

SLOGGER

Slogger Computers
107 Richmond Road

Gillingham
KENT ME7 1LX

S E D F S
Slogger Electron Disk Filing System

User Guide

For the Acorn Electron

Copyright (C) 1986
All rights reserved

1

CONTENTS

Introduction

Chapter 1 DRIVES AND DISKS 4
 Floppy disks 4
 Formatting 6

Chapter 2 DISK FILES AND THE CATALOGUE 9
 What is a file? 9
 The catalogue 10

Chapter 3 COPYING, DELETING AND PROTECTING FILES 15
 Ambiguous file specification 15
 Wildcards 15
 *COPY 15
 *BACKUP 16
 *MCOPY 16
 Deleting files 17
 File protection 18

Chapter 4 THE BASIC PROGRAM AND ASCII FILES 19
 The BASIC data file 19
 The ASCII or text file 20
 Merging files 21
 EXECutive files 22

Chapter 5 THE BASIC DATA AND BINARY DATA FILES 25
 The BASIC data file 25
 Random access 26
 The Binary data file 30

Chapter 6 THE BINARY PROGRAM FILE AND MEMORY USAGE 31
 Saving screen memory 35
 SEDFS and memory usage 36

Chapter 7 MORE SEDFS COMMANDS 40
 Speeding up the drive 40
 *DATE 41

Chapter 8 SEDFS DISK STRUCTURE 44
 Catalogue structure 44
 Disk I/O Port definitions 45

Chapter 9 OPERATING SYSTEM ROUTINES 46
 OSFILE 46
 OSFIND 51
 OSARGS 52
 OSBPUT / OSBGET 53
 OSGBPB 53
 OSFSC 55
 OSWORD 7D / 7E 56
 OSWORD 7F 57

Chapter 10 ERROR REPORTING 64

2

INTRODUCTION

The purpose of this product and its documentation is to provide the
user with the means to exploit the Slogger Electron Disk System to
the full. Step by step instruction is given with practical examples
on all aspects of the interface lading from the most basic functions
to advanced techniques. Not only is information given on the
operation of SEDFS and its commands but a wider view is explored of
SEDFS' place in the world of programming and data processing. File
operations are discussed in depth leading to random access.

Talking to SEDFS

The user is able to communicate directly with SEDFS by typing a
special form of command which is prefixed by a *. For instance:
 *CAT

This type of command is called a *command.

There are other commands which will also initiate a response from
SEDFS which do not have the *. For instance:
 LOAD

Although it is not apparent to the user, these commands do not go
directly to SEDFS but are first passed through BASIC.

Syntax of commands

All SEDFS commands consist of a single word preceded by a *. The
parameters follow after a space. For example:
 *STAT <drive>

*STAT is the command name followed by a single parameter in the form
of a drive number. Sometimes more than one parameter is given, in
which case they are separated by a space. For example:
 *LOAD <fsp> (<address>)

Parameters which are enclosed in brackets are optional. Commands and
their associated parameters are explained fully in the main body of
the text.

Many commands have abbreviated forms which may be used instead of the
full length version and these two forms are presented side by side in
the text.

3

CHAPTER ONE

DRIVES AND DISKS

Floppy disks

Disks are made of very thin but very tough plastic and are coated
with a magnetic substance called ferric oxide. This is a substance
which can be magnetised in such a way that data can be recorded on it
as a pattern of magnetic dots. In this sense a disk is like a
cassette tape. Information is recorded on it as magnetic dots which
represent the 0s and 1s of binary numbers.

Disks come in a variety of sizes, but 5.25" diameter is the one most
commonly used with the BBC Micro and Acorn Electron. This is probably
the wisest buy for compatibility with most software currently on the
market.

The long slot at the bottom of the casing exposes the shiny surface
on which data is recorded. Do NOT touch this area because continued
mishandling in this matter will eventually ruin the disk.

Write protect notch

The slot in one of the sides of the disk case is the write protect
notch. In its open state, the disk can be used normally but if you
want to protect all the files contained on the disk then stick a
cover over the notch. There should be a number of these supplied when
you buy your disks and they prevent the disk being written to. This
means that data can still be read as normal but cannot be altered in
any way. If a write operation is attempted with the disk protect tab
in place then the screen message:
 Disk read only

will be displayed. In this state the data is completely safe and
there is no way that any file can be changed.

Tracks

The read/write head is the part of the disk drive which places
(writes) magnetic dots on the disk surface and is capable of sensing
(reading) magnetic dots already recorded on the disk. The head
travels across the surface of the disk in small, measurable units
called steps. Movement is controlled by a stepper motor disk
controller. You may be able to hear this in action due to the
sometimes noisy clicking which occurs when the head moves across the
disk. At each position the head had access to a track of data, a
track being a path or ring on the disk along which data is stored. On
receiving a pulse from the floppy disk controller, the stepper motor
moves the head backwards or forwards to an adjacent track. The floppy
disk controller always knows the exact location of the read/write
head by counting the number of pulses it gives out. i.e. one pulse,
one track. When the drive is switched on, the track count is
initialised by moving the head towards track 0 where a switch is
tripped to indicate when the head has reached track 0.

4

Tracks - 40 or 80

There are three types of drive:
 1. 40 track
 2. 80 track
 3. 40/80 switchable

The difference between them is that on a 40 track drive, the steps
are twice as long as those on an 80 track drive and the read/write
head itself will be wider. It is impossible for a 40 track drive to
read an 80 track disk but the reverse is possible because an 80 track
drive can be made to "double step" and thereby simulate the operation
of a 40 track drive. This is achieved by performing two steps for one
control pulse. Obviously 80 tracks can contain twice as much data as
40 tracks resulting in a much more economical use of disk space.

Sectors

Each track is divided into a number of manageable units called
sectors, each containing 256 bytes of data. When inserted into the
drive, the centre of the disk is gripped and the disk is spun
continuously whilst in operation. Most disks have a reinforced hub to
help prolong their lives. As the disk is spinning any part of the
track can be read as it goes past the read/write head and the floppy
disk controller knows which sector it is reading by making reference
to the index hole. Referring back to illustration 1.1, the index hole
is a window in the casing near the centre of the disk. Take a disk
and, by carefully opening your fingers inside the hub, turn the disk
inside the casing. Before long a small hole should appear at the
window. When the disk is in the drive a light shining through this
hole activates a sensor sending a pulse to the floppy disk controller
indicating that the disk is positioned at the beginning of a track
(sector 0). From here it is simply a matter of keeping a count of the
sectors.

Drive

The drive is the term as used by Acorn to identify a side of the
disk. The term is confusing as it can be mistaken to mean the drive
unit itself. However, in most instances its meaning will be obvious
by the context. Different drive units are capable of accessing
different combinations of disk sides, as outlined below:

Drive Unit Disk Sides Accessible
 (Drive)

Single Drive Single Sided 0
Single Drive Double Sided 0 and 2
Double Drive Single Sided 0 and 1
Double drive Double Sided 0, 1, 2 and 3

Catalogue

This is a filing system within a filing system which contains
information on all data which exists on the disk including the
filenames and the length and location of files. It exists at the
beginning of track 0 and is used in every read or write operation.

5

By means of tracks and sectors, any part of the disk can be accessed
very quickly and part of the information held in the catalogue gives
the file's position on the disk in terms of sectors. In normal use,
tracks and sectors are dealt with automatically by SEDFS and the user
may not manipulate them directly. However, knowledge of the subject
is useful as some SEDFS facilities make use of tracks and sectors to
organise the layout of the disk.

Buying disks

Disks usually come in boxes of ten with varying specifications and
prices. First make sure you have the right size for your drive. Then
look at the top left hand corner of the disk where the certified
density and tracks per inch are specified. Disks are all made the
same way but are graded according to their final quality. It is
possible to format any disk to any specification but the certified
standard is guaranteed by the manufacturer and you may find that a
disk formatted above the certified standard is unreliable. The range
of specifications is as follows:
 Double or Single density
 Double or Single sided
 40 or 80 Track (48tpi or 96tpi)

The track number may be expressed in tpi (tracks per inch). You may
be confused as to why 48 applies to 40 tracks and 96 applies to 80
tracks. The reason for this is that the density of tracks is
expressed in terms of an inch but during operations the read/write
head traverses a little less than an inch. The inch is a convenient
unit to use and you could say that if the read/write head did
actually cover an inch then either 48 tpi or 96 tpi could be recorded
on the disk.

The other term you will see on a disk is "soft sectored". This refers
to the fact that sectors are laid down by the formatting procedure
(See next section on Formatting) and the index hole identifies the
first sector. Thus the sectors are formed by SOFTware. On the other
hand, a "hard sectored" disk which is not used by the Acorn Electron
has many holes in the revolving surface which, when lined up with the
index hole, identify each sector. Thus the sectors are formed by
HARDware.

Formatting

Before we can do anything at all with a disk it must be formatted. A
new disk is completely blank in the same way that a new cassette tape
is. However, there are crucial differences. A new cassette tape can
be written to immediately without any preparation and data is written
sequentially. That is, data can begin at any point on the tape and is
recorded one byte after the next until all the data has been
recorded. This continuous block of data is termed a "file". The next
file can b recorded straight after the first one, or disastrously,
even on top of it if we are not careful. Reading a file requires the
same type of process. The tape must be wound manually to the
beginning of the file and the computer set to read the required file.
This, in simple terms, constitutes a cassette filing system.

6

A disk filing system is much more complex than this with the ability
to go to any point on the disk automatically in a very short space of
time (random access). This ability to access any part of the disk is
made possible by recording the catalogue and the positions of the
tracks and sectors before attempting to record any data onto it. Once
this process is complete, data can be written to specific parts of
the disk and its existence recorded in the catalogue. When the disk
is read, the specified file is searched for in the catalogue, the
location of the data is found and the read/write head is moved to the
correct track. As the disk begins to turn, the correct sector is
located so that operations can begin.

Well, how do we go about laying down the track, sector and catalogue
structure onto a new disk? We use for FORMAT program which is
contained within SEDFS. This program can be invoked by typing:
 *FORMAT

and pressing <RETURN>. You will be presented with the following
screen:

 D I S K F O R M A T T E R

 Drive (0-3)

Type "0" and press <RETURN>. Now the following will appear:

 0=40, 1-80 tracks

Type "0", which will select the format routine for a 40 Track and
press <RETURN> and the prompt to initiate the format is given.

 Press F to start

After the format has been specified, a safety check is made to ensure
that you really do want to format. This is because if a disk already
containing files is reformatted, all the existing files will be
completely and irretrievably obliterated. If you are sure you wish to
continue with the format procedure then press "F".

As each track is formatted, its number will be displayed on the
screen. If an error occurs, such as it would with a faulty disk, the
routine will stop at the offending track and the message "Verify
Error" will be displayed. This can occur when a disk has been damaged
in some way and the only solution is, unfortunately, to throw away
the offending article and use another one.

Disk Errors

While we are discussing the layout (configuration) of disks, there is
a way of checking them for faults which could be caused by such
misuse as bending, dirt etc. A faulty write operation can also make
the disk unreadable. We hope this never occurs but it could be
produced by a machine fault, a drive fault or simply pressing <BREAK>
during a write operation. The command:
 *VERIFY <drive>

7

will do the necessary checks. If the drive is not specified, the
current drive will be verified. The program prompts for any key to be
pressed upon which each sector is individually checked. If any track
is faulty the program will stop and "Verify Error" is displayed.
Sometimes it is possible to correct an error by using a disk editor,
but this requires some technical knowledge. If you do not possess a
disk editor or are not sure of how to use one, the easiest solution
is to transfer all the useable files to another disk (this will be
dealt with later) and re-format the disk. If the disk has been
physically damaged, throw it away.

8

CHAPTER TWO

DISK FILES AND THE CATALOGUE

What is a file?

The dictionary defines a file as a collection of papers held in an
orderly manner, and this is very close to the definition we use with
the computer. A file in computer terms is a collection of logically
related records which is treated as a complete unit and given an
individual name. By "logically related" we mean having a common link
or purpose as, say, a list of names would have.

Filename

This is a name we give to a file. Although it can contain any type of
character, it must not be more than seven characters in length.
Filenames are of your own invention and to aid in locating files, it
is advisable to keep the names meaningful. For instance, an
accounting program could be called "ACCOUNT". This may seem a petty
point to mention but it can in practice save a lot of time and
frustration in the future when, perhaps several months later, you are
trying to locate a program on a disk containing many files (the names
of which are not now so familiar!).

Types of file

There are different types of file for different uses. A list of them
is given below and deeper explanations are given later where
appropriate.

