

IS

Advanced Disc Filing System
User
Guide

Original Copyright pocorn Computers Limited 1984
PYrig

PRES wversions

P,R.E.G.

Limited L9E87

(produced under license from Acorn Computers Limited)

Meither the

whole

or pa

rt of the informatlon in, or the product

described in, this mapual may be adapted or reproduced in any material

form except with the prior written approval of P.R.E.S.

The

subject Lo

el

Ltd.

product described in this manwal and preducts for use with it are

techn
tincluding the
by P.R.E<S.

ical nature

in good

Faith

be crrors of omissions in
of any amendments ot
P.R.E.5.

Ltd.

revls

continuous development and lmprevement. ALl information of
and particulars of the
infarmation

product and 1ts use
and particulars in this manual} are given
. Howewver, it is acknowledged that there may
this manual. In this event a list of detalils
ions to thiz manual c<an be obtained from

PRES welcome comments and suggestions relating bo this

product and this manual.

hll correspondence should be addressed toz

PRES

6 Ava House

iligh Street

Chobhan

Surrey GUZ4 BLE [(Tel. 0276 T2046)

A1l maintenance and service on this product must be carried out by
PiES of its specified agent. PRES can accept no liability whatsoever
for any loss or damage caused by service or maintenance Dy
unauthorised personnel. This manuwal is intended eonly te assist the
reader in the use of this product, and therefore P.H.E.S. Ltd, shall

r

ok

be llable for any loss or damage whatsocewver
¥ 3

any

information

(=3

arlsing from the use
particulars in, or any error or cmission in,

this manwal, or any incorrect use of the product.

F
f

t published by Acorn Computers Litd.
revised edition first publlished by P.R.E.S.

1984

Ltd, 1987

CONTENTS
1l Introduction 1
2 The ADFE commands 5y 2
Belecting flling systems 3
Files and directories 4
File hierarchies and pathnames 6
Wildecard characters in filenames 7
Commands dealing with directories 8
MNon-directory commands 17
Commands affecting the whole disc 26
3 The ADFS utility programs 3l
Running vtilities individually i1
The utilities menu 3l
Obtaining documentation eon utilities 3z
Adding your own utilities 3z
4 Using the ADFS from BASIC s 34
Fage under the ADFS 34
Metheds of accessing the ADFS 34
Whele-file operations 34
Seguential files 9
5 Summary of ADFS commands i 47
G The Filing =system entry points 52
OSFIND 53
OSGRPB 55
GSBPUT 58
OSBGEET 58
OSARGS 59
OSFILE 61
OSWORD 64
OSBYTE 67
OS5CLI T8
7 Error messages 72
Errors in alphabetical order T2
Errors in numerical order 7
Technical infermation e 78
Version numbers Bd
Appendix A Bl
Appendix B B3
Appendix C Js: 4 A4
Index B6

1. INTRODUCTION

This User Guide describes in detail the use of the Advanced Disc
Filing System — ADFS for shert. The Guide is breadly in two sections,
firstly the facililties ADFS provides and secondly more detailed
reference information for the more advanced user,

Chapter 2 describes the ADFS commands in detail, You are advised to
read the first four sections to understand the basic concepts of the
Liling system. The rest of the chaprer may then be read in the order
in which it 1= presented, or may be consulted from time te time, when
a detailed description of a particular command is required.

Chapter 3 describes how the uwtility programs of the Welcome dlsc are
used, and how to obtain information on the wtilieies. All af the
utilities are documented on disc and this information may be printed
out using the "UTILE program described in chapter 4.

Chapter 4 gives information about using the ADFS facilities from
BEASIC. The statements used are the same as those available when using
tape; however the ADFS provides more versatility in the way in which
they can be used, The section on seguential files only need be read i€
You are geing to use BASIC data files (as opposed to program files),

Chapter 5 is the first chapter in the reference section. All chapters
in this part of the pook are designed to Dbe copsulted only when a
particular item, eg the syntax of a * command, has to be looked up.
Chapter 5 gives a list of the ADFS * commands in alphabetical order,

Chapter 6 describes the ADFS machine code entry points and will be of
interest only to programmers using assembly language, or very advanced
BASIC programmers. In addition to the six filing system calls, details
are given on QSCLI, ODSBYTE and OSWORDR in connection with filing
systems.

Chapter 7 lists the ADFS error messages in alphabetical and numerical
order. An explanation of possible causes of each error is given.

Chapter 8 gives technical information about the way in which data is
stored on the disc. It is provided mainly feor interest's sake, hut

will alsoc be of use to people trying to fix discs that have become
corrupted in some way.

Appendix A centains trouble-shooting information: what to do when
elther the hardware or software of the Plus 3 does not appear bto work.

Appendix B descrives the various ways in which the ADFS may be called
up.

Appendix C is general information on the Welcome dlse utilities, using
ADFS in modes @-3, how to disable ADFE and the wvarious methods of
instalation

Page 1

2. THE ADFS COMMANDS

commands 1s *CAT, which may be abbreviated

the many commands that are provided to help
you manage your files on dises, Some of the commands will be familiar
to most users as they are also avallable when using the cassette
filing system (CFS). These are: *CAT (*.), *EXEC, *HELP, *LOAD, *SAVE,
QUN (/) and *SPOOL, and are all discussed with respect to the ADFS
in this chapter.

One of the most used ADFS
to *, This is just one of

parts, The first four sections glve
to understand what the
everyone using the ADFS

This chapter is organised in two
general information which is reguired in order
commands do. These sections should be read by
for the first time.

The last three sections of the chapter describe the commands
themselves, The three sections cover directery oriented commands,
normal file commands and commands affecting the wheole disc

respectively. Between them, the sections cover all of the * commands
which the ADFS responds te {and even some non—-ADFS commands).

The Index at the back of this User Guide is arranged so that all of
the command names (those prefixed with an '*'] appear indented. Also
the main page reference containing the more detailed description of
the command appears Eirst

The sections on the * commands are rather 'dense’ in their information
content., In order to provide a gentler first introduction to the ADFS
command, brief descriptions of each command are given below:

To call the ADFS up from another filing system, say tape, either *ADES
or *FADFS may be used, The latter has the same effect as pressing
¢BREAK> when the ADFS is the highest-prierity filing system, and the
former is similar to *FADFS followed by a *MOUNT command.

Before a disc may be used with the ADFS, it must De mounted. This is
done automatically when the filing system is entered by <CTRL> A
<BREAK> or <SHIFT> <BREAK>, but not by *FADFS or F <BREAK>. Mounting a
disc simply means reading some important information from it, so the
ADFS knows where te put E£iles etc. The command *MOUNT is used to
perform the operatlon, Similarly, before a disc is removed, it should
be dismounted (using *DISMOUNT) so that the ADFS can perform varlous
"house-keeping' operations on the disc.

Areas of memory may be saved using *S5AVE. This is useful for storing
machine ceode programs or screen images on the disc. If a second
processor is fitted, memory from this eor the I0 processor may be savaed
by specifying the ‘'high-order' address. Programs and data may be
loaded into memory (at a given location, if reguired) using *LOAD. A
machine code program may be executed using *RUNM.

Files may be deleted using *DELETE or *REMOVE to delete a single fila,
or *DESTROY to delete several files in one go. Directories may also be
deleted, but only if they are empty (contain no references to other
Eiles).

Page 2

EEEEEEEEEEEERER

Chapter 2

To copy a file on te another park of the dise (or on to a different
dise), the *COPY command may be used. This may alsa copy several [iles
at once, A file's name may be changed using the *RENAME command. This
may also be used to move the file inteo a different directory.

The commands *SPOOL and *EXEC are actually Operating System commands
and are described in the Acorn Electron User Guide. The *CLOSE command

EIO?SB all open files, and has exactly the same effect on CLOSE#8 in
ASIC,

Directories play an important role when wusing the ADFS, so there are
several commands to suppart them. A new directory may be created using
*CDIR, and the current directory may be selected using *DIR. *BACK
reverts pack to the directory before the current one, The library
directory {where the ADFS locks for commands) may be set using *LIB.

The contents of a directory may be printed in summary using *CAT, and
greater information is given by *INFO and *EX . The commands *LCAT and
*LEX provide a shorthand way of obtaining information about the
library directory. A directory may be given a long, meaningful name by
using the *TITLE command,

File aeccess permissiens are controlled by the
Permissions are 'R' for read, 'W' for
for execute-only.

*RCCESS command.
write, '"L' for locked and ‘E'

Various commands deal with the disc as a whole. *FREE and *MAP print
information about the amount of disc space that has been used and how
many areas of Eree space there are, and *COMPACT is used to reclaim

areas of free space (which were occupied by deleted files, for
example).

The *OPT command is used to contrel two aspects of the ADFS: what
happens when <SHIFT> <BREAK> is pressed when selecting the ADFS (the

so—~called auto-boot option controlled by *0PT4), and whether messages
are printed every time a file is accessed (*QPT1).

Finally *"HELP ADFS (actually a MOS

command)
summary of the ADFS commands' syntax,

may be used to print a

Selecting filing systems

One of the most important facilities that the * commands provide is
the apility to switch between filing systems. The ADFS will normally
be selected automatically when the machine is switched on, or when
SBREAK> is pressed, However, it is sometimes desirable to be able to
select a filing system without having to reset the whole machine. To

this end, several commands are provided to call filing sSystems:
*ADFS Start up the ADFS and reset it to previous state

*FADFS Start up the ADFS 'guietly', without accesasing the drive
*TAPE Start up the cassette filing system at 1200 baud

*ROM Start up the ROM filing system

Fage 3

Chapter 2

All of these commands may be used on an Electron running ADFS

The action of *ADFS is to select the ADFS and restore the C5D and C5L
to the same as the last time ADFS was selected. If the ADFS has not

been selected since the last <CTRL* <BREAK> or power on, both
directories will be 'Unset' and the drive will not be accessed.
Otherwise, the drive will be accessed in order to leoad the previous

directory.

The action of the *FADFS is to select the ADFS without accessing the
drive, As a consequence (SD and CSL will be 'Unset'.

There are many ways in which the ADFS may bpe selected. The exact
action taken depends on which of <SHIFT>, <CTRL>, A and F are pres=zed
in combination with <BREAK>, and whether the ADFS has been used since
the last hard reset. Appendix B describes the effect of all possible
combinations. The most useful ways of starting the ADFS are:

- Power on or <CTHL> <BREAK> to ensure that the ADFS is in its initlal
State,

~ ¢CTRL> A <BREAK® to reset the ADFS completely and set the CSD and
library directories correctly. If there is a file on the disc with
pathname S.LIB* this will be used as the library, otherwise '5' will
be selected.

~ ¢SHIFT>» <BREAK> to execute the disc's auto-beoot file.

~ Just <BREAK> to escape from a crashed program and restere the ADFS
to Its previous state If pessible.

When you first start using. your Plus 3 you will probably want to
transfer some programs from tape on to disc. To do this you will have
to switch between £iling systems. For example, to copy the BASIC
program ' MyProg ' to disc, this seguence of commands will be
required:

*»*TAPE <RETURN>
*LOAD "MyFrog® <RETURNZ
»*ADFS <RETURMZ
>SAVE "MyProg" <HETURN>

0Of course, you could save the pregram using a different name from that
used when it was loaded,

Files and directories

Before we get into the detailed descriptions of ADFS * commands, it im
necessary to describe some of the [Important concepts. This sectlon
describes general files and directeries.

A file is just a seguence of bytes ({characters) that happens to be

stored on a file medium (in the present case, a disc) instead of in
the ceomputer's memory. The advantages of using an external medium to

Page 4

Chapter 2

store information are clear even from using cassettes: the data isn't
lost when the computer is switched off, and you cCan store more
information in the file than the computer's memory can hold at once.

The length of a file may be from =zero bytes, an ‘empty"' file, to a
limit set by the £iling system in use, For the ADFS this is about
328,886 f{or 656,008 for double-sided discs) bytes, which should be
long enough for most purposes. In order to distinguish between files
you must name them, We have already seen an example of this, saving a
BRSIC program with a command such as:

SAVE "MyProg"

A filename may contain between one and ten characters. Characters that
may be used include all of the upper and lower case letters and the
digits (theugh the ADFS treats 'a' and 'A' as the same letter when
searching feor files). Certain punctuation symbols may alsoc be used in
Filenames, but because many of these have a special meaning te the
ADFS5 it is best to avoid them Eor now.

What the file contains, ie the meaning of the bytes that comprise it,
is of no interest to the ADFS5, When you get a catalogue of a disc
using *CAT, vou can't tell if a file contains machipe code, a BASIC
program, pure text, or some other type of data. The ADFS will let you
load a text file as BASIC if you want to, but BASIC will object and
give a 'Bad program' error. One use of directories iz to avoid this
sort of confusion by grouping f£iles of similar types together.

¥You may be familiar with the ability te use a null filename when
loading a file under the cassette filing system. For example

CHAIN =¥

will load and run the next program on the tape. Under the ADFS you are
not allowed to use null Filenames like this, but in seme circumstances
you can use a * instead:

CHAIN "%7

will load and run the first file in the current directory. The current
directory is listed using the *CAT command, and as the entries are
held in alphabetical order it is fairly easy toe work out which file
will be accessed, This 1is a use of the ADF5's 'wildcard' facility
which is described belaow.

The term 'directory' has been used a couple of times now. A directory
is simply a file which contains information about other Eiles.
Usually, the files in a given directory are related in some way, eg
all the files might pe utility-programs, or VIEW word processor files.
When a disc is fermatted (which needn't concern us here as the Welcoma
disc comes ready formatted), a single directory is created. Thia is
called the root directory. Since directories are simply files, they
are glven names. The root directory is called '§'.

Directories are useful in several

ways. Creating a new directory
effectively gives wyou a

'dizc within a disc'. For example, say [ive

Page 5

Chapter 2

members in a group (perhaps in a class at scheol) were sharing a disc.
Directories could be c¢reated on the disc for each of the five members
of the group (using commands such as *CDIR Jim, *CDIR Jane) and then
each person could save his or her programs in the appropriate
directory. This would prevent Jim accidentally deleting one of Jane's
files, because files in different directories are totally separate,
eyven if they have the same name.

Another use for directories, as mentioned
files together. A disc might contain a directory £or holding BASIC
programs, another for machine code source programs, and yvet another
for machine code object programs, or utilities. In fact the Welcome
disc does just that: all of the BASIC welcome programs are 1in &
directory called ‘'WELCOME' and the utility programs are all grouped
together in 'LIBRARY'. Using directories in this way makes it much
easier to keep track of what programs are on the disc.

above, is grouping related

You can distinguish directeries in catalogue listings
'D' after the directory's name, This is the only
distinguishes a directory from normal files from the
view. However, certain commands which may be applied te normal files,
such as *RUN, may not be used on directories, and the ADFE will
produce an error message.

by the letter
thing that
user's point of

Directory files are always the same length (1280 bytes) and contain
information about other files (sometimes known as the directory's
'children'). The information stored in each file includes its name
({one to ten characters); its 'access' permissions, eg can the file be
deleted? is it a directory?; its length; its disc "address' (3o that
the ADFS can locate it easily when trying to LOAD it, for exampla),
and the lead and execution addresses. The last two items are used by
certain ADFS commands such as *LOAD and *RUN,

File hierarchies and pathnames

We have seen that a directory
contains information about

iz in many respects a normal file that
other £iles (up te 47 of them). This
implies that directeries may ‘'contain' other directeries, and 8o
hierarchy or tree-structure of (files may be built-up. To illustrate
this, we will loock at the structure of the Welcome disc.

The contents of the '"WELCOME' disc are shown diagrammatically below:
5

| [[[
1BOOT HELF LIBRARY WELCOME
!

I I | | 1 [| | | I
BACKUF DIRCOPY etc BACKUP BASIC EFORM etc INTRO KEYBROARD ate

I I I |
DIRCOPY SETPARAMS UTILS et

FPage 6

———

Chapter 2

At the top of the ‘'tree' is the root directery '5'. This Is the
directory that s always selected when a *MOUNT command is executed,
The four files in *'5' are the ones listed when *CAT is performed an
the Welcome disc. The normal £ile '"IBOOT' has no children.

The three directoies "HELP", 'LIBRARY' and "WELCOME' have other files
peneath them. The contents of these directories may also be listed
using *CAT, but an extended form must be used whereby the name of the
directory to be catalogued is given after the command, The directory
'LIBRARY"' has another directory within it called "BASIC', Examples of
*CAT commands which may be used on these directories are:

*CAT LIBRARY

*CAT HELF

*CAT WELCOME

*CAT LIBRARY.BASIC

S50 far, files have been referenced by thelr simple names, eg "MyProg'.
When such a filepame is given in a command the ADFS assumes you mean
the file of that name which 1is located in the currently selected
directory (CSD). Since the C8D is '$' by default, the ADFS takes
'myprog' to mean the file called 'mypreog' in the directeory '5'. This
is written 5.myprog. A filename of this Kind is called a pathname as
it tells the ADFS the path is should take through the tree structure
to access the desired file,

Pathnames may be extended to take in as many directories as necessary.

Here are some examples of pathnames for Eiles shown in the diagram
above:

g '$', the root directory

. 1BOOT The file '!BOOT' in directory '5'

5. WELCOME The directory £ile "WELCOME' in directory '3°

$.LIBRARY,.EFORM The file 'EFORM' in directory 'LIBRARY' in directory
I$'f

Since the C5D's name is assumed to prefix all filenames that do not
start with a '$', the last three examples could be given as "I1BOOT',
'"WELCOME' and 'LIERARY.EFORM' respectively {(assuming the C5D is "5').
The first example would in theery be "' but since it is hard to detectkt

zero characters in commands the CS5D is written '"@" instead when 1ts
name s reguired explicitly.

Wiildeard characters in filenames

There is a facility in the ADFS for using 'wildcards' in filenames.
These are special characters that stand feor a single arbitrary
character or a sequence of up te ten arbitrary characters. The slngle
wildcard is # and the multiple match character is '*'. Examples of
filenamas incorporating wildeards are:

chl# (eg "ehla', 'chlb' etc)

datat$ (eg 'dataBl', ‘'dataAB' ete)

Fage 7

Chapter 2

J.gamas, * fany file in "$.games")

lat {any filename with 'let' in it}

How filenames incerporating wildcards are interpreted depends on the
command. Meost commands will act on the first file that matches the
wildcard pattern. The search is done in alphabetical order. The *LOAD
command works like this, so:z

LOAD b

will load the first file in the current directory that begins with '’
(or "B'" as upper and lower case are not distinguished when searching
for files}.

Other commands act on all files which match the f£ilename. Such a
command is *INFO, which gives information about files. The command:

INFO book.ch

will print information about all the files in directory ‘'book'
peginning with "ch'.
The third set of commands doesn't allow wildcards at all. The

commands are vsually ‘dangerous' ones where use of a filename with

wildcards might result in disaster, for example:
*DELETE *
if allowed, would delete all the filenames in the current directory.

Commands dealing with directories
We have now seen what is meant by the terms
'hierarchy'. Because directories are so important,

'directory' and
there 1is a whole

group of commands that affects them. The commands perform Ssuch
coperations as obtaining information about the files in a directory
(*CAT and *INFO), changing the C5D, creating new directories, and

dealing with the library directery.

Changing directories

There are three commands which are used to change between the various
directories which the ADFS keeps track of.

*DIR

The *DIR command is used to change the C5D. Suppose you are using the
Welcome dise, and want to access the files in the directeory called
'"WELCOME'. Instead of having to type long filenames such as:

LOAD "WELCOME.INTROD"®

*CAT WELCOME

SAVE "WELCOME,TEMP"

vou can select "WELCOME' as the C5D so that the ADFS takes all files
to be in that directory unless you tell it otherwise., The *DIR command

Page B

B R R R REEREREEERE

Chapter 2

is used te change directory, and it is followed by the pathname of the
new directory, eg:

*DIR WELCOME
The coemmand *DIR without a pathname will set the C5D to '$°'.

If you have the Welcome disc in the drive, you can try some *DIRs for
yourselt, There are three directories on the dise, '§", 'LIBRARY' and

'"WELCOME' and any of these may be selected using *DIR. To get to the
root directory, any of these may be used:

*DIR
*DIR 5
*DIR &

The name '&' is simply an alternative to '5'. Onece you are in '3,
either of the other directories may be selected thus:

DIR W
or

DIR L

Note the use of the multiple wildeard to find the First directory
beginning with 'W' and 'L' respectively. If you are in '$.LIBHARY' (ie
you lssued the second command above), then to set "S.WELCOME' as the
€50, its full pathname must be specified, ie you must type

*DIH S.wW»
rather than

DIR W

T@is is because the second form of the command will 1look for a
directory beginning with '"W' imn the €50 ('LIBRARY'). Since there is no
such directory, a '"Not found' error will be giwven.

It is guite important when using the ADFS to keep track of the current
'context', that is what the current directory and drive are, and what
the library directory is (we come to libraries and drive numbers a
little later). Many unexpected errors ovccur because the user is in a
different directory from that which he thought. The gquickest way to
find a summary of the current context is to perform a *CAT (or *.)
command., The first three lines printed give the important infermation.

