009)

Creates a TxCB, polls it, reads its status, and abandons it

On entry
RO = flag byte
R1 = port number
R2 = station number
R3 = net number
R4 = buffer address
R5 = buffer size in bytes
R6 = count
R7 = delay in centiseconds

On exit

RO = status

R1 corrupted

R2 = buffer address

R3 = station number

R4 = net number
Interrupts

Interrupts are enabled

Fast interrupts are enabled

Processor mode

Processor is in SVC mode and in USR mode

Re-entrancy

SWI is not re-entrant

Use

This call creates a TxCB and repeatedly polls it until it finishes transmission, or it
exceeds the count of retries. It then reads the final status of the TXCB before
abandoning it.

2-661

2-662

The status of the TXCB may be one of the following:

0

W N

Status_Transmitted
Status_LineJammed
Status_NetError
Status_NotListening
Status_NoClock

The value returned in R4 (the net number) will be the same as that passed in R3
unless that number is equal to the local net number; in that case the net number
will be returned as zero.

Note that because this interface enables interrupts it should not be called from
within either interrupt service code or event routines.

During the loop when the polling of the TxCB and of Escape takes place, the
processor is put in USR mode with IRQs enabled: this allows callbacks to occur.

Related SWis

Econet_StartTransmit (page 2-657), Econet_PollTransmit (page 2-659),
and Econet_AbandonTransmit (page 2-660)

Related vectors

None

Econet_ReadlLocalStationAndNet
(swi &4000A)

Returns a computer’s station number and net number

On entry

No parameters passed in registers

On exit

RO = station number

R1 = net number
Interrupts

Interrupts are enabled

Fast interrupts are enabled
Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This call returns a computer's station number and Econet net number. The net
number will be zero if there are no Econet bridges present on the network.

For more information, see the section entitled Reading your station and net numbers on
page 2-638.

Related SWis

None

Related vectors

None

2-663

2-664

Econet_ConvertStatusToString

Converts a status to a string

On entry

RO = status

R1 = pointer to buffer
R2 = buffer size in bytes
R3 = station number
R4 = net number

On exit

RO = buffer

R1 = updated buffer address

R2 = updated buffer size in bytes
Interrupts

Interrupt status is unaltered

Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

(swi &4000B)

This call converts a status to a string found in the messages file. This is then copied
into RAM, including the station and net numbers, giving a string such as:

Network station 59.254 not listening

If the status given in RO is invalid (ie not in the range 0 - 14), this will cause a data
abort or an address exception. If the station/net number given in R3/R4 is invalid,

no station information is given.

Under RISC OS 2 the string is not read from the messages file, but is instead read

direct from the ROM.

Related SWis
Econet_ConvertStatusToError (page 2-666)

Related vectors

None

2-665

2-666

Econet_ConvertStatusToError
(swi &4000C)

Converts a status to a string, and then generates an error

On entry
RO = status
R1 = pointer to error buffer
R2 = error buffer size in bytes
R3 = station number
R4 = net number
On exit
RO = pointer to error block
V flag is set
Interrupts
Interrupt status is unaltered
Fast interrupts are enabled
Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This call converts a status to a string found in the messages file. This is then copied
into RAM, including the station and net numbers, giving a string such as:

Network station 59.254 not listening
If the station/net number given in R3/R4 is invalid, no station information is given.

Finally this call returns an error by setting the V flag, with RO pointing to the error
block.

If you use a buffer address of zero, then the string is left in a buffer in the
MessageTrans workspace.

Under RISC OS 2 the string is not read from the messages file, but is instead read
direct from the ROM.

Related SWis
Econet_ConvertStatusToString (page 2-664)

Related vectors

None

2-667

Econet_ReadProtection
(swi &4000D)

Reads the current protection word for immediate operations

On entry

No parameters passed in registers

On exit

RO = current protection value

Interrupts
Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This call reads the current protection word for immediate operations. Various bits
in the word, when set, disable corresponding immediate operations:

Bit Immediate operation

0 Peek

1 Poke

2 Remote JSR

3 User procedure call

4 OS procedure call

5 Halt

6 Continue — always zero on RISC OS computers
7 Machine peek — always zero on RISC QS computers
8 Get registers

9 -3l Reserved — must be zero

Note - This call is deprecated. You should preferably use the call
Econet_SetProtection (page 2-670) to read the protection word instead of this call.