Broadly speaking there are five types of file:
 1. The ASCII or text file
 2. The BASIC program file
 3. The BASIC data file
 4. The Binary program file
 5. The Binary data file

To illustrate basic file manipulation, we will make a BASIC program
file. Type in example 2.1

Example 2.1

 5 REM ASCII DISPLAY
 10 REPEAT
 20 INPUT"PRESS A KEY",A$
 30 PRINT ~ASC(A$)
 40 UNTIL FALSE

We can record this program from memory onto a disk by simply typing:
 SAVE"PROG1"

and pressing <RETURN>. The program will be saved in the form of a
BASIC program file. The word "SAVE" is the instruction to write the
program to disk and is followed by the filename in inverted commas.
Just to prove that your file is really there, remove the disk from

9

the disk drive and switch off the computer. Switch on again, return
the disk to the drive and type:
 LOAD"PROG1"

This command reads the disk and copies the file into the computer's
memory. LIST to make sure everything is alright and then run the
program.

Incidentally, it is important to leave the disk out of the drive when
switching the computer on or off because some makes of drive may
corrupt the disk during the process.

The Catalogue

Now that we have some idea of how to format the disk and save and
load programs, we can look a little deeper into how SEDFS organises a
maximum of 31 files per disk side. Files are organised on the disk by
the catalogue. Each catalogue has a predefined structure and can
accommodate up to 31 files.

First format a new disk on drive 0 with 40 tracks. Then perform the
command:
 *CAT (<drive number>) or *. (<drive number>)

to display the catalogue. The catalogue occupies sectors 0 and 1 of
track 0 and contains information on the filenames, addresses and
lengths of files contained on the disk.

After typing *CAT, the screen will look like this:

 (00)
 Drive 0 Option 0 (off)
 Directory :0.$ Library :0.$

 No file
 >

As expected, we are informed that the disk is empty by the "No file"
message at the bottom of the screen. Of the other information, so far
we have explained drives but the rest requires some clarification.

(00)

This tells us how many times the disk has been written to. Every time
we save a file, this number is incremented by 1.

Drive 0

This is self-explanatory and indicates which side of the disk we are
looking at.

 *DRIVE <drive number> or *DR. <drive number>

will change the current drive but as we have only formatted side 0,
any attempt to read a different drive will result in the error
message:
 Disk not formatted

10

Directory :0.$

The directory is a method of indexing disk files by prefixing them
with a letter or the $ sign. As already stated, filenames can be up
to seven letters long. For instance, "PROG1" will do very well and
when saved will be assigned to the current directory which in this
case is $ as indicated by the screen message. The directory sign is
part of the filename so the filename in this instance is actually
"$.PROG1". As the file was saved under the current directory, the $
sign is not displayed. If, however, we were to save under a different
directory e.g. directory A, by using the command:
 SAVE "A.PROG1"

then the directory will be displayed. This is a convenient method of
grouping similar programs under a common heading. By using different
directories we can save files with the same name on the same
catalogue. Don't try this with files in the same directory unless you
want to change a file as the one already on the disk will be over-
written by the new file.

The :0 in the screen message refers to the current drive. The default
drive and directory are 0 and $ respectively. This brings us
conveniently to the full file specification (fsp). This is as
follows:
 :<drive number>.<directory>.<filename>

or, for the file "PROG1" on drive 0, directory $:
 :0.$.PROG1

The current directory can be changed with:
 *DIR <directory>

Change the directory to A with:
 *DIR A

and perform another *CAT. Notice that directory $ is now displayed
with the filename and directory A is shown at the head of the
catalogue. The drive can be changed with:
 *DIR :<drive>

and the complete directory is modified with:
 *DIR :<drive>.<directory>

Library :0.$

This is set to drive 0, directory $, (the default value) and is
useful in loading a file without changing drive or directory. For
example, to load a BASIC program "PROG1" which comes under the
library specification, simply type:
 *PROG1

If this program is in machine code it will be run as well. The
library can be changed with:
 *LIB :<drive>.<directory>

To change to drive 1, directory C, type:
 *LIB :1.C

11

Now any file can be loaded from drive 1, directory C by preceding its
filename with a *. It is not quite legal to do this with BASIC files,
but it does work.

Option 0 (off)

The final message displayed by *CAT is the Option specification. This
refers to start up action which will be discussed in chapter four.

Number of Files and Disk Memory

40 Track

In 40 track format, 100K bytes are available to store files under
each catalogue. There is one catalogue for each side of the disk.
Each track is divided into ten sectors. There are 256 bytes per
sector, giving a total of 2560 bytes per track. This means that a
total of 102,400 bytes (characters) can be stored. This is the actual
total and results from the fact that 1K is 1024 and not 1000 as you
would at first expect. We can see the total bytes capacity and the
unused capacity with the command:
 *STAT (<drive number>) or *ST. (<drive number>)

With a newly formatted disk in 40 track single density, this will
display:
 Drive 0 Disk size 15E 100K
 Disk unused 15E 100K

Obviously, when a program is saved onto the disk the volume unused is
reduced. The amount of volume unused is useful to know when you want
to save a large file. Even if you have fewer than 31 files in the
catalogue but the volume unused is too small the file will not be
saved and the message:
 Disk full

will be displayed.

80 Track

Now reformat the disk (*FORMAT), (or, if you have a double-sided
drive, format drive 2), this time selecting 80 tracks if you have an
80 Track drive. When complete, perform the command:
 *STAT 2

This will give the capacity of drive 2 and should display:
 Drive 2 Disk size 31E 200K
 Disk unused 31E 200K

80 tracks have been put onto the same disk area as 40 tracks were
with the previous format. The result is double the capacity although
there is still only one catalogue with a maximum of 31 files. The
advantage with 80 tracks is that we can, however, have much larger
files.

Play with these two methods of formatting until you understand them
fully. If you are using drives 0 and 2, it is possible to read the

12

catalogue and capacity from the default drive by including the drive
in the command. For example:
 *CAT. 2 *STAT 2

Files can be saved or loaded by using the full filename (e.g.
:2.$.PROG1) or to do it the easy way, there is no need to specify the
drive if the current drive is the one required. Change the current
drive with:
 *DRIVE <drive number> or *DR. <drive number>

So to change to drive 2, use:
 *DR. 2

It is possible to reset to the default drive (0) by <CTRL><BREAK>.
This is the easiest way but be careful if you have a program resident
in memory because if you wish to keep it, type OLD before typing
anything else after <CTRL><BREAK>.

Altering Catalogue Files

The commands we are about to discuss change the catalogue entries
and, although not actually working on files themselves, are extremely
convenient, enabling us to keep disks in good order.

Renaming Files

Individual files can be renamed with:
 *RENAME <old fsp> <new fsp> or *REN. <old fsp> <new fsp>

Imagine you have saved a file called "HAMSTER" but later changed it
to refer to cats. It would then be desirable to rename the file.
 *RENAME HAMSTER CATS

will change the name from "HAMSTER" to "CATS". If the directory is
included in the command then we can change directories with or
without changing the filename. For example:
 *RENAME A.HAMSTER B.HAMSTER

Naming the drive

The disk itself can also be given a name and this facility is
particularly useful where a disk or volume is used for files with a
common purpose. The title can be up to 12 characters long and appears
at the top of the catalogue after performing *CAT. In double density
each volume can be given an individual title. The command is:
 *TITLE <diskname> or *TI. <diskname>

For example, to give the title "SEDFS" to the disk in the current
drive, type:
 *TITLE SEDFS

The title must be in inverted commas if a space is to be included in
it:
 *TITLE "SEDFS DISK"

To change the title of a disk, use the same command with a new title
and the old title will be overwritten.

13

How to Delete Individual Files

So far we have shown how to load and save files using various formats
and how to use names to organise them into meaningful categories
within a disk or volume. Having learnt how to put files onto a disk,
you now need to be able to take them off. Often when developing
programs, you will end up with several versions of a file, all in
different stages of development, and to economise on disk space you
will need to delete the old files. The simplest and safest command to
do this with is:
 *DELETE <fsp> or *DE. <fsp>

This will remove the specified file from the catalogue and although
the data is still physically present on the disk, SEDFS will not
recognise its existence. (It will eventually be obscured when another
program is saved over it.) With a disk editor, it is still possible
to reclaim the file by reinstating the name and attributes in the
catalogue but this is a difficult task and, in this case, prevention
is definitely better than the cure. Be warned!

Compacting the Disk

Deleting a file will leave a "hole" on the disk. That is, if the
deleted file occupied a space between two other files, there will be
an unused area of disk memory. Files should occupy contiguous
sectors, that is, they should come one after the other without gaps.
A gap could be filled with a file that is small enough to occupy the
available space but in many cases you will want to save larger files.
In this case, the gap is wasted space. The command:
 *COMPACT (<drive number>) or *COM. (<drive number>)

will move all the files after the gap, closing them up so that the
space is filled. Sectors will now be occupied contiguously, thereby
making all the disk available for use. If the drive is not specified
then the current drive will be compacted. After compaction, file
information is displayed followed by the number of free sectors in
hexadecimal. If you have a program in memory before you compact, make
sure that you save it first because *COMPACT utilises user memory to
read in files before writing them back to a new disk location. Any
program previously in memory will be corrupted during this activity.

14

CHAPTER THREE

COPYING, DELETING AND PROTECTING FILES

The ambiguous file specification (afsp)

We are building quite a comprehensive battery of SEDFS commands and
you should now be fairly fluent in the handling of files. So far we
have been restricted to keeping files on the same disk or volume but
if we wanted to move them around it would be extremely tedious to
load the file, change drive, disk or volume and save it again etc,
etc. There are other commands which will do this operation for us
more efficiently by moving, deleting or copying more than one file at
a time but before we can use all of them to the greatest advantage,
we need to know about wildcards.

Wildcards

This somewhat whimsical term does not refer to uncontrollable playing
cards but to two characters which can stand for one or more
characters in a filename or directory. They are:

 # This can stand for the directory or any single
 character in the filename
 * This can stand for a complete filename or any number of
 characters at the end of a filename

Armed with this knowledge, let's look at some examples.

 A.* Applies to all files on directory A
 #.* Applies to all files on all directories
 A.SLO# Applies to all four lettered filenames beginning
 with SLO on directory A
 A.#SLO Applies to all four lettered filenames ending with
 SLO on directory A but beginning with any letter
 A.SLO* Applies to any filenames beginning with SLO on
 directory A regardless of length

File specifications which can use wildcards are called "ambiguous"
file specifications. Ambiguous file specifications allow a number of
files to be processed without the need to type each individual
filename. As a practical example we will copy some existing files.

*COPY

Format both sides of a 40 Track disk and enter some files on drive 0.
The format of the *COPY command is:

 *COPY <source drive> <destination disk> <afsp>

So, for example, to copy the file "SLOG" from drive 0 to drive 2
would be:
 *COPY 0 2 SLOG

If we wanted to copy all the files in drive 0 to drive 2, we would
enter:
 *COPY 0 2 *.*

15

Copying from one disk to another can become troublesome if you only
have a single disk drive. To copy onto a different disk with a double
disk drive, the following could be used:
 *COPY 0 1 *.*

With a single disk drive it is necessary to specify the destination
drive to be the same as the source drive. This way, SEDFS will prompt
for the source disk and the destination disk to be inserted into the
drive unit as required:
 *COPY 0 0 *.*

This will copy all the files from drive 0 on one disk to drive 0 on
another. The first prompt will be to insert the source disk and hit a
key. The filename and information will be displayed. The next prompt
will be for the destination disk so remove the source disk, insert
the destination disk and hit a key. All the file data that was loaded
into the computer's memory from the source disk will now be written
to the destination disk and then the source disk will be requested
again. This happens because memory space is limited and only parts of
large files can be transferred in one go, so the prompting for the
source disk and the destination disk could be repeated many times
until the whole file has been copied. It is important to remember
that user memory is overwritten during the copying process with the
result that any program you had in memory prior to the operation will
be lost. Do not forget to save any programs resident in memory before
commencing a *COPY.

If the destination disk does not have enough room for the file then
the error:
 Disk full
 Bad program

will be displayed. It is therefore wise to perform a *STAT to
ascertain the spare disk space and, if necessary, a *COMPACT before
copying. If these have no success then delete an existing redundant
file or copy to another disk.

Copying Complete Drives

There are other copy commands which operate on whole volumes or
complete sides of disks without specifying filenames. These are
*BACKUP and *MCOPY.

*BACKUP

As the name suggests, this is a very useful and easy way to make
backup copies for security reasons. Disks are easily damaged so it is
always wise to keep copies especially when valuable information is
involved.

This command makes an exact copy of the source disk onto the
destination disk. This is a potentially disastrous operation as the
previous contents of the destination disk are lost in the process.
The safety catch *ENABLE must be used before *BACKUP can commence and
again be careful because, as with *COPY, user memory is overwritten.
The command is simple to use and only the source and destination
drives need to be specified. It takes the form:

16

 *BACKUP <source drive> <destination drive>
 or
 *BAC. <source drive> <destination drive>

If you intend to use this command regularly you will soon want to
invest in a double disk drive. Although the problem is not so acute
with 40 track, with 80 track on a single disk drive, the disks will
have to be swapped many times before the whole disk has been copied.