Sometimes you might want te move to the directory which is the parent
of the current one, without giving its complete pathname, However, the
tree structure on the dise can be nested as deep as you like, with
directories containing directories containing directories and so on.

Suppose the C5D has the pathname 5.book.chapterl,sectiond.dlagrams. If
you wanted to move up a level, the command:

*DIR §.book.chapterl.section3

Page 9

Chapter 2

would have to be given. Luckily there is a convenient shorthand way of
expressing this:

*DIR ©

Whenever circuomflex '"' appears in & pathname it is taken to mean *the
parent of the directory seo £far', The directory so far at the start of
a pathname is the €50, so Jjust '"' means the parent of the C5D.
Multiple ""'s can be used to move up more than one level, and '~' may
be ftollowed by the rest of the pathname to go back down the tree, For
example, to set the CS5D to S.book.chapter2.sectionl (assuming the CSD
is guw S.hook.chapterl.section3) either of these commands could be
used:

*DIR ". .chapter?.sectionl
*DIR 5.book.chapter2.sectionl

The Eirst example moves up to '$.book' using two consecutive ""'s and
the second example selects 'S.book' explicitly., Both wversions move
down to "sectionl' in the normal manner.

Using *DIR to select the drive

When a second drive is installed, we need some way of differentiating
between files on the first drive and on the second one. This iz done

by starting pathnames with :<drv> where <drv> is the drive identifier.
The first drive is usually referred to as @ and the second drive as 1.

However, various synonyms may be uwsed: the first drive is B, 4, A or E
and the second drive is 1, 5, B or F.

Examples of pathnames with drive specifications are:

*CAT :0.%.LIB
LOAD ":1.5.MYPROG"

Alternatively, a given drive may be selected permanently by specifying
its number in the *DIR command:

*DIR :@
*DIR :1.%.GAMES

In fact, ":<drv>.' really means ':<drv*>.,%.', so the first example
would select the CSD as '$' on drive 8 and second example could hawve
been written:

*DIR :1.GAMES
*BACK

In addition to remembering the CSD, the ADFS also Keeps track of the
previously selected directory (PS5D), that is the directery that was
the CED when the last *DIR command was issuwed. To access the PSD, the
*BACK command is used. This is the same as typing *DIR <F5D> where
<P5D> is the pathname of the previous directery. 1In addition, “BACK
sets the PSD to the C5D, so typing it again will get you back toe the
directory before the first *BACK. An example will make it clearer.
Suppose you wanted te do a lot of loading and saving of programs in

Page 1P

AR EEREEEEERERER

Chapter 2

both "S.WELCOME' and "$.LIBRARY', swapping between the two directories
from time to time. The seguence of commands to do this might be:

*DIR $.WELCOME
Commands using WELCOME
*DIR ".LIBRARY
Commands using LIBRARY
*EACHK

Commands using WELCOME
*BACK

Commands wsing LIBRARY
and S0 ON. ..

*LIB

The third directory that the ADFS keeps track of is the library
directory (CS5L)., This is only used by certain specialised commands
connected with running machine code programs,

There are three ways of executing a machine code program on the dise:

YRUN <file>
* <Eile>
*{filed

Examples are *RUN roms, */dump and *print. Wote that the third form
may only be used 1f the command's name is not the same as one of the
built=in * commands, which are listed in chapter 5. All three
variations will lead the £ile specified and execute it. First, the
ADFS prefixes the pathname given In the command with the C3D's path
and searches for a file with that composite pathname, If it can't find
one, it wuses the C5L pathname and tries again. If the file still can't
e found, an error {'Bad command') is given. To speclfy the
directory to be searched after the CS5D, the *LIB command is used:

*LIB %.assem.utils

will set the CS5L to %.assem,utils, A guick way of setting the library
directory to be the same as the 5D is:

*LIB @

which uses the special-character form of CSD.

When the ADF5S is entered wusing *FADFS or an equivalent, C8D and CS5L
are both 'unset'. Typing *MOUNT sets the CSD to '§', but CSL remalns
'unset' and must be set by *LIE. When the ADFS is entered using <CTRL>

A <BREAK> (see the table in appendix B), CSD is set to '§' and CSL in
either set to '$' or the first directory In '§' whose name baglns with

Page 11

Chapter 2

the characters 'LIB', if one exists.
The *LIB command is described in detail under *RUM.

Obtaining file information

There are several useful commands for obtaining information from the
current directery, the library, or an arbitrary named directory.

*CAT

We have already used the *CAT command to list the contents of the C5D,
which has been '$' so far. If you follow the command with the pathname
of a directory, that directeory's contents will be listed, Examples

are:
®CAT 5 List the root directory
*CAT & '&" iz a psevdonym for '§°

*CAT 5.LIBRARY List the directory '5.LIBRARY'

*CAT & An alternative to *CAT
*CAT WELCOME List WELCOME, assuming C5D is '3

We will now look in detail at the information printed by *CAT, Suppose
the following was obtalned:

Mise dise {13)

Drive:@ Option @8 (Off)
Dir, & Lib. %

GAMES DLR{18) oP WR (13)
TEMP WE {11) uUTILS DLR (@#9)
VIEW DLR{BE)

The first three lines give general information about the directory and
ADF5, and subseguent lines give information about the individual files
within the directory that was catalogued.

The first line gives the title and 'master segquence number' (MSM) of
the directory. The directory title is a string of up te 19 characters
that gives an indication of what the directery contains. You can set
the title of the current directory using *TITLE, though by default it
iz set to the filename of the directory. In this example, the title is
"Misc disc'.

The master sequence number starts at zero when the direckory s
created, Whenever a file 1s saved into the directory, the MSH is
increased by one. This number is stored in the file's own sSegquence
number entry, enabling the age of a file to be guessed by comparing
its sequence number to the

M5N,. Segquence numbers go back ko 08 after reaching 99,

Line two of the listing gives information about the current drive., The
drive number is usually B or 1 as described above. The 'Option' tells

Page 12

Chapter 2

the ADFS what to do with a file called '35, IBOOT' if <SHIFT» is pressed
at the same time as <BREAK>, Doing this causes the ADFS to
'auto-boot', so that the f£ile "!BOOT' may be loaded, executed or
treated as keyboard input. See *OFT4 for more details on auto-booting.
By default, no attempt is made to use "!BOOT' when <SHIFT» <BREAK» is
pressed, hence the term "0ff' in line two.

Line three of a directory 1listing gives the
selected directory and library directory.

names of the currently

The remainder of the directory listing gives the names of the files in
the directory, their access permissions and their seguence numbers.
Access permissions are described under the *ACCESS command at the end

of this section and seguence numbers were described abowve.
*LCAT

A separate command is provided to
currently the library. Typing

doe a *CAT on whatever directory is

*LCAT

will give the same effect as

*CAT 5.LIBRARY

assuming that 'S$.LIBRARY' is the CSL directory.

*THNFO

The ADFS holds more informaticen about each ftile than just its name,
seguence number and access permissions. The *INFO command prints this
extra informatien. The command is fellowed by a pathname which may

contain wildcards. If it does, information for all of the files
matching the pathname is printed, Type:

INFD 5.

ITE the Welcome disc is in the drive, the ocutput might look semething
like this:

1BOOT LWH{l8) @2PA00A8 FFFFFFFF Q2P8P81A BEAQ3A

HELP DLR{d5) @20d45

LIBRARY DLR{12) @8ode7

WELCOME DLR{11) @d@s8zc

The first part of each 1line is the same as that produced by *CAT: the
file's name, access permissions and sequence number. The rest of the
line has one of two formats, depending on whether the file iz a
directory or not.

Non=directory files have four items of information on the lLine, These
are: load address, execution address, length and disc address
respectively. All of the addresses are in hexadecimal. The load
address tells the disc filing system where in the Electron's momory teo
put the file in response to a *LOAD command, The executlon address B
where the program will be executed £from i€ it isa *RUN. The langth ia

Page 13

Chapter 2

2imply the number of bytes that the file occuples. To obtaln this in
decimal, it may be printed in BASIC preceded by a '&'. For example,
the length of 'IBOOT' may be found using the BASIC statement:

PRINT &l

The disc address of the file tells the ADFS where to look for it;, for
example after the user has typed a *LOAD command. It is the sector

number of the first sector of the file. The disc address is not
usually of interest to users,

The information printed for directories only consizts of the dise
address, as the other attributes have ne meaning. (It is illegal to
load or execute a directory and its length is always 1288 bytes.)

It is possible to obtain information about only one file by giving the
filename after the *INFQ command:

*INFQ !BOOT

¥You can alse print information about some of the contents of a
directory by following the command with a suitable wildcard pathname.
For example, to print information about all files peginning with 'B'
in the directory 'S.WELCOME' when the C¢5D is '"§,LIBRARY', elither of
these might be used:

INFD $.WELCOME,B
INFO ~.WELCOME.R

It is possible to protect machine

code Files by making them 'executs
only'. To do this, a command such as

*ACCESS myprog E

is used, Once this is done, ‘'myprog' can only be *RUN, not loaded or
opened (it may however be deleted). If a file 1is protected in this
way, *INFO will only print its *CAT information.

*EX and *LEX

A particularly common Eorm of #INFQ is ¥*INFO *
information about all the files 1in the <C5D. Another
provided to obtain this effect in fewer keystrokes:

which prints
command is

*EX

In fact, *EX prints information about all
which defaults to CED if absent. Thus

files in any directory,

*EX book

prints information about all files in the
equivalent to *INFC book.*. A similar command is provided ¢to act on
the CSL instead of a specified directory. This is *LEX so on the
Welcome dise, these two commands have the same effects:

directory ‘'book', and is

*LEX

Page 14

A IR EEEEEEEEEER

Chapter 2

IHFD S.LIBRARY.

Making new directories

*CDIR

Before any files can be saved in a directory, it must be created. To
do this, the command *CDIR is used. It is followed by the pathname of
the new directory, eg:

*CDIR 5.0AMES .ADVENTURES
will egreate a directory called 'ADVENTURES' in the

"E.GAMES'. If "S5.GAMES' was the CS5D, the
Loz

directory
command could be shortened

*CDIR ADVENTURES

You can experiment with *CDIR on the WELCOME
WELCOME directory using:

disc. Get 1nto the

*DIR 3.WELCOME

If you catalogue the directory, you will see that all of its files are
‘normal' ones; none of them have the letter 'D' next to their names,

We will now create a directory called 'MyDir'. Since the CSD is
'S.WELCOME', the new directory's full pathname will be
'3 WELCOME.MyDir'., Type the command:

*ODIR MyDir

The disc will be accessed, and aEter a moement the prompt will
re-—appear. List the directory again using ®*CAT (wherever *CAT is
mentioned you may, of course, use the abbreviatien *.). This time an

extra entry will be listed. It will have the form:

MyDir DLR [56)

The seguence number will probably be different but the name and
atbtributes should be the same. Once a directory has been created, it
may be selected. Type the command:

*DIR MyDir

1f you then catalegue it, the three ‘'general' lines will be printed
but no filenames. This is because a directory is empty until a file is
saved in it, You can now start to save and lpopad £iles in "MyDir'
without fear of acecidentally overwriting one of the important files in
'"WELCOME' or 'LIBRARY'.

*PITLE

A directory may be given a long, meaningful name describing the sort
of files it contains, If you follewed the example of creating "MyDir'
above, you might have noticed that the directery's title 1s alse
'MyDir'. When a directory Is created its title I8 set to the same
string as its Ellename. This may be changed to any string of up to 19

Page 15

Chapter 2

characters using the *TITLE command. For example, to chango '‘MyDir's
title to 'Work directory', use the command

*TITLE Work directory
Other examples are:

*PITLE Chapter Qne

*TITLE My.Utils.Disc

*TITLE

*TITLE A very long title indeed

The third example sets the title to nothing and the fourth one will in
fact make the title 'A very long title i' as this is 19 characters

long. By naming the root directery you can effectively glve a name to
the whole dise:

*BIR
*TITLE Using BBC BASIC

File access permissions

*#CKT, *INFD and their associated commands print letters describing
flles' access permissions. These letters appear between the fllename
and the sequence number. There ma{ be up to three letters Eurleach
file, The letters are also called "flags' because their presence flags
the ability to perform certaln sperations en the file.
letters are:

Possible

means that the fille is a
can't be

D - Directory The presence of this letter
directory. It is set when the directory is created and
changed.

E ~ Execute If this £flag 1s set, the (non-directeory} E£ile may not be
loaded or read in any way. The only commands that may cperabte on an
execute—only Eile are *RUN, */, *DELETE, *REMOVE, *DESTROY and
*ACCESS. The last may only be used te change the L' flag {see below)!:
once the 'E' flag has been set it may not be removed. The *INFO of an
execute—only Eile prints only its name, permissions and seguence
number.

L - Locked Locked files cannct be deleted wusing *DELETE, *DESTROY or
*REMOVE, neither may *RENAME or *SAVE [or SAVE) be executed on a
loecked file. It is also illegal te *SPOOL to a locked file. An attempt
to do 2o will result in the message "Locked' peing given, Directories
are locked when they are created, normal files are not. The command
*ALCCESS may be used to lock and unlock a file.

R - Read If a file has this aecess character it may be read. This
allows operations such as *LOAD, *COPY, %EXEC and OPENIN (see chapter
4) to be performed on the file. The 'R' access can only bhe removed
from non~directery E£iles; a directory is always readable (by OPENIN
for example)}. The command *ACCESS may be used to alter the state of
the '"R' flag.

whether a file
command *S5PO0OL, the

W — Write This flag determines
output. This affects the

may be openoed for
utility *BUILD and

Page 16

IIIIllIIIIIIIIIIIIIIIIIIlllIllllllIlllllllIllllllIlllllllllllllllllllllllll.LIIIIIIIIIIIIIIIIIL_____________________________——————————J--------------

I S S S EEEEERENEE

Chapter 2

BASIC's OPENQUT and OPEWUP,. (f the 'W' Eflag isn't sek, the File may
not be opened for cutput. See chapter 4 on using the ADFS from BASIC
for detalls of cpening files. Directories may not have a 'W' flag, The
command *ACCESS may be used to alter the state of the 'W' flag,

The default state of the

tlags for
non—directories is 'wWR'.

directories is ‘DLR' and for

*ACCESS

Most of the flags described above may be changed using the command
*WCCESS., It has two strings following it: a wildcard pathname and the
new access flag. ALl files that match the pathname will have their
flags changed as specified. Examples of the command are:

*ACCESS game RL - Lock 'game' and enable it to be read

*AROCESS * E - Make all of the non-directory files in CSD
execute—only
*RCCESS chl — Remove all flags except 'D' and 'E' from "chl'

BRCCESS lip, WR - Make all files in 'lib' readable and writable

Typical uses of *ACCESS are:

= Setting the 'L' flag to prevent accidental deletion.
= Removing the "L' flag to allow deletion of a directory.

= Setting the 'E' flag to 'protect' a machine-code program from being
coplied,

= Remowving the "W' flag to prevent writing to the f£ile.
Mon-directory commands

We now move on to more general-purpose commands, ie those which act on
files that aren't necessarily directories, Indeed, some of the

commands described below are not legal on directories.

Saving, loading and executing files

Files may be regarded as copies of the computer's memery that lie on
the disc. They may contain BASIC programs, text, machine code
programs, images of the screen memery or simply data. Languages such
as BASIC provide built-in commands to save and load programs, but when
other sections of the computer's memory have to be saved or loaded the
Eiling system * commands are used.

*SAVE

The command to save a section of memory is called #*SAVE and has
several forms, The two simplest versions just take the start address
and end address (or length) of the area to be saved, and the name of
the f£ile into which the memery must be saved, Examples aret

*SAVE RAM 0 8200
*SAVE temp 1228 + 321

Page 17

Chapter 2

The first command saves all of the computer's memory between addresses
50288 and &7FFF. Addresses given to filing system commands are always
taken to be in hexadecimal, The £first number is the address of the
first byte to be saved; the second number is the address of the byte
after the last one to be saved. It is a common practice in Acorn
products to state upper limits in "byte after' form (eg HIMEM in
BASIC). This tends to make lengthy calculations easier.

The second command saves the memory between &1Z28 and &1548 inclusive
in the file called 'temp'. This form of the command (where the start
address is followsd by "+') has the length of the memory segment
instead of the end address as the second number,

In BASIC, the OSCLI statement may be used to Iincorporate BASIC
varfables Into the #*SAVE command. PFor example, suppose some machine
code is assembled at address 'cede'. Teo save the code automatically
after assembly, the program might contain the lines:

2200 HEM Save the object file
2210 OSCLI "SAVE DBJ "+8TAS code+" "+53TR5PR

This saves you having to go through a sequence like:

*PRINT “code,”P%
1254 1745
>ESAVE OBRJ 1254 1745

to save the object file,

Having issued a *SAVE command, it is infermative te look at the file's
various "attributes', For example, type Iin these two commands from
BASIC:

PESAVE afile 432141234
>*THFD afile
AFILE WR O(69) O2PR4321 gede432]1

aepal1234 2015E4

Hame Access Load Execute Length Disc address
The entries labelled "Load', 'Execute' and
interest., "Leoad"' is the address in memory at which the E£file will be
loaded wuwsing the *LOAD command, Notice that this is the same as the
start address of the block of saved memory, So the file will be 'put
back' where it was taken from. The next figure is the execution
address., This is the address that will be called if the file |is
executed using *RUN or one of its equivalents. By default it is the

came as the load address, but may be set differently if reguired.

'Length" are the ones of

The next number (@@0281234) is the length of the file. This is the same
as the number given in the *SAVE command, If the first form of the
command had been used (where the end address is specified instead of
the 1length), the length would be calculated automatically. The last
figure is the disc address, and doesn't concern us here.

Sometimes, we want a file's execution address to he different from the

start address. This might occur, for example, where & machine code
program starts with data rather than code. The execution address

Page 18

I E R R S R EE R R R ERES

Chapter 2

should be set to the 'entry peint' address after the data. As an
example in BASIC, suppose a program was assembled at the address held
in "code' and the start of the program proper was at the label
‘entry'. To save the program, the reguired command is:

OSCLI "SAVE OBJ "+5TRS5 codet+" "+STRSETP%+" "+STRE entry

The difference between this and the previous O0SCLI example
addition of the extra STR$ part. The third address is the eXecution
address: where the program must be executed after a *RUN. The value
overrides the default value, which is the same as the load address.

is the

The final embellishment to the *SAVE command is the ability to specify
the relpad address, That is, 1if you want the leoad address (as printed
by ®INFO) to be different from the start address of the file it may bDe
specified after the execution address on a *SAVE command. Examples of
*SAVEs with all possible values present ares:

*SAVE image 3080+10080 BO23 cod@
*SAVE 5.1ib, type 2434 2523 C1D C@é

The first line saves the reglon of memory between addresses &3080 and
E3FFF under the name 'image' and sets the load address to &8P8@ and
the execution address to &8823, The second example saves the program
between addresses &2434 apnd E2522 under the name '$,1lib,type' with a
load address of &COE and an execution address of &C1lD. Hote that the
reload address may only be given if the execution address is present.

*LOAD

The opposite action of saving a £ile is, of course, loading it. The
*LOAD command has [ewer wariations than *SAVE. Examples are:

*LOAD image
*LOAD type 2388@

The Efirst example lpads the file called 'image'. The address at which
the File will be loaded is its load address as printed by *INFO. The

second example loads the file "type' at address &2308. The file's own
load address is eoverridden.

*RUN, */ and *<file>

Executing a machine code program can be done in three ways. The forms
are: '

*RUN <file>

kfcfile>

*{file>

where <file* is a pathname which may contain wildeards (which are
interpreted in ‘first found' mode)., *RUN and */ are exactly
equivalent. They 1look in the CSD and CSL for a file of the name

specified in the command and load and execute 1t (using its load and
exccution addresses respectively) if found. If the £lle doean't exist,

Fage 19

Chapter 2

a 'Bad command' error is given. If the name after the * in the Fhird
form does not correspond to a built-in command, the ADFS treats it as
if prefixed by *RUN, ie tries to execute the file of the same name.

If the filename to be executed begins with a special character, '§',
'"&" or ":', the C8D and CSL are not searched for the file. Instead the
actual file specified is sought. Suppese that the C5D is '§.UTILS' and
CSL is '"$,LIB'. The actions of various commands are:

*RUN fred

Looks for 5.UTILS.fred, then $.LIB.fred

*RUN file,type

Looks for %,UTILS.file.type, then S.LIB.file.type

*RUN 5S.cset

Looks for %.cset

*RUN B.help

Looks for 5,UTILS.help, then $.LIB.help

*RUN “.print

Looks for S.print,then $.print again

*AUN :l.stars

Looks for :l.5.stars

The Welcome disc centains several useful programs in_ the directory
'S,LIBRARY' that may be executed using *RUN, or */ or simply *command.
These are discussed in detail in chapter 3,

If a Eile has an execution address of -1 (&FFFFFFFF), it will not be
loaded and executed in response to *AUN. Instead, it will be *EXECed.
This process is described in detail later, but basically it invelves
reading the contents of the file as [f they had been typed at the

keyboard, enabling commands to be put into file for later executlion.

