

 Advanced

 Computer

 Products

Advanced Electron 1770 DFS
User Guide

Copyright (C) 1986
All rights reserved

-1-

NOTICE

Advanced Computer Products Limited reserves the right to make
improvements to the product described in this manual at any time and
without notice.

Advanced Computer Products Ltd
6 Ava House
High Street
Chobham
SURREY GU24 8LZ

Tel: (0276) 76545

Advanced Computer Products Limited cannot be held responsible for any
loss of data or damage to equipment as a result of this product.

Tu

be, Electron and Econet are tradenames of Acorn Computers Limited.

-2-

CONTENTS

 1 Getting going 4

 2 Disc files 5

 File specification
 Multi-file operations
 Auto-start facilities
 Library files

 3 The filing system commands 9

 4 Random access files 46

 5 Using the filing system in assembler 50

 General principles
 Read/write one byte
 Read/write a group of bytes
 Read/write a sector

6 Changing the filing systems 57

7 Error messages 58

8 Technical information 60

 18 bit-addressing
 Disc catalogue
 File system initialisation and !BOOT

9 Filing system command summary 62

 Index 63

-3-

1 GETTING GOING

After fitting the 1770 DFS into your computer, turn on the power. The
name of he current filing system should appear near the top of the
screen. This might be:

ACP 1770 DFS

if

 1770 DFS is the current filing system, or

Acorn ADFS

if ADFS is the current filing system.

If neither of these two messages appear then another filing system
has been selected.

The current filing system which is selected when you turn on the
computer is the filing system which has the higher priority. The ROM
socket number of the filing system determines priority. The higher
the number, the higher the priority. ROM 15 has the highest priority.
So if 1770 DFS is in a higher ROM number than ADFS then 1770 DFS will
be selected when the computer is turned on, and vice versa. The DFS
command *ROMS will tell you which ROM number 1770 DFS is in.

Once a filing system has been selected it does not mean you have to
stay in that system. There are three ways you could enter another
filing system:

1 By typing the filing system name as a * command e.g.

 *DISC to select DFS
 *ADFS to select ADFS
 *TAPE to select TAPE

2 By resetting the computer and filing system, e.g. by pressing:

 D BREAK to select DFS.
 A BREAK to select ADFS.
 T BREAK to select TAPE.

3 By resetting the computer and initiating an auto-start, e.g. by

pressing:

 SHIFT D BREAK to auto-boot !BOOT on DFS.
 SHIFT A BREAK to auto-boot !BOOT on ADFS.
 SHIFT T BREAK selects TAPE only.

To press a key with BREAK hold down the keys in the order they are
given and release the BREAK key first, still holding the other keys
down.

-4-

2 DISC FILES

Probably the first thing you will want to do with the filing system
is to record one of your programs onto a disc. You can do this simply
by using the SAVE command in BASIC and the filing system takes care
of the rest. (NB Not to be confused with *SAVE described later in
this manual). When you have typed the program into the computer the
SAVE command causes it to be copied on to the disc. When SAVE'd, the
program must be given a name. This is called the filename and is used
to refer to the program if you later want to copy it back from the
disc. Each program SAVE'd on to the same drive must be given a unique
name. The format of the SAVE command is

SAVE 'filename'

where 'filename' can be up to 7 characters. Letters and digits are
allowed. The characters

* . :

have special meanings which are explained later.

The filename is written into the catalogue together with the sector
number where the information starts. Next time you refer to the
filename the filing system checks the catalogue to see where the
information has been placed on the disc, the old file is deleted and
replaced by the new one. The filing system ensures that each new file
begins with a new sector.

File specifications

The full specifications for a file is

:Drive number.Directory.Filename
:<drive>.<dir>.<filename>

e.g:
:1.Z.MYPROG1

Notice the drive number, directory and filename are separated by
full-stops. These are needed so that the computer can distinguish the
separate parts of the file specification.

Drive numbers

Drive numbers must be in the range 0 to 3 and preceded by a :
(colon). The colon in effect tells the computer: 'This is the start
of a file specification, the drive number follows.'

The drives are numbered as shown below. Notice that each side of a
double-sided disc is given a separate drive number.

Single-drive, single sided

 Drive 0

-5-

Dual-drive, double sided

 Drive 0 Drive 1
__________________________ __________________________

 Drive 2 Drive 3

The effect of including the drive number in the full specification is
that :1.$.MYPROG1 is different from :2.$.MYPROG1 although the file
names are the same, they are on different drives.

Directories

The directory is a single character used to divide the catalogue into
independent sectors. Files of the same name can be created on the
same disc with different directories. Although on the same drive,

:1.$.MYPROG is different to :1.A.MYPROG

because the directory is different.

Filenames

The filename can be up to 7 of most of the characters on the keyboard
in any combination, except the four previously mentioned. When we
need to refer to the complete file specification in future we will
use the abbreviation <fsp>.

When the filing system is started by pressing CTRL BREAK or SHIFT
BREAK, the current directory and drive number is always set to drive
0 and directory $. The drive and directory can therefore be omitted
from file specifications. They will be assumed to have these values.

Typing, SAVE "MYPROG"

will automatically store your program in a file name

:0.$.MYPROG

assuming you have not changed the current drive and directory.
(Chapter 3 'The filing system commands' explains how you can change
the current drive and directory with the command *DRIVE and *DIR)

Multi-file operations

Another common term used to refer to multi-file operations is
'Wildcard' facilities. Some of the filing system commands can operate
on a number of files instead of just one. These are all followed by
the abbreviation <afsp> instead of <fsp>. <afsp> stands for
'ambiguous file specification'. *INFO is an example of such a
mmand. It provides information about a named file, e.g: co

*INFO :0.$.MYPROG

will display information about the file named MYPROG in directory $
on drive 0.

However, it is possible that you want information about a number of
files. The 'WILDCARD' facilities enable you to specify several files
for the command to operate on. The wildcards are provided by the

-6-

characters * and # which have special meanings when they appear in
the file specification, e.g:

*INFO :0.#.MYPROG

means: 'Display information about files called MYPROG in any
directory on drive 0'.

*INFO :0.$.MYPRO#

means: 'Display information about all files on drive 0 in directory $
with names starting "MYPRO" followed by any single character.' e.g:

MYPROA, MYPROT and MYPROG and so on.

The character * means multiple #'s to the end of the field, e.g:

INFO :0.$.M

will display information about any files on drive 0 and directory $
whose names begin with M.

Auto-start facilities

Sometimes it is useful to make a program of a file on one of your
discs *LOAD, *RUN or *EXEC automatically when you insert the disc and
press BREAK. This can be done using a file named !BOOT. !BOOT is a
special filename recognised by the filing system when you start the
computer by pressing SHIFT BREAK. If there is a file of specification

:0.$.!BOOT

the filing system will do one of four things according to the OPTION
set on the disc using *OPT 4,n see chapter 3.

Option 0: !BOOT ignores
Option 1: *LOAD's !BOOT into memory
Option 2: *RUN's !BOOT as a machine code program not a BASIC program.
Option 3: *EXEC's !BOOT

See Chapter 3 The filing system commands under the section *EXEC for
an explanation of Option 3. That section also describes how to use
this auto-start facility to make the computer run one of your BASIC
programs automatically.

As well as programs, you may wish to store data on the discs. The
filing system provides special facilities for storing and retrieving
the data quickly and selectively under the control of your programs.

One of the methods if to use a type of file called a 'Random Access
File' - see chapter 4.

Library directory

The disc system enables you to specify one drive/directory as the
'Library'. This will always be set to :0.$ when you turn on the
computer or press CTRL BREAK. It can be altered using the filing
system command *LIB, until the next CTRL BREAK. All the utility
programs should be located in the library. This is because when you
type

-7-

*(Utility name)

it is equivalent to typing

*RUN (Utility name)

where the drive and directory are omitted and will be assumed to be
either the current drive/directory or the Library. The filing systems
will first search the current drive/directory for the file and then,
if it cannot find it there, it searches the Library.