2-668

Related SWis
Econet_SetProtection (page 2-670)

Related vectors

None

2-669

2-670

Econet_SetProtection
(swi &4000E)

Sets or reads the protection word for immediate operations

On entry
RO = EOR mask word
R1 = AND mask word
On exit
RO = old value

Interrupts
Interrupts are enabled on write-through to CMOS, preserved otherwise
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This call sets the protection word for immediate operations as follows:
New value = (old value AND R1) EOR RO

Various bits in the word, when set, disable corresponding immediate operations:

Bit Immediate operation

0 Peek

1 Poke

2 Remote JSR

3 User procedure call

4 OS procedure call

5 Halt

6 Continue — must be zero on RISC OS computers

7 Machine peek — must be zero on RISC OS computers

8 Get registers
9-30 Reserved — must be zero
31 Write new value to the CMOS RAM

Normally this call sets or reads the current value of the word. A default value for
this word is held in CMOS RAM.

The most useful values of RO and R1 are:

Action RO R1

Set current value new value (0 - &1FF) 0

Read current value 0 &FFFFFFFF
Set new default value &80000000 + new value 0

You should use this call to read the value of the protection word, rather than
Econet_ReadProtection (page 2-668).

Using this call to read is also the preferred method for detecting the presence of
the Econet drivers, since doing so can never return an unexpected error. Detecting
the error ‘No such SWI’ allows software dependent upon Econet to report its
absence. Example code is given in the section entitled Application notes on
page 2-691.

Related SWis

None

Related vectors

None

2-671

2-672

Econet_ReadStationNumber
(swi &4000F)

Extracts a station and/or net number from a supplied string

On entry

R1 = address of string to read

On exit
RI = address of terminating space or control character
R2 = station number (-1 for not found)
R3 = net number (=1 for not found)
Interrupts
Interrupts are enabled
Fast interrupts are enabled
Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use
This call extracts a station and/or net number from a supplied string. For an
example of its use, see the section entitled Extracting station numbers from a string on
page 2-638.

Related SWis
None

Related vectors

None

Econet_PrintBanner
(swi &40010)

Prints the string ‘Acorn Econet’ followed by a newline

On entry

On exit

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SW] is not re-entrant

Use

This call prints the string ‘Acorn Econet’ followed by a newline. The string is
fetched from a message file with the token ‘AcrnEco’. If the Econet network data
clock is not present then this call instead prints the string ‘Acorn Econet, no clock’
followed by a newline. In this case, the token used is ‘EcoNCIk'.

This cali uses OS_Write0 and OS_NewLine, and so cannot be called from within
either interrupt service code or event routines.

Related SWis

None

Related vectors

None

2-673

2-674

Econet_ReadTransportType
(swi &40011)

Returns the underlying transport type to a given station

On entry

RO = station number

R1 = net number

R2=2
On exit

RO, R1 preserved

R2 = transport type (0 = not known, 1 = Internet, 2 = Econet, 3 = Nexus)
interrupts

Interrupt status is unaltered

Fast interrupts are enabled
Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This call is used by clients to determine the underlying transport type to a given
station. They can then use this information to determine the optimum
transmission strategy to use, based on prior empirical knowledge of the different
transport types.

This call is unnamed - but still available by number — in both RISC OS 2 and
RISC OS 3 (version 3.00).

Related SWis

None

Related vectors

None

Econet ReleasePort
(swi &40012)

Releases a port number that was previously claimed

On entry

RO = port number

On exit

Interrupts
Interrupt status is unaltered
Fast interrupts are enabled
Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use
This call releases a port number that was previously claimed by calling
Econet_ClaimPort (page 2-678).
You must not use this call for port numbers that have been previously claimed
using Econet_AllocatePort (page 2-676); instead, you must call
Econet_DeAllocatePort (page 2-677).