Deleting, renaming and copying files

If a file iz ne longer required, it should be deleted. This reduces
the number of ‘Disc full' and 'Directory Efull® errors glven,
Sometimes, a file is still required but under a4 different name (to
remove a clash of command names, for example). Yat another possibility
is the requirement for a copy of a file or Eiles in another directery,
This section describes the commands that perform these operations.

*DELETE and *REMOVE

The command *DELETE removes a single named file Erom a directory. The
filename should not contain wildcards. Examples are:

Page 28

AR R EEEREEEEERSE

Chapter 2

*DELETE temp
*NELETE ".7.filel

It the file that you are tr¥1ng to delete does not already exist an
error wWill be generated ({'Mot found'). Sometimes, especially from
within programs, it is desirable to ensure that a file does not exiat,
but without producing an error if the Eflle has been deleted already.
The command *REMOVE acts as *DELETE but does not complain if the file
does not exist., Again, the filename or pathname after the command
should not contain wildcards, Examples are:

*REMOVE dataFile
*REMOVE %.spoolOut

You may not delete a file that is
command

"locked', To lock a file, the

*ACESS file L

should be issued, A locked file may not be *REMOVEd, *DELETEQ,
*DESTHOYed or *HENAMEd. You can tell if a file is locked by the letter
L appearing next to 1its sequence number when it is listed by *CAT or
*INFO. To unlock a file (and enable the above operations on It), the
command:

*ACCESS file

may be¢ used.

*DESTROY

It is possible to delete a group of files with one command: *DESTROY.
This takes a filepname that allows wildcards., Any file found that
matches the pathname will be deleted. Before c¢arrying out this
potentially catastrephic operation, the ADFS prints the *INFD data for
the files that will be affected and prompts you with:

Destroy 7 _

In order to carry out the command you must type YES <RETURN>, Any
other sequence of characters (except lower case yes) will cause the
command to be aborted. To delete all chapters of a book, for example,
this command might be used:

*DESTROY Chapter®

Page 21

Chapter 2

‘multiple’ mode on normal flles, not

Note that wildecards only act in i
4 of a pathname will

directories. Thus only wildcards in the last part
match more than one file, 5S5o:

*THFQ Ao *

files in all directories in the

will not print information about all 3
a abpout all files in the first

current directery, but informatien
directory found in CSD. Similarly:

DESTROY #.ch
peginning with 'ch' in the first

will {potentially} delete all files
ane-—character directory 1n CSD.

When trying to delete a directory, you must First ensure that several
conditions are met. First, the directory to be deleted mnust be empLy,
ie it may not contain any files, including other d@rectorfe§. Al
attempt te delete a directory containing files will yield a Dir not
empty' error. A directory must also be unlocked bpefore 1t can oe
deleted {directories created by *CDIR are autematically lecked), and
must not be the €SD or CSL. This set of rules prevents directories
being deleted in such a way as te leave the structure of the disc in a
corrupt state.

*HENAME

Ta give a file a new name, perhaps in a different directory, the

*HEWNAME command is used, For example:

*REMAME edit S.utils.edit

would move the file in the ©sD called ‘edit' inte the directory
's.utils'. The final name does not have to be the same:

*REMAME invaders games.galaxians

This changes 'E.invaders' to '€.games.galaxians'. You don't have to

change the directory of the file:

*RENAME CHL CHZ2
will keep the file in the sSame directory but make itz name "CH2'

instead of 'CHL'. In all cases, the first file of & *RENAME command
‘disappears'. Meither of the files may contain wildcards.

*COPY

The *COPY command makes a wcopy of a file {or several files) 1in a

different directory and retains the original (s). _The command is
followed by two names: the pathname {optionally centaining wildcards)
of the filels} to be copied, then the non-wildcard name of the

typical *COPY

directory into which the files are to be copied. A

command 1s:

CoFY $. S.safe

Page 22

EEEEEERER

Chapter 2

This will copy all non-directory files in the root directory into the
directory called '§.safe', There will thus be two versions of all of
these files on the disc. Anocther example is:

*COPY LIB.# 2

which copies all files with one-character names from "@.LIB' to the
C5D. *COPY can also transfer files to another disc, 1if there is more
than one fitted. For example, to copy all of the files in root on
drive & to root on drive 1:

COPY :B.% :1

You can't use *COPY to copy files on to another disc on a single-drive
syskem as it does not give you a chance to swap discs. The utility
'"DIRCOPY' may be used for this purpose. I1If you want te copy the whole
of a disc on to another, maintaining exactly the same directory
structure, wuse the *BACKUP utility mentioned in chapter 3. Warning:
The *COPY command uses the workspace from OSHWM to HIMEM when copylng
files. Since this area is also used by languages {(such as BASIC) and
work processors (such as VIEW), it is important that any program or
text file be saved before *COPY iz used. This 1=z not necessary if a
second processor is attached.

The *SPOOL and *EXEC commands

These commands enable you to send all screen ocutput to a file, and to
treat a file's contents as keyboard input. Strictly speaking these are
operating system commands (as opposed to ADFS commands) so you may
have come across them already when using tape.

*SPOOL
After the command

*SPOOL file

has been executed (where "file' 1is any non-wildcard pathname), all
characters that are printed on te the screen (including invisible
control characters) will also be sent to the named f£ile, This will
continue until the command

*SPOOL

without a filename is executed, One application of *SPOOL is to keep a
permanent record of what has been shown on the sScreen. The *SPO0OL file
may later be edited using a word processor such as VIEW, or displayed
directly on to the screen using one of the wutilities described in
chapter 3.

ks an example, suppose we wish to include a multiplication table from
1 to 12 in a document being prepared using VIEW. The first step is to
wrlite a simple BASIC program that prints the table onto the screen in
the desired format. Since the text printed will later be read into
VIEW 1in exactly the same way as it was printed, the program should
print the table a line at a time starting from the top, One way of
doing this is shown in the fellowing program:

Page 23

Chapter 2

1@@p REM Program to print a 1..12 times table
1310 width=5%

1820 PRINT TAB{30)"Times table™’
1830 2%=width

1848 PRINT "Times"TAB(2*width);
1@%9 FOR i%=1 TO 12

1p6a PRINT i%;

1078 NEXT

1388 PRINT'

lu98 FOR j%=1 TO 12

1188 FPRINT j3":"ThAB(Z*width]);
1118 FOR i%=1 TO 12

112 PRINT i%*j%;

1136 HEAT

rl4e PRINT

1158 HEXT

1168 PRINWT

If you run this preogram in MODE 3 or MODE B, you will see that it
produces a fairly Simple-looking table. The next step is to get the
table inte a form that may be read by VIEW. This is accomplished by
adding just two lines to the program, Add the lines:

1@ *SPOOL timesText
1178 *3PO0OL

The first line starts spooling, sSometimes called ‘'opening the spool
file' so that the text printed on the screen will alse geo inte
'timesText'. The secend line stops spooling, or ‘cleses the spool
file' so that output goes only to the screen and not the file. Before
running the program again, save it with a command such as:

SAVE "TimesTable"

Run the program. This time the disc will be activated and the screen
will go blank from time to time (because the disc system is being used
in one of the '"large' screen meodes). When the program has finished,
type the command:

*INFD timesText

This will reveal the presence of a new file which is &3D9 bytes long.
This file consists of exactly the same characters that were printed en
the screen by the program. If you have been using the Welcome disc,
you can see the contents of the f£ile by typing:

*LIBE S.LIBRARY
*TYPE timesText

This uses one of the utility preograms in the directory '$.LIBRARY',

described in chapter 3.

I1f you have a VIEW cartridge, the follewing sequence of commands will
let you read 'timesText' into the word processor:

*WORD

Page 24

Chapter 2

=3HREAD timesText

Pressing <ESCAPE» as usual te see the text will reveal that it was
read in properly. Neote that you cannot LOAD spooled files in VIEW as
it objects to the presence of line—feed characters that are generated
whenever BASIC prints a new line.

Another use of *SPOOL, merging BASIC programs, is described in chapter
4 on using the ADFS with BASIC.

*EXEC

In some ways this may be regarded as the opposite to *SPOOL. after the

. copmand

®EXEC Eile

has peen executed, the Electron will stop using the keyboard as its
source'of input, Instead it will obtain characters from the file named
after the command, This continues until the file is exhausted,
whereupon input reverts back te the keyboard.

& typical application of *EXEC is to execute a list of commands that
would otherwise be tirescme te type over and over again. An example is
programming the Electron's functieon keys. Many users whe use these
keys like teo set them to certain fixed strings at the start of a
session with the computer. If all ten keys are used, this could be a
time=consuming task. The short-cut is to put the commands to define
the keys inte a text file, and just *EXEC this whenever the keys have
to be defined (eg at power-up or after a <CTHL> <BREAKZ>).

The first step is to create the file with the cowmands in. This can be
done using any woerd processer that marks the end of lines using a
carrlage-return character [VIEW doss this), or using the *BUILD
utility which is described in chapter 3. For now we will use BASIC to
create a command file. Type in:

HEW

1@ *SPOOL myKEeys

20 PRINT ""KEYQBASICE"

30 PRINT "*KEY1OLDZLISTE"

A0 PRINT "*KEYZAUTOL20d,188"
50 *SPOGL

HUN

When the program is run it will create a2 textfile called 'myKeys'
which contains the commands printed by the PRINT statements. To
subsequently execute the commands as if they had been typed in at the
keyboard, simply type:

*EXEC myKeys

The commands will appear on the screen exactly as if you had typed
them, albeit much faster. To check that the commands wera obeyed, try
pressing FUNC 8, FUNC:1 and FUNC 2,

The commands that appear in a *EXEC file may be of any type, for

Page 25

Chapter 2

example BASIC commands, as above, VIEW commands, or even other *
commands, The language you are using cannot distinguish between what
is typed and what is taken Erom a *EXEC file, so the general rule is
'if it can be done from the keyboard, it can be done Erom an exec
£ile'.

Closing all cpen Eiles

Sometimes the error '‘Already open' is enceuntered. This occurs when an
attempt is made to delete, overwrite or open for ocutput a file which
is already open., From BASIC it is a simple matter to delete all open
files by typing CLOSE$H.

*CLOSE _apd *BYE

In languages other than BASIC, eg WIEW, there is po built-in CLOCSE
command, se¢ if an 'Already open' error is preventing you frem saving
some text you would have to save the text under a different name, call
BASIC, close all Eiles, re-enter VIEW, relead the file and finally
save it under the correct name.

Toe aveid this long seguence of commands, the ADFS command *CLOSE is
provided, This closes all files, as CLOSE#8 in BASIC, but has the
advantage that it may be typed anywhere that * commands are allowed,
eg from VIEW.

*BYE has the same effect as *CLOSE but is guicker to type. The main
difference is that when the ADFS is used with Winchester discs on the
BEC Microcomputer, *BYE automatically moves the disc 'head' te a safe
area on the disc. Because Winchesters are not used with the Electron,
the commands are effectively the same,

Commands affecting the whole disc

We move now on to more general commands which affect the whele of the

filing system, or the current drive, rather than just files or
directories.

Obtaining help abouwt the ALDFS

The operating system provides a command *HELP. On & basic Electron
with no expansien this will just print the version number of the
operating system. However, as components are added to the system, more
infermation is printed out. For example with the Plus 1 added, *HELP
tells wyou that the Electron has printer and analogue to digital
conversion capabilities.

*HELP ADFS

Typing *HELP with the ADFS installed tells you that the ADFS 1is

available, with text of the form:

Advanced DFS 1.18

ADFS
This says that the ADFS has a wversion number of 1.18 and that a
'subheading' ADFS may be used. Thus typing:

Page 26

EEEEEREEEREER

Chapter 2

*HELP ADFS ot

*H.. for short

will give a summary of the ADFS commands' syntax, Note that only the
purely ADFS commands are listed, not the operating system ones such as
*CAT and *SPODL.

Auto-boot Eiles

In the discussion of the output produced Dy *CAT earlier we mentioned
the 'Option' line, and the file *!BOOT'. This section explains what
the 'option' facility does.

If the ADFS is eptered in *ADFS mode (eg by pressing A <BREAKZ>), the
disc drive will start up and the information about the previous C5D is
loaded, (If there is no previous CSD, the '5" will pe used). Also at
this stage, the CSL is set to the Eirst directory whose name begins
with 'S5.LIB'. When this process has finished, control returns to the
current language as usual.

1f, however, the user holds down <SHIFT» before pressing <BREAE>, and
keeps it pressed for a couple of seconds after releasing <BREAK>, the
ADFS will attempt what is known as an 'auto—-boot'. First the filing
system will find out what the disec's boot optien is. It can have one
of four possible wvalues:

pg - Off, do nothing

Bl - *LOAD the Eile called !BOOT or "Not found' error

B2 - *RUN the file called |BOOT or '"Bad command' error

B3 - *EXEC the file called !BOOT or 'File not found' error

When a disc is formatted (using the *EFORM utility) its boot cptien is
set to 'OEE'. However, by setting it to one of the other three values,
the ADFS will lock for a file called '$,!BOOT' and perform one of the
actions given apove on it. If no such file iz on the disc, the error
message indicated above is printed and vou have to press <BREAK> or A
SBREAK> without <SHIFT» to enter the ADFS normally.

*OPTY

The command to set the boot option is *0OPT4 followed by the option
number (separated by , or a space). Examples are:

*OpT4,1
*OPT4 3
*O B4

The last example is the same as *DPT4,8. An obvious use of the '1BOOT'
Eile is to make it a command Eile that is *EXECed. The Welceme disc,
for example has its boot option set to @3 (EXEC) and the '!BOOT' file
contains the simple text:

CHAIN ™IB"™
where '"!B" is the name of another (BASIC) file in the root directory.

The *OPT4d command always acts on the current drive, so to set the boot
option on drive 1, two commands are needed:

Page 27

Chapter 2

*DIR :1
*0pT4, 2

It is alse possible to make the 'IBOOT' file be accessed when <BREAK>
is pressed without <SHIFT». To do this, the start-up options must be
set: see the disc decumentation on the 'SETPARAMS' utility for
details.

Enabling ADFS messages

A facility exists whereby the ADFS will print *INFOD information
whenever files are accessed.

*0PT1

This command controls whether ADFSE messages are printed or not. BY

default, no messages are given. The command:-
*QpT1,1
switches messages on and

*0PT1,8 or

*QPT1

switches them off again. The messages are useful for checking that the
correct files are being accessed during the execution of a program.
The command *QFT@ has the same effect as *OFTL,8.

Obtaining disc sterage information

Two commands are avallable that giwve
selected disc.

information about the currently

*FREE

This tells you how much space on the dise is in use, and how much is
left. The cutput of the command typically looks like this:

$2B15C Sectors
#ee3nd Sectors

89,888 Bytes Free
238,592 Bytes Used

L]

The first figure is in hexadecimal, the second in decimal. The total
number of sectors and bytes is constant for a given size disc. For a
single-sided B@ track disc it is: &5FP (1288) sectors and 327,680
bytes. A sector is simply a small area of the disc that the ADFS finds
it convenient to deal with. There are 256 bytes in each sector. Every
time a directory is created, five sectors of the disc are used. A
normal file occuples {(lent255) DIV 256) sectors, where 'len' is the
length of the file, as given by *INFD.

*MAF

The other command that obtains infeormation about the
*MAF. Typing this will yield a table similar to this:

whole disc is

Address : Lengkth
apeal3 z adeaed
BRY4LEE 5 ABBET 5

Page 28

IS EEEEEEEERER

Chapter 2

The list may be sherter or longer than the example shown. The entr1¢s
are the areas of free space on the disc and their lengths. In this
example, there are two such areas. Both the address (which 1s the disc
secter address of the first free sector) and the length (which is the
number of sectors in the free area) are given in hexadecimal.

The ADFS maintains a list of free space {which is created when files
are deleted) so that when & new file is created it can re-use the free
space. There may be up to B@ entries in the free space list {or
'map'). If the list starts to become full, the disc is becoming
fragmented; that is, there are many falrly small areas of freec space
on the disc, Sometimes, when trying to save a long file you will get a
'Compaction required® error. This means that there is enough total
room on the disc to held the file, but the space is scattered all over
the disc. To solve the problem, the disc must be compacted. This
pperation gyoes through the disc, shifting used and free areas of the
disc around so that the f£ree space list has fewer entries, but of
larger size.

*COMPACT

After much use, the organisation of files on a disc may become
fragmented. For example, there may be gaps on the disc where files
have been deleted. These gaps may together occupy a lot of disc space,
but individually they may not be large enough to heold a particular
file. Compaction resclves the problem.

There is a command, *COMPACT, teo compact the disc; however, the
fastest and safest way is to use the utility FASTCOMPAC on the
utilities disc. It can be called up from the menu (*UTILS), or

directly by entering *FASTCOMPAC. NHote that any programs or data in
the Electron's memsry will be overwritten, since FASTCOMPAC uses all
available memory to Speed up the process. Therefore you should save
any valuable program or information (perhaps on another disc) before
using FASTCOMPAC,

I1f you want to compact without overwriting your program, *COMPACT can
be used directly. By default, *COMPACT will use the screen memory for
its working area. Enter:

*COMPACT

Compaction is more effieient in MODE @, 1, 2 or 3, because more ScCreen
memcry is awvailable,

You can also specify exactly which areas of memery COMPACT should use
for its workspace, The command is followed by the start address of the
area to be used and the length of the area. Both numbers are in pages
rather than bytes, and should be given in hexadecimal. You should only
use this form of the command if you understand the memory map of the
Electron.

For example:

*COMPACT 20 1@

Page 29

Chapter 2

will use the area between addresses L2088 inclusive and (&2000 +&1200)
= 53PP8 exclusive. To use the memory between PAGE and the sScreen
{HIMEM in BASIC), the following OSCLI statement may be used:

O5CLI "COMPACT "+5TRS™ (FAGE/&1@9)+" "+5TRS™ ((HIMEM-PAGE) /&108)
Alternatively, both the program and screen memory may De used:

OSCLI “COMPACT "+STRS™ (PAGE/&128)+" "+5TRS™ ((4BROA-PAGE) /2100)

Mote that more than one *COMPACT may be reguired before encugh free
space is collected to aveid 'Compaction required' errors.

Changing discs

*MOUNT and *DISMOUNT

Having finished using a particular disc, you may want Lo access
information on another one, To prevent information being lest during
the swap, a couple of commands have to be issued before removing the
old disc and after inserting the new one. Assuming that 8 single drive
is in use, here is the seguence reguired to change discs:

*DISMOUNT
[Take ocut old disc and insert new one)
*HOUNT

The *DISMOUNT command (which may opticnally be followed by a drive
number) closes all seguential files and makes CSD and C5L '‘unset',
Seguential files are those which are dealt with a byte at a time, as
used by *SPOOL and *EXEC, and BASIC's OPENIN, OPENUP and OPENOUT
functions. They are discussed with respect to BASIC in chapter 4. By
closing all seguential files, *DISMOUNT ensures that the informatien
on the disc is up to date. After a disc has been *DISMOUNTed, there'is
no directery or library selected, sSo most commands will yield a 'No
directory' error.

If there are no seguential files open, *DISMOUNT may be omitted.

The *MOUNT command, which may also be feollowed by a drive number,
causes the system to acknowledge the existence of the new disc. It
loads the disc's free space map (5o that it knews where te put new
files) and sets 5D te '5'. ©SL is unchanged (so will be 'unset' if
*MOUNT follows a *DISMOUNT) and must be assigned explicitly by a *LIB
command. *MOUNT is wvery similar in effect to *DIR :0, the differenc?
being that the latter leaves the CSL as it was and the former 'unsets
it.

The *DISMOUNT and *MOUNT commands may also be used to switch between
drives in a multi-drive system. To change from drive @ to drive 1, for
example:

*DISMOUNT @
*MOUNT L

Alternatively the single coemmand *DIR :1 could be used.

Page 38

AR R R EEEER

3. THE ADFS UTILITY PROGRAMS

The Welcome disc contains several preograms for use with the ADFS.
These perform a wide range of tasks, including formatting discs,
making backups and examining the contents of files., Among them are:

*EFORM Formats a disc so that it may be used with the ADFS
*YERIFY Checks that a disc's contents are not cCorrupt
*HACKEUP Copies the entire contents of one dise to another
DIRCOPY Copies selected files from one disc to another
*LIsT Displays a text file with line numbers

*TYPE Displays a text [ile without line numbers

*BUILD Creates a text file from the keyboard

*Dump Displays a £lle in hex and ASCII

SETPARAMG Sets up various ADFS options

UTILS

Produces the menu of utility programs

Commands marked with a "' are written in machine code, the others are
BASIC programs, Before using @ wuwtility, the current library should be
set to 'S.LIBRARY'. This may be done manually using the command

*LIB S.LIBRARY

or automatically by starting the ADFS with CTRL A BREAK.