-8-

3 THE FILING SYSTEM COMMANDS
__

The 1770 Disc Filing System is a 12K byte program. BASIC programs are
stored on a disc or tape, but the filing system is stored in Read
Only Memory (ROM) inside the computer. The filing system controls the
reading and writing of information to and from the disc and provides
a number of useful facilities for maintaining that information. The
following pages describe all the filing system commands. They are
words which the filing system program will recognise and act on. They
can be typed directly on to the keyboard or embedded within your
BASIC program. They are all prefixed by the * character which signals
the computer that a filing system command follows. Each command is
described under a number of sections with headings as follows:

Command

This is followed by a syntax abbreviation and a few words explaining
the derivation of the word.

<drive> = drive
<fsp> = file specification
<dir> = directory
<afsp> = ambiguous file specification

Purpose

A plain English description of what the command does.

Examples

This section gives a few one-line examples of the use of the
commands. These examples are only intended to be illustrative.

Description

A description of the command using normal computer jargon.

Associated commands

This section lists the commands which have similar functions or are
normally used in conjunction with this command.

Demonstration program

If appropriate a short program is included to illustrate use of the
filing system command in a BASIC program.

Notes

Particular points to watch for or special applications of the command
are covered by additional notes if necessary.

-9-

*ACCESS <afsp> (L)

Purpose

To prevent a file from being deleted or overwritten. The command
'locks' or 'unlocks' a file. You cannot delete, overwrite or write to
a locked file until you unlock it again. If you load a file which is
locked, you will not be able to save it again with the same name.
This is because saving a file with the same name as one already on
the disc causes the one on the disc to be deleted and replaced with
the new file. A locked file cannot be deleted.

Examples

*ACCESS HELLO L

This locks the file HELLO

*ACCESS HELLO

unlocks it again so that it can be deleted or overwritten.

Description

Sets or un-sets file protection on a named file. It prevents a number
of other filing system commands from acting on the file.

Notes

On

ce locked a file will not be affected by the following commands:

*SAVE
*DELETE
*WIPE
*RENAME
*DESTROY

If you attempt to use any of these commands on a locked file the
ssage me

File locked

is produced.

If

 you attempt to use *ACCESS on a write protected disc the message

Disc read only

is produced.

Important

Locking a file does NOT prevent it from being removed from a disc
with *FORM40 or *FORM80 or from being overwritten with *BACKUP.

-10-

*BACKUP <source> <dest>

Purpose

To read all the information on one disc and write it to another,
producing two discs with identical information.

Example

*ENABLE
*BACKUP 0 1

copies all the information on drive 0 onto drive 1.

Description

Sector by sector copy program.

Associated Commands

*COPY
*ENABLE

Notes

If *ENABLE is not typed before the command the prompt Go (Y/N) ? is
displayed. Press Y to backup the disc. If you give 0 as the source
and destination drives, e.g:

*BACKUP 0 0

the program will alternately ask you to insert the source and
destination discs into drive 0. This makes it possible to copy discs
even if you only have a single drive. All information previously on
the destination disc is overwritten so be careful not to confuse the
source and destination discs. If the source disc is blank the
destination disc will end up blank as well.

Warning

The contents of memory may be overwritten by this command. If you
have a program or some data in memory that you want to keep, save it
before you use this command.

-11-

*BUILD <fsp>

Purpose

To create a file directly from the keyboard. After typing this
command everything else entered will go into the named file. This is
useful for creating EXEC files and the !BOOT file described in
chapter 2.

Example

*BUILD !BOOT

will cause everything subsequently typed in to be entered into a file
called !BOOT.

Line numbers are displayed on the screen to prompt you to enter your
test as follows:

*BUILD !BOOT
0010 first line of text
0020 second line of text
0030 ESC

Pressing ESC on a line by itself terminates a *BUILD command.

Description

Builds a file from the keyboard.

Associated Commands

*EXEC
*LIST
*TYPE

-12-

*CAT (<drive>)

Purpose

The command displays the catalogue of a disc on the screen, showing
all the files present on the disc. <drive> is the number of the drive
you want displayed. If <drive> is omitted, the current drive is
assumed.

Example

*CAT 0
PROGRAM (34) FM
Drive: 0 Option: 2 (RUN)
Dir: 0.$ Lib: 0.$

 !BOOT HELLO
 SUMS TABLE
 TEST VECTORS
 ZOMBIE

 A.HELLO L B.SUMS

Note that the heading part of the catalogue shows the drive number,
the title of the disc, the currently set auto-start option of the
disc (in this case 2 for RUN), and the currently selected library and
directory. The files are displayed in alphabetical order reading
across the two columns. In the example above there are nine files on
the disc. !BOOT to ZOMBIE are in the current directory $. The current
directory's files are always listed first. A.HELLO is in directory A.
It is also followed by L, meaning, that it is a 'locked' file. (See
*ACCESS for an explanation). B.SUMS is in directory B and is not
locked.

Description

Displays a disc catalogue.

Associated Commands

*INFO
*ACCESS
*TITLE
*OPT 4,n
*DIR
*DRIVE

Notes

Permitted values of <drive> are 0,1,2 or 3. Other values will cause
he message t

Bad drive

to be displayed and you will have to re-enter the command correctly.
The top two lines of the catalogue include the disc title, disc
ption, drive number and current directory. o

-13-

Important

The catalogue and hence the disc will hold up to a maximum of 31
files.

-14-

*CLOSE

Purpose

To close all sequential access files, and 'ensure' them onto the
disc, i.e. data held in a buffer in the computer RAM is copied to the
disc.

*CLOSE is the same as the CLOSE#0 BASIC keyword.

Example

*CLOSE

Description

Closes all sequential access files.

Associated Commands

BASIC's CLOSE#0

-15-

*COMPACT (<drive>)

Purpose

Attempting to SAVE a program or file on to a disc may produce the
message 'Disc full' if there is no single space available on the disc
big enough for the information. It may be that there is enough space,
but it is split into several sections. This command appends all spare
space on a disc to the end. When you delete a number of files, the
spaces they had occupied will probably be distributed over the disc
with current files in between them. *COMPACT moves all current files
to the 'start' of the disc leaving the spare space in one continuous
block at the end. If <drive> is omitted the current drive is assumed.

Example

*COMPACT 1
$.HELLO FF1900 FF8023 00003B 002
$.SUMS FF1900 FF8023 000098 003
:
:
:

As 'computing' proceeds, all the current files are displayed in the
order in which they occur on the disc. The number of free sectors on
the disc is displayed after compacting.

Description

Moves all available space on a disc into one continuous block
following the current files.

Associated Commands

*FREE
*MAP
*SAVE and BASIC's SAVE and OPENIN

Notes

This facility will only do anything if there is space between the
files. There will only be such space if a file has been deleted from
between two others.

Warning

This command may overwrite the contents of memory. If you have a
program or data in memory that you want to keep, save it before you
use this command.

-16-

*COPY <source> <dest> <afsp>

Purpose

To copy a named file from one disc to another.

Example

*COPY 0 1 HELLO

This copies a file called HELLO in the current directory on drive 0
onto drive 1.

Description

File copy program.

Associated Commands

*BACKUP

Notes

The 'wildcard' facilities may be used to specify a group of files to
be copied. e.g.:

COPY 0 1 #.MY

Copies all files beginning MY irrespective of which directory they
are in. Information already on the destination disc is not affected.

Warning

This command may overwrite the contents of memory. If you have a
program or data in memory that you want to keep, save it before you
use this command.

-17-

*DELETE <fsp>

Purpose

To remove a single named file from the catalogue of a disc. The space
occupied by the file becomes available for other information.
Succeeding file names in the catalogue are shuffled up, but not the
files themselves. Once a file is deleted you cannot get it back
again.

Example

*DELETE FRED

removes a file called FRED from the current directory on the current
disc.

Description

Single file deletion.