*ENABLE

This command is usually used directly before "dangerous" commands
i.e. DESTROY, BACKUP and MCOPY, these functions having irreversible
effects such as deleting filenames! A test is made in the *DESTROY,
*BACKUP and *MCOPY commands as to whether the *ENABLE command was
made. If it wasn't then a prompt..."Are you sure? Y/N" is made as a
safety precaution.

*MCOPY

There is another command called *MCOPY which performs the same
function as *COPY but it is much quicker because it will copy as many
files as memory will allow in one go, rather than working each file
as an individual block. Like *BACKUP, *MCOPY destroys all existing
files on the destination drive and for this reason, *ENABLE must
first be used. Unlike *BACKUP (which produces an exact copy of a
disk), *MCOPY only copies the files and not the unused disk space. It
also compacts the drive or volume and the computer's user memory is
overwritten (so again beware of leaving unsaved files in memory).

The command takes the form:

 *MCOPY <source drive> <destination drive>

The destination drive must not be smaller than the source drive or
the message:
 Drive ... larger than Drive ...

will be shown.

Deleting files

The ambiguous file specification is again a powerful tool and as well
as being used to copy many files in one operation it can also be used
to delete them. *WIPE deletes all files which match the ambiguous
file specification. As with *DELETE, their entries are removed from
the catalogue. The command is:

 *WIPE <asfp> or *W. <afsp>

The files matching the ambiguous file specification will be listed
individually. As each one is displayed you will be prompted for a Y
or N. This gives you last minute control over whether to delete or
not. On the other hand a *DESTROY, which also uses the ambiguous file
specification, produces a complete list of all the matching files
with one prompt. If you choose to delete then they all go at once.
The form of this command is:

 *DESTROY <afsp> or *DES. <afsp>

17

File Protection

Many of the commands previously discussed must be used with care as
they could accidentally be used to erase a valuable file. To help
guard against this, the command *ACCESS is provided to lock files
under the ambiguous file specification. Locked files cannot be
deleted or overwritten although they are powerless against *FORMAT,
*BACKUP or *MCOPY. The command form is:
 *ACCESS <afsp> (L) or *ACC. <afsp> (L)

If the optional L is included after the ambiguous file specification,
the file or files will be locked and will appear in the catalogue
followed by L. If the L is omitted from the command then previously
locked files under the ambiguous filename will be unlocked. So, to
lock all files in the current drive, use:
 ACCESS #. L

To unlock them use:
 ACCESS #.

Locked files cannot be written to in any way but are completely
accessible to reading.

18

CHAPTER FOUR

THE BASIC PROGRAM AND ASCII FILES

The BASIC Program File

We will use example 2.1 from chapter 2 to make a BASIC program file.
Type in example 2.1 and save it under the filename "PROG1".

Example 2.1

 5 REM ASCII DISPLAY
 10 REPEAT
 20 INPUT"PRESS A KEY",A$
 30 PRINT ~ASC(A$)
 40 UNTIL FALSE

To see the program as it is on the disk, we use the command:
 *DUMP <fsp>

which dumps the contents of the specified file onto the screen. To
dump PROG1, type:
 *DUMP PROG1

You will now be looking at the program as it is recorded on the disk
(Example 4.1).

Example 4.1

 Location] [File Data] [ASCII Representation

 0000 0D 00 05 14 20 F4 20 41 A
 0008 53 43 49 49 20 44 49 53 SCII DIS
 0010 50 4C 41 59 0D 00 0A 06 PLAY....
 0018 20 F5 0D 00 14 16 20 E8
 0020 22 50 52 45 53 53 20 41 "PRESS A
 0028 20 4B 45 59 22 2C 41 24 KEY",A$
 0030 0D 00 1E 0D 20 F1 20 7E ~
 0038 97 28 41 24 29 0D 00 28 .(A$)..(
 0040 08 20 FD 20 A3 0D FF **

The column of four figured numbers on the left are byte numbers in
hexadecimal. These start at 0 and run to 7 in the first line. The
second line starts at 8. The middle block is the program itself as
bytes in hexadecimal and the column on the right is the ASCII
representation of the program.

Notice that all the BASIC keywords are missing from the ASCII column.
This is because they are stored in a "tokenised" form i.e. they are
each coded into a one byte value to produce a more compact file. For
example, the first BASIC word REM is stored as &F4. You can see this
in byte 5. Note that & is used to denote that a number is hexadecimal
unless as in example 4.1 where the numbers are automatically taken to
be hexadecimal.

19

The program starts with &0D. This indicates the start of the line and
is the ASCII value for the <RETURN> key. The next two bytes are the
line number followed by the line length in one byte. The program data
follows. Each line takes this format and you can check the whole
program if you wish against the token values and ASCII values given
in your computer manual. The program ends with &0D &FF as does every
BASIC program.

The ASCII or Text File

Before we can proceed onto an explanation of the ASCII file, it is
necessary for you to understand just what is meant by the term
"ASCII". It stands for "American Standard Code for Information
Interchange". This rather grand title refers to a standard which
gives text characters (the alphabet, punctuation, etc) and some
control commands (such as carriage return), an individual number. Use
example 2.1 to display the ASCII number in hexadecimal of each key as
it is depressed. Try upper and lower case using <SHIFT> and <CAPS
LOCK>.

An ASCII file can be created by first opening it with the command:
 *SPOOL <fsp>

and closing it with:
 *SPOOL

We will now make an ASCII file with example 2.1. First make sure that
example 2.1 has been loaded into memory then open the ASCII file with
command:
 *SPOOL ASKY

*SPOOL is the command to open the file and ASKY is the filename.
Notice that inverted commas are not necessary. After this command,
everything that is displayed on the screen will be written to the
file so to get our program onto the screen, list it with:
 LIST or L.

When the list is complete, type *SPOOL again but without the filename
to close the file. Having made our ASCII file, we can look at it
with:
 *DUMP ASKY

Although this really is the same program as before, it appears longer
because every character is an ASCII one, therefore BASIC keywords are
written in full rather than in token form.

Notice that L. the list command is present at the beginning of the
file because it was typed in after *SPOOL.

To view the file in its original form, two commands are available.
They are:

 *TYPE <fsp> and *LIST <fsp>

*TYPE <fsp> displays the file as it looked when copied to disk. *LIST
<fsp> displays the file with line numbers.

20

Merging files

A number of operations can be performed with an ASCII file. One is to
spool a BASIC program and then enter a word-processing program. Using
the facilities of the word-processor, the ASCII version of the BASIC
program can be merged into a document. Most word-processors will be
able to edit the program and turn it back into a BASIC program for
normal use. In the same way it should be possible to spool portions
of text so that they can be fed into a different word-processor. This
facility is useful when preparing text for recipients who possess
different equipment.

An ASCII file of a BASIC program can be turned back into a BASIC
program with the command *EXEC <fsp>

This reads the named ASCII file straight into the keyboard buffer
with the effect that the computer treats the incoming data as though
it had been typed in from the keyboard.

The *SPOOL/*EXEC sequence is very useful for merging two BASIC
programs. It is often the case that useful procedures are stored on a
separate disk of their own to be used as necessary. For example, you
might have some graphics utilities - one procedure for drawing
circles, another for squares, etc. Utilities like these could be used
over and over again in different programs. All you need to do is
incorporate them into any program is convert them to ASCII files
using *SPOOL and then *EXEC them into the program under development.

Although this is not a difficult operation there are certain
considerations which must be taken into account. First make sure that
the line numbers in the main program are different from those in the
utility program because when a file is merged with one already in
memory, the incoming line numbers are added to the existing line
numbers. This means that any line numbers which are the same will be
replaced with the incoming line numbers. By making the incoming line
numbers higher than the existing line numbers, the ASCII file will be
added to the end of the existing program, or by using this technique
with care the incoming file can be placed at any point within the
existing program. A good way to think of this process is to imagine
that you are actually typing the spooled file in by hand because that
is just how the computer treats it.

The following example illustrates the procedure for merging two BASIC
programs. Type in the example 4.3 and save it under the filename
"P-1".

Example 4.3

 10 MODE 4
 20 PRINTTAB(10,10)"DRAW A SQUARE"
 30 PROCsquare
 40 END

Now type NEW to clear memory and type in example 4.4. This is the
procedure, called in line 30 of the first program, to draw a square.

Example 4.4

 50 DEFPROCsquare

21

 60 MOVE 400,400:DRAW 500,400
 70 DRAW 500,500:DRAW 400,500
 80 DRAW 400,400
 90 ENDPROC

Instead of saving this procedure as a BASIC file, use *SPOOL to
create an ASCII file called "P-2". You should now have the files
"P-1" and "P-2" on disk. To merge them, LOAD "P-1" as normal and LIST
to make sure the program is correct. Now type:
 *EXEC P-2

You can now see the two programs merged into one. Run the new
complete program and the square will be drawn on the screen. The
worrying message "Syntax error" which always appears after a merge
can be ignored.

Creating Lists

*SPOOL can be used to create lists of DATA, consider 4.5 below:

Example 4.5

 10 *SPOOL RANDOM
 20 FOR N=1 TO 20
 30 DIE1=RND(6)
 40 DIE2=RND*6)
 50 PRINTTAB(0);"DIE-1 ";DIE1,TAB(20);"DIE-2 ";DIE2
 60 NEXT
 70 *SPOOL

Example 4.5 simulates the auction of throwing two dice and saves the
results of 20 throws in an ASCII file called RANDOM. Notice the use
of TAB. Careful use of dotted or broken lines can create attractive
tables which could be merged into a document using a word-processor.
For example, adding the following line separates each throw by a
dotted line:
 55 PRINTTAB(0);STRING$(39,"-")

To inspect the table once completed use *TYPE or *LIST. For long
tables which are larger than the screen and scroll past too quickly,
use paged mode by holding down <CTRL> and pressing "N". Only small
portions of text will be scrolled onto the screen until <SHIFT> is
pressed to access the next portion of data. Paged mode can be
cancelled by holding down <CTRL> and pressing "O".

EXECutive Files

ASCII or text files can be used in another way to control the
operation of other programs. In this guise they are used as executive
files.

An ASCII file can be produced directly from the keyboard without
having to go through the *SPOOL procedure. The command:
 *BUILD <fsp> or *BU. <fsp>

is used for this purpose and files created in this way can be *EXECed
in the same way that a *SPOOLed file can. The file may contain any
set of commands which can be produced from the keyboard (such as

22

"*commands") to control the operating system or ROM software (DFS
included), printer control codes, etc. The most common use of this
type of file is the !BOOT file. You may have noticed that commercial
disk software is often loaded and run by holding down <SHIFT> while
pressing <BREAK>. This facility is extremely useful in that it can be
used not only for loading programs but also for initialising the
computer for a specific purpose. For example, for programming the red
user-defined keys, carrying out *FX commands. All these
initialisation and load commands are stored in a special ASCII file
created with *BUILD and called !BOOT.

Here is how to make a !BOOT file. First type:
 *BUILD !BOOT

The computer now knows that it is to make an ASCII file directly from
the keyboard called !BOOT. A line number will appear and you must
type in the command you want to place in the !BOOT file. For example,
suppose you have a program that you wanted to load called "ANDREW",
you would simply alter the line number:
 1 LOAD "ANDREW"

To run the program as well, you would of course use CHAIN rather than
LOAD. Press <RETURN> and line 2 will appear. You can now type in
another command. For instance, why not set up a red function key. A
useful command for one of these is to save a particular program. When
developing software it is wise to save your work periodically in case
you have an accident such as pressing <BREAK> or corrupting memory
with some faulty machine code or even if there is a power cut, you
will at least have a recent copy. It can become tedious to keep
typing SAVE "filename" and putting the command onto a function key
greatly facilitates the operation. So, on line 2, type:
 2 *KEY 0 SAVE "filename"

On pressing <RETURN>, line 3 will appear and you can keep adding
commands in this way until you are satisfied that all your needs are
catered for. To save the file, press <ESCAPE> in response to a line
number. The !BOOT file is now on the disk and can be brought into
action with *EXEC just like any other ASCII file but to make
<SHIFT><BREAK> effective, the correct start-up option must be placed
in the catalogue. We do this with:
 *OPT 4 <number> or *O.4 <number>

This command sets the start-up action (i.e. on <SHIFT><BREAK>) which
will operate on the !BOOT file contained on the disk in the current
drive. In double density, it is possible to set a separate start up
action for each volume. Perform a *CAT and look at the entry above
the library information. You will see "Option 0 (off)". This tells us
that the start-up action is for that drive. At present there is no
start-up action. Type:
 *OPT 4 1

and perform another *CAT. The option will now be number 1 and in the
brackets will be (LOAD). The start-up action on the !BOOT file will
be *LOAD. Option 2 as selected with:
 *OPT 4 2

will cause a *RUN of the !BOOT file. Options 1 and 2 are only useful
when the !BOOT file is in machine code.

23

 *OPT 4 3

will select option 3 and the start-up action on the !BOOT file will
be *EXEC.