Running utilities individually

All the uwtilities on the Welcome disze can be ren using * commands.
Where the wutility is a machine code pregram, it is executed
immediately and the command name may be followed by parameters, for
example:

*TYPE myFile
YEFOHM M 8

the * command calls a *EXEC £1le which
enters BASIC and chains the program. The program itself is in the
directory '$.UTIL'. For example, the command *SETPARAMS will *EXEC a
file called '5.LIBRARY.SETPARAMS' which contains the following:

When the vtility is in BASIC,

*BASIC
CHAIN "5.LIBRARY.BASIC.SETPARAMS"

Utilities written in BASIC do not have
command; they are all "prompt driven'.

parameters following the *

The utilities menu

Typing the command

Page 31

Chapter 3

*UTILS

will cause a list of the current utility programs to be displayed.
There may be up to 47 utilities on a disc, and their 'names are
displayed in up to three columns of 16 lines. Each name has a digit,
letter or other character next te it. To run 2 given pregram, type the
character correspending to the name. For example, 1E the Eirst few
entries on the list wWere

g * BACKUP
* BUILD
DIRCOPY
Dumpe
EFORM

* LIST

inds Lok
W

then typing 3 would cause the *DUMP utility te be execukbed. The *
indicates = machine code program. If the program is in BASIC, it will
be chained, and therefore vyou will be left in BASIC when it
terminates. If the pregram is a machine code one, You will pe given a
chance te type the parameters. The command name iz given as a prompt.
For example, 1f you type 1 for BUILD, a prompt

*BUILD _

would appear at the pottom of the screen. Type the parameters,
followed by <RETURN>, The command will then be called wusing the
parameters supplied.

Machine code utilities always return teo the calling program, So after
running one of these you will see the menu again.

To escape from the menw, press ESCAFE.

Obtaining documentation on utilities

All of the Welcome disc wutilities have instructions on the disc. Te
read these, call the menu pregram using *UTILS. Tress the space Dar.
This will call up the help menu.: This is very similar to the utils
menu, but because utilities added by users might not have any
documentatisn the list may be shorter. To see the informatien for a
given command, press the kKey corresponding to its name.

This will cause the appropriate file to be printed in paged maode.
Press SHIFT to continue when output stops. At the end of the
instructions, you will be asked to Press SPACE to continue.

Te recall the viils menu, press the space bar again,

Adding your own utilities

More experienced users might want to add thelr own utilities to the
dise. If these are added correctly, they will automatically be
included in the menus printed by *UTILSE. The exact method depends on
whether the program is in BASIC or machine code.

Page 32

Chapter 3

hdding BASIC utilities

If you have a BASIC preogram ISCRMDUME" which yvou would like to include
in the library, follow the instructions:

1. Save the BASIC program as ‘s, LIBRARY .BASIC.SCRNDUME",
2., *BUILD %.LIBRARY.SCRNDUMP. This should contain the two lines:

*EASIC
CHAIN "$.LIBRARY.BASIC.SCRNDUMPY
CESCAPE>

It is very important that there are no charackters after the <RETURNZ
of the second line. If there are, the #*EXEC file will not be closed
properly before the BASIC program is called, and the extra characters
will be read by any INPUT statements in the program.

3. You should document the wutility. If you have VIEW, the file should
be prepared using MODE 6. Because VIEW uses control codes to right
justify the text, these have to be remaved, as follows:

- Edit the file using VIEW.

- Save it as "t' (just in case).

- Type *5PO0L temp.

- Type SCREEN.

- Type *SPOQOL,

= Type MEW followed by READ temp.

- Remove the last line of the text which will say *SPOOL.
- Save the File under 'S.HELP.SCRNDUMP',

- Delete 't' and 'temp'.

hiterpnatively, short files may be prepared using, for example, *BUILD

5.HELP.SCANDUMPE.
{ESCAPE>

hdding machine code utilities

The technigue for adding machine code programs to the library is wvery
similar to that described above. To add a utility called 'MCDUMP', for
example:

1. Save the object code with a command of the form:

*SARVE 5.LIBRARY.MCDUMP <start® <end> <execr <releoad>

2. Prepare the documentation file as described under i above.

Page 33

4. USING THE ADFS FROM BASIC

Electron BASIC provides commands, statements and functions which
access the filing system directly. Because of the uniform
specification of Acorn filing systems, the same program can normally
work with ADFS, Econet and tape. The only differences in operation are
those forced by the restrictions of the medium used, eg cassette files
are 'serial' and cannot support randem access, and by the fact that
PAGE is higher. This means that many of you programs that work from
tape will not work when the ADFS is fitted.

Page under the ADFS

There is one major difference between using BASIC under the tape
filing system and wunder the ADFS: the default wvalue of the
pseudo=variable PAGE is much higher under the ADFS. The reasen is that
discs need much more "workspace' to operate than tape; for example,
the ADFS always keeps the current directory in RAM to avoid having to
access the disc for simple operations such as *CAT and ¥*INFO,

If you print the value of PAGE using a statement such as
PRINT “PAGE

you will see that its value has increased from SE@8 to &1DAR {or E1FER
if you are using Econet too).

Since PAGE is where BASIC programs start, there are 38490 fewer bytes
available to BASIC under the ADFS than the cassette £iling systen.
This disadvantage is offset to a degree by the speed of discs: large
programs that can no longer be loaded under the ADFS can be split inte
several smaller sections which are CHAINed in as necessary. A method
of 'copying down' programs so that they reside at the old value of
PAGE is given later in this chapter.

Methods of accessing the ADFS

Interaction with the filing system from BASIC can take several forms:
commands such as LOAD and SAVE deal with the current BASIC program
directly, ‘'star' commands like *LOAD, *SPOOL and *CDIR are passed to
the ADFS, and £inally BASIC statements such as OPENIN and CLOSE deal
with filing system segquential files. In this section only the first
and last uses of the filing system are relevant. Some of the more
common ADFS commands such as *LOAD are menticned briefly, but for
detailed information you are referred to chapter 2.

Whole-file operations

This section covers the coperations that act on whole files, whether
they are BASIC programs or machine code files,.

The SAVE command

The BASIC command SAVE is similar to *SAVE but acts on the current
program instead of a general block of memory. An example isg:

Page 34

AEREFEEEREREEEER

Chapter 4

*SAVE "stats®

which will save the current program under the name "stats'. The start
address is set te PAGE; the end address (ie the location after the
last byte to be saved) is set to TOF, The *INFO of a BASIC program
called "progl' might look like this:

progl WR (34) FFFFLDER FFEFBB23 apa@EaTIT ePa@z23

This implies that 'progl' was saved with PAGE set to &1DOB. The
execution address (&FFFFB@23) is meaningless for BASIC programs, and
the length &777 is the same as TOP-PAGE in hex when the program is in
memarcy.,

The ADFS does not distinguish between types of files, apart from
stating that directories have a certain format. This implies that
BASIC files can be treated as any other: they may be opened for
reading or writing (see '"Seguential files' later), or *LOADed to an
arbitrary address. This latter propercty is very useful, as
illustrated under the section: 'Mergling BASIC programs’.,

The LOAD command

LOAD in BASIC is similar to *LOAD, but makes the file load at PAGE,
regardless of its own load address. An example is:

>*LOAD "stats®

which will load the program called 'stats' at PAGE. After the program
has loaded, BASIC checks that it is walid (as it does when END is
executed), and 1f it finds an error, 'Bad pregram' is reported. Note
that it is often possible to RUN a 'bad' program, even if it can't be
LISTed,

BASIC does not check the length of a program before loading it (as
this cannet be deone on the cassette filing system) so a bad program
may be caused by its being too large to fit in memery, and thus
corrupted upon loading. An example is when loading a program that was
written using a 'small' screen mode, say MODE &, when a '‘greedy’' mode,
Say MODE 3, was in use.

LOAD is like HEW in that 1t remowves all the current program's
variables, apart from the system integer variables, A%-ZI% and B%. If
the LOAD was unsuccessful (ie the program could not be found), the old
program and its variables remain intact,

The CHAIN statement

The CHAIN statement (which may be wused from within a program) acts
exactly as LOAD follewed by RUN, If the program is ‘'bad', however,
BASIC will not attempt to run it. Both LOAD and CHAIN allow
'wildecards' in the Eilename, for example:

PCHAIN "BM*"™
will load apnd run the £first program Iin the curreant directory that

beging with the letters 'BM'. As entries are always stored

Page 35

Chapter 4

alphabetically in the directory, it is easy to predict which file will
be loaded,

SAVE, LOAD and CHAIN all allew general string expressicns as their
arguments. This is cenvenient for ensuring that a program is always
stored using the same pame, If the program cohtains a line such as:
1@pP@ DEF FNHNM="scortl®

the commands:

>5A,FNHM

saves the file in a conveniently small number of keystrokes.

Downloading a BASIC program

Sometimes a program that worked OK using tape will give a 'No room'
error message after beling RUM under the ADF5. If the program does not
use the disc at all after it has leaded, 1t is possible to copy the
program down te the old PAGE &E@F and run it there. Because the
program will now lie in disc workspace, any attempt to use the ADFS
will cause the program to be corrupted.

For a program to download itself, the first few lines should be:

1388 REM Down-loader program header

1@1F IF PAGE<=LESP THEW l@c@

le2e vDu 21

183p *KEY 8@ *TAPE|MFOR I%=@ TO TOP-PAGE STEF 4:
I%1GEPA=I% IPAGE:NEXT |MPAGE=&E@@ |MOLDIMRUNIF M
1849 *FX138, 8,128

l@gsd END

1968 REM The rest of the program

Line 18134 checks to see that the program isn't at page SE@Q already.
If it is, a jump is made to the main program at line 18608.

Line 1828 turns off the VDU drivers so that the commands used to copy
the program down don't appear on the screen.

Line 183@ programs key B. When executed, the commands select the
cassette filing system, moves the program down to page &EB@, sets FAGE
to &E@B, issues an OLD to reset BASIC's pointers, then RUNs the
proegram. The |F is a VDU 6 to re—enable the VDU drivers Just before
the program L5 run.

Line 1#4@ enters the internal code for function key @ inkte the
keyboard buffer. This will cause the string programmed in the previous
line to be executed,

Line 185 stops the program, re-entering BASIC's command mode so that
the functien key string may be executed.

The *TAPE cemmand ensures that no ADFS commands are issued when the
program is rum. This would cause the ADFS to report an error such as

Page 36

Chapter 4

'Bad F5 map'. Worse, the program itself might be corrupted by the ADFS
attempting to access its workspace (which is where the program now
resides).

After a program has copied itself down, pressing <BREAK> to re-enter
the ADFS will fail, This is because the ADFS realises that its
workspace has been corrupted and prevents ltself from being selected.
It does this by a process known as frugalising, which effectively
makes the ADFS disappear from the machine. Te re-establish the ADFS,
the whole of the computer's memory has to be cleared out. To do this,
type

*FXaga,2

and press <CTRL>» <BREAK>». The ADFS will select itself exactly as 1f
the machine had just been turned on. Sometimes the error 'Bad FS5 map'
will be given after exiting from a downloaded program. This may also
e cured by the *FX2P@,2 technique.

Merging BASIC programs

hs one of the strengths of Electron BASIC 1is the way 1t enables
procedure libraries to be builtup, it is obviously desirable to merge
programs together, that is Jjeining a ‘'library' routine to a maln
program, There are two ways of doing this. The first method invelves
*LOADIng the second file directly at the end of the first one. This is
a pure "append', as the second program is literally attached to the
end of the first one, The second method 1s a "merge';, as the second
program is entered as if typed at the keyboard with the first program
already loaded.

Suppose it is reguired te append a file called 'shellSort' to the
current program. The following segquence of commands will deo it:

*PRINT “TOP-2

2393
>*LOAD shellSort 2393
*END

The PRINT obtains the address of the end of the last line of the
current program. This 1is where the new file has to be placed. The
*LOAD gets the procedure f£ile and puts it at the end of the current
program (ie at the address printed by the previous statement). The END
ensures that BASIC updates its version of TOP to the end of the merged
program. LIST will alsec do this.

It [s possible to define a softkey string te perform the above
acktionss

»*KEY® INPUT'"File name: "f5:08CLI"LOAD "+£5+% "+5TRS™ (TOP-2):END|M

This also works when there 1is no program in the machine already, so
can be pnsed to load as well as append,

One small preoblem with the merge technique described above Is that iIf

the appended f£ile has line numbers that are lower than the original
aona, you get programs looking like this:

Page 17

Chapter 4

2188 HEFEAT

2113 UNTIL INKEY-99

BB@ DEF PROCshellSort{first,last)
219 REM....

If there are no GOTOs or other line-referencing statements in the
program, the simple soluticon is RENUMBER it. If there are GOTOs,
RENUMBER will probably get confused and the best solutlon is to make
sure that your library files have very high line numbers (remembering
that the upper limit is 32767).

An alternative technigue, which is a true merge rather than the
‘append' of the First method, is to use *S5P0O0L and *EXEC. The method
is as follows: first load the liprary file, called 'quickSert' for
example, Then Ltype:

>RSPOOL gsText
»LIST
>*5POOL

The first line opens a *S3POOL file; any characters sent te the screen
will alsc be put inte the text file called 'gsText'. The LIST acts as
usual, the listing being sent te 'gsText' in addition to the screen.
The *SPOOL closes 'gsText' and makes the output go only te the screen
as usual. There is now a file called 'gsText' on the dise which is a
text version of the gquicksert program,

Next, load the 'main' program with which the sort routine must be
meryed, eg LOAD "dBase". To merge in the sort file, type:

>*EXEC gsText

The screen will now display the contents of gsText as they are read
in. *EXEC takes the contents of the file specified and reads it in
exactly as though it were kyped at the keyboard, Thus BASIC thinks it
is getting lines from the user, and inserts them into the BASIC
program as usual. At the end of gsText, *EXEC will stop and input will
revert to the keyboard.

The *EXECed file will appear to be double spaced because of the line
feeds put in when the program was LISTed. There will alse bpe a couple
of error messages caused by the *SPOOL commands at the start and end
of the file. These do not affect the operation of the merge command at
all. If you type LIST after the merge operation you will see the new
lines. Mote that if the main program has line numbers the same as the
"library' routine, the latter will take precedence over the former.

Machine code files

When a BASIC program needs teo call a machine ecode routine, it is
desiraple to have only the object £ile in memery, rather than the
source program. The usual way of doing this is to assemnble the file
using the ‘'assemble at P% or 0%' assembly option (see chapter on
assembly language in the Electron User Guide), and save the object
program with the appropriate execution and reload addresses. When it
has to be called, the object file is leaded at the appropriate place.

Page 38

FEEEEEEEEEEEE-

Chapter 4

Guppose there 1s a machine code routine which is about two pages (512
bytes) long. A convenient place te put it is at the top of RAM, below
the screen memory, Assuming MODE 4 is in use, HIMEM (and hence the
screen memory) will be at &58828. A convenient place to put the preogram
would pe at &5688. HIMEM should be moved down to accommodate the code.
The body of the source program will lock like this:

1908 DIM code &L288 object=55608
1218 FOR pass=4 TO & STEP 2

1920 Pi=object : O%=code

1838 [OPT pass

l#d4@ N\The source program

la5@ .entry

1455 M\The rest of the source
1368]

1878 HEXT pass

198d OSCLI"SAVE objProg "+STR$ coded™ "4+5TRST0R+" "+5TRSentry+" "+
STRS object

This uses the long form of the *SAVE command:
*SAVE <name> <start addr» <end addr> <executicn addr> <reload addr>

To use the code in another program, this seguence of instructions
would be used:

I8 HIMEM=E5680

1l@ *LOAD objProg 5680

329 CALL &5608,paraml®

338 REM and =o on

The load address doeesn't have to be specified as it was set to &5608
By the assembly program, but it is safer to make it expliecit, If the

object had to be called only once, and with no parameters, the two
lines:

338 HIMEM=&5G080
318 *objProg

would suffice., When the program returns, HIMEM may be reset to &5880.

Sequential files

Data used in BASIC preograms is obviocusly lost when the machine is
turned off. In order to provide a permanent record of variables, the
tiling systems have ‘'seguential files'. A seguential file may be
regarded as an array of bytes, similar to the arrays dimensicned by
the special byte form of the DIM statement, The difference iz that
files lie on a medium such as disc er tape, and arrays are in the
computer's main memory. Only a section of an open seguential file (the
buffer) is loaded in at once. This provides rapid access to, usually,

256 bytes of the file. An open sequential file may be pictured as
follows:

Page 39

Chapter 4
e —————— e EXT bytes =——=————rm—cceo—sosssssmmme— >
| | | |
1 | 256 bytes | |
| | | n
| | &
I | Buffer in RAM | I
I I !
I 5 EXT
Start of file
(8] PTR

PTR is the seguential pointer which marks the 'current location' in
the file. It is set to # en an opening £ile, =so read and write
operations start at the beginning of the file. PTR is discussed in
detail later. EXT means 'extent' — the length of the £ile, There 13 a
BASIC function to return this value for an open £file. It 1is also
possible to alter the length of the file using machine code.

BASIC supports seguential files with various statements and functions.
Before a file may be used, It must be 'opened'. Once this is done, the
user may read characters from the file, write characters to the file,
or update existing parts of the file. There are three functions in
BASIC used to open files:
OPENIN - Open a file for Ilnput only. The file must exist already.
OPENUP = Open a file for input and output., The file must exist
already.
OPENOUT — Open a file for output., The file may be created by OPENOUT.

All three take a filename as an argument and return a ‘'channel
number'., This is wused in all subseguent dealings with the file. The
value of the channel number depends on how many £iles are open
already, but is always in the range 1-255. If an open Eunction returns
a value of B, the file could not be opened because, for example, an
OPEMIN file does not exist already. Here are some examples of files
being opened:

c%=0PENIM("datal™)
outChan%=0PENOUT("§.dat.newbata"®)
file=OPENUPdatas : IF file=@ THEN PRINT "Can't find ™;data$:END

The result of an open function is always assigned te a variable for
later use. Note that OPENOUT overwrites any file of the name specified
in its argument so it should be used with care.

If a new File is created by OPEMOUT, 65536 (64K) bytes will be
reserved Ffor it on the disc. If a file of the same name exists
already, the space allocated is the same as the length of the file.

§ingle-byte file operations

Once a file has been opened, it is possible to access single bytes in
it using the BPUT statement and the BGET function. For example, to
print the contents of a text file, the following program will suffice:

188 REPEAT

EEEREEEREEREEER

Chapter 4

118 INPUT *File name: "file§

12¢ file=OPENIN(file%)

139 UNTIL file<>d

148 REPEAT

154 charsBGET#file

168 IF char=&B0 THEN PRINT ELSE IF char<&2@ THEN PRINT *."t ELSE
PRINT CHRS {char);

1790 UNTIL FALSE

The program emulates the *TY¥PE utility mentioned in chapter 3. The
first repeat loop asks for a filename from the wuser, wuntil the name
glven actually exists. The second loop repeatedly gets characters from
the File and prints them out. Contrel characters are printed as "."
except Ffor carriage return (8D} which does a newlipe, Other

characters are printed as themselves.

The BGET functien acts in a similar way to the GET function. It
returns a character code between @ and 255, but instead of using the
keyboard, it uses the f£ile whose channel number iz given in its
argument., In common with the other filing system keywords which take a
channel number, BGET is always followed by a hash, .

There is a problem with the program above: when the end of the file is
reached, ie all of the characters in it have Deen read and printed, an
attempt to read more characters will generate the error "EOQOF' (end of
file). To overceme this, a function EOF is provided. This will return
TRUE if the last character of the £ile has been read, and FALSE
otherwise, Thus to make the program above terminate correctly, line
178 should be:
178 UNTIL EBOF#file

1n addition, after an open file is no lenger regquired, it should be
closed, This frees the area of memory set aside for its bpuffer, so
that another £ile may be opened. (The ADFS only allows 1@ files to be
opened at once). The last line of the program above should read:

188 CLOSEffile

Closing Eiles after use is especially important if they have been
updated (written to} or openced for output, as it ensures that the
puffer is copied on to the disc so that the file i3 kept up to date,

The BPUT statement writes a single byte to a file, The file must have
been opened for update or ocutput. For example, the program below
emulates the *BUILD utility mentioned in chapter 3:

12@9 REPEAT

leglg INPUT "File name: "Eilef

le2g file=0PENOUTLiled

1030 UNTIL f£ile<>d

194¢@ ON ERROR CLOSE#file: PRINT''"Terminated®: END
1g58 lipe=1

l1B6@ REPEAT

1a7@ PRINT RIGHTS ("@@@"+5TRS(line) , 40" Lies
1a6@ INPUT LIKE ""in$

1899 inS=1in5+CHRS (&3D)

llg@ FOR 1%=1 TO LEM[in$5)

111@ BPUT#Eile, ASC(MIDS(in%, i%))

Page 41

Chapter 4

1128 HEXT 1%
113@ line=linet+l
114@ UNTIL FALSE

The last four lines open the file for cutput. As mentioned above, this
will delete any £ile of the same name already present.