Associated Commands

*WIPE
*DESTROY
*COMPACT

Notes

If the disc is write-protected the message

Disc read only

is produced. If the file is not found in the directory the message

File not found

is displayed. If the file is locked the message

File locked

appears. Once deleted a file cannot be restored.

-18-

*DESTROY <afsp>

Purpose

To remove specified files from the disc in a single action. This
command takes the ambiguous file specification so that groups of
files can be deleted. When you use this command a list of the files
to be deleted is displayed. A single Yes/No question appears at the
end of the list offering you the choice to go ahead and delete all
the listed files or not. Use this command with care because its
effect is not reversible. It will attempt to remove locked files.
(See *ACCESS)

Example

*ENABLE
*DESTROY *.H*
A.HELLO
$.HELLO

Delete (Y/N) ?

If you type Y in reply to the question all the named files will be
leted. The message de

Deleted

is displayed when the job is done. Typing anything else cancels the
command.

Associated Commands

*ENABLE
*WIPE
*DELETE

Notes

Once destroyed, files cannot be restored.

If *ENABLE is not typed before the command the prompt Go (Y/N) ? is
displayed. Press Y to delete the named files, any other key to cancel
the command.

-19-

*DIR (<dir>)

Purpose

To change the current directory to <dir>. The current directory is
always set to '$' when you press CTRL BREAK. To save files in a
different directory in the catalogue you must use this command to
change the current directory to the one you want and then save them.

Example

*DIR A

This sets the current directory to A for the current drive. You now
have access to any files in directory A in the catalogue. Any files
now saved using *SAVE or BASIC's SAVE will be in directory A.

*DIR :1.A

This sets the current directory to A in drive 1.

Description

Sets the current directory to the argument supplied.

Notes

Directory can be set to any character except

: "

This command does not alter the directories written in the catalogue.
It merely states which directory in the catalogue you have access to
by default.

-20-

*DRIVE <drive> (40) (80)

Purpose

Changes the current drive to <drive>. Any commands which follow will
work on <drive> until another drive is specified. If 40 is included
in the command then a 40 track disc can be used in an 80 track drive.
This is achieved by moving the head in the disc drive twice the
normal amount when seeking to a track. To return the disc drive back
to reading 80 track discs, or 'normal stepping' use 80 in this
command.

Examples

*DRIVE 1

Sets the current drive to 1 and

*CAT

will produce a catalogue of drive 1

*CAT 0

will catalogue drive 0 but the current drive is still drive 1 until
you change it back to 0 or press BREAK.

*DRIVE 0 40

Sets the current drive to 0 and allows drive 0 to read 40 track discs
(assuming drive 0 is an 80 track disc drive).

*DRIVE 0 80

Sets the current drive to 0 and allows drive 0 to read discs
normally, i.e. an 80 track drive to read 80 track discs and a 40
track drive to read 40 track discs.

Description

Sets the current drive, and permits 40 track discs to be read by 80
track disc drives.

Notes

After issuing a *DRIVE <drive> 40 command, the disc in drive <drive>
can only be read. An attempt to use a command which writes to the
disc will produce the message

Disc read only

-21-

*DUMP <fsp>

Purpose

Produces a hexadecimal listing of a file on the screen.

Example

*DUMP SUMS

Description

Hexadecimal screen dump.

Associated Commands

*LIST
*TYPE

Notes

It is useful to use this command in page mode so that the file is
displayed one page at a time on the screen.

CTRL N selects page mode, CTRL O turns it off.

-22-

*ENABLE

Purpose

Some of the filing system commands produce irreversible effects. To
prevent them from being used accidentally, it is necessary to type
*ENABLE before they become operational. These commands are:

*BACKUP
*DESTROY
*FORM

If *ENABLE is not used before these commands then the message

Go (Y/N) ?

will be displayed before the command is performed. Press Y to
continue with the command or any other key to cancel it.

Notes

*ENABLE must be typed immediately before the command to be enabled.
Any *name command typed in between nullifies the *ENABLE.

-23-

*EX (<dir>)

Purpose

To display information about the current directory or directory
<dir>. It includes details not given by *CAT. The information is the
directory, filename, attribute, load address, execution address,
length and disc sector address, the same as displayed by *INFO
<afsp>.

Examples

*EX

$.!BOOT L 001900 008023 00003B 005
$.MENU L 001900 001900 000200 003

Displays information about the files in the current directory.

*EX D

D.HOME 002000 002000 000300 102
D.WORK 002000 002000 000200 100

Displays information about the files in directory D.

Description

Displays directory contents information.

Associated Commands

*CAT
*INFO

-24-

*EXEC <fsp>

Purpose

This command reads byte by byte all the information in a named file
as if it was being typed on the keyboard. This is useful when you
find that you are repeatedly typing the same sequence of commands.
Instead you can build an EXEC file consisting of all these commands
and type *EXEC <fsp> each time you want this sequence of commands.
*BUILD <fsp> is an associated command used to create an EXEC file.

Example

*EXEC HELLO

takes the contents of file HELLO and reads it one character at a time
as if it was being typed at the keyboard.

Description

Executes the contents of a named file by reading each byte as if it
were coming from the keyboard.

Associated Commands

*BUILD

Notes

One useful application of the *EXEC command is in association with
the auto-start facilities described in chapter 2 and in the section
on *OPT 4 in this chapter. If you create a !BOOT file containing the
BASIC keyword CHAIN followed by the filename of one of your BASIC
programs, the effect of pressing SHIFT BREAK will be to automatically
load and run the BASIC program.

-25-

FORM 40/) (<drives>)...

Purpose

To initialise a new disc for reading and writing. The first parameter
is the number of tracks to be formatted onto the disc. A 40 track
drive will use 40 track discs, and an 80 track drive will use 80
track discs. <drive> is the drive number which contains the disc to
be formatted. <drive> can be repeated in the command to format more
than one disc in the same command. If <drive> is omitted from the
command you will be asked to type in the drive number of the drive to
format.

A track number is printed in hex as each track is formatted. After
formatting a track, it is verified for legibility. See *VERIFY.

Examples

*FORM80
Format which drive ? 0
Go (Y/N) ? Y

Formats an 80 track disc in drive 0.

*FORM40
Format which drive ? 0
Go (Y/N) ? Y

Formats a 40 track disc in drive 0.

*FORM80 0 2
Go (Y/N) ? Y
Formats both sides of an 80 track disc in drive 0.

Notes

This command will overwrite the contents of memory. If you have a
program or data in memory that you want to keep, save it before you
use this command.

Formatting a disc can cause parts of the screen to be overwritten in
some screen modes, however this will not affect the formatting
command.

-26-

*FREE (<drive>)

Purpose

To display the number of free and used files and disc space remaining
and used on the disc in drive <drive>, by default the current drive.
Free and used files are given in decimal. Disc space is given as
sectors in hex and bytes in decimal.

Example

*FREE

Di

splays the free space on the current drive.

*FREE 2

Displays the free space on drive 2.

Associated Commands

*COMPACT
*MAP

-27-

*HELP (<keyword>)

Purpose

Displays useful information on the screen. In the disc system this
consists of a list of the filing system commands or the utilities
depending on the <keyword> used. The two keywords which produce a
response in the disc filing system are UTILS and DFS.

Example

*HELP DFS
DFS 2.10

ACCESS <afsp> (L)
BACKUP <source> <dest.>
CLOSE
COMPACT (<drive>)
COPY <source> <dest.> <afsp>
DELETE <fsp>
DESTROY <afsp>
DIR (<dir>)
DRIVE (<drive>) (40)(80)
ENABLE
EX (<dir>)
FORM 40/80 (<drive>)...
FREE (<drive>)
INFO <afsp>
LIB <dir>
MAP (<drive>)
RENAME <old fsp> <new fsp>
TITLE <title>
VERIFY (<drive>)...
WIPE <afsp>

*HELP UTILS

DFS 2.10
BUILD <fsp>
DISC
DUMP <fsp>
LIST <fsp>
ROMS (<roms>)
TYPE <fsp>

Notes

*RUN, *SPOOL, *SAVE, *EXEC and *LOAD are not included in these lists
because they are Machine Operating System commands which operate
outside the disc filing system. *HELP is a Machine Operating System
command.