 *OPT 4 0

will return the disk to the off state where there is no start-up
action. If options 1, 2 or 3 are present and the start-up action is
initiated with a !BOOT file not being present then the message:
 File not found

will be displayed.

24

CHAPTER FIVE

THE BASIC DATA AND BINARY DATA FILE

The BASIC Data File

This is used for storing sequences of BASIC variables (integer, real
and string variables). To read or write a BASIC data file, it must
first be opened by allocating to it a channel and buffer.

Channel a route along which data is passed to and from the disk.
 Channels are identified by the numbers 17 to 21 in the
 disk filing system whereas other filing systems use
 different numbers.

Buffer An intermediate storage area in memory where data is held
 prior to reading or writing the file. This allows a block
 of data to be accumulated before writing and during
 reading which can then be processed in one operation
 thereby reducing the number of disk access operations.

The specific buffer area allocated for a given file is determined by
the channel number. Five separate buffer areas are available allowing
a maximum of five opened files at any one time. In normal conditions
the user need not be concerned with the channel numbers and buffers
as SEDFS automatically takes care of these operations.

To open a file and allocate a channel number, the command OPENOUT is
used. The full syntax is:
 <num-var> = OPENOUT <filename>

The file is allocated a channel number which is returned in a numeric
variable. For example:
 X = OPENOUT "FILE1"

X contains the channel number allocated to the file "FILE1". In all
operations the variable X is used as opposed to the filename itself.
OPENOUT is only used to create new files and any file of the same
name which already exists will be overwritten.

Example 5.2 will read the whole file:
 10 Y=OPENIN "COUNT"
 20 FOR N=1 TO 10
 30 INPUT# Y,M
 40 PRINT M
 50 NEXT
 60 CLOSE# Y

Line 30 instructs the computer to input a character from the file and
place it in the variable M. Line 40 PRINTs the variable M on the
screen so that we can see it. Do not confuse the ordinary PRINT
command with the file command PRINT#. Think of it in this way:

 PRINT sends characters to the screen
 PRINT# sends characters to the opened file on the specified
 channel.

25

In the same way, do not confuse INPUT with INPUT#:

 INPUT reads characters from the keyboard
 INPUT# reads characters from the opened file on the specified
 channel.

The FOR NEXT loop in lines 20 and 50 causes all ten characters to be
read. If the length of the file is not known the program can be made
to stop automatically by detecting the end of the file with:
 EOF# <channel>.

Let us convert the previous example to do this. Instead of a FOR NEXT
loop we will use a REPEAT UNTIL loop with EOF# as the terminating
condition. The program therefore becomes:

Example 5.2a

 10 Y=OPENIN "COUNT"
 20 REPEAT
 30 INPUT# Y,M
 40 PRINT M
 50 UNTIL EOF# Y
 60 CLOSE# Y

The program will stop on reaching the end of the file, a facility
which is essential when the number of items in the file is not known.
OPENOUT and OPENIN are useful for performing complete operations on
whole files. The procedure is:

1. Create a file using OPENOUT
2. When the file needs updating, read into memory the whole file
 using OPENIN. Arrays can be used to store the data
3. Perform alterations to the file whilst in memory
4. Write the new file to disk with OPENOUT using the same filename.
 The previous file will be deleted

Random Access

The previous use of OPENIN and OPENOUT is fine if files are not going
to exceed user memory. Some word-processors for the Acorn Electron
can only work on files which are limited to user memory and so only a
few pages of A4 format can be held in each file. Others are capable
of working on larger files and read into memory only a small part of
the file. On saving, only the part of the file being used is written
to disk. This ability to write or read specific parts of the file is
made possible by using a technique called random access. Working with
random access files means that file size is only limited by disk
capacity.

With two more commands, we can use random access. They are OPENUP and
PTR#.

OPENUP is similar in syntax to OPENIN and OPENOUT and can open a file
for reading and writing:
 <num-var> = OPENUP <filename>

PTR# stands for "Pointer" and the value of the pointer determines
which byte in the file is to be read or written to next. For example,
if its value is 10, the pointer will be at byte 10:

26

 PTR# <num-var> = <numeric>

The numeric variable corresponds to the variable containing the
channel number as assigned with OPENUP. This is necessary to make
sure that the correct file pointer is accessed, especially when there
may be more than one file open at a time. The numeric controls the
position of the pointer in bytes.

To be able to use this command we need to know how long each entry is
so that we can determine where to place the pointer. A string
variable occupies the number of letters in it plus 2. For example:
 ANDREW

would be 8 bytes long. If, for the sake of explanation, all entries
in our list are four letters long then each entry would be 6 bytes
long. So, in pointer terms each entry can be found at the entry
number times 6. i.e.:

 Entry No. Pointer value Entry
 0 0 BATH
 1 6 SOAP
 2 12 TAPS
 3 18 PLUG

Using the previous list program, create a file with a number of
entries all four letters long. For example:
 AAAA
 BBBB
 CCCC
 DDDD

Having created the file, type NEW to clear memory and then type in
the following program:

Example 5.4

 10 X=OPENUP "FILE"
 20 REPEAT
 30 INPUT"Record to Read";A
 40 IF A=1000 THEN 80
 50 PTR# X=A*6
 60 INPUT# X,A$
 70 PRINT A$
 80 UNTIL A=1000
 90 CLOSE# X

The command OPENUP in line 10 opens the file "FILE" for reading or
writing. Line 30 prompts for the required entry. Line 5 multiples the
entry number by 6 to obtain the correct byte number which is used by
PTR# in line 50 to find the correct entry on the disk. Line 60 reads
the entry and line 70 prints it on the screen.

The same program can easily be adapted to change an entry. PTR# is
used in the same way but instead of reading the entry, we write to
it:

27

Example 5.5

 10 X=OPENUP "FILE"
 20 REPEAT
 30 INPUT"Record to Change";A
 40 IF A=1000 THEN 80
 50 PTR# X=A*6
 60 INPUT"New Record";B$
 70 PRINT# X,B$
 80 UNTIL A=1000
 90 CLOSE# X

The only differences from the previous example are that line 60
prompts for the new entry and line 70 writes it to the file.

Having changed the file "FILE" by these two random access programs,
enter the file using the original example and read the names. You
will see that the file has been changed and is still quite useable.

We have made all out entries 6 bytes long so that the pointer
management is simplified. Obviously it is impractical to make all the
names four letters long but to keep track of the pointer it is
necessary to make entries all the same length. This can be done by
determining the maximum length of every name. Let us use 10 for this
value. If any names are not 10 letters long, which most will not be,
then we can pad the string out with spaces so that the entry on the
disk will always equal 10. The pointer will now be
incremented/decremented in steps of 12. i.e. 10 + 2 = 12.

Random access with variables of different lengths

Probably the most difficult aspect of using random access files is
the correct placing of the pointer. The previous example uses entries
all with 10 characters and this makes programming fairly easy, but
using different kinds of variables demands that individual entries be
of different lengths. When variables are sent to the disk file using
PRINT#, they are laid down in a special format.

Integer variable 5 bytes

&40 followed by the number as twos compliment in four bytes, low byte
first. For example, 10 would take the following form in hexadecimal:
 40 00 00 00 0A

Real variable 6 bytes

&FF followed by the mantissa in four bytes and the exponent in one
byte. 10 would take this form:
 FF 00 00 00 20 84

String variables 2 bytes plus number of characters (bytes) in string.

&00 followed by the number of characters in one byte followed by the
characters in reverse order in ASCII form. For example, SEDFS would
look like this:
 00 05 53 46 44 45 53

Much of this information is specialised and especially with real
variables can be a little involved mathematically. It is not
absolutely necessary to completely understand how the figures are

28

arrived at as long as the length of each variable is clear. It can
also be very helpful to be able to recognise the different variables
by their first bytes so that *DUMP can be of use when de-bugging a
program. It can be very revealing to inspect a file as it appears on
the disk to find out exactly what a program is doing.

When creating a file it is essential that it is laid down in an
organised manner so that when reading it the pointer can be
manipulated correctly. If the computer was expecting an integer
(INPUT#Y,A%) and the pointer was at a string variable, the error
message:
 Type mismatch

would be generated. The same error would occur if the pointer was at
a point other than the beginning of the variable.

Fields

A record is a unit within a file and so far we have explained the use
of records containing only one item of data. It is possible to divide
each record into a number of smaller units called fields. For
example, the name list programs given earlier could be altered to
handle not just names but also addresses and ages. The record could
contain different types of variables:

 --------------RECORD-------------

 12 bytes 5 bytes 6 bytes
String	Integer	Real

The example shows a record with three fields consisting of all three
types of BASIC variables. The string variable contains 10 characters.
The whole record contains 12+5+6=23 bytes.

The program to write this format with 10 records to the file would
be:

Example 5.7

 10 X=OPENOUT "RECORD"
 20 FOR next=0 TO 9 STEP 23 (next is the record number)
 30 INPUT "STRING",A$
 40 INPUT "INTVAR1",A%
 50 INPUT "REALVA2",B
 60 PTR# X=Next (next increments the pointer to the
 start of each record on the disk)
 70 PRINT# X,A$
 80 PTR# X=next+12 (next+12 increments the pointer to
 the next byte after the string)
 90 PRINT# X,A%

29

 100 PTR #X=next+17 (next+17 increments the pointer to
 the next byte after the integer)
 110 PRINT# X,B
 120 NEXT next
 130 CLOSE# X

The program to read would be:

Example 5.8

 10 X=OPENIN "RECORDS"
 20 FOR next=0 TO 9 STEP 23
 30 PTR# X=next:INPUT#X,A$
 40 PTR# X=next+12:INPUT#X,A%
 50 PTR# X=next+17:INPUT#X,B
 60 PRINT A$,A%,B
 70 NEXT
 80 CLOSE#X

In this way files containing records with fields of different lengths
can be built up.

Hopefully this section on BASIC data files will have whetted your
appetite to delve deeper into the world of data processing. Why not
try constructing a file of variable length records? The difficult
with this type of file is that the pointer requires to be incremented
or decremented by variable amounts. The exact amount could be held at
the beginning of each record and calculated automatically at the time
of writing the record.

The Binary Data File

If we wished to escape from the intrinsic structure of BASIC and form
files to our own specification, the commands:

 <num-var> = BGET# <channel> and BPUT# <channel>, <numeric>

will read and write individual bytes. The file must first be opened
with OPENOUT in the normal way. The following program will store a
list of numbers on a file. Don't enter numbers larger than 255
because this is the limit of one byte. Numbers which exceed this
value will be repeatedly subtracted by 256 until they are less than
256.

Example 5.9

 10 X=OPENOUT "NUMBERS"
 20 FOR next=0 TO 9
 30 INPUT "A%"
 40 BPUT# X,A%
 50 NEXT next
 60 CLOSE# X

30

To read a single byte from an opened file BGET# is used. To read the
file use the following program:

Example 5.10

 10 X=OPENUP "NUMBERS"
 20 REPEAT
 30 A%=BGET# X
 40 PRINT A%
 50 UNTIL EOF# X

Of course, random access techniques can be used and are greatly
simplified by not having to worry about different variable lengths.
The resulting file will also be much more compact than a BASIC file.

31

CHAPTER SIX

THE BINARY PROGRAM FILE AND MEMORY USAGE

This type of file is used to store machine code programs. A machine
code program is, like all other programs, a collection of numbers
with specific meanings but unlike others exists in a form which needs
no interpretation for the computer to operate on it. BASIC consists
of a number of keywords which are based on the English language. They
have an almost obvious meaning and this enables the programmer to
memorise and these keywords with relative ease. Although BASIC is a
convenient and flexible language for us to use, it has to be
interpreted for the computer to be able to work on it. Each
instruction has to be converted to machine code every time that the
program is run, and the main drawback of this is that quite a lot of
time is taken up during the process.

Machine code on the other hand is processed by the computer without
intervention from any other source. It is therefore very fast and
allows access to machine functions that BASIC is not equipped to
handle. Due to the unfriendliness of raw machine code, programs are
written in assembly language which uses mnemonics to give meaning to
instructions. The program as it stands in assembler language is
called the source code. This is then assembled into machine code at a
specific memory location into its final form called the object code.
Acorn Electron users are fortunate to possess a built in assembler
for this purpose. It is, however, not our intention to explain
assembly language, and newcomers to the subject should read one of
the many available text books on the market.

A machine code program (that is, object code) can be loaded and saved
to and from any part of the computer's memory, whether it be user RAM
or elsewhere. Before we go into the details of moving machine code
around we will take a look at the computer's memory.

Memory space on the Acorn Electron is arranged into 256 sections
called Pages, each page holding 256 bytes. A memory location is
therefore expressed in four hexadecimal characters. The first two
represent the Page itself, the second two the location within the
Page. Hence the complete memory contains 65536 bytes (&FFFF bytes) or
64K. Not all of this is available to the BASIC programmer and on a
system with SEDFS, user RAM is from &E00 to &7FFF. User RAM is also
used for the screen memory which starts at different locations for
different modes. The start of screen memory is held in a pseudo
variable called HIMEM. The start of user RAM is held in a pseudo
variable called PAGE. Memory above &7FFF is normally off limits and
is set aside for the paged ROMs (BASIC and SEDFS operate from here)
and the Operating System.