Line 1648 sets the ON ERROR action for when the user presses <ESCAPE>
to exit the program.

Line 1858 initialises the line number printed at the start of each
input line. The second REPEAT loop prints the line number, gets a line
of text, adds a carriage return teo the end, and writes the lines one
character at a time to the file, This continues until <ESCAPE> is
pressed.

It is clear that BPUT takes two arguments: the channel number followed
by the code of the character to be written to the fille.

BPUT, in common with the other sequential file statements and
functions, has two errors associated with it. 'Missing #' means that
the § character after the keyword was omitted, and 'Channel on channel
<nn>' means a channel number has been specified that does not
correspond to an open file,

Writing and reading BASIC variables

BGET and BPUT are useful when processing textfiles, but not so goaod
for dealing with the guantities available in BASIC, ie variables and
constants. The PRINT and INPUT commands have special forms for use
with files. Using them, it is possible to store values in files and
retrieve them later on. Variables of any type may bPe written to and
read from files. The example program below takes a list of ten names
and ages from the user and places them in a file called 'ages':

1a@@ chan=0PEHOUT("ages"”)

1418 FOR i%=1 TO 1%

laz2ad PRIMT "Hame, age number ";i%": ";
1g3@ INPUT ""name$,age%

1848 PRINT#chan,names, agek

1858 NEXT L%

1864 CLOSE#chan

It is clear that the special form of PRINT simply invelves adding
'$<channel>,' after the statement. When this is done, expressions that
would normally be printed en the screen are sent te the file (BASIC
actually uses BPUT to do this). This special form of PRINT may only be
follawed by a Llist of expressions, not print formatters such as TAB
etc,

After ten names and ages have been saved, the program above closes the
file as usual. The program to get the information back from the file
is as might be expected:

2800 chan=0PENIN("ages™)

2819 FOR i%=1 TO 1@
2028 INPUT#chan ,namnes, aged

Page 42

Chapter 4

2938 PRINT "MName: "names;TAB(28)"Age: ";agek
2048 NEXT i%

ZB58 CLOSE#chan

Again, putting '#<channel>,' after the INPUT statement causes the
variables to be read from the file specified rather than the keyboard.
BASIC uses BGET internally to do this. The usual INPUT prompts and
print formatters are not allowed in the special file form. Although
the cxamples abave use the same varfables in the PRINT and INPUT
statements, there is no requirement for this., Indeed, as the PRINTed
information may wuse arbitrary expressions it would be impossible.
BASIC will auvtomatically convert reals te integers and vice versa, the
relevant type conversions being performed auvtomatically. It is,
however, illegal to read back a string into a numeric variable, or
vice versa, so:

PRINT#Eile,"A string followed by ",anumber%
may not bpe subsequently read back in with:

INPUT#E£ile, anumberk, astrings

This would fail on two counts and yield a '"Type mismatch' error.

Variable formats in files

When BASIC puts data into a file wusing PRINT#, it does not simply
write the characters that would appear on the screen normally. (This
may De done by preceding a normal PRINT statement by a *SPOOL command,
though.) Instead, a compact internal format is used. Integers, reals
and strings are written as a type byte, followed by the data proper.
The three formats are: Integer, Type byte of &40 (64) followed by the
four bytes of the integer, most significant byte first. Real, Type
byte of &FF (255) followad by the four bytes of the mantissa (least
significant byte first) followed by the exponent. 5tring. Type byte of
&08 followed by the length of the string {(one byte) followed by the
characters of the string in reverse order.

Tho lengths of the items are therefore 5 for integers, & for reals and
LEN({a$)+2 for a string aS. This information is important when direct
access flles are used,

The program below goes through a file that has been created using
PRINT# called 'printFile' and prints the types of the data it finds
and the values.

19Rd Eile=0PENIN"printFile"

141d REPEAT

1829 type=BGET#file : PTR#file=PTRifile-1
1238 IF type=@ THEN PROCstr ELSE IF type=&d@ THEN PROCint ELSE PROCreal
L34@ UNTIL EOFEfile

1850 CLOSE#file

Ld6GY END

1879 DEF PROCstr

188 INPUTH#Eile,str$

1p98 PRINT "String"TAB(2@)strs

11@d ENDPROC

1114 DEF PROCint

L1288 INPUTEEile,inth

Lli# PRINT "Integer®TAB(2@0);int%

Page 43

Chapter 4

1148 ENDPROC

1158 DEF PROCreal

1168 INPUT§file,real

117¢ PRINT "Real™TaB(20):real
1188 ENDPROC

Line 1828 first reads the type byte of the next entry from the file,
then '"goes back' a byte in the file so that the same byte will be
read again by the INPUT§# statement, PTR$# stands for 'seguential
pointer', which is a mechanism provided by the ADFS for moving to
particular sections of the file. It is described in the next section,

The seguential pointer

Most of the f£ile handlin shown in examples so far has been entirely
*serial' in nature: the *TYPE-byte program reads characters from the
start of the file and continues until it reaches the end, and the
*DUILD-type program creates a new file and adds characters to it until
the user presses <ESCAPE». The last program in the previous section,
however, illustrates a very important property of sequential files:
the sequential pointer, This is used in ‘'direct' or ‘'random' access
£ile handling.

If a £file is regarded as the array of bytes mentioned above, then the
sequential pointer is the subscript of the current element., It is
accessed in BASIC through the PTR pseudo-variable. When a file is
first opened, its pointer is set to zero, and the lines:

file=0PENOUT"FILE™ : PRINT PTR#file

will print B, Every time a byte is written to or read from a file, PTR
for the file is increased by one. Thus after:

FOR i%=1 TO i@ BPUT#Eile, 1% NEXT i%

the value of PTREfile will pe 18, which implies that the next byte to
be written is the eleventh one in the file. It is also possible to
assign a wvalue to PTR, So that reading or writing ocours at a
particular position.

The seguential pointer is most useful with PRINTE and INPUT#-type file
accesses, It is often convenient to ftreat the file as a sequence of
records, where a record is a collection of fields, A field is Jjust a
value such as a string or number,

Consider a very simple stock control situation. The stock file would
be made from records, EBach record might consist of a part number, a
description, a guantity and a price, To access any record guickly by
its part number, we specify a fixed Ilength for each record, and
multiply the record number {which is the same as the part number) by
the record length. This gives the position in the file ({ie the PTR
value) of the desired record.

If we have a maximum description length of 15 characters, the record
length will ke (15+42) + 5 + &, remembering that strings take (2 plus
length) bytes, integers (the guantity) take 5 bytes and reals (the
priese) take 6. The record length is therefore 28 bytes, and te access

Page 44

BE &5 EEEEEE-

= =

Chapter 4

record {or part number) n, PTR must be set to 28*n. The program below
uses these filgures to give a very simple stock control database:

1398 HEM "Stock Control®

1818 recLen=28 maxRec=181R

l@2% MODE 7

1838 file=0OPENUP("stock™)

1048 If file=@ THEN

PROCcreate("stock™, maxRec*reclen): £11e=0PENUR ("stock™)

1868 REPEAT

1078 CLS

lpaa PRINT "''"1, Enter a record"''"2, Examine a recoerd""'"3. Quit"
194 PRINT" **Which one (1-3) *

l1gg REPEAT

1118 INPUT TAB(l6,18),choice

1128 UNTIL chelce>»=]1 AND choice<=3

1138 IF choice=]l THEN PROCenter ELSE IF choice=2 THEN PROCexamine
1148 UNTIL cheoice=3

1158 CLOSE#file

1168 END

1178

118¢ DEF PROCenter

1198 REPEAT

1288 CLS

1218 REPEAT

1228 INPUT TAB(®,3)"Product number®,pn%
1238 UNTIL pn%>=@ AND pn¥<=maxRec

1248 IF pn%=8 THEN 131@

1258 INPUT TAB(B,5) "Description®™,dss

1268 ds5=LEFTS (ds3, 15)

1278 INPUT TAB(®,7)"Quantity”,qn%
12886 INPUT TAB(@,9)"Price”,pr
1298 PTR#Eile=pni*recLen

13008 PRINTE#E11le,qn%,ds$, pr

1318 UNTIL pn%=p

1328 EWDPROC

1338

1348 DEF PROCexamine

1358 HREPEAT

1369 CLS
137@ REPEAT
l13ise INPUT TAB(H,3)"Product number”,pn%

139a UNTIL pn%>=@8 AND pni<=maxRec

1489 IF pn&=@ THEN 1589

l4le PTR#file=pni*reclLen

1429 type=BGET§Eile

1438 If type<»&48 THEN ds§="Undefined":qni=@:pr=0:60T0 1468
1L44@ FPTR#f£ile=pni*reclLen

1450 INPUT#Eile,gn%,ds$, pr

1460 FRINTTAB(@,5) "Description: "TAB{20)ds$
1478 PRINT'"Quantity:"TAB(20);4qn%

14889 PRINT'"Price: "TAB(28) ;pr

149 IF GET

1588 UNTIL pn%=8

1519 ENDPROC

1528

1530 DEF PROCcreate{fileS5,length)

Page 45

Chapter 4

1549 f£ile=DPENOUT(files)
15580 PTR#file=length
1564 CLOSE#file

1578 EHDEBROC

The call to PROCcreate is only made if a file called '"stock' does not
exist already. If it does, it is sgsimply opened for update. The
program®'s main loop prints a menu and perfoerms one of the tasks: enter
a record, examine a record or gquit. The examine procedure has to
detect if a valid item is at the record specified, It does this by
testing If the first byte of the record is &40 (the integer type
byte). If it is, the record is wvalid and its contents are printed,
otherwise a dummy wvalue is assigned and that is printed, PROCcreate
simply ocpens the filename given in file$ for output, sets the pointer
toe tha length (which will £ill the file from position @ to length-1
with zeros), and closes it again.

The extent of a file

The last property that may be asspciated with a seguential file is its
extent. This is another name for "length' and 1s accessed in BASIC by
the function EXT#. When a file is opened for ocutput its extent is set
te zero, and is increased as information is added to the file. Files

opened for update or input must already exist, and the extent is set
to the length of the file,

when a file iz closed; the current wvalue of EXT# is stored as the
file's length, and this value will be printed ocut when a *INFO command

is performed in the file. A freguent use of EXT# is to check that a
file to be *LOADed will fit into memory:

1@88 REM Example of using EXT#
1818 pufferLength=22802

1928 DIM buffer bufferLength
1@3@ REPEAT

184¢ REPEAT

lase INPUT "Filename to load ",file%
laag chan=0PENIN(£file5)
ia7eg UNTIL chan<>@

lagg ok= EXT#chan <= bufferLength

lase CLOSE#chan

lige IF HNOT ok THEN PRINT "Too large, sorcy”
111@ UNTIL ok

1128 OSCLI "LOAD "+file%+® "4+STRS buffer

Hote that when a file opened for update is appended so
sequential pointer becomes greater than 1its extent; the ADFS will
reserve more space on the dise for the £file, In particular enough
space will be allocated to allow the file's length to grow to the next
multiple of 64K bytes. If there are fewer than 64K bytes free aon the
disc, a 'Disc full' error will be given. If there is enough space, but
not Iin one contiguous area, a '"Compaction reguired' error will be
given. These errors can also occur when opening a file for output.

that its

Fage 46

3 E B EEEEEEEERER-

5. SUMMARY OF ADFS COMMANDS

This chapter describes concisely all of the ADFS * commands covered in

the first part of this guide. Each command is described by its syntax
(ie the form that it should take) and by 1its action. The minimum
aboreviation is alse given for each command. Several abbreviations are
used in the syntax descriptions, as follows:

<obspec> This is the pathname of a single cobject (no wildcards)

L *oghspac*> This is the pathname of a single object (wildcards allowed}
<listspecy This is the pathname of several objects (wildcards allowed)
<drvs This is a disc number (usually 8 or 1)

caddress> This is a save, load, reload or execution address

Other command-specific terms are used in some cases. All other text in
command descriptions should be taken literally, except round brackets
which enclose items that are optional. For example;

*LOAD <*obspec*>»(<address>)
This means that *LOAD is followed by a pathname that

wildecards (although only a single file is
optionally be followed by an address.

may contain
acted upon) and may

Pathnames may contain the following components:

t4drv> Any drive number given must be at the start of the pathname

5 This signifies the reot directory

3 This is another name for §

2] This means CSD, and should occur at the start of the
pathname

E This means 'the parent directory’

This is a wildcard standing for a single character

L This is a wildcard standing for up to ten characters

This separates parts of the pathname
Examples are:
*B.fred
tl.5.%. chi
tL e frad. jim*
g.dirl

*RCCESS <listspec> (E) (L) (W) {R) (*a.)

Changes the access permissions on
glven,
Example; *ACCESS book* LR

all <listspec> files to the letters

Fage 47

Chapter 5

*ADFS (*A.}

Selects the ADFS and tries to reinstate the previous state of the
ADFS, Also obtained by pressing <BREAK» and the A key together.
Example: *ADFS

*RACK [(*BAC.)

Sets the CSD te the previous directory, and wvice versa. Used for

freguent swapping between two directeries.
Example: *BACHK

*EYE (*BY.

Has exactly the same effect as *CLOSE, but is gquicker to type.
Example: *BYE

*CAT (<*obspec*>) (*.}

Licsts all of the files in the first directory found conforming to
<*gbspec*>, Default directory is CSD or '§' if there is no CSD. The
command may be written as *..

Example: *CAT $.lib*

*CDIR <obspec> (*CD.)

Creates a new directory called <obspeck.
Example: *CDIR $5.book.chl

*CLOSE (*CL.}

Ccloses all open segquential files, including *SPOOL, *EXE; and BASIC
OPENIN, OPENUP and OPENOUT Eiles. This ensures that the files are up

to.date on the disc.
Example: *CLOSE

*#COMPACT (<start pager<number of pages>} {(*CO.)

Compacts the disc, converting several areas of free space Into fewer,
larger areas. If present, <start page> is the page address that the
ADFS should use as warkspace and <number of pages® gives the size of
the wotrkspace it may use. The workspace area defaults to the current
SCreen memory.

Example: *COMPACT 1D 1@

*COPY <listspecr{*obspec*> (*COF.)

Copies the files conforming to <listspec? into the directory given by
C*gbspea*>.
Example: #*COPY * :1

*DELETE <obspec» (*DE.)

Deletes the single file <obspec>. Gives an error if the file is
locked, or if it does not exist already.
Example: *DELETE junk

Fage 48

HEEEEEER

Chapter 5

MDESTROY <listspec* (*DES.)

Deletes all of the (unlocked) files conforming te <listspec>, It asks
for confirmation before performing the deletion.
Example: *DESTROY temp.,*

*DIR _{<*ocbspec*>) (*DIR)

Changes the current directory to <%*obspec*>, Default is '$°',
Example: *DIR ".games

*DISMOUNT (<drv>}) {*DIS.)

Closes all sequential files en the drive specified. If CSD or CSL are
on that drive, the ADFS changes them to ‘unset', and they must be
reset using ®*DIR and *LIB respectively. The default <drv> is the drive
of the C5D (as printed by *CAT).

Example: *DISMOUNT

*EX (<®*obspec*>) (*EX)

Prints the *INFO data for all files in the directory <*obspec*).
Equivalent to *INFQ <*obspec*>.*. Default for <*sbspec*:> is CSD,.
Example: *EX 5

*EXEC (<*obspec*») [®E.)

If <*obspec*» is present, it opens this file and treats its contents
a5 hkeyboard input wuntil the file is exhausted. If <*obspec*> |is

apsent, the current *EXEC file is eclesed and Input reverts to the
keybeoard.

Example: *EXEC |BOOT

*FADFS (*FA.)

Selects the ADFS as the current filing system but does not attempt to
access the dise, so CBD and CSL are set te "unset'. Alsc obtained by
pressing F <BREARE>,

Example: *FADFS

*FHEE (*FR.)

Glives the number of used sectors on the disc and the number of free
sectors, Also gives the number of used bytes ané number of free bytes,
Example: *FREE

*HELP! (*H.]
Prints information about the ROMs in the system, The command

*HELF ADFS (or *HELP .)

will print a synopsis of the syntax of ADFS commands.
Example: *HELP

*INFO <listspec> (*I.)

Page 49

Chapter 5

Prints the information about all files conforming te <listspec?
Example: *INFD ~.%
*LCAT (*LC.)

Performs a catalegue functlen on the library directery.
Example: *LCAT

*LEX {*LE.)

Performs a *EX function of the library directory.
Example: *LEX

*LIB (<*obspec*>} (*LIB)

Sets the library directory to
gliven.
Example: *LIB @

¢*aphspec*> or to '$" if no directery is

#[OAD <*obspec*»(<address®) (*L.)

Loads the £ile given at <address> if this is present, or at the file's
own load address if not.
Example: *LOAD data 1F@@

*MAP (*MA.)

ir
Displays a list of addresses of free areas on the dise and the
lengthz. If thers are a lot of these, a *COMPACT should be executed,
Example: *MAP

*MOUNT (<dew>) (*MOUL)

Selects the drive given. Makes the CsSD '$' and CSL
similar to *DIR §, except that this doesn't affect CSL.
Example: *MOUNT A

'unset'., Very

#0PT1(,<n>) (*0.1})

Enables or disables the printing of files' *INFO when they are
agcussed. If <n> is @ or absent, messages are disabled. I[f <n> is 1
they are enapled.
Example: *OPT 1 1

*0PT4{,<n>) [*0.4)

i ‘ determines
This sets the auto—boot option for the current drive. <n»
what will pe done with the file® $.1BOOT' after a <SHIFT> <BREAK> {or
¢BHREAK> alone if the auto-poot action has been reversed):

<n» Action
0 Hothing
1 *LOAD IBCOT
2 *RUN IBOOT
i *ENEC !BOOT

Example: *0PT 4,2

Page 5@

BEEEEEEEEEEERER-

Chapter 5

*REMOVE <obspec> {(*RE.)

Delertes the single file <obspec> but does not display an error message
It the tile cannot be found.

Example: *REMOVE oldfile

*RENAME <obspec?<obspec> [*REN.)

Changes the File with the name of the first <ebspeck® to the name given
in the second <obspec». The names may be in different directories if

desired. '$' may not be renamed, nor may a directory be renamed to
refer toe itself,

Example: *RENAME temp newfile

*RUM <*obspec*:> ({parameters>) (*R.)

Loads and executes the file given by <*obspec*). The <parameters> may
be read by the program (see OSARGS in chapter 6). *RUN may be
abbreviated teo */ and {f the £filename does not correspond to a

bullt~in command, it may be executed with the command *<*obpspec*>,
Example: *RUN EFORM 1 L

*SAVE <obspeck<{startr<finish>{<exec>(<reload>}) (*5.)

Gaves a file with name <obspec»>. The £ile lies between addresses
<start> and <finish>~l inclusive. If present <exec> sets the execution
address of the file, otherwise this is set to the load <start>»
address. <exec> may be followed by a <relead> address which sets the
load address of the file (this defaults to the <start> address),.
Example; *SAVE data 1DE@ 1Fe@

*SAVE <obspec><startr+<length? (<exec? (<reload>)) (*S5.)

Similar teo the previocus command, but
at <start> and is <length> bytes long,
Example: *SAVE obj 3286+19P 498908 31648

the area of memory saved starts

*5PO0OL (<obspec>») (*SP.)

If <obspec> is present, this opens the file for output and all
subsequent screen output is wriltten to the file too. This continues

until *SPO0OL is executed without a filename, whereupon the file is
closed,

Example: *SPOOL output

*TITLE (<string>) {*TI.)

Sets the title of the CSD to <string* which may be up to 19 characters
long.

Example: *TITLE Elk+3 User Guide

Page 51

6. THE FILING SYSTEM ENTRY POINTS

So far, we have only talked about dealing with the ADFSE threugh *
commands or BASIC statements., However, assembly language programmers
also need some way of dealing with the ADFS and te this end six filing
system calls are provided to perform most of the operatiens described
so Ear (and more)., These routines may also be used from BASIC (using
CALL or USH) to provide facilities that aren't directly supported by
the language.

Through necessity we assume that you are already familiar with 6582
assembly language, as used on the Acorn Electron, and with BASIC's
puilt-in assembler, The descriptions of the filing system routines
given later in this chapter concentrake on the entry and exit
conditiens, se that you will know how to set up the 6582 register
before the routine is called, and how te Interpret the results It
passes back. The way in which BASIC uses each call is also mentioned.

The six routines are given names by which they are usually referred.
The names have no meaning te BASIC or the assembler, and so must be
defined explicitly in the program. This chapter includes several
examples of calling the filing system routines from BASIC and assembly
language.

Below i a table showing the filing system routines, their addresses
and brief descriptions of their function.