Related SWis

Econet_ClaimPort (page 2-678)

Related vectors

None

2-675

2-676

Allocates a unique port number

On entry

No parameters passed in registers

On exit

RO = port number

interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

Econet_AllocatePort
(swi &40013)

This call allocates a unique port number that has not already been claimed or

allocated.

When you have finished using the port number, you should call
Econet_DeAllocatePort (page 2-677) to make it available for use again.

Related SWis

Econet_DeAllocatePort {page 2-677)

Related vectors

None

Econet_DeAllocatePort
(swi &40014)

Deallocates a port number that was previously allocated

On entry

RO = port number

On exit

Interrupts
Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SW] is re-entrant

Use
This call deallocates a port number that was previously allocated by calling
Econet_AllocatePort (page 2-676).
You must not use this call for port numbers that have been previously claimed
using Econet_ClaimPort (page 2-678): instead, you must call Econet_ReleasePort
(page 2-675).

Related SWis

Econet_AllocatePort (page 2-676)

Related vectors

None

2-677

2-678

Claims a specific port number

On entry

RO = port number

On exit

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

Econet_ClaimPort
(swi &40015)

This call claims a specific port number. If it has already been claimed or allocated,

an error is generated.

When you have finished using the port number, you should call
Econet_ReleasePort (page 2-675) to make it available for use again.

Related SWis

Econet_ReleasePort (page 2-675)

Related vectors

None

Econet_Startimmediate
(swi &40016)

Creates a TxCB and starts an immediate operation

On entry

RO = operation type

R1 = remote address or Procedure number

R2 = station number

R3 = net number

R4 = buffer address

R5 = buffer size in bytes
R6 = count

R7 = delay in centiseconds

On exit

RO = handle

R1 corrupted

R2 = buffer address
R3 = station number
R4 = net number

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

SWI is re-entrant

This call creates a TxCB and starts an immediate operation. For full details see the
section entitled Immediate operations on page 2-629.

The buffer must remain available all the time that the TxCB is open, as data
transmitted over the Econet is read directly from the buffer to hardware. You must
not use memory in application space if your program is to run under the Desktop.

2-679

Instead, you should use memory from the RMA. To do so, claim the memory using
OS_Module 6 (see page 1-233), and — after abandoning the transmit control
block — return the space to the RMA using OS_Module 7 (see page 1-234).

The value returned in R4 (the net number) will be the same as that passed in R3
unless that number is equal to the local net number; in that case the net number
will be returned as zero.

Related SWls
Econet_Dolmmediate (page 2-681)

Related vectors

None

2-680

Econet_Dolmmediate
(swi &40017)

Creates a TxCB for an immediate operation, polls it, reads its status, and abandons
it

On entry

RO = operation type

R1 = remote address or procedure number
R2 = station number

R3 = net number

R4 = buffer address

R5 = buffer size in bytes

R6 = count

R7 = delay in centiseconds

On exit

RO = status

RI corrupted

R2 = buffer address
R3 = station number
R4 = net number

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode and in USR mode

Re-entrancy

Use

SWI is re-entrant

This call creates a TxCB for an immediate operation, and repeatedly polls it until it
finishes transmission or it exceeds the count of retries. It then reads the final
status of the TxCB before abandoning it. For full details see the section entitled
Immediate operations on page 2-629.

2-681

The value returned in R4 (the net number) will be the same as that passed in R3

unless that number is equal to the local net number; in that case the net number
will be returned as zero.

Note that because this interface enables interrupts it should not be called from
within either interrupt service code or event routines.

During the loop when the polling of the TxCB and of Escape takes place, the
processor is put in USR mode with [RQs enabled; this allows callbacks to occur.