Memory below &E00 is used for many purposes and much of it is
available for use by the machine code programmer. The following list
of memory locations gives guidelines as to where machine code can be
stored below user RAM.

Page 0 &00 - &FF
This is used by the Operating System and a small part from &70 to &8F
is open to the machine code programmer. However, there is not enough
space to store whole programs.

32

Page 1 &100 - &1FF
This is used by the 6502 stack.

Page 2 &200 - &2FF
This is used by the Operating System.

Page 3 &300 - &3FF
This is used by the VDU, cassette system and keyboard buffer.

Pages 4 to 7 inclusive, &400 - &7FF
This is used by the currently active language which operates from
ROM.

Page 8 &800 - &8FF
This is used by the sound facilities as workspace, buffers, envelopes
1 to 4 storage and also as a printer buffer. If your program does not
use sound or the printer then this area can be used.

Page 9 &900 - &9FF
This is used in a number of ways and, like page 8, is mainly a buffer
area. It contains the speech buffer, cassette and RS423 output
buffers. Envelopes 5 to 16 from the sound facilities are stored here.

This space can be used for machine code programs if you do not use
envelopes numbered above 4, use the serial interface or use the
cassette system for file handling. Ordinary loading and saving will
not affect this buffer but, in any case, now that you have the SEDFS
system, the cassette unit will be rarely used.

Page 10 &A00 - &AFF
This is another buffer area for the RS423 and cassette systems but
this time for input. This area is usually free.

Page 11 &B00 - &BFF
The soft key buffer resides here. The soft keys are the user-
definable function keys which are programmed with *KEY so steer clear
of this area if you are using them.

Page 12 &C00 - &CFF
ASCII characters 224 - 255 as defined by VDU23 are stored here. This
space is available should you not use these characters.

Page 13 &D00 - &DFF
This area is allocated for the NMI routine, paged ROM extended
vectors and the paged ROM workspace table.

Page 14 &E00
This is the start of the user RAM. The value &E00 is held by default
in the pseudo variable PAGE but can be altered should the need arise
by resetting PAGE. Machine code can be placed in the area of user RAM
(&E00 - &7FFF) but this is mainly used for BASIC programs.

The Sideways ROMs

The abbreviation ROM means Read Only Memory and the sideways ROMs are
special chips which are placed into the printed circuit board of the
computer and are used to hold specialised software. SEDFS and BASIC
are held in sideways ROMs as are many other specialised programs such
as wordprocessors, databases and graphics utilities.

33

Sideways ROMs occupy memory from &8000 to &BFFF. As you may already
know, the operating system can handle up to 16 sideways ROMs.
Although it is not possible to have all of them in memory at the same
time, they can be "paged" in or activated by using the appropriate
command. For example, to enter Slogger's STARMON, type *STARMON. Even
though STARMON is sitting in its ROM socket, it will not be "paged"
in until called by its *command. Some ROMs such as SEDFS will be
"paged" in automatically as needed depending on the type of entry
conditions for that particular ROM. This ingenious system is
responsible for the Acorn Electron's ability to access a large number
of specialist programs and yet still retain user RAM intact.

There are one or two commands which are directly concerned with
sideways ROMs.

From our short look at memory usage, it is clear that the best places
to put machine code programs are in the buffer areas as long as the
buffer will not be used in the execution of the program. For
instance, you would not place a program to play music in the sound
workspace in page 8 as the program would be destroyed as soon as it
was run.

Having found out where to put our programs, we will now look at how
to put them there. The first and most obvious solution is to assemble
new code at the correct address but often you will want to be able to
load in the already assembled program without reference to the source
code. To be able to do this we need to save the object code to disk.
BASIC programs are straight forward to save and load because the
language itself takes care of where in memory the program is placed
by referencing PAGE. When writing machine code, these facilities are
not available and programs have to be thought of as blocks of memory
which can be copied with reference to the start location and length.
We transfer blocks of memory from the computer to the disk by means
of the *SAVE command. This is similar to SAVE but allows the program
to be recorded with information on length, start address, execution
address and load address.

The full command is:

 *SAVE <fsp> <start addr> <end addr+1> (<load addr>) (<exec addr>)
or
 *SAVE <fsp> <start address> + <length> (<load addr>) (<exec addr>)

Note: Parameters in brackets are optional.

Let us suppose we wish to save a program called "ROSE" which is 10
bytes in length starting at address &A00. The command using the first
version of *SAVE would be:
 *SAVE ROSE A00 A0A

Alternatively, instead of working out the address, we could specify
the start address + the length:
 *SAVE ROSE A00 +A

The last two parameters are optional and, if not specified, will be
set to the same value as the start address. Notice that the ampersand
sign (&) is not necessary because all figures are automatically taken
as hexadecimal.

Having saved the file to disk we can inspect this information with:
 *INFO <afsp>

34

This being an ambiguous file specification, a range of files can be
examined in one operation.

Type:
 *INFO ROSE

The result should be something like this:
 $ROSE 000A000 000A00 00000A 05B

 1 2 3 4 5 6

 1. Directory/Filename
 2. Locked status
 3. Load address
 4. Execution address
 5. Length of file in bytes
 6. Start sector

The locked status in this case is blank. If the file was locked then
L would appear in this space. For example:
 $ROSE L 000A000 000A00 00000A 05B

The start sector is the actual place where the file starts on the
disk. In SEDFS, with 10 sectors per track this would be track 10,
sector 1.

To get the file back into memory, we use:
 *LOAD <fsp> (<address>)

The address is optional and if not specified the file will be loaded
at the load address as shown by *INFO which of course was determined
at the time it was saved. If the address is specified then the file
will be loaded at this address. i.e.:
 *LOAD ROSE 900

will load the file ROSE at location &900.

This system of loading and saving files is extremely flexible and can
be used to manipulate blocks of memory from and to any part of the
complete 64K of memory.

Saving Screen Memory

One useful technique is to save screen memory so that at a later
date, a graphics image can be displayed without running the original
program to set it up again. The procedure is to save a block of
memory from HIMEM to &7FFF.

Find HIMEM with:
 PRINT ~HIMEM

The ~ (tild) will give the answer in hexadecimal. The command is:
 *SAVE SCREEN (HIMEM) 8000

Variables cannot normally be used in *commands and so the value in
hexadecimal is inserted rather than the variable HIMEM. Notice that
the end address is &8000 rather then &7FFF because the last
location+1 must be specified. To use the screen at a later date, just
type:

35

 *LOAD SCREEN

There is one more command for loading a machine code program which
will run it as well. In this respect it is similar to the BASIC
keyword CHAIN. It is:
 *RUN <fsp> (<parameters>)

The program will be loaded into memory at the load address and will
start to run at the execution address. This is useful because a
machine code program, unlike a BASIC program, need not start running
at the beginning. Parameters after the filename can be accessed by
using OSWORD with 5 in the accumulator. This command cannot be used
within a BASIC program.

SEDFS and Memory Usage

Overlays

Even though *SAVE and *LOAD are mostly used with machine code
programs, they are able to work on BASIC programs which need to be
loaded in at specific addresses. Overlays are almost essential where
memory space is short as in the Acorn Electron with a screen mode
which uses a lot of memory. Mode 2 takes up 20K of user RAM leaving
only about 8K left for the user!

The solution to the problem is to load into memory only those parts
of the program that you are using at any given time. As an example,
suppose that you had a menu drive program with two parts. The menu is
the link between the two working parts and must stay in memory all
the time. Depending upon which option is selected from the menu,
either part one or part two is loaded on to the end of the menu. The
part which stays in memory all the time is called the zero overlay
and those that are loaded in later are called primary overlays. It is
possible to load onto any of the primary overlays to produce a
secondary overlay and so on. Before we go further, let us look at a
memory map of user RAM.

 The program starts at PAGE.
 The end of the program is called TOP.
 The storage area for the program variables is between HIMEM and
 LOMEM.
 In the default state, LOMEM and TOP are the same.

If the primary overlay is loaded directly onto the end of the zero
overlay in this case then the variables will be lost. Before
operations start the variables need to be placed in a safe area by
raising the value of LOMEM to an area of sufficient size just below
HIMEM. Make sure you have enough room for the variables by estimating
the memory requirement of the variables. To do this add up the number
of bytes taken by each variable.

 Integer variables are 5 bytes long.
 Real variables are 6 bytes long.
 String variables are 2 bytes + (number of characters) long.

Subtract the total from HIMEM and you have the value for LOMEM. Add a
few more bytes for good measure. If there is not enough room, the "No
room" or "No such variable" messages will most likely tell you so on
running the program. Change the value of LOMEM with:

36

 LOMEM = <new value>

LOMEM will not now be the same as the top, indeed, there will be a
space between TOP and LOMEM where the primary overlay can be placed.

Now to find where to place the primary overlay so that is joins
correctly onto the zero overlay. First find TOP with PRINT~TOP. (The
tild sign prints the answer in hexadecimal.) This will be the end of
the program and will contain the end of program marker. This takes
the form of two bytes containing &0D &FF. For another program to be
loaded onto the end of the zero overlay, these two bytes must be
destroyed so that BASIC will continue to read past this point. The
trick is to load the primary overlay in at TOP-2. We must *LOAD <fsp>
at TOP-2. It is essential that the program numbers in the primary
overlay are higher than those in the zero overlay.

The next three short programs serve to illustrate the principles of
overlaying. The first is the zero overlay. Type it in and save it
under the filename "ZERO". Notice than line 10 sets LOMEM to TOP+90.
This reserves plenty of space for the primary overlays to go into. If
this line was omitted the primary overlays would go on top of the
variables causing a "No such variable" error. Lines 100 and 140 load
the primary overlays at address &1A0E. When you have typed in the
program, it is best to check this figure with:
 PRINT ~TOP-2

This is because if there is any difference in your program such as an
extra space, this figure will be different. If it is wrong then on
*LOAD you will get a "Bad Program" error.

Type NEW to clear memory and type in example 6.2 (the first overlay)
and save under the filename "P1".

Type NEW and type in example 6.3 and save it under the filename "P2".

Now load in example 6.1 and run. On selecting 1 or 2 from the menu,
either P1 or P2 will be loaded in. Prove it to yourself by typing "1"
or "2" and <ESCAPE>. LIST and you will see the overlay.

Example 6.1

"ZERO"
 10 LOMEM=TOP+90
 20 REPEAT
 30 PRINT"To Load Primary Overlay 1 Press 1"
 40 PRINT"To Load Primary Overlay 2 Press 2"
 50 G$=GET$:IF G$<"1"ORG$>"2" THEN 50
 60 IF G$="1" THEN PROCload1
 70 IF G$="2" THEN PROCload2
 80 UNTIL FALSE
 90 DEFPROCload1
 100 *LOAD P1 1A0E
 110 PROC1
 120 ENDPROC
 130 DEFPROCload2
 140 *LOAD P2 1A0E
 150 PROC2
 160 ENDPROC

37

Example 6.2

"P1"
 200 DEFPROC1
 210 PRINT"This is Primary Overlay 1"
 220 PRINT"Press space to continue"
 230 G$=GET$:IFG$<>" " THEN 230
 240 ENDPROC

Example 6.3

"P2"
 200 DEFPROC2
 210 PRINT"This is Primary Overlay 2"
 220 PRINT"Press space to continue"
 230 G$=GET$:IFG$<>" " THEN 230
 240 ENDPROC

These simple techniques work perfectly well but with one drawback. If
we make any change to the zero overlay the value of TOP will change
accordingly and we have to calculate TOP-2 and manually alter the
load address of the primary overlays. When a program is in the
development stages it is extremely inconvenient and it would be
easier if we could use it in its variable form in the *LOAD command.
Unfortunately in the present state this is not possible but with the
help of OSCLI we can indeed use variables in *commands. *Commands are
Operating System commands which are automatically passed to the
command line interpreter. Using OSCLI (Operating System Command Line
Interpreter) is just another way of performing a *command which takes
the instructions in the form of a string.

To use this system with *LOAD, each part of the command is put into a
string and concatenated (joined together) within brackets.

*LOAD with the following space can be expressed as "LOAD ". The
filename is placed in a string variable, i.e. overlay$. The space
between the filename and the load address is treated separately e.g.
" ". The load address (TOP-2) is converted to a string using STR$
i.e. STR$~(TOP-2) the tild ensures that the result is
hexadecimal.