-28-

*INFO <afsp>

Purpose

Displays information about a file or group of files. It includes
details not given by a *CAT such as the length of the file and its
location. It is displayed in the following order across the screen.

Directory Filename Access Load Execution Length Start
 Address Address in bytes sector

Example

*INFO A.HELLO

Displays
A.HELLO L FF1900 FF8023 00003B 003

Description

Displays detailed file information.

Associated Commands

*CAT

Notes

If the file is not found on the specified (or assumed) drive and
rectory the message di

File not found

is produced. The command must be re-entered using the correct <afsp>.
The wildcard facilities # and * may be used if you want information
about a group of files.

-29-

*LIB: (<drive>) <dir>

Purpose

Sets the library to the specified drive and directory.

Examples

*LIB :1.A

sets the library to drive 1 directory A. After this typing

*<filename>

will search directory A on drive 1 for the named file and if it is
found the file will be loaded and executed just as if you had typed

*RUN :1.A.<filename>

Description

Sets the drive/directory containing the library.

Associated Commands

*RUN

Notes

The library can contain files which are utility programs, designed to
act on other files e.g. Sorts, Edits and Merges are all common
utility programs. It is then possible to say:

*SORT FRED

where SORT is the name of the file in the library and FRED is the
name of another file in the current drive and directory. This makes
use of the fact that any text after <fsp> is stored in memory and is
available to your machine code program for interpretation. A pointer
to the start address of this text is available to your program via a
call to OSARGS with Y=0, A=1 and X=the address of the 4 byte block in
page 0 where the text is stored. To read the text stored at this
location you must use a call to OSWORD with A=5.

OSWORD call with A=5.

Read I/O processor memory. This call enables any program to read a
byte in the I/O processor no matter in which processor the program is
executing. On entry X and Y point to a block of memory as follows:

XY LSB of address to be read
XY+1
XY+2
XY+3 MSB of address to be read

On exit the 8 bit byte will be stored in XY+4.

-30-

As this routine reads one byte at a time you may need to use repeated
calls to it to recover all the text following the <fsp>.

Chapter 5 gives more information about using the disc system from
assembler programs.

-31-

*LIST <fsp>

Purpose

Displays a text file on the screen with line numbers.

Example

*LIST DATA

displays the contents of the file called DATA on the screen, line by
line with each line numbered.

Description

ASCII list with line numbers.

Associated Commands

*TYPE
*DUMP

Notes

BASIC is tokenised so listing a BASIC program file will display
nonsense (See the User Guide). An ASCII text file of a BASIC program
can be obtained using the *SPOOL command.

Files written with the BASIC keyword PRINT# can also be listed with
this command.

In page mode the listing will stop after displaying each screen full
until you press either the SHIFT key to make it continue. CTRL N
turns page mode on, CTRL O turns it off.

-32-

*LOAD <fsp>

Purpose

Reads a named file from the disc into memory in the computer starting
at either a specified start address or the file's own load address.

Example

*LOAD HELLO

Reads the file HELLO into memory starting at location 1900 (hex),
which is the load address of the file when it save saved. (See
example in *INFO)

*LOAD HELLO 3200

Reads the file HELLO into memory starting at location 3200 (hex).
Other examples are:

*LOAD "HELLO"
*LOAD "HELLO" 3200

Description

Loads a file into memory.

Associated Commands

*SAVE
*RUN

Notes

All the above are valid commands. The quotation marks are optional:
but either a pair, or none should be present. The named file must be
in the current directory on the current disc. If the file is not
found the message

File not found

is produced.

-33-

*MAP (<drive>)

Purpose

To list a map of the free space on the disc in drive <drive>, by
default the current drive. The map is printed as a list of disc
addresses and lengths of free space in sectors, both in hex.

The free space map changes whenever a file is saved or deleted. This
causes spaces to form between files, fragmenting the disc space. To
eliminate the free spaces use the command *COMPACT.

Examples

*MAP

Lists the free space map on the current drive.

*MAP 1

Li

sts the free space map on drive 1.

Associated Commands

*COMPACT
*FREE

-34-

*OPT 1 (n)

Purpose

This command enables or disables a message system which displays a
file's information (the same as *INFO). Every time a file on the disc
is accessed the information is displayed. (n) can be anything from 1
to 99 to enable the feature. (n)=0 disables it.

Examples

*OPT 1 1 or *OPT 1,1

enables the messages;

*OPT 1 0 or *OPT 1,0

disables the messages.

Description

Message system to display file information at every access.

Associated Commands

*INFO

Notes

A space or comma between *OPT 1 and its argument (n) is essential.

-35-

*OPT 4 (n)

Purpose

Changes the auto-start option of the disc in the currently selected
drive. There are four options to choose from 0, 1, 2 or 3. Each
option initiates a different action when you press SHIFT BREAK. The
computer will either ignore or automatically LOAD, RUN or EXEC a file
called !BOOT which must be in directory $ on drive 0.

Example

*OPT 4 0 does nothing
*OPT 4 1 will *LOAD the file !BOOT
*OPT 4 2 will *RUN the file !BOOT
*OPT 4 3 will *EXEC the file !BOOT

Description

Changes the start-up option of a disc.

Notes

It is essential to include a space between the command and (n).
*OPT40 would produce the message

Bad option

If the disc is write-protected the error message

Disc read only

is produced in response to the *OPT 4 command.

If the option 0 is set the !BOOT file need not be there. With any
other option the message

File not found

is produced if !BOOT is not found in directory $ on drive 0.

Important

Do not confuse *OPT 4 with BASIC's keyword OPT or *OPT 1. They are
completely different.

-36-

*RENAME <old fsp> <new fsp>

Purpose

Changes the file name and moves it to another directory if required.

Example

*RENAME SUMS B.MATHS

Assuming that the current directory is $, the file $.SUMS becomes
B.MATHS

Description

Renames a file.

Notes

*RENAME :0.$.SUMS :1.B.MATHS

This is not allowed. The file cannot be moved from drive 0 to drive 1
using *RENAME. Only the directory and filename can be changed. If the
le does not exist the message fi

File not found

is displayed. If the first file is locked

File locked

is displayed. If the disc is write-protected

Disc read only

is

 displayed. If the <new fsp> has already been used the message

Exists

is displayed.

-37-

*ROMS (<rom>)...

Purpose

To catalogue sideways Rom <rom>, by default Roms 0 to 15. <rom> can
be the title of the Rom as an alternative to the Rom number. The
catalogue of a Rom shows its Rom socket number, the type of program
in the Rom, the title of the Rom and its version number, if it has
one. A Rom can be a language shown as (L), a service Rom (like DFS)
shown as (S), or both a language and service Rom shown as (SL).

Examples

*ROMS

Catalogues Roms 0 to 15.

*ROMS 15

Catalogues Rom socket 15.

*ROMS BASIC

Ca

talogues the Rom socket containing BASIC.

*ROMS 12 13 14 15

Catalogues Rom sockets 12, 13, 14 and 15.

-38-

*RUN <fsp> (parameters to utility)

Purpose

This command is used to run machine code programs. It loads a file
into memory and then jumps to the execution address of that file.

Example

*RUN PROG

will cause a machine code program in the file called PROG to be
loaded and executed starting at the execution address of the file.

Description

Runs a machine code program.

Associated Commands

*SAVE
*LIB (for an explanation of 'parameters to utility')

Notes

This command will not run a BASIC program.

Typing *<fsp> is accepted as being *RUN <fsp>.

Typing *<filename> results in the file being loaded and executed if
it is found in the currently selected drive/directory or the library.

-39-

*SAVE <fsp> <start> <end> <exec> <reload>

Purpose

It is important not to confuse this with the BASIC keyword SAVE, they
are quite different. This command takes a copy of a specified section
of the computer's memory and writes it onto the disc in the current
drive/directory. It is put into a file of the given name. You will
mostly use this command to record your machine code programs.