Hame Address Vector Function
OSFIND SFFCE &21C Open or close a file
OSGBFPE sFFD1 E21A fead or write a group of
bytes or directory
information
OSBPUT &FFD4 £218 Write a single byte to a file
QSBGET &FFDT &216 Read a single byte from a £ile
DOSARGS &FFDA 5214 Read or write file
information
OSFILE LFFDD £212 Load or save a complete file

In addition there are three more, general calls that are

sometimes used with the ADFS. These are:

purpase

OSWORD &FFF1 &28C Perform low-level ADFE
operations

OSBYTE &FFF4 &28A Parform miscellaneous
ADFS cperations

0S5CLI LFFFT7 5288 Issue a * command from
machine code

The column headed ‘'address' above glves the location of the

subroutine. This address is constant for all £iling systems, S0
performing an OSBGET uses exactly the same routine whether the
cassette Filing system, ADFS or netwark Eiling system ls selected.

address of the location in RAM that
actual routine, This part varies between
vector, the user may

The "Vecter' column gives the
holds the address of the
filing systems. By altering the contents of a

Page 52

B EEEEEESEEEEERER-

Chapter 6

lntercept any routine te change the way it performs. This 1s a wvery
advanced technique, and won't be described further in this guide.

Information may be passed to routines either through the 6582
reglsters (A, X and Y), or through a parameter block, which is simply
a block of memory locations whose address is held in X and ¥, The
general way of using the filing system routines may be outlined as
Follows:

Initialise the registers (and paramster block).

JSR osroutine
Use the results in registers (and parameter block)

hn example would be opening a file for input (like OFENIN):

LDX #name MOD &1E@

LDY #name DIV &l80

LA FEd8

JER osfind

5TA channel

. hame

EQUS "$.MYFILE"+CHRS% {&BD)

¥X points to the filename

For openin
{‘osfind" set to &FFCE)
Save the channel number

Filename string used by osfind
The first three lines set up the

performs
Lse.,

entry conditions,; the fourth line
the routine and the fifth line saves the result for later

The rest of this chapter is taken up by the detailed descriptions of
the £iling system calls. The abbreviations A, X and ¥ are used for the
registers of the 6542, and ¢, N, V and 2 refer te the status flags,
Sometimes X and ¥ are used to form a pointer (eg to a parameter
block). This 1s written ¥YX and the low byte of the address is always
in X.

OSFIND
Call address &FFCE {(indirects through &B21C).

OSFIND is used to open and close seguential files. See chapter 4 for a
description of sequential files from the point of wview of BASIC.
Opening a file obtains a channel number (or "handle') that is used in
all subsequent processing of the £ile,

Cloning a file tells the ADFS that it is no longer reguired for
processing, and the area of memory wused for its buffer can be
deallocated. On entry the value of A tells the ADFS what to do with
tho fille:

A=LQ@ Causes
Aepdd Causes
A=LBR Causes
AmECH Causes

file (or files) to be closed {(cf CLOSE)

file to be opened for input only {cf OPENIN)

file to be opened for output only {(cf OPEHOUT)
file to be opened for input and output (cf OPEHUR)

(- TR T 1]

For the close function, the ¥ register must contaln the channel number
of the file to be closed {as returned by a previous call to OSFIND).

Page 53

Chapter 6

If the channel number is zero, all currently open files will be
closed. (The command *CLOSE simply calls OSFIND with A=@8 and Y=8),

For the open functions, ¥X must contain the address of the string
holding the name of the file to be opened., The string should be a
pathname terminated by a carriage return character, When A=G548 or
A=&C8, the file must exist already and the name may contaln wildecards.
When A=&88, the file will be created if necessary, and the name must
not contain wildcards.

When a file is opened £for output only, a certain amount of space is
reserved for it on the disc. This iz 64K bytes If the file is a new
one, IE£ the file exists already, it will be overwritten but the space
it previously occupied on the disc will be used for the new file. On
exit from OSFIND, X and Y are preserved, ¢, W, V and Z are undefined
and D=@. The Iinterrupt state - is preserved, but interrupts may be
enabled during the operation.

For a close operation, A i3 preserved. For an open operaktion, A
contains the channel number, or zero if the file could not be opened,

BASIC uses DSFIND to perform OPENIN, OPENQUT, OPENUP and CLOSE.

Example: The program below obtains a filename from the user, opens the
file for output and sends the 256 characters with ASCII codes B-255 to
it. Finally it closes the file,

1@@@ REM Example of OSFIND from machine code
lpla@

1828 DIM code 180

1838 osfind=4FECE

1848 osbput=&FFD4

1d584 oswrch=&FFEE

1368 osword=&FFFl

1374 len=1d

1388 FOR pass=8 TO 2 STEP 2
1858 PY¥=code

11p@ [opt pass

1112 .eosfindExample

11z2@ lda #asC™z"

1138 jsr oswrch

114 lda #@

115@ ldx #inBlk MOD &1Q@
1168 ldy #inBlk DIV &18@

:REM maximum length of filename

Print the prompt

Input is OSWORD @
YX points to parameter block

1178 jasr esword

1188 beec noEscape

11494 bBrk He pressed ESCAPE
1284 EQUB 17

121@ EQUS "Escape”®

1224 EQUE @

1238

1248 .noEscape

1258 lda R&E@

1260 ldx #inBuff MOD &184
1278 ldy #inBuff DIV &lge
1288 jsr esfind

1298 cay

Open for output
¥¥ points to the filename

Put channel number in ¥

Page 54

5 = EEEEEEE-

Chapter &

130a ldx #@

FOR ¥=8 To 255
1318 .writeLoop -

13z2n txa A=)
1338 jsr osbput BPUTEY , A
1348 inx HEXT X

1358 bne writelLoop
1368 lda #@

137@ jmp osfind

1399

1480 .inBlk

141@ EQUW inBuff

1428 EQUB len

1439 EQUB ASC™ "

1448 EQUB 25%

1458

1468 .inBuff

1478 EQUS STRIMGS(len,"™ ")
l4gg]

1499 HEXT

1588 CALL osfindExample

Close the file
(Channel still in ¥)

% Parameter bleck for input
Pointer to input buffer

max length of filename

min ASCII

max ASCIT

Buffer for filename

OSGBPB
Call address &FFD] (indirects through &@21A.)

This routine will transfer a number of bytes to or from an open file,
and can also be used to obtain filing system information.

For data transfers, OSGBEPE acts like a series of calls to OSBGET or
O5BPUT (which only transfer a single byte at a time), but is much
faster., It also removes the necessity to set the file's sequential
polnter, as this may be set explicitly in the OSGBPE parameter block.

On entry YX points to a parameter block in memory. The contents of A
detine the operation te be performed.

A=5@1 Write bytes to dise, using new seguential Pointer value
A=EU2 Write bytes to disc, ignering sequential peointer

A=&P3 Read bytes frem dise, using new sequential pointer walue
A=&@4 Read bytes from dise, ignoring sequential peinter

A=&B5 Read the CS5D's title, boot up option and drive number
A=LBE6 Read the CED's drive and filename

A=LB7 Read the CS5L's drive and filename

A=5P8 Head filenames from the CSD

The two groups use the parameter block in different ways, and so they
Wlll be described separately.

The parameter block for A=&81 ko A=404 is shown below (the left hand

column shows addresses relative to the base address aiven by ¥X).

I_ﬁﬁ‘ | Channel number I |
. | | |
I 8l | Polnter to memory area used to transfer data | LsB |
I B2 | from/to I |

Page 55

Chapter &

B3
B4

MSB

a5
a6
a7
aa

Humber of bytes to transfer L&B

FE]
aa
2B
8c

Segquential pointer value to be used for LEB

transfer (if used}

MER

" EEEEERE

The seguential pointer wvalue given in bytes &89 to EOC replaces the
old seguential pointer value if the calls with A=&@1 or A=&B3 are
used, as if the appropriate 0SARGS had peen performed just before the
call. On exit A, X and ¥ are preserved. Z, N and V are undefined, D=8,
The parameter block is updated to show how much of the transfer
actually tock place, For example, if an attempt was made to read in
more bytes than were left 1Iin the file, the transfer would be
incomplete,

If C=8 on exit, the transfer completed successfully and all bytes were
moved. If C=1, the transfer ended before all the bytes were
transferred. The state of the parameter block, in all cases, is as
fallows:

= The channel number is unaltered.

= The memory pointer contains the address of the byte after the last
one to be transferred,

- The byte count is decremented to hold the npumber of bytes that
weren't transfierred. If C=8, this will alsc be =zero, 1E C<>3, it
will be non—zero.

= The seguential pointer will hold the current pointer of the file,
even if it was not used by the call.

For calls with A=&BS5 to A=&B8, the parameter block is:

! T I C5D master seguence number returned here : !
| 81 | Pointer to memory area used te transfer data to r LSR }
| B2 |

I 83 | | |
| 84 | | mMse |
| | | |
| 85 | Mumber of fllenames to read I LSB I
| 86 |

| 87 | For A=&P8 only I

88		mse
85	File counter (search begins with Eirst 1 LsB	
aa	file if this is zero) 1	
8B	For A=&fB anly	i
		mMse

Chapter 6

On entry,the data pointer should hold the address of the area of
memory in which the data must be stored. For A=&88, bytes &LB5-E08 hold
Lhe number of filenames to read {(remember that a directory contains at
mont 47 entries), and bytes &@9-&8C hold a pointer into the directory
of the next £ilename to be read. This should pbe used by setting it te
aero for the first call to OSGBPB and letting the ADFS update it. This
in necessary as different £filing systems interpret the directory
pointer in different ways. On exit A, X and ¥ are preserved, V, Z and
N are undefined, D=0. The information reguired iz read into the data
area, The data pointer is updated to polnt to the last byte of data
transferred.

For Amgfdf the file counter is decremented by one for each filename
read (so will be zero I1f they were all read), and the directory
poeinter is updated to point to the next filename to be read. If C=]1,
not all of the names could be read and the E£ile counter will be

non-zero, I[f C=@, all of the names were read and the file counter will
nlso be Zero,

The format of the data is:

For A=&L85

Length of title {one byte)
Title in ASCII (len bytes)
Start-up option (one byte)
Drive number (one byte)

For A=g&BG

Length of drive number (one byte, always &@1)
Drive number in ASCII {one byte)

Length of C3D pathname (one byte)

CED pathname in ASCII (len bytes)
For A=&B7

hs for A=EP6 but refers to CSL

For A=&LBS8

Length of first name (one byte)
First name (len bytes)

Length of second name (one byte)
Second name (len bytes)

Hone of the BASIC filing system commands use OSGBPE,

Example: Below is a listing of a BASIC program to print ocut the files
in the currently selected directory using OSGEPBE:

i:?g HEM Example using OBGBPFB to read the directory
1820 osybpb=&FFDL

18380 DIM parBlk &8C
1849 DIM Elilename 18
1850 AR=8

168 Xi=parBlk MOD &10@
1878 Y%=parBlk DIV &1P@

1REM parameter block for OSGEPE

tREM Buffer for filename

:REM OSGBPBE B reads filenames

+REM YX points to the parameter block

Page 57

Chapter 6

12848

1898 parBlk159=8

1128 REPEAT

111@ parBlk!l=filename
1128 parBlkl5=1

1138 CALL osgbpb

1148 IF parBlk!5<>1 THEN PROCprint :REM Print if it read
1158 UNTIL parBlkl5=1 tHEM Carry on until last one read
1168 END

1178

1188 DEF PROCprint :REM Print the filename

1198 FOR i%=1 TO Pfilename

l2eg VDU filename?i%

1218 HNEXT

12280 PRINT

1238 ENDPFROC

tREM Start from first f£ile in the dir

+REM Point to filename buffer
tREM Head one filename

Example: The program segment below reads 128 bytes from the file whose
channel number is in 'chan' to the area of memory whose address if
'putfer’.

The file must be opened (&g pefore the
routine is used,

using chan=0FPENIN*myFile®™)

2800 DIM block &BC, buffer 188

2018 osgbpb=&FFD1

2028 7Tblock=chan

2038 plockll=puffer

2048 plock15=128

2858 AR=4

2060 X%=block : Y%=block DIV &13@

2879 CALL osgbpb

2088 If block!5 THEN PRINT ®"Incomplete transfer"

OsSBPUT
Ccall address &FFD4 (indirects through &AZ218).

This routine writes a single byte to an open file.

On entry A contains the bDyte to be writtem; ¥ contains the channel
number, as returned by a previous OSFIND. The byte is written to the
point in the file determined by the sequential pointer.

on exit ¥, ¥ and A are preserved, C, W, V and I are undefined, The
interrupt state is preserved, but may be enabled during the call. The
file's seguential pointer 1is incremented. If an attempt is made to
write past the end of the file (its extent), more space will be
allocated if possible, so that the file may grow. The new extent will
be written inte the file's catalogue information when Lt is closed.

The BASIC statements BPUT# and PRINT# use the OSBPUT call.
Example: See the example for OSFIND for a typical use of DSBRUT.

OSBGET

Call address &FFD7 (indirects through &B216).

Page 58

EEEEEESEESEREER

Chapter &

This routine reads a single byte from an open file.

On entry ¥ contains the f£ile's channel number, allocated by a previous
DSFIND. The byte is read £rom the point in the file determined by the
sequential pointer.

On exit X and ¥ are
are undefined.

preserved, A contains the byte read, N, V and Z

If C=1 on exit, the last byte in the file has already been read (by a
previous OSBGET or OSGBPB) and the character in A is invalid. If a
further attempt is made to read from the file, the error "EOF' will be
generated. C=8 implies that the end of the file hasn't bDeen reached
and the character is wvalid. The interrupt state is preserved, but may
e enabled during the call, The sequential pointer s incremented,

BASIC uses OSBGET in lts INPUTH# statement and BGET# function.

Example: The program below reads bDytes from a file whose channel
number is stored in location ‘chan' and sends them to the screen, It
acts as a much simplified verzlion of the *TYPE utility.

1294 REM OSBGET Example
l9l¢ DIM code 188

1328 osbget=&FFD7

1038 osfind=&FFCE

1948 osascis&FFE3

1358 chans&a7d

1l@68 FOR pass=@ TO 2 STEP 2
1A78 PY%=code

1pBe [opt pass

1898 .osbgetExample

1108 ldy chan Get the channel number
11183 .osbgetLoop

1128 jsr osbget Read a character

113 bes endD0fFile Passed the EOF

1149 jsr osasci Print the character
1158 jmp osbgetLoop Do it again

1168 .endOfFile
1174 lda #@
1184 jmp osfind
1194 1]

1288 NEXT

L1 INPUT "Filename to type",£5
1228 ?chan=0PENINES

L2338 CALL code

Close the file after use{chan in Y already)

OSARGS

Call address &FFDA (indirects through &B8214).

Thls is a dual-purpose routine: it reads and writes an open file's

sequential pointer and extent, and obtains general filing system
Ilnformatlon.,

On entry the type of function is determined by the value of Y. TIE this
in non-zero, it is taken to be a channel number, and A determines the

Page 59

Chapter &

operation to be performed on the £ile. If ¥=8, a general filing system
operation is carried ocut. In both cases, X must contain the address of
a block of four zero-page locations which will be used when reading or
writing data.

The case when ¥ is non—zero is described First, The operations allowed
are:

A=5B3 Read flle's seguential pointer (cf war=PTR#)

A=gBl Write file's seguential peinter (cf PTR#=var)

A=EP2 Head file's length {cE var=EXT#)

A=E£B3 Write file's length (not available from BASIC)
A=&FF 'Ensure' the file on to the disc (write its buffer)

For A=&B0 to A=tB3 the Ffour =zero-page locations polinted to by X hold
the data to be read/written, least significant byte first.

If ¥ iz zero then the
to the value in A:

followling operations are carried gut according

A=g@BP returns the type of Eiling system in A:

- No filing system currently selected

- 120@ baud cassette

~ 389 baud cassette

~ AOM pack filing system

- Floppy disc £iling system (DFS)

Econet filing system

- Teletext/Pestel Telesoftware [iling system
= JIEEE filing system

— ADFS

o]
L)
=31

0 =1 ch L B
1

o e

A=&Bl returns the address of the rest of the command line in the zero
page addresses pointed to by X (see example below).

A=4FF ensures all open Eiles onte the disc.

On exit ¥ and ¥ are preserved. A is preserved except for when A=sl@
and Y=&@8 on entry. C, N, V and Z are undefined, and D=@. The
interrupt state is preserved, but interrupts may be enabled during the
operation.

EXT#. Hote that whereas PTRE is a
EXT# is

BASIC uses OSARGE in PTRE and)
pseudo—-variable and may be used to read or write the pointer,
a Functien and may only be used te read the extent.

Example: The program below, when *5AVEd and then *RUN, will read the
rest of the command line and print it eon the screen, For example,
after running the program you could save the machine code with the
line:

OSCLI "SAVE PRINT "+5TR§ code+" "+ETRSTP%

If you then issue the command

*PRINT HELLO THERE

the string HELLO THERE will be printed on the screen.

Page 68

HE R EEEEE-

Chapter &

1408 REM OS5ARGS Example
1@l

128 DIM code 1088

LB#38 osargs=&FFDA

148 osasci=&FFE3

1858 osword=&FFFl

1968 cre&@D

1078 workSpace=ghB

1288 FOR pass=@ TO 2 STEP 2
1398 Pi¥=code

1148 [opt pass

1118 .osargsExample

11206 lda #1 Get the address of the command line
1138 ldx #workSpace at workSpace - workSpacet+d

11489 ldy #6

11508 J8r osargs

1168 .printLoop

1178 lda #5

118@ ldx #workSpace
1198 ldy #@

Read a byte from the line

1288 jsr osword

121@ lda workSpacetd

1220 jsr osasci Print the byte

1230 inc workSpace Increment to next character
1249 bhe noCarry

1258 inc workSpacetrl

12680 .noCarry

1278 cmp #cr Was it the last char?
1288 bne printLoop Mo, do it again

129@ rts

130@]

1318 HEXT

1328 OBCLI "SAVE PRINT "+S5TR% code+" "+5TRSP%
1338 *PRINT HELLO THERE

OSFILE
Call address &FFDD (indirects through 5212).

This routine performs actions on whole files, These are loading a file
lnto memory, saving a file from memory, and leoading and altering a
flle's catalogue information, On entry Y¥X ©points to an l8-byte
parameter block, The format of this parameter bleock is shown below:

Chapter &

| | [|
| 68 | Address of filename, which must end with | LSB

81	a carriage return I- MsB	
	I	
a2	Load address of file	LB
1 83		
1 84		I
85		MsB

| [L i |
| | | |
| 86 | Execution address of file | Lse |
I 87 | | |
| 88 | I I
| ag | | MsB |
| I L _I I
| | | |
| ax | Start address of data for save operations | LsB

| a8 | or length of file otherwise | |
| 8¢ | | I
| 80 | | MEB |
I | ____ vtass ARkl i
| | | |
| s | End address of data to be writkten {(ie byte | LB

| BF | after last byte) for save sperations, or |

| 18 | file attributes otherwise. [|
1-11 -1 | mMsB |
I I ! I

On entry A indicates the

are:

A=E0d

A=&s01

A=gB2

A=&R3

A=&E4

A=EBS

A=RBE

function to be performed. Possible values

~Save a block of memory as a f£ile using the information previded
in the parameter block. The file's catalogue information
{see A=5) will be written into the parameter block.

~Write the named file's catalegue information from the parameter
block to the file's entry in the directory.

-Write the named file's load address from the parameter bleck to
the Eile's entry in the directory.

~Write the named file's execution address from the parameter
block to the file's entry in the directory.

—Write the named file's attributes (see below) from the
parameter block to the file's entry in the directory.

—Read a named file's catalegue informaticn (ie load address,
execution address, length, type) Erom the Eile's entry in
the directory. The object type (see below) is returned in A,
the other information being written te the parameter block. (If
the object is a directory, defauit values are returned for the
catalogue information].

—Delete the named file (the file's catalogue information will be

Page 62

HEEEEERER-

Chapter 6

put into the parameter block).

p=&0T —-Create an object. This is the same as 'Save' (A=8) except that
ne data is transferred, This facility can be used to create
very large objects for opening for output only, overriding
the default length allecation of 64K and avoiding extension
delays and possible "Compaction reguired' errors.

A=&FF -Load the named Ffile., The address to which it is loaded is
determined by the least significant byte of the execution
address given in the parameter bleck. If this is zero, the
address given In the parameter block is used, otherwise the
file's own load address is used,

Opject attributes are stored in the last four bytes of the parameter
block. The most significant three bytes are undefined; the least

significant byte's biks, when set, have the following meanings:

Bit Meaning

a The file is readable by you

1 The file is writable by you

2 Undefined

i The object is locked for you

4 The file is readable by others
5 The file is writable by others
& Undefined

7 The object is locked for others

in ADFS, bits 4-7 are always identical te bits -3, In calls which
write the attributes of an ebject, all bits except @, 1 and 3 are
ignored, IE the object is a directory, bits @ and 1 are also ignered.
Mote that "others' in the above context means other users of, say, the
Econet filing system.

Object types returned in the accumulator are:

] Mothing found
File found
2 Directory found

On exit X and ¥ are preserved, A contains the object type, C, N, V and
are undefined. Interrupt status is preserved, but may be enabled
during a call.