So after concatenation the complete line is:
 OSCLI("LOAD "+overlay$+" "+STR$~(TOP-2))

Using this method overlays will take care of themselves and always be
loaded at the correct address thus making the programmer's task
simpler and less tedious. The new version of the zero overlay is
given below:

Example 6.4

 10 LOMEM=TOP+90
 20 REPEAT
 30 PRINT"To Load Primary Overlay 1 Press 1"
 40 PRINT"To Load Primary Overlay 2 Press 2"
 50 G$=GET$:IF G$<"1"ORG$>"2" THEN 50
 60 IF G$="1" THEN PROCload1
 70 IF G$="2" THEN PROCload2
 80 PROCload

38

 90 UNTIL FALSE
 100 DEFPROCload
 110 OSCLI("LOAD "+overlay$+" "+STR$~(TOP-2))
 120 IF G$="1" THEN PROC1 ELSE PROC2
 130 ENDPROC

Note: The use of OSCLI is not restricted to *LOAD but can be used on
all *commands.

39

CHAPTER SEVEN

MORE SEDFS COMMANDS

*OPT
*OPT has been extended to encompass some of the original SEDFS
commands and takes the form:

 *OPT <value> <value>

*OPT 1, <value>

 *OPT 1,0 turns off the filing system messages
 *OPT 1,1 turns on the filing system messages
 *OPT 1,2 turns on the extended messages

*OPT 7, <value>
*OPT 7 allows the drive to operate at full speed. As access time
accounts for the greater proportion of total operation time, this
simple command will greatly speed up any program which relies heavily
on disk operations.

 *OPT 7,0 sets STEP RATE to 15 msec
 *OPT 7,1 sets STEP RATE to 10 msec
 *OPT 7,2 sets STEP RATE to 6 msec
 *OPT 7,3 sets STEP RATE to 3 msec

*OPT 8, <value>
 *OPT 8,0 allows the filing system to read 40 Track disks in
 40 Track drives and 80 Track disks in 80 Track
 drives. (This is the default.)
 *OPT 8,1 makes an 80 Track drive double step so that it can
 only read 40 Track disks.
 *OPT 8,255 causes automatic Track detection to be activated,
 enabling 40 and 80 Track drives to be read in an
 80 Track Drive.

*FX255,value Read write start-up options (value in decimal)

SEDFS uses two bits (4 and 5) of this as an alternative to setting up
the step rate. These are defined as follows:

Bits 0 to 2 ... Screen mode
Bit 3 Reverse action of <SHIFT><BREAK>
Bits 4 to 5 ... Step rate
Bits 6 to 7 ... Future use

Example: *FX255,63 Set 15 msec step rate (default value)
 *FX255,47 Set 10 msec step rate
 *FX255,31 Set 6 msec step rate
 *FX255,15 Set 3 msec step rate

Note that for the *FX255 command to take effect, the <BREAK> key must
be pressed (<CTRL><BREAK> will restore these values to default)

40

*DATE

The date and time are kept within the disk interface even when the
computer is switched off and can be accessed through the DFS utility
command *DATE. Unlike the standard Cumana system, the date and time
are also altered using *DATE rather than the SET_TIME program. So, to
set the correct date and time, type *DATE followed by the date and
time as in the following example:

 *DATE Mo 24:11:86 15:30
 | | |
 DAY DATE TIME

Then, by typing *DATE, the SEDFS will return the correct day and date
and time as just entered.

*FDCSTAT

If a disk error occurs during the operation of SEDFS then it is
possible to determine the type of fault using the *FDCSTAT command.
This command returns the error of the last disk operation from the
disk interface and was non-zero for the error condition to arise. The
section on error messages at the end of the manual gives full details
of the errors reported by *FDCSTAT.

*RUNPROT

This command is associated with the Slogger T2SEDFS Tape 2 Disk ROM.
The T2SEDFS requires a page of 256 bytes of RAM from the Electron
during the loading of a game from disk. This is not the case with
*RUNPROT as it utilises the memory of the Disk Interface itself.

To run a game simply type:
 *RUNPROT T.<filename> (*RUNP. T.<filename>)

where <filename> is the name of the game.

41

*HELP (<keyword>) or *H. (<keyword>)

A plain *HELP (without a keyword) provides a list of all the sideways
ROMs, each of which may or may not produce a list of keywords by
which more help can be obtained. After *HELP, if present, SEDFS will
respond with the following:
 Slogger DFS <version No.>
 DFS | Keywords
 UTILS |

Using the keywords, we can call up list of the commands open to us.
*H.DFS gives the following list of SEDFS commands:
 Slogger EDFS

 ACCESS <afsp> (L)
 BACKUP <src drv> <dest drv>
 COMPACT (<drv>)
 COPY (src drv) <dest drv> <afsp>
 DELETE <fsp>
 DESTROY <afsp>
 DIR (<dir>)
 DRIVE (<drv>)
 ENABLE
 INFO <src drv> <dest drv>
 LIB <old fsp> <new fsp>
 MCOPY <src drv> <dest drv>
 RENAME <old fsp> <new fsp>
 RUNPROT <fsp>
 STAT (<drv>)
 TITLE <title>
 WIPE <afsp>

*H.UTILS gives the following list of SEDFS utilities.
 Slogger EDFS

 BUILD <fsp>
 DATE
 DISK
 DUMP <fsp>
 FORMAT <argument>
 FDCSTAT
 LIST <fsp>
 TYPE <fsp>
 VERIFY (<drv>)

42

*MAP <volspec> or *MA. <volsp>

Related to *STAT, this command shows the occupied and free space on
the specified drive in terms of sectors. If the drive is not
specified then the current drive is mapped. A list of filenames and
locked status is produced with the start sector and length in sectors
of each particular file.

Let us suppose that two files "BOOGIE" and "MINUET" are saved on
disk. "BOOGIE" is &1E sectors in length and "MINUET" is &11 sectors
is length.

*MAP will produce:
 $.MINUET 002 011
 $.BOOGIE 013 01E
 Free space 031 2EF

 Free sectors 2EF

The first column of figures indicates the start sector. Notice that
"MINUET" begins at sector 2 because sectors 0 and 1 are occupied by
the catalogue. The second column of figures indicates the length of
the file. To gain familiarity with these figures, try to verify them
by calculating the next sector after "MINUET". Starting at sector 2 +
length (&11) = &13. This is the start sector for "BOOGIE" as can be
seen above. &13 + &1E = &31 which is the next sector after "BOOGIE".
This is shown above by "Free space" and also shows that there are
&2EF sectors empty. Finally, *MAP shows the number of free sectors.

 $.BOOGIE 000 01E
 $.MINUET 01E 011
 Free space 02F 0F1

 Free sectors 0F1

43

CHAPTER EIGHT

SEDFS DISK STRUCTURE

SEDFS Disk Structure :-

 Sectors 0,1 Catalogue of files
 Sector 2 onwards The files themselves

Catalogue structure

A catalogue occupies two sectors and takes the form:

First sector
 Bytes

 &00 - &07 First eight bytes of the file TITLE
 &08 - &0E First filename
 &0F Directory of first filename (bit 7 = 1 if locked)
 &10 - &17 Second filename
 &18 - &1F Third filename

 ... continuing for 31 files

Second sector
 Bytes

 &00 - &03 Last four bytes of disk TITLE
 &04 Cycle number
 &05 Number of filenames in the catalogue (x 8)
 &06 Bits 0,1 Number of sectors referenced by the
 catalogue (2 high order bits of 10 bit
 number).
 Bits 4,5 Start up option (BOOT)
 &07 Number of sectors referenced by the catalogue (18
 low order bits of 10 bit number).

File address and lengths

 &08 Load address 8 low order bits
 &09 Load address 8 middle order bits
 &0A Execution address 8 low order bits
 &0B Execution address 8 middle order bits
 &0C File length 8 low order bits
 &0D File length 8 middle order bits
 &0E bits 0,1 File start sector 2 high order bits
 bits 2,3 Load address 2 high order bits
 bits 4,5 File length 2 high order bits
 bits 6,7 Execution address 2 high order bits
 &0F File start sector 8 low order bits

File addresses and lengths are repeated for each of the 31 files
possible.

44

SEDFS I/O Port Definitions for WD 1793

 Read Write
&FC90 Status register Command register
&FC91 Track register Track register
&FC92 Sector register Sector register
&FC93 Data register Data register

&FC94 Control port Bit 7
 Bit 6
 Bit 5 Head load
 Bit 4 Motor on
 Bit 3 Density...1=FM , 0=MFM
 Bit 2 Drive Select 1
 Bit 1 Drive Select 0
 Bit 0 Side

&FC90 Status port

The result of an FDC operation is returned in the status register.
Certain bits are extracted from this result which may be displayed by
the command *FDCSTAT in the form of a hexadecimal number. The format
of the byte is:

Bit
7 Drive not ready (NOT displayed by FDCSTAT)
6 Write protect only on a write operation
5 RECORD type = 1 if read deleted data
4 RECORD NOT FOUND (RNF) - sector completely lost
3 CRC error - bad sector
2 n/a
1 Data request (NOT displayed by FDCSTAT)
0 Command busy (NOT displayed by FDCSTAT)

RNF

The error is not recoverable and the whole track would need
formatting. For most people the easiest solution is to copy as much
as possible to another disk and reformat the whole disk.

CRC (Cycle Redundancy Check)

If the disk is written to, this error will most likely be corrected.
A Disk Editor will correct any errors if possible.

45

CHAPTER NINE

OPERATING SYSTEM ROUTINES

All file operations in BASIC use Operating System routines. When
writing in assembly language, the friendliness of BASIC is not
available and the Operating System routines must be accessed
directly. This can be a little tedious at times due to the amount of
data which has to be provided for the routines to work on but some
facilities are opened up which are not accessible from BASIC. Below
is a list of BASIC routines against the equivalent Operating System
routine.

 LOAD SAVE OSFILE
 *LOAD *SAVE _________

 OPENIN OSFIND
 OPENOUT
 OPENUP
 CLOSE#

 BGET# OSBGET File must first be
 BPUT# OSBPUT opened using OSFIND.

 OSGBPB Reads or writes
 groups of bytes.

 PTR# } OSARGS Also does much more
 than BASIC.
 EXT# } _________

OSFILE

Call address &FFDD Indirect address &212

This routine is used for the following operations on whole files:

 1. Loading into memory
 2. Saving from memory
 3. Writing attributes Load Address
 Execution Address
 Length
 Locked Status

The routine is accessed using the Call address. This can be done from
BASIC using the command CALL &FFDD or from Assembly with the command
JSR &FFDD. Before we can call the routine, a block of memory is set
aside into which all the data required by OSFILE is entered. This
section of memory is called a "Parameter Block". The parameter block
must contain 18 bytes and the file information should be laid out in
the following manner:

46

 Byte
 --
 Address of filename terminated by &0D
 00
 01
 --
 Load address of file
 02
 03
 04
 05
 --
 Execution address of file
 06
 07
 08
 09
 --
 For SAVE - Start address of memory block
For LOAD - Length of file to read
 0A
 0B
 0C
 0D
 --
 For SAVE - Byte after the last address of
 memory block
 For LOAD - File alterations - Locked Status
 0E
 0F
 10
 11
 --

There are a number of ways to set up the parameter block and possibly
the easiest to understand is from BASIC using the indirection
operators. First reserve a section of memory using:
 DIM BLOCK 17

This reserves a block of 18 bytes (0 to 17) starting at the address
contained in the variable BLOCK. You can test this with the following
lines:
 10 DIM BLOCK 17
 20 PRINT ~BLOCK

If page is set to &E00 as it should be on SEDFS then the program will
give &29 as the address of BLOCK. It is situated at the end of the
program. We write values to BLOCK by specifying the address with
BLOCK + (relevant number of bytes). For example, the address of the
filename must go into BLOCK+0, the load address of the file must go
into BLOCK+2 etc. Now let us look at the parameter block in more
detail.

Bytes 00 - 01

The user must write the filename to a specify memory location and
write this location to the parameter block. The filename must be
terminated with &0D. Take the filename "STEVE" and place it in
location &2000. Using indirection operators we could do this in one
of two ways.

47

1. Using the query indirection operator to write single bytes. The
 following program works but remember to add &0D to the end of
 the string.

Example 10.1

 10 BASE=&2000
 20 BASE?0=ASC("S")
 30 BASE?1=ASC("T")
 40 BASE?2=ASC("E")
 50 BASE?3=ASC("V")
 60 BASE?4=ASC("E")
 70 BASE?5=&0D

This method is adequate but rather long-winded. An easier solution is
to use the string indirection operator.

2. The string indirection operator writes the whole word with &0D
 automatically terminating it in one go:

 20 BASE=&2000
 30 &BASE="STEVE"

So now be have the filename in memory at address &2000. To insert the
address &2000 into the parameter block is not an easy matter.