Example

*SAVE "PROG" SSSS FFFF EEEE RRRR
*SAVE "PROG" SSSS+LLLL EEEE

SSSS = Start address of memory to be saved
FFFF = Finish address
EEEE = Execution address
RRRR = Reload address
LLLL = Length of information

Notes

RRRR and EEEE may be omitted in which case the reload address and the
execution address are assumed to be the same as that start address.

If

 the disc is write-protected the message

Disc read only

is

 produced. If there are already 31 files on the disc the message

Directory full

is produced. If the specified filename already exists and is locked
e message th

File locked

is produced. If the file already exists but is unlocked it is
deleted. Then starting on sector 2 track 0 a gap large enough to hold
the new information is searched for. If none is found the message

Disc full

is produced.

If enough space is available, the information is written onto the
disc and the filename is entered onto the catalogue in the current
directory.

-40-

*SPOOL <fsp>

Purpose

Prepares a file of the specified name on the disc to receive all the
information subsequently displayed on the screen. This is a very
useful command particularly for producing a text file of one of your
BASIC programs. (See notes below)

Example

You can obtain a text file of one of your BASIC programs as follows:

LOAD "MYPROG"

Loads a program from disc into memory.

*SPOOL TEXT

Opens a file called TEXT on the disc ready to receive information
om the screen. fr

LIST

Causes the BASIC program to be displayed on the screen and also
written onto the file called TEXT.

*SPOOL

Turn off the 'spooling' and close the file called TEXT.

Description

Spools subsequent output to the screen to a named file opened for the
purpose. Closes the file when spooling is terminated.

Associated Commands

*BUILD
*EXEC
*LIST
*TYPE

Notes

BBC BASIC is 'tokenised'. This means that the lines which you type in
your program are abbreviated inside the computer's memory and on the
disc. A program file will contain these abbreviated 'tokens' rather
than your original program text. Displaying the file using *LIST will
therefore produce strange results. The example above shows you how to
create a file containing your original program text. If you display
that file using *LIST your program will appear just as you typed it
in.

-41-

*TITLE <title>

Purpose

Changes the title of the disc in the current drive to the first
twelve characters after the command. It fills in with 'nulls' if
there are less than twelve characters. Any characters are allowed.

Examples

*TITLE "MY DISC"

This sets the title to "MY DISC" with file 'nulls' added on the end.

*TITLE "A DIFFERENT TITLE"

This changes the title to A DIFFERENT. Anything after the first
twelve characters is ignored. The quotation marks are only required
if the title includes spaces.

Notes

If

 the disc is write-protected the message

Disc read only

appears when you try to use this command.

-42-

*TYPE <fsp>

Purpose

Displays a text file on the screen without line numbers.

Example

*TYPE HELLO

Description

Screen list of a named file

Associated Commands

*LIST
*DUMP

Notes

BASIC programs are not stored on the disc as text files when you SAVE
them so this command will display nonsense.

Page mode is selected with CTRL N and turned off by CTRL O.

-43-

*VERIFY (<drive>)...

Purpose

To verify all sectors of the disc in drive <drive> for legibility. If
<drive> is omitted from the command a message is displayed for a
drive to verify. Press the number of the drive to verify. <drive> can
be repeated in the command to verify more than one disc in the same
command. A track number is printed in hex as each track is verified.

If verifying a track fails on the first attempt a ? is printed after
the track number. This could mean temporary corruption of the disc,
caused by dust, lint or other foreign matter adhering to the surface
of the disc.

If verifying a track fails after six attempts the command is
terminated and a disc fault is printed. This could mean permanent
corruption of the disc, caused by physical damage to the surface of
the disc.

Examples

*VERIFY

Verifies the disc in drive 0

*VERIFY 0 1

Verifies the discs in drive 0 and 1.

Associated Commands

*FORM

-44-

*WIPE <afsp>

Purpose

Removes specified files from the catalogue and rearranges the
catalogue. Asks for confirmation that each file conforming to the
specification is to be deleted.

Example

*WIPE *.SU*

is a request to delete all files on the current drive beginning with
the letter SU. As each file is found the filename is displayed like
is th

A.SUM

At this point only type "Y" if you want to delete the file. Typing
anything else leaves the file intact.

Description

Delete with <afsp> and confirmation per file.

Associated Commands

*DESTROY
*DELETE

Notes

Once deleted using *WIPE, a file cannot be restored. Locked files are
not removed. (See *ACCESS)

-45-

4 RANDOM ACCESS FILES

One of the major advantages of a disc over a cassette tape is that
the read-write head of the disc can be moved to a specific place on
the disc quickly and accurately. Imagine you have a data file on a
cassette tape consisting of 'Names' and 'Telephone numbers'. To find
a specific telephone number the file must be loaded and read from the
beginning until the required record is found. If the file is long
this will take some time. On the other hand, the Disc Filing System
allows you to move to the required record and just read that one.
Clearly this is much quicker.

To make this possible the Disc Filing System provides a pointer. The
pointer points to a particular character in the file. It is the next
character on the file to be read or written. In BASIC the pointer is
controlled by the keyword PTR#. The other keywords in BASIC which are
used in connection with disc files are EXT# and EOF#. EXT# tells you
how long a file is, EOF# returns a value of TRUE (-1) if the end of
the file has been reached and FALSE (0) if not. All the BASIC
keywords used to manipulate disc files are explained in the User
Guide. They are:

OPENOUT
OPENIN
PTR#
EXT#
INPUT#
PRINT#
BGET#
BPUT#
EOF#

To prepare a file to receive data the OPENOUT keyword is used. In the
User Guide the following example is given:

330 X = OPENOUT ("cinemas")

The effect of this line in a BASIC program is as follows:

1 If a file called 'cinemas' exists it is deleted.
2 A file called 'cinemas' is entered on to the disc catalogue of

the currently selected drive, in the current directory.
3 The filing system reserves 64 sectors (or the length of the

previous file called 'cinemas' if there was one) on the disc for
the exclusive use of the file 'cinemas'. If 64 sectors are not
available, the file is not created and an error is produced.

4 Evaluating PTR# and EXT# at this point will reveal that they are
both set to zero.

5 The filing system will have loaded into memory the first sector,
256 bytes of the file. This area of memory is specially reserved
by the filing system for this purpose and is referred to as the
'Buffer'.

Notice that the first action of the keyword OPENOUT is to delete any
existing file of the specified name.

If there were no files on the disc previously, the effect can be
illustrated as follows:

-46-

-------------------------------> Total of 64 sectors reserved on disc
 Bytes
0 1 2 3 4 5 6 254 255 0 1 2 3 4 5 6 etc

| |
PTR# |
|___|
 First sector, sector 02 in memory

Nothing has been written on the file, so the value of EXT# (extent)
is zero.

We can now use the BASIC keyword PRINT# to write three cinema names
into these slots of 10 characters each, as follows:

 340 A = PTR#X
 350 PRINT#X, "VICTORIA"
 360 PTR#X = A + 10
 370 PRINT#X, "REGAL"
 380 PTR#X = A + 20
 390 PRINT#X, "ODEON"
 400 PTR#X = A + 30

In practice you can do it much more elegantly than shown above.
Nevertheless the result immediately after line 400 is:

t l A I R O T C I V t l L A G E R t l N O E D O

 |
 PTR#
 EXT#

Notice that the cinema names (in this illustration, VICTORIA) are in
the file backwards. They are preceded by two bytes, represented in
the diagram by 't' and 'l'. 't' specifies the type of data which
follows. In this case the type is 'string' so the first byte will
contain &00 in hex, as indicated in the table below.

't' = &00 = String type, followed by 'l', followed by the string.
't' = &40 = Integer type, followed by four bytes containing the
integer.
't' = &FF = Real type, followed by five bytes containing the real
number.