BASIC uses OSFILE in its SAVE, LOAD and CHAIN statements.

Example: The program belew saves all of the computer's RAM from PAGE
Lo HIMEM (or more strictly speaking from OSHWM to the bottom of screen
memory) under the filename 'RAM',

ldde REM OSFILE Example
11|

1420 osEile=&FFDD

1830 nsbytﬂ=LFFF4

149 DIM code 188

1858 FOR pass=8 TO 2 5TEP 2
LdGld Pe=code

Page 63

Chapter &

_ Chapter &
1878 [opt pass OGWORD with A=&70 - Read the master sequence number and the status
1080 .,osEileExample by Le
1a9@ 1da §&82 Read high-order address -
11@a jsr osbyte 1 The master sequence number of the currently selected directory is
1118 ety loadhAddr+2 and store it in all four addresses placed in the location pointed to by ¥X. It is in binary decimal form
11z2@ stx exechddr+2 in the range @-399 inclusive. YX+l contains a status byte, structured
113@ stx startAddr+2 as shown below:
1148 stx endhddr+l I-
1158 sty loadAddr+3 Bit number Meaning if set
11448 sty exechAddr+3 a reserved
1178 sty starthAddr+3 1 Bad Eree space map
1188 sty wendhddr+3 2 *0PT 1,x flag — set if messages on
lign 1 Undefined
1z2p8 clc @ ade #l Read OSHWM 4 Undefined
1218 jsr osbyte i 5 Winchester controller present
1224 stx loadhddr Save it in load, exec and start r (7] The- tube is currently in use by ADFS

addrs. 7 THE Tube is present

1228 stx exechddr
1240 stx startAddr OEWORD with A=&71 - Read the free space (see *FREE)
1258 sty loadAddr+l
1268 sty exechddr+l The number of bytes of free space on the current drive is written to
1278 sty startAddr+l Lhe parameter block pointed to by X and Y. The wvalue given is a
1288 four-byte binary gquantity, LSB first. The number iz the same as the
1298 cle @ ade #1 Read top of user RAM first figure printed by *FREE.
1308 jsr osbyte
1318 stx endhddr and put in in end addr. OSWORD with A=&72 ~ Access the disc controller (reads or writes block
1324 sty endaddr+l of bytes to or from the disc)
1338
1348 lda #8 SAVE operation The parameter block is shown below:

135e ldx $fileBlock MOD &10@

1368 ldy #f£ileBlock DIV &l@@

| |

1378 jmp osfile | &g2 | Always zero 1 1
1348 | | I I
13598 .fileBlock I | o e %I L | |
1488 EQUW Eilename O5FILE parameter block | &@1 | Start address in memory of data source of | LSB |

1418 .loadaddr | &@2 | destination |
1420 EQUD @ | &3 | [|
1438 .exechddr | &Bd | | mMsB |
1448 EQUD @ | I) I I

145@ .starthddr I | e ¥ [
1468 EQUD B | &85 | Command block to disc controller (see belowd | I
1478 .endaddr | &@6 | I I
1488 EQUD 2 | 87 | | i
1499 | &0 | | |
1588 .filename | &ed | | I
151P EQUS "RAM"+CHRI&ED | &&n | | 1
1520] JRNY WO e e e Y | I
1538 NEXT ! | | |
1548 CALL cods : LdB : Data length in bytes | 1sa |
RAC | I
OSWORD | %00 | | |
| &HE | | ™Mse |

Call address &FFF1 (indirects through &B268C). | | Ly |
There are four OSWORD calls recognised by the ADFS, They all require At well as the parameter block shown above, varicus status bytes in
¥¥ to point te a parameter block. tho ADFS workspace are used (eg a byte For the current drive number),

antl no this OSWORD call will only work if ADFS is the currently

Page 64 Page 65

Chapter &

Selected f£iling system (the call should not be made otherwise), If an
error of any kind occurs during the executien of the command, the
error number will be returned in byte @8 of the parameter block (8
Will pe returned otherwise). Error codes are detailed later in this
description.

The command block is structured as shown below:

Bit
I I e T [[[| |
| Byte | 7 I & I 5 I 4 | 3 I 2 1 1 I a
| | | | | | | I |
| | | | 1 [
| &85 | B | B | @ | Function code
i | | | | [
| | | | 1 I
I &6 I X ! X | X | Disc address (MzB) |
I | |

| [|
&87	
&8	Disc address {LERB)
: EBD : Sector count |

1] valla]
| | |
| &8a | Unused (set to B) |
| I |

The three bits marked X X X in byte &35 are BRed with the current
drive pumber to give the drive number to use, So if the current drive
is @, then any drive may be used by putting its number in these three
bits. Alternatively, 1if the three bits are set to zero, the currant
drive will be used.

The function code field has these possible values:

Value Meaning
EAS Fead the sectors
QA Write the sector

If pyte &@9 is non-zero [t is used as a sector ceunt, and the data
length parameter (bytes &@B-&PE of the main parameter block) is
ignored.

For example: to read &1234 bytes starting from sector number &B@B567
of the current drive, loading into memory at location &FFFF3808 (high
bytes FFFF indicating the host machine), the parameter block would he
et up as shown below.

Byte Value Meaning

L LA Controller number

&A1 L0868 Load address (LS byte)
52 &£38

83

&FF

k@4 LFF Load address (MS byte)

Fage b6

I B = = B B =

Chapter &

RS QB Read command

E@6 &8 Pisc address (MS byte)
BT &85

&H8 &67 Disc address (L5 byte)
LB9 &80

A ER@

QB &34 Data length (LS byte)
EOC 813

EOD =08

LQE LA Data length (M5 byte)

This call, 1f made immediately after a disc errer of some kind
{including a data BLCOC in sequential filing) returns errcor
information (in the parameter block) as follows:

Byte

| I T |
| s@@ | Disc address where error occurred, (Lse) |
| &8l | including drive number in three M5 bDits |
| 82 | of byte B2 MSB) |i
I I L I

&83	Dizc error number, top it set = wvalid address
	- i [
	[
&84	Channel number of file whare error occurred E
	-

Thus if the value of byte &@3 has [ts tep bit set, the lower seven
bits contain the error number and the first three bytes contain the
disc address where the error was detected. If byte three has its top
bit unset, byte &B4 contains the channel number on which the error
pecurred and the disc address is invalid,

OSBYTE
Call address &FFF4 (indirects through &@28A).

Thers are several OSBYTE calls that can be used with the ADFS. These
are described in this section.

OGPEYTE with A=&77 — Close the *5P00L and *EXEC files

The command *CLOSE will clese all files, including the *SPOOL aqd
AEXEC ones. However, it is sometimes desirable to ensure that there is
no *SPOOL or *EXEC file active without affecting other open fliles.
This OSBYTE may be used, either as an *FX command or as an OSBYTE from
machine code, Examples are

*NLlY

an o command and from assembly language:

Lt lda #&77
118 jsr osbyte

OLBYTE with A=&7TF - Check Efor end of file

Fage &7

Chapter &

This call is only used from assembly language as it returns a result
in the X register. (It could be used from BASIC wusing the USR
function, but EOF# provides a more convenient way of detecting the end
of a Eile), On entry, & should contain &7F and X (net ¥ as normal)
should contain the file's channel number. On exikt, X will be non=gero
if the end of the file has been reached; or zero 1If not. .

Since OSBGET and OSGBPB indicate the end of file when they are called,
this O58YTE is not needed wvery often, It is provided so that language

such as BASIC can provide an end of file function {EOF#). Below is an
example of the routine being called from assembly language:

2@lp lda #&7F

ZR2e ldx chan

2838 jsr esbyte

2a4p txa

2858 bne eaf

2868 % rest of code
2878

2388 ,eof

231e % end of file code

OSBYTE with A=&8B - Perform a *QPT command

This call provides the eguivalent functioen to *0PT from machine code,
For the command

*OPT CHP Y2

the X register would contain <x», ¥ would contain <y» and A would
contain &8B, For example, to enable file infermation to be printed
when files are accessed (with *OPT 1,1), this would be executed:

3230 lda #&8B

3240 ldx #1

1z58 ldy #1
3268 jsr osbyte

OSBYTE with A=&3F and X=&12 - Start up a filing system

This call may be used Erom assembly language or as a *FX command to
select a particular filing system. As a command it has the form:

*FX143,18,<filing system>

where <filing system> is the number given in the description of
OSARGS. For example, to select the Econet flling system, the command:

*Fy143, 18,5

could be used instead of the much more convenient *NET, However, from
assembly language, it is often easier to use the OSBYTE rather than a
* command to select a filing system. For example, to select the ADFS:

2138 lda #&3F
214a ldx §18

Page 68

Chapter &

2158 ldy #8
2168 jsr ocsbyte

Wokte that only filing sSystem numbers 4 and above may be selected using
this method.

OSBYTE with A=&FF - Set BREARE/ADFS options

This call is used to read and write the BREAK/ADFS options byte. This
byte is used when <BREAR> is pressed and when the ADFS is entered, It
controls: the display mode used after <BREAK», whether an auto-boot
requires <SHIFT> to be pressed or not; what "stepping speed' the disc
drives use, and whether write precompensation is applied when storing
data on disecs.

The eight pits of the byte have the Eollowing meanings:

BITS @-2 The display mode to use after <BREAK». This is a
three—-bit number between @ and 7. The default is 7
{which is the same as MODE § on the Electron).

Bie 3 Auto-boot. If this bit is 1, pressing <SHIFT> <BREAK>
will vause the filing system (eg the ADFS) to auto—boot
({do something with the file "!BOOT'), and pressing
<BRERK> alone will pot cause an auto—~boot. If the
bit is zero, the action is reversed and pressing just
{BREAK>» will cause the auto—boot action. The default
is <«SHIFT> <BREAK» to cause an auto-boot.

Bits 4-5 These select the speed at which the read/write head
of the disc steps between tracks. The possible values
are:

1 1 6

1 2 12
2 1 28
a [} ip

The default is 6mS,; suitable for the fast PLUS 3 drive.

it @& This selects whether write precompensation is reguired
when writing data to the disc. A value of 1 means it is
required and @ means it isn't. The Plus 3's 3.5 inch
drive does require write precompensation, and the
default value of the bit iz 1.

Bit 7 This is wnused by the current Electron operating system
and the ADFS.

When <CTRL> <BREAK> is pressed, the byte is set to &FF, s0 all of the
uptions are reset te their default wvalues.

To set the value of the byte, a *FX255 command may be used. For
example, suppose it is required to set the start-up mode to 3 and the
llac speed to 12m5 with write precompensation. The values of the bits
Ao

Page 69

Chapter &

Bit 765432108
Value g11al1le1ll

This i= &6B in hexadecimal or 187 in decimal. Thus the regquired
command is:

*FX255,1a7

The options will pe remembered wuntil the machlne is switched off, ot
<CTRL> <BREAK>» is5 pressed. Fram assembly language, the code is:

LDA #&FF
LDX k&6B
LDY #@

JSR OSBYTE

To read the current option from BASIC, the UER function must be used
as follows:

lege A%=&FF

1ald x&=8

1929 ¥Y%=&FF

1930 X%=(USR &FFF4 AND LFFOB}/E1P0

%% will contain the value of the options byte. From machine code the
equivalent is:

LDA #&FF
LOE #@

TAY

JS5R OSBYTE

the X register will wcentain the options byte, It is also
:E:Eiﬁfit'ta set %he options using one of the ukllity programs
{*SETPARAMS) menticned in chapter 3. The program performs the *FX call
automatically in response to answers given by the user. It also
creates a file called 'BootParams' which will set the option byte when
ayxecuted, A call to this file may be ipcluded in a '1BOOT! *EXEC file.

0O5CLI
Call address &FFF7 (indirects through &AZAB)

This routine has only one entry condition: YX peints to a command
string terminated by a carriage return. The string will be passed to
the operating system and thence to the ADFS if necessary, exacply as
if it had been bLyped as a *command In BASIC. On exit, all registers

are undefined.

i he
The program below prints a * prompt, accepts a line of input from t
keyngarg and sends this to 0SCLI, until <ESCAPE* is press%d, or
<RETURN> at the start of the line. Wote that commands set to OSCLI do
not require a * at the Eront: this is just a marker used ba let BASIC
know that an operating system command has been entered,

1gg@ REM Example using 05CLI
lalg buffLen=EB :REM Length of input buffer

Page 78

Chapter &

l#de DIM code 102 tREM Space for the machine code
l@3d DIM buffer bufflen :REM The space for the input buffer
LP4d osnewl=&FFET :REM MOS entry points

LA4® oswrch=&FFEE

LG osword=&FFFl

LPp78 osbyte=&FFF4q

1ABY oscli =&FFF7

1899 FOR pass=@ TO 2 STEP 2

1188 Pi¥=code

111¢ [opt pass

1120 .oscliExample

1138 lda #aSCh=" Prompt with *

1148 jsr eswrch

11%@ ldx #inBlock MOD &l@4 Get a line of input using OSWORD @
116d ldy #inBlock DIV &1@d

L1748 lda #@

1188 jsr osword

1199 pes escape ESCAPE was pressed

L2498 Lya
1218 peq exit Wull line, so exit
1220 ldx gpuffer MOD &108 Point ¥X at the command string

1238 ldy #buffer DIV &1@4

L2498 jar oscli Execute the command
1258 jmp oscliExample Do it again

1268 .escape

1278 lda #&7E
1280 isr osbyte
1298 jesr osnewl
1380 .exit

131@ rts Return to the language
1320 .inBleck

1338 EQUW buffer
1348 EQUE bufflLen

Acknowledge the ESCAPE

Print a newline

OSWORD @ parameter block

135a EQUEB 528 Min aseii
L 3ad EQUEB &FF Max ascii
1378]

1388 NEXT

139¢ CALL code

Hote that any * command may be executed and if an error cccurs (eg you
tLry to load a file that doesn't exist), the program will return to
BALGIC which will print the errer message.

Page 71

7. ERROR MESSAGES

In this chapter all of the ADFS error messages are explained. The
error codes associated with the errors are also given, These may be
used to trap certain classes of fault in a BASIC ON ERROR routine. For
example, te trap a ‘'Bad command' error, a program might contain the
lines:

1@ ON ERROR GOSUB 2388

CRCIC R

238@ IF ERR=&FE THEM PRINT "Illegal command, try again™ ELSE VDU 7
231¢ RETUHN

This causes the prompt which asks the user to try again to be printed
if the error number is &FE ('Bad command'), or the bell to be sounded

otherwise {indicating that the user has pressed CESCAPE>, for
example}.

Errors in alphabetical order
hborted (Error &92)

Something other than YES {or ¥es, or yes, etc) <RETURN> has been typed
in in response to a confirmation prompt, eg

Destroy?

Access vieolation (Erreor &BD}

An attempt has been made to read (or load) a file with the 'R'
attribute not set, or to write to a file with the "W' attribute not
set. An associated error is ‘Locked’, which is caused by an attempt to
averwrite a file with its 'L' attribute set,

Already open [(Error &C2Z)

An attempt has been made to delete {or save a new versien of) a file
which is open for seguential access, It also cccurs 1f an attempt is
made to open a file which is already open {unless both 'opens' are for
input only). Use *CLOSE (or CLOSE#® from BASIC) to ensure that all
files are closed.

Already exists (Error &C4)

An attempt has been made teo create a new object with the same name as
an already existing object. This includes *CDIR and *RENAME but not
*SAVE or BASIC's SAVE, which will overwrite the existing file (as long
as it isn't locked).

Bad command (Error &FE)

The command given was not recognised by the ADFS, ner was it found as
a utility in the CSD asr the current library. This can occur after
*RUN, */ or just *<*ogbspec*l:,

%

Chapter 7

Bad Fs map (Errer BAD)

Either the ADFS's workspace in RAM has been corrupted, or dise sectors
or 1 are corrupt. If you get this, try <CTRL» A <BREAK>. Tf the
error still occurs, the disc has become corrupt and you should discard
{t and start using the backup. You did keep a backup, didn't you?

liad name (Error ACCH

An illegal filename was used, ife ene including % (dollar) or : (colon)
outslide the context of a root specification, or with a zere length
component of a pathname, or other special characters in the wrong
context; eg

*E¥ 55 *DIR FILE:ONE *DIR DIR..XDIR1 *EX AEB *EX A B

Bad ept (Error &CB)

An invalid argument has been assigned to a *OFT command, The enly
valid numbers that may £ollow a *OPT are @, 1 and 4.

Bad parms (Error &24)

Invalid parameters were given with a YCOMPACT command to specify the
RAM area to be used., The start page specified should not Bbe below
BASIC's PAGE pseude wvariable, and the length should not cause the
upper limit of the area to be greater than &3R@8).

Bad rename (Error &B@)

An attempt has been made to rename a directery in such a way as te
produce an illegal directory structure, eg

*REMAME A A.B
se that directory A contains a reference to itself, This is illegal.

Bad sum (Error &AA)

Some of the informatioen which the ADFS keeps in RAM has been
corrupted, which prevents the ADFS from being able to close a file or
read or write to it. The system must be restarted by a hard break.

iroken directory (Error &AS)

An attempt has been made to access a directory which is in some way
corrupt and as such should not be accessed. It may be possible to
recover from this errer by pressing <CTHL> A <BREAK>», but 1f the error
i5# glven repeatedly the disc is in an inconsistent state and should be
reformatced if possible,

Can't delete C5D (Error &96)

Afi attempt has been made to delete the currently selected directory,
which is ifllegal.

Chapter 7

Can't delete library (Error &97)

An attempt has been made to delete the which is

illegal.

current library,

Channel on channel <nn*» {Error &DE)

A seguential file operation has been attempted with an unassigned file
handle, ¢nn> is the illegal channel number in decimal. All seguential
file operations should begin with the file being opened (using une_uf
the BASIC functions or the call OSFIND) and end with the file being
elosed (with CLOSE or OSFIND with A=@).

Compaction reguired (Error &38)

& creation operatien (eg SAVE, *CDIR,
disc where the free space has become too fragmented. IE you *COMPACT
the disc, many small areas of free space will bDe combined into Eewer
larger ones, one of which should be large ensugh to hold the new file.
You might have to issue more than one *COMPACT command before a large
encugh area becomes avalilable.

*C0PY) has been attempted on a

Data lest on channel <nn» (Error &CH}

This is given when a hardware or RAM problem occours when the ADFS is
accessing a seguential file. <nn» is the channel number of the
affected file in decimal. You should issue a *CLOSE command and reset
the system.

Dir full (Error &B3)

An attempt has been made to create a new object in a directory already
containing 47 entries, which is the maximum number it can hold. This
limit should not be a problem because of the way directories may
contain other directsries which may also contain up to 47 entries.

Dir not empty (Ercor EB4)

An attempt has been made to delete a directery which still contains

objects. You can't do this as it would leave flles on the directery
which can't pe accessed by a pathname.

Dise changed (Error &C8)

A disc has been accessed without being *MOUNTed or selected using

*OIK. Before a disc is removed from a drive, it should be *DISMOUNTed.
Then when another disc is inserted, it should be *MOUNTed to ensure
that the ADFS knews that the disc has been changed.

Disc errar <nn? at:<drv»/<sector number> [(Error &C7)

A fault on the disc was detected by the disc controller during the
last operation. <nn» is the error code, <drv> iz the drive number,
¢sector number® is the start sector number (all in hexadecimal) of the
file in which the error was discovered (if appropriate), Some error
codes are:

Page 74

Chapter 7

48l = Cyclic redundancy check error
50 = Secter not Eound

Hh1l -~ Bad address

G} = Volume errorc

6% - Bad drive

67 - Bad command

{the error codes are hexadecimal values, the same as would be returned
by an OSWORD &73 call). Errors 48 and 5@ are not recoverable - the bad
snrea of the dise should be made inaccessible by renaming the file
peing accessed to, for example, 'badfile'. Alternatively, as many
files as possible should be copied on te a good disc and the old dise
reformatted,

The other errors are all traceable to errors in the command block of
an OSWORD &72 call - in particular, errers 61 and 63 indicate that an
attempt was made to read off the end of the disc.

Disc full {Error &CH)

There is not enough free space on the drive to carry out the requested
operation. This includes *CDIR, *SAVE (and BASIC's SAVE), and opening
new files or extending existing files. When this happens you should
format a new disec and move some of the files from the full disc on to
ik, They can then be deleted to obtain mere free space.

Note that a new file opened for output requires at least 64K bytes to
be free on the disc. Also, when a Eile opened for update is extended
{by setting its peinter past its extent) extra space is5 allocated to
the file making its length a multiple of 64K bytes. IE there is no
room for this, "Dise full' will be given.

Disc protected (Error &C%)

An attempt has been made te write ke, or to delete a file on, a dise
with the write protect tab in the ‘'protected' position. It may be set
o 'unprotected' by sliding it te the opposite side with, for example,
a pall-point pen (3.5"), or removing the write protect label [5528%),

EOF on channel <nn* (Error &DF)

This occurs when an attempt is made te read a byte (using BASIC's BGET

or OSBGET or OSGEBPBE from machine code) from a £file whose end has
already been reached, The end of file condition {s lndicated by the C
flag being set on return from OSBGET or OSGBPB. You can check fer the

#nd of a given file using OSBYTE &7F (or EOF$# in BASIC). The channel
number <nn> is in decimal.