The low byte of the address must be entered first. This seems a
little backward but is standard 6502 practise. As two digits in a
hexadecimal number = 1 byte and the low byte is on the right then
&2000 will be stored as:

 &00 Low byte
 &20 High byte

So our program to set up the parameter block should look like this:

Example 10.2

 10 DIM BLOCK 17
 20 BASE=&2000
 30 $BASE="STEVE"
 40 BLOCK?0=&00
 50 BLOCK?1=&20

Bytes 02 - 05

The four next sections of the parameter block are each four bytes
long so they can be written using the pling indirection operator. The
load address of the file is the location where it will be placed on
loading back into the memory. For BASIC programs this will be PAGE.
In our case this will normally be &E00. Add the following to the
program:
 60 BLOCK!2=&E00

48

Bytes 06 - 09

In a BASIC program the execution address will be the same as the load
address:
 70 BLOCK!6=&E00

Bytes 0A - 0D

This has two functions depending on whether the operation is to save
or load. On saving, these bytes must contain the start address of the
memory block we are saving. We will save the program we are currently
writing. i.e. it will save itself therefore if the start address is
PAGE then the instruction will be:
 80 BLOCK!&A=&E00

Bytes 0E - 11

On saving these bytes contain the first free address after the
section of memory to be saved. For a BASIC program this is given by
TOP. For example:
 PRINT~TOP

As the value of TOP will not be known until the program is complete,
the variable itself has to be entered rather than its value:
 90 BLOCK!&E=TOP
 100 BLOCK?&10=0
 110 BLOCK?&11=0

If a file is to be saved, only the first two bytes of this four byte
group are used so the last two are loaded with 0 to ensure that they
are clear. Hence the need for lines 100 and 110.

The other function for these bytes is to contain the Locked Status.
If changing the locked status, all the bytes are occupied but only
the first needs to be changed by the programmer. In this byte, if
bits 1 and 3 or both 1 and 3 contain 1 then the file is locked. They
must both contain 0 for the file to be unlocked. So, to lock the file
you could use:
 BLOCK?&11=2

To unlock the file, use:
 BLOCK?&11=0

We now have the completed parameter block and we have to inform the
operating system of the address of the parameter block and what
action to take.

The X and Y registers are used to pass the address of the parameter
block to the routine. The X register should contain the low byte of
the parameter block and the Y register should contain the high byte.
The high and low bytes can be separated by using BASIC's MOD and DIV
functions and the values can be passed to the registers in the
variables X% and Y%. Add to the program:
 120 X%=BLOCK MOD256
 130 Y%=BLOCK DIV256

49

The A register contains the type of action to be taken and can be set
from BASIC by using the variable A%. To save a file, A must = 0 so
add:
 140 A%=0

Now that the information is set up, all we need to do is CALL OSFILE.
This is accessed through location &FFDD so:
 150 CALL &FFDD

The completed program should look like this:

Example 10.3

 10 DIM BLOCK 17
 20 BASE=&2000
 30 $BASE="STEVE"
 40 BLOCK?0=&00
 50 BLOCK?1=&20
 60 BLOCK!2=&E00
 70 BLOCK!6=&E00
 80 BLOCK!&A=&E00
 90 BLOCK!&E=TOP
 100 BLOCK?&10=00
 110 BLOCK?&11=00
 120 X%=BLOCK MOD256
 130 Y%=BLOCK DIV256
 140 A%=0
 150 CALL &FFDD

On running it will save itself.

The type of action taken is decided by the contents of the A register
thus:
 A=0 Save a block of memory as a file. File information is
 provided in the parameter block.
 A=1 Write the load and execution address in the parameter
 block to the catalogue entry of the existing file.
 A=2 Write the load address only in the parameter block to the
 catalogue entry of the existing file.
 A=3 Write the execution address only in the parameter block
 to the catalogue entry of the existing file.
 A=4 Write the locked status to the existing file.
 A=5 Reads the file's catalogue information into the parameter
 block. On completion, the A register will contain 1 if
 the file was found. If the file was not found it will
 contain 0.
 A=6 Delete the named file.
 A=&FF Load the named file. If the first byte in the execution
 address in the parameter block is <>0, the file will be
 loaded to the load address in the catalogue. If this byte
 = 0 then the load address in the parameter block is used.

With all this information you should be able to load, save and read
and write file information. It may seem a little long-winded but in
machine code it is very fast. Also files, and indeed any block of
data, can be loaded anywhere in memory.

The next set of Operating System file routines depend on a file being
opened before they can be used. To open and close files, OSFIND is
called.

50

OSFIND

Call address &FFCE

This routine opens and closes files. Up to five files may be open at
any one time. When a file is opened, it is assigned a channel number
by the Operating System so that it can be identified for further
operations. In the disk filing system the channel numbers are 17 to
21 for files 1 to 5 respectively.

As with OSFILE, the A register determines the action to be taken:
 A=0 Close the file whose channel number is contained in Y.
 Close all files if Y=0.
 A<>0 Open the file whose name is pointed to by the address in
 X and Y.
 A=&40 open the file for input (reading).
 A=&80 open the file for output (writing).
 A=&C0 open the file for input and output (random access).

As with OPENOUT when A = &80, opening a file will create a new file
and if a file of the same name already exists on the current drive
and directory it will be overwritten.

On exit from the routine, X and Y are unchanged. A is unchanged on
closing but on opening will contain the channel number. If A = 0
after attempting to open then the file count not be opened.

Example 10.4 To open (create) the file "AILEEN"

 10 BASE=&2000
 20 $BASE="AILEEN"
 30 X%=&00
 40 Y%=&20
 50 A%=&80
 60 CALL &FFCE
 70 CHANNEL%=A%

Example 10.5 To open the file "AILEEN" for input

 10 BASE=&2000
 20 $BASE="AILEEN"
 30 X%=&00
 40 Y%=&20
 50 A%=&40
 60 CALL &FFCE
 70 CHANNEL%=A%

Example 10.6 To open the file "AILEEN" for input and output

 10 BASE=&2000
 20 $BASE="AILEEN"
 30 X%=&00
 40 Y%=&20
 50 A%=&C0
 60 CALL &FFCE
 70 CHANNEL%=A%

51

To close the file "AILEEN" the channel number contained in the
variable CHANNEL% in the previous examples must be transferred to the
Y register.

Example 10.7 To close any file

 10 Y%=CHANNEL%
 20 A%=0
 30 CALL &FFCE

or. to close all files:

Example 10.8

 10 Y%=0
 20 A%=0
 30 CALL &FFCE

OSARGS

Call address &FFDA

This routine reads an open file's attributes. The most frequently
used attributes is most likely to be the sequential pointer.

On entry, X points to a four byte parameter block in zero page. The
most obvious place to locate this block is from &70 - &8F which is
set aside for use by the user. On read operations this block is set
up by OSARGS but on the only write operation (write the sequential
pointer) the user must supply the information.

Y contains the channel number as provided by OSFIND or:

 Y contains 0
 A specifies the type of operation

If Y=0 and A=0 the current filing system is returned in A. On exit, A
will contain a number from 0 to 6 depending on the filing system you
are using. As you have SEDFS, A will contain 4 but for completeness
the list is:

 0 No filing system
 1 Cassette filing system at 1200 baud
 2 Cassette filing system at 3000 baud
 3 ROM filing system
 4 Disk filing system
 5 Econet filing system
 6 Telesoftware system

If Y=0 and A=1 the address of the rest of the command line is placed
in the zero page parameter block pointed to by X. By examining the
address the parameters passed with *RUN can be obtained.

If Y=0 and A=&FF all files will be updated to the disk so that the
current contents of the file buffer will be saved.

52

If Y contains the channel number and A=0, read the sequential
pointer. If Y contains the channel number A=1 write the sequential
pointer.

If Y contains the channel number and A=2 read the length of the file.
If Y contains the channel number and A=&FF the file whose channel
number is in Y will be updated to the disk.

The state of the registers after an OSARGS call will be:

 X and Y Unaltered
 A When entry is with A=0 and Y=0, the current filing
 system is returned else A is unaltered.
 CN,V,Z Undefined. D=0

OSBGET

Call address &FFD7

This read a byte from an open file. On entry Y must contain the
channel number as provided by OSFIND. The byte which is read is
determined by the position of the sequential pointer.

On exit:

 X and Y Unchanged
 A Contains the byte read
 C Set if the end of the file has been reached. If
 so then the byte in A is invalid.
 N,V,Z Undefined

OSBPUT

Call address &FFD4

This writes a single byte to an open file. On entry, Y must contain
the channel number as provided by OSFIND. A is loaded with the byte
to be written. The sequential pointer determines the place in the
file where the byte in A is to be written.

On exit:
 X, Y and A Unaltered
 C,N,V,Z Undefined

OSGBPB

Call address &FFD1

This reads or writes groups of bytes to or from an open file and has
the facility to transfer filing system information. A parameter block
must be set which is pointed to by X and Y. The parameter block
format is:

53

 Bytes
 00 Channel number
 01 Pointer to data in the I/O or tube processor
 02
 03
 04

 05 Number of bytes to transfer
 06
 07
 08

 09 Value of sequential pointer used on transfer
 0A
 0B
 0C

A defines the type of action to be taken.

 A=1 Write bytes to disk using the new sequential pointer.
 A=2 Write bytes to disk using the old sequential pointer.
 A=3 Read bytes from disk using the new sequential pointer.
 A=4 Read bytes from disk using the old sequential pointer.
 A=5 Read the disk title and auto boot option.

The returned data takes the form:

 Length of the title in one byte.
 Title itself in ASCII values.
 Start up option in one byte.

 A=6 Read the current directory and drive.

The returned data takes the form:

 Length of drive number identity in one byte.
 Drive number in ASCII characters.
 Length of directory name in one byte.
 Directory name in ASCII characters.

 A=7 Read the current library and drive. (The format of the
 returned information is the same as for A=6).

 A=8 Read the file names from the current drive and directory.
 On each read of a filename, the control block is modified
 so that the next filename can be read. The channel number
 byte contains the cycle number. The sequential pointer is
 adjusted to point to the next filename.

On entry:

 05 Number of filenames to transfer.
 06
 07
 08

54

OSFSC

(No direct call address)

Indirected through &21E. This is used from various filing system
control functions. On entry:

 A=0 Performs a *OPT command with X and Y containing the two

parameters.
 A=1 Check for EOF. On entry X must contain the channel number

of the open file being checked and on exit X=&FF if EOF has
been reached else X=0.

 A=2 The same as for A=4.
 A=3 For unrecognised commands. The filing system will attempt

to RUN any unrecognised command and if not able to do so
quickly a "Bad Command" message will be issued.

 A=4 *RUN the file pointed to by X and Y. The current drive and
library will be searched first and if the file is not found
then the current library will be searched. If the file is
found, it will be loaded according to its LOAD address and
run from its EXECUTION address.

 A=5 This is used on *XCAT to produce the catalogue. The
remainder of the command line is pointed to by X and Y for
any parameters.

 A=6 Used when changing filing systems.
 A=7 This returns the range of channel numbers used by SEDFS.
 On exit X contains the lowest number and Y contains the

highest number. The range for SEDFS is 17 to 21.
 A=8 This is used by SEDFS to ensure that *ENABLE precedes

dangerous commands.

 On exit:

 All registers undefined.

55

On the first call:

 09 Sequential pointer should = 0
 0A
 0B
 0C

The returned data takes the form:

 Length of filename 1
 Filename 1
 Length of filename 2
 Filename 2

On exit:

 X,Y,A Unaltered
 N,V,Z Undefined
 C Is set if the transfer would not be completed (if
 there are no more filenames or the end of the file
 had been reached). The number of bytes or names
 that failed to be transferred are written to the
 parameter block in bytes 05 - 08

OSWORD

To gain greater BBC compatibility, SEDFS supports three OSWORD calls
which are defined as follows:

OSWORD &7D Read number of times disk has been written to
OSWORD &7E Read number of sectors in disk catalogue
OSWORD &7F Perform emulation of the BBC 8271 FDC direct disk
 access commands

OSWORD &7D

Call address &FFF1

This reads the catalogue of the current drive to ascertain the number
of times the disk has been written to. The result is placed in a 1
byte address as pointed to by the X and Y registers.

On entry:

 A = &7D
 X = LSB of result address
 Y = MSB of result address

On exit:

 A, X, Y Unchanged

OSWORD &7E

Call address &FFF1

56

This reads the catalogue of the current drive to ascertain the number
of sectors available to the catalogue. The result is placed in a 4
byte block as pointed to by the X and Y registers.

On entry:

 A = &7E
 X = LSB of result address
 Y = MSB of result address

On exit the result block takes the form:

 Byte

 0 = 0
 1 = LSB of sector count
 2 = MSB of sector count

OSWORD &7F

Call address &FFF1

This is used for direct disk access. Using OSWORD with A=&7F and X
and Y pointing to a parameter block, the normal SEDFS can be
bypassed.

On entry:

 A = &7F
 X = LSB of parameter block address
 Y = MSB of parameter block address

On exit:

 A, X, Y Unchanged

The parameter block is slightly different depending on which command
is being used. The command is specified in byte 6 of the parameter
block.