In our example the second byte, represented by 'l', gives the length
of the string in hex. The integer and real number types are of fixed
length as indicated above so they do not require the byte represented
by 'l' to give the length. Real numbers are stored in exponential
format, integers are stored with the high order bytes first in the
file.

In the example we have used only the first 26 bytes of the file, so
everything written to the file fits into the first sector which is in
a 'buffer' in memory. If we had gone on writing names, the filing
system would eventually have put the information in the memory buffer
on to sector 02 of the disc and loaded sector 03 into the buffer to
continue. This is still assuming that there are no other files on the
disc, otherwise different sectors would be used. Remember that

-47-

sectors 00 and 01 are reserved by the disc filing system for the disc
catalogue. Clearly then, at the end of a sequence of writing actions,
we are left with a buffer in memory which may be partly filled with
information. We must make sure that this information is written to
the disc. This is done with the CLOSE# keyword in BASIC. This empties
the buffer and frees the channel on which we opened the file (X in
the example).

We can now read the information back from the disc if we want to.
OPENIN is the BASIC keyword used to do this, e.g.:

 5 DIM cine$(3)
 10 X = OPENIN("cinemas")
 20 B = 1
 30 FOR A = 0 TO 20 STEP 10
 40 PTR#X = A
 50 INPUT#X,cine$(B)
 60 B = B + 1
 70 NEXT A

Line 10 of the example opens the file 'cinemas' loads the first
sector into the buffer and sets PTR# to zero and EXT# to the length
of the file.

t l A I R O T C I V t l L A G E R t l N O E D O

| |
PTR# EXT#

Lines 30 to 50 of the example read each cinema name into an element
of the array cine$, advancing the pointer to the start of the next
name after reading each one. Now you can see why we stored each name
in its own '10 byte record', This makes it much easier to write a
program to find the name again.

The important principle about using Random Access Files is that you
must keep track of where each item of information is written. You can
then set PTR# to point to it again when you want to read or change
it. The examples illustrate the basis of a very simple technique.
There are a number of others which you can devise.

Note 1

As shown earlier in the discussion, OPENOUT reserves 64 sectors for a
file. Other files opened may reserve sectors which immediately
follow, e.g.

 X = OPENOUT("cinemas")
 Y = OPENOUT("clubs")

The statements reserve 128 sectors consecutively if the disc was
otherwise empty.

It may be that you require more than 64 sectors for the first file
'cinemas'. If so, you will need to write 'dummy' records to the file
to extend it to the required length before you open the second file.
e.g.:

 10 X = OPENOUT("cinemas")
 20 FOR A = 1 TO 200

-48-

 30 PRINT#X, "DUMMY NAME FIELD"
 40 PRINT#X, "DUMMY ADDRESS LINE ONE"
 50 PRINT#X, "DUMMY ADDRESS LINE TWO"
 60 PRINT#X, "ADDRESS LINE THREE"
 70 PRINT#X, "POST CODE123"
 80 NEXT A

This program creates a file 79 sectors long with the dummy name and
address written every 100 bytes.

By writing beyond the reserved area in this way you can effectively
reserve as many sectors as you like. You can then open other files in
the remaining space on the disc. EXT# will give the position of the
'3' after the last dummy address on the file (20000).

The above method will only work consistently if you start with a
blank, formatted disc. If you want to create a random access file
larger than 64 sectors on a disc with other files already on it,
there is another method.

First save the file with the name you want and with the number of
bytes required. Use the address parameters of the *SAVE command to
ecify the number of bytes, e.g.: sp

*SAVE "DATA" 0000 08000

will create a file of 128 sectors (32k) called DATA. You can then
open the file later in your program. The file will contain
miscellaneous data which you can overwrite with the information you
actually want. This second method causes the filing system to search
the disc for a free space large enough to hold the file. Existing
files will be skipped over if they would otherwise overlap with the
w file. ne

Note 2

Up to five files may be open at any one time. This is because the
space reserved for each file in the computer's memory to hold the
information about extent, pointer, etc. is limited.

-49-

5 USING THE FILING SYSTEM IN ASSEMBLER

Section 43 of the BBC User Guide or section 29 of the Electron User
Guide is essential reading for anyone wanting to write assembler
programs. Most of the necessary information for using the filing
system in assembler is presented there. In this chapter the main
points are summarised and a particular use of OSWORD is described in
detail.

General Principles

There are a number of routines available to handle disc I/O. All the
routines must be called with a JSR and the decimal flag clear. It is
important that you use these routines. They are called in address
range &FF00 to &FFFF. They then call an internal (ROM resident)
routine whose address is stored in RAM between &0200 and &02FF. The
address here will vary according to the filing system in use. For
example, the routine OSFIND to open or close a file is entered at
&FFCE. It is indirected via &021C. &021C and &021D contain the
address of the executable routine in the disc filing system ROM. You
can intercept the call by changing the addresses in these RAM
locations.

Using the available routines you can perform all necessary functions
relating to disc files. The relevant ROM routines together with their
entry points are as follows:

OSFIND &FFCE FINDV &201C Open or close a file
OSARGS &FFDA ARGSV &0214 Load or save data about a file
OSFILE &FFDD FILEV &0212 Load or save a complete file
OSBGET &FFD7 BGETV &0216 Read a single byte to A from the file
OSBPUT &FFD4 BPUTV &0218 Write a single byte to A to the file
OSGBPB &FFD1 GBPBV &021A Load or save a number of bytes
OSWORD &FFF1 WORDV &020C With A=&7F and a parameter block, loads
 or saves a sector

OSFIND

Opens a file for writing or reading and writing. The routine is
entered at &FFCE and indirects via &21C. The value in A determines
the type of operation.

A = 0 causes a file to be closed
A = &40 causes a file to be opened for input (reading)
A = &80 causes a file to be opened for output (writing)
A = &C0 causes a file to be opened for input and output (random
 access)

If A=&40, &80 or &C0 then Y (high byte) and X (low byte) must contain
the address of a location in memory which contains the filename
terminated with Carriage Return (&0D). On exit Y will contain the
channel number allocated to the file for all future operations. If
Y=0 then the operating system was unable to open the file.

If A=0 then a file, or all files, will be closed depending on the
value of Y. Y=0 will close all files, otherwise the file whose
channel number is given in Y will be closed.

-50-

On exit C, N, V and Z are undefined and D=0. The interrupt state is
preserved, however interrupts may be enabled during the operation.

OSARGS

This routine enables a file's attributes to be read from file or
written to file. The routine is entered at &FFDA and indirects via
&214. On entry X must point to your locations in zero page and Y
contains the channel number.

If Y is non-zero then A will determine the function to be carried out
on the file whose channel number is in Y.

A = 0 read sequential pointer (PTR#)
A = 1 write sequential pointer
A = 2 read length (EXT#)
A = &FF 'ensure' that this file is up to date on the media

If Y is zero then the contents of A will determine the function to be
carried out.

A = 0 will return, in A, the type of filing system in use. The value
of A on exit has the following significance:

0 no filing system
1 1200 baud cassette filing system
2 300 baud cassette filing system
3 ROM filing system
4 Disc filing system
5 Econet filing system
6 Teletext/Prestel Telesoftware filing system
7 IEEE filing system
8 Advanced Disc filing system

A = 1 return address of the rest of the command line in the zero
page locations.
A = &FF 'ensure' that all open files are up to date on the media

Ox exit

X and Y are preserved, C, N, V and Z are undefined and D=0. The
interrupt state is preserved but interrupts may be enabled during the
operation.

OSFILE

This routine, by itself, allows a whole file to be loaded or saved.
The routine is entered at &FFDD and indirects via &212.

On entry

A indicates the function to be performed. X and Y point to an 18 byte
control block anywhere in memory. X contains the low byte of the
control block address and Y the high byte. The control block is
structured as follows from the base address given by X and Y.