Related SWis
Econet_Startimmediate (page 2-679)

Related vectors

None

2-682

Econet_AbandonAndReadReceive
(swi &40018)

Abandons a reception and returns information about it, including the size of data

On entry

RO = handle
On exit

RO = status

Rl =0, or flag byte if RO = 9 (Status_Received) on exit

R2 = port number

R3 = station number

R4 = net number

R5 = buffer address

R6 = buffer size in bytes, or amount of data received if RO = 9 on exit
(Status_Received)

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

SWI is re-entrant

This call abandons an RxCB, returning its memory to the RMA. It also returns
information about the reception; most importantly, it tells you how much data was
received, if any, and the address of the buffer in which it was placed. The buffer
address is the same as that passed to Econet_CreateReceive (page 2-647). You can
call this SWI before a reception has occurred.

The status of the RxCB may be one of the following:

7 Status_RxReady
9 Status_Received

2-683

2-684

The returned values in R3 and R4 (the net and station numbers) are those of the
transmitting station if the status is Status_Received; otherwise they are the same
values that were passed in to Econet_CreateReceive.

This call is not available in RISC OS 2, nor in RISC OS 3 (version 3.00).

Related SWis

Econet_CreateReceive (page 2-647), Econet_ReadReceive (page 2-651),
Econet_AbandonReceive (page 2-653)

Related vectors

None

Econet_Version
(swi &40019)

Returns the version of software for the underlying transport to a given station

On entry
RO = station number
R1 = net number
On exit
RO, R1 preserved
R2 = version number x 100 (eg 547 for version 5.47)
Interrupts
Interrupt status is unaltered
Fast interrupts are enabled
Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This call is used by clients to determine the version of software that handles the
underlying transport to a given station. If both RO and R1 are set to zero on entry,
this call instead returns the version number of the top-level software to which
RISC OS passes the Econet SWis.

This call is not available in RISC OS 2, nor in RISC OS 3 {version 3.00).

Related SWils

None

Related vectors

None

2-685

Econet_NetworkState
(swi &4001A)

Returns the state of the underlying transport to a given station

On entry
RO = station number
R1 = net number
On exit
RO, R1 preserved
R2 = transport state (0 = fully functional, 1 = no clock signal)
Interrupts
Interrupt status is unaltered
Fast interrupts are enabled
Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use
This call returns the state of the underlying transport to a given station. The state
returned is transport type dependent, but you may always assume that a value of
zero means that the transport is fully functional.
You should only use the returned value as a hint to the exact state; in other words,
it is suitable for display but not for decision making. Using this call is no substitute
for proper error handling; to determine if a particular transmit will fail, you must do
the transmit and be prepared for it to fail.

Related SWis

Econet_PrintBanner (page 2-673)

Related vectors

None

2-686

Econet PacketSize
(swi &4001B)

Returns the maximum packet size recommended on the underlying transport to a
given station
On entry
RO = station number
Rl = net number
On exit
RO, R1 preserved
R2 = maximum permitted packet size, in bytes
Interrupts
Interrupt status is unaltered
Fast interrupts are enabled
Processor mode

Processor is in SVC mode

Re-entrancy

SWI] is re-entrant

Use

This call returns the maximum recommended packet size on the underlying
transport to a given station. Larger packets will not necessarily be rejected, but
their use is not recommended. The size returned is transport type dependent.

This call is intended for use by modules supplying protocols; you do not need to
use it in application software. For maximum efficiency the protocol module should
negotiate the packet size once. Since the recommended packet size may differ
between the stations at either end of a transmission, the protocol module should
interrogate both stations and take the lower value returned.

Related SWis

None

2-687

Related vectors

None

2-688

Econet_ReadTransportName
(swi &4001C)

Returns the name of the underlying transport to a given station

On entry
RO = station number
R1 = net number
On exit
RO, RI preserved
R2 = pointer to null terminated name of transport
Interrupts
Interrupt status is unaltered
Fast interrupts are enabled
Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use
This call returns the name of the underlying transport to a given station. You can
use this to insert the transport name into (for example) a status conversion.
Related SWis

None

Related vectors

None

2-689