The commands supported by SEDFS are:

 INITIALISE &75
 SEEK &69
 READ DRIVE Status &6C

 READ/WRITE SPECIAL REGISTERS:

 READ &3D
 WRITE &3A

 READ I.D. &5B
 READ data &53
 WRITE data &4B
 VERIFY &5F
 READ data & deleted data &57
 WRITE deleted data &4F
 FORMAT track &63

57

Initialise

Initialises the step rate of the floppy disk controller. The
parameter block takes the form:

 Bytes
 00 Drive number
 01 - 04 Not used
 05 Number of parameters (4)
 06 Command = &75
 07 Parameter #1 = &0D
 08 Parameter #2 Step rate (See below)
 09 Parameter #3 not used
 0A Parameter #4 not used

The step rate is determined by the 2 l.s. bits:

 11 = 15 m.s.
 10 = 10 m.s.
 01 = 6 m.s.
 00 = 3 m.s.

Seek

To seek a specific track:

 Bytes
 00 Drive number
 01 - 04 Not used
 05 Number of parameters (1)
 06 Command = &69
 07 Parameter # 1 Track address 0 - 255

Read drive status

To check whether or not the disk is write protected.

The parameter block is:

 Bytes
 00 Drive number
 01 - 04 Not used
 05 Number of parameters (0)
 06 Command = &6C
 07 Result

The result byte takes the form:

 Bit
 7 0
 6 RDY1 always 1
 5 0
 4 0
 3 WR. PROT = if write protected
 2 RDY 0 always 1
 1 0
 0 0

Read/Write Special Registers

58

The parameter block is:

 Bytes
 00 Drive number
 01 - 04 Not used
 05 Number of parameters (1 if READ...2 if WRITE)
 06 Command for READ = &7D
 Command for WRITE = &7A
 07 Register address
 08 Data if write - Result if read
 09 Result if write

Register 0

40 track disk in 80 track drive flag:

 Bit
 7 Used by SEDFS
 6 0 = normal operation
 1 = perform double track stepping
 5 0
 4 0
 3 0
 2 0
 1 0
 0 0

Register 12

Track address

This register contains the track number which the FDC thinks it is
at. This would be used for reading/writing non-standard sectors. i.e.
128 byte sectors.

READ I.D.

This command is used to read the I.D.s of sectors on a track. The ten
sectors on a track starting at the Index hole may be numbered
4,5,6,7,8,9,0,1,2,3. They could be numbered 0,2,4,6,8,1,3,5,7,9 which
would be called "interleaving" of sectors. Information also returned
from the READ I.D. is the size of the various sectors. Formatting a
track with sectors of varying sizes is a common method of
"protecting" disks from being copied easily.

The parameter block is:

 Bytes
 00 Drive number
 01 - 04 Address for I.D. bytes C,H,R,N
 05 Number of parameters
 06 Command &5B
 07 Track number
 08 Zero
 09 Number of I.D. fields to read
 10 Result

A result of zero means that a sector I.D. was captured. A result of
&10 means that no I.D. could be found, probably due to an unformatted
disk.

59

The first "sector header" information (C,H,R,N) will be written to
the address given in bytes 1 - 4. The bytes are:

C

When the Read/Write head of the drive is stepped to a particular
track (say track 2) then normally the cylinder number of a sector in
that cylinder will be 2. However, if the value of C returned from the
READ I.D. was 1 then we must be looking at a 40 track disk in an 80
track drive because it requires two steps of an 80 track drive to
cover each cylinder of a 40 track disk. Conversely, if the value
returned in C which seeking track 2 and performing a READ I.D. was
cylinder 4 then we must be looking at an 80 track disk in a 40 track
drive.

The physical track and the cylinder number do not necessarily take on
the same value. For instance, the physical number may be 1 but the
cylinder number could be any number up to 255. By this means a disk
may be "protected".

H

The head parameter. This is determined on format and should
correspond to the side number. i.e. 0 for side (or drive) 0. However,
this value can take on a value of up to 255 thereby providing a means
of protecting the disk to prevent unlawful copying.

R

The record number of the sector found. Normally this will be in the
range 0 to 9. For the purposes of disk protection, however, this
could take on a value between 0 and 255.

N

This is a value up to 3 indicating the size of the sector. See READ
data.

Sector sizes in bytes:

 N = 0 128
 N = 1 256 The normal value
 N = 2 512
 N = 3 1024

60

Read data

To read up to the maximum number of sectors on a track. The parameter
block is:

 Bytes
 00 Drive number
 01 - 04 Address to put read data
 05 Number of parameters
 06 Command &53
 07 Track number
 08 Sector to start reading from
 09 Sector length / Number of sectors from start
 10 Result

Byte 9 takes the form:

 Bit
 7) 000 = 12 bytes
 6) length 001 = 256 bytes
 5) 010 = 512 bytes
 011 = 1024 bytes
 4)
 3)
 2) number of sectors (0-9)
 1)
 0) This value must be <= (Max sector - start sector)

For instance, a value of &21 in byte 9 will read one 256 byte sector
and a value of &2A will read 10 sectors.

Example 10.9 to read a sector from Track T%, sector S%

 10DIM OSWDBK 16 Allocate 16 bytes for
 OSWORD block
 20T%=0 Track zero
 30S%=0 Read from sector zero
 40?(OSWDBK+0)=0 Drive 0
 50!(OSWDBK+1)=&2000 Read into memory
 55?(OSWDBK+5)=3 at &2000
 60?(OSWDBK+6)=&53 Read command
 70?(OSWDBK+7)=T% Set track to T%
 80?(OSWDBK+8)=S% Set start sector to S%
 90 ?(OSWDBK+9)=&21 Read 1 x 256 byte sector
 100A%=&7F
 110X%=OSWDBK MOD 256 Point X% and Y% to
 OSWORD block
 120Y%=OSWDBK DIV 256
 130CALL &FFF1 Perform actual OSWORD
 operation
 140IF ?(OSWDBK+10)<>0 THEN Check result for good
 PRINT"Error" read

Write data

The parameter block takes the form:

 Bytes
 00 Drive number
 01 - 04 Address from which to write data
 05 Number of parameters
 06 Command &4B

61

 07 Track number
 08 Start sector
 09 Sector length / number of sectors
 10 Result

Verify data

The parameter block takes the form:

 Bytes
 00 Drive number
 01 - 04 Not used
 05 Number of parameters
 06 Command &5F
 07 Track number
 08 Start sector
 09 Sector data/ length etc.
 10 Result

Read data and deleted data

To read sectors of data and deleted data from disk. The parameter
block takes the form:

 Bytes
 00 Drive number
 01 - 04 Address to put data
 05 Number of parameters
 06 Command &57
 07 Track number
 08 Start sector number
 09 Sector data
 10 Result

Write deleted data

To write sectors with deleted data address mark. The parameter block
takes the form:

 Bytes
 00 Drive number
 01 - 04 Address from which to write data
 05 Number of parameters
 06 Command &4F
 07 Track number
 08 Start sector number
 09 Sector data
 10 Data

Format track

The parameter block takes the form:

 Bytes
 00 Drive number
 01 - 04 Address of format data
 05 Number of parameters
 06 Command &63

62

 07 Track to format
 08 - 11 Not used
 12 Result

Non-standard formats can be used and are supported by the READ and
WRITE commands.

Format Track

The 8271 Format command is supported by SEDFS so that commercial
software using this facility is compatible. The following is an
example of a Format routine using OSWORD &7F.

Example 10.10

 10?&2000=0 Drive 0
 20!&2001=&3000 data starts at &3000
 60?&2005=5
 70?&2006=&63 format command
 80?&2007=0
 90?&2008=&0
 100?&2009=&21
 110
 120FORI%=0TO9*4 STEP 4 create sector list
 130I%?&3001=0
 140I%?&3002=I%/4
 150I%?&3003=1
 160NEXT
 170
 180X%=0 Point X% and Y% to
 OSWORD
 190Y%=&20 control block at
 &2000
 200A%=&7F OSWORD 7F
 210
 220
 230FORT%=0TO79 80 tracks
 240FORI%=0TO9*4STEP4:I%?&3000=T%: put 'C' in sector list
 NEXT
 250PRINT"Track ";T%
 260?&2007=T%
 270CALL&FFF1 do actual format
 280NEXT repeat for 80 tracks
 290
 300?&2006=&4B write sector command
 310?&2007=&0 track 0
 320?&2008=&0 sector 0
 330?&2009=&22 SSSNNNNN S=1 and N=2
 sectors
 340FORI=0TO511:I?&3000=0:NEXT
 350?&3106=T%*10 DIV 256 Catalogue size m.s.
 360?&3107=T%*10 MOD 256 Catalogue size l.s.
 370CALL&FFF1 Write catalogue to disk

63

CHAPTER TEN

ERROR REPORTING

SEDFS error messages are in addition to those already present on the
Acorn Electron which are fully explained in the Acorn Electron User
Guide.

If commands are entered in command mode then any errors are reported
on the screen. If SEDFS is controlled via a program then errors are
handled in the normal Acorn manner by reporting them on the screen
with a message or through any user-written error handling routine.

The following list gives the error message which would be displayed
if in command mode or REPORT was used in the error handling routine
and the error number which would be displayed if ERR was used in the
error handling routine.

 Number Message

Hex Decimal

BD 189 Not Enabled Issued when a *ENABLE was not

entered before a command which
required *ENABLE.

BE 190 Catalogue Full Issued when the catalogue

contains 31 files and an
attempt was made to save
another file to the catalogue.

BF 191 Can't Extend Imagine that a file A has been

saved on a disk. Saving a
different file (B) after this
will result in file B occupying
the next free space on the disk
after file A. Any attempt to
increase the length of file A
results in the error message.

CO 192 Too many files open A maximum of five files may be

open at any one time and any
attempt to open a sixth will
result in this error.

C1 193 File read only This error is produced by

attempting to write to a file
that has been opened for read
only.

C2 194 File open Any attempt to re-open a file

that is already open will
result in this error. This most
often occurs when a program has
been terminated abruptly (e.g.
<ESCAPE>) without closing an
opened file. To get back into

64

the file it will need to be
closed first.

C3 195 File locked Displayed when an attempt is

made to delete or write to a
locked file.

C4 196 File exists This error is caused by an

attempt to rename a file to a
name which already exists on
the specified directory.

C6 198 Disk full When an attempt is made to

OPENOUT or save a file to a
disk which has insufficient
space.

C7 199 Disk fault Failure to read disk due to

corrupted data, the wrong
density or damaged disk, etc.

C8 200 Disk changed If you change the disk when one

or more files are open then
this error will be reported.

C9 201 Disk read only Produced by an attempt to write

to a disk which has been write
protected.

CA 202 Bad sum Not implemented.

CB 203 Bad option Only *OPT options 1 and 4 are

valid.

CC 204 Bad filename You have tried to use a

filename which is too long or
contains illegal characters.

CD 205 Bad drive Drive numbers must be in the

range 0 to 3.

D6 214 File not found An attempt to read a file which

does not exist will produce
this error.

DC 220 Syntax error The command was recognised but

the form was wrong.

DE 221 Channel If reference is made to a

channel with an incorrect
number then this will work.

DF 222 EOF End Of File. If an attempt is

made to read beyond, the point
the error is generated.

FE 254 Bad Command If SEDFS fails to recognised a

command as valid or as a file
in the library then the error
is generated.

65

Disk faults

00 0 No errors

08 8 CRC error Data was previously written

badly and is now corrupted. The
sector may be recovered using a
Disk Editor.

10 16 RNF (Record Not The sector requested cannot be
 Found) found due to a corrupted disk,

wrong track, etc. This sector
cannot be recovered if
corrupted and the whole track
must be reformatted.

18 24 Combination of error 8 and 10

40 64 Disk Read Only At attempt has been made to

write to a write-protected
disk.

66

Index

*ACCESS (*ACC.) 18
*BACKUP (*BAC.) 16
*BUILD (*BU.) 22,23
CAT (.) ... 10
*COMPACT (*COM.) 14
*COPY (*COP.) 15
*DATE ... 41
*DELETE (*DE.) 14
*DESTROY (*DES.) 17
*DIR ... 11,12
*DRIVE (*DR.) 13
*DUMP ... 19
*ENABLE (*EN.) 16
*EXEC .. 21,22
*FDCSTAT 41,66
*FORMAT .. 6
*FX255 .. 40
*HELP (*H.) 42
*H.DFS (H.D.) 42
*H.UTILS (*H.U.) 42
*INFO (*I.) 35
*KEY .. 23
*LIB .. 11
*LIST ... 20
*LOAD 35,38,46
*MAP (*MA.) 43
*MCOPY .. 17
*OPT .. 40
*OPT1 ... 40
*OPT4 .. 23-24
*OPT7 ... 40
*OPT8 ... 40
*RENAME (*REN.) 13
RUN (/) ... 35
*RUNPROT (*RUNP.) 41
*SAVE .. 34,46
*SPOOL ... 20-24
*STAT .. 12,13
*TITLE (*TI.) 13
*TYPE ... 20
*VERIFY .. 7
*WIPE (*W.) 17

!BOOT .. 22-24

Slogger Computers, 107 Richmond Road, Gillingham, KENT ME7 1LX

67