Locked {(Error &C3)

An akttempt has been made to remove, rename or overwrite an object
which s locked., Use ®ACCESS to unlock a Eile. Note that directories
ara locked when they are created; normal files aren't,

Map full (Error &99)

The [ree gpace map is full, le there are 88 address/lenyth entries in

Page 75

Chapter 7

it. The disc should be *COMPACTed te reduce the number of entries,
otherwise it may not be possible to save further information to ik,

Hot found (Error &DG6}

The object referred to was not found. This could bpe given in response
to a *DELETE {but not *REMOVE) or *LOAD. It may also be given when no
filenames are found to match a wildcard specification in a command
such as “IKFO.

Not copen for update on channel <np* (Errer &C1)

An attempt has been made to write to a random access file which is
only open for reading. <nn> is the channel number in decimal, If you
want to update an existing £ile, OPENUF (OSFIND with A=kCE} should be
used. If you want to write to a new file, OPENOUT (DSFIND with E=EBE)
should be used.

Dutside file on channel <nn» (Error &B7)

An attempt has been made ko set the pointer of a file which ig only
open for reading to a value beyond the end of the file. <nn> is the
channel number in decimal. Use OPENUP (OSFIND with A=&Cd) if you want
to extend a file by setting its pointer past its extent.

Tooe many open files (Errer &CB)

An attempt has been made to open an eleventh file. Only ten files may
be open at once, Always remember to CLOSE (OSFIND with A=&B8) a file
after use,

Wild cards (Error &FD)

A wildcard character ('*' or '"#') was found where a unigue object
specification is reguired, eg in "DELETE, *SAVE, *CDIR.

Won't (Error &%93)

An attempt has been made to *RUN a flle whose load address is
&FFFFFFFF, You are prevented from deing this as the chances are that
the address will 'wrap round' and some of the file will be written
over the start of the important workspace stored at location &8E8Q
onwards.

Errors in numerical order

Hex Decimal
L2 l46
L93 147
R4 148
R9G 158
&97 151
9B 152
£SO 153
&hB lab
&n0 169
SRR 178
LBO 176
LB3 179
&84 1808
&B7 183
EBD 189
sCA 192
&C1 193
&C2 194
&C3 195
ECY 196
ECE lag
&C7 199
&CB 288
ECH 291
ECA 282
ECB 243
&CC 284
EDG 214
&DE 222
LDF 223
&FD 253
&FE 254

Chapter 7

Aborted

Won't

Bad parms

Can't delete CSD
Can't delete library
Compaction required
Map Eull

Broken directory
Bad F5 map

Bad checksum

Bad rename

Dir full

Dir not empty
Outside file
Avcess violation
Too many open files
Mot open for update
Already open
Locked

Already exists
Disc full

Disc error

Disc changed

Disc protected

Data lost; channel
Bad opt

Bad name

Hot found

Channel

EQF

Wild cards

Bad command

Chapter B
8. TECHNICAL INFORMATION

253 Boot option number as set by *0OPT4d,<n>
General 254 Pointer to end of free space list
S 255 Checksum on free space map, sector 1
Sectors @ and 1 on & drive contain the total number of sectors on the The disc addresses and length are in sectors. The free space map is
drive, the boot option number, and the free sector gap list. Secters 2 atoered in BAM from E@EB@ to &@FFF when ADFS is selected, so the Eirst
to 6 inclusive are the reoot directory. I ree space pair is held at &AE@8, the second at &@E@3, and so on.

The free space map

Directory information

The free space map (F5M) is stared in sectors © and 1 on each drive. A directory consists of five

contiguous sectors on the disc drive
The format is:

{1289 pytes). The first byte of the first sector contains the master
naquence number for the directory. The pext four bytes contain the

Sector B text "Hugo' to uniguely identify the sector as the start of a
] Disc address of first free space (LS byte) directory.
1 Disc address of first free space
2 Disc address of first free space (M5 byte) The directory entry for the first file starts at the sixth byte of the
3 Dise address of second free space (LS byte) first secter. There may be up te 47 entries, each entry consisting of
4 Disc address of second free space 46 bytes as follows:
5 Disc address of second free space (M5 byte)
6 Disc address of third free space (LS byte] Mame and access string 18 bytes
% Load address 4 bytes
1 Execution address 4 bytes
: Length in bytes 4 bytes
etc for all other free space up to 82 entries Btart sector on drive 3 bytes
: Seguence number {(in BCD) 1 byte
: Total 26 bytes
246 Reserved
247 Reserved The top bits of the first four characters of the name contain the
248 Reserved

access £lags in the order 'R', 'W', 'L', 'D', Thus 1If you are reading
249 Reserved filenames straight f£from the directory instead of using OSGBPE, each

258 Reserved character in the name should be ANDed with &7F.
251 Reserved
252 Total number of sectors on disc (LS byte) Tho last 58 bytes of the directory are: one zero byte, a copy of the
253 Total number of sectors on disec master sequence number, 19 bytes of directory title, three bytes for
254 Total number of sectors on disc (M3 byte) disc address of the directory's parent ("), the filename of the
255 Checksum on free space map, sector P directory, and another copy of the four bytes 'Hugo'.
Sector 1
°] Length of first [ree space (L3 by te) The master seguence number is incremented every time the directory is
1 Length of first free space rawritten. When an entry is made or changed in the directory the
2 Length of first free space (M5 byte) entry's seguence number is set to the directory master sequence number
E] Length of second free space (LS byte} {which is then incremented).
q Length of second free space
5 Length of second Eree space (M3 by te) The currently selected directory is stored in RAM from &128@ to &1G6FF
] Length of third free space (LS byte) when ADFS is selected, The end of the list of entries is denoted by a
. @ in the first character position of the Eirst unused entry, hence the
- # after entry 47. A store map of locations &1288 to &16FF is shown
ete for all other free space up to 82 entries Lo low,
246 Researved
247 Reserved
248 Reserved
248 Reserved
258 Reserved
251 Disc identifier

252 Disc identifier

Chapter 8

ITTEEd | Master sequence number (in BCD] :
| |

| 1281 | Text to identify the directory 1
| 1284 | :
| I

| 1285 | First directory entry 1
| 121 | 1|
| |

| 121F | Second directory entry

| |

l |

I i End of last directory entry {
| I

| | 8 | Last entry marker l
I | I

{"garbage"')

| 16ce | @ | Last entry marker (dummy) 1
| | |

| 1ecc | Directory name

| 16D5 | Il
| |

|"16D6 | Farent pointer {LsE] |
| 1epd@ | {MSB) :
| |

| 16D8 | Directory title |
I 16EC] 1
| 16ED | Reserved

| 16F9 |

1 |

|"I6FA | Master sequence number (in BLCD)

| |

|"16FE | Text to identify the directory |
{ 16FE I I
|"1I6FF | Reserved :
| |

Lecation &1208 in the above example contains byte @ of the first
sector of the directory (secter 2 for directery $). Location &16CE
contains byte &CB of the fifth sector of the directory (secter 6 for
directory 5).

Version numbers

v 1:8 This is the original Acorn released with the Acorn Plus 3.

V 1:1 Released by PRES Sep. '"B7., ZY¥S5ysHelp, disc protect and

compact bugs fixed., Also, with extra software, 256k RAM

disc support in place of Winchester code.

As V 1:1 but leaves PAGE set to &E@8. Requires two banks of
sideways RAM.

=
=
b

Page B8

APPENDIX A

Fault finding

Thlis appendix describes some of the problems that may be encountered
when installing and using the ADFS or the Advanced Plus 3,

Failure of the hardware

When the ADFS / AP3 is added to the Electron, the start-up message
phould be;-—

Acorn Electron
PFHES ADFS
BASIC

%

1f the 'PRES ADFS' part is missing, something 1is preventing the
Electron from detecting the presence of the ADFS, This may be due to a
bad contact in the edge connector. After disconnecting the power and
other leads, remove the AF3, Clean the edge connector fingers at the
Dottom of the AP3 using a non~abrasive pencil eraser and a soft cloth,
Reconnect the AP3 and power up again. If the ADFS message still
doesn't appear, take the AP3 to your dealer or contact PRES.

If, when powering up, nothing at all is displayed on the screen, try
cleaning the edge connector as described in the previgus paragraph and
Lry again. Also, check that the Electron and Plus 1 starts OK without
the AP3 connected, If the Elactren and Plus 1 appears to be
tunctioning, and a blank screen is still obtained when the AP3 is
fitted, take the AP3 to your dealer or contact PRES, If ¥ou get a
blank screen without the APX, take both it, your Electron and Plus 1
to your dealer. Hever attempt te service the AP3, Electron or Plus 1
yourself, There are no user-serviceable parts inside, and you run the

risk of damage to the device and injury teo yourself by attempting any
repair,

Froblems when using the ADFS

The ADFE is a very complex piece of scoftware that can only be
understood fully after much use. Sometimes you will encounter a
problem, wuwsually in the form of an error message, which you don't
understand, This section describes common examples of these problems.

L. 'Bad program' after CHAIN or LOAD. This is caused by the file you
are trying to CHAIN or LOAD not being a BASIC program. Fer example,
tiying to CHAIN the machine code utility EFORM will cause this error.

2. *RUNM causes the machine to ‘crash', This is the opposite to the
last problem: the tile you are attempting to *RUN (or */ or *<file>)
ls not a proper machine code program, The exact effact of *RUNning,
Say, a BASIC program is indeterminate and you should press <CTHL>
SBAEAK> to ensure that the system is reinitialised properly.

3, '"Mo directory' ecror. This occurs when the ADFS has baen startad

Page 81

Appendix A

without accessing the disc (eg by *FADFS) and has no current
directeory. Typing a *DIR or *MOUNT command will cause a directory to
be read and the C5D to be set. Alternatively, typing *. will cause the
root directory "$' to be read in, and this may then be used even
though the C5D 1s still "unset',

4. Repeated 'Disc error's. This error occurs either when the disc has
not peen formatted, or when the disc has been physically damaged. IE
you are sure that the disec is formatted, then there may be a scratch
or fingerprint on the surface of the disc. In this case you should
format a new disc, copy as many files as possible on to it and then
discard the damaged disc,

If a 'Disc error' is given while you are using an external 5.25 inch
drive, there are two other possibilities: the disc has been inserted
the wrong way (this cannot be done with 3.5 inch dises), or you may he
trying to read or write to a disc that was formatted on a BBC
Microcomputer, using its DFS. This is not compatibple with the ADFS.

5. 'Not found' and 'Bad command'. These are often caused by the user's
not keeping track of the current 'environment', ie the CSD and CSL and
drive, For example, you may think that CSD is '5', and wish te go into
'$.pook' using:—

*DIR book
However, if the CSD is already ‘'book', this will cause a 'Not found'
error, as there is probably not a directory in "S.book" which is also
called ‘'book'. Similarly, 'Bad command' can be given because the
library directory is not what you think it is.

The best way to check on the current environment s to type *, or
*CAT, and <CTRL> A <BREMK> will ensure that CSDh fs '$' and CSL |is
either '5$' or a file that starts with 'S$.LIB" if one is present.

6. "Mot found' on <SHIFT> <BREAK», This occurs when an auto—boot is
attempted on a disc which has its beot option set to 1 when there is
no file called '$.I1B0OOT' on the disc. Similarly, if the option is 2 a
'Bad command' error may be given, and if the option is 3 a 'File not
found' error may be given., To prevent this, disable the boot action of
the disc by typing *OPT4,0.

(Hote that when one of the above mentioned errors 1is given, the
Electron will 'hang=-up', and vou must press <BREAK> to start again.)

7. Hon-appearance of the 'PRES ADFS5' message. This can happen after

running a pregram which corrupts the ADFS workspace f£rom leocation &E88
up. Examples are BASIC programs copied down teo this address (see
chapter 4) and certain Acornseoft cartridge programs. When <BREAK> is
pressed after such a program is run, the ADFS recognises that it is no
longer in a valid state and automatically prevents itself from being
selected. To re—enable the ADFS, type *FX2F@, 2 <RETURN» and then
press <CTRL> <BREAK», or turn the machine off then on.

Sometimes, the message 'Bad FS5 map' will pe given instead, and you
should press <CTRL> <BREAK> te start the ADFS again.

Mote that yeou can deliberately disable the ADFS, for example if you
want to run a tape—based game which is incompatible with the ADFS. See
*Disabling the ADFS' in Appendix C for details,

Page B2

APPENDIX B

Muthodn of calling the ADFS

Ao noted in chapter 2, there are many ways in which the ADFS may be
italled. When it is entered by pressing <BREAK», the setting of CSD,
‘il and whether the dise is accessed depends on the ether kKeys that
ate also pressed, and also whether the ADFS has already been used
filnee the last hard reset. Possible keys are A for *ADFS5, F for
*FADFH, <BHIFT> for auto-poot, . and <CTRL> for hard reset {as Iif the
machine had just been turned on}. MHNote that pressing <CTRL> and
CHHIFPT? Is equivalent to pressing only <CTRL>.

Thue table below gives the action for every pessible combination of
Knym.

After hard reset After a previous ADFS

CED CSL Disc? csDh CSL Disc?

<BREAK> Unset Unset No Prewv Prev Yes

COHIFT> <BREAK> 5 Unset Yes 5 Prev Yes
SCTRL> <BREARK> Unset Unsek HNa Unset Unset Ho
A <BREAK»> Unset Unset Ho Brev Preyv Yas

CLGHIFT> A <BREAK> § Unset Yes] Prev Yes
{CTHL> A <BREAR> 35 5 or LIB* Yes 5 S or LIB* Yes
F <BREAK> Unset Unset Ho Unset Unset Ho
CGHIFT> F <BREAK> Unset Unset Ho Unset Unset Ho
S<CTRL> F <BREAK> Unset Unset Ho Unset Unset Ho

*ADFS Unset Unset No Prev Prev Yes
*FADS Unset Unset No Unset Unset Mo

where C5D means "currently selected directory', CSL means 'currently

flolected library' and Prev means 'same as last time the ADFS was
aalected",

Although there are 22 different combinations, many of the
ponsibpilities are duplicated. The important things to note are:

Anything invelving *FADFS or the F Key will leave the CS5D and CSL
unset and will not access the disc.

Anything invelving <CTRL> <BREAK> is the same as switching the machine
.

Artlons involving *ADFS or the A key have the same effect as *FADFS

aftur a hard reset, or will restore the ADFS to its previous state if
Lt has been used since the last hard reset

Fage 83

APPENDIX C

The Welcome disc

You will have received a "Welcome disc' containing the ADFS utilities.
It's contents may be divided inte three sections:

1. The Welcome programs themselves. These are BASIC programs which
introduce some of the facilities of the Electron. They are described
in the Electron User Guide (the programs are also on the Welcome
cassette which comes with every Acorn Electron), To see a menu of the
Welcome programs, insert the disc into the drive, hold down <SHIFT>,
press and release <BREAHK», and finally release <SHIFT>.

2. The utility programs. We have already used two utilities, EFORM and
*®*DIRCOPY, There are several more on the disc., To see 2 complete list,
follow the instructions given earlier in Chapter 3.

3. The utility documentation. The instructions for using the utility
programs are alsc stored on the Welcome disc. They are accessible
through the wtilities menu described earlier. It is envisaged that the
instructions will only need to be consulted once or twice for each

utility, as the programs themselves provide gquite a lot of 'help' to
users,

Using the ADFS in MODEs B to 3

When a command that accesses the disc drive is f(ssued, and one of
MODEs @ to 3 is in uwse, the screen will go blank (or flicker) for the
duration of the access. More precisely, the screen will clear to the
current background colour. As soon as the access is completed, and the
drive light goes out, the screen will be restered to its former state,

The reason for this blanking is the wery high speed at which data is
transferred between the disc and the computer, In order to "keep up'
with the disc, the Electron has to "forget' temporarily about kKeeping
the picture on the screen. This only happens in MODEs @ to 3 because
these require more processing time than the others,

Another slide-effect of using the disc (in any mode} is that interrupts
are disapbled. The implication of this is that the cursor stops
flashing, and the Electron's timers (eg the one accessed by BASIC's
TIME pseudo-variable) are not updated. If you are using discs a lot,
you should not rely on TIME being accurate over long periods. Also,
sound processing stops, colours sStop flashing and the keyboard
{including the ESCAFPE key but excluding the BREAK key) is disabled.

Disabling the ADFS

Occasionally you will want to disable the ADFS and Plus 3. An example
is when you want to rum a game from tape which does not work with the
Plus 3 fitted., One way to disable the Plus 3 is to remove it Erom the
Electron, Howewer, repeated fitting and remoeving is not recommended,
g0 a '"software solution' is provided on the Welcome disc,

Page B4

Appendix C

SGtart up the ADFS by inserting the Welcome disc, holding down <CTRL> A
antd prossing and releasing <BREAK>. Then type the command:

*NOADFS

Whoen the red drive light goes out, press and release <BREAK>. the
'Pres ADFS' message will not appear, and for all practical purposes
the Plus 3 is noe longer active, The Electron can now be used exactly
an 1t was before the Plus 3 was installed.

Twe re-enable the Plus 3, simply switch the computer off for a second,
Lhoan switch it on again, or type *FX280,2 <RETURN> then hold down the
LCTHL> key, press and release <BREAK», and then release the <CTRL>
kwy, The ADFS will reappear.

INDEX

*ACCESS —47,3,17
Adding vutilities =32
*aDFS —48,2
ADFS5 messages -2
Assembler —-38,52
Attributes -63
Auto=-boot -27

Backing up =31
*BACK —48,3,18
1BOOT Eile =27
BGET# —48
Blanking screen -84
Boot option =69
BPUTH# -48
BEREAK options =69
Buffer -—-48
®pYE —48,26

Capacity -5
*CAT —-48,3,7
*CDIR —-48,3,6,15%
CHAIN =35
Changling discs =30
Changing filing systems -3
Channel number —48
*CLOSE —48,3,29
CLOSE# -3,26,41
Commands -2
command abbreviations —47
Command summary —47
*COMPACT —48,3,29
tCOPY -48,3,22
Creating directories =15
CsD =-4,8
C3L -11

*DELETE —-48,2,28
*DESTROY —-49,2,21
*DIR -49,3,8
SDIRCORY -31

Directories —4,79

*DBISMOUNT —49,2,30
pocumentation =32
Downloading BASIC pregrams -36
Drive numbers —1@

*EFORM -31
EOF§ —-d1
Error messages -72
*py =-49,3,14
*EREC =49,3,25
Execution address =13
EXT# —46

*FADFS —49,2,4
Filename -5
Files -4
Filing system initialisation ~-83
File attributes —63
File permissions =16
Formatting -31
*FREE -49,3,28
Free space map —2%

Hard break/reset —4,83
SHELP -49,3,26

Hierarchy =6

Hugo -T2

*INFD -49,3,13
INPUTH =42
Installation -85
Internal directory format =79
Interrupts -84

*LCAT -50,3,13

*LEX =58,3,14

*LIB -58,3,11

Library directory =11
List specification —-47
LOAD -34

*LOAD -58,2,19

Machine code Eiles —38
*MAP -5d 3,28
Master sequence number =12
M&rging BASIC programs —37
Messages —28
*MOUNT ~58,2,30
Multi-object operations -7

"NOADFS -85

fihject specification —-47
OPFENIN —4B8
OPFEHQOUT —48
UPENUD —-48
*OpTl -50,3,28
YOpTd -50,3,27
GEARGE ~52,59
OGBGET =52 .58

DEAPUT =52 ,58
DERYTE =52.,67
BRIFILE =52.61
DEFIND =52 ,53
OLEGBPB =52 ,55
DHCLT -52, 78

UEWORD ~52,64

PAGE —34

Parameter block -53
Faront directory -6
Pathname ~6

Plua 1 =Bl
PRINTS —-42
PrHA —48,44

Handom access —44
Heal type —43
teload address =18
*REMOVE =51,2,280
ARENAME -51,3,22
Hopatting the system -85
Hoal directory -b
UM -51,2,10

Index

SAVE -34
*SAVE -51,2,17
Screen blanking -84
Screen memory —-29
Selecting directories -8
Selecting the library =11
Selecting the ADFS -3,83
Sequence number -13
Sequential files -39
Sequential pointer —48,44
Soft break =3
Special characters -5,47
*53PO0OL -51,3,23
Starting up —B3

Technical data -T78
*TITLE "51:3}15

Tree=structure =-bH

Trouble=shooting =81

Utilities -31

Variable formats —43
Vector =52

Verifying -31

VIEW -23

Warm starkt —-3,83
Welcome disc -31,84
Wildcards -7

*. =dqb

sy T
"‘4?113'
-47,6
-47,9
~47,7
-47,18@
-47,7
~47,5,7

3 Fm B L

o