OSFILE control block

 00 Address of filename, which must be terminated by &0D LSB
 01 MSB

-51-

 02 Load address of file LSB
 03
 04
 05 MSB

 06 Execution address of file LSB
 07
 08
 09 MSB

 0A Start address of data for write operations LSB
 0B or length of the file for read operations
 0C
 0D MSB

 0E End address of data. That is byte after LSB
 0F last byte to be written or file attributes
 10
 11 MSB

The table below indicates the function performed by OSFILE for each
value of A.

A = 0 Save a section of memory as a named file. The files catalogue
 information is also written
A = 1 Write the catalogue information for the named file
A = 2 Write the load address (only) for the named file
A = 3 Write the execution (only) for the named file
A = 4 Write the attributes (only) for the named file
A = 5 Read the named file's catalogue information. Place the file
 type in A
A = 6 Delete the named file
A = &FF Load the named file

When loading a file the byte at XY+6 (the LSB of the execution
address), determines where the file will be loaded in memory. If it
is zero then the file will be loaded to the address given in the
control block. If non-zero then the file will be loaded to the
address stored with the file when it was created.

The file attributes are stored in four bytes. The least significant 8
bits have the following meanings:

Bit Meaning
0 not readable by you
1 not writable by you
2 not executable by you
3 not deleteable by you
4 not readable by others
5 not writable by others
6 not executable by others
7 not deletable by others

File types returned in A are as follows:

0 nothing found
1 file found
2 directory found

-52-

A BRK will occur in the event of an error and this can be trapped if
required. On exit X and Y are preserved, C, N, V and Z are undefined
and D=0. The interrupt state is preserved but interrupts may be
enabled during the operation.

Read/write one byte

OSBGET call address &FFD7 to get a byte
OSBPUT call address &FFD4 to put a byte

Y contains the channel number on which the file was opened using
OSFIND.

X is not used, but preserved.

A contains the byte to be put or receives the byte which is read.

The position in the file where the action of the GET or PUT takes
place is determined by the position of the pointer as set by OSARGS.

On exit

C clear implies a successfully completed transfer.
C set implies end of file reached before completion of transfer.

Read/write a group of bytes

OSGBPB call address &FFD1.
This routine will read or write a byte (or group of bytes) to or from
a specified open file. The option to read or write is determined by
the value of A. The length of the data and its location are specified
in a control block in memory. This method is particularly useful in
the environment of the ECONET filing system where the 'packaging
overhead' for transferring small amounts of data is proportionately
high.

On entry X (lo-byte) and Y (hi-byte) point to the instruction block:

Offset

 00 File handle

 01 Pointer to data in either I/O processor or second LSB
 02 processor
 03
 04 MSB

 05 Number of bytes to transfer LSB
 06
 07
 08 MSB

 09 Sequential pointer value to be used for transfer if LSB
 0A used
 0B
 0C MSB

A determines the type of operation:

-53-

A = 1 Put bytes to media, using the new sequential pointer
A = 2 Put bytes to media, ignoring the new sequential pointer
A = 3 Get bytes from media, using the new sequential pointer
A = 4 Get bytes from media, ignoring the new sequential pointer
A = 5 Get media title, and auto-start option.
 The data returned is:
 Length of the title (1 byte)
 Title in ASCII
 Auto-start option (1 byte)
A = 6 Read the currently selected directory, and device
 The data returned is:
 Length of device identity (1 byte)
 Device identity in ASCII
 Length of directory name (1 byte)
 Directory name in ASCII
 The device identity is the name of the device containing the

directory. On the disc filing system it is the drive number,
but is not applicable on the ECONET filing system, so its
length is zero.

A = 7 Read the currently selected library, and device. The data
format is the same as that used for A=6.

A = 8 Read file names from the current directory. The control block
is modified, so that the file handle byte contains the 'cycle
number', and the sequential pointer is adjusted to ensure that
the next call with A=8 gets the next file name. On entry, the
number of bytes to transfer is interpreted as the number of
file names to transfer; for the first call, the sequential
pointer should be zero.

 The data returned is:
 Length of filename 1
 Filename 1
 Length of filename 2
 Filename 2
 etc.

On exit

C clear implies a successfully completed transfer. N, V and Z are
undefined. Interrupt state is preserved, but may be enabled during
operation.

The requested transfer cannot be completed if the end of the file has
been reached, or there are no more file names to be transferred. In
this case, the C flag is set on exit. If a transfer has not been
completed the number of bytes or names which have not been
transferred are written to the parameter block in the 'number of
bytes to transfer filed', XY+5. The address field is always adjusted
to point to the next byte to be transferred, and the sequential
pointer always points to the next entry in the file to be
transferred.

Filing system control functions

OSFSC has no direct call address. It is indirected through &21E. It
is used for miscellaneous filing system control actions.

A determines the type of operation:

A = 0 A *OPT command has been used, X and Y are the two parameters.

-54-

A = 1 EOF is being checked. On entry X is the file handle of the
file being checked. On exit, X=&FF if an end of file condition
exists, X=0 otherwise.

A = 2 A */ command has been used. The '/' character is not part of
the command name. The filing system should attempt to *RUN the
file whose name follows the '/' character.

A = 3 An unrecognised operating system command has been used, the
current filing system is offered the command last, after all
paged ROMs. The filing system should normally attempt to *RUN
unrecognised commands. On entry X and Y point to the command
name.

A = 4 A *RUN command has been used. Load and execute the file whose
name is pointed to by X and Y.

A = 5 A *CAT command has been used. Produce a catalogue. X and Y
point to the rest of the command line.

A = 6 A new filing system is about to take over, so shut down grace-
fully, close the *SPOOL and *EXEC files, and do anything else
considered necessary.

A = 7 A request has been issued for the range of file handles usable
by the filing system. Return in X the lowest handle issued,
and in Y the highest handle possible.

A = 8 This call is issued by the operating system each time it is
about to process an operating system command. It is used by
the disc system to implement a protection mechanism on
dangerous commands, by insisting that the previous command was
*ENABLE.

On exit

All registers are undefined, where not defined as described above.
Interrupt state is preserved, but may be enabled during operation.

Read/write a sector

OSWORD with A=&7F
Call address at &FFF1.
A=&7F indicates that a general read/write operation is required.

On entry C (lo-byte) and Y (hi-byte) point to the instruction block:

Offset

 00 Drive number

 01 Start address in memory of source or destination LSB
 02 address of the data
 03
 04 MSB

 05 Number of parameters

 06 Command

 07 Parameters
 08 :
 09 :

Example:

-55-

Number of parameters = 3

Command = &53 to read or &4B to write

Parameter 1 = Track number
Parameter 2 = Sector number
Parameter 3 = &21 (specifies sector length of 256 bytes and 1 to be
 acted upon)

On exit

0 in the last parameter + 1 indicates a successful transfer. A
failure is indicated by a disc error number.

-56-

6 CHANGING FILING SYSTEM

Your computer can have several filing systems available other than
the disc filing system. The following commands are all used to exit
from the current filing system into the one named.

*TAPE3 300 baud cassette
*TAPE12 1200 baud cassette
*TAPE 1200 baud cassette
*NET Econet filing system
*TELESOFT The prestel and teletext filing system
*ROM The cartridge ROM filing system
*DISC Disc filing system
*DISK Alternative spelling for above
*IEEE IEEE filing system
*ADFS Advanced disc filing system

-57-

7 ERROR MESSAGES

&CC Bad filename
This message appears if you enter a filename which is invalid, such
as; longer than seven characters, etc.

&D6 File not found
The Disc filing system could not find the named file in the specified
drive/directories.

&C3 File locked
Access to the named file is locked. This error message is displayed
when any attempt is made to overwrite or write to a locked file.

&C8 Disc changed
This error occurs if the computer detects that a disc has been
changed while files on it are still open.

&CD Bad drive
This error means that the :(drive) part of the file specification was
incorrect, e.g. ':' colon missing or drive number out of range 0 to
3.

&FE Bad command
This means that * was omitted or that the command name was not
recognised as a Disc filing system command or utility.

&CE Bad directory
Means that the specified directory is not allowed. e.g. More than one
character.

&CF Bad attribute
This error occurs if you use anything other than the letter 'L' with
the *ACCESS command.

&CB Bad option
There are currently two 'option' commands *OPT1 and *OPT4. The error
occurs if you type anything else beside 1 and 4 after *OPT.

&C6 Disc full
This indicates that there is not enough space on the disc to open
(OPENOUT#) or save a file of the specified size.

&BE Catalogue full
The catalogue has enough space for 31 files. This error is produced
if you attempt to enter more than 31.

&C4 File exists
This occurs if you try to rename a file with an existing filename.

&C9 Disc read only
This error occurs if you attempt to write to a disc which has the
write-protection notch covered.

&C1 File read only
This error occurs if you try to write to a file opened for reading
only, using OSFIND with A=&40.

-58-

&C7 Disc error NN at DD TT SS
If this error message occurs it means that the computer cannot read
the disc. It implies that the disc is damaged, fault, unformatted or
of the wrong type, like a 40 track disc in an 80 track drive. NN is
the error number, DD the drive number, TT the track number and SS the
sector number.

&C0 Too many open files
This error occurs on attempting to open a sixth random access file.
Five is the maximum allowed at once.

&CF Can't extend
An attempt is made to extend a random access file when there is
insufficient space immediately after it to do so.

&C2 File open
This error occurs if you attempt to open a file which is already
open. An intervening CLOSE is required between two OPENs referring to
the same file. This error is also produced if you try to delete an
open file with the command *DELETE, *SAVE, *BUILD etc.

-59-

8 TECHNICAL INFORMATION

18 bit addressing

The 1770 disc filing system uses 18 bit addressing giving a range
from &00000 to &3FFFF. This means that the two bytes and two bits are
required to store a complete address, like this:

&3FFFF is 11 1111 1111 1111 1111 in binary

 High Middle Low
 bits (16-17) bits (8-15) bits (0-7)

Each full address therefore consists of high, middle and low order
bits. This is important to note because the bits of the address are
not always stored consecutively in the catalogue. This is clearly
shown by the way that the disc catalogue is loaded into memory.

Another important factor concerns the use of a second processor. If
the top two bits of an address are set, e.g.: &3----, the address is
assumed to refer to the I/O processor.

Disc catalogue

Sectors 00 and 01 on the disc are reserved for the catalogue. The
format of the catalogue is as follows:

Sector 00

 00 01 02 03 04 05 06 07

 00 First 8 bytes of 12 byte disc title
 08 First filename (7 bytes) Directory (1 byte)
 10 Second filename (7 bytes) Directory (1 byte)
 18 Third filename (7 bytes) Directory (1 byte)
 :
 F8 31st filename (7 bytes) Directory (1 byte)

Sector 01

 00 01 02 03 04 05 06 07

 00 4 bytes of title C N X Y
 08 Lm Ll Em El Bm Bl hh A
 10 Second file's addresses
 18 Third file's addresses
 :
 F8 31st file's addresses

where,

C = The disc cycle number.

-60-

N = The number of catalogue entries multiplied by 8.

X (bits 4,5) = !BOOT start-up option
 (bits 0,1) = Disc size in sectors (2 high order bits)
Y = Disc size in sectors (8 low order bits)

Lm = Load address, (bits 8-15)
Ll = Load address, (bits 0-7)
Em = Execution address, (bits 8-15)
El = Execution address, (bits 0-7)
Bm = Length in bytes, (bits 8-15)
Bl = Length in bytes, (bits 0-7)
hh (bits 0,1) = file's start sector (bits 8-9)
hh (bits 2,3) = file's load address (bits 16-17)
hh (bits 4,5) = file's length in bytes (bits 16-17)
hh (bits 6,7) = file's execution address (bits 16-17)
A = file's start sector (bits 0-7)

Note that the first 8 bytes in sectors 00 and 01 contain
miscellaneous information about the disc. Each subsequent block of 8
bytes contain information about the files, repeated for up to 31
files. The complete information about file 3 would be found in the
fourth block of 8 bytes on sector 00 followed by the fourth block of
8 bytes on sector 01.

File system initialise and !BOOT

On pressing BREAK the MOS (Machine Operating System) seeks and
initialises a filing system. It starts with the service ROM in the
highest priority ROM socket, number 15. The first one will be
initialised if just BREAK was pressed. If another key is held down
while you press BREAK, the first file system which recognises the key
will be initialised. If none recognises the key, the CFS (Cassette
Filing System) is initialised.

DFS recognises the letter 'D', ADFS recognises the letters 'A' and
'F'. To select DFS as the filing system press D BREAK, or A BREAK to
select ADFS.

-61-

9 FILING SYSTEM COMMAND SUMMARY

Command Purpose

*ACCESS - Locks or unlocks a file.
*BACKUP - Copies all information from one disc to another.
*BUILD - Causes all subsequent keyboard entries to be stored

in a named file.
*CAT - Display a disc catalogue.
*CLOSE - Closes all sequential access files that are open.
*COMPACT - Collects all files on a disc together into one

contiguous sequence leaving a single block of free
space.

*COPY - Copies all specified files for one disc to another.
*DELETE - Removes a single named file from the disc.
*DESTROY - Removes specified files from a disc in a single

action.
*DIR - Changes the current set directory.
*DRIVE - Changes the current set drive.
*DUMP - Produces a hexadecimal listing of a file.
*EX - Display the files in a specified directory.
*EXEC - Reads a disc file byte by byte as if the byte were

being typed on the keyboard.
*FORM - Initialises a new disc for reading and writing.
*FREE - Displays the amount of free space on a disc.
*HELP - Displays the file system commands with syntax

guidelines.
*INFO - Displays information about specified files.
*LIB - Selects the drive/directory for the library.
*LIST - Displays a text file on the screen with line numbers.
*LOAD - Reads a file from disc to memory.
*MAP - Displays a map of the free space on a disc.
*OPT 1 - Switches screen messages which accompany disc

accesses on or off.
*OPT 4 - Specifies the auto-start option of a disc, relating

to a named file :0.&.!BOOT.
*RENAME - Changes a filename.
*ROMS - Produces a catalogue of the sideways ROMS.
*RUN - Runs a machine code program.
*SAVE - Saves a specified part of memory to the disc.
*SPOOL - Transfers all text subsequently displayed on the

screen into a specified file.
*TITLE - Changes the title of a disc.
*TYPE - Displays a text file on screen without line numbers.
*VERIFY - Checks legibility of every sector on a disc.
*WIPE - Removes specified files from the disc after

confirmation for each file meeting the given
specification/

-62-

INDEX

*ACCESS 10 *INFO 29
Addressing 60 INPUT# 46
afsp 6 Integer type 47
Assembler 50
Auto-start 7 Library 8
 *LIB 30
*BACKUP 11 *LIST 32
BGET# 46 *LOAD 33
BPUT# 46
*BUILD 12 *MAP 34
 Multi-file operations 6
*CAT 13
Catalogue format 60 OPENIN 46
Changing filing system 57 OPENOUT 46
Commands 9 *OPT 1 35
Command summary 62 *OPT 4 36
*COMPACT 16
*COPY 17 PRINT# 46
 PTR# 46
*DELETE 18
*DESTROY 19 Random access 46
*DIR 20 Real type 47
Directories 6 *RENAME 37
Disc files 4 *ROMS 38
*DRIVE 21 *RUN 39
Drive numbers 5
*DUMP 22 *SAVE 40
 *SPOOL 41
*ENABLE 23 String type 47
EOF# 46
Error messages 58 *TITLE 42
*EX 24 *TYPE 43
*EXEC 25
EXT# 46 *VERIFY 44

Filename 5 'Wildcard' 6
Files 5
File specification 5 *WIPE 45
File system initialising 61
File types 47
Formatting 26
*FORM40 26
*FORM80 26
*FREE 27

Getting going 4

*HELP 28

ACP, 6 Ava House, Chobham, SURREY. Tel: 0276 76545
Another Acorn Electron hardware manual brought to you by (the) Dave

-63-

